ML20136J101

From kanterella
Revision as of 17:45, 18 June 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Revised PSC of Nh,Seabrook Station Voltage Regulation Study
ML20136J101
Person / Time
Site: Seabrook  NextEra Energy icon.png
Issue date: 11/21/1985
From:
PUBLIC SERVICE CO. OF NEW HAMPSHIRE
To:
Shared Package
ML20136J086 List:
References
NUDOCS 8511250281
Download: ML20136J101 (29)


Text

'O

~

c -'f' O

t.

G S

PUBLIC SERVICE COMPANY 0F NEW HAMPSHIRE SEABROOK STATION VOLTAGE REGUIATION STUDY e

9 e

0511250291 PDR 851121ADOCK050g3 A

e s 5

TABLE OF CONTENTS SECTION NO. DESCRIPTION PAGE NO.

I Purpose 2 II System Model 2 III Load Model 17 IV Methods 18 V Tabulation of Results 18 VI Conclusion's 25 O,

  • PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE SEABROOK STATION VOLTAGE REGULATION STUDY
1. PURPOSE The purpose of this calculation is to determine voltages present at various buses and motors throughout the plant during the following conditions; A. Unit at full load (maximum anticipated unit steady state load) with the utility grid at the minimum anticipated voltage.
8. Unit at full load with the utility grid at the minimum anticipated voltage and simultaneous start of all accident loads or start of other large motor loads.

C. Unit at Cold Shutdown or Refueling (minimum anticipated load) with the utility grid at the maximum anticipated voltage.

II. SYSTEN NODEL This section contains all assumed and actual data to establish the system being studied.

A. Utility Grid The utility grid is assumed to be an infinite bus with a resultant zero impendance. The 345 kv bus voltage is assumed to vary between 105% and 97.5%.

There are two available connections to the offsite power supply (utility grid); one through Generator Step Up Transformer (GSU) and the Unit Auxiliary Transformer (UAT) combination, and the other through the Reserve Auxiliary transformer (RAT).

B. Main Generator and Isolated Phase tus Duct It is assumed that during running and starting conditions, the utility grid voltage dip will be limited to 97.5% of rated. To compensate for the GSU regulation, the generator output voltage must exceed the voltage of 97.5% of rated on the GSU high voltage terminals. Due to this higher generator (and hence UAT primary) voltage, the lowest source voltage cannot be obtained with the generator connected. Therefore, it is assumed that the main generator is disconnected and that

r- .

/ , .

II. SYSTEN MODEL (Continued)

B. Main Generator and Isolated Phase Bus Duct (Continued)

the auxiliary system is being back fed fro. the utility grid through the GSU. Light load condition is assuasd to occur during shutdown with the main generator disconnected and the grid voltage at 105%. , The isolated phase bus duct connecting the GSU and UAT has such a small impedance that it is neglected during voltage drop considerations.

C. _ Generator Step-Up Transformer (GSU)

The GSU has the following rating:

l l

3 - 1 #f, 60 Hz.

410 MVA FOA (55'C) l 24.5 - 199.2 kV 10% 1mpedance on 410 MVA Base (Tested) i l

l D. Unit Auxiliary Transformer (UAT) i l l

The UAT has the following ratings: 1 1

1) Voltages: 24.5-13.8-4.3 kV i
2) NVA Ratings of windings (in OA/FA/(Future) FOA) a) Primary: 27/36/45 NVA b) 13.8 kV: 18/24/30 MVA c) 4.3 kV: 12/16/20 MVA
3) Impedance between windings a) Primary to 13.8 kV (H-X): 5.05% on 18 NVA base b) Primary so 4.3 kV (H-Y): 5.48% on 12 NVA base c) 13.8 kV to 4.3 kV (X-Y): 9.80% on 12 NVA base The above impedances are tested values.

t . . .

e .

E. Reserve Auxiliary Transformer (RAT)

The RAT has the following ratings:

1) Voltages: 345-13.8-4.3 kV
2) NVA Ratings of the windings (in OA/FA/(Future) FOA) a) Primary e 27/36/45 NVA b) 13.8 kV: iB/24/30 MVA c) 4.3 kV: 12/i6/20 MVA
3) Impedance between windings a) Primary to 13.8 kV (H-X): 5.51% on 18 MVA base b) Primary to 4.3 kV (H-Y): 4.62% on 12 NVA base c) 13.8 kV to 4.3 kV (X-Y): 8.94% on 12 NVA base The above impedances are tested values.

F. Secondary Unit Substation Transformers

1. All transformers, except that for Unit substation (US) #64,
  1. 22 and #17 have the following ratings:

a) Voltage: 13.8 kV (or 4.16 kV) - 480V b) kVA Rating: 1000/1333 kVA, AA/FA c) Impedance: 8% on 1000 kVA base (Nominal)

2) Transformer connected to Unit substation (US) #64 has the following rating:

a) Voltage : 4.16 kV - 480V b) kVA Rating: 1000/1333 kVA, AA/FA c) Impedance: 5.8% on 1000 kVA base (Tested) 9 e .

~

F. Secondary Unit Substation Transformers (Continued)

3. Transformers connected to unit substations (US)
  1. 22 and #17 have the following ratings:

a) Voltage: 13.8 kV - 480V b) kVA Rating: 750/1000 kVA, AA/FA c) Impedance: 6.14% on 750 kVA base (tested)

(X and R are calculated based on tested values of Z and load loss)

G. Non-Segregated Phase Bus Duct For the purpose of this calculation, there are three types of non-segregated phase bus duct:

1) Type I has the following rating:

a) Voltage: 13.8 kV b) Current: 2000 Amps c) Impedance: (11.4 + j 56.5) x 10-6 ohns/ foot

2) Type 2 has the following rating:

a) Voltage: 4.16 kV b) Current: 3000 Amps c) Impedance: (6.1 + j 43.1) x 10-6 ohns/ foot

3) Type 3 has the following rating:

a) Volt age: 4.16 kV b) Current: 2000 Amps c) Impedance: (15.2 + j 48) x 10-6 ohns/ foot k

e .

H. Cables

' fi Cables are copper conductor throughout and have lengths and sizes as indicated on Figures 1 thru 10.

Lengths of all cables have been selected on a worst case basis.

That is, the longest cable run within reason has been used in order to yield conservative results.

I. Transformer Tap, Settings All transformer taps are on the primary winding. . Therefore, a tap set on the UAI or RAT has an effect on both low voltage windings.

A tap set in the minus direction has the effect of raising the secondary voltage. For the assumed utility system voltage variation of 97.5% to 105% of 345 kV, transformer caps are assumed to be set as follows:

1) GSU: +2%
2) RAT: +2%
3) UAT: Normal tap
4) All US transformers, fed from Non-Class lE Switchgear: - 5%

l

5) All US transformer fed from Class IE Switchgear, except j USf61 and #64: -2 %

l

! 6) US#61 and #64 transformer: Normal Tap I

{

t 4

a=

= 5 S M

9

'. g== r' 4

C 6 A M 'o a 4 % 2 p = == 4 0 0 0

- , ' = 4 .

g - --

I c

=

  • ) M.t 4 6

g

" 1 E

' ~ M syT sS f "eD

~

= E y 5' kW

= ~ T o

s0

=( 4 0 U s. 46 t 4i 5 r a u s 4 A 4 . i.o

. 3 3 C T

A

- i s

o01s

+ 3 4

3

.o l I

C

- l R

ie a s s M S

  • "Ig S A
  • o.

o mo.o s i.

t

s. C C

- l

]

  • g 3 s M , *f j.. f 2

}

i O j

e -

7 s . , ll 2 a .

M +5 3

0 0 @ @ l 7

i t

1l.

i 96 80

0. 0

- l o3 3

5

+ Y 0 4 . 2 0 H 8

I

. 4 ll s . 3 + 9 o 4 u.

p' [. e7 G J e g( o e M. o tg#y c lI t 0 M s .2e* D :8

'u t s. 0 I t o1 n o i

. 3sd E :! .- J - W 4

a. . n "  : l o aJi

) . i t4e" 2

3 u 4 1 R

5+1 4 -

s C 4

o :n*d-. .

C 4 5 D

i msc -

5 o 6 21o h o.

o 4 c.

C

. s t

s

- 1 g..

i L

ob A

o.

l

)

[ 4- .$ 2 -

!u o l* L ait 1

]

o- I . ' L F

. $ 2, 4 e ,

1 0

5 s

ll 1+7 2 o.

7 F

U O

1 A

h rE s s t O P 8o M H

s. s sg  !

S- S 9 i.

P M

o loD A ( -

A 4 0 a si n o v. R 2

'g:c *'1-. R E 1 I s

T i. 4 4 u 1 . A G 1 R A  : 7 s ]

s A

'u 4 2 2 ,-

4 v a t s 1l

+6 I S U 4

30 u o. .= s. u ig; 66 D U G 0

o a } 00 B

5 I 0 .j [

3 '

l. o 01 E F 54 '*

l 1 ]

+ v p C

- 6 k E N V ,

'6 2 o g

+2 3 99 K 4 @ @ 7 u s. 4 s.

s 3 87 2 o.

A D O.

0 l 5 W

.i7 u q 1 E

I.l t oW 0 1

  • . . 3 o o o *gs P 1

$; 2is

[

l i a e ll M

s o

7

>T3 l

p +t 8i 1

7 s

a.

e oi o

- @ e+n .eO2

- S P O

- M 9 o.

1o 0i 1

3

/

W i

i

+ E o 0

+ 6 + *E 6 46 8 s t 2

1 a s l 3 C c

1 65d_

l G o o 6 D

W&

g {g c.

o g '

c o.

eJ -E '

s "

a *,i t

yl8'1

. 3 3

3 ll t9 87

4. O

. l -

i s"4 ji 20 1

W l

~ "* 1o 2- .. + M. o4 9 . o l

A 1

1 * ,..

2 5 .pt

.. t j1 4

P U , 8' NI M

5P - 0" . t ll F O 2 5 0 b3$ +S N 0 h .,S*. a- 0 0o t

i T a 5

O

- .y;9, c 7 a u C C

M 7

8 0i t.

o T

E AAM R  !]I d O L

ll S

P 2 3 F T- T- Y 4a#

a@ i l

A A A S T UR U g

~ I -

)j3}i  ! .

) . .

.i g '

[e

) l

[

+7 #

2 25 B )

90 00 I. 2

'f~ P. r

0. 0 C 3 l

e 0$ R 5+6 6 4

o

/a ' 4 0 .

2 I

5 C 62 5

M@

M C

t3 M n 5

$@ G

. E5. h 55 A s 80 R N (

t N 0. 0 04 G A

I N

N 1

4E 7 94 I

U S

+ >

ll D

+

4 o

5 1

os iu 3

9

  • h j

+5 0

7 0

E R U B

+8 9_ ;2 1 D

i .

$ 3 o C V A

+ s 3W 5 o 5 I 2 ky 6e 1 t

0i N A O

K 3 4 w 2& A L 1 t

  • 6 M B.

04 l

0 0 v 0 D

T ' 1 +

L 3 2 *A '

- 5 ,, E 8 7 R [ 1I i

  • + E s 5 P L 2

0

' 4 q 4

+ 2 u 9 8 - $

03 6 8

M U 0 7' 4 0 X 8 0 F 5 00 l I 2

3

- l 0 0 D 4 B E. $gC C ll 3 0 30 E s j Z5 M +50 A 5 l l 0 $ i 7 71 .

0

.g ?$ i[ 5 0 3 0

l 9 h 01 0

1 c

2 3

3 8

0 t

0 m

O 3 P

'0 + 7 h i.

+ e 4 b

w 0 3 B

+

m s

0 2

4 x-

- s 7

1 S

U R

, 2 h 0 y 0

0 0

0 1

0 2 b E

2 2 D ll

+

9 6 +%

T 4

6 E R

) ,'

l 8 4 58 RE U

$ i 000 58L 4 3. L G h

l 03 I ll 5. tH

  • g I

F 8 S @ li

[I C '3

[

1 5 2 E .2 j {X 9 S 5 lf i

4 o o i

s 3 t

W IO ,

ll gU

+ 6 +2 A 4 t

O m" I 5 o5 2 5 33 t 2 2 0

7 0 'I '

' $38 I 8 1 4

0 T A

0 W 0 4 5

~

5 C

C

2. 0 03 F

', . 11 ' l 4 5O U ' +8 + 8 s

- 1 6

h

  • 4 45 3

4 8 8 u 3 2 - Y'5 9 8 n ls f 4 " 30 W [

i 0 I 0

03 0 D 4 7 E D 8

5

. 0 f. 0 i l 6

42 0

f C

I 33 t210 3

0 7

7 1

,$[ N!M  !

l 06 s h 3 2

3 0 )

0 D

4 h .E

!a l

4 s 6 8 oe 3 0 0 l 0 + A + I

' 0 v.

6 . 0 x 0 B 4 8 9 2 S- l i

0 4 2 - 8 t 4 , 0 7 -

W- b

  • 0 0 x. 61 U.

4 0. 0 p 8 O 9$ c +

/ 4 M 4s i E  ;

  • ,$ e 84 L

AUe eH h T 03 E Ih b

9 B

2. o.

t HPO - 0i G

4 p

l M2t 5 P h h *' 7 s h l O 0 A I I

, i H4 O

  • o T - - - Y E R S

AA MF 23 F

A 1 T X 7 AAS _

URU .

,- g

, s u

, - ll .

A s '

/

1 7

~ 2 -

$ ., .- - C C +1

.e$ M 62

, 91 1o s$yg; h 0i

. 0 4

2 p "

s -

, s w

o. 1 c

- s 2 +9 e*

  • l 4

i 3 7 s. +

- .- il 02 3 + *I = 1 2 6g x 2 24 7 (

o o64

,]

4 o. 2 7

s I

9 6 ,

2pn 5- o 2

4 i o C

'nf+4 g h 7 4 4

8 0 j g

i rU l,: 5 o- . i j 00o e

3 8 is 4 $;_

s?R."6 3 4 o 5 , +$e* 0i

- 5w 4 7 l

a }

T .

2 s 2 A 0 v 0 F R 0 o , s. 2 0 4 s 7 D l 5 2 A 2 + c

- O H 7 L i

c 2

0 h a + f$,e ~ u +s L L (

5 o n i 0o U i

l s [ 7 i. F Z 3 n oT*fe 1o 0b - S s i.

o o r s . 'M U B

i. 2 +2 A o 4- s 4 R

92 3 V (2g i x s o.

il 8 53o 2 G k

% 9 ,3ot - 7 c A

,mOs s o 2

3 7

i 4 . oi c I 8 ~3 1 o.

i .

M.

1l D 3 -

m 0 o I

g[ o + 1 E

J ,Y$j. 7so i

+

. t E R

,e .* @

4 f 4 s 6 j

6 C -

U o o 3 $d - oe

.t.

N

@ 6 w 0

0

$ T- lh A G N

G I

o.

0 v 0 C D I F l

j

) l 4

3 r E N P o e P N s t h a s

e +

gJ.

j c o e t s

1l

+2 t6 I

M R

U 8

o i z t0 2 6 4 + e8 hj: l.0 5 E - s o5 3 B

9 4 x 4 e

0 2 3 0

+ .$os o .

4 1 T

4 9 0 i ~$Os c i

  • - 1l 4

A u

41 ns 2 w 0 .

v 6 6, 2

o.

o

[' ,

s s

s.

2 s

,f.s@

l i ( +# f I

  • h 7

+7 8 4 000 0 l 0 , s u ,  :?hgy o j 3 01 l

+ a 2 2

,s

- i s t c Ife ~ h +2 5,

6 4

o h s.

n s v u o

il

+

35 M.

D

  • je4=

,

  • E f-0 4

5 " "

c j a. 1 E

o s

. 20 o5 P '

l i s 3

0 2

7 1

- ]T$:h +s 7ot.

p 2

3 0

0 @ h a-o e. 1oi o

i o 3 4 + Tgg e @ 8 1

+ 5 S 3 # .

6 2-o e G s o a w w }

o o

j h 0 0

0

]

) j i- s i

q 21 3

8 8

C C

'M h H j

o c +5 c' t l

E9 o 8 a w M u . 5 I UP x 4 MP 3 C, a 3

4 6

2 %.

0 P a

G 0 ;g- -

a NI 1

+;o* ,c '

, ,. 06 T - - 4 T e.

E 9 B t p 25 lu$e @

,1 S 23-ni T v P T A A A s T uR u

= i 1 4!!4' <j; ,i

9 e

FLk'Z! u -

e + 9066 *5 _

0 M +g

+t N +T p A d

  • .%E - N mancos a J ' - 0o -

9 ro . 7 e m 3 e m- y*

  • 6e.o o* o a H P *o wg **
  • ou 8a d .:

3*e 9

r 0 do g 2 .e

%s.o/a@ @ .,

.saa - en es)enot_t-t cv ]

- d.e

, 1499 of @

+LS4>*1

  • n D e .u-

.T o voneest 2 d e 9 e 4- -

A

.R - " 9th O! N

  • I j .A + et

+ w W $

Y.

om,, s

  1. *IIIA4

- h -

g + k.

- N. ,j, o e o

2 vg o

  • O ,u, d

-oe.o

, O P o - @ ,e g g d d g gg g $ ,, w

- <nt w- -

- w  ;;"d 3 o 098
  • 0/3 -+ o .e

. o. +N T o O,N M .SS - $ U , - 00 d .

mes sosa 3w Z f*

o.f. W o - -.

3 6

,- 90tt'of A eigS9% % /

3 T . o

  • N -

88 L

=

g W e n.  % 2 a

3  ;@

d ~ ' "

k uo 8 gg.,! e +

--4He-> 5 +tsV3 u so o

  • e d y W #~

O- 8 7 m *t%S geo oleot f ~ .sn pe ~e ON a -

    • 0%3 v~

f$

j $

0 + b nt_0 'o o -

u o d' o

W- -

@i L" u 1954 i( ja

?

u +-

n N

1 0 g e

g g 5 o o ,

, + s06 4

p. n 2 -

do

-o 0e 4 2 N 4

$ 'I T .a y *e ,stt O' j

+"*** 3 h 2' e  ! -

o oi $ =6 ee 0 g 4 7

  • v' N 8* $3 6 * -a d ny,Sziogg.g h N Q

v$ $ e43 3

$ 'M '90 + 3 E

-) odf g 6tsin Tir-0 Y,_ $c -

g E

d '.C. j d '; , J ,tos o/z +65091**" -- f ta.1 D

'n e- o; a .e u O e n- e ~ 3,o 2 4 2 o - -

+g Y 4 s o o

@ m >

y e - _ b"o -

a g M o *n * ~~~

o iN o e E M o U - - ~

+ m N anost 95 t*2*O *o.d.

o t:

~O- N o

h o

0,

+h, IP09E*0 f t >lLV D 4

N

.*~ 4 b fN$

$ Y ss0 ei 2, a l3*

2 8  ?

X 8

o +t ar9 3 -

t$

oo sj " r; o

'ne-n -,

'aur-- o s e 4, o o '#.59 N MtEno v- M 4 o ,

2 o. [ $ .s 2 iS ENA O o F,

+

+t N 2~ #C

  • ' ' w .$o 1 gg ':'a -

,e o a oN.s.,

- a #' y. - _$

w as a) a' =

4/J Nmf

  • a, M a

<aa r* Q ,,

F 3 Of 3 @

10 -

. 1 <

x=

s o

- . o, 2

D.

. o -

Y o e .. ,$ e, 2 gI D u

o l 4

D wa- < ,

Q .

W @

yy

@ d 3 L -

1_ n

. 3: a, ow

; - 2 4

m n l 0 @

5 s

f a s a$ w

< .- a > e e

r so  ;;

w s O @

a

.O

  1. o 5 g y o. u 2 - -

o E bO- 8 's 4 N ---e r o e n w

. t. ,1

+, set o 3 a 8geo ,

a w

.2 U*

  • 4 =

y 3 go I

- +ito o! sas.tg w .iss-==oss

-- =@_ -

8

+Ssio o =g +4ms a S

=

ai m

d

. . o, -

+ . . wot n. 6s e g

  • U- Og

. o .n I4 6

-  : ;o 0

W

. s

  • .o . ~

m > -n ass st & """~~

o D" @. g? 85 o m + t63 9 m

3

  • s e

g . - 3

= m - = , . ..--

- > o ,

g d 49 h @

o t e 2

a

. s.%*l

=

s, f .9.&*5,(

. .. sA ..

GE

. . . ... = , , , os

=

g a

-o- .

p - o+

g .e 1

.. g cio .i g

+,9 ti.o..o a ,u

,so ew i

+ ..

a  :,

o-

- o. e. e.

. ,,1 .. -

s-o . ,*o-o 3

$ f $.I a-n's,es. h h .*I

@ '60 s >[ sg Og

+

g,

.: a 'g o5 6

g tiscsi i o

g I 9

g ma 8 e

. io ot s i,s u s 9 ,

o +5sioo w + sit >i w w

dS I + w -

l  : B ..A.@ @4..--...@

t

:s ,ai 6z,r.i 5o ,d 0a

.o

, ,a oo $ s. ~K + 980'O f  ; 3 4 tso Lt A **

+ 9190*o z !! + ;n u + 9ss 65 V-

s o3 $

e a:.

03) =

2o

=;

4 -

  • o:8 *

.ai-w* g n

b g . .. . . ._=,,. . gg.i 8

155

=o

@ @ i $E j ,N be $&g g

ga i

4

viso-ot  ; S sis se 3
  • swoo

=

v a ej

+ssosi -

=

to co e

y at

. m - m osi g h- ,,, . .,, . , @ '

s .

s
a. ,1 5, 4 4

& la e 4 4 4 e e 3 CL 3

TAD SLTTNG

  • D AT. 2 A - NOptHAL E A1. b A - I.025 PU G H-wt4.

U S it F M R . - O 'l75 PU e M. wb6 . .

l 5

0 00 46-io.04 0.0055-IO.0271 h U AT .2 A h R AT- BA 4 E DO s + 30.3203 g 0.024t+30 4956 4 jj 0604 + j E3329 0.084 b + 30.4 617 h ::)) X.WD6 9 LWD 6 h Y.W DG Y.irl0 6

-f 0.0036 +io.0177 j o.0038+30 0389 83.BuvBusi f 0.024 30.6552#+ h 13.8ky gus 1 jl0.02t3+508%94

\ 21.0374j18 403] l28.0374148.403]

l) @ 4.16 xv BUS 3 ( E.5 )

r,+ !, . 's 3% '8 4 '8

~

" 85 b 0 0I35 + 5. 898 + 3 0 0446 + 3 0.013 s +

42.742 $

8 g ' h'as h * @i j[$@

...p.,

' d .f.

..,. 3 a

$ *hEDEh *-SA 50 One4 ba h h 50.0824 EDE-x-55 hjf i o.086 EDL-4 *- S E w

i g 2.74 6+ 0M+

  • l.421G +)7.2 5 6l
1. 4 0S + 1 i 4.5 a s 30 4M k k 17 374  !! .33874
17. s s75 E ct. US- sl @ h EDE-US-52 h EDE- US - 53

- x e .  : +. 3* . --*

? * ,  ? en i v. * $* * +e +<

5 +$ 0.339+ 5 +3 llg %, s N$ g0,Y o.467+ j, ,

h f,g o.434+ 5 '8;

, g

.O R 50.209 2 jj 4j I Td

" *

  • g *d ,$ 50.289 2J I ".**

g o.27 [] O .g g ., , .a g A g g c W HCC- MCC. MCC- "

MCC. M cc.

MCC. E Sil IO gglig Il s sl4 E bl5 E L28 L522 HCC.LSit 0.12 8 + 0. 064 + 0.0 M + 0.0 8 5 t 0.2834 0+)O 0.298+

3o.079 50.04 50 0* 40.053 40.632 $ 0.18 4

10. 3. 3 A iMPEDANC E DI AGR AM FU LL LOAD RUNNING

~ '

. ricuRE. 6 4.l6 kV BUS 3 II E 5 ( 514. 2 0F 2)

e I

. 6

. o 7AP e. E1 *I lt4 G y A1 2 g . NOut N AL G A1. B t . IO25 Pu 9 H-W OG.

EbE-w ECE w.5CJ

-SH { . HOMit! AL EOs.m 50E-y . SF. sO } - O 975tuf uw1. j (p

ll0.0046-i0.04 0.0053-io.0272 U A1.? B pa &T.3 g 0.008480.3203 j jj 0.010 4 +I0-3329 0.0 45 + io.4137

{ O 0244430.4956 Y-HDG

%WDG Y- WDG Y. weOG 0.0 0 3 6 +i 0.04 7 9 f 0.003563 0.0172 13 8ety Bus 2 0.02694 10.t 6 0 9 h 13.8 kV Bus 2 jf 0.0275 430.16Ii l19.526+Jeo 3I l ll9.526+310.31 l h 4.16xv EUS 4( E6

  • 6 0* 4f, ,9 g g'
  • 360 MC e4. Sg 3%0MCM- 67

+ g, ,

I j o ggg4+ j j *$ p O 012 4+io.0103 0.0tst+io.0t3 jf 10.08:4 jf 0.2839 430.1606 o O 12A83 EDE* y.5C EDE W50 ED E -X-S$ EDE.X- 5 H 1

e*

h CO-P. sos F bs-P-ilt j

{ l.4 003 +i7.4 826 j(l.3969+i14694 EDE-US42 jl 8.3972+i7.3+65 F.bE-US-63 j{ s.2285+ 5.2877 EOC US 64 EOL.US-GI 2.745 4 t.57 & + '$ '$

$4 886 50.603 j 4 y 0.2 8 5 t y,o4 0.595 0. 6 8 -t p O. 3 13 10.132 g i ,a 3 0.3 6,t 3o421 Y ;:

2] so.tca 5 oE I ?

h EDE.ucC r.tE h 2. SW- F N S 1 3 's .

i

  • ' O.isu ;p i i= 0.i.7 +

i Q;; *' '

i i:1d i! Qj *"'

@ c A - . . .. @ ,,. P. ,0 @ r... . . . ,,.3.4 ,c ooc c o, ,o . n,o e to,, ,,,,,,,

30MP 2OHP 60MP O.02 4 + 0.037 + 0.O SI +

30.044 50.004 50.016 FIGURE - 7

. , r Tap SET 1stJG . .

u AT 26 - n 0 68 t u s l.

RA1 3B - 4.02 5 PO ? 44 W3 - ,

E CE -W - S D gLE- u- SF - 0 975Pu e H-WbG. .

tbt. x SC ELE-W 5H - noumA L

/j) h 300046-i0.04 - 3.0051-30.0272

@ l UA72E GJ l R AT - 3B 1

! 4 0 00 8 +50.3203 q 0.02 4 89501956 f '0.0804 +ic.552% 0.084 b +5 0 4887 E 8 F -W O G

x-Wb6 Y.ub 6 4

f 0.0C3 5 +30.0112 f 0.0036+30.0879

@ "'n.sasus2 ( "37,7,, G3s isa a e.us 2 g , , ,,,, , ; , , ,, , ,

li,s26,3:asi l lis.526+iin.s (

@ 4.4 6 kV BUS (E6 l'

=- - - +a .

[

g 15 * = 9, 2 .  !!

$* g E3 5.n . .

$ 2. 483

>$o- ;ss- ,, 0 >> ace - . -

015t+ 0.013 j

'l.',"',",'. 4/.->a.-

g@ 'Co-9 soe @ fo d rw- P.iis @ g o.0124 tot-x sc t:0.Olot @ 3 ecE-x So @ j ;,,,,,4 EnE- x.sF @ j o.283s+io.t606toe-x.su  ;

'l,7, 4,5 + Q'S*o3  ; ,,,,,.;,,,,, tsuu j] i.22as +;s.2av7

( i.400i +i7'4 :26 ;j 57 8465 h l,EDE-US-62 ED E.- US - 64 h. h .

EDE-US 63 h EDE -us- 64 o

1 .. . .  :. e +_ e

    • r* u 0 3 a ,n 1 .k 4 hg., u s

y43 $~ 8, 0.25 4 + , e 4

s

  • gg o.1 + + s,er.s $ o g y 0.382+ m P' f ($ f 0. 4s7 +

gyd.o id

  • i 10615% 3Mo;r a 4d "* M e.

i '2ii 4

d 'd

d. a

$ '2S7 d.f j .e 0.290 MCE. E6 : CC- E644 E65 MCC- E628 hMCC- EE22 h HCC- E fe31 h CC. E 64 8 0.82 B + o.0 4 3 + 0.045+ 0.2 % + 0+io 0.298+ o.0 43 +

50.079 ja.026 i s.02 0 40.l58 50.184 50.026

10. S.4 A IM PE D ANCE DIAGR AM FIGURE - 8 F ULL LOAD R UNNING 4.lEKV BUS 4 4 EG (su. 2 oF 2)

, . . . _ .- 5 _. m. m . - _ . . m __ - _ _ ~

e o ** 4-TAP SET 1eMG u Al- 2 A - 'uWi A L -

OAT.3A - 1.o 2 S P u e p o. .

us r* A - c.97s Pu e m.wos. ,

O @

, d, o.004 6-3 0.04 jl o053-30.o272 UAT.2 A R AT. 3 A

@ jro..oca+io.320s w j o.024i+io.4%& ...... @ j) 0.oiO4+io.5529 T. . . @ ]} o.0845 410.4ti?

A eon NU o.0247'430 lES2 j} 0.025343o.1594 '

j is.g etv sus 4 is.tkWEUS-l

\ 21.o s7@l 403] l 25.o37+ill.40T h 4.16 kV BUS 3&E5 9 .

'8

*H &

+7 1C 3Souc u. 60* gggucu.GS sSo MC M - 6o

  • d $$

ij! 2.*

j o.ois , o.oi4s.io.0:24 o.oins lo.oii4

{5%

4 ij;25 'l E *= 2,qs. bsoss+iooii4

w. 5A tos-

. .bE sos-51.P.6A s p.P. 3A cS P.7A is.629 x-b 5 4bo M5' +00MP sooHP a l .

  1. Ga o.ooty 6.o oo67 e s o osi8 i 4216+57.2568 -40B*I'574

" e. o.on n s.oests s.o. ossa jJ .

lt.saiy+j7.ss75 j

I 8 siaeT sv A nv svaav sos. us. se h tot-us s2 ll'h h tot.us-s3

g. .. .

3*% $2 S IS a '*o g2 o.42s+ o.7524

% d* 0.4674 i

* 52 '*~ * *'

i Los - Mcc - sis 5 V ucc-s2 S* 454 it .

ik  :. ik g e'jl:;s N'jl (*I.s,i

  • o.2 iie +,

I :_

j l,e$ o.ls7+

i .,

j M c] 0 8" a"jj;sg E 5s+

J h

$ '8 sw.v.4 h

a-cs.w ide

= m h cs.Lewuss b es-tcunro h l$5*l;;Iv.iss es io is s hl caA.ru

  • ~~

e 4os P

o.ios os
  • I*

cb.s e-'6A 10.5.5 IMPE DANCE DI AGR AM - SIMULTAHEcus I 4:000003 6 4000e4 6.E000:4 r.s g.80007 s.E00007 0.033 + 6e0.0004

o g eoeos n.e.ooo2 s.tBoot 6 0.0ee09 s.aeocoS 50.o 2 a.E0009 STARTI N G OF SAFETY R EL AT E D MoloRS c1Aet START START ST A RT START 51Aar 4.IGkV BUS S I E S 5 recuat - 9 i

i .

1

. 4 T AP scii tug _

uhT 23 - tentates Al- .,

CA1 - 3B - L.025 PU @ H- ndb ~n Ept- w. SC )- NO MI N A L ,

EDE-u.SM Est s-So tas - u- s e } . o.975 Pueuwos.Q h

{ o.co46-io.04 ( o.0055 -io.0271 h U AT- 2B R AT-BB lo.o145+io.4n7

@j' o.oos+io.5103 @ p o 024s+io.4958 @^q0.ot04410.1529 @j J o.Co 36+)O.0379 0.0275 + 5 0.8654 110.0035+5 0.0672 h is.tuv Bus-2 0.02696301609 haf Is.Bkw SOS-2 lls.526+ilo.3t l lls.526+iiO.3t l h 4.16 KV Bus 4 8( E6 h* h 6.724 + BSoHC"- 55* 250 McH - 67*

j .:h *

$a , g -}. es 33 422 0.o 24 +30.0605 jl 0.015: 430 015 h r{w esu h srgsag5 *g RL P.at '

CS P 2B h E DE-X -5C h EoE-* 50 1 9mur 4toHP dochP 6co HP w

  • s.o. cow a. o.co67 s .o,ous i 4.aons e
a. o. ossa s. o.ou t s.o.0229 a.cout co= ~ -ai si @ .4co3457.4 2scot@ gjl.3969+i7.4aS4 a -62

,,..T ,,..T ,, .m .1.m o.2836 5347 60.15 2 **$f 3a.288 EDE- HCC - 6 82 h]l

  • h.

e, gg,

+

ik vt + i. :. . :_

r:

t! *

. i- ,_

$]

th :[4 b 7 o.25 $A ogN o.209+ p"!h-.h e .

n $ jh.i:

- - .f - .. n.e so.l .S.+ - so.is -

C5.LCWit2C CS LCV.Htt C5-V 197 C BA-Flo-52 CSA FN n6B 10.3.6 CS-V 143 SW-v.5 4oHP IMPED ANC E DI AGR AM - SIMULT AHEDUS STARTlHG G e o 00005 r.* 0.oco l4 G.o.00007 se e.80007 o.055 + 6eo.0004 (se3cooM S.0.0009 og ggg g yy gg g,47g e yo7ogg 0 0.00004 Sio.0001 e s t.900tfl too.Dece9 S o. 02 s.#.0002 ST ART START START START g1AeT 51 A831 4.16 KV BUS 4 af E 6 FIGURE - 40

. l l

I,1f. LDAD MODEL -

. \

This section contains all assumed and actual data for the loads being studied.

A. Starting Motors (Unit at Full Load)

- The motors shown on Figures 1 thru 10 were chosen because of their large size and/or long feeder length. All motors were specified to start successfully with 80% of their voltage at

.their terminals.

B. Running Loads (Unit at Full Load) - UAT or RAT Power Supply For the purpose of this calculation, the total running loads in NW and MVAR_on the medium voltage buses are assumed to be as follows:

1) Bus #1: 21.037 + j 11.403
2) Bus #2: 19.526 + j 10.31 4
3) Bus #3 & ES: 11.726 + j 5.625
4) Bus #4 & E6: 11.31 + j 5.668 The above bus loading represents worst case safety and non-safety loads on these buses during normal and accident conditions.

Running load for the equipment shown on Figures 1 thru 10 is derived in the following manner:

a) Motors - Manufacturer's data (when available) i or catalog information is used to determine running MVA and power factor.

b) Unit Substations - Unit substation loads are taken from UE6C calculation 9763-3-ED-00-27F Rev. 1. A power factor of 0.85 is assumed at the unit substation.

c) Motor Control Centers - The total running loads on the MCC were taken from UE&C Calculation 9763-3-ED-00-27F, Rev. 1.

C. Light Loads (Unit at Cold Shutdown) 4 The following loads are assumed to be running simultaneously:

1) Residual heat removal pumps 8A/B (400 hp), service water a pumps 41A/B (600 hp) and primary component cooling water pumps 11A/B (700 hp) are running at full load.
2) Each unit substation and Motor Control Center loads were taken from UE&C Calculation 9763-3-ED-00-27F, Rev. 1.

I

< l l

IV [lTHODS Computer assisted calculations were made to evaluate the voltage regulation performance of the electrical power system. The computer program employed was the VOLTS Program; a United Engineers and Constructors Inc., computer program. The VOLTS Program is a 24 bus load flow and voltage regulation computer program which utilizes a Gauss-Seidel iterative method to obtain the load flow solution.

Due to limitation on VOLTS Program (24 Bus Max.), several impedance diagrams were prepared for the purpose of computer calculation of voltage at different MCCs and load terminals. The voltage at the UAT - H winding is calculated separately considering GSU Transformer impedance.

This calculation is done on a worst case basis. For equipment whose parameters are known, the actual values are used, plus a margin where applicable. For equipment whose parameters are unknown, values were assumed which represent the worst reasonable case.

Consequently, resultant voltages should be the lowest voltages to be expected during the lifetime of the plant.

V. TABULATION OF RESULTS A. The results of the computer calculated voltages are tabulated as follows:

TABLE 1: Bus and Motor Terminal Voltages when running at full load and utility grid at the minimum anticipated voltage.

TABLE 2: Bus and Motor Terminal Voltages when starting individual motors with the unit running at full

^

load and the utility grid at the minimum antici-pated voltage.

TABLE 3: Bus and Motor Terminal Voltages when starting all accident loads simultaneously with the unit running at full load and the utility grid at the minimum anticipated voltage.

TABLE 4: Bus Voltages when running at light load and the utility grid at the maximum anticipated voltage.

4 TABLE 1

, BUS AND MOTOR TERMINAL VOLTAGES UNIT RUNNING AT FULL LOAD UTILITY GRID AT MINIMUM ANTICIPATED VOLTAGE (ALL VOLTAGES ARE ON MOTOR VOLTAGE BASE)

BUS OR NOMINAL SOURCE MOTOR TAG NO. HP VOLTAGE. V FROM UAT. pu FROM RAT. pu EDE-SWG-5 4160 0.9710 0.9795 EDE-US-51 -

480 0.9480 0.9572 EDE-MCC-511 460 0.9453 0.9546 EDE-McC-512 460 0.9456 0.9548 EDE-MCC-513 460 0.9332 0.9426 EDE-MCC-514 460 0.9345 0.9438 EDE-MCC-515 460 0.9459 0.9552 EDE-US-52 480 0.9470 0.9563 EDE-Mcc-521 460 0.9464 0.9557 EDE-MCC-523 -

460 0.9375 0.9468 EDE-US-53 480 0.9430 0.9523 EDE-McC-531 460 0.9413 0.9506 20 CAH-FN-1C 200 460 0.9232 0.9327 EAH-FN-5A 125 460 0.9319 0.9413 FAH-FN-11A 60 460 0.9361 0.9455 CAH-FN-3A 30 460 0.9262 0.9357 EDE-SWG-6 4160 0.9699 0.9789 EDE-US-C1 480 0.9372 0.9466 EDE-MCC-611 ----

460 0.9349 0.9443 EDE-MCC-612 -

460 0.9345 0.9439 EDE-MCC-614 460 0.9270 0.9365 EDE-MCC-615 460 0.9363 0.9456 EDE-US-62 480 0.9529 0.9624 EDE-MCC-621 -

460 0.9514 0.9611 EDE-US-63 480 0.9467 , 0.9563 EDE-NCC-631 -

460 0.9447 0.9545 EDE-US-64 - 480 0.9419 0.9512 EDE-MCC-641 -

460 0.9414 0.9507 2-SW-FN-51B 250 460 0.9291 0.9385 FAH-FN-118 60 460 0.9245 0.9340 CAH-FN-3B 30 460 0.9140 0.9236 SF-P-10B 20 460 0.9197 0.9293

  • Co-P-30B 3500 4000 0.9683 0.9773 NOTES:
  • CO-P-308- CONDENSATE PUMP IS A 3500 HP NON SAFETY LOAD. THIS REPRESENTS THE WORST VOLTAGE DROP ON THE 4160 VOLT SYSTEM INCLUDING THE SAFETY BUSES.
    • NON SAFETY RELATED TABLE 2 .

~

BUS AND MOTOR TERMINAL VOLTAGES d

  • WHEN STARTING INDIVIDUAL MOTORS UNIT RUNNING AT FULL LOAD UTILITY GRID AT MINIMUM ANTICIPATED VOLTAGE (ALL VOLTAGES ARE ON MOTOR VOLTAGE BASE)

BUS OR NOMINAL SOURCE MOTOR TAG NO. HP VOLTAGE. V FROM UAT. pu FROM RAT. pu EDE-SWG-5 ----

4160 0.8694 0.8874 EDE-US-51 480 0.8360 0.8560 EDE-NCC-511 -

460 0.8330 0.8531 EDE-NCC-512 460 0.8334 0.8534 EDE-MCC-513 460 0.8192 0.8397 EDE-MCC-514 460 0.8206 0.8410 EDE-MCC-515 460 0.8337 0.8538 EDE-US-52 -

480 0.8348 0.8549 EDE-NCC-521 ----

460 0.8343 0.8544 EDE-MCC-523 ----

460 0.8240 0.8444 EDE-US-53 480 0.8301 0.8504 EDE-MCC-531 460 0.8283 0.8486 CC CAH-FN-1C 200 460 0.7526 0.7608 EAH-FN-5A 125 460 0.8501 0.8588 FAH-FN-11A 60 460 0.8363 0.8450 CAH-FN-3A 30 460 0.8486 0.8570 EDE-SWG-6 4160 0.8677 0.8868 EDE-US-61 480 0.8297 0.8499 EDE-McC-611 460 0.8271 0.8473 EDE-MCC-612 460 0.8267 0.8470 EDE-MCC-614 460 0.8181

  • 3.8385

, EDE-McC-615 460 0.8286 0.8488 EDE-US-62 ----

480 0.8411 0.8621 i EDE-MCC-621 460 0.8396 0.8606 l EDE-US-63 480 0.8340 0.8551 EDE-Mcc-631 460 0.8318 0.8530 EDE-US-64 480 0.8347 0.8548 EDE-MCC-641 460 0.8346 0.8545 2-SW-FN-51B 2:,0 460 0.8116 0.8203 I FAH-FN-11B 60 460 0.8243 0.8331 CAH-FN-38 30 460 0.8352 0.8438 SF-P-10B 20 460 0.8908 0.8999

.. .*. CO-P-30B 3500 4000 0.8612 0.8801 l NOTES: 1) THIS TABLE SUMMARIZES THE RESULTS OF MANY COMPUTER RUNS. THE BUS VOLTAGES LISTED REPRESENT THE LOWEST VOLTAGES EXPERIENCED AT THAT BUS WHEN STARTING ANY INDIVIDUAL MOTOR, CLASS 1E OR NON-CLASS 1E, IN THE PLANT. THE MOTOR VOLTAGES LISTED ARE THE LOWEST REPRESENTATIVE MOTOR TERMINAL VOLTAGES UPON MOTOR START.

  • CO-P-305, A NON SAFETY LOAD, REPRESENTS THE WORST VOLTAGE DROP ON THE 4160 VOLT SYSTEM, INCLUDING THE SAFETY BUSES.
    • 'DilS IS A NON SAFETY RELATED MOTOR. HOWEVER, ITS CAPABILITY TO SUCCESSFULLY START AND ACCELERATE AT THE AVAILABLE VOLTAGE HAS BEEN VERIFIED BY VENDOR.

m TABLE 3 e

  • BUS AND MOTOR TERMINAL VOLTAGES WHEN STARTING ALL ACCIDENT LOADS SIMULTANEOUSLY UNIT RUNNING AT FULL LOAD UTILITY GRID AT MINIMUM ANTICIPATFD VOLTAGE (ALL VOLTAGES ARE ON MOTOR VOLTAGE BASE)

BUS OR NOMINAL SOURCE MOTOR TAG NO. HP VOLTAGE. V FROM UAT. pu FROM RAT. pu l

EDE-SWG-5 4160 0.9217 0.9351

  • SI-F-6A 450 4000 0.9192 0.9326
  • RH-F-8A 400 4000 0.9198 0.9333
  • CS-F-2A 600 4000 0.9179 0.9313

! EDE-US-51 480 0.8893 0.9040 l EDE-Mcc-512 460 0.8863 0.9011 l

  • SW-V-4 0.33 460 0.8758 0.8904 l
  • CS-V-142 1.9 460 0.8512 0.8653
  • CS-LCV-1128 1.9 460 0.8385 0.8525
  • CS-LCV-112D 0.7 460 0.8606 0.8749
  • CS-V-196 0.7 460 0.8689 0.8834 EDE-US-52 --- 480 0.8881 0.9028 EDE-NCC-521 --- 460 0.8865 0.9012
  • CRA-FN-16A 15 460 0.8794 0.8942 CBA-FN-19 40 460 0.8410 0.8350 EDE-US-53 -- 480 0.8880 0.9037 EDE-SWG-6 4160 0.9007 0.9164
  • SI-F-65 450 4000 0.8987 0.9144
  • RH-P-83 400 4000 0.8992 0.9149
  • CS-F-25 600 4000 0.8973 0.9130
  • FW-F-375 900 4000 0.8945 0.9101 EDE-US-61 ---

480 0.8601 0.8766 EDE-MCC-612 ---

460 0.8568 0.8733

  • CS-V-143 1.9 460 0.8145 0.8302
  • SW-V-5 0.33 460 0.8498 0.8661
  • CS-LCV-112C 1.9 460 0.8104 0.8260
  • CS-LCV-112E 0.7 460 0.8395 0.8556
  • CS-V-197 0.7 460 . 0.8417 0.8579 EDE-US-62 460 0.8719 0.8890 EDE-MCC-621 ---

460 0.8701 0.8871 CRA-FN-32 40 460 0.8637 0.8809

  • CEA-FN-165 15 460 0.8393 0.8557 NOTES:
  • SIMULTAHEOUS STARTING LOAD l
1) OTHER SAFETY AND NON SAFETY LOADS ARE RUNNING r

. + . .

s

  • TABLE 4 BUS TERMINAL VOLTAGES UNIT RUNNING AT LIGHT LOAD UTILITY GRID AT MAXIMUM ANTICIPATED VOLTAGE (ALL VOLTAGES ARE ON MOTOR VOLTAGE RASE)

SUS OR NOMINAL SOURCE MOTOE TAG NO. RP VOLTAGE. V FROM UAT. Du FROM RAT. Du EDE-SWG-5 4160 1.0906 1.0922 EDE-US-51 .480 1.1041 1.1059 EDE-NCC-511 460 1.1026 1.1044 EDE-Mcc-512 460 1.1033 1.1051

.EDE-MCC-513 --- 460 1.0991 1.1009 EDE-MCC-514 460 1.0995 1.1013 EDE-MCC-515 460 1.1042 1.1059 EDE-US-52 480 1.0982 1.1000 EDE-NCC-521 460 1.0978 1.0996 EDE-MCC-523 460 1.0948 1.0966 l

EDE-US-53 480 1.1011 1.1028 l EDE-NCC-531 460 1.1004 1.1021 i

l EDE-SWG-6 4160 1.0909 1.0926 l EDE-US-61 480 1.0859 1.0876

! EDE-NCC-611 --- 460 1.0852 1.0869 EDE-MCC-612 460 1.0849 1.0867 l

l EDE-MCC-614 460 1.0859 1.0876 l EDE-MCC-615 460 1.0859 1.0876 EDE-US-62 480 1.1062 1.1080 l

EDE-Mcc-621 460 1.1057 1.1075 l

t EDE-U8-63 480 1.1053 1.1071 L EDE-MCC-631 460 1.1046 1.1064 EDE-US-64 480 1.0942 1.0959 EDE-MCC-641 --- 460 1.0942 1.0959 4

e * .

e o

V.. TABULATION OF RESULTS (Continued)

.B. 120V AC SYSTEM VOLTAGES

1. Most of the control and instrumentation circuits for safety related systems at Seabrook Station are powered from vital ac distribution panels supplied by 118V ac regulated Uninterruptible Power supply units. The output voltage from these regulated power supply units is practically unaffected by the system voltage variations caused by motor starting etc., on the input side of these units.
2. For the remaining safety related circuits which are powered from non-regulated Class 1E 120V ac power distribution panels (powered from motor control centers), our analysis is as follows:

The 120/240 volt distribution panels are each energized from the 460 volt motor control center bus. Under the worst conditions, the voltage at the motor control center bus varies between 426.4 volts during full load operation and 509.5 volts during light load operation. In addition to the steady state voltage variation, the minimum voltage at the motor control center bus, which will occur during motor starting is 376.4 volts.

2.1 EQU1PMENT DATA

a. - Distribution Transformers connecting 460V MCCa to 120V distribution panels have the following ratings:
1) kVA rating: 15 kVA Single Phase 7-1/2kVA Single Phase
11) Voltages  : 480V to 120V 480V to 120V iii) Taps  : - $1 , -10% No taps iv) Impedance : 3.3% 1.83%

v) X/R Ratio : 1.53 0.919

b. The typical equipment connected to these distribution panels consists of control relays, solenoids, timers, indicating lamps and instrument devices with the following ratings and operating characteristics:

Relays

1) Type  : ITE Class J
11) Rated Voltage  : 120V AC iii) Operating Range  : 102-132 Volts /90-132 Volts (Modified) iv) Dropout Voltage  : 78 Volts /79 Volts Solenoids
1) Type  : ASCO Solenoid Valves
11) Rated Voltage  : 120V AC iii) Operating Range  : 102 - 132 Volts 80 Volts iv) Dropout Voltage  :

+

  • -4 ,,
f. , .TA3ULAT10N OF RESULTS (Continued)

B. 120V AC SYSTEM VOLTAGES (Continued) 2.1 EQUIPMENT DATA (Continued)

Timers i) Type:  : Agastat 7000 Series ii) Rated Voltage  : 120V AC iii) Operating Range  : 102 - 132 Volts iv) Dropout Voltage  : 60 Volts Indicating Lamps

1) ' Type  : GE-ET16
11) Rated Voltage  : 120V =J iii) ' Operating Range  : 95 - 130 Volts Level Indicator 4-20 mA Converters i) Type  : GEMS RE-36562
11) Rated Voltage  : Il5V AC iii) Operating Range  : 105.8 - 130 Volts 2,2 DESIGN BASIS

'the analysis for the 120 volt non-regulated Class IE equipment is made in worst case basis. In calculating the voltage drop between the distribution panel buses and the terminals of '

relay coils, solenoids and instrumentation devices the following factors were taken into account:

a) Length of cable run b) Maximum load c) Voltage available at the distribution panel d) Resistance of the wire

2.3 CONCLUSION

S Under the above conditions, the voltages at the 120/240 V distribution panel buses will vary between 106.6 volts and 127.3 volts. For short periods, during the voltage dips due to motor starting, the bus voltage may drop to 94.1 volts.

Our analysis of all safety related 120 V circuits has indicated that the safety related loads supplied from the non-regulated Class IE 120V AC distribution panels receive proper operating voltages at thier terminals. During transient voltage dips due to motor starting, the relays and solenoids will not drop out. The voltage at their terminals exceeds the minimum holding voltage requirement.

._ __ _ _ . . . _ . ~ . . _. ._ _ _ .

a

, a j VI CONCLUSIONS A. Full and Light Load Conditions All motors will receive more than the minimum 90% of their rated voltage during normal plant operating conditions.

During light load conditions, all buses and motors will receive less than 110% of their rated voltage except that some 480V buses when fed via UAT or RAT, may exceed the allowable maximum motor l voltage by up to 0.8%. However, assuming a nominal motor feeder drop of 1% of 460 volt, 460V motor terminal voltage should not exceed the allowable maximum voltage when supplied by the UAT or RAT.

B. Motor Starting Conditions All safety-related motors receive more than 80% of their rated voltage and will accelerate without any problems.

! The duration of the voltage dips caused by starting of most major l motors is between 2 and 5 seconds. In some instances, due to fans i starting the duratton will will exceed 5 seconds. However, these

voltage dips are limited to the unit substation buses feeding those i fans. The duration of these voltage dips will not cause any equipment l damage or malfunction.

l C. Transformer Tap Settings The assumed transformer tap settings are acceptable for the assumed utility system voltage variation of 97.5 to 105 percent of 345 KV.

1 i

l l

l P-'-

W O

4 ATTACIDfENT B

. '4 Traosamerica *"="*"a o a ~ '"c ('"')

GIms Sensors Diw+cm h8kVSl Plainvine.Coweticut 06062 9990 (203)677 t311 iiF9E Telea No. 99306 Fac No (203)14T 4244 5 November 1985 United Engineers & Constructors, Inc.

P.O. Box 8223 Philadelphia, PA 19101 Attention: R. P. Neustadter

! & C Supervising Engineer

Subject:

SBU-96286 File: 174-15 Seabrook Nuclear Station

Reference:

T/SB-03163 Thank you for your letter of 29 October 1985. This is to confirm that power supply voltage variations of up '

to 130 VAC to the remote receiver assembly will not result in accuracy degradation of our transmitters.

Enclosed are three copies of this letter. Please forward one to Bob Conner at Seabrook site who is expecting this response.

We consider this order and contract closed with final acceptance by United Engineers & Constructors at final source inspection.

k William C. Heyer Product Specialist WCH:hd Enc. 3 copies of letter cc: T.i: (21s) s741es7 TRANSAMERICA DELAVAt. lNC.

det Hershem moed l P.O. See 381 Hershem. PA 18044 200'd C926 - H011W15 400sGW35 kWD 20101 G8. Cl'A0tt i - - - - . . . - _ _ -.- ._ - - -

4 Unded Engineers & Constructors Inc. 215 422 3000 / 2 ## 3 o 30 South 17tn street Teie2 83 4203 BIPt CBS-I-3 Post Offc] Don 8223 Telecope 213 422 4648 I Phdadelphia, PA 19101

(

United Engineers Is Constructors A Raymeen Cowy October 29, 1985 SBU-96286 File: 174-15 Mr. Bill Meyer Responds to None Transmerica DeLaval Response Required by 11/15/85 Gems Sensor Division Plainville, CT 06062 O

Public Service Company of New Hampshire et al.

New Hampshire Yankee Division Seabrook Station UE&C P.O. No. SNH 857, 9763-006-174-15 Class 1E Level Transmitters

Reference:

T/SB-03163 In the above referenced T/SB (copy attached), your Mr. Wayne Heist advised t:1erance of the subject level transmitters to power supply voltage variations

\ up to 130V AC with no accuracy degradation.

To satisfy NR,C, audit standards, we, require submittal of supporting published h q

cpecifications and/or drawings. If none are available, please forward a formal ,h ,#

Ictter addressing the tolerable power supply voltage variation.

y I" M:y we have your reply by November 15, 1985. .

1W Vcry truly yours, b ' ,. , 6 J'dk

/ g kL.

k , WM 'fl.'

R. P. Neustadter g.

I & C Supervising Engineer ' '

.0 RPN/ /dd '

cc: R. "oacn - taau ?L C. M. Wiley - 07/46 - IL J. DeVincentis - 08/62 - IL R. G. Lizotte - 01/04 - IL B. B. Beckley - 09/08 - 2L B. K. Whiteman - 08/49 - 2L G. S. Thomas - 01/04 - IL D. G. McLain - 09/08 - IL k,

(

4 9

o ro*e soie aan e/7* T/SB- 03163 (3 #J)

((,cgga Wayne Heict - Gems 10/15/85 2:30 P.M.

- # TIME

,,,,,;, ee.s L.ve1 Tr....itter. ,,,,,.

,763.102 BER 742 - DCN 65/259- , , , , ,

P. O. 174-15 As per Mr. Wayne Heist, the GDIS Level Indicating transmitters CBS-LIT-2384 and CBS-LIT-2385 are provided with voltage regulator which regulates 10VDC across transmitters and magnetic reed switches.

He also mentioned that even if the voltage increases up to 130V AC, the transmitter will stil1 hold same accuracy.

M N. I. PATEL w

N1P/frb ,

cc: R. J. DeLoach -

YNSD J. DeVincentis 08/62 L. V. Pelosi -

4U9 M. P. McKenna -

08/80 K. C. Robertson - 4U9 G. M. Aggarwal -

SU6 S. M. Molchanow - SU6 A. N. Pal -

SU6 R. P. Neustadter- SU4 DCC - '4U2 1-