ML18046B057

From kanterella
Revision as of 13:52, 14 December 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Responds to Questions from NRC 811006 Telcon for SEP Topic VII-1.A Re Isolation of Reactor Protection Sys from Nonsafety Sys.Max Flood Level Is 597.1 Ft But Flooding Concerns Do Not Exist for Equipment
ML18046B057
Person / Time
Site: Palisades Entergy icon.png
Issue date: 11/10/1981
From: JOHNSON B D
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To: CRUTCHFIELD D
Office of Nuclear Reactor Regulation
References
TASK-07-01.A, TASK-7-1.A, TASK-RR NUDOCS 8111170334
Download: ML18046B057 (59)


Text

{{#Wiki_filter:/ ', ' consumers Power .company General Offices: 212 West Michigan Avenue, Jackson; Ml 49201 * (517) 788-0550 November 10, 1981 Director, Nuclear Regulation Att Mr Dennis M Crutchfield, Chief Operating R:actors Branch No 5 US Nuclear Regulatory Cominission Washington, DC 20555

  • DOCKET 50-255 -LICENSE DPR_.20 , PALISADES PLANT -SEP TOPIC VII-1.A, ISOLATION OF REACTOR PROTECTION

_SYSTEM FROM

  • NON-SAFETY SYSTEMS, INCLUDING QUALIFICATION OF ISOLATION DEVICES During a telephone conversation between.R Scholl, SEPB, USNRC and RA Vincent, et. al., Consumers Power Company on October 6, 1981, Consumers Power Company was requested to respond to several questions concerning SEP Topic VIT--1.A for the Palisades Plant. This topic has been the subject of several letters between CPCo and the NRC, the most recent of which was a revised NRC evaluation of this topic dated August 28, 1981. The attached information is provided in response to the informal questions as .well as the conclusions of the August 28, 1981 letter. In light of the information contained within the attached report, tw:o additional comments are appropriate.

First, the report references a letter from the NRC to CPCo dated March 1981 in which a maximum flood level of el.597 .l' is given for Palisades. Use of this flood level in the attached report does not reflect *cPCo acceptance* of the 597.1' value, but is merely used to show that flooding concerns do not exist for the equipment in question.

  • Second, the report discusses CPCo plans to reroute cables associated with three analog circuits which do not meet the separation of* IEEE 384-1977.

This discussion should not be considered a formal commitment at this time. It is expected, however, that this item will be addressed as a potential backfit item in the final Integrated Assessment Report. /Jo3'S Brian D Johnson Senior Licensing Engineer .s 1/ro CC Director, Region III, USNRC NRC Resident Inspector -Palisades s11110: _ _f _] OCK

  • 05000255 _--.. -------_

.. :

t. *
  • PALISADES PLANT RESPONSE T.O-NRC *QUESTl019"S SEP TOPIC VII-1.A During a telephone conversation on 10/6/81, the NRC requested that the sumers Power Company provide a response to certai.n questions.

concerning the subject SEP topic. In addition, letter D M Crutchfield to DPHoffman dated 8/28/81 states that certain isolation between the Reactor Proection System (RPS) and the non-safety logging systems such as the Tennecomp Data logger System (DLS) *and the Fischer & Porter plant. computer is unacceptable and requires replacement or justification for continued use. This letter serves to both the telephone requests and the requirements* established in the subject letter . TELEPHONE REQUESTS Question #1 How are the circuit cards for the input isolation circuits mounted in the field remote station? Does this mounting lend itself to common-mode failures of the isolation devices? Are they separated per IEEE .384-1977? Response .to Question #1 The isolation devices for the digital inputs to the DIS are not located in the field remote station. The digital inputs to the DLS are isolated by relay contact in the RPS. This is acceptable is.olation according to IEEE 384-1977 Paragraph 6.2,2.2 "Acceptable Isolation Devices". Furthermore, in the mentioned 8/28/81 letter the NRC states that "Relay contact isolation is an acceptable means of isolation between RPS functions and control and non-safety equipment." Given the various isolation methods and separation techniques employed in the analog circuits, however, the analog inputs to the DLS need to be discussed in detail. Attachments

  1. 1, #2 and #3 show the analog input cards are mounted in the Field Remote Station (FRS) intra-cabinet assembly.

The cards are mounted in chassis Fll and a separation of approximately one-half inch exists between cards. Although only one-half inch exists between these cards,_ a common-mode failure involving these cards has no significant impact on the RPS and its ability to perform its safety-related function for reasons given in the following paragraphs. -*

  • 2 Attachment
  1. 4 shows the analog signals that input to the DLS. Only the eight neutron flux safety signals A through D, uppers and lowers) are redundant signals. All of the other analog signals represent non-redundant, diverse primary system parameters.

In the following three paragraphs, the three t;r,pes of analog inputs are discussed in detail. During the discussions, emphasis is placed on classifying these types of inputs and on the impact of a common-mode failure within the isolation devices. Emphasis is also placed on the degree of channel separation (between DLS input terminating points and the control room panels) that exists within each input type.

  • In the "Response to Question #3", an overall view of the signal routing to the FRS is presented for both digital and analog signals. In the response, emphasis is placed on the existing degree of analog signal separation between the various types of inputs. The first type of analog input is identified as Class lE all along its route from the RPS panel to FRS 1 in the Tennecomp DIS. DLS inputs of this type are: steam generator A pressure, steam generator B pressure, primary coolant loop inlet temperature, primary coolant loop outlet temperature and reactor coolant flow. These DLS analog inputs are considered Class lE since they are not isolated in the RPS. Isolation for these signals is provided in the DLS analog input conditioning circuitry. (The adequacy of this to perform effective isolation is discussed in the-"Response to-Requirement
  1. 1" below.) These DLS analog inputs represent diverse primary system parameters and all originate in safety Channel A. (See Attachment
  2. 4.) Therefore, a common-mode failure in the isolating circuit cards could only effect one channel of safety-related equipment.

These inputs are, relative to each other, redundant and need not conform to the separation criteria as defined in IEEE 384-1977. The second type.of analog input represents signals that are non-redundant (relative to each other) and are non-Class lE as well. As shown in Attachment

  1. 4, inputs of this type are: steam generator A water level, steam generator B water level and pressurizer pressure.

These DLS inputs originate in safety-related circuitry (in panels other than the RPS) and are identified as non-Class lE throughout. Therefore, adequate isolation devices in the FRS are not required.

  • Nevertheless, isolation circuitry identical to that used for the first type of analog input*, is utilized by this type of input. As shown in the Attachment, these signals also represent diverse primary system parameters.

Since these inputs are non-Class lE and non-redundant (relative to each other) they are not subject to the separation criteria as defined in IEEE 384-1977. The third type of DLS analog input is that of neutron flux safety. These eight inputs (Channels A through D, upper and lower) represent redundant nals to the DLS. These inputs are classified as non-Class lE, however, since adequate signal isolation is incorporated into the output of the RPS panels. These signals are outputs from buffer amplifiers located in the Nuclear ments System linear power channel drawers located in tne RPS panels. The buffer amplifiers (one per neutron flux safety channel) serve to isolate and protect the power channel circuits from various types of output cable faults. tachments

  1. 5 and #6 provide a vendor (Gulf General Atomic) description and schematic diagram of the buffer amplifier circuitry.

Regarding the i.solation capability of the buffer amplifiers, FSAR Paragraph 7.4.2.2(8) states "All output channels are buffered so that accidental connection to 120 volts a-c, or to.channel supply voltage, or shorting individual outputs does not have

  • 3 any effect on any of the other outputs." Since adequate circuit isolation exists in the power channel drawers, adequate isolation in the FRS (although utilized as described in the preceding paragraph) is not required.

It should be noted that the adequacy of the buffer (operational) amplifier circuits to isolate is discussed further in the "Response to. Requirement

  1. 3". The neutron flux safety signals are redundant and are non-Class lE since they are adequately isolated in the RPS. Since they are isolated, the flux signals need not be separated from each other. Question #2 , What is the flooding potential of the isolation devices? Response to Question #2 As shown in Attachments 1, 2, 3, 7 and S, the DIS analog input circuitry is located in Chassis Fll in the FRS intra-cabinet assembly.

Attachment

  1. Sa shows that the cabinet internals are installed behind sealed doors which are hinged to both the front and back of the cabinet. Attachment
  2. Sa states that all cabinet doors and removable panels are to be sealed per NEMA 12. Although these cabinet doors are louvered on the top and bottom to provide essential component ventilation throughout the cabinet height, the cabinets are esentially splash-proof.

The FRS is located in the cable spreading room at Elevation 607.5 feet. The FRS is, therefore, installed at an elevation of 10.5 feet above the probable maximum surge level of 597 feet as documented in letter D M Crutchfield to DPHoffman dated March 20, 19Sl. In addition, letter D M Crutchfield to DPHoffJ;nan dated April 30, 19Sl summarizes a technical evaluation (based on specific plant reviews) of the susceptibility of the switchgear room to flooding in the event of failure of non-Category 1 systems. The letter states that worst-case flooding :ln the switchgear room (which would occur from a break in the 6-inch fire system piping) can be handled adequately by floor drains with no damage to existing motor control centers located in the room. The aforementioned letter notes that the motor control centers are mounted on pads three to four inches above the floor. Since the Tennecomp FRS is also mounted approximately three to four inches above the floor, it also should experience no damage resulting from the break. It should also be noted that no high energy lines pass through the switchgear room which could increase the probability of flooding. Question #3 How do the cables run from the RPS to the FRS? to Question #3 Attachment

  1. 9 has been included to better illustrate the digital and analog cable routinr, between the RPS and FRSl; with emphasis on the degree of separation between the various types of DLS inputs. As can be seen in the Attachment, the digital signals route to the control room auxiliary Panel Cl3 and on to the FRS in separate cable for each channel. The cable as shown is all non-Class lE since adequate isolation devices (relay contact) exist in the RPS.
  • 4 The raceway used for these cables between the control room and FRsl is idual, separate conduit. For example, the Channel A and Channel B cable routes in conduit Xl480, the Channel C cable runs in Conduit Xl481 8.l'ld the Channel D cable runs in Conduit XV1482. This raceway is separate from Class lE raceway in the area. Regarding the analog signals, it can be seen that all of the non-redundant signals (all analog signals except neutron flux safety) route from the control room Panel Cll to FRSl in a common cable. All of these represent diverse primary system parameters and originate from safety Channel "A" if not from control-grade (non-Class lE) circuits.

AB a result, a common-mode failure involving this cable should, at the worst, affect only one safety channel of two or more safety parameters. Including both the Class lE and non-Class lE signals in the same cable, however, results in the non-Class lE signals being classif:t-ed as "associated circuits".* Therefore, in accordance with IEEE 384-1977 Paragraph 4.5.1(1), the cable routes from the in-containment transmitters (for non-Class lE pressurizer pressure and steam generator A and B level) were evaluated to ensure that these three signals were associated with Channel A only while routing to their non-Class lE current loop circuitry in the control room. As a result of these evaluations, it was observed that all three signals do, fact, route in raceway that is shared with cables from safety channels other than "A". For example, the non-Class lE pressurizer pressure cable routes with the Class lE pressurizer pressure signal from safety Channel B. The steam generator A non-Class lE level signal routes with the Class lE level signal from safety Channel C and the steam generator B non-Class lE signal routes with the Class lE level signal from safety Channels B and D. Given the aforementioned channel separation violations, it cannot unequivocally stated that failures in the common cable would affect only one safety channel as those involved in the design of the RPS/DLS interface had envisioned. Attachment

  1. 9 also shows the *redundant analog inputs to the FRS. These inputs are the eight neutron flux safety signals (Channels A-D, uppers and lowers). AB can be seen, these are non-Class lE and 8.re transmitted in cable separate from the other analog ?ignals. The neutron flux signal common cable that transmits the signals to the FRS, however, runs in the same raceway as the cable that carries the other analog signals to the FRS. As a result, the isolated non-Class l neutron flux safety signals become "associated circuits".

Since adequate isolation exists in the RPS for these signals, however, these signals do not present problems similar to that described in the preceding paragraph by associating with safety channels other than "A" during their non-Class lE routing. It should be noted that IEEE 384-1977 Paragraph

4.5.2 requires

that associated circuits be qualified to IEEE 383-1974. It is the opinion of the Consumers Power Company that qualifying these cables as such would not significantly enhance the safety of the plant since all of the_ analog signals are either non-Class lE or, if Class lE, are non-redundant. A common-mode failure in this cable should affect only non-safety circuits or Channel A only of the safety-grade circuits .

  • 5 If the evaluation of the non-Class lE cable routes from the pressurizer pressure and steam generator A & B level transmitters had shown that these non-Class lE cables were routed with their respective Class lE safety Channel* A counterpart, then it could have been that a common-mode failure of the FRS input cable would effect non-Class lE or Class lE safety Channel A circuits only. As a result, the Consumers.

Power Company plans to reroute these three non-Class lE signals such that they either follow safety Channel A raceway only or they are physically disassociated with the Class .lE inputs to the FRS

  • Finally, it should be stated that the installation of the Tennecomp DLS did not resUlt in degrading the existing degree of channel independence and separability at the plant. Regarding the analog inputs, the FRS utilizes the same inputs that were formerly routed to the since-removed Hathaway oscillograph.

The digital inputs to the FRS are simply taken off of existing inputs to the plant's event recorder. Should a possibility exist for a comnion-mode failure to affect more than one safety channel, it results from channel separation violations that occurred prior to the DLS installation as noted in the preceding paragraph. Question #4 Have the zener diodes, which are presently installed in the DLS input isolation circuitry, been Response to Question #4 Regarding specific tests of the individual zener diodes, it should be stated that diode manufacturers conduct routine sample tests to ensure that a certain percentage of their products conform to acceptable standards or ratings. The ratings for zener diodes 1N5244 are given in Attachment

  1. 10. (Note, Attachment
  2. 11 identifies the DLS analog input circuit diodes as Type 1N5244B.)

As can be seen in Attachment

  1. 10, the 1N5244 diode is rated at a breakdown voltage of 14V which corresponds to the Tennecomp description (see
  2. 12, Page 3) of the diodes' operating characteristics.

Since the performance of solid state electronic components is so dependent on thermal conditions, the component's temperature coefficient provides one of the best indications of its dependability. Attachment

  1. 10 (Pages 2 and 3) gives the range of temperature coefficients for diodes of various voltage ratings. (Note, Page 3 indicates that 90% of the units are in the ranges indicated.)

The maximum temperature coefficient for a 14 volt zener diode is +0.082%/0 c. Therefore, even if the diode's temperature were to rise to the design operating temperature of the analog input system which is 63°c (refer to attachment lla), the zener's breakdown voltage change would only be (+0.082%/0 c)(63-25)0 c = 3.12%. This change would result in a new breakdown voltage of (14V)(.0312)+14V=l4.4V . . Although the operation of the diode is a function of temperature, manufacturer's tests have shown that the breakdown characteristic is relatively stable and dependable over the analog input system desie;u temperature range. It should be noted that this maximum temperature of 63°c exceeds the highest expected temperature for the switchgear room and the highest temperature expected in FRSl cabinet.

  • 6 Question #5 What is the effect of a short-to-ground in the cable that connects the RPS to the DIS? Response to Question #5 Attachment
  1. 12 provides calculations which determine the effects of several, more-probable circuit malfunctions; one of which is a short-to-ground of the cable that transmits the RPS signal to the FRS in the Tennecomp DLS. As can be seen in the Attachment, the effect ori the RPS is insignificant for each of the postulated malfunctions.

This insignificant impact is primarily a function of the following circuit features:

1) the transmitter's ability to act as a constant current source over a wide range of load resistance, 2) the RPS current loop operates "floating" abov.e. ground and 3) the large ohmic value of DLS input thermistors . It should be noted that .Attachment
  1. 12 deals with short-circuits only since the more probable postulated open circuit malfunctions in the DLS input circuitry or in the RPS/DLS cable would result in simply disconnecting the acditional load on the RPS loop which would be compensated for by the transmitter.

LETTER REQUIREMENTS Requirement

  1. 1 The isolation devices used to isolate the RPS analog signals from the Tennecomp data logger, with the exception of neutron flux safety channels, do not meet IEEE 279-1971 Paragraph 4.7.2 requirements.

Response to Requirement

  1. l As described in the "Response to Question #1, only certain analog signals are Class lE as they input to the DLS. These are the only signals that require effective isolation in the DLS .input circuitry.

IEEE 279-1971 serves as the current licensing criteria for isolation devices. Paragraph 4.7.2 of standard states: "The transmission of signals from protection system equipment for control system use shall be through isolation devices which shall be classified as part of the protection system and shall meet all the requirements of this document. No credible failure at the output of an isolation device shall prevent the associated protection system *channel from ing the minimum performance requirements specified in the design bases.

  • 7 Examples of credible failures include short circuits, open circuits, grounds, and the application of the maximum credible a-c or d-c potential.

A failure in an isolation device is evaluated in the same manner as a failure of other equipment, in the protection system." The introductory paragraph of Regulatory 1.89 states that 10CFR50, Appendix B, Criterion III requires that design control measures provide for verifying the adequacy of a specific design feature by design reviews, by calculational. methods, or by suitable qualification testfng. The adequacy of the DLS analog input isolation circuits has been evaluated by review and calculation on a post-design basis. In accordance with IEEE 279-1971, the effects of credible including short circuits, open circuits, grounds and the application of the maximum credible potential have been evaluated in Attachment

  1. 12, Pages 1 through 5. (Note, for open circuits, refer to the "Response to Question #5". ) As can be seen in the attachment, these failures have no significant impact on the safety-related RPS. The Attachment
  2. 12 calculations address failures at the output of the DLS isolation circuitry as well as in the cable that connects the RPS loop to the DLS input circuits.

Requirement

  1. 2 There are no isolation devices between the RPS primary flow and steam generator pressure channels and the Fischer and Porter plant computer.

Response to Requirement

  1. 2 In letter RAVincent to D M Crutchfield dated June 29, 1981, the Consumers Power Company stated that "Although analysis shows minimal effect on the RPS due to the postulated most severe credible failure of "tying" two inputs together at the multiplexer, additional isolation circuitry needs to be installed.

The plant computer 100 ohm input resistors were not installed specifically for the purposes of isolation.!1 In light of the NRC statement in the 8/28/81 letter to DPHoffman that relay contact isolation is acceptable, the isolation capability of the Fischer & Porter input circuitry was further evaluated. As can be seen in Attachment

  1. 13, the Fischer & Porter input cuitry employs two relay contacts (designated as Kl) to switch the analog input into the analog-to-digital converter at precise points in time. In effect, these contacts isolate the analog input signals from the plant computer.

T'nerefore, additional isolation circuitry is not required. It should also be noted that the reactor coolant flow input to the plant puter fs from safety Channel A while the steam generator pressure inputs (from both steam generators) are both supplied by safety Channel B. Although a review of the circuit schedule reveals that the cable raceway which transmits the reactor coolant flow signal is separate from the raceway that the pressure signals (which would be expected since these are safety-related Class lE signals), the computer inputs do not conform to IEEE 384-1977 they terminate in a common cabinet compartment on a common terminal strip. Although these RPS inputs are not separated in accordance with the most strict requirements of IEEE 384-1977, an analysis in accordance with Paragraph 5.1.1.3 of the standard (see Attachment

  1. 14) shows that, in the case of postulated credible failures, the effect of one loop upon another (or others) is insigni-ficant. *
  • 8 It should also be noted that the purchase specifications for the cable that transmits the three RPS inputs to the Fischer & Porter computer require that these cables be capable of passing the vertical flame-resisting test in dance with IPCEA Standard S-19-81. According to the vendor's specifications, the cable was flame tested according to the referenced standard.

In addition, these cables are environmentally qualified as Class lE as described in Revision 2 to the October 1980 "Environmental Qualification of Electrical Equipment" report. Requirement

  1. 3 Use of Model A709C operational amplifier as a isolation buffer device as defined in IEEE 279-1971 is questionable and requires further evaluation as Class lE equipment.

Response to Requirement

  1. 3 As was the case with the DLS analog input isolation circuits, the adequacy of the A709C operational amplifier circuitry to provide effective isolation can be demonstrated by review and calculation.

In accordance with IEEE 279-1971, the effects of credible failures including short circuits,_open circuits, grounds and the application of the maximum credible have been evaluated in Attachment

  1. 12, Pages 6 through 8. As can be seen in the Attachment, these fai,lures have no significant effect on the safety-related RPS, a . I -c -* . ( ---I I J I J I
  • I I TO -81 Attachment
  1. 1 A ... ._-_ _,! SHr. .tJ : I (111 '" 0 0 1.:1 0 I a 0 I a 0 e-i -0 0 0 0 ** ,..,.. 0 0
  • F7 O 0 1-8 0 0 FS 0 0 ** F1(J

,......,:... ...... l ,.,,a I I fo::..-*-----""""'-.""10,f-1 '" o* .-io I I ., o Fl.to I I O o o I I o I I I ____ o._.I I o o i. .I l! ,----;-,,--ij

L _ ...-. ___ _J lJ NO"TES: t INSULATE.

A0NER FRNlf( l'llDM CABINET CH\SS l:J

  • I
  • i
  • 9 I ..
  • 11 I l

_____ I * *

  • e * *CCDCC* .aacaca.
  • tHl Q (ifj * -.

..r::=:ll=:u-:=iL_ fi I I I qt---, d:--_J rT T---,----__ J --.., f--f -**J I I I I 1------+-_J / "1.-.!Au:Jq Fii I AOC. r"Z I I CONO. 1.5 f I AC Tt:,;,.,,.,,..,cw "f>lf. .et REF REF l}B*OOZB0}-000 er:. 05Tt:Jt;VTIVN .3 __ ,_ ) ., -llRA(.><*T L.:2:.:)::_".t-:25=--1--------+.-A-1'1_ ... *_ --"-' ------ 4_*_*oJ __

  • _,,_,.,_u_r

______ 2. 2. -.SHELF IT 1-.:...+.--1-------+------------'---'---

  • fl ,. io1-c.:>zso1-00>

PLAT::.. {Mr,; ---"" 1---1-----<-------**----*- _,__ Z+ Z4 'l)O*J'"OOOI* f/ U\r_._.: "'*-"--'"---*--( CIJN T. PA&E 2 ) -f ' ------------------..----- ...... .:;.::"* i .* *1*1*1 ..... MID fu.#tf ,;;;:/,, REVISIONS TCNNECOMP 5Y5TEM5'"' MAWM

4/1.,/T'/

U.1. ICO *O. DAU I ....... I en C:> j* * ":;' .,..*.', 1 : ', I* t*J * , , TON-81 Att-nt #2 .:';1* *' 11\l 3 t z z u lil a::. uJ ,j-0 !ii a 2 .. . " '4\ I iO li " II\ e, I ' .. ' ' " .. -: ' ...... :* !. ** .:**.:. * *. 4 5 6 7 ,, t .. i 3 -> G,i. *> '> '6 al tit 'Q. Ill Ill " . .. ii) -: OIN co ' c-1-1\1 II) -. . "'. "& * '1 '6. 'Q "S. "8 . ' . i t ' a I\) .9 2 ii-Ii' ' I If\ If\ l.I'

  • I . fi1. "' t" ii' "' KEY CHART SLOT Fll*.'!:.F I ,,., l ' 4 ' ' 7 9 10 11 12 13 14 15 16 e -8 I , ,, II 12 r 14 "' 8 ,. ' / -tJ CD -'" 2'*3 I\)** --<t Ii!""'*

'* 13,,., A**l'NISL'I s ¢ (\J "' 0 l8 "' ..9 ¢ V'\ l/\ ..9 :I!. !!J,N W,C.U*l4' o,,,,... .. ,., "' "' Ii\ "' If\ "' U\ <#IN -t/Jq/li!7*4'H "' lJ\ If\ I I I . I I r-"' lr "' II\ IT "' $ .q-1' If\ 1\.1 "' Ii\ U\ I{\ "' II' CRATE MODULE UTILIZATION 135-001325-000 REVISIONS TCNNCCOMP SYSTEMS., Lil ICO *O. .. .. PMCUC*I ...... ,..------- ... 't*

.;;;*_..,_

__ ........ _______ ...... ,: I I D G K ': I ' D ' " ...... I _..,,. ...... MJT£: ASSEt.1&£ 1.JSING 4.sos* Gv1or I PLATC: SlfqCE:R GAUGC IN cXTR£Mfj £ND A:JSITIONS ro PRoPE"RLY .SET SPACINGOF TOP ldOTTOM Pl..ATE.5 0 llJ a q I I C4vr1cw: THE: IJOTTOM /"TOP ARG DISTINCTIV£LY DIFF"ERE:NT. MAK£ .SU'l£ THAT C<V?O SLOTS POINT INWARD AND THE: HDL*:5 DN THC FRONT EDGE: ---FRONT £0G£ I SE:T TO TH£ RIGHT OF" THE SLOT:'> ,f-JC.IS (A,,.A.) \ I .

  • 1111 I ***1 Ill!! ****)1 nm 1 ..... .....

10/J/76 -WM N;JP Ut C"IC .. I: OIJV' /1.bhl -* z;;'C1L tlalD CMI: . IEVISIONS ICO 110. "DI.fl

  • IJOTll ljl.J 9.Jb-S.31230 INCLUD1NG A/IOCJ1F1CATION PER 1()7-001106*<*

936*S.J12so TENNECOMP SYSTEMS

  • Mux D1G1T.11L
.1<:,1.li1...

(1Y11D1T1u CRATt: -ME:CH. ASSY. DWQ.llQ. , .. .,,,,.,...,n 105*001124-DCO I '" II .... ....,... ..... _.. .. ,_ ...... T-3-81 Attachment

  1. 4 DWG. NO. ___ _._ __ . ,.. HltSN llATE OF CHAAJ6E OF POWER Hl6N RJlllEC LEI/El.. l.JJlll caJLllAff Fl.DMICAJOTE

.. , Hl6N Pll£SSU/l1Zell Pll!ESSU/lE ltPS TJ/ellMAL AllM'61AI iDlll TC1P LM5 OF LOAD, TllllBtAIE T/llP JNf'llr:S .STEAM A UJW LEVEL (Dl&6 STEllM 15£.VEl:RTOll. .ll LOW WRTEE! LEI/EL Z9".*E-.STEAM 6£.MfltATIJ/l A LOIAJ PllESSUll.E zaso) .STEAM t5E.Vt:IYITO/l .ll UJIAJ PJtESlU/lt; H/611 WE55Ul!E: ._ AIAAIUAL TKIP A.JOT'ES = L) 1111! .BUFFeR .AM,. GMllVCCT10A.JS 1 SE4 .2)11.65 E*.:03 ELJl47-0010; etdt47*11ZI z.) RJll .11uffEA! Ai.IP CIJA.JAJ£C r10A.JS J£1£ DllN5S E*IDI, ELJl.57-0(JID fi!!LJ/#'7-NiN . .3) BUFF"ce AUP.5 Al!£ A70!JC "741.fClill.D CPerArtOA.IAL AAIPt1F/E .<?:i, 4) Tlof' !!,IV't:TY

  • ll£l.ATED UVIAJNl!L OF PteE£ilJl!I!
>Zl RP.S.

l!AA6l! Pi!£SSL1l'£ ./"1PUTS 1Z> IJllTll UJ661:.I!.

s. IVS* A.PAI .SAFCrr Cli!QJll *---* -*---* *--*--------* ... ..... ' .. ...... ,., . I 1*11/&JVUll" ..... _ ..... , ................

..... ,,,... *-*--*-**-- '. -1 ......... .,. . ....,. £1VCUJSLJL3E ..SEP TVPIC :SOZ:.*l.lf A"llCNMEl.Jr A llKJAJ* SltFETY .INDICA rtAJIS "'1SCuE11. I PO.CTl!ll. (11..DTE.1 t:JF .ZSOLArtOAJ CJKCWTllY 1!1.'IE£ IZJ K£rell6tK.E.D ,,Z),fAWtAJ6S,) RAur (SC£ MVU 2,S) . (FOil '" .Srnl!Tl..J/O ,VATG (CH.3) .ISOL4ruuu PRIMARY ROW (CHlf) SEE ..D11G i;c 30*164S) .5/EAM *,./'All;f1tJ1£JI! A (C.HIJ) -.5TC4M 6EAJ£1!.fr£lK ..2S FV:GSSUllE (CN.ZJ) -RPS Ki! R/>5 FIAi/iL K 3 Qlff A:Jr.i ' K.4-lrP.S TVJAJECaMP INPll1" :zJ£5CKIPnlJIJS (...11MIS J'ElJAIECDM P 'IHSTAJJLE IJATR LOIS&E.11: OiJl"PUTS RAD.NII/£ CUITDI flJWEI! Rti:AY Kl(DC-EAIS) - CDIJTKOL mD .Mii/£ aurc11 RJIA/Elt KEJAY J(Z(D£*EAAS)..:.. .5TATU5 .) (.Z>IG1TAL.) -i!EACTDI! CLJAJl£0L LOD IJl!IVE CtUTC'N l//JWt.e eeiAr .a(NCA.6)- SUB .SYS7EM -ll£ACTOe awrell£ EbD :Ii.<:JllE CLUTCJI l'rJNQ mAr K#(CE 5EAJSE l!EACTO£ TRIP .ZAJl*ur PRESSU/f!c N/6N {CNA*D) REACTOI! C.ORE. NIUTEOAJ FLUX {C:N A*IJ) .SEe. Dil<IS REACTOR Rill/££ '/!ATE C.NAA.16E (LJI ll*D) lfbl*ODa/11*000) ThlfA'UAI... Mlte&IAJ 01!. C<<Jt.ANT P,fES:SUllE(au9*.D)- Sn:AM G6VcleATOA! A (c.H A*D) .STEAM 6EAIEeAll:JI!. .ZS Pte<fS!;u.el! (CH A-DJ STEAM A klllfl'I! LEUEL (CJ/ A*D) 5TE"AM 6.C.U£4!ATO.f! 21 LEI/El.. (CH A *.D) -P.f:IMAIZY LOOl.AllJT LOOP I /:COW (CHA*D) REACH>>: LOAD WE.BIN£ TRIP (CH A -D) I .STEAA-1 tSEIVt:K:ATOll .B LOW (CN,11) ' -STEAM A LOW Pl:E:SSURE (CN/IJ AAA4LOG ., ..STEAM GENt:CAraJe. .!I UUJ IUATE/f! LEUEt...fNS' AJ/)f£ 5 I ."1!1:. rs reM < STEAM {NSI (FOi! ISOLATION, GENE.e410/f! A lOW oAIATEk tEUEL I PRIMARY C.(J{)UWr LODP I, e .I.t!CE T TeMP ( CllN) .SEE DWG: I P.elA/llllr 0 CIJOUJAIT lOOP I e ourar TEAii'! ( CN!V I 114 *IJOZBIS C.OOLAAJT F£l;W ( OIA I ,r-(:5£E

  • l,.3J 3 1-*JTEll A1£UTl.'OAJ Fl.UX .SAFETY (CNAIVAJELS A*.D)-z PKES!i'ue.c (NSI __

.4 .. (.TIUh fll AU ... , u. DR J\JCM .fi*l4.* (ll <"I< KAT i'J 1J,. °:7 .S*/#*B.I Af*P, ____ ..:_ u1v1-i1oro h1 All CON':ilJMEU5 f'U,\ CO. ..6K-'J!ll'-I A -I *-,__ ....__ .. _ .. ADllrD ""Alt?TCS'TKNJ1/01i7!17HUXJ£l.-

  • ' ._:,. "rP. _

PtAAJT I .. _ -- D<P*HJMI "' ***.* ,, iol

  • . ' ** ,*I

..... _l.:..!:.....--_.__. ..... _, 1.i.LK'iON 'H) .. : '* c .. -*-*-- ii ,. f'. t TONR 73-81 Attachment

  1. 5 Page 1 of 2 Gulf General Atomic Dual Linear Power Channel Model NP-6 Instruction Manual increased to the level of the bistable trip without interferring with the normal protective action, i .. e. , an increasing flux cursion will still cause a bistable trip action even though the TRIP-TEST is operated.

The TRIP-TEST control is a combination switch and potentiometer. The magnitude of the test current increases as the TRIP-TEST knob is advanced in a clockwise .direction. R24 controls the maximum TRIP-TEST current and is adjusted to make use of nearly the entire rotation range of the TRIP-TEST potentiometer. The magnitude of the test current depends on channel sensitivity. However, the setting of R24, TEST CURRENT RANGE ADJ is not at all critical to the channel's proper operation.

2. 2 Buffer Amplifiers ELJ-147-1121 Because various external devices require low source ance signals from within the linear power channel drawer, buffer isolation amplifiers have been included to prevent the destruction of vital circuits by various types of output cable faults. The buffer amplifier board consists of four non-inverting, unity gain, operational amplifier circuits.

The following discussion will consider only one (Al) of these four identical circuits. Circuit board pin #4 is groui;ided, while the input signal is applied to circuit board pin #2. Resistors R2 and R4 attenuate the signal by 50% to insure that the "common m=>de" voltage limit of the monolithic amplifier is not exceeded. Diodes CRl and CR3 insure that the ma.*dmum "Differential Mode" voltage could be only one diode's forward voltage drop or about 0. 6V. Diode CR2 and the zener diode VRl, insure that the "common mode" voltage cannot exceed about 7. OV at either input to ampli!ie r Al. The feedback network composed of resistors R6 and RI set the gain of Al. The selected ratio provides a gain of . two that will just offset the 50% loss due to the input attenuator, and thus provide an overall circuit gain of unity. The output circuit contains a 1 /10 ampere fuse (Flj and two 1N4005 power rectifier diodes (CR4 and CRS connected to the &. TONR 73.:..81 Attachment

  1. 5 Page 2 of 2 , Gulf General Atomic Dual Linear Power Channel Model NP-6 Instruction Manual positive and negative power supply lines. Normally these diodes are reverse biased and contribute negligible loading tu the amplifier.

If however, an output cable fault tries to drive the amplifier output more than 15 volts from ground in either direction, one of the power diodes will turn-on conducting sufficient current directly to the power supply lines to blow the output fuse (F 1) and disconnect the defective external circuit. 2. 3 Power Summer and Subchannel Deviation ELJ 147 ELJ14 7-0010 The power summer is made up of three subcircuits that utilize the two subchannel flux signals (Va and Vb) to derive an average output (V AVG) for the bistable trip inputs. The first of these three, subci:tcuits, amplifier A2, is connected as a signal averager. Input signals Va and Vb are applied through switch, SS to input pins # 10 and #8 of the "Power Summer" board. Resistors R9 and RIO are connected to pin #2 of A2 which, because of negative .feedback, has become a virtual ground. Therefore iR9 v = a R9 and iRlO = vb RIO Because .the total current. entering or leaving a node must equal zero and also because the amplifiers input current is negligible, the sum of these two input currents must leave the node through the parallel feedback resistors Rl4 and RIO. i. = -ifb = input Rf b = iR9 + iRlO Rll X Rl4 Rll +Rl4 J.f 3 "t ...,. *.r_,. . .. o( ; I l I ' I* I .. . ' -©-l!) * .. ft** ; . .,. , .. "' TONR 73-81 At'tachmeht

  1. 6 ' 4 GULF* GENERAL ATOMIC Drawing

,.., , . ._ ( .3ft1 .. " \ . ,, . *1 Q 1 t #1 * ' *--* -**** .. *---------*-* . **-...... Dl.S ..,, ... 5:11 MO? l-5a> 1-5114 1-505 1-501 l*SOI MO'I 1-510 Mii 1-SIZ '-1-51> 1-514 MIS 1-5" I* llll*

m. UC£ REGIUJOR IXITPUT *I ru CHIJC(l No. 1*501 .. *= --------.!!! EO,,!_ ,_ -* fOR Cllll. 5££ lDlPJEI 1191.E mor. 1111 con. 5(( Aj)jj'IQI JA&.E BUOi. SEE NOTE 2 . DlS U:'UJ SICl:JI. "4PIER ll9ll fH111£ SUllCll:J.I OWIE. MSCRIPJllll

!1i* CIO PIN h'll* llRE HO, LllCAJllJI

  • "l. ll!lll VllUCE II Ii [ l 211 2n lOI c:Jli'UI Sl'.111[ 21 G 8 l tl'l.Ri II H J c Sl'/JlE ZI L U r .

A (UPPER) 21 p 0 I SA §8 CIK*I B (UPPER I 21 R S l 0 'B [[11;*1 S"Elf o:.r:";L c (UPPERI 1.:u1r.:*11Lu 21 v ., 0 I l I B C°'*I o IUPPERI 21 *

  • l IA 18 [[11;*1 Sl'Elf

'A (LOWER) *:3lu,,1 ILUI 21 . u "" 99 [[11;*1 Sl'ill C*11*:*;[L B"ILOWERl i;;:J1t:C*1 ILU4 ' II * . o IOA IUI [[11;*1 c llDWERI 21 I ' I Ill 118 ([11;*1 sarrn Cl*t*.*:::L 0 CLO'NERI 21 h I r 121 HB [[ll;-1 lo:Jln" HUI /.UJ( fie IJU

  • tv.11.LOuC*E fl* 125V DC ZI P4 G C2il PO::lllvf OIJ'.i VOL lt.GF TO GP.'.JUND
  • , I 1-UJ( BLDG*lJAJr,LOGGEll-125V CC 21 rn:GATIVE BUS VOL rt.GE 10 C:'lOUND I I I IM G C27l FC.ELl.':l,J ER 6LLJ':; 12!'>V OC 21 Pl G c 271 f>O'.ITl'{E O*Js* VOLTAC:E TO GllOUllD I I 1 12!'>V L'C k NI G C271 BUS VOL lAGE TO* GROUllfJ 21 5 4 11.0CJ. DllCRIJI IHIJ U 111;; SIGNAL TERMINAl R<r. oir:*s llEYIC[ HQ.

VOL. . [-9 \jfO> wr-.1 PINS MZ \*"5. lti.IJ) J-l H.I cr.r::cTDR ru;;, MZ MIS e.1J.1 J-l SH.I flffS £-52 MIS H SH.I to*::mllll flllS HZ MIS ;.1J) H SH.I PINS HZ £*"5 ILlJl G*H SH.I PIUS £*'2 MIS G*H SQ.I cn*:*:,c10ll PIUS HZ E*CIS c1;JJJ . G*H SU.I CD":;LCIM PIHS £-52 [*CIS o;.lJJ G*H . SH.I 111 E-9015 E-63.? . UiliiY1 -S_H l .11;! Oifi:'"i -E-9015 £*632 SH l "RI E-9015 ITTcmi -SH.l E*632 f<2 E-9015 E*6l2 i5ii;Q6 -SU *J CdAloo<L *. 21 5 ' I

  • I ID II IZ --------2 enn: . t.

G)is a re:'ll'I stml£D r.:m. ca*u n11 "J&IS.,Q PAIRS l*ll ll;t lilH (Ot:!CIB Al ti:! [I:) lllS IS f!R DlS CHl*:!:ZLS MOI ll:tl U:.':;f Slt'.ll.5. coe:::tlla 1;3, &:"l PIH 1:J:;. fo.l UCH OLS umo IH Aall'llR U'JL[. 1. ALL IPllrl .... Sl$111\1S rm1r:o JO "'" Cll FOi 10 c:mLor..u*11 n rn s:-:mmc E-211. rmo 10 11:iULL s1ms*m< u.-*nuL llOO:S G*1 rrr .. cu **a no,111u£ JtK:s: cmrs fOil llfUI w DLS AS SltD*'* ar cc::.<CllOll Dl&:;tw HSI Sll.J >. US<O r1au;; li;t&HNC SIGI IAl!i JI::. Pal. Cll r Oil DlS [l:.U;;[LS 1-so; lHn:I Mii (H.J. llS: D:.fALCICCtl SISJEll FIS*I: FlUD 11£"'ll Sl&JIQI lllJ, I

1. co:o<CaOH OllCRlllS llnD i'.£1:11£ S!&llllll llO. t: BS4 $11. 4,IS IEMIK:.*.

0:1 10.1 ft.-,:.Jl OSCILLCICillfll: E *'St $11. I z, VIP 5?1S*l/Jll0*14.49.S0.51,llO

6. /A i:;7 ISSUED FOR RECORD d t'" 'CJ &

,:i .*. ill rea ir::>n:.:cuc:i

  • co,_,M ... ,, *. , "-'*-.1 _ _.. __ _,1,_.

...... s._1;.;;.;**-*i----1 UICHIGI* Pr.ui;:*.o:s FL/,llT PO\".':!i1 m*:o 1111 l*t*;::TY .. £1t .. :1 O&TllCC"'!I lt1'1!1 s1r*;,1i. UH!*;_. II ::.:.14r*1 N'J. ' 1om-01& Cl*&WINQ **. 5!1. 21 SCHEMATIC' o::.GRAM 0'!.'G 2

TON-1 Att t #8 . ---*-**--***-*-***--*

      • -***** . iz "HS I . ' ... -cc;.] ..
  • mss1nuzu H2 mu u-0101 A CQPY -I .. 1 PLS CH,.NN[L NO. 1*$17 . l!!!IU . rtnt I
    • rJ **********
/-rOH caa. I .ml I 1. Cl!ll.[ ©1s a VEKOO.'I SUi'fllCD mf"* Cim.( 1111 D I " 111mo r.IRS 1"11 n;1 r;ir.110:3 lllH .. coc;moa a1 11.: ll:l o:u. llllStA;L( ID}ICllM>.I

_} ___ - IS USIO roo Ills Cllll:::u Mii 1-5,, I IMRJU ,-*-***-* ******* *-**-.j IWUI Slt:lll S. llO. 1 r111 I SU IClll I Ulll llU ow:a LISIU IN ml'llJI !ASL( . SHmO -------c ----**-***** : *= ------:-I _ill_ I ** All INllU11h1 SIGl-W.S UCEPI FIJI lllS cu11aa HllO : ------PRl:llRl"D 10 Pll..CI I roo mr::mm 10 IOOIO .. cm } OSCILLCC.U!"ll AS PU SOH.JIC c.;. (-m. c11 1 H Ill ii16AA.2"1-r mo 10 111\IAll mus mr: mum::i. etto.s 111 ©m11 '1l. C11 00 IIPlllNAI[ ltr.SE U9l(S 11>>1 111'111 I-I ------=-10 DU 65 (Ill COl::£Cll0:1 1tn&. llOClS -------mtS11.J . lllUll.. Cll I i-fM COIT. I C"Jl*Z I lftA rftO -SEE.Jl>UIII

s. 51tlHD£11 CJllt£ usco rm liRIHC erw.u OIGllDQUflll Ulll.£ el'LQI. INIAllllC SIGl<A.lS l!.11 flLCll rCl IU I --------I I IJ,Otl DUCIWI Olll.l.<LS Mil 111."!J 1-521 f.uD I *--------I UJ .. THCSC tU CHANU(LS Sl".>NAL CONDITIONING m ------' Sll lfllt ) IN PUL C\l,<IS FCi' D[IAIL II" SttOWN OH D"NG [*SI Slt.;;J:S I ------J I I -'w.1ffns-rm111£11JT£ nmn1 ..,. 1 c 8LC:1.s r11 ro.1 .. llLS: DAIJLDCG1:R SISlDI ICOS "'--SU NOTE ll m-1: reno Wll1t m11111 fiD. 1 DLS 111'111 SIC!lll AOlP!El lABU mo filill( m111i. i;i.1 1111 llUll:: SIGNAL Fl1'!£R PrHP.H:tr Gr.S: DU OSCILLOOUJ'lt O!l.'Cll DWm. DESCJllPllOI Jrl* lDCUlllll Ol:YIC£ lCRIAINAL fff. 0 1 1*< 1. cuic:-miOH mmus ..a. mr flH llO. llRC H3. HO. CL,,1. -P. rmo mi:1t NJ. u (-Ut Sii.
  • 1' PP.l:SSIJ.llWI l-12 Leva l IJA ue CIZ Ll:ft!DU..

- Hl!?!.D on. I> ltRIJll:!l O'I Pl.t Cll 511. 2Z 0 [ O* m;" SH ZO r111 roni9 o:;c1LLir .. ;11u: l -m 511. 1 Mii ti.i:SSUillU.R HZ fR£5SIJHE zz C 8 A IU 148 CIZ tl:/JlfiL t.u - 14 I. WIP S9,M/JIZO*ll.4i.50.Sl.lll PRIMARY COQUllG LOOP ONE 22 h J c 15' 158 CIZ ll:f1112!U -Li?i IS ' 1*519 O;JTLET TEMP. l.ll . Pil1J.1ARY COOLING LOOP ONE llfHJU -t.g' " : . HID Z2 l f I" "8 m . .c !'T 1r;,, ISSUED FOR RECORD .. ."I !81--PillMARY COOLING LOOP TWO 22 f 0 I Ill 118 CIZ ll:f1122Jlj -II .&.. ....... ,,,/. HJ1 1*521 Ut B OUTLET TEMP. - AO!'rn CH ,. 5 JO.

  • a, ,, PidMARt CCOUUG LOOP TWO t.9' II &
.:G .. ;: e;r /,, 1*521 22 R 5 Z Ill 118 CIZ -.c iv._.J ll!LET TEMP. OL.!::.R.IHIJ:&S Ll!".>T-i l..L 1*5U m:ic.l CO:lllll rLOI 22 V I 0 19A 198 CIZ U:fillllA.

- It & '/.*/rr U:Ull IH l.1 iti .*. p f2I ' ... . " .... 11-12 -**'* ........... .. ... , .. .... ..., M11 STEt..1-1 GEllERATUR TOTAL Z2 *

  • I 20& 208 CIZ zo IUll t1,n*11 011.c. .. 10 s , ..*... ,, .. _ S I JI **1 Sl EAi-i FLO.'/

ST<*" [*'.>Ill Z2 ' u N 21l 218 CIZ Wj1)rU -£*1J ti c:Gcc:-cot ,_ c-n , .. UIOI UIC .. *C** 1-526 fl[I £-SOO *zz 4 . 1 ZZl 228 m . n Pl.Ll!::t.o;;s PLAUT 1-527 s1r1 1 1 CE0oRAtllil £*50A 22 I I 2U 2l8 CIZ U:fi'OL - n PO\'.'<!R COl.'.PANY LO El ! Ill m*:o 7111 .. 1*528 SILIM crni:;u10R [*Sal 22 h y 20 248 m Ll:/PPL - z H FEEDr:111E:1 l'Ua.;Tt t* TIOll l[V[L I l) . --.--) .. .*11'-".:... ***

  • 1-m SPIJ'E 22 I p I SWiM HlRLO on:. llf"Jl
  • St.llC"I tr.I. I I\

1111N ruP.Bllit smo (SEE NOTE "4) 22 I ' I 2, COi -c1mo u 2C *** *J..>J 401 ** Cl*AWINQ II*. 298 COi J:L S*' £*11 01.1:. H r-)J Hll 2400'/lC BUS IC l'tllUGt IS££"N01E 41 Z2 I ' q 2H umo s1111 (*. 10512*016 511. 22 2 61001 . ..!:!... HAr:to or.; . -*** Ml2

  • 21CO VAC ID Vll.IAC( (SC[ NOTr 4) Z2 . I * !OA l08 C04Q 5* ' E*ll limo SH " SQ lllh17 SCHEM/\JIC D'!.'G ,_____ 4 .1 3 I 2 I 1

' ..... : . I M* c D I I r*) ,. . \._ #8a NOrc t I I ., I . .. I I I C. (sec sHr. 1) s11r. 4J '* aorN Nl"'JCD AT Ul"T(t'll!WeO l'"ll!OM F.et:MJT) WITH I.JI' T*Ol'I'" a.SC;tun >1ra * :J. MArtU:u1i. I ,_ Cio4 C.CS, c.JAJun NOTCO* DQol:$ AUO lflt4N4Ui 1'rl IU .., .. NIMA I& !!ST.lfNIU.eQ, ,. 'mLl:IMAICI!: tllll. QIMIWa/OA/9 NOl",.,AAI Al wr.D. G. 1'11116)(: CXJTSIDI!, AM!JI '-T. Qo".4 V WILl.IAN5 .!il:AU!'.tr

  • A* *I oe CtMM 4'Ut'A.UWr.

/NSIDI

  • WNITI TCllNCCOMP fYSTEMS. \ A I c '
  • TONR 73-81 ATTACHMENT 9 Consumers Power Company Nuclear Activities Dept. Subject ,e;.$ 70 ,,..-12.s CAaLC. Ru.,vs Page__!_

Of / Engineering Calculation

r--0--11-11 ------11 ,------o---+---0-_$1-1..Q..

- f!:!.A ..:_ c.l)r. £4' Po I p1G1rA.:... ZN/Jur l:_;.<A .S..S 1 .S fl I I I I I I I r I I I I I I I I I I I '"2-.J..n: ' I I I I I I I I I I I I I I llloTC 1* I I :t. I I I 1 1 L I I I : L__I I I L_ -'1u.. .VOA/-tR.£b"'41l0. $16,..,. ..

tlo 7'"-£ 4.

CA&...cs ,2.,,,.., ;-.J :l-<=.l!IJ _.1.e, A,ic ZJ /.3 LI j).J<Srl(eR /IU. (',A.tJA..£ S //JU:. :51'1£J.iU .. h /o u*.rr £MA w1:..,.1c. A.NAl..o(.., Z/PuT a.t:...,...

f,IJA" f:'o_.,,.

.* f 01"9SS*.> ,:4 a.c. A,..*,,qt.c,:,.> R,GJ.lr ..S,.Dli:. C...,, * ., .. i C.H'AU1.S r/o o,C, ;:'1/. ScS. = ,Arr,4ct.//1'14N'7

  • I. :;, ;t/e&L'!it.o,../
3.

k ,4,Jl/1J:4 (/YtfJ1<.Ai,. :S<.,A .d f'..t,,s:r<.1<A.) Rt:. .&LoW i-te.c

i OuT.!..c""'

7*...-,o) .I ,_ ,A_ -# * -. ,-o.t_ <=di. SE.4 7,e g, CJ X.$<>LAT1ow D£11tc.£ 0 I'/'-/JLo C.X:. l:J/(571.,..Al. 1 B-e_iJr.,tAJZJAAl(-,../0 .. 1---- .2'£'.llcA.Vb ..r .. 17"-/\/o,J* ---&---

t/o ... .1 ,&.D ..... .-Al<>./*
z.e:. A../ALo4 ,.V,,..12e::Au..vJ.1.
!£ ,

A J rL *) } '* ti ; !:.;... ' I TONR 73-81' Atta"chment Page. 1 of 3 < b. #10 1N5221 (SILICON) thru 1N5281 series *-* :s&'i'* ......... ... Motor.6i'a. L'.Pr0-dii.cts*; Inc Semiconductor Data Library Volume 2 Discrete Products Series A, 1974 500 MILLIWATT SURMETIC 20 SILICON ZENER DIODES (SILICON OXIDE PASSIVATED) ... in answer to the Circuit Design and Component Engineers" m1ny requests -A complete new series of Zener Diodes in the popular D0*204AA case with higher ratings. tighter limits. bener operating characteristics and a full set of designers' cuntes that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, transfer-molded plastic package offering tection in all common environmental conditions. thru .SM200ZS10l l 1N5221A thru 1N5281A

  • Proven Capability to Ml L*S-19500 Specificltions
  • 10 Wan Surge Rating
  • Weldable Leads
  • Maximum Limits Guaranteed on Six Electricaf Parlll'MtWS MAXIMUM RATINGS Junction and Storage Temperature:

-65 to +200°C Lead Temperature not less than 1/16" from the case for 10 seconds: 230"C DC Power Dissipation: 500 mW @T, = 75'C, Lead Len11th = (Cerate 4.0mW/ *c 75'C) Surge Power: 10 Watts (Non-recurrent square wave @ PW = 8.3 ms. T, = ss*c. Figure 16) .. , . MECHANICAi. CHARACTERISTICS CASE: Void free, tr.nsfer.molded, thermosetting pl11tic. FINISH: All external sur1ace!Hlre corrosion resistant Leads are readily solderable and weldable. POLARITY: Cathode indicated by COior band. When aperatOd in zener mode, Clthode will b<' with respect to anode_ MOUNTING POSITION: Any. WEIGHT: 0.18 11ram (approximately): ' .. * , * :* .....

  • FIGURE 1-POWER-TIMPWTURE DWTINC CURVE ........ I l l
  • WD UllGlll 1.0 ...........

TO ltf.ITSIJll ........ ....._ " 6 -..."--r--.... --...._ i.* r--. "'-..... "'--.. "'--...... "'-1* --..._ ..... ..._ ........ --0 0 20 IO IC 100 120 140 l&O llO T,.WDTIWIJA1Ul£1'Q 1*20 j.SM2.4ZS5 thru .5M200ZS5t l 1 N5221 B thru 1 N5281 B r 500 MILLIWATT ZENER REGULATOR DIODES 2A -200 VOL TS ***" * ..... n:r:.-.. .. _.., CASE 51.0:Z go.7 a*, ... .g.g -* I I I f l I I i l 1. IN! ELEC

  • 1e..i Jer INS:. IN$.Z; JJiiS?; INU: JNW INW JHS:21 IHWC IN!231 INS2U IN!Ul lNSZJt INStJ5 INS::Stl IN!l!f JNSJ.JI INS238 lflUtO INSHI INSJO IHS2U INUff IN5%4S IH!J" JN5Z41 IN!241 INSJ4i INSUO INSJSJ INUSJ IHS25J IHSUt 1H52SS . .

IHS:SI IHS251 1HS:ZISO IHS2Sl 1NSM? lNS?Sl 1NS2H 1NS285

  • 1NSZS8 1NS287 Uf52SI INS2851 IH52Ta 1NS211 IMS:'2 INS%1J INSUt 1H!a1S l.NS2T8 IM527T IN:UTI IHU'tl INS?IO H.:5211 NOTE 1-Tou ro1.,._ clesicn*

of = 1 o

  • shown irt the Ibo P<1rameters

.,. inc .. 8 .. for un* Non.Standard WQ1t1 vo1r1aes other ,,... number should bli 1 D.S O.SWett_J ND1nina1 NOTE 2 -SPECI, 1 ....... Nomina1z._

    • ... w+.*' a. 4* . ' ##: .;2 .* :st .. a ;a .. _c *"*'* s ...
  • UfTL*..,..,-.-

.. TONR 73-81 Attachment

  1. 10 ...;.-* .. (for origin of reference, Page 1 of 3) i "j3 ink.

2 M.9gf l-i1*ii11-$ii****- ... ., ....... ...,.-li**'*ii1*-..#-**..;.*..-h=m***,.. __ ,.,, * .,.t-""'""'-lli"ii",...* .. ....__ ..... tiefdlllli_""'_*,-atf;;,*,,;*..;wr**ii1.-1>;*,_,.;;im11',;;***1;11,111*1111o1*,111*11*zNiiii.

_ _, .. .. thru .5M200ZS10} dvu1N5281A lflnl .5M200ZS5t

  • thru 1 N5281 B f .ll.LIWATT*
IEGULATOR ODES !OOVOLTS ___ _.. * . t
  • i I t ' 1 N5221 thru 1 N5281 series (continued)

ELECTRICAL CHARACTERl.STICSITA

  • 25°C uni-o-..; .. notedl. a-on de ,,,....,_nts at ltl<<mal .quilibtium:

la..S lanilf' = % *: thermal resosrance of heat sink = JO'C/Wl v, = l.1 Mu @ I, = 200 mA for all type. Mu z-""9M*nc* Mu RIV<<M uobge (llrTtftl MuZ-Volloge NaoliNI THt A & 8 Suffiz Only A & I Suffiz Only Non*s.Hi* r ... p. c .. 11. .lllEC Z..Volt191 T,,e NL v,@* .. '"'""' (A & B Suffir Only) ** v * ... @ 9-z (%'Cl Cllllt911 Yobs Zzr@ '" Zm@ 1,,.=0.2.5mll "'" Valll ... (Note 3l (llltt 2l °""" Ohm& IMlftl ... ** JO 1200 n1u11 2.5 ** lO mo lll'Wl 2;T 20 JO 1300 INSIH I.I zo 20 .... INS2U ... 20 .. I ... INWI J.J zo 21 1000 1HU2T 5.1 ** H 1700 1"'221 ... zo n 1000 UISZZI ... zo n %000 ncsuo ** T zo II 1000 U15.U1 ... 20 IT 1000 lNWZ 5.1 20 *II llOO lNSU' e.o zo T.t 1100 INWt e.z zo T.O 1000 IJllU3' :* .. lKWI T.5 zo 1.0 IOO lNWT 1.2 ** 1.0 IOO 1NU31 I. T zo 1.0 ... 11.szn 8.1 20 10 ... UISJ40 10 zo IT ... 1115Hl II ** 21 ... lNUd 12 ZD 20 ... u1ua ... 1.5 11 ... IN5'44 .. I.a. 15 ... IN12H 15 1.5 II ... INS241 1* T.I IT ... IHSJ4T IT T.* II ... ....... II T.O " ... 10 I.I IS ... 11<5250 ** e:1 .. ... 1NS3Sl .. 5.1 n ... . 1N5Z51 .. ... JS ... ....... 15 5.0 " ... INSl54 JT ... u ... llOHS .. ** 5 .. ... UIU51 JO *.Z ** ...

  • tHWT .. .J.i * .. TDD 11'52'8 .. ... 10 TDD lNUSI 50 ... .. ... lHS21G .. 2.0 .. ... 11<5201 tT z. T 105 1000 INSHZ. 51 2.5 125 1100 lNUIS ** 1.2 150 .... ... **-.. 2.1 110 HOD lllSZIS. az* 2.0 ... 1400 INUM .. I. I ... l&oo 1*5'1T 7S
  • 1.1 110 ITDD 1115281 a 1.5 "° zooo UllSZll 87 Lt 210
  • 22oa* 1115210 81 1.4 ... 2200 1115211
  • 100 u IOO . .... INU11 110 I.I 750 2000 INUT.I IZO 1.0 ... .... -mun uo .... 1100 4500 Ullln HO o ... .... 4500 INUTI 150 O.IS 1500 .... 1115211 180 .... ITDD 5500 INUTI 170 o.,. llDD llOO Uftl'11 llO .... *UDO .... UBZIO 190 .... . ... .... ...... ... a.es 2500 1000 NOTE I-TOLERANCE AND VOLTAGE DESIGNATION

?*-dnipalion -Tiie JEDEC type numbers sh°"" illdiatt

  • IDleranca of :10% wtth 1u1r1nteed limits on onty Vt* 1, and v. 1s INwn "' HI* 1bove t1bl1. Units with IUilt.lntHd limits On an SIS ...,.,,,.19,.

Ari Indicated by suffix "A" !or :10% toltrenct and suflia "9"' lor :5.0% units. lllMoStandard va1t1p deslcnotion

  • -To dHill"lte units willl Hntr -ces otller tflan tnose ass11ntc1 JEDEC l\Ulftbets, tlltl type -sllould be ultd. . DMIPI.£: . -l(oH*1* l z ls LTolarence

<:%l Surmetlc :.--. NOTE 2 -SPECIAL SELECTIONS AVAILABLE INCLUDE: I ---woltqff be-those-* A. I p.A 100 0.H 1.0 zoo -0.0SS 100 O.H

  • 1.0 zoo -4.085 15 o ... 1.0 150 ..0.080 TS .... 1.0 150 -0.080 .. 0.H 1.0 100 ..o.on ZS 0.95 1.0 100 -G.070 .. O.IS 1.0 100 -0.0&S 10 0.9S 1.0 7S ...... s.o .... 1.0 .. .o.oss 5.0 I.I ... "" ,0.030 5.0 1.9 z.o .. .0.030 5.0 ... 2.0 "" .0. 031 ... S.J 5.5 "" .0.038 5.0 s.1 ... "" .0.045 ... ... 5.0 20 .0.050 s.o 5. T 1,0 ** .o.ose J.O I.I 1.5 20 ...... . .. 1.2 ... JO .0.065 J.O I. T T.O so ...... ... 7.1 ... 20 ..0.07$ ... e.o. I.* 20 .4.0715 1.0 I. T I.I 10 .0.07'7 0.5 ... I.I 10 -0.019 0.1 0.5 10 10 .0. 082 0.1 10.S II 10 .0.082 *.I U.4 II 10 ...... 0.1 12.t IS 10 .0.0114 0.1 ... .. I* 10 .0.085 0.1 ... , 1* 10 .o.oas 0.1 14 . .J 15 10 .0.018 0.1 115.2 IT 10 .O.Gl1 0.1 1'7.1 II 10 .O.Oil 0.1 II. I II 10 .O.OH . 0.1 zo " 10 '4.000
  • O. l *
  • II 10 .0.091 0.1 21 ZS 10 .O.Clil 0.1 ... .. ID .. .O.OH 0.1 .. 17 10 .0. OIJ 0.1 u 50* 10 '.0.0&4 ' Cl.I " "' 10 ...... 0.1 .. ... ID ..0.095 0.1 JT .. 10 ...... 0.1 ti .. 10 ...... 0.1 .. .. 10 . .0.091 0.1 *5 tT 10 "4.091 0.1 .. *52 10 "1.091 0.1 .. .. 10 ..O.OH 0.1 .. .. 10 .0.0H D. I u .. 10 .0.099 0.1 .. ** 10 .0.099 0.1 n** Tl 10 .o.uo -0.1 .. " 10 .o.uo. 0.1 .. .. 10 .o.uo 0.1 IN . " *10 ..o. uo 0.1 IOI IOI 10 .0.110 0.1 IOI II* 10 .0.1!0 0.1 ... ID 10 ..o.uo 2.1 IU 121 10 .0.110 0.1 ISO In 10 ..o.uo 0.1 ..., I .. 10 -4.110 0.1 1 .. 152 10 .o.uo *.** .. 2 -Matched Mta: (Stanaard Tolerances are ::::5.0%.
3.0%, :2.ll%. =1.0%) ciependln1 on volt.ls* per dwlce. a. Two or mote unitl tor series connection wtth specified an tot1I voltage. Ser1eS matched sets m;ike.zener vcUaan in eaceu of 200 1i1otts poss1b'-as well as providing lcMef' *18ft1perarure coefficients, IOJillf'er dynamic impedance and ,,._., power handling 1oihry. b. Two or mar. unita matched to one 1nother with 1ny spec* ifltd tolt<ance.

3 --ncht Wltap -*-* 1.0%. 2.0%. 3.0%. NOTE 3-TEMPERATURE COEFFICIENT (9vz) Tut condlllons for temperaturw c0tflic1ent ""' as follows: L In a: 7.5 mA, T, = 25"C, T, *= 125'C (lNS221A. a tnru 1N5242A. B.) . 11. r.. = 1t1ted 1.,. r, = 2s*c. T 1 = 125'C (1N52"3A. B tflru INS2BIA. B.) Device to bl temper1tu,. 1tabilind with CUl'ront aoolled prior to l'Hdln& brtl.._ VOl!Ap ot Ille 1419Clf1Cd amllieftt temper*tu,., 4}&Pt ;41q P->>:* S.P.L ..... 14 , .. E ***; TONR 73-81 Attachment

  1. 10 Page 3. of 3 sf 5 tS<* r-*rtn m+/-u * * **:...* **< .. i llOCES *1111=30'C/W.

,, m 1.5 2.0 2.5 .Mll.TSI .. 3_9,.... ..... _...,,,.,.o __ -:s.o

  • IMILTSI lZ 15 20 GE NOLISI
  • i ! ' I . i I I .i -me *irz* 1N5221 thru 1N5281 series (continued)

Motorola Semico:g.dl,lc:t;or.-::f'roducts, Inc Semiconductor Data Library I I !.I I Si .d Volume 2 Discrete Products Series A, 1974 TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION (90Cft of tN units *re tn'tfte raniies 1nd1U1ed) FSURE 1-lllllSE FUI UNITS TO 12 YOUS .e y .0 [;.( )/ a / jRAllCE ..,.v .0 / u.---,v , v a '/ / .a / Vz@izc '7.Sm.I .__ 0 J I/ I o...._ " II 0 -10 5JI Oi.O 7.0 l.Q 9.0 10 II 12 .. 2DEll 'G.fACE Mii.iSi RIUI£ 11...:EmCT DF ZDIEI CURREMT 1.0 lO / 4.0 10 I ... ,.. I 2.C .,,if// I ' -lf'/-0.01 ... I LO 1z-10-* I 0 I 311'-'-.// I J ' l.OIOA I LO '// / Vz@ 1z u,. = zs.*c 2.0 ' 10 ,, Z.O 10 ..0 . 5JI 6.0 7.0 1.0 9.0 10 11 12 .. lBU 'GJAGE Mll.m 7.0 2.0 ; 1.0 i Q.7 i 0..1 :!! I OJ .; 0.2 q mllRE 9-111116£ FOR UNITS 12 TO 2GO VOLTS "'1 ---lzw>lz>ln- -' -, Yz@lrr I I / JI zo 1iO M 100 120 140 lliO 180 200 Vi. ZEllEll WLTACE l'IOl.TSI FIGURE 11-VDLTAGE REGULATION

r. -zs*c / L = !i' / 8._.*30'C/W lz=2.0lo20mA

' / . J ll>Vz -'::.vz II '-TYPICAL 1 '-RAllGE TYPICAL ,. RANGE 7 : ' lz*O.l toD.Soflzw " Yr ! 0 10 3.0 5.0 7.0 10 20 3D 50 70

  • 100 200 Yz, ZEllEll WJl.TAG( Af 1zr IVOLTSI TYPICAL ZENER IMPEDANCE

-100 20 10 s.o ta ,. ll Ill FlliUIE 12-EmCT DF ZEllEi CUlltNT r, * -55 lo *ISO'C iz'xl '-0.1 lzidcJ :-..-... ll I I ! I I I .... *--,..,;x. .... Vz

  • 1sv+r, n_ 'I Z7Y HW I l 'I I " I I D.5 I* 2.D ID ZO :io 100 200 100 I : Ii! 3 llJ i 20 i 10 s 7.0 ,,:i SD 30 zo , 2.0 J.O FIGURE 13-EFFECT DF ZENER VOLTA&E I I -, I n j-'

.., / I ' " 10 m.I_,. T 4 .* , 25'C I\ y *zlacl

  • 0.1 lzldcl 20 Ill.I " :1 5.0 7.0 10 20 llJ !O 70 100 Wz, ZEIU llllTAIZ AT 1z NOi.TS! (4$¢.Wf4*

2 1&0.4@! .. ...... ,4_ .. d!I@'.¥& A:;;stqfr..CLfFF .ZL4. D II TONR Attachment

  1. 11 I, I.ISi 111"47" SINlt Wll4JI TN4.$1!

COMPICWl!NTS. U!iE CNloeo\RO 10 SMU "THERMIS'TORS Af!t:NE. 0 f!O'RO SURf"ACE. ' 0 OETAILA D.lllWllCa* a.a ..... : . ,_.,,/ ... -#4 I ' ' I .e I 4 I f 8 z I z I I fZ z + I I I G 11£.r r" ., I I I e ' 4 , ' " z ' z I I IZ 4 z 4-I I A£F --;4.A?TS Ll1sr-< l*lfZfl _,,,,, rsr NO. (NS1QA/ATION I 9#Z*l'6Z81,S

  • OStl PC. l'JOAltO (!) . I m:;.
  • J! .. "', '"'"" J74.Jt,.*f1. .et 't'!l*U*" .. J 4!1 z*.4"' z<1.1v. ,,,,z,,_,,

!*.C:, ! "* I "'"' li!4 ' J.8SC', '"*l*i* .e* '!9.1'4,H ,. *"°" * ¢.' ?. ,... ?)"'""" Z!>.<<. t,,.17, ,. ,,,,. .. .,,,H ,.e!"' *rl.1?. .e:: -:0" It$ I , 4!--'.t.. , "': e , .. ,.,'!t'Jfj/4, /.c P.T.C ... , , ,., .... I I 91<0 _ ,,./j,,,,,, CAP., iz-t. 1'v1.>G. "" 4 'Jt<<O * ZZ6?' ColP., *"'" i:..,_r. Cl I '* + : I "". CA'., rJ-'. llll'Dt! "'" ' CAP., ... , '"'* 1-., v c.i!.t.fl'ltC c,,r..7,e /!) -;1e **' "'" ,el!<Jl!.I! 1+11, i:.e1 -c.ea Z-918*:.l.fJ'41<1' tM4 C.C!t. llfJ I IC, 741(fJ ' U.I z 919* fjl,&".'!l,S<J '"* fU'.l:ll uz.' I 919* :,r.e>e&t">

  • IAd 45-1 JI-JIL " .el!LAY, A!l*.<!4 z. 9'.t. .f:eLAI,

¥1$ (. 4 916

  • J:> ""' 'Z4# 1M.-

,.,.,, I ':>Z4*

JuMPee, WI wz. " I w4 wr. W7 we ws-wue o:; , WP 9.t4 d.,.

W5 R£r LCC.1C., 114*00Z815 .()'"...() IEVISIOllS TINNICOMP SYSTEMS. 'ff

  • 1-10 TONR 73-81 Attachment lla Functional Characteristics Cont'd. Channel Selection:

Integration Time: Operating Temperature: Operating Relative Humidity: Electrical Specifications Full-scale Analog Input Voltage Ranges: (Progr;;i.mmable on a per channel basis) Input Resistance: Input Capacitance: Source Impedance: Feedback Current: Common Mode Voltage: Common l\lode Rejection: Input Filter Characteristics: Single-Pole: Tennecomp Systems Computer Products RTP 7480 Series Wide-Range Analog Input System 7th Ed Random .Ai.ccess under program control or from optional control panel. 1. o millisecond for 100 and 200 samples/ *second models. 16. 667 milliseconds for 40 samples/ second model. 2 O. 0 milliseconds for 33. 33 samples I second model 0° C to 50° C .Ai.mbient with convection cooling. 0°C to 63°C Ambient with forced air cooling (minimum of 2 Ft. /Sec. air velocity around power supply) 80% Maximum +/-2. 5mV, :!::5mV, +/-iOmV, +/-20mV, :!::40mV, +/-80niV, +/-160mV, :!::320mV, +/-640mV, :!::l. 28V, +/-2. 56V, +/-5. 12V, and :::10. 24V. 50 Megohms minimum (From signal line to signal line, pr from either signal line to guard shield). 300pfd typical from either signal line to guard shield lOOOpfd typical from guard shield to digital ground 1000 ohms maximum at ,;pecified accuracies. 10 nanoamperes maximum, +/-0. 5 nanoamperes/°F +/-200 volts maximum, DC or peak AC See Table 1-1. Cutoff Frequency (3 db point) 2. 5Hz, Terminal Slope 6 db per oct:ive (down 28db at 60 Hz.)

  • TONR 73-81 Attachment
  1. 12 Consumers Power Company Nuclear Activities Dept . Engineering Calculation Subject 0 ,: ,,<Ze:;;;

-Di..:::. Cl!* C.'-< rr . AT By /'<'47' Date 10/9ft1 Chk .:Z

f'£.G 10/c./n Al;Zc. ,e..-'i),,.ucS"'='"L).)

Tl.I,.,..,.. /t-/4:. cJF /..J '"' -n.1c;: t:!;td.t..£ .:T,..,i.J,,-,._r. lo 14c /tf:,.J.Jt:co,..I' PATA Sy57"£fl:(D1.:S) /;.1e:, .. '"il 1£., £;:!,&£c7" or -;-,1..;,..-5, /Jf'l'C.. o,& /'7.4.l.r::'v,.*c.7"'1,.Af, /,...)li:.4..L ,4.:. 07'J.1.1t:.f!. />7*>/U!. C./C.lr-'> C..:.ft.:. rA/LU/l..*.S'.

Z-... ll./t).L.1),,.1(-,
z-,,./1'7<J-_,;

7°0*7,A./,C lJJ,.5. /l,._IAJ..o<e, O'T/.1£lt. /NllAI _,-1'c;:aT",-uuJ 1:=:.u" *£"-A,.-,,µQ .;,v I _,,,A -.::1_,;-,-_,. ? -*/-r:,,, * ,; .:;;J, /\ £.c.rr.t:..o;J , ......... )C. .Nit/ L.o4 ...,J.N l' u.7..r / 6,..t v:> 1 /v'"c _, _ _.,";, ::Z: /J5s-,u ... e-r':*'-t.t. ,4,,..,?J .. 1c1£.S ; 1) S'-;-£,,;P"I c.J/(..k_ /L-; A /1f'tCA4- .:r.,..rpr..J....- .,..,,_ ., .. ,_,..,c ;:::u ... . Ar-IA..t.o<t, '/',NA.Ai

'.,t.
.J'i.

..... 1 (U--11-r,., ,N,..1 ricc,.,*er:::y a..: =o.s ",{. ....,.,;:,;.

.._-,.,,,_.,.
-r",<. /.Joo"< fal...'So (t-1"'7' feA.;S.-3.) /."-/'.->.,. .. -'-( S££ £°"-!c(..oSJC.b o.:
r,.1J1c;;.,...::.

'7'"Nt.r 1/r'/$;. ::,,1.' !.,i * .:...;... 1l..J1,::iG ,.._.,_, dl A '.'.) --;J cu/r./t..-'* ... .,... 10 .. r'*"""' 1u.; __ ._;,t.:.. S1 (,,.; ,41.. 17'....o :.J 1ili£ 2) IA IJ r 71': /it,,; ,;.JM .!; .Lo,,;ib Q.£ .:<' >"""",.; o,, ... ,,.,.,. .,...," -..;1<> .. -'"T) /'/.fc 72:.,-:1 .. *.::,....,,1--rl!..,zs .S'""'l'l"f I.$ .r'l ;=;)\o:_.s .* ,..:o .z::,.,..Jc, -,-;; ,-;,:G. ::f,__.rr "I ::;r,v s7;t..uc ...,...o,..f /' J ,.,;",.,_/(-'

  • ..; .::._. n c:

f £°1"'1,aLc-1.S A LoAl::J J?£'.::1.s"ro.<:,. .*o ,......, -S r:?e.!.1.S"rANC' La,...22) To !::;-...Ms. / AN'-3 ..z o,.c: /""'£.. _,_-A.f.s /11A;\../u,...4 /.,-=.-c_

  • 7:--. Z.riT.e.u.c..,.

,.i..J /'17.,q ,.r '-"-14 .t.. . .::f'/41 o<<.J..S. 77..r .C ..... ..r..,e .S <>;-',a"/ (j'-" .,-* ;:'..,.,.... Vo1.. <. 7iJ "!fa v'tJC No/>1 nJ t4 J.. (.Dr......1,ry ..;ic;,:.c.- o -..3114 ::i!'"D.* .... TN* /J'Jc:*, .,£.L. # o,:- j /.';.;7:;-1/3'

  • * -'TONR 73-81 Attachment
  1. 12 Consumers Power Company Nuclear Activities Dept . Engineering Calculation By Chk r I L

..$r/4<,A7 u,<,£ C<..1#* .. n-kcf _:t-... 1 £-9.2 .a), t..) -t"#IC. 77;;:.._1,..1/lcontfl /-IA!A(o(.., .51.Jc,w1--l a,./ Cl'**'*'(,. /(,;,/-oo.j_J?"1':J--ooc-D1,££A7"10,..r 1:5. ,4.s ""' t/'JtS. .:)y,; ?"<--:, 7J£.S.e.L1,J"r'.:i..J'. Z.1/fJ..,.,. C1;'2.c.u1-r1Zf ..;if'O<...JA' At.JO i:Jl'(...s.cl!.. ,t;e_ /.s Z.117,_,-r ... 7'1 t£. oc 0-10 I). Ar1J/l ks:..rvµ;. 1 /J.s. "'-E. o.,..,..,..<< .;S#4"rf -k.i.A.,...c..6 ANALO<., .:I:Jf"'-'7"!! lo -f;..t-*_ w1r1./ /(tte n<-1 /;./£. E. eJ,: 0-IO I/. I I ---.t CAtJl..E. .DI$ .r"""I'"'-.,.. Ci<T I I I I I

  • I I .---'V'vl\N.--__,_

____ _ I = 11<...._ l I (I'? *.S) £' ---C/ I . rJ. i °£1 . .z. j 70 K-A.D-!. z"'-'I"-',- TO Ge.c?UA./l:) R1= l;g"-'-'lrt..S .... ,,.I'.'/ :2c.u.;.,...,:i;11_ ..:J'Kr 70 aP .L.:.4/ ,,.::;.do 77zA u..t,.., , A j = C.Oo -(loo-' 100) "' -'loo -A-ft?:?..= t,t,,£.:> 70 /'Joe;, -lJ,o 7,1..'..c. . ...:::-:- 1 ..... .... / ,..::/,..,,r1.,f:, .. :-... :.. /"" 7?:1.c. '"i:e...,* ... 1...r,.,..,,-r-r-*a.

z7-A-rr""'.s. 1s7"A ..... 1<:..JZ. ::r;:.,.-,,,:..,...

/.e.,._;.1..:;,...,,...-r"-'-=. (...tco,P) J)e_&.._."C.:-.,, ... / A ;-? \ /.:>y .£..J;A,1'.NL.4t:;n _;;::,//'"" .. ,.!,,r >-<.,!/ @> ,.c;= ?.:1-/S'-{ 4co 100) (.30'(10*:!.)

=. -::--:..:, ".'--r.. ( 30'\(_lo-3)
  • TONR 73-81

.... Consumers Power Company Subject 1.:u .. Nuclear Activities Dept. c.i.1U.u.,..,.. Of 7 'ALI ADI* S Engineering Calculation By J<fq'?" Date;o/1,4 1 Chk e3: R,,:J...1' U,Y17" KC.Si.J.,.-ofZ.

/oDwA... i),(S 1../C:,

":: 100_,_ ::-/K ,A.. -ri i.JI(. J<:.e;"/ 7i-/ ;£,4!,.,1"', _. '=' UA/'/Jr11'7"7'<< dl/7'-'-r Z,c,..'<L .LJ10.:i-c . .' ?/-<,,,?"' kft"3cJ.f':< <!; = DJ.s ;./16J..i' ,r.:;;.1-rc::.<: -.: o.f,.....,._j DI=-D.<. = -/?4T.*.b

,,<17" Va"-rA *£ _>1::;,-v. l(i*.J Cut£/'_-r,..*- '-; / .. ... c::!!.J,:,:.-;.* /?.5 7(j A .... ,s Z.v, ... 7" ::.'r..1,tt,e,c..;..!7'" 7"'->'1to:1:;;.,: 70 c,,,,,.,,..._. / .. t

  • _l**-** .,.)1 ... -'< £ '111 c. le 'f' C ,,4 s <.J.,o 7"o :S-o .-/ A ,.,1 !:> i:J ', T ttu.I A 1.. .A !::, i!J;:

l<.J1J..J.. j}P/)A.4.s:..1A/SL'j 4...Ab -n.1 4: t .*. H,Jlf:..f'( n

..,..

..... (/Jl1.....J). 'X..I = t31,0aJ,.A£. t:*.Hv't'-" .lJoc..J>..1 fJ:r ..)eoi1 71a1 /?.""-'. <u .01 AN Jj /a£.. Dz.. 10 L-1,,.., ,.,.. - 2:1 .. .6t<:.2> ro.<. '):)1 t:: * .'.) Z, ::r-/;( C.o>.'-"::.r<:.;;:.t::,i:J /N"17' A -'"" I r'.z.) /4 /'1oL,/t. /'A',(,_{ -C.,.l!cilJ._*,;:, OA.t s,._,,._ c:u ... : )J<-***.C.. /1 T<,L_ O/</ 7°;41£-f?/_;; ,(,,,,<r' .. '*/ /..$ 'r'*w4 " A/Jout!..

  • /!A=-loo--...
  • TONR 73-81 Attachment
  1. 12 Consumers Power Company Nuclear Activities Dept. Subject o,c C.1llc..Lt1I

,,4-r b *,.S. Engineering Calculation By ,':!A-r Date Joh/;; Ch '"-'-£ .SJA/a,CT -To -C,,/l.AtJNh t...>11...1... ,LcJAA 70 .S'oo...A.. /AJ1>J1t:..N 1.;. .s...,.,,_J... i,...),r;.11...J ..A-77-'-£. ... ..1U:.. (.e-4) b->1.w..,. /a "?0-1-S--(*lao ,..100)(:30X1<:.-3) = /C.(,,7...A.- To /YJ,<-1,-.!'7"',:1.._( //V-C k.'1*.? (.3o'L ro-') /!.,.. 30;?11a. /IA.I() /fi.Al'o/-11*1 ... l.t.J.. Ta T'r'ft:: .:5-U< 1:11-..(rAT£. I,_; t1'-' I f' t!J!: !. .; 1)1--?

  • a,,.:. ,E', .,..r.1 £fe.. .:s' 1 6 ,_,A"-::{(..I. 1u, "-..: Q C.:o,,./'d"-f1"!V7" I!:, 1 .J,(. Dvt..,"-'Gi
1 .i....,.L.s

.:;.Nfltt ""-<-'.'::i ioGc-1..:'<.l. Do._,_..,.J-C! I _d /!G::..1 lJ,; ,._,..,-/(..:.Al rt;_}> C1 /l<:...u * ! .Lc:A /:l..S .Z... t<...J/LJ.. & 1 10-V /<? I= ..tfoo.A,.. ... -"?oV r:::..1 &.,.. rK,._,.,.,,.., .. ,..'"'""'j ..:;\('./C.3....1\. 1 AJ' /::.i .;._}1-1 1 t2 >-( /fJ 1'.S ;::,, 1!...4 ,f..( .. CJ_, c, ,..., /3 I../ /Q "r 10.J 1.L C:...G.S /ly,(}...,.. A,:!.,.'"'"'

JI: ,t{?/AI..:-

r#..i:: ;;;.,...A.£. LoA2i To /oo 1-95")..A.. d.(. .A.. ..

  • t...J,'?"',.._,,.._1 IN,z.

.. GPt"-£ 70 ?c - +1oc ...,, _,,_ (.30 *(fo-.:3') . To /'?A1...tTA1J k4f' /1.,-3o ...-a.. (/;1!.A>j?ot...'7"1...w,.,1,., (.; f')'lt£ 1,(J(, /11 I .,...,. " T "'l"1 u .,j . . i

  • TONR 73-81 Attachment
  1. 12 Consumers Power Company Nuclear Activities Dept. Engineering Calculation By /d47 I C . .s'llol.1,C.b bJoD.c.S i)/1 /:):1.. 7 i!../.." e.1)

µ 17"N Alo I.. "- 4..C.llC..£..5) ..5.l./o.lf!."T1A..I(:, i)1oi:>R-S DI ,.<J,_tb/r:.t<. J);i_ W14.4. IN C.1.<!* <!.r .. u.,.. t..J,t/l.,,..IOA/

r-r£;t1

..z:zz 13. .::r;..1 .:r-r£/f'? .III. ,;3 L..S. ,../ .s /"J,<t,;_,:'v,.,;c 7"'/e.AI A w.l) t==""L Awl L11'/tE,.-To-l-.1,..11(!. _;r/-'ot<....,.

,t
' P.L .s .:Z:N k TO/Z....S.

K...s-f R.. (.. . <Z..:z.) Ot..t."7" No.t,r1A.1..*..,t1oll!& Vo.1...,..A<1'i:. WI.LL aA:U!. £1-r/</Ef?,. J...1-./-C.

  1. "/ oL .zf.Z... 70 E;tao..i...:b. $Et:nt>"1.:ai)

D£f'£,..1i::J1Af(r ON tJ,.r,£-rA. 1 ,cL. !J1 o.C.. lli /$. 1'7.itt: ...... ALa . .::s /.lofZ.T',.J(',, errH.U:.. L 1..JIC To Jt!,,u .. 1 D u A 1 o fi1t<Jj'oA. 6...t".S'..::(+)c...l..C:,./C.G '77t<. ,,e.i:i..:; kop A'-liJ .L -=, .J. ,.:"µ,,..

  • TONR 73-81 Attachment
  1. 12 Consumers Power Company Nuclear Activities Dept. Engineering Calculation Subject £",C.,.::c-c.7" ",.,: ,er:.!.-D.J....5.

,..,.. A-, * * * .. A 21.es !.) Sy.!'rl£M L,,._11?:..AI:. fot....1,,;.(. C11tc....u17..S /ls. D.C..:cK-*1$""2:J '"' GN-llf:..(_IU ... /)7-0,,.,1(.. /""'AA.r1,,.1..A!.:,., ,.:;,,c ,.,.//'-<.., .'6 /1 . ..;//" 1'"!"77'" A I../,.,, .,,/?" ..$ ')l * ..::i) 0..1..5 ..I'....,-/v7'. Cutc..u 11""Rj /,,1 ('.,,.o: ,,,a,..*:)

  • °7-'< ;f,:.,-.*::_.

/.1 !> ;r;_, ;-J.J .._: OJ'/ <.. Z 7".-1/0? Ir .3.) tp,,<J,,..r'

,v;
JC/7" 0-1:JV ,t::,L.o.M

/,,..*.. L,,_,*...,U ... t<.->'1:.(.

LJ,..r"-**"'*-£.L c/. />""'"A.1....

,µ 1.) A:IJ.:JI/,._

4) .s"1C',,*1.r:;.

t,.1ur>I'" .... tt.K. <!1-IA"l;..'lf:-"- 7o !:l1..>: IS. O*;o\/ To 70 .1£.t..:r.1.J../7-00.10 /A./ />:A,'u,..*;,, 2-t:..At<:,til'.1 ... .c..., 1*) !-) A/301.H ... ) ..:r.) 01'"'1,.,,.f' ,,,µ-..,4 .s .A:s 1,../ 'i)ATA S/.Jil.JC."r_t S* 71 1 ?-7.3 -S-*7.4 (EA..!ua .. I I 1 I -1sy . Iivfu-r' 1' ( 2, l!..:i-;S,;:_:. E:/>'*.) I'ONR 73-81 Attachment

  1. 12 Consumers Power Company Nuclear Activities Dept.

c1l!cu Ir /'>'}().J.../:t.)l>Jc_ 7"'10,.j Engineering Calculation By K-4r Date 1ot.4t Chk Ii. Tci-o;: VP/9/111' /1c.rwi£.,.,../ ([) AN.ll I. fl C!o"'.JJ1"1'P:.N Ill,&° IC /A/ A .s'#o{l ... :r-rt+S./-"-A7t?J9<!. /ovj:i.Jo..A.. oil.. 4:5"",,.,,,,o.., A.J SJJo"",./ 1w <: D1rr.4 "n-1£ 1 s. fA,...<.D ;:/"' Yoc...,..A'9..C .$(..AJ,..tt!, a.F l/v I'-/' A.,-A l..oAD o,:-..200 ..A.. "* /.VA oF 50 m.d... 1.S 4L£A7":£12 /iv;.1# ..frt.,,Lr e112cu ,..,. CufUlL.:J 7":' llJ..S.oJ r.H.c. up /J""fJ .2cs I.JI. .... /N PL.Ac I .... /),41 .Z "4"1.D ,4 .Z.11f'".,.. v'o .... rA 6 4: (J .. fy {NorG.J A lo /,i.JJJ.:; A.ssvll".U::. /-Ir f'r. @; o2 70 °7#& 7/.f4_,µ..;4 7o"i<!. j),;d'T.4 $.;ttU:-r (f'4 tN* 0/'A/Hf' <'AN IN,£. ];),,.:,Ptl(U,.Jr1141. Ztp" .,._ 71.rcE; j),,,:,,.-<,t..,..,J( '-""' -?V /Jc.. -r;.,..

.vl'..,r.Tt2.AJ>JS1SToi?.

Cfa. /'?Av .4t41JJ qA,,.,./3 T..rf-' r P",t..,,,., Tl-IC Vp/4,,.,.p &u r-11,...7": -r;..1c /f'?e>S'f' OAJ Tri;;: .. * .i'i...t'!I Cute.ct,...,. wo .... t..> :Sv J . )1J#.A"i"10..J /SK.J-01.. .4.J:Jl:JinuJA(. k,,.iJ To o. Zr-

J,c -r,.o,-r jt-1oa..ru.J6

.<1 ... 1e, I Tb i..1wC. .z.. #As ..,../'(,£; ,..,, IN ;(lr/AcN;*"'C.1-1'-

  1. -rJ ::r,.::-,,</A.1

.... rA'-U .. ;-Te1C.$ LJ;e._,(./tf;. if.1,c U1.1 /l"o.(.,(. 15"'// /,;::-µ,.,., (..,l'loo,,_ih

r,..1 .t1rN.4A.

p1/Z.JC.<.....,-,o,.J 1 o.Jt:. c;yr: .p 1o)J<.,s; o..c. c!t!.:5'") WILi. /...JL...J 01--I <!o,,.rlJ U.<'.. .Sc.,t_,r-,&1c..1.<..,./,. '/ 70 .,.,,.,....!(,. lo1...J1C,,<.. ,;',__!'I '--1 ,{'A/ 7o !'SI-a t.J T.W .G (Jlt_.,.,.17 u..,.. ,Cc..t.S ,.£. (;:.I J ;<J;.; iJ Q c..o"°' ,._,* -:-7/./ & C-1,e.:. ....... ::r.,-S1-1ouL.JJ /1.c.. /1./o7"'-.{j f'o,, .. ,,z..e /:S. _,.,-f..,. TNl'E.. s-v '/ IS. :<A-;-c.J> /.)r /,t(J,,.,,,_ ( ,C,i:_,e .i)w<.., £".t.'.:r-1.1./7-00 /0) . 5up14L'f ,-H",z. CAJPA/3.1,(.1/{ 7D .;S'-'t°f'.1.. '/ ,t!:°,.Jov4 ""' la .TA/ t),,t; A V<.>1...7".<< .. ,(.. ... £¥.c.;t;.::s;. or-+/-1-:J v 0""" 7;.<J'!:. D/?-",,,,..I° ,I c!J'-'-r?..._..,_ ... 7"H',e. Z>w<;, oAJ Pr,,(. PAT-4 0<:1 S--7.i,?J °S".#o,_.s /i.tA'T Our.. u"7"..51o1oi7"- C.1R617'" .:rN -/(1)ouJ&.1 L Art:t::oL"tJE:.IJ

  • TONR 73-81 Attachment
  1. 12 Consumers Power Company Nuclear Activities Dept. Subject £;:;:&er o/'= Rr.s -i).t.S

,.,. .,.,oA/ ,<?..,. ---** ------"J',t,,1..1.iAlf:.£.i;.-- -Engineering Calculation . (iv/./ IC. J¥ CL..J. Ay c.J,..IL'f I VoL,;} ,4A/b //-<$; v,, .... .!):'-u..l.S ,A7' A -As r -=--l-0.7V r. _..£.J_z .............. Rl!AS4S. /(,,,\! r1 o. Jl'i 0;?/1/91,0 c:: .4t'r (},__,..,l'uT C'l).L.. c/c.i.5-z -<:.11 E.Nc E:. I;::, C!.A .:.4.. 5 --£ :::i '"'-..e (!h .r.£ ... u*) ..:5 At o r 11 -< , ,,,. ,_,,... * < /4 4A.i£. .. ; O I"" *

$...,.. .i). H ,A "n) ;?.oo IC r".e. ,£ '-'!. '-.,. ,C...1.; '--i IH .:: .... / cS, I ,J I h ,.JJ.:. , <:A LC.:.'.:... ) I!) Et:J.

.=-...:,:...'1.

r
/YA(.,..J{

7 A..,-7,2. /1000 ;::'"-7: 1'r" 7 C'4!flL<. r.:, /.S..£ ,<w(-. eC!.,<16,1..c '= (4S-/1000\(.G.,773J= 0.30-s' 1 = ">"'> D.tooca_ (i. &l',,c;o/ .. ,-;- tJ_;;AJ""'fJ C::.1/2(;.d.17" ..r.--17v.,.. c:. / ,ec_ j,L I r/cco,e;:i,,./C";. /c (-s<1t.c,....*._.u C'.> Lc.-1...b ,1.1 ,1 d,.2tt'l"',r:' {,..Ju .. 1., ;?c..:u.:. -/.../ A C:s ... .,....,dA./ /.U -r1-1-c. k/'.i.. ,,c.,IC/! .arc..,C. , /;..'/.$ ,..foc.J.C.1.J..<.JZ. 1 _) ,(,'oLJQ Afo..,.... & p..cT.e.,A IC.A....,._,1 /.., fO T,..,-,.C . .:Jlfl....

-/PC. .L r IC.,l .( ..?,,v t4 f.,. ..
7"' <:; IZ..c..GA..A

"'r",,,('_ /c./ *

i. ' t r l* ' t t f !' 13-17:; 1'11,,;1*
! TONR 73-81 Attachment
  1. 12 Enclosure Foxboro M611 Transmitter Instruction Manual CP Co Vendor File #M206...:.56 Measurement Hans:c: ----*-**---
  • -*-*---*--*---**--*-----

A -15 t.o +750 50 to 500 1000 c 0 i -15 t.o +1500 100 to 1000 2000 ,., r" ... Jtan,:<? 1Jm11-;, Span l.lr:iils, psi ?.lax. Ovcrrnm;e, psi ------------15 to +350 25 to 250 .500 -------*---------*-----------.....;... __ __ The Instrument. sp:-.u tn:1s b1* rlev:ltrd or dcpn*r-sr:l up to :ioo pr.n.:rnt or spnn. Add1Llon:il c-lr.\*:x,Ucn up to 1000 percent o! Is :i.v:11l:ihlc with :i.n ck*vatlon kit. In either ca..sc, !ht: .!;IJ:m plus the 'l:lti<<Jn or mu::.!. nut. exceed !imits o! t.hc rap:m!t*. Outp!Jt: 10-50 m:i. d-c into eoo ohms --!-10% *-2'1':':* Accurncy:

!:0.5 percent of sp.:m Workini; 'I'.:mpcr:i.ture Limit.<; tor Tr:ms:nittei:

D1.ldj": -*IO I*' to +250 F Ambient Temperature Limits . tor Ampliflrr: -20 F t-0 +lSO F Powt>r Supply: 63 volts d-<'. 1m m:i. Process Co11m*c or

.:p*r Elcc trical Comu*d i 011.s:

Two l!l-im:h lr...lcls !rom hllle t:i.ppNl :or cond\iit 20 lb Power Consum11t!on: Prucess Connect.ion UICJ.:k:

  • Topworks Cov!!r: BPllows Cnpsu!e: 5 \":\ <l-c 1n: ... 'Cimum For1*:t*'1

'1"::*1ie '.HG St;i:nks:> Steel CML alu:ninum, wntrrti;;ht. Type 3l6 Stcd The t.r:in:;mlttcr m:i.y :.ie mounted in an7 position. The transmitter cover must be hnnd tightened only, to provide n. seal. 7 V2N MUST OE ALLOWi!D TO REMOVE LEt. .. E CLUR"-NCE FOR :ri;c AO .. nJ:in.: ENT BAS( EL£V.\TION I I 11 'ilf ( IEl"CABLE

  • . :. I .. J.,_.ll. .. ;/ --., ,:t .. ' -*. **t \Lr

-....... ,-.. r1 ("<:' ""E -r.*" ' c... "lfl.lff -11**-I "t I ,3.!. I 16j 18 *0 1 I . 1. Jf Jf \ ! . SPJ\INc.i . .,--* ! '{.i) ASSf \10LY ... I _j-1! -1:'-.. I I . f ... COPTION"-1..y""*

  • \ * '\ -1 i:'"'IOIJI T /" Le&_.* ! \ coNNtc11or4 I . t>C' NOT 0 l C* -y I ;,e ..
  • 1 11 r<'t*N*"CT:f" .. lit.Cl\!\
  • CN , --*-I PRESS.

l_ -* ! OR .t ICPT ' .. 2 _,ii. . ---* ------MOU,..Tmta r:s*r. Oi: "UklJON ff.L. 2°1 l'IPE I .. :.,._ *--*

  • TONR 73-81 Attachment
  1. 1-Q. 1u:conn OF Sheet No / ..3 'K .
  • . Enclosure . . J>atc:

'fiMe: --* By:

  • Vho Mkcd To: *
  • iJrlz r¢h<n..o / /Yk:zte..

-;t-,u * * .. -'1. Bis (Iler) Dept: E ""'&AJ .Phone: AC G./ z No S"l/.3 ?75'. Ext ___ _ * !l'opics Discussed: .. . * . . . . . .. "&a. -ff._ "Wt.LL 41;1.tLL.1 ..

  • d.;f

-6. 1i .-lk . ,a.a,. .bJ. c-e* * &. 00 .:..,._ . +I(, % :_ o/. .'

  • ti, ,, II"-'->' * -=-'iov .. * . IOCU. ---70 })L..S I TONR 73-81 Attachment
  1. 1 2 Enclosure I HODEL 6lOA POWER SUPPLY P&rt Nur.tber I( Model 610A Power SupplY is designed to. t'J.rnish power to 31ngle electronic

!orce-oalance tr:;i.r.3::iitter. ?he power supply e:tiloys a ventional circuit !'\ill wave occurs a.cross diode bridge. See on !!l.t:erin; is by Cl, C2 and ?J.. R2 a.nd 'E.3 ser*re to ::.:::;:rc*re 'Toltai;e ls.tion by ac-::!.."lg as a. bleeder 3.cross ** ut tri.e

  • at,en-a.

used lccp

  • For m.ounti:.6 i,ni'or"...ation, reter to Inst:-u.cticr.

13-260. m:i--* ** . . . .... . . --... ... ... Ba.ck :*10Ul'l t ed Stlecif1cat1or.s .:o volts *i-c ':i1th -output. Volt:;i.ge: A-C SupplY itolta;e: PQWer Tecmer&ture

J,::iits:

nectrical-cia.ssii':!..:a t:ion: 54 volts* +/-*1 9.1: ::J 76 volts d.-c :2 *;o.l.-:s

.:: ;c ::a. lOO, ll'3, _'2.2.0, J.-C :l:;;, 50 or cJ c-:.s 3 watts (11 3
  • .;a.) '.;'.J -:;.s 40 to l4-0 "F *Jener:li

?ur:iose :Ji*:!.s:!.:in 2 * 'the C.*mpiany Fosbl>ro. t! .:3 .* \. 18-i*:.6 Ju.'1.e 1 67 Pase l1 Printed in t: .$.A. TONR 73-81 Attachment

  1. 12 Enciosure FORCE -BALANCE TRANSMITTER EXTERNAL CONNECTION BOX (SUPPLIED BY USERI -GRAY 19* CABLE (SUPPLIED BY FOXBORO) RECEIVER TERMINAL PANEL + 0 0 0 0 0 0 0 0 0 0 0 0 0 Wiring Load MODEL610A POWER SUPPLY 6 0 0 A-C SUPPt..Y (SEE OATA -------,,,...-

-"L.ATEI output load resistance 600 oh::ls -20 percent. l trsi."1.g the table bel::w, deter:ni."l.e the c*1t;ut l.:iad :e.a!..3ta."'l.ce by all recei7ers i."l. the 1000. the l!.ne it 1: !:.3 Do 1.'lclude

    • 0 1:he J.se =ea...s"J.:e t e i*e.:istar..:e
i: any receiver not l!sted i."'l. the table.

C Cl!'P..O !. =r !.Jo?

!cdel

... Company Folh1>ro, .* .* \. , ...... -. . --*-*--* ---. -RZS!.:T * .\::cz lJO ohms lOO o.h:ns l-3 .Ji'J:tS t"t 01"

2. Set the !.CAD dial to the between the determined

!..."'l. 3te9 l and 600 0 + OUT 0 0 L.1 0 1.2 0 0 Printed in t'.S.A. ---' .. --....... TONR 73-81 Attachment

  1. 12 Enclosure l'Oo"jER SUf'F'l..Y l'01<&0RO M,k.101' ... lo. + L--1--+--1---.

TO 2 OUT OS: 4 COINC1ca-;;.i ...,.TRl'I.. 1 O..OS2S ' C:V* <=01 4-C:'J*0!:> 10 '--...,....--+---1.....,..-+---J l!E.F Q"""' <L.A-Tl!.R) I i 1eoit1 M/l-11 u I ... 2 0 51 R SU' -'Ott I :ljl ..J t"'"'° I ... J! 2 ""'" I I I I ,-. ,-, I I I I I I I I I I I I I I I I I . ' I I I I

  • I sn l<OT'&' 1 1 I
  • I I I 1 t I I I I I I. w L *"' 'R"'E"",."""c."'-r"'"o"'""'""'c"'CN""T=.i.i.,..,.,.N"" ... -=1"'1;i-1=T1

--___ ...... -*-****. -. .. t. SF'E' O* '3? 16 F'OR SPECllll.. <lll"IPl'IRTiollONT ""1R1t1G I. 16" TWl'STl!:l) PAIR. SUPPL.lED WIN IWST'l=l.UMCNr


................

_____ .. I THIS IS l'IOT AN ORIGINAi. t* i l .. T . *-: J Cl"lJ:


*

POWl..i&


,


. . *cu; ... 1-. IPU I 1 PU '"'"" u ' l **1 I,.,.* I*,, . , , . t" . ... l ' i ' 1 !

A*G. r.r..,1u. vio. *a*** PTI PTt . --*-*-:J> PTI PY1 co*. owe;., ..... -t-.-:.i ..... 1 r -t-, PTOZS1& 11ov. PRE,..iltl?Er. A*' PIJI. "11<>, Ol<IZ !i WJ UI i* 1 'S I 16. I .. Low PIZE'SS. I 1/4 '"' I . "' """'"* 1-111 I I I . I , .... ---* .:::, I ti* ..... 1.,,.,, , .... ". I I L_ t t-1 (T..,,.ICAL) I TlllP UNIT. PA075111o _j $Cl-'UAI lD24 (COM"'0"" l'OI& Al.I. 9CMl ..... I* la.C*Pr .. CMhAC. lP16 f l .. U) *:t*!. .. a. -* .. ' ........ . *. ti:4; .£J!l$:!!J£1J t :;*

  • r :.. * ** * * * , * ** , \ :! :, * . 4, * : , ICNU.tl.1o
  • '-Oll 11 *CMO..tlt
o.ionn ---.Jl.--4---1---'11,._

1 Tl, II: ...... !!It AT <:.!1J. .,Hl""lt 1** ._ r.ill <;Cwl,..1 IP21 111*1 ,zz&>* ,.oil \Cw'" IPZ1 ..._,,,____. l*SV STCMI G[N. E*50A

!i16NAL To PAI PAI DATALOGGU CHA!INElS MlS, l*S;f, (DWG. f*SJ $H, iHI I IP1S ti *-IPU t I ---ll'f,;, (I PH --Pt6 --. "" .,. ... i '* Sf PAIZ.ATE llACIWAV sv .. TU.A ' I 1. &AR.II.II.ft

&ITw&I."' c:u.a.t..i...,r.LS

  • I To 1.ow I ....,,,..,,,...
r..\c.f.*.*.,,.,.

E*C::lPT s161JALS I 1lJ P.ATA P?.<JC i;

  • ... --C.f *.

r:iwc s L ,.A07'i*A '29'-w* ,.,_ !l*O'lo --J "*!lie.* .......... $ 't1'1 I CIRCUIT t.JO.t . ::J. Joes ,,. !l*C\;. , ... , .. 9,.,, 'ICMIM' 1192* (*C"4U.AI 1,.21 ' . , /II I ';I y :'\ . >I f:; TONR 73-81 Attachment

  1. 12 Enclosure

.! * ',. llCHTIL COMPANY row:* sc H Ii vA r, STEAM Ii I t..J s T !o.JT .... :_'_.J_-.*_, __

  • *i,. I. ( l' J: f'*. I f ,. .

........ a I t D A.ANT C.IU:UIT DL<;. CONOITIQNI .... C>RO Ju"'"e" OPTIOll TONR 73-81 Attachment

  1. 12 Enclosure

... *{I.HS CAI. &I.IS ___ __, l'OlllUICU e B . . OlQl&M.A: ijii1 ! . ** 1 """'"*' dH! MlllUI ! hi.11 *'-"IHNOl'ID ..... 11'1l*"'91M I ----1---DL,, ,,.. PTC '?'t-ttl;.Y

T.
f\. "* "*

I CARD .;,= .. -... ....... -. l4 .. .. i;-,. ....... CIUCU CAUllllATt 3 MLAY' I I I ....... . ..... .. H** .:...Fr.r .. --., -;.. : : .. , .. '* -:;" 41 .. o.'9* ,;_#ti c ... -IE1tcl!'ll. _t; .. ",,&.!af AT .,, ,,,_. lOO * .. ... E,__,cs:i-.. t.m CAlllM!T 4flOUN0 2. WITHSTANDS NOllM .... MODe .... D c,a..._c.. M:>ae <**) 11:ee 41.Z-1974 SUflql! WA*ffCllM *EEe. * ., ... 9'-8 1a4P1.JL.'6E-(C.) "<Hl CA oc: (G .. jl.Pll'o:.oec " :; .... =-'!; .. ' c:.. CL .&.

  • TONR 73-81 Attachment
  1. 12 Enclosure

.. -** ----*--***.--* ... 7.4 ANALO§

7.4.1 General

Tennecomp Systems, Inc 1978 Technical Information and Instruction Manual for the Data Logger Sys*tem Volume II-Maintenance Part 7 -FRS Analog inputs to the Field Remote Station are conditioned, converted to digital values, and compared with appropriate alarm limits by several pieces of equipment in the field remote station cabinet. The input connectors are wired directly to terminals of signal ditioning cards in panels and Fll. T.he conditioning card provides protection against high voltage surges overloads

  • . It also provides relays which disconnect the input wires from the input to the analog-to-digital converter (ADC) substitute a precision ADC calibration voltage. Each analog signal leaves the ditioning card at the edge connector and is carried through a shielded twisted pair_ to a relay multiplexer input card in the ADC chassis, panel Fl2. The multiplexer card has a low pass RC filter for each input signal and relays to connect the signal to the common ADC input bus. The ADC is controlled by the microcomputer system, panel F9, through an interface which permits th2 microcomputer to select an inp.ut signal for conversion-and the amplifier gain to be L1Sed. The microcomputer receives a digital value for the selected channel in binary code. This value is compared in the microcomputer with binary limit values previously transmitted from the CCS *. If the input value is out of limits,the FRS advises the CCS over the serial communication lines. If the selected analog *input channel has been assigned to a PRE/POST history.group, its binary value is stored in core memory by the microcomputer.

An analog input may have its binary value returned to the CCS over the serial communication lines if it is a member of a logging group or if a printout of its value has been requested.

7.4.2 Detailed

Description 7.4.2.1 Signal Conditioning Signal conditioning cards for up to 60 customer channels are contained in panel Fll, drawing 113-002815-001. The first card position is used to hold 4 required for thermocouple referencing and permanent calibration. See "CALIBRATION" section. If more than 60 customer channels a.re required, a *second conditioning crate is installed in panel FlO. It is the purpose of the signal conditioning card to provide protection to the ADC from overloads which may be applied to input wiring. A second function of the conditioning card is to provide signal stitution calibration of eac:h ADC channel. The conditioning circuitry. is best understood on Tennecomp drawing For all input signal ranges below 10 volts full scale, Rl and R2 are lK (nominal) positive temperature coefficient thermistors. R3 is not used. The .01 mf capacitor filters high frequency transients. 01 and 02 are* zener diodes which break down if the normal mode voltage on an input 7-8

  • v "

TONR 73-81 Attachment

  1. 12 Enclosure (See Page 7-8 for origin referencel exceeds 15V. If the zeners breakdown, the input current through Rl and R2 becomes very high. This current heats the thermistors and within 1/2 second their resistance increases to limit the current to 6 ma. The ADC can accept* common mode voltages of up to 200V. Should the common mode voltage exceed 200V, bipolar zener Zl will*break down through Dl and/or D2, l imi ting the common mode seen by the ADC to 200 volts. Rl and R2 again act to limit current. The relay shown is used to swtich the ADC input from the field input to a calibration voltage. 7.4.2.2 Detailed Conditioning Circuitry

-10 volts or less full scale Actual circuitry used on all conditioning cards for lOV fu.11 scale or less is shown on schematic 114-002815-000. Component location and values are shown on 141-002815-000. The first sheet of logic shows input circuitry similar to 161-002815-000. R12, R15, R18,.*and R21 correspond to R3 and are omitted. R6-R9 are omitted as these would be required only for sensing current inputs. Sheet 2 of the logic diagram shows the elements required to support calibration and gain assignment. This logic is connected to the computer through an analog conditioning interface (see information on panel F9). The four channels connected to any one card must be of the same input range. Rl through RS are 0.1% resistors selected to provide a voltage 903 of full scale when lOV is applied between CALSIG and CALCOM. Jumpers 11 P 11 are installed, as is W2. W2 selects calibration for one analog panel at one time. For additional details of calibration see 11 CALIBRATION 11* Jumpers are selectively installed (as shown on 141-002815-000) to provide the appropriate ADC gain code for the input signal range assigned to the card. The microcomputer reads this gain code through its analog conditioning interface and sends this code to the ADC through its face. This technique permits input ranges to be changed for any channel group on one conditioning card by replacing the conditioning card with one for the desired new range. No changes in the microcomputer program are required to accommodate the input range change. 7 .4 *. 2.3 Detailed Conditioning Circuitry -120V input The voltage attenuator shown on 161-002815-000 for the 120-volt range was reconfigured to achieve proper operatiOn with the ADC. R2 was replaced with a fuse which opens on overloads applied to the 11 low 11 input terminal. Rl and R3 form a.100:1 divider.* All other components perform as on the lower -voltage boards. Details of the 120V conditioning logic are shown on drawing 114-002856-000 and physical component location is shown on 141-002856-000 .. Sheet l of 141-002856-000 shows input circuitry. RlO and Rll correspond to Rl on 161-002815-000, Rl2 corresponds to R3, and the network forms a 100:1 divider. This ratio requires an ADC range of 1.2 volts ful1 scale, and the balance of the card is set up for that range. R6 through R9 are not used. 7-9

    • . :.i f j TONR 73-81 Attachment
  1. 12 Enclosure This summin_g junction is a virtual ground. Ion or Fission Chamber -HV High voltage chamber supply / Figure 2. 1
  • Gulf General Atomic Dual Linear Power Channel Model NP-6 Instruction Manual Feedback Resistor determines current to voltage conversion.
  • Output voltage to meter, bistables, recorder, etc. *Iov High gain, low off set . .-current amplifier SIMPLIFIED SCHEMATIC

-LINEAR POWER AMPLIFIER 1[ ... *1 .. , . ' : .*,.)_J. :.

  • -. .; -' r
  • i I ' I [ t F .. f *=i I l t I t Fairchild Linear OP .AMP Data Book August 1979 ,. TONR 73-81 Attachment
  1. 12
  • I'* '>Mir s#io$ ,.. rt ebrt de
  • a a e;c*Ib-
  • ! s 1** ....... Hr ,;,-f A n Enclosure pA709 HIGH-PERFORMANCE OPERATIONAL AMPLIFIER FAIRC.HILO LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION

-The 11A709 is a monolithic High Gain Operational Amplifier con* strueted using the Fairchild Planar* epitaxial process. It features low offset, high input impedance, large input c:-mm:>n mode range, high output swing under load and !Ow po-r consumption. The device displays exceptional temperature stability and will operate* over a wide range of supply voltages with little performance ctegradarion. The amplifier is intended for use in de servo systems, high impedance analog computers, low level instrumentation applications and for the generation of linear and nonlinear transfer functions. ABSOLUTE MAXIMUM RATINGS Supply Voltage I ntl!rnal Power Dissipation (Note I Metal Can Mini DIP DIP Flatpak Differential Input Voltage Input Voltage .Storage Temperature Range Metal, Hermetic DIP, and Flatpek Molded DIP and Mini DIP Ope.-ating Temperature Range Military (11A709A andpA7091 Commercial (µA709CI Pin Temperature Metal Can, Hermetic DIP, and Flatpak (Soldering 60 sl Molded DIP and Mini OIP Cutout Short*Circuit Duration NOTE: 500mW 310mW 670mW 570mW tS.OV :t10V -65°C to +15o"C -ss 0 clo +12s*c -ss*c to +12s 0 c o*c to +7o"c 300"C 2so 0 c Ss RatinA applies to ambient temp*f'atunr up to 70cC. Above 70°C ambient derat* linearly at 6.3mW.!°C: for Metal 8.3mw/'c for CIP, 7.1mWt'C for thtr Flatpak and 5.6mWt'C for the Mini CIP. CONNECTION DIAGRAMS B*PIN MINI DIP ITOPVIEWJ PACKAGE OUTLINE 9T PACKAGE CODE T INFREO COMP 1 7 COMF -IN -'I* J *IN t . OL,""T v-4 5 OUT FREQ C01.1P ORDER INFORMATION TYPE . PART NO. pA70!lC pA109TC NC INCOM, v-10.PIN FLATPAK !TOP VIEWI PACKAGE OUTLINE 3F PACKAGE CODE F '--i:==::iour ORDER TYPE PART NO. 11A709A µA709 µA709AFM pA709FM S-68 OUT FREQ co ... CONNECTION DIAGRAMS II-PIN METAL CAl\I (TOPVIEWI PACKAGE OUTLINE SS PACKAGE CODE H tN FRECI COMP v-NOTE: Pin 4 connected to caae ORDER INFORMATION TYPE PART NO. pA709A pA709AHM pA.709 pA709HM pA709C pA709HC 14.PIN DIP !TOPVIEWI PACKAGE OUTLINE PACKAGE CODE NC NC 6A SA D P IN FREQ 3 12 IN FREQ tQ'AP CCM* -IN V* *IN v-g OIJT FAEO COM* NC NC ORDER INFORMATION TYPE PART NO. µA709A ,.A709ADM pA.709 ,.A709DM pA709C ,.A7090C µA709C pA709PC

  • Pl01nat Ja
  • P*ten1oe1 F airchtld pror....._

....... *--*--........ I ! I . ; i I I 1 j r ELECTRICl CHARACTE lsee definitic Input Offset Input Offset Input Bias C" Input Resista: Output Resist Supply Currer Power Consur Transient RIIS! Tho following Input Offset V Average TemP< of Input Of Input Offset C.L Average Tempe of Input Off Input Bias Curr< Input flesist1nc Input Voltag& f; Common Mode Supply Voltage Large Signal Vo1 Output Voltage : Supply Current Power Consumpt VOLTA* ASA FUlll SUPPLY'

  • L>;.a *Mo'C-.TaS*tJ'"C . ......--***

... -.......... ... ..... "L A ..... I CF --.. .. _...,.,.......,,,_ _______ ,..._ , .. TONR 73-81 Attachment

  1. 12 Enclosure

+= > ** *s..-... ......... _......___._... ____ ,& __ !...-... ....... . ---MAX UNITS 5.0 mV 200 nA 500 nA kn n I 165 mW 1.0 30 % 6.0 mV Vf"C µ.V/"C 70,000 VIV v v v dB µ.VIV nA nA µ.A kn VER CONS.UMPTION I A FUNCTION OF UPPLVVOLTAGE

l. , I f ' I I ' FAIRCHILD*

µA709 µA709C ELECTRICAL CHARACTERISTICS: :15 V, 25°C unless otherwise specified. -CHARACTERISTICS (see CONDITIOris Input Offset Voltage Rs s; 10 kn, *9 vs: vs s: :1s v Input Offset Current tnput Bias Current Input Resistance Output Resistance Large Signal Voltage G*ir. RL 2: 2 kn. VouT * +/-10 V I R1 10 I Output Voltage Swing Rt k!'l Input Range Common Mode Roj.-ction Ratio Rs s: 10 kn Supply Voltage Re!ection Rario Rs S: 10 i Power Consumption V1N = 20 mV, RL = 2 kn, Rise time C1=5000 pf, R1=1.5 kn, Transient RMponse C2 = 200 pF, R2 *son Overshoot CL.S:100pF The following specificaticns apply for O'C S: +7o'C: Input Offset Voltage Rs.S: 10 kn. +/-9 vs: Vs< :15 v Input Offset Current Input Bias Current Large Signal Voltage Gain Input Resistance PERFORMANCE CURVES FOR µA709C . VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE 0* 10 1:1 OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE MIN TYP MAX 2.0 7.5 100 500 0.3 1.5 50 250 150 15,COO 45,000 ' *12 *14 :10 :t13 i I :t8.0 :t10 I 65 90 25 200 I 80 200 0.3 I 10 10 750 2.0 12,000 I 35 ...... -+--l FREQUENCY COMPENSATION CURVES FOR ALL TYPES OPEN-t.OOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF COMPENSATION FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP

  • *1---.,..---.--...--;;,t---;

! _____ ,_,. . -.. .:...;. i oi-'*-*-... .,."-'*-*-"-'"-** ... *-*'-"._.,_.' -+-; i

  • t** ... i . *-'_. __ XI CJ* YIDul .,*rttU.t::*XI°" -. ***** C1*'!0K'oll' lf1 *lt*U t:o*/'atl.,I " .

... -*-t-**** 5-71 OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY FOR VARIOUS COMPENSATION NETWORKS " . _ ...... -*-** UNITS mV nA µ.J.. kn n VIV v v 'I Cl6 µVN mW 11.1 % mV nA µA V/\/ kfl .. .,, liW \WJ!h¢4 -*" ; Q #. Q.A .; 4 *.fa¥,!!. 'SJ.J>7 *. l :.. Jl...,.11& -. ... --** - LTAGESwlNG .iCTION OF :SISTANCE I I I 10 "t.UllCl-'4 TCURRENT -:TION OF llPERATURE ' ' ' ;ONoF '°'PERATURE I I ! i ' r I . *, ! i I . , A FUNCTION .OOPGAIN , WllENOEO *NETWORKS TONR 73-81 Attachment

  1. 12 Enclosure i .. . ,-;

..... _ .. ...... .. ..... I I FAIRCHILD e µA709 TYPICAL PERFORMANCE CURVES FOR µA709 AND µA709C VOLTAGE TRANSFER CHARACTERISTIC i! i ......... ... 0.1 -41 *<U -41 0 G.I Cll """1'YO'-TAGl-ffN INPUT RESISTANCE ASA FUNCTION OF AMBIENT TEMPERATURE

  • , .. ii 1--"--f--t--'-?'"" iu._.._...,,c--+---+-'-_,__-l
    • t-,-'"+---+-..,...

..... ------l OUTPUT VOL TAGE'SWING AS A FUNCTION OF I.DAD RESISTANCE

  • -t--r---':=-_,

1 1:1------...... <---+--'------l a .. i1*t----fr-..,...,.--t- ____ ..__-i , I .. .. " . ... INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE -s**l!IY I I I ! I I I I I I ; ! ! I I i i I ....... I i I ! "'I.._ I I I i"--I I I I :--.... LI. i ! I i -zo 1' ID 111:) *41(1 11WIAAf'UAl

  • "C POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

... "" r .. L i .. .. ... J I ! ! I ! I -I -I I ' I i i I I i I ' I "' .. . .. TIWIU.l'U*l .. "C FREQUENCY COMPENSATION CIRCUIT 0 Uie R2

  • 50 n when me amplifier 11 operated with CapKitlve IO*ding. INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

... i---+-..... -+--+-..... --+--l . 1 s ! <Ot---+--..,- ..... ..,..-...,....,...-i ,,. 1 z ... I 3 111 i . .. INPUT BIAS CURRENT AS A FUNCTION OF SUPPLY VOLTAGE I I : ! i-,-. _l-'-"":"""* I I ..... Wflft.YYCH.TAGl-tlil TRANSIENT RESPONSE ..... £ aUf----!--,f-+--f---f--+---1 o.tl--+-+--+--_,__ ..... _,.__., ;? Ut---t-1--+--+- ..... -+---I T**a*c l.O 'U 2.C :U ---fREQUENCY CHARACTERISTICS AS A FUNCTION. CF SUPPLY VOLTAGE FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE ....... 5-73 **--t-. I ! I i:r, j ORPORATION

  • TONR 73-81 *
  • Attachment Enclosure CIRCUIT SCHEDULE (E553-R13/
46) DATE . 11 DEC 80 JOB NOI0512 16 0 PALISADES FEEDWATER MODIFICATIONS REV. 9 RUN 21 PG. 46 .. A CABLE OWG CllOIE s c DESTINATION OESCAlrTION T T CABLE "A l NUMBER T I 0 FROM AMot*n
  • lfNr.TH u I COLOR ro svs* 'Ci)oi .. nua.sro NO. N s I IG04 F C253 53 1 33 F 33 IBK C13 518 VS6 35. N341WH 36 1 oR N37:WH SP 1R-BK . N401WH SP IBLBK . SP IWH SI> IG-WH SP I IWH SP 1 w-Ro I IG05 0 C253 53 1 45 F 27AIBK C11 518 VS6 45 T 27BIWH 210'0R 27E,WH 27G 1 R-BK 271-1fWH SP.IBLBK SP IWH 33AIG-WH 337.1WH 34A 1 W-RD I IG05 E C253 53 I 45. F 28A!BK Cl I 5 I 0 VS6 45 T Pt IWH r. IOR G 'w1-1 IG05 f C253 53 1 45 F 13A RK C 11 518 VSG .45 T 148 WH 16A OR 178 WH 19A R-BK 2013 Wll 2211 BLBK 2:1B Wit SP G-WH 2GB WH JOA W-RD IG05 G C 11 53 I 22 F 33348K C04-2 5 IO 124 .35 SP 1GR I IG05 II C 11 53 I 47 F 2GAABK COl-2 510 191 80 I I I I I I WIRES I I NO; I COLOR NO. I COLOR I I N331WH 34 llm 35 IGR N351WH N36:WH 37 1 aL 30 1 w-BK N30:WH SP 1WH 40 1G-BK SP 10-BK SP IWH SP IWH *SP IBK-W SP IR-WH SP lwH SP lwH SP laL-W SP 1 BK R SP 1 WH I -I SP 1WH I I I 27AIWH 27BIRO 27CIGR 27CIWH 27EIBL 27F 1 W-BK 21Fjw1-.1 27GljlWH 27H1G-BK 3ICfWH SP IWH SP IBK-W 333AR-WH 333ltWH 33B WH 332ABL-W 7VA BK-R 7VA,Wl*I 348 WH 288 WH G RO G GR P4 WH N4 WH NI AL 138 WH 14A RO GR 158 WH 1GB WH 17A BL 18A W-BK !BB WH 198 WH 20AIG-CJK 21A D-8K 218 WH 228 WH 23A BK-W ?.4A R-WH ?.40 Wit SP WH 26A BL-W 29A BK-R 29B WH 30B 1 WH SP RO I I 26 IWH I I I I I I CONN OWG FROM ID-x 1482 . . XR123 XR303 XR123 XR303 XRl23 XR303 HI 14 H044 HI 12 XV305 ' I XR305 XR307 I XR305 XR307 XR305 XR307 . -XU 113 XV205 VIAS HI 16 HI 16 Ht 16 H011 > w n: w -' :::> 0 w :x: u Ul .... :::> u n: lJ ::E n: a lL -------------------------------

.. *,. ":! ... *'*. .. ,. -.. .. ...* 4 t rd tt' .. ..

.. :.i*: . .;.
            • * * ...*

TONR 73-Bl S rd Handbook for Electrical Engineers i' **: Attachment

  1. 12 Fi & Carroll 10th Edition ; Enclosure Tobie (-18. Copper Cable, Classes AA, A, D-Weight, Breaking Strength, D-C Reslstance.-Concluded Conduotor Hard Medium Sou woi11ht, lb No. of 11*lrea Con* Conductor (ASTl\I Wiro ductor Conduc-abo, Mcm etrantlin11 diam-diam-tor ?-rea, Breakln11 D-o rcoiet.-Breaking D-o resist-Brealdn1 D-o reolst.-or A"'I ciaos) etcr, lo. etor, In. *II m. Per 1000 etrengtli, nuce at 20C atreogth, ance at 200 etrenicth, 11nce11t20C Per mile (68 1). (68 I'), (68 }'), ft minimum.*

oh1ne Jl('r minimum.* ohms fier maximum,f obma r:r . lb 1000 ft lb 1000 t lb 1000 t 700 37 rA) 0.13711 0.963 0.5408 2,161 11,410 31, 170 0.01672 24,*llO 0.01563 20,340 0.01511 700 61 A-D) 0.1071 0.064 0. 5408 2,161 11,410 . 31,920 0.01572 24,740 0.01563 20,340 0.01511 650 37 AA) 0.1325 0.028 0.5105 2,007 10,600 29,130 0.01692 22.670 0.0168-l 18,890 0.01627 650 61 A-ll 0, 1032 0.929 0.5105 2,007 10,600 20, 770 0.01G92 22,970 0.0168-i 18,890 0.01627 600 37 AA1) 0.J273 0.89J O . .J712 1,853 9,781 27,020 0.0183-l 21,000 0.01824 17 ,440 0.01703 800 61 in1 0.0992 0.803 0.4712 1,853 9,781 27 ,530 0.01834 21,350 0.01824 J8, 140 0.01763 650 37 AA-A) O.J2J9 0.853 0.4320 1,098 8,006 24,760 0.02000 JO ,310 0.0l!JOO J5,980 0.01023 650 61 fBl 0.0950 0.855 0.4!120 '1,608 8,966 25,230 0.02000 10,570 0.01000 J6,630 0.01023 600 J9 AA) 0.1622 0.811 0.3027 J,544 9;1s1 21,050 0.02200 17,320 0.02189 J4,530 0.0'lll6 600 37 (A-D) 0.1162 0.813 0.:1927 1,544 8, J51 22,510 0.02200 17 ,550 0.02180 li,530' 0.02116 41io lO*(AAJ 0.1539 0.770 0.353-& 1,389 7,336 19,750 0.02145 J5,500 0.02432 J3,080 0.02351 450 37 (A* ) 0.1103 0.772 U.3534 1,389 7,336 20,450 0.02-145 IG,900 0.024!12 J3,0RO -0.0235J 400 10 (AA*A) 0.1451 0.726 0.3142 J,235 6,62J 17,810 0.02750 J3,950 0.02730 11,620 0.026U 400 37 ill) 0.1040 0.728 0.3142 J,235 6,621 J8,320 0.02750 14,140 0.02736 11,620 0.021H5 350 J2 AA) O.J708 *0.710 0.27-19 J,08J 5,706 15, 1(0 0,03143 J2,040 0.03127 10, 170 0.03022 350 19 (A) 0.1357 0.670 0.2749 1,081 11,706 111,500 0.03143 12.200 0.03127 10, J70 0.03022 350 37 !B) 0.0973 0.68J 0.2749 1,08J 6,700 J0,060 0.03143 J2,450 0.03127 J0,580 0.03022 300 J2 AA) O.J581 0.657 0.2356 920.3 4,801 J3, 170 0.03flll7 10,390 ' 0.03fll8 8.718 0. 03526 800 10 A) O.J257 0.629 0.2356 926.3 4,89J 13,510 0.03UG7 10,530 0.036-J8 8,718 0.03520 300 37 (8) 0.0900 0.630 0.2356 026.3 4,891 13,870 0.03fi07 J0,740 0.031148 9,071 0.03620 ll50 12 rA) 0.1443 0.600 O. J063 771.11 4,076 11, J30 o.ouoo 8,7J7 0.04378 7,265 0.0423J 250 ID Al 0.1147 0.574 0. 1963 771.9 4,076 11,360 0.0-1400 8,836 0.04378 7,2115 0.04231 250 37 B 0.0822 0.675 O. J!163 771.9 .4,076 11,560 0.IHIOO 8,052 0.04378 7,659 0.0-123J 4/0 7 (AA-A) 0.1739 0.522 O. J602 653.3 3,460 9,Jli-1 0.05100 7,278 0.05172 6,140 0.040!19 4/0 12-O. J328 0.652 0. 1662 653.3 3,450 9,483 0.05199 7,378 0.05172 8,140 o.o.agoo 4/0 lo iB) O.J055 0.528 O.J662 8,450 9,6J7 0.05J99 7,479 0.01117:1 6,149 0.049911 8/0 7 AA-A) 0.1648 0.404 O. J3J8 518.l 2,736 7,360 0.00/iSO 5,812 0.061122 4,876 0.003().S 8/0 12-0.1183 0.402 O.J318 5J8.l 2,730 7,556 0.00550 11,600 0.06522 4,1170 0.06304 3/0 10 lB) 0.0940 0.470 O.J3J8 6J8.l 2,736 7,608 0.06550 5,1170 0.06522 5,074 0.06304 2/0 7 AA-A) O. J379 0.4H 0.1045 410.0 2,160 6,026 0.08:467 4,640 0.08224 3,867 0.07911 2/0 12-0.1053 0.438 0.1045 410.9 2,169 6,048 0,08267 4,703 0.08226 3,867 0.0711tll 2/0 19 fB) 0.0837 0.4111 0.10411 110.11 2,1611 8,1112 0.08267 4,765 0.082H 1,02, 0.07Hll 1/0 . 1 AA-A) 0.1228 0.368 0.082811 325.8 l,720 l,762 0.10-&a 3,7U5 0. J037 3,067 0.1002 1/0 UI--0.0938 0.390 0.08289 326.8 1,720 . 4,841 0.1042 3.755" O. J037 3,J91 0. J002 1/0 Ill (B) 0.0745 0.373 0.082811 326.8 1,720 4,001 0.1042 3,805 O. J037 a, 10J 0.1002 ______ .. _.,..._..__ ... .,., ...................

  • *1 ****r*"

'**** ""**** ... ,.,_...,.,. .... ,_.,,, .. __ ____ ... lliN* -......................

  • ....................................... . I :I (AA) O.W711 ll.31i0 O.llli57:\

255.0 l,351 3,621 O.J302 2,87!1 0.1205 2,432 O.J252 1 7 (,\) 0.100:1 0.:129 O.Oll57:1 2[,8.4 J ,31l1 3,80*1 O.J314 2,058 O.l:tOB 2 ,-132 0.121i4 1 JU (0) O.OGM 0.:132 2:i8.4 J,3M 3,8110 0. 1314 3,0:17 o.J:I08 2,531 0.121l4 I 3 (AA) 0.1187 0.:120 0.05213 202.!l J,071 2,013 0.11141 2,209 II. lfi33 J ,020 0.1578 I 7 (A-ll) 0.007*1 0.2112 0.05U3 204.0 1,082 3,045 0.1657 2,:rnJ 0.1649 2,007 'l.1504 ii 3 (AA) 0.28,i 0.0-11:1-1 160.!l 8*19.6 2,350 0.2070 J,835 0.2050 1,530 0.111!10 3 7 (A*ll) 0.08fi7 0.2"0 0.011:11 IG2.!i 858.0 2,13:1 0.2000 l,R8!i . 0.2070 1,592* 0.21110 4 3 CAA) 11.1180 0.21H 11.0:1278 127.11 li7:J.8 J ,8711 0.21il0 I ,*lfi:'i 0.2!i!Jft 1,213 0.2;,IJll

  • 7 (A-H) 0.0772 11.232 0.0:1218 128.11 li80.5 J ,1138 0.2fi:lli t ,:m:; 0.2H22 1,262 0.25:S4 II 7 (B) 0.11688 0.20fl 0.02000 102.2 530.li 1,542 0.:1323 1,201 o.3:ior. J,OOJ 0.3JU6
  • 7 CBI 0.0612 0.184 0.0201l2 8J.05 427.0 J ,288 0.410J 058.6 0.4169 70:1.8 0.4030 7 7 (II) 0.0545 0.164 o.orn:1,5 64.28 330.4 977.J 0.5284 705.2 0.52.57 620.5 0.5081 8 7 (JI) 0.0400 11.146 0.012!17 50.97 269.J 777.2 0.61ifl3 610.7 O.f>li20 4!*9.2 0.1>408 9 7 (D) 0.04:12 0.130 0.011128 . 40.42 213.4 6J8.2 0.8102 487.4 O.S:l50 '39.'i.O 0.8080 10 7 (II) 0.0385 0.1111 . 0.008155 32.00 169.3 491.7 J .OliO . 388.9 J .054 314.0 1.019 b H 7 CR) 0.0305 0.0916 0.005J29 20. Jfl JOll,f; 311.J 1.685 2*17.7 J .676 J07.5 1.620 H 7 (II) 0.0242 0.0726 0.0113225 12.68 6fl.95 JD7.I 2.679 157.7 2.665
  • J24.2 2.5711 <::: 16 7 (Ill O.OID2 0.0576 0.002028 7.974 42.JO 124.7 4.25!1 100.4 4.237 81.14 4.090 C) ta '7 (8 0.0152 0.0456 0.001276 6.011; 211.48 78.00 6.773 63.01 51.03 10 7 (II) 0.0121 O.O:lll:I 0.1100002:1
I IM 1n nr. r.11 n.t 10 .,., ..tn r"T : ., . i*

! 'i ,. \. ;.* ,i ,:* ',*., ,,._ TONR 73-81 Attachment

  1. 12 Enclosure
  • .__ * .. ** __ .. _...,. .... , ...... .__ .* ., ...

.... _ ....... _ _. ........................... ,,_..;*., ..... ;;.**** .. <a#i:ii.ttaie&.:.

.,;*.;;;iiir,;.;-
;:<<u;.o..*

..,, ... cm...,CU1=-a.**- ..... .;.*,,;,e..,;,**w.-.*r4.;.....e_;1.. ... --4"... _ ,..:_-;,,* _ _. ___ __ I ='I ., ; I -z ! 'j 'I u :; t I I. ,. i r .l I' i l I .!!ii'" I' ** .... !'b1**-V OUTPUT SHORT.CIRCUIT PROTECTION

  • LATCH,UP PROTECTION FAIRCHILD*

µA709 PROTECTION CIRCUITS' INPUT BREAKDOWN-PROTECTION SUPPLY OVERVOL TAGE.PROTECTION 0 V" Pin numbers apply to metal can or mini DIP package only. EQUIVALENT CIRCUIT '--------+.---------+--__,...._ __ ._....,. __ . l"YllllTU*Ci '""" o---------1( co, S-74 .. u*o ... .... I I i I ; ; / 1 I I I I I f -* .... .., ....... ... _ ,..,p..,..-, ...... , .... _ ...... ---* .... *' ..... !!Oll.fllllJii-'i!"** _r";-*-**

"", ._ ___ ::-*'!"' ..

_____ -.. -*-*--.... --...,*--*-* -...... ,,..,... ..... __."" .... -. DESCRIPTION structed using !! signal amplificat are required. Tt as w'eil as wide range of inslrum

  • LOW OFFSET'
  • LOW OFFSET'
  • LOW BIAS CUI
  • LOW INPIJT NC
  • HIGH OPEN LC
  • LOW INPUT OF
  • HIGH
  • WIDE POWER : ABSOLUTE MA Nctes ,.,;, rcllowing Supply Voltage Internal Power MelalCan Differential lnpu Input Voltage (JI. Storage Tempe' Metal Can Operating Temi: 'Military Commercial Pin Temperatur Metal Can (Sol EQUIVALENT Cl
  • R2A dnd R28 are t!'lec a: tne tac1orv tor '"'" --..._. ..
  • TONR 73-81 Attachment
  1. 13 Page l of 2 SINK OR\VE -UJP-.JT 1"45Mf' CR<. R4 CR! "N'P*:"AL CIRCUIT COO CKT I 9 4 3 CKTI i I!> CKT 3 40 lO II Cl<.T 4 2! '"' 1"7 CIRCUIT DESCRIPTION 21 20 C><.T. " !I 30 CKt'. 7 22 C:KT a 12 8 C.KT. '!I 23 24 CKT 10 c..._P.

{ _ 31 I* + OUTPUo

  • , r. iJ . .*u 1 ,.;._,:I \ ; i -...i:itll -N i.t.OQ 41 LOW LE.VEL MU X

-- ---SC'30-1542 0 .. j ........... ............ ...... ...... ...... ..................... ........ *'- \ SINK OR\VE <e> -IWPUT / !'>OuRCE ORIVE. I<. I R.'2 I -<1-------vv<-' ' 'f'ZW I I ' R3 I I -1,...-----,Yoo""n. l"=f _ __, y,., "N'PICAL CIRCUIT + OUTPUo 43 -OUTPUT 41 NOoE.:

  • C\ND. Siii OIJ Pl"I *ce.o OR. SI. ........ ,.. \o(.0Q .... ._.._1* IS "'O" C.8 3'! CKT I 9 2 4 I 3. I CK:1 i I

""' Cl(T 3 40 28 I lO 1c;. II T l 1 .. r,Jl.JlJl 1 I I . : : ' i I CKT JcKT.1' lcKt'. icKT: :c.KTI CKT c;. ' 7 ' S * . '!I 1 !0 2 1 I 130 :

  • 22 I i e ; i 23 20 A-;

LOIVt.E.VEL MUX (HC.,.. t R.EE.0) 5C'30-154S 24 1-31

    • TONR 73-81 Attachment
  1. 13 Page 2 of 2 4. 2. 8 Multiplexer Fischer & Porter Co Series 3000 Data System Instruction Manual CF Co Vendor File #Ml-PA, The ha.sic function of the Multiplexer is to progra input signals to the measuring system and to each input point.

Reference:

Schematic SC 3 0-15 42 SC30-1545 / The Multiplexer circuit card cons is ts of ten relay channels. One side of all relays are common and connected to the output of one Source Driver Switch. The other side of each individual relay is in.dependently connected to the output of an individual Typer Driver Switch for.the sink drive circuit. The relays have been specially selected for low level multiplexing tion and generate a maximum of 7 microvolts of offset for 100% duty cycle. Diode CRl, across the relay coil serves as arc SUJ:>pression while diode CR2 in the "source driver" side of the relay is used for steering. The contain 2 sets of form A contacts. These contacts are used for the positive and negative side of the input signal thru a filter network. The input data. is connected from* the input termipal strips to these data contacts. The output of the data contacts are combined iri groups of ten and are routed to the Analog-to-Digital Converter. r . Thus, via the means of upper and lower driver control, the vidual relays are energized sequentially or selectively as the need mands. The relay coil is rated to operate at 14 VDC; contact ratings are 0.2 amperes. + +IS + + + +IS ;.(. -Y'L_ .. TOAOC SOURCE DRIVER e-:,-.. '"':"..., l._ ... .....,, ......... '--FIGURE 4-13 MULTIPLEXING 1-30


Consumers Power Company Nuclear Activities Dept. 70JJ.L 7.2-y/ Arr A,;.; Subject s 1..1 Page _j_ Of --=!.._ Engineering Calculation .z-. 8...o?t'QS.e; V£T£.tl../>11A11#;..

£1::,,c<cr t!J;=" r?l1.L4J/l.L..$ 1A/ Co...rt:Jv..e..Tot<J lNAT .Rr'.S 70 f ?o.e1..*,.e f'"-"1/JT" A ol( d CH.1.3 .. + ..., f'1"71r113 I ,.e,,s VA.(!.. I .... 100 ....... j I I+ -I I -=-I "'6ov +---.e:a:. /00..IL. L-r TO l..UoJIT .... ) ----/.) .;S'r,..,,, L.oo13 : /a.) E-f .3 ..5 llow.S 16) ,A:.,(7 . .:19(.,.,-J} -31f4- /+o?S'1t:!. {. nYJ5o4.o. l")/t,.11 /11/t:..10 A .;:t I<:) Fo'£C3olto "J:>,.:rr,.i ,.frrAO( l:J. $.vc1...) $(>{ow '%' kv1i:."-?ro7:.-1.i.3 L4A iJ or:' t.oo ...._ . r '/::' 1 P-e;;;T1.. -I R7 .__ ____ r-______ .e10 ..--------""""'rv---t I f:. 7-.e lo /712£ IX>-A-_____ ..JJ U,o.t..A ,.,, 1.:-'..&...D...J Loo;;; bl.WC.. E-""' .:S"U' ,L°"P .;20) dP7°0ll2.A/9 ,;J.S . .,-//£1/'P Du.Jq.:J?".-j)-.]112_5H,,1& o.'II011:zM l;:"zo1o2/} A.s .,S,,.,/1?A .,;:S",c:;,,-,. ilorA 5l,.JIU<J..S 9.J..:i.3 -oo .. JC£ As ..J/..,.A. f5A. /...,.._. SI"'°'"' S..-Fo.c:. /oo-..A. J::,,rr IJ 31-1C.Cr J/'I ,,,u :,' . u '= </ "::.-'./ / 7'0,,..112.. 7 :l -'ii _,,+,..-,..,4.:..,..V Consumers Power Company Nuclear Activities Dept. Subject u.caJ&J:. tf4,1.u.<.li...$ Page-==. Of _!:f:_ Engineering Calculation By ,k',4T ' A # o,1_,"r ",,&:" ,4 ,1..4. C!. 0 N "' c. 'rO /1-r .:r ...iiJ /./.. 'T CJ ;: I' Cc "'I' 1.<.'T iC. .z; J.i.. + - + -"" -tfI _,. RT.., eJjs =' -v..;i.e. t..:<.S l..<..S' K'I= -c. = 4i4.J.. 10 .... + A .. + "tov _ezA:

3 3 ..,._ .;S'Ho"'.._;::.

/#£ {!a..rt>uc:roa e_ TAI,£ /..,1.v.<:1 "TN£. F'f' r' /17u.J. ;-,,:1"-;e;:1£'£/t. .J lAJ,. .. ._ /-1£. "/o /'?'-'.,-..._A'-?"'Al.E; /<'/Joi.. E"-rr l"r.S ,L."'°f /a rr.s

' C'tU'l'ltptArll!-<._

(/?2 R Co) AM.A R-.*..nU /;.,t.£ ,c. 1..$ ,,_/o 7e,.17'1A "-j),,,r,,a -JC,..te..<. n ;J,t..11,J c, /N 7'"'o /;r£_ c!JTN IC..I... /;,1£ t:J.J4'f .C. 'ro /.*uf' /.J11..1o.. ,de. IN£. ;4 ;?_,,L71*...l I dt&= r,..,c. 7'2.A.AIJ""'1 /rrt<.tt..J: ,L.o.t..d (/(.,..!I... l"ro15"11d AND /0 ..A-nit.. o(.;:'7" 0 ) * .:T..J eA 01"" /ic!IC. A4*1J.C. L<J 4f.S) 7"'1!""< -,.r?J 1'rr<.4 t...J1.1-.t... All "J"'1A-.t7" /7""'.:I; T/4,./t..£ To ,..::U,c. /N.-J Lo.s.s ,-.1 .L...A°h lo /17A1,J/l4'1./ cfl'-""7'"'-r <!tJ./t.A.....c.A./..,..

04>/oA..r101o..fA*

I.JI'.,....,..

  • .7-.1 (.97-1<.tU-

,{..J..,.Ll>S, /i./-C. ... 7" C.NA "* 7#£ ,.::Z,1(6'.l.Q A"1"7'AC.H,...,<.,.( / ,;=;,. * .£:NCL-Q.S 17.C.I(.,) -s 1¥0 f;.t,,-r /?1/t.11 7:t.Au.i,,.,.,1rr.cA tJ1.1..4 />7A1..r"rAr..I LJJ/..:.L ,< ar= -JI.. +10 'Yo

  • -..!t-<aA..?-, .. 14 <!Jc...,..

TNJ1:. Fi.I' I />/Loi'/""'<;, u; r<),(. IJ() rJ.4.J::J T , '41 A .iTT1*L..

  • 4 o;= (,f,oo -It. \-A-o,4.. S-ir4 ....-.

.... 1(1 70 ;-,v.::_ :i?o.s,c.,.,,,uo.1 _s', /?v',,;:_ 1-/{J 77e ,.J..f;'>"1..,...,-.<./!. /,$ l\.fo..,.

  • Consumers Power Company Subject
1'--ue..A-S.

/"' Nuclear Activities Dept. Engineering Calculation Of ..!/.__ .:s'rlo""-L...J:l 70 C-7,eO<-Ll\/ll (,4-r ;?,,,._*-:-A .J r;e £'{.A/'1/--..C) 7>-1c .... ::-?-J11<J.1..)J ,de A&:>v,£ .;:)',NC£. /µ£. 121'..f ,,.:l/Z.4:. .. ;i:. &" G£ou ... l.il1..J<-, 7N£. .(...,.,,,r /Jr ,4,.,/ ri,.._,,7"' t--'t'--'- o ,._r /N .<.. "-4. 'Y' ..._, c A.lo F-£ 7"'U;LJ..t ?A" 1£ Y-1 .rr .5 Fa"-A

-_ (! I /2 C <.LJ 7" (" <..< "'-d...A ,J 7'

//./L/[_£; Ot-1 rt../!!:. .:{,.ct"'(. t.C...-/1:'- /A/4.t... /]s SNaw.J..J "3/C....(....4..J; Tf'/n:.. lux.,,..,.,. 1 0 ,: /Zt?.s. C1ec.v..,-.s., 7"/-1£ /,,1:.s;,,a,'-'7 re'£7""Z. fl.;Ar ,J,ui rt.vo /'ie,t.,,.,,,.,1,,;4.5 /3.C. toc:fr.CrN.C.,C. PtJL1..tC, /'?A*,..J7£N9,_rLJE.

{._,,,../

/:J S 1-'1LJ... N4vlf.. ;>Jo o.v /1o1,c.. k.,.,f s:: A /2£-ru.L-.N /,qr,., ,.:::;,.l.. .:fµa,LT-

  • ":""

r.L-.. ,.,,, v ... 1.c.. .La"!° /a r ._____j ro ref.? Co'?'"' TIC R.. ,.,.., l.L \(. + ,£" Ct..7: ...... , .. :r,:.a..7 Consumers Power Company Nuclear Activities Dept. °/D ,., ,e 7 J, -f I /.J.rrf'.

c. !-! .pt u.{ Subject I/JI-£
..J Page_
!_

Of _1_ Engineering Calculation By /.!A-r Chkc:tJttl <1. //'/ 7r-I" IJ...t.1,<...A. LJo<.J"'-2::. /.j,,.v.£ J....lo £r°l'=*c. 7 OJ.I n.1.c j?/J$ _;f'oJc.£, 7'#£ rf ,.,..,...1*..t. kA l:l W<l<*"'-* b $,,.,,r'.._'/ ,.1..: ...ec.-/1?oi.J IUJ r;t..o;>J "/N.C... /!/..! kJf' T;v£. t4...Al\/jMl1"'"r'l'f.../LJ lly At::."JiJrr-1,.,/(7 /N£11L Z>G 1,./. D 1,./ A 1--7" ,4. LAtt.t,IC.S.1"'" .0.,..., .... !3y TH£. rftJ IS VAt:..* /Is JLSc:..C...-l!u ,X,,.J 7'NC. .£.J<:.1-1Jsvru!;. A...r 4 _$ 1t:.,.JA l (",;tiJL.£.S /112<.. LocA Ar L-£A r..,,. S 1'1( r,4:,1'1 ofl! Ac. /(il'LA h.o-01 ' Ac /.3" VAC. -r.At...du-r < ,,. ..t;( *"' /'I /YJAe.1.../11,//£.L'f* .:T'4 -r -> "" 7o /N£ ,,.:::-tff' 1'AI 13.J..o(./<-$ /I-IC. d"-Oc..C:. //.1.:-r fZE:.c..lf:.1C)il:.J /;t-£ 7?1£. tJr 11.fc. /c °Tl-'£. £./'..S /.$ '( ..Z..,f',tl.AiSA<3.v£.

  • 1

.. k'f's 1 G:JN'-<.. S,'::lC.. c,.: ,4 /.,lcVA<.!. 0..e Oi& A,J't OTNJCL. 4.C:. 5..,..u.c."-..) 1-J ""'"'-, * ./o e!i!tCec...,. """ Lc.t:f'. No1'"L /. /.#£ S14.NAL.. .:z:::;.>(..,o) /:(,,,,; ,(oc..u

si& .. hf'-..:A?..,., A

_:s,,.,, .. A1t.. ro 7,..,£ ,/t,P.5 . 7.Z--.& .5n:.Al'A4 1 /$. o.& .!oof' 1..t 07,.,,,££.. h.$ "'-0c>ps. /.S ,;r;J.S1<S1V,t:

  • f'A""-1'7" 1.s Al!ov-'.
  • S1&,.-,,a Cf.:Z.:z :Z:...Vi::.1CA7"1.JC7 r.e..r.Le r-1 o..V..S rf-G. 9 '7 Ylf:A!Da.e.

A.I-If£. # /'?.:J.Q/ 7o H697 1.0 Specifications 7li1J.t. 73 -Fl AT'1"t4C...rJ F 14 £,.1c. L.oSu ..c.£. 1.1 Model 9223-E Electrical Characteristics Input: Specified on meter scale. For example: 10-50 Ma DC. Output: Sigma 67R4 relay; 5 amperes at 120 VAC resistive;

2.5 amperes

at 240 VAC resistive; 3 amperes at 28 VDC sistive. Consult factory for ratings for inductive loads. Life in excess of 200,000 operations at mum rating. Number of contacts: SPDT on standard units; DPDT on special order. Internal Resistance: Approximately 40 ohm for 1 MA span to mately 5 ohm for l00°Ma span. Power: 120 VAC +/- 10%, 60 Hz. at 6 VA *1.2 *Model 9223-E Performance Characteristics 1.2.l Vertical Mounted Indicator Accuracy: of Full Scale -at standard conditions / INFORMATION $) COPY ( OCT271981 Indicator Accuracy: of Full Scale, 15-55°G Indicator Repeatability: t% of Full Scale Set Point Accuracy: 2% of Full Scale. Set Point Repeatability: of Span \\ *"'()PnP*

  • L-.....

J: 1 0VlER /';',;,. CO. " /i / ,/ i 11 't". v "r,' (:'JM i\ ;\ .

  • Vl/;1, 11 \" Set Point Differential: of Span Response:

l sec. max., critically damped Operating Temperature: -10 to 60°C Max. Allowable Temperature: -10 to +60°C Photo Sensor Life: Greater than 200 ,.000 hours. l. 3 Model 9223-E Physical Charac,teristics Flush Panel Material: Case -Steel, Green enamel finish Bezel -Cast aluminum Face -Glass l Overpressure Effect 2000 psig overpressure will cause a zero shift of less than::: 0.25% of Upper Range Limit tor Range Codes 3 & 4 nly Range 4 for AP); less than+/- 1.0% Upper Range Limit for Range Code ; less than +/- 3.0% of Upper Range Limit for Range Codes 6 & 7; less than +/- 6.0% of Upper Range Limit for Range Code 8; less than+/- .5% of Upper Range Limit for Range Code 9 up to 4500 psig (For GP only). Power Supply Effect Less than 0.005% of span per volt. Load Effect No load effect other than the change in voltage supplied to the transmitter. Mounting Position Effect* Zero shift of up to 1 inch H 2 0 which can be calibrated out. No effect in plane of diaphragm. No span effect. Performance Specifications Model 1152DP and 1152HP ro-basea ranges. Reference Conditions)" Accuracy including effects of linearity, hystersls and repeatability Model 1152DP: +/- 0.2% of calibrated span for Range Codes 3, 4, 5; +/- 0.25% for Range Codes 6, 7, 8. Model 1152HP: +/- 0.25% of calibrated span (all Range Codes) Dead Band None Stability +/-0.25% of Upper Range Limit for 6 months. Temperature Effect at Maximum Span *(e.g. 0-150 in. for0-25/150 in. H 2 range) Zero +/- 0.5% of span per 100° F. Total Effect including Span and Zero Errors: +/- 1.0% of span per 100°F. (Note: Double the specified effect for Range Code 3)*

  • Temperature Effect at Minimum Span (e.g. 0-25 in. for 0-25/150 In. H 2 0 range) ero Error: +/- 3.0% of span per 100°F. tal Effect including Span and Zero ors: +/- 3.5% of span per 100° F. ote: Double the specified effect of Range .Code 3) Overpressure Effect Model 1152DP: 2000 psi overpressure will cause a zero shift of less than +/- 0.25% of Upper Range Limit (Range Codes 3, 4); less than+/- 1.0% of Upper Range Limit (Range Code 5); less than +/- 3.0% of Upper Range Limit (Range Codes 6 and 7); less than +/- 6.0% of Upper Range Limit (Range Code 8). Model 1152HP: 4500 psi overpressure will cause a zero shift of less than +/- 1.0% of Upper Range Limit (Range Code 4); less than +/- 2.0% of Upper Range Limit (Range Code 5); less than +/- 5.0% of Upper Range Limit (Range Codes 6, 7). Static Pressure Effect Model 11520P Zero Error: +/- 0.25% of Upper Range L.imit per 2000 psi (Range Codes 4, 5); +/- 0.5% of Upper Range Limit per 2000 psi (Range Codes 3, 6, 7, 8). . Span Error: -1.0+/-0.25%

of reading per 1000 psi (Range Codes 4, 5, 6, 7, 8); -1.5+/-0.25% of reading per 1000 psi (Range Code 3). Model 1152HP Zero Error: +/- 2.0% of Upper Range Limit per 4500 psi (all Range Codes). Span Error: -'-1.0+/-0.25% of reading per 1000 psi (all Range Codes). Span error is systematic and can be calibrated out for a particular pressure before installation. Power Supply Effect than 0.005% per volt. Load Effect No load effect other than the change in voltage supplied to the transmitter. Mounting Position Effect Zero shift of up to 1 in. H 2 0 which can . be calibrated out. No span effect. No effect in plane of diaphragm. Physical Specifications All Models Materials of Construction . Isolating Diaphragms and Drain/Vent Valves: 316SS Process Flanges: 316SS Non-wetted 0-Rlngs: Ethylene Propylene and Buna-N Fill Fluid: Silicone Oil Flange Bolts: Plated Alloy Steel, per ASTM A-540 Electronics Housing: Low-copper aluminum, epoxy polyester painted or austentic stainless steel. Process Connections: 1/4-18 NPT 12 Electrical Connections: 1/2-14 NPT conduit. Test jack type screw terminals. Weight: 12 lbs. with aluminum

  • housing; 16 lbs. with stainless steel housing, excluding options. Functional Specifications Model 1152AP and 1152GP Ranges (3) 0-5/3!) in. H 2 0 (GP Units Only) (4) 0-25/150 in. H 2 0; 0-2/11 in. HgA (5) 0-125/750 in. H 2 0; 0-10/55 in. HgA (6) 0-17/100 psig/psia (7) 0-50/300 psig/psia (8) 0-170/1000 psig/psia (9) 0-500/3000 psig (GP Units Only) Output 4-20 mAOC Power Supply External power supply required, up to 45 VOC. Transmitter operates on 12 VDC with no load for E output code. 15 VOC for A and 0 output codes. Span and Zero Continuously adjustable externally.

Elevation and Suppression Output Codes A and O: Maximum zero elevation: down to 0.5 psia for compound ranges (for MoC:lel 1152GP). Maximum zero suppression: 100% of calibrated span. End points cannot exceed +/-100% of Upper Range Limit. Output Code E: Maximum zero elevation: 600% of calibrated span. Maximum zero suppression: 500% of calibrated span. Calibrated span cannot exceed +/-100% of Upper Range Limit. Temperature Limits -20 to 200° F Amplifier operating -20 to 220° F Sensing Element operating. -60 to 250° F Storage Overpressure Limits Operating within specifications from 0.5 psi a to 2000 psig (Range Codes3, 4, 5, 6, 7, 8); 4500 psig (Range Code 9); without damage to transmitter. Humidity Llrtjits 0-100% RH . Turn-on Time 2 seconds. No warmup required. Damping Output Code A: Nominal fixed response times of 0.3 seconds (Range Code 3), 0.2 seconds (Range Code 4, 5), and 0.1 seconds (Range Codes 6, 7, 8, 9). (_; Output Code D: 4-position variable time constant switch for nominal response times of 2.0 seconds, 1.0 seconds, 0.5 seconds, or as above. Output Code E: Time constant continuously adjustable between 0.2 and 1.67 seconds. Functional Specifications Model 1152DP and 1152HP Ranges (3) 0-5 to 0-30 in. H 2 0 (DP Units Only) (4) 0-25 to 0-150 in. H 2 0 (5) 0-125 to 0-750 in. H 2 0 (6) 0-17 to 0-100 psi (7) d-50 to 0-300 psi (8) 0-170 to 0-1000 psi (DP Units Only) Output 4-20 mADC Power Supply External power supply required, up to 45 VDC. Transmitter operates on 12 VDC with no load for E output codes; 15 VDC for A and D output codes. Span and Zero Continuously adjustab_le externally. Elevation and Suppression Output Codes A and D: Maximum zero elevation and suppression: 150% of calibrated span (Range Codes 3, 4, 5) or 50% of calibrated span (Range Codes 6, 7, 8). End points cannot . exceed +/-100% of Upper Range Limit. Output Code E: Maximum zero elevation: 600% of calibrated span. Maximum zero suppression; 500% of calibrated span. Calibrated span cannot exceed +/-100% of Upper Range Limit. Temperature Limits -20 to 200° F Amplifier operating. -20 to 220° F Sensing Element operating. -60 to 250° F Storage Static Pressure and Over Pressure Limits. Model 1152DP: 0.5 psia to 2000 psig static pressure for operation within specifications. 2000 psig overpressure on either side without damage to the transmitter. Model 1152HP: 0.5 psia to 4.500 psig static pressure for operation within specifications. 4500 psig overpressure on either side without damage to the transmitter. Humidity Limits 0-100% RH. Volumetric Displacement Less than 0.01 cubic inches. Turn-on Time 2 seconds. No warmup required. Damping Output Code A: Nominal fixed response times of 0.3 seconds (Range Code 3), 0.2 seconds (Range Codes 4, 5), and 0.1 seconds (Range Codes 6, 7, 8). Output Code D: 4-position variable time constant switch for nominal response times of 2.0 seconds, 1.0 . seconds, 0.5 seconds or as above. Output Code E: Time constant continuously adjustable between 0.2 and 1.67 seconds. LOAD (OHMS) LOAD LIMITATIONS A & D OUTPUT CODES 4*20 mADC ::r OPERATING REGION 20* 30 40 POWER SUPPLY (VDC) LOAD LIMITATIONS E OUTPUT CODE 4*20 mADC 1650 1500 1000 LOAD (OHMS) 500 0 12 20 30 40 POWER SUPPLY (VDC) 13 70"-'ll. 7 3

  • y I AnAc1{m1C,.1., Fl';l.f

... . ....... * *

  • To 1-1,e 73-rt A rr.a c "'. "# , .;.

u"-C. ---INSTALLATION .' ' b) High level analog signals (1 volt to 10 volts) 'are transmitted over twisted pairs which may be cabled with other pairs carrying .a similar age level and current levels less than 100 MA. Shielding is 'not required : except as noted be low. ", . '* c) Analog signals are not transmitted in the same -cable as digital signals. d) Analog signal cables are located at least six feet from a parallel length of AC power cable and from AC machinery. e) If signal cables are located in a high electromagnetic field area, they are run in ferrous conduit which is insulated from ground at the nal source end only. The conduit is nG:>t connected to the sys tern cabinet. f) If signal cables are located in a high electro-static field area, or close to AC power cables or digital signal carrying cables, they may be constructed with a conducting shield insulated with an overall jacket. Provisions are made to connect the shield to ground or to the computer (but not both) at the time of system startup. g) Digital signals are transmitted over twisted pairs which may . be cabled with other pairs carrying like signals. The cable does not carry AC power'. Shielding is not required. h) Pulse inputs are transmitted in the same cable as other digital signals. Twisted pairs are required.

2. 3. 3 AC Power Wiring a) It is recommended that system power should be provided from an independent isolation transformer located as close to the system as practical.

The transformer primary shield should be connected to the primary low side and the secondary shield connected to the system ground. b) A circuit breaker is connected between the isolation transformer and the system AC input connections. c) The isolation must not supply power to any device other than the system cabinet. Peripheral devices such as typewriter, card punches, etc., must be connected to other power sources. d) The system requires 11 7 volts AC +/-1 0%, .6 0 Hz . I rlf!.u.a. '"o.../ /1-J,.t "'1"""'" .300 o lJ,,n--4 Sy.t-rlLM C?eo

z;t" /]11-/1'4
t'H/o?o 1-8 i i}}