ML18046B057
ML18046B057 | |
Person / Time | |
---|---|
Site: | Palisades |
Issue date: | 11/10/1981 |
From: | Johnson B CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.) |
To: | Crutchfield D Office of Nuclear Reactor Regulation |
References | |
TASK-07-01.A, TASK-7-1.A, TASK-RR NUDOCS 8111170334 | |
Download: ML18046B057 (59) | |
Text
/
consumers Power
.company General Offices: 212 West Michigan Avenue, Jackson; Ml 49201 * (517) 788-0550 November 10, 1981 Director, Nuclear Regulation Att Mr Dennis M Crutchfield, Chief Operating R:actors Branch No 5 US Nuclear Regulatory Cominission Washington, DC 20555 DOCKET 50-255 - LICENSE DPR_.20 ,
PALISADES PLANT - SEP TOPIC VII-1.A, ISOLATION OF REACTOR PROTECTION _SYSTEM FROM
- NON-SAFETY SYSTEMS, INCLUDING QUALIFICATION OF ISOLATION DEVICES During a telephone conversation between.R Scholl, SEPB, USNRC and RA Vincent, et. al., Consumers Power Company on October 6, 1981, Consumers Power Company was requested to respond to several questions concerning SEP Topic VIT--1.A for the Palisades Plant. This topic has been the subject of several letters between CPCo and the NRC, the most recent of which was a revised NRC evaluation of this topic dated August 28, 1981. The attached information is provided in response to the informal questions as .well as the conclusions of the August 28, 1981 letter.
In light of the information contained within the attached report, tw:o additional comments are appropriate. First, the report references a letter from the NRC to CPCo dated March 20~. 1981 in which a maximum flood level of el.597 .l' is given for Palisades. Use of this flood level in the attached report does not reflect
- cPCo acceptance* of the 597.1' value, but is merely used to show that flooding concerns do not exist for the equipment in question.
- Second, the report discusses CPCo plans to reroute cables associated with three analog circuits which do not meet the separation guidelin~s of* IEEE 384-1977.
' This discussion should not be considered a formal commitment at this time.
~- It is expected, however, that this item will be addressed as a potential backfit item in the final Integrated Assessment Report.
/Jo3'S Brian D Johnson .s Senior Licensing Engineer CC Director, Region III, USNRC 1/ro NRC Resident Inspector - Palisades
~6A111~0334 s11110:
__f _] OCK *05000255
_--.. --- - --- _ PDf!~. :
t.
PALISADES PLANT RESPONSE T.O- NRC *QUESTl019"S SEP TOPIC VII-1.A During a telephone conversation on 10/6/81, the NRC requested that the Con-sumers Power Company provide a response to certai.n questions. concerning the subject SEP topic. In addition, letter D M Crutchfield to DPHoffman dated 8/28/81 states that certain isolation between the Reactor Proection System (RPS) and the non-safety logging systems such as the Tennecomp Data logger System (DLS) *and the Fischer & Porter plant. computer is unacceptable and requires replacement or justification for continued use. This letter serves to add~ess both the telephone requests and the requirements* established in the subject letter .
- TELEPHONE REQUESTS Question #1 How are the circuit cards for the input isolation circuits mounted in the field remote station? Does this mounting lend itself to common-mode failures of the isolation devices? Are they separated per IEEE .384-1977?
Response .to Question #1 The isolation devices for the digital inputs to the DIS are not located in the field remote station. The digital inputs to the DLS are isolated by relay contact in the RPS. This is acceptable is.olation according to IEEE 384-1977 Paragraph 6.2,2.2 "Acceptable Isolation Devices". Furthermore, in the afore-mentioned 8/28/81 letter the NRC states that "Relay contact isolation is an acceptable means of isolation between RPS functions and control and non-safety equipment."
Given the various isolation methods and separation techniques employed in the analog circuits, however, the analog inputs to the DLS need to be discussed in gr~ater detail. Attachments #1, #2 and #3 show t~at the analog input cards are mounted in the Field Remote Station (FRS) intra-cabinet assembly. The cards are mounted in chassis Fll and a separation of approximately one-half inch exists between cards. Although only one-half inch exists between these cards,_ a common-mode failure involving these cards has no significant impact
- on the RPS and its ability to perform its safety-related function for reasons given in the following paragraphs.
2 Attachment #4 shows the analog signals that input to the DLS. Only the eight neutron flux safety signals (Channe~ A through D, uppers and lowers) are redundant signals. All of the other analog signals represent non-redundant, diverse primary system parameters. In the following three paragraphs, the three t;r,pes of analog inputs are discussed in detail. During the discussions, emphasis is placed on classifying these types of inputs and on the impact of a common-mode failure within the isolation devices. Emphasis is also placed on the degree of channel separation (between DLS input terminating points and the control room panels) that exists within each input type.
- In the "Response to Question #3", an overall view of the signal routing to the FRS is presented for both digital and analog signals. In the response, emphasis is placed on the existing degree of analog signal separation between the various types of inputs.
The first type of analog input is identified as Class lE all along its route from the RPS panel to FRS 1 in the Tennecomp DIS. DLS inputs of this type are: steam generator A pressure, steam generator B pressure, primary coolant loop inlet temperature, primary coolant loop outlet temperature and reactor coolant flow. These DLS analog inputs are considered Class lE since they are not isolated in the RPS. Isolation for these signals is provided in the DLS analog input conditioning circuitry. (The adequacy of this ~ircuitry to perform effective isolation is discussed in the-"Response to-Requirement #1" below.) These DLS analog inputs represent diverse primary system parameters and all originate in safety Channel A. (See Attachment #4.) Therefore, a common-mode failure in the isolating circuit cards could only effect one channel of safety-related equipment. These inputs are, relative to each other, non-redundant and need not conform to the separation criteria as defined in IEEE 384-1977.
The second type.of analog input represents signals that are non-redundant (relative to each other) and are non-Class lE as well. As shown in Attachment
- 4, inputs of this type are: steam generator A water level, steam generator B water level and pressurizer pressure. These DLS inputs originate in non-safety-related circuitry (in panels other than the RPS) and are identified as non-Class lE throughout. Therefore, adequate isolation devices in the FRS are not required. *Nevertheless, isolation circuitry identical to that used for the first type of analog input*, is utilized by this type of input.
As shown in the Attachment, these signals also represent diverse primary system parameters. Since these inputs are non-Class lE and non-redundant (relative to each other) they are not subject to the separation criteria as defined in IEEE 384-1977.
The third type of DLS analog input is that of neutron flux safety. These eight inputs (Channels A through D, upper and lower) represent redundant sig-nals to the DLS. These inputs are classified as non-Class lE, however, since adequate signal isolation is incorporated into the output of the RPS panels.
These signals are outputs from buffer amplifiers located in the Nuclear Measure-ments System linear power channel drawers located in tne RPS panels. The buffer amplifiers (one per neutron flux safety channel) serve to isolate and protect the power channel circuits from various types of output cable faults. At-tachments #5 and #6 provide a vendor (Gulf General Atomic) description and schematic diagram of the buffer amplifier circuitry. Regarding the i.solation capability of the buffer amplifiers, FSAR Paragraph 7.4.2.2(8) states "All output channels are buffered so that accidental connection to 120 volts a-c, or to.channel supply voltage, or shorting individual outputs does not have
3 any effect on any of the other outputs." Since adequate circuit isolation exists in the power channel drawers, adequate isolation in the FRS (although utilized as described in the preceding paragraph) is not required. It should be noted that the adequacy of the buffer (operational) amplifier circuits to isolate is discussed further in the "Response to. Requirement #3". The neutron flux safety signals are redundant and are non-Class lE since they are adequately isolated in the RPS. Since they are adequat~ly isolated, the flux signals need not be separated from each other.
Question #2 What is the flooding potential of the isolation devices?
Response to Question #2 As shown in Attachments 1, 2, 3, 7 and S, the DIS analog input circuitry is located in Chassis Fll in the FRS intra-cabinet assembly. Attachment #Sa shows that the cabinet internals are installed behind sealed doors which are hinged to both the front and back of the cabinet. Attachment #Sa states that all cabinet doors and removable panels are to be sealed per NEMA 12.
Although these cabinet doors are louvered on the top and bottom to provide essential component ventilation throughout the cabinet height, the cabinets are esentially splash-proof.
The FRS is located in the cable spreading room at Elevation 607.5 feet. The FRS is, therefore, installed at an elevation of 10.5 feet above the probable maximum surge level of 597 feet as documented in letter D M Crutchfield to DPHoffman dated March 20, 19Sl. In addition, letter D M Crutchfield to DPHoffJ;nan dated April 30, 19Sl summarizes a technical evaluation (based on specific plant reviews) of the susceptibility of the switchgear room to flooding in the event of failure of non-Category 1 systems. The letter states that worst-case flooding :ln the switchgear room (which would occur from a break in the 6-inch fire system piping) can be handled adequately by floor drains with no damage to existing motor control centers located in the room.
The aforementioned letter notes that the motor control centers are mounted on pads three to four inches above the floor. Since the Tennecomp FRS is also mounted approximately three to four inches above the floor, it also should experience no damage resulting from the break. It should also be noted that no high energy lines pass through the switchgear room which could increase the probability of flooding.
Question #3 How do the cables run from the RPS to the FRS?
Res~onse to Question #3 Attachment #9 has been included to better illustrate the digital and analog cable routinr, between the RPS and FRSl; with emphasis on the degree of separation between the various types of DLS inputs. As can be seen in the Attachment, the digital signals route to the control room auxiliary Panel Cl3 and on to the FRS in separate cable for each channel. The cable as shown is all non-Class lE since adequate isolation devices (relay contact) exist in the RPS.
4 The raceway used for these cables between the control room and FRsl is indiv-idual, separate conduit. For example, the Channel A and Channel B cable routes in conduit Xl480, the Channel C cable runs in Conduit Xl481 8.l'ld the Channel D cable runs in Conduit XV1482. This raceway is separate from Class lE raceway in the area.
Regarding the analog signals, it can be seen that all of the non-redundant signals (all analog signals except neutron flux safety) route from the control room Panel Cll to FRSl in a common cable. All of these ~ignals represent diverse primary system parameters and originate from safety Channel "A" if not from control-grade (non-Class lE) circuits. AB a result, a common-mode failure involving this cable should, at the worst, affect only one safety channel of two or more safety parameters. Including both the Class lE and non-Class lE signals in the same cable, however, results in the non-Class lE signals being classif:t-ed as "associated circuits".* Therefore, in accordance with IEEE 384-1977 Paragraph 4.5.1(1), the cable routes from the in-containment transmitters (for non-Class lE pressurizer pressure and steam generator A and B level) were evaluated to ensure that these three signals were associated with Channel A only while routing to their non-Class lE current loop circuitry in the control room. As a result of these evaluations, it was observed that all three signals do, i~ fact, route in raceway that is shared with cables from safety channels other than "A". For example, the non-Class lE pressurizer pressure cable routes with the Class lE pressurizer pressure signal from safety Channel B. The steam generator A non-Class lE level signal routes with the Class lE level signal from safety Channel C and the steam generator B non-Class lE signal routes with the Class lE level signal from safety Channels B and D. Given the
- aforementioned channel separation violations, it cannot b~ unequivocally stated that failures in the common cable would affect only one safety channel as those involved in the design of the RPS/DLS interface had envisioned.
Attachment #9 also shows the *redundant analog inputs to the FRS. These inputs are the eight neutron flux safety signals (Channels A-D, uppers and lowers).
AB can be seen, these are non-Class lE and 8.re transmitted in cable separate from the other analog ?ignals. The neutron flux signal common cable that transmits the signals to the FRS, however, runs in the same raceway as the cable that carries the other analog signals to the FRS. As a result, the isolated non-Class l neutron flux safety signals become "associated circuits". Since adequate isolation exists in the RPS for these signals, however, these signals do not present problems similar to that described in the preceding paragraph by associating with safety channels other than "A" during their non-Class lE routing.
It should be noted that IEEE 384-1977 Paragraph 4.5.2 requires that associated circuits be qualified to IEEE 383-1974. It is the opinion of the Consumers Power Company that qualifying these cables as such would not significantly enhance the safety of the plant since all of the_ analog signals are either non-Class lE or, if Class lE, are non-redundant. A common-mode failure in this cable should affect only non-safety circuits or Channel A only of the safety-grade circuits .
5 If the evaluation of the non-Class lE cable routes from the pressurizer pressure and steam generator A & B level transmitters had shown that these non-Class lE cables were routed with their respective Class lE safety Channel* A counterpart, then it could have been unequivoc~ly stat~d that a common-mode failure of the FRS input cable would effect non-Class lE or Class lE safety Channel A circuits only. As a result, the Consumers. Power Company plans to reroute these three non-Class lE signals such that they either follow safety Channel A raceway only or they are physically disassociated with the Class .lE inputs to the FRS
- Finally, it should be stated that the installation of the Tennecomp DLS did not resUlt in degrading the existing degree of channel independence and separability at the plant. Regarding the analog inputs, the FRS utilizes the same inputs that were formerly routed to the since-removed Hathaway oscillograph.
The digital inputs to the FRS are simply taken off of existing inputs to the plant's event recorder. Should a possibility exist for a comnion-mode failure to affect more than one safety channel, it results from channel separation violations that occurred prior to the DLS installation as noted in the preceding paragraph.
Question #4 Have the zener diodes, which are presently installed in the DLS input isolation circuitry, been te~ted?
Response to Question #4
- Regarding specific tests of the individual zener diodes, it should be stated that diode manufacturers conduct routine sample tests to ensure that a certain percentage of their products conform to acceptable standards or ratings. The ratings for zener diodes 1N5244 are given in Attachment #10. (Note, Attachment
- 11 identifies the DLS analog input circuit diodes as Type 1N5244B.) As can be seen in Attachment #10, the 1N5244 diode is rated at a breakdown voltage of 14V which corresponds to the Tennecomp description (see Attachmen~ #12, Page 3) of the diodes' operating characteristics.
Since the performance of solid state electronic components is so dependent on thermal conditions, the component's temperature coefficient provides one of the best indications of its dependability. Attachment #10 (Pages 2 and 3) gives the range of temperature coefficients for diodes of various voltage ratings.
(Note, Page 3 indicates that 90% of the units are in the ranges indicated.)
The maximum temperature coefficient for a 14 volt zener diode is +0.082%/ 0 c.
Therefore, even if the diode's temperature were to rise to the design operating temperature of the analog input system which is 63°c (refer to attachment lla),
the zener's breakdown voltage change would only be (+0.082%/ 0 c)(63-25) 0 c = 3.12%.
This change would result in a new breakdown voltage of (14V)(.0312)+14V=l4.4V .
.Although the operation of the diode is a function of temperature, manufacturer's tests have shown that the breakdown characteristic is relatively stable and dependable over the analog input system desie;u temperature range. It should be noted that this maximum temperature of 63°c exceeds the highest expected temperature for the switchgear room and the highest temperature expected in th~ FRSl cabinet.
6 Question #5 What is the effect of a short-to-ground in the cable that connects the RPS to the DIS?
Response to Question #5 Attachment #12 provides calculations which determine the effects of several, more-probable circuit malfunctions; one of which is a short-to-ground of the cable that transmits the RPS signal to the FRS in the Tennecomp DLS. As can be seen in the Attachment, the effect ori the RPS is insignificant for each of the postulated malfunctions. This insignificant impact is primarily a function of the following circuit features: 1) the transmitter's ability to act as a constant current source over a wide range of load resistance, 2) the RPS current loop operates "floating" abov.e. ground and 3) the large ohmic value of DLS input thermistors .
- It should be noted that .Attachment #12 deals with short-circuits only since the more probable postulated open circuit malfunctions in the DLS input circuitry or in the RPS/DLS cable would result in simply disconnecting the acditional load on the RPS loop which would be compensated for by the transmitter.
LETTER REQUIREMENTS Requirement #1 The isolation devices used to isolate the RPS analog signals from the Tennecomp data logger, with the exception of neutron flux safety channels, do not meet IEEE 279-1971 Paragraph 4.7.2 requirements.
Response to Requirement #l As described in the "Response to Question #1, only certain analog signals are Class lE as they input to the DLS. These are the only signals that require effective isolation in the DLS .input circuitry.
IEEE 279-1971 serves as the current licensing criteria for isolation devices.
Paragraph 4.7.2 of th~ standard states:
"The transmission of signals from protection system equipment for control system use shall be through isolation devices which shall be classified as part of the protection system and shall meet all the requirements of this document. No credible failure at the output of an isolation device shall prevent the associated protection system *channel from meet-ing the minimum performance requirements specified in the design bases.
7 Examples of credible failures include short circuits, open circuits, grounds, and the application of the maximum credible a-c or d-c potential.
A failure in an isolation device is evaluated in the same manner as a failure of other equipment, in the protection system."
The introductory paragraph of Regulatory Guid~ 1.89 states that 10CFR50, Appendix B, Criterion III requires that design control measures provide for verifying the adequacy of a specific design feature by design reviews, by calculational. methods, or by suitable qualification testfng. The adequacy of the DLS analog input isolation circuits has been evaluated by review and calculation on a post-design basis. In accordance with IEEE 279-1971, the effects of credible failure~ including short circuits, open circuits, grounds and the application of the maximum credible potential have been evaluated in Attachment #12, Pages 1 through 5. (Note, for open circuits, refer to the "Response to Question #5". ) As can be seen in the attachment, these failures have no significant impact on the safety-related RPS. The Attachment #12 calculations address failures at the output of the DLS isolation circuitry as well as in the cable that connects the RPS loop to the DLS input circuits.
Requirement #2 There are no isolation devices between the RPS primary flow and steam generator pressure channels and the Fischer and Porter plant computer.
Response to Requirement #2 In letter RAVincent to D M Crutchfield dated June 29, 1981, the Consumers Power Company stated that "Although analysis shows minimal effect on the RPS due to the postulated most severe credible failure of "tying" two inputs together at the multiplexer, additional isolation circuitry needs to be installed. The plant computer 100 ohm input resistors were not installed specifically for the purposes of isolation.!1 In light of the NRC statement in the 8/28/81 letter to DPHoffman that relay contact isolation is acceptable, the isolation capability of the Fischer & Porter input circuitry was further evaluated. As can be seen in Attachment #13, the Fischer & Porter input cir-cuitry employs two relay contacts (designated as Kl) to switch the analog input into the analog-to-digital converter at precise points in time. In effect, these contacts isolate the analog input signals from the plant computer.
T'nerefore, additional isolation circuitry is not required.
It should also be noted that the reactor coolant flow input to the plant com-puter fs from safety Channel A while the steam generator pressure inputs (from both steam generators) are both supplied by safety Channel B. Although a review of the circuit schedule reveals that the cable raceway which transmits the reactor coolant flow signal is separate from the raceway that carrie~
the pressure signals (which would be expected since these are safety-related Class lE signals), the computer inputs do not conform to IEEE 384-1977 si~ce they terminate in a common cabinet compartment on a common terminal strip.
Although these RPS inputs are not separated in accordance with the most strict
- requirements of IEEE 384-1977, an analysis in accordance with Paragraph 5.1.1.3 of the standard (see Attachment #14) shows that, in the case of postulated credible failures, the effect of one loop upon another (or others) is insigni-ficant.
- 8 It should also be noted that the purchase specifications for the cable that transmits the three RPS inputs to the Fischer & Porter computer require that these cables be capable of passing the vertical flame-resisting test in accor-dance with IPCEA Standard S-19-81. According to the vendor's specifications, the cable was flame tested according to the referenced standard. In addition, these cables are environmentally qualified as Class lE as described in Revision 2 to the October 1980 "Environmental Qualification of Electrical Equipment" report.
Requirement #3 Use of Model A709C operational amplifier as a isolation buffer device as defined in IEEE 279-1971 is questionable and requires further evaluation as Class lE equipment.
Response to Requirement #3 As was the case with the DLS analog input isolation circuits, the adequacy of the A709C operational amplifier circuitry to provide effective isolation can be demonstrated by review and calculation. In accordance with IEEE 279-1971, the effects of credible failures including short circuits,_open circuits, grounds and the application of the maximum credible potenti~l have been evaluated in Attachment #12, Pages 6 through 8. As can be seen in the Attachment, these fai,lures have no significant effect on the safety-related RPS,
J I J I
- I I
- I
- i
- 9 I
..
- 11 I TO -81 a Attachment #1 l
. ._~*__._*~~*~~~~~-P-o_z_~~"-*~~-+C~A_ll_,_N_t:_r_____l-__,(~i)'----.,j~
I I
A ...._-_ _,! * *
- e *
(R~ SHr. .tJ :I *CCDCC*
- .aacaca.
cl~
- tHl Q (ifj *
(111
-0 - . "'~.L:-;*..r::=:ll=:u-:=iL_
c '"0 0 I L--.i--~ie.:.:'.u>-=--~~"~~-'c-J:.__~_.:~A-~_A_*o_4..;_:c:...'_""_c_,,_,c_~_c_R-+--~-'~---1c I
0 0 0 / //~-~i:,*'1$1 "1.-.!Au:Jq CWVDIT/a,,,,t~e Fii I ll!l*#~-:;~1 AOC. r"Z
- I qt---, ;~~-~112/J-~~~ CONO. ~"'~ 5~""*'~ 1.5 d:--_J I f
I I l/~-,~.W*d:tl AC Tt:,;,.,,.,,..,cw "f>lf. .et
~~=J
~RE_;:::r__._R~*-F-1-'~~~-*_())_:..;Ul():.:...:}_-<J_~_*_o~A_c~°'-5_T_R_*e_-_1_._J*-*---+--------~D
- 1.:1
,..,.. 0 REF REF l}B*OOZB0}-000 er:. 05Tt:Jt;VTIVN
. 0
- F7 0
O rT _J-~----: i...;.1_1._,l_c.a_,1_;'1_&::..._;*f:._1_1'1-"'1_1_*00-----l---1-~_F'i_L_A_J_fi_h_'._1w-_._ ~ .3_ _ ,_
I I
0 a
1-8 0 0
fi T- --,----
(
a 0
--f ) ., - llRA(.><*T f- --..,**J 0 FS 0 0 __ J e-i
- ..._~
F1(J
,......,:... ~ ~ -
~ "-0~1r-------,_........0*1 ~r l
,.,,a fo::..-*-----""""'-.""10,f-1 I I [_-(t.I~'l!Q)
~t;:Y I L.:2:.:)::_".t-:25=--1--------+.-A-1'1_...*_--"-'- - - - - - i--~- f
'"., oo* ~
Fl.to
.-io I I I I 1-l~lo_J....:..:llo~:...*f_ZJ._;_*fl:....:..6~i~=-'-""-*
4
_*_*oJ__* _,,_,.,_u_r______ ~-*
- 2. 2. - .SHELF IT o o I I I 1-.:...+.--1-------+------------'---'---
- I O o I I I
,. io1-c.:>zso1-00>
1----11---+---~--il-*---'-----+--~- ---
PLAT::.. {Mr,; *fl I 1*i.;,;.~____o._.I I 1------+- _J o o i. .I l! ,----;-,,--ij : _,__ ""
L _ ...-. ___ _J lJ 1---1-----<-------**----*-
Z+ Z4 'l)O*J'"OOOI* f/ U\r_._.: "'*-"--'"---*--
- NO"TES: -
t INSULATE. A0NER FRNlf( l'llDM CABINET CH\SS l:J
( CIJN T. PA&E 2 )
.,,.,.,,--.---------*-----r-----------------~-----1K
.:;.::"* i.**1*1*1 ..... fu.#tf ,;;;:/,, REVISIONS TCNNECOMP 5Y5TEM5'"'
MAWM *~..,__, ;4/1.,/T'/ U.1. ICO *O. DAU I
I
j* * ":;' .,..*.', 1 : ~ ' , I* t*J ~** * , , .:';1* " . . -: ' ...... :* !. **~.; .:**.:. **. ~
TON-81 Att-nt #2 KEY CHART SLOT I
Fll*.'!:.F r-~
S~C:J411~
l e*~
4 I
7 2 4 5 6 7 8 9 10 11 12 13 14 15 16 - ,e I
II 12
~
,, 8"'
I~ r i~
~
." t ..
- ~.
G,i. i*> 3' >Ill 1~>
14 O*~
iO li co"
'4\ I '6 al tit 'Q. ii) Ill - tJ CD -
/
~\I
- ' -.'~' . "'. ~~
OIN c -:
1\1 II)
I\)**
~6 '" 2'*3
"&
- D 11\l e,
" II\ '1 '6. '6~ 'Q "S. ~* .~
~h ~~ ~- "8 -
<t
~ i I
3 '
~ t t '
I en C:>
~z Ii!""'*'* Dwr.~
z 13,,., A**l'NISL'I 0 "'~fj. d,,,,l"f.~
"' "' s
¢ (\J o,,,,.....,.,
~
u a::. lil ~ a I\)
ii-
.9 Ii' 2
If\
~If\
. "'l8 -~
lJ\
..9 If\
"'I
¢ Ii\
~
"' lr I
V'\
If\
I l/\ ..9 U\
I
- I!. !!J,N W,C.U*l4'
<#IN -t/Jq/li!7*4'H
"'.q- 1' If\"' ~
I
~- ' ~ r-I uJ ' l.I'
- I
~
~ "' "'Ii\ $
II\
~ ,j- fi1. "' "'t" ii' ~ 1\.1
~ II' U\ I{\
0 "'
!ii a
G CRATE MODULE UTILIZATION 135-001325-000 K
PMCUC*I Lil REVISIONS ICO *O. ... TCNNCCOMP SYSTEMS.,
~
~f--2--------.1..---'T'"'-- . . .,..-------..s---""T"-~~~*~ 't* ;~;~.: ;.;;;*_..,__ _........_ _ _ _ _ _ _ -.,1_.J.-~---.i......-....u.......~:..c.o~~~
,: I
D
~ IJOTll ~0£5
...... ljl.J 9.Jb-S.31230 I
_..,,. MJT£: INCLUD1NG
...... ASSEt.1&£ 1.JSING 4.sos* Gv1or I A/IOCJ1F1CATION PLATC: SlfqCE:R GAUGC IN cXTR£Mfj PER 1()7-001106*<*
£ND A:JSITIONS ro PRoPE"RLY .SET SPACINGOF TOP ldOTTOM Pl..ATE.5
~
0 llJ a
q
-~ 936*S.J12so
~~~uUUL C4vr1cw:
THE: IJOTTOM /"TOP ARG DISTINCTIV£LY DIFF"ERE:NT. MAK£ .SU'l£ THAT TH~
C<V?O SLOTS POINT INWARD AND I I
--- I THE: HDL:5 DN THC FRONT EDGE: AR~
FRONT
£0G£
,f- SE:T TO TH£ RIGHT OF" THE SLOT:'>
I . ..... IEVISIONS TENNECOMP SYSTEMS *
.~**
Dl.StC*U~ Ir.~ 10/J/76
" JC.IS (A,,.A.) I
- 1111
- 1 -WM N;JP ~l,116 Ut ICO 110. "DI.fl Mux D1G1T.11L ::.1<:,1.li1... (1Y11D1T1u nm 1 -*
Ill!!
- )1 C"IC . . I: OIJV' z;;'C1L
/1.bhl r~;.'N CRATt: - ME:CH. ASSY.
I ..... tlalD CMI:
DWQ.llQ.
105*001124-DCO I
,.. .,,,,.,...,n I""~
II
\
T-3-81 Attachment #4
- ~.
DWG. NO. _ _ __.__ _
£1VCUJSLJL3E
..SEP TVPIC :SOZ:.*l.lf A"llCNMEl.Jr A
~P.S/ llKJAJ* SltFETY .INDICA rtAJIS ~YSJZM IIVTE~/li4t:2 (11..DTE. 1 ~A Jle.S~JPTN3AJ t:JF ~PS/11.0A.J-:!JllFETY
"'1SCuE11. I PO.CTl!ll.
RAur COAM*tJr~c
.ZSOLArtOAJ CJKCWTllY 1!1.'IE£ IZJ K£rell6tK.E.D ,,Z),fAWtAJ6S,)
(SC£ MVU 2,S) . (FOil
. I~ '" .Srnl!Tl..J/O PRIMARY ROW (CHlf)
,VATG (CH.3) .ISOL4ruuu SEE ..D11G
.5/EAM ,./'All;f1tJ1£JI! A PRESSU~I! (C.HIJ) -
i;c 30*164S)
.5TC4M 6EAJ£1!.fr£lK ..2S FV:GSSUllE (CN.ZJ) -
~'}
,.. HltSN llATE OF CHAAJ6E OF POWER Hl6N RJlllEC LEI/El.. Ki! R/>5 FIAi/iL K3 QlffA:Jr.i '
l.JJlll llEACT~ caJLllAff Fl.DMICAJOTE .., K.4-Hl6N Pll£SSU/l1Zell Pll!ESSU/lE TJ/ellMAL AllM'61AI iDlll htES~illKE ~
ltPS TC1P ~ LM5 OF LOAD, TllllBtAIE T/llP JNf'llr:S .STEAM 6EAJO:e4TO~ A UJW WA~<!! LEVEL (Dl&6 STEllM 15£.VEl:RTOll. .ll LOW WRTEE! LEI/EL Z9".*E- .STEAM 6£.MfltATIJ/l A LOIAJ PllESSUll.E lrP.S TVJAJECaMP INPll1" :zJ£5CKIPnlJIJS (...11MIS ~-S3) J'ElJAIECDM P zaso) 'IHSTAJJLE IJATR LOIS&E.11:
.STEAM t5E.Vt:IYITO/l .ll UJIAJ PJtESlU/lt; OiJl"PUTS COAJTAIAJ~IEAJT H/611 WE55Ul!E: -~C£1Vl.ux RAD.NII/£ CUITDI flJWEI! Rti:AY Kl(DC-EAIS) -
.5TATU5
._ AIAAIUAL TKIP .) -~CTlJA! CDIJTKOL mD .Mii/£ aurc11 RJIA/Elt KEJAY J(Z(D£*EAAS)..:.. (.Z>IG1TAL.)
-i!EACTDI! CLJAJl£0L LOD IJl!IVE CtUTC'N l//JWt.e eeiAr .a(NCA.6)- SUB .SYS7EM
-ll£ACTOe awrell£ EbD :Ii.<:JllE CLUTCJI l'rJNQ mAr K#(CE ~)- ~LTA6£ 5EAJSE l!EACTO£ TRIP .ZAJl*ur P~SURIZER PRESSU/f!c N/6N {CNA*D)
<~ I'S<XArt(J~
REACTOI! C.ORE. NIUTEOAJ FLUX {C:N A*IJ)
.SEe. Dil<IS REACTOR Rill/££ '/!ATE C.NAA.16E (LJI ll*D) lfbl*ODa/11*000)
ThlfA'UAI... Mlte&IAJ 01!. C<<Jt.ANT P,fES:SUllE(au9*.D)-
Sn:AM G6VcleATOA! A p,eerru,e~ (c.H A*D)
A.JOT'ES .STEAM 6EAIEeAll:JI!. .ZS Pte<fS!;u.el! (CH A-DJ
=
L) 1111! .BUFFeR GMllVCCT10A.JS1 SE4
.AM,. STEAM 6EN~JITOe A klllfl'I! LEUEL (CJ/ A*D) 5TE"AM 6.C.U£4!ATO.f! 21 WAT~C LEI/El.. (CH A *.D) -
.2)11.65 E*.:03 ELJl47- P.f:IMAIZY LOOl.AllJT LOOP I /:COW (CHA*D) 0010; etdt47*11ZI REACH>>: LOAD WE.BIN£ TRIP (CH A -D) z.) RJll .11uffEA! Ai.IP CIJA.JAJ£C r10A.JS J£1£ I (CN,11)
DllN5S E*IDI, ELJl.57-0(JID .STEAA-1 tSEIVt:K:ATOll .B LOW ,O~:SURE (CN/IJ fi!!LJ/#'7-NiN ' -STEAM GEIVt:l!ATO~ A LOW Pl:E:SSURE
., AAA4LOG
..3) BUFF"ce AUP.5 Al!£ A70!JC ..STEAM GENt:CAraJe. .!I UUJ IUATE/f! LEUEt...fNS' AJ/)f£ 5 I ."1!1:. rs reM "741.fClill.D CPerArtOA.IAL < STEAM GENE.e410/f! A lOW oAIATEk tEUEL {NSI (FOi! ISOLATION, AAIPt1F/E .<?:i, I PRIMARY C.(J{)UWr LODP I, e .I.t!CE T TeMP ( CllN) .SEE DWG:
- 4) Tlof' !!,IV't:TY *ll£l.ATED UVIAJNl!L I 0
114 *IJOZBIS -~)
OF PRCSS:UA:,z~e PteE£ilJl!I! .IA.llV~
P.elA/llllr CIJOUJAIT lOOP I e ourar TEAii'! ( CN!V I
- >Zl RP.S. 101~ l!AA6l! P~Ul!lll& REACTO~ C.OOLAAJT F£l;W ( OIA I Pi!£SSL1l'£ (MW-:SAl~TY) ./"1PUTS
~
1-*JTEll ,r-(:5£E AXJIE~ *l,.3J 3 A1£UTl.'OAJ Fl.UX .SAFETY (CNAIVAJELS A*.D)-
1Z> IJllTll UJ661:.I!.
~ z PllESSiJKl~Ell: PKES!i'ue.c (NSI
- s. IVS* A.PAI .SAFCrr Cli!QJll
__ "~ -~.5..~~e .4 Af*P,
~ ..
(.TIUh fll AU ..., u.
DR J\JCM CON':ilJMEU5 f'U,\
.fi*l4.*
U~ CO.
(ll <"I< KAT i'J 1J,. °:7 .S*/#*B.I u1v1-i1oro h1 All
..6K- 'J!ll'- I A - I
- ---* *- ,__ ....__ .. _ .. ADllrD ""Alt?TCS'TKNJ1/01i7!17HUXJ£l.- * ' ._:,. "rP. _ FVJUSIJDE~ PtAAJT
-- - - -...... ~~ ~-:rt:..IWl'.ll'-!N.L.. _ -- [.(~ ~--~.:.-'--------
.I 1*11/&JVUll" I
iol ~*..:. *. ' ** , ' '
- I *-~~~-~**** .....
D<P*HJMI " ' ***.* ,,
_l.:..!:.....--_.__......_, 1.i.LK'iON '.ll.:lllf~41*
'H) ~.. : '* c ..
Gulf General Atomic TONR 73-81 Dual Linear Power Channel Attachment #5 Model NP-6 Page 1 of 2 Instruction Manual increased to the level of the bistable trip without interferring with the normal protective action, i ..e. , an increasing flux ex-cursion will still cause a bistable trip action even though the TRIP-TEST is operated.
The TRIP-TEST control is a combination switch and potentiometer. The magnitude of the test current increases as the TRIP-TEST knob is advanced in a clockwise .direction. R24 controls the maximum TRIP-TEST current and is adjusted to make use of nearly the entire rotation range of the TRIP-TEST potentiometer. The magnitude of the test current depends on channel sensitivity. However, the setting of R24, TEST CURRENT RANGE ADJ is not at all critical to the channel's proper operation.
- 2. 2 Buffer Amplifiers ELJ-147-1121 Because various external devices require low source imped--
ance signals from within the linear power channel drawer, buffer isolation amplifiers have been included to prevent the destruction of vital circuits by various types of output cable faults.
The buffer amplifier board consists of four non-inverting, unity gain, operational amplifier circuits. The following ii,.
f'.
discussion will consider only one (Al) of these four identical circuits. Circuit board pin #4 is groui;ided, while the input signal t is applied to circuit board pin #2. Resistors R2 and R4 attenuate the signal by 50% to insure that the "common m=>de" voltage limit of the monolithic amplifier is not exceeded. Diodes CRl and CR3 insure that the ma.*dmum "Differential Mode" voltage could be only one diode's forward voltage drop or about 0. 6V.
Diode CR2 and the zener diode VRl, insure that the "common mode" voltage cannot exceed about 7. OV at either input to ampli!ie r Al.
The feedback ~esistor network composed of resistors R6 and RI set the gain of Al. The selected ratio provides a gain of
. two that will just offset the 50% loss due to the input attenuator, and thus provide an overall circuit gain of unity.
The output circuit contains a 1 /10 ampere fuse (Flj and two 1N4005 power rectifier diodes (CR4 and CRS connected to the
Gulf General Atomic
&. TONR 73.:..81 Dual Linear Power Channel Attachment #5 Model NP-6 Page 2 of 2 , Instruction Manual positive and negative power supply lines. Normally these diodes are reverse biased and contribute negligible loading tu the amplifier. If however, an output cable fault tries to drive the amplifier output more than 15 volts from ground in either direction, one of the power diodes will turn-on conducting sufficient current directly to the power supply lines to blow the output fuse (F 1) and disconnect the defective external circuit.
- 2. 3 Power Summer and Subchannel Deviation ELJ 147 ~1131, ELJ14 7-0010 The power summer is made up of three subcircuits that utilize the two subchannel flux signals (Va and Vb) to derive an average output (VAVG) for the bistable trip inputs.
The first of these three, subci:tcuits, amplifier A2, is connected as a signal averager. Input signals Va and Vb are applied through switch, SS to input pins # 10 and #8 of the "Power Summer" board.
Resistors R9 and RIO are connected to pin #2 of A2 which, because of negative .feedback, has become a virtual ground. Therefore iR9 = va R9 vb and iRlO =
RIO Because .the total current. entering or leaving a node must equal zero and also because the amplifiers input current is negligible, the sum of these two input currents must leave the node through the parallel feedback resistors Rl4 and RIO.
i.
input = -ifb = iR9 + iRlO Rll X Rl4 Rfb =
Rll +Rl4 J.f 3 \.."'I"~**
"t
...,. *.r_,.
( .3ft1
. ~; ..
ft** ..
©- "' .
o(
- l!)
I lI '
GULF* GENERAL ATOMIC Drawing #EL-Jl47~1121 I*
I TONR 73-81 At'tachmeht #6
. ' * ' 4
1 t #1 * ' *--* -**** .. *------- --*-* . **- ......
I* llll* u.1:[RAlO.~ m. UC£ REGIUJOR IXITPUT *I ru CHIJC(l No. 1*501 enn: .
fOR Cllll. t. a..~F G)is are:'ll'I stml£D r.:m. ca*u n11 5££ lDlPJEI "J&IS.,Q PAIRS l*ll ll;t p,1".11~;') lilH 1191.E mor. (Ot:!CIB Al ti:! [I:) ~:.1. lllS tC~ IS u:E~
f!R DlS CHl*:!:ZLS MOI ll:tl I-~" U:.':;f Slt'.ll.5.
coe:::tlla 1;3, &:"l PIH 1:J:;. fo.l UCH OLS CHu~a umo IH Aall'llR U'JL[.
- 1. ALL IPllrl .... Sl$111\1S rm1r:o JO "'" Cll FOi c11rltll~1 10 Fll'll~R c:mLor..u*11 n rn s:-:mmc o~. E-211. rmo 10 11:iULL s1ms*m< u.-*nuL llOO:S G*1 rrr.. cu **a no,111u£ JtK:s: cmrs fOil llfUI w DLS AS SltD*'* ar cc::.<CllOll Dl&:;tw HSI Sll.J
- = ------ -- 1111 con.
>. $!11nDE~ US~£ US<O f~> r1au;; ~tllo£N li;t&HNC SIGI IAl!i JI::. Pal. Cll rOil DlS [l:.U;;[LS 1-so; lHn:I Mii (H.J.
5(( Aj)jj'IQI JA&.E BUOi.
11.0CJ. DllCRIJI EO,,!_
SEE NOTE 2 llS: D:.fALCICCtl SISJEll FIS*I: FlUD 11£"'ll Sl&JIQI lllJ, I
. DlS U:'UJ SICl:JI. "4PIER ll9ll Dl.S ~mo fH111£ SUllCll:J.I IHIJ U 111;; SIGNAL ro~*!R CHll~ll OWIE. MSCRIPJllll !1i*
CIO PIN h'll* llRE HO,
- "l. LllCAJllJI llEYIC[ TERMINAl HQ.
R<r. oir:*s
~i;.a.. ~Mii**
o:q~LO':'.!lPll c~,APO:.llllG CdAloo<L *.
~igj:..m_:
- 1. co:o<CaOH OllCRlllS
...5:11 ll!lll [<1;~ur1 f.£-~lllLi c:Jli'UI VllUCE II Ii [ l 211 2n lOI VOL.
wr-
~£CU. . [-9 \jfO>
.1 21 llnD i'.£1:11£ S!&llllll llO. t: BS4 $11. 4,IS IEMIK:.*. t~c:~i 0:1 Fl~.Cll 10.1 ft.-,:.Jl OSCILLCICillfll: E*'St $11. I MO? Sl'.111[ 21 G 8 l z, VIP 5?1S*l/Jll0*14.49.S0.51,llO l-5a> tl'l.Ri II H J c 1-5114 Sl'/JlE ZI L U r 1-505 .~1~uur~Ji'1* A (UPPER) 21 p 0 I SA §8 CIK*I to:::~CIO~
lti.IJ)
PINS J-l MZ
\*"5.
H.I 5 6.
l*S~ ~;~uur;~~:t. B (UPPER I 21 R S l 0 'B ((11;*1 cr.r::cTDR ru;;, MIS /A i:;7 ISSUED FOR RECORD d t'" 'CJ 1-501 S"Elf o:.r:";L c (UPPERI 21 v ., 0 I l IB e.1J.1
'cc*~:-:rTOll J-l flffS MZ SH.I MIS 'I
& "**;~. :.~~t;-1*:*~~;.t;~1~!'ci:;.:~:r~;~L;,:i.*.~G i~**1 ~
1.:u1r.:*11Lu C°'*I C~.IJ.1 H flllS
£-52 SH.I ill ~*~i *~'l.lro rea ir::>n:.:cuc:i *~ '*~" co,_,M l*SOI ~~~UUlttt"?
Sl'Elf C~!:":!L o IUPPERI
'A (LOWER) 21 *
- l IA 18 ((11;*1 to*::mllll
- .1J)
Cff.~!tlOfl H
PINS HZ MIS SH.I
£*"5
- ,,*. , "-'*-.1_ _..___,1,_.s,_._,1_:*_*_,*~----**-*--*......s._1;.;;.;**-*i----1 MO'I 21 u 99 ((11;*1 HZ I u~cc:rm.
- 3lu,,1 ILUI ILlJl G*H SH.I 1-510 Sl'ill C*11*:*;[L B"ILOWERl i;;:J1t:C*1 ILU4 ' II *. o IOA IUI ((11;*1 CP'~:!CIOR e;.~J.1 PIUS G*H £*'2 MIS SQ.I ID lk~ lRB~R Pr.ui;:*.o:s FL/,llT UICHIGI*
Mii ~1~\n:i'rmi'L c llDWERI 21 I I Ill 118 ([11;*1 cn*:*:,c10ll PIUS HZ E*CIS II COHSUr.~Er.~ PO\".':!i1 COl.~Pt.liY 1-SIZ sarrn Cl*t*.*:::L 0 CLO'NERI lo:Jln" HUI 21 h I r 121 HB ((ll;-1 c1;JJJ .
CD":;LCIM o;.lJJ G*H PIHS G*H £-52 SU.I
[*CIS
. SH.I IZ m*:o 1111 Ft:'.O\';t.J~:I l*t*;::TY t:'.)~'lflCt.TIOU 1-51>
/.UJ( fie IJU
. UiliiY1 - E-9015 S_H l E-63.? -- 1~ .. ~::tlH. £1t .. :1 O&TllCC"'!I ~,U_.
1-514 1-UJ( BLDG*lJAJr,LOGGEll-125V CC rn:GATIVE BUS VOL rt.GE 10 C:'lOUND 21 I I I IM G C27l
.11;!
Oifi:'"i - E-9015 SH l
£*632 -- lt1'1!1 s1r*;,1i. UH!*;_. II ::.:.14r*1 N'J. '
Cl*&WINQ **.
FC.ELl.':l,J ER 6LLJ':; 12!'>V OC MIS f>O'.ITl'{E O*Js* VOLTAC:E TO GllOUllD 21 I I 1 Pl G c 271 "RI ITTcmi - E-9015 SH.l E*632 E-~l 1om-01& 2
. 1-5" rE.~(,,'.".\l[R [!~u(' 12!'>V L'C llEGA~IVE BUS VOL lAGE TO* GROUllfJ 21
~ 5 k NI G C271 f<2 i5ii;Q6 - E-9015 SU *J E*6l2 -- SCHEMATIC' o::.GRAM 0'!.'G 5!1. 21 4 2
". ,, *1
~ Q).~
\ .
~
TON-1 Att t #8 iz "HS I .
cc;.] ...
..
- mss1nuzu H2 mu u-0101 A
..1 INFOnMATH~N CQPY II rtnt 11£1m~
ID}ICllM>.I IL~---0 PLS CH,.NN[L NO. 1*$17 r* --tf*:;~*S!!"!.***rJ**********:/-
_} ___ - ~------
rOH caa.
t~~l~~.
I .ml I ..
l!!!IU
- 1. Cl!ll.[ ©1s a VEKOO.'I SUi'fllCD
" 111mo r.IRS 1"11 n;1 r;ir.110:3 lllH coc;moa a1 11.: ll:l o:u. llllStA;L(
mf"* Cim.( 1111 D
1-5,,
c ----**- *-**-.j I
IS USIO roo Ills Cllll:::u Mii ,,,,~
<D*~I IMRJU ,- *-***-* *******
SHmO - ***** SU IClll I IWUI Slt:lll S. tO?:*;;c1r~ llO. 1 ~!11 K~>. r111 Ulll llU ow:a LISIU IN ml'llJI !ASL(
I cm
- = I _ill_ I ** All INllU11h1 SIGl-W.S UCEPI FIJI lllS cu11aa HllO PRl:llRl"D 10 Pll..CI I roo mr::mm 10 IOOIO
. 1tn&. llOClS lllUll.. Cll c11 1H I ------
- ------ =-
Ill ii16AA.2"1-
©m11 } !Wf'1~
OSCILLCC.U!"ll AS PU SOH.JIC c.;. (-m.
r mo 10 111\IAll mus mr: mum::i. etto.s 111
'1l. C11 00 IIPlllNAI[ ltr.SE U9l(S 11>>1 111'111 10 DU 65 S~Ol.I (Ill COl::£Cll0:1 DUC~.111 mtS11.J I-lftA rftO OIGllDQUflll I - ------ - i-fM COIT.
-SEE.Jl>UIII Ulll.£ el'LQI.
I C"Jl*Z I s. 51tlHD£11 CJllt£ usco rm liRIHC erw.u UJ*- ------ -
m ------
I I IJ,Otl DUCIWI INIAllllC SIGl<A.lS l!.11 flLCll rCl IU Olll.l.<LS Mil 111."!J 1-521 f.uD l*~lO THCSC tU CHANU(LS P.[011>~[ Sl".>NAL CONDITIONING II I
I
- -- - - ' - J Sll lfllt ) IN PUL C\l,<IS FCi' D[IAIL II" SttOWN OH D"NG [*SI Slt.;;J:S I I
"'-- SU NOTE ll
-'w.1ffns-rm111£11JT£ nmn1 ..,.
h~. 8LC:1.s O~Clllu;,Jll'dl
~*1 f:.~.
-~Cli!I< ICOS 1
r11 ro.1 .. w~*
llLS: DAIJLDCG1:R SISlDI c
m-1: reno Wll1t m11111 fiD. 1 DLS 111'111 SIC!lll AOlP!El lABU DU mo filill( m111i. i;i.1 1111 llUll:: SIGNAL Fl1'!£R PrHP.H:tr Gr.S:
O!l.'Cll DWm. DESCJllPllOI OSCILLOOUJ'lt Jrl* lCRIAINAL fff. 011*<
..a. mr flH llO. llRC H3. lDCUlllll Ol:YIC£ '&iJ.::~f~1 ._, 1. cuic:-miOH mmus P. HO. ~~tic I~ CL,,1.
Hl!?!.D on.
rmo mi:1t su11~1 NJ. u (-Ut Sii.
- 1' -
1-511. PP.l:SSIJ.llWI l-12 Leva 2Z 0 [ l IJA ue CIZ Ll:ft!DU..
O* - lii~f m;" SH ZO I>
ltRIJll:!l E~C-:15 O'I Pl.t Cll r111 roni9 o:;c1LLir..;11u: l -m 511. 1 -
Mii ti.i:SSUillU.R HZ fR£5SIJHE zz C 8 A IU 148 CIZ tl:/JlfiL t.u - lii~l 14 I. WIP S9,M/JIZO*ll.4i.50.Sl.lll 1*519 PRIMARY COQUllG LOOP ONE O;JTLET TEMP. 22 h J c 15' 158 CIZ ll:f1112!U l.ll - Li?i IS '.
HID Pil1J.1ARY COOLING LOOP ONE Z2 l ~ f I" "8 m llfHJU - . t.g'.c : .
1*521 I~:! !'T TEM~
PillMARY COOLING LOOP TWO OUTLET TEMP. - 22 f 0 I Ill 118 CIZ ll:f1122Jlj Ut - ~~t II .&.. 1r;,, ISSUED FOR RECORD ..
....... ."I !81-- ,,,/. HJ1
,, B 1*521 PidMARt CCOUUG LOOP TWO ll!LET TEMP.
22 R 5 Z Ill 118 CIZ u;~;pc - t.9'.c II & ~%
rnn 1 iif~'i.i_,~~.{q5~~vf* :.:G .. ;:
~J' OL.!::.R.IHIJ:&S Ll!".>T-i l..L e;r iv._.Ja, /,,
~r 1*5U m:ic.l CO:lllll rLOI 22 V I 0 19A 198 CIZ U:fillllA. - iii~i It
& .*.p
...._... -..~"'
l.1 f2I iti ~*.,.,,
M11 STEt..1-1 GEllERATUR TOTAL Sl EAi-i FLO.'/
Z2 *
- I 20& 208 CIZ ru-w~- 11-12 Li~I zo - **'*
IUll
'/.*/rr t1,n*11 U:Ull IH 011.c. .. 10 IO*llU~CliD~
s ,..*...
~
SI JI **1
, .. .... ~* "
.. *C**
,c:Gcc:-cot ST<*" t'l~RA!Ca [*'.>Ill £*1J 1*~25 P1-::~s:.F:~ Z2 ' u N 21l 218 CIZ Wj1)rU ti 1-526 fl[I El~RA!Oil £-SOO i!l~sur:.
- zz 4 . 1 ZZl 228 m ~~lfli . c-n n UIOI Pl.Ll!::t.o;;s PLAUT UIC ..
1-527 s1r1 11 CE0oRAtllil £*50A LO El 22 I ! I 2U 2l8 CIZ U:fi'OL Ill - Li~I n cot:sur.:~r:n m*:o PO\'.'<!R COl.'.PANY 7111 ..
Ll:/PPL 1*528 1-m SILIM crni:;u10R [*Sal l[V[L SPIJ'E 22 h I y 20 248 22 I p I m l) - ~ii~?. z H FEEDr:111E:1 l'Ua.;Tt t* ~:i1F1CA TIOll
) .. r.~l .*11'- ".:... *** *
~AUlOCc:n SWiM llf"Jl SIC*:~~S * ~;*~IE St.llC"I tr.I. I
- -~lQ 1111N ruP.Bllit smo (SEE NOTE "4) 22 I I 2~! 2, COi ~DiR~* - HlRLO on:.
c1mo s~ u 2C I\
' J:L H1*~0 01.1:. *J..>J 401 ** Cl*AWINQ II*.
Hll 2400'/lC BUS IC l'tllUGt IS££"N01E 41 Z2 I
' q 2H 298 COi S*' £*11 umo s1111 H (*. . r-)J Ml2
- 21CO VAC au~ ID Vll.IAC( (SC[ NOTr 4) Z2 . I
- !OA l08 C04Q 61001 lllh17 5* ' E*ll HAr:to or.; .
limo SH "
SQ -*** 10512*016 SCHEM/\JIC DIAGR.~\~J1 511. 22 D'!.'G 2
4 .1 3 I 2 I 1
I
\
~ ' ~-,*:;.,
- 8a A C. (sec sHr. 1)
~---Dr~~ s11r. 4J I
M* I c c I
I .,
I D
NOrc t Narc~:
'* aorN Dao~ Nl"'JCD AT Ul"T(t'll!WeO I I l'"ll!OM F.et:MJT) WITH I.JI' T*Ol'I'" HIA"f~5.
a.SC;tun >1ra
- I :J. MArtU:u1i. I ,_ Cio4 C.CS, c.JAJun NOTCO*
~.AU DQol:$ AUO ~IM(Mf/5JA lflt4N4Ui 1'rl IU ~M1.IQ ..,.. NIMA I&
!!ST.lfNIU.eQ,
, . 'mLl:IMAICI!: tllll. QIMIWa/OA/9 ~~
NOl",.,AAI ~,,,,, ~J<CCl'T Al wr.D.
G. 1'11116)(: CXJTSIDI!, AM!JI ~I '-T. Qo".4 V
$.tJ~All WILl.IAN5 ~
.!il:AU!'.tr -"C-11~ -1:~1 *A* *I oe CtMM 4'Ut'A.UWr.
/NSIDI
- WNITI TCllNCCOMP fYSTEMS.
I "---~A r*)
\._ ...
TONR 73-81 ATTACHMENT 9 Consumers Power Company Subject ,e;.$ 70 ,,..-12.s CAaLC. Ru.,vs Page__!_
/
Nuclear Activities Dept. /?4~sA.D~ ~A" Of Engineering Calculation
- p1G1rA.:...
_$1-1..Q.. ~r....:!'~:z.. I r- - ---~ ZN/Jur 11- - -o- - - ~e...:..~ ~9~ l:_;.<A .S..S 1 .S 11 - - - - - - -+- ~ :_~.!._X.14~~
f!:!.A..:_ c.l)r. £4' Po 11 ,---- - ~
fl I '"2- ~.; .J..n: ~-
A.NAl..o(..,
Z/PuT
<:.1.(11.S.~'$
II I I I' '1u.. .VOA/- tR.£b"'41l0.
$16,..,... ~s
~li..4 ;tlo 7'"-£ 4.
II Ir I I I I II II II /K~~;, a.t:...,... :f,IJA" f:'o_.,,. .*c~-::.l...>
I f 01"9SS*.> ,:4 a.c. ~5": A,..*,,qt.c,:,.>
II II
~~"u.e,H R,GJ.lr ..S,.Dli:. C...,,*.,..u:~
I I II i C.H'AU1.S r/o o,C, ;:'1/. ScS.
I I I llloTC ;fE~~:t::4:~ = I.
1* I I I :t.
,Arr,4ct.//1'14N'7 *
- , ;t/e&L'!it.o,../ r~)( ~~~***i I II
- 3. 7'V~1e.<'.J. CLA~~ k ,4,Jl/1J:4 .51.s"'"'-
1 1
L o~: ~ .d f'..t,,s:r<.1<A.)
~HA (/YtfJ1<.Ai,. :S<.,A Rt:.
I I I .&LoW i- te.c .r'.-v~..- :i OuT.!..c""' 7...-,o)
- L__I .I
,-o.t_ <=di. ~~*I'. SE.4 ~.:r..1>1.
,A_ -#
- 7,e g, L~£Alb:
I CJ X.$<>LAT1ow D£11tc.£ I 0 Tc~,.,'"" I'/'- /JLo C.X:.
- L_ -
ncsra~-- CA&...cs ,2.,,,..,
_.1.e, A,ic ZJ ~ ~f, /.3 ~JJ Nor~t.- /IU. (',A.tJA..£ S
- -.J
- l-<=.l!IJ A.c~r-
//JU:.
LI j).J<Srl(eR
- 51'1£J.iU..h /o l:J/(571.,..Al. 1
- - - flNA.l.J:J~)
AIV,</U.~)
A../ALo4 B-e_iJr.,tAJZJAAl(-,../0 ..1- ~1
.2'£'.llcA.Vb ..r .. 17"-/\/o,J* C!,.j~* ~
- t/o....1 ,&.D .....I~ .-Al<>./* CA~
- z.e:.
, ,.V,,..12e::Au..vJ.1. -c.uJ~ :!£
~ u.rr E.tre-r~<:>~"4r1c. £MA w1:..,.1c. :Z:,.,,ra,:~1J.J*CL
' I TONR 73-81' Atta"chment #10 A
Page. 1 of 3
< b. *-~
- s&'i'* ~:* ... ~ti a*, ... .g.g -*
1N5221 (SILICON) Motor.6i'a. *seniic~n~U"ctoi L'.Pr0-dii.cts*; Inc IN!
thru Semiconductor Data Library Volume 2 Discrete Products 1N5281 Series A, 1974 ELEC series
- 1e..i Jer 500 MILLIWATT SURMETIC 20 SILICON ZENER DIODES (SILICON OXIDE PASSIVATED) j5M2.4Z~10 thru .SM200ZS10l
... in answer to the Circuit Design and Component Engineers" m1ny requests -
A complete new series of Zener Diodes in the popular D0*204AA case with l 1N5221A thru 1N5281A ~ I f
INS:.
higher ratings. tighter limits. bener operating characteristics and a full set of designers' cuntes that reflect the superior capabilities of silicon-oxide-passivated j.SM2.4ZS5 thru .5M200ZS5t l 1N5221 B thru 1N5281 B r lI IN$.Z; IPI~
JJiiS?;
junctions. All this in an axial-lead, transfer-molded plastic package offering pro-tection in all common environmental conditions.
I INU:
JNW i INW 1~"!%2'1
- Proven Capability to Ml L*S-19500 Specificltions l JHS:21
- 1. IHWC
- 10 Wan Surge Rating IN!231 INS2U
- Weldable Leads IN!Ul 500 MILLIWATT lNSZJt
- Maximum Limits Guaranteed on Six Electricaf Parlll'MtWS ZENER REGULATOR INStJ5 INS::Stl DIODES IN!l!f JNSJ.JI 2A - 200 VOLTS INS238 lflUtO INSHI INSJO IHS2U MAXIMUM RATINGS INUff IN5%4S Junction and Storage Temperature: -65 to +200°C IH!J" Lead Temperature not less than 1/16" from the case for 10 seconds: 230"C JN5Z41 IN!241 DC Power Dissipation: 500 mW @T, = 75'C, Lead Len11th = ~* INSJ4i INSUO (Cerate 4.0mW/ *c ~bove 75'C)
Surge Power: 10 Watts (Non-recurrent square wave @ PW Figure 16)
= 8.3 ms. T, = ss*c.
INSJSJ INUSJ IHS25J IHSUt 1H52SS .
Jl\152S~r
. l~SU1 IHS:SI
., . IHS251 1HS:ZISO IHS2Sl 1NSM?
MECHANICAi. CHARACTERISTICS lNS?Sl 1NS2H CASE: Void free, tr.nsfer.molded, thermosetting pl11tic. 1NS285
- FINISH: All external sur1ace!Hlre corrosion resistant Leads are readily solderable 1NSZS8 1NS287 and weldable. Uf52SI INS2851 POLARITY: Cathode indicated by COior band. When aperatOd in zener mode, Clthode IH52Ta will b<' positi~ with respect to anode_ 1NS211 MOUNTING POSITION: Any. IMS:'2 INS%1J WEIGHT: 0.18 11ram (approximately): ' ..* ,
- INSUt 1H!a1S l.NS2T8 IM527T IN:UTI IHU'tl INS?IO
- .....
- H.:5211 FIGURE 1- POWER-TIMPWTURE DWTINC CURVE 1.0 NOTE 1-Tou
........ I l
- WD UllGlll l
ro1.,._ clesicn*
TO ltf.ITSIJll
- " to~ronce of =1o*
...........
- shown irt the Ibo
~ ~-i.* P<1rameters .,. inc
.. 8.. for ~5.0% un*
6 r--.
-..."-- " r--.... "'-
i.*
Non.Standard WQ1t1 vo1r1aes other ,,...
number should bli 1
~=
-.. ~ ......
"'-- "'- D.S 1* --..._ ..... ~ ..._ ........
O.SWett_J
~ ~~
-- ~
llO
.....n:r:.-.... _..,
CASE 51.0:Z go.7
.M*ftUfecturw-ND1nina1 T,.WDTIWIJA1Ul£1'Q I NOTE 2 - SPECI, 1 ....... Nomina1z._
J
- ) rL ~.;usz. ** ...w+.*' a. 4* .' ##:
1*20
.;2 . * :st . .a ;a .. _c *"*'* s...au+-'~*' *UfTL*..,..,-.-
I *:-1l?.!!!'!1t!;i;'~~*---~_,,...*~~":"""'.'""F--
} .
~
-~
- 'ti*
TONR 73-81 ...;.-* ..
Attachment #10 (for origin of reference, s~e Page 1 of 3) ink. '~~g~. M.9gf l-i1*ii11-$ii****-....,..........,.-li**'*ii1*-..#-**..;.*..-h=m***,..__,.,,*.,.t-""'""'-lli"ii",...*......__.....tiefdlllli_""'_*,-atf;;,*,,;*..;wr**ii1.-1>;*,_,.;;im11',;;***1;11,111*1111o1*,111*11*zNiiii.**ll.1o i M:i .*i l~:lil\.,_ _,..i'*ii.:li*.lli;'-,.;.,-'.._'"'~........_~;;..
2 i "j3 1 N5221 thru 1N5281 series (continued)
ELECTRICAL CHARACTERl.STICSITA
- 25°C uni- o-..;.. notedl. a - on de ,,,....,_nts at ltl<<mal .quilibtium:
la..S lanilf' = % *: thermal resosrance of heat sink = JO'C/Wl v, = l.1 Mu @ I, = 200 mA for all type.
NaoliNI Mu z- ""9M*nc* Mu RIV<<M uobge (llrTtftl MuZ-Volloge THt A & 8 Suffiz Only A & I Suffiz Only Non*s.Hi* r...p. c..11.
.lllEC Z..Volt191 T,,e NL Cllllt911 v,@*..
Yobs ...
... Zzr@ '" Zm@ 1,,.=0.2.5mll ** @ v*
Valll
\:~~
(A & B Suffir Only) 9-z (%'Cl thru .5M200ZS10} (llltt 2l
°"""
Ohm& "'" (Note 3l dvu1N5281A IMlftl n1u11
... **** JO 1200 mo 100 0.H A.
1.0 I p.A zoo zoo
-0.0SS 2.5 lO 100 O.H
- 1.0 -4.085 lflnl .5M200ZS5t
- thru 1N5281 B f lll'Wl INSIH INS2U ...
2;T I.I 20 zo 20 ..
JO 20 1300 I ...
15 TS o...
0.H 1.0 1.0 1.0 150 150 100
..0.080
-0.080
..o.on
.t INWI 1HU2T J.J 5.1 zo 21 H
1000 1700 .. ....
ZS 0.95 O.IS 1.0 1.0 100 100
-G.070
-0.0&S 1"'221 UISZZI ncsuo zo zo zo n
n 1000
%000 10 s.o 0.9S 1.0 1.0 7S
.o.oss
- T II 1000 5.0 I.I ,0.030 z.o
.ll.LIWATT*
U15.U1 lNWZ lNSU' 5.1 e.o e.z 20 20 zo zo
- II T.t T.O IT 1000 llOO 1100 1000 5.0 5.0 5.0 1.9 S.J s.1 2.0 5.5 """"
.0.030
.0. 031
.0.038
.0.045 INWt
- ~:o
~-*
IJllU3' 5.0 20 .0.050
- IEGULATOR ODES lKWI lNWT T.5 1.2 zo 1.0 1.0 IOO IOO s.o J.O
- 5. T I.I 1,0 1.5 **
20 ......
.o.ose
- 1NU31 11.szn I. T 8.1 zo 20 1.0 10 J.O 1.2 I. T T.O JO so ......
.0.065
!OOVOLTS UISJ40 1115Hl 10 II zo IT 21
............... ... ... 7.1 e.o. I.*
20 20
..0.07$
.4.0715 lNUd u1ua IN5'44 ..
12
... ZD 1.5 I.a.
20 11 15 1.0 0.5 0.1 I. T 0.5 I.I I.I 10 10 10 10
.0.07'7
-0.019
.0. 082 IN12H 15 1.5 II 0.1 10.S II 10 .0.082 INS241 1* T.I IT *.I U.4 II 10 IHSJ4T IT T.* II 0.1 12.t IS 10 .0.0114
- ~**
II 10 T.O I.I e:1 .."
IS
...... 0.1 0.1
... I*
1*
10 10
.0.085
.o.oas
.0.018 11<5250 0.1 14. .J 15 10 1NS3Sl 5.1 n 0.1 115.2 IT 10 .O.Gl1
. 1N5Z51 INSl54 15 JT ...
5.0 JS u
0.1 0.1
. 0.1 1'7.1 II. I zo II II 10 10 10
.O.Oil
.O.OH
'4.000 llOHS
- 5
- .Z **. ...
- O. l II 10 .0.091 UIU51 JO 0.1 21 ZS 10 .O.Clil
- tHWT 11'52'8
.J.i
- 10 TDD TDD 0.1 0.1 17 ID 10
.O.OH
.0. OIJ lNUSI lHS21G 11<5201 50 tT 2.0
- z. T 105 1000 0.1 Cl.I 0.1 u
50* 10 10 ID
'.0.0&4
..0.095 INSHZ.
lNUIS 51 2.5 1.2 125 150 1100 0.1 0.1 JT ti
.. 10 10 2.1 110 HOD 0.1 10 . .0.091 lllSZIS.
INUM 1*5'1T az*
7S 2.0 I. I
- 1.1 110 1400 l&oo ITDD 0.1 0.1 0.1
- 5
- 52 tT 10 10 10 "4.091 "1.091
..O.OH 1115281 UllSZll a
87 1.5 Lt
"° 210 zooo
- 22oa*
0.1 D. I u
10 10
.0.0H
.0.099 i 1115210 1115211 INU11 INUT.I 81
- 100 110 IZO 1.4 u
I.I 1.0 ...
IOO .
750 2200 2000 -
0.1 0.1 0.1 0.1 ....
n**
Tl 10 10 10 10
.0.099
.o.uo
.o.uo.
.o.uo I
- mun uo 1100 4500 0.1 IN . *10 ..o. uo Ullln HO o...
4500 0.1 IOI IOI 10 .0.110
............o.,. . ...
INUTI 150 O.IS 1500 0.1 IOI II* 10 .0.1!0 1115211 INUTI Uftl'11 UBZIO 180 170 llO 190 a.es ITDD
- UDO llDD 2500 5500 llOO 1000 0.1 2.1 0.1 0.1 0.1 IU ISO 1..
ID 121 In I ..
152 10 10 10 10 10
..o.uo
.0.110
..o.uo
-4.110
.o.uo t
' NOTE I-TOLERANCE AND VOLTAGE DESIGNATION
? * - dnipalion - Tiie JEDEC type numbers sh°"" illdiatt
- IDleranca of :10% wtth 1u1r1nteed limits on onty Vt* 1, and v. 1s INwn "' HI* 1bove t1bl1. Units with IUilt.lntHd limits On an SIS 2 -
Matched Mta: (Stanaard Tolerances are ::::5.0%. :3.0%,
- 2.ll%. =1.0%) ciependln1 on volt.ls* per dwlce.
- a. Two or mote unitl tor series connection wtth specified taler~ an tot1I voltage. Ser1eS matched sets m;ike.zener
...,.,,,.19,. Ari Indicated by suffix "A" !or :10% toltrenct and suflia vcUaan in eaceu of 200 1i1otts poss1b'- as well as providing "9"' lor :5.0% units. lcMef' *18ft1perarure coefficients, IOJillf'er dynamic impedance lllMoStandard va1t1p deslcnotion * - To dHill"lte units willl Hntr and ,,._., power handling 1oihry.
-ces otller tflan tnose ass11ntc1 JEDEC l\Ulftbets, tlltl type b. Two or mar. unita matched to one 1nother with 1ny spec*
- sllould be ultd. . ifltd tolt<ance.
DMIPI.£:
3 -- ncht Wltap - * -
- 1.0%. 2.0%.
___ z ls 3.0%.
~~JJ'° . -l(oH*1* l :.--.
LTolarence Surmetlc
<:%l NOTE 3- TEMPERATURE COEFFICIENT (9vz)
Tut condlllons for temperaturw c0tflic1ent ""' as follows:
L In a: 7.5 mA, T, T,
- 11. r..
- =
=
= 25"C, 125'C (lNS221A. a tnru 1N5242A. B.) .
1t1ted 1.,. r, = 2s*c.
T1 = 125'C (1N52"3A. B tflru INS2BIA. B.)
NOTE 2 - SPECIAL SELECTIONS AVAILABLE INCLUDE: Device to bl temper1tu,. 1tabilind with CUl'ront aoolled prior to I - - - woltqff b e - those-* l'Hdln& brtl.._ VOl!Ap ot Ille 1419Clf1Cd amllieftt temper*tu,.,
- 4}&Pt ;41q P->>:* S.P.L . . . 14
,.. E
TONR 73-81 Attachment #10 Page 3. of 3 sf 5 tS<* r-*rtn ~t- m+/-u ****:...* **< -me *irz*
.. i Motorola Semico:g.dl,lc:t;or.-::f'roducts, Inc 1N5221 thru 1N5281 series (continued)
Semiconductor Data Library Volume 2 Discrete Products Series A, 1974 llOCES
- 1111=30'C/W. TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION (90Cft of tN units *re tn'tfte raniies 1nd1U1ed)
FSURE 1-lllllSE FUI UNITS TO 12 YOUS mllRE 9-111116£ FOR UNITS 12 TO 2GO VOLTS
.e y
.0
,, [;.( )/
a
.0
/
/
u.---
jRAllCE ..,.v
~ 1-"'1 RA~GE
~
a
.a
/
'/ /
,v , v J
Vz@izc '7.Sm.I
.__ -, ' *~
~
~
~
-- lzw>lz>ln-Yz@lrr m
I I 0
o...._ I/ I /
0 - "
~
II 7.0 JI 10 5JI Oi.O 7.0 l.Q 9.0 10 II 12 zo 1iO M 100 120 140 lliO 180 200 1.5 2.0 2.5
.. 2DEll 'G.fACE Mii.iSi Vi. ZEllEll WLTACE l'IOl.TSI
.Mll.TSI RIUI£ 11...:EmCT DF ZDIEI CURREMT FIGURE 11-VDLTAGE REGULATION 1.0 2.0
- r. -zs*c /
~
lO L = !i'
~
/ 8._.*30'C/W
~
~~ /
~ 1.0
~
4.0 10 I ... ,.. I i Q.7 lz=2.0lo20mA 2.C
.,,if// I lf'/-0.01 ...
I i 0..1 ' /
J LO 0
1z-10-*
311'-'- .//
,,'/~01m1.I I J ' l.OIOA I I
I I:!! ll>Vz
'-TYPICAL OJ '- RAllGE ,.
-'::.vz TYPICAL RANGE 7 1
II LO .; 0.2
~
'// / Vz@ 1z u,. =zs.*c q ~ : ' lz*O.l toD.Soflzw 2.0 '
10
-~
0 " Yr !
Z.O 10 ..0 . 5JI 6.0 7.0 1.0 9.0 10 11 12 10 3.0 5.0 7.0 10 20 3D 50 70
- 100 200
. . lBU 'GJAGE Mll.m Yz, ZEllEll WJl.TAG( Af 1zr IVOLTSI 3_9,........._...,,,.,.o__-:s.o IMILTSI TYPICAL ZENER IMPEDANCE FlliUIE 12-EmCT DF ZEllEi CUlltNT FIGURE 13-EFFECT DF ZENER VOLTA&E 200 I I r, * -55 lo *ISO'C
-, n
~
i - :-..-... ll iz'xl '-0.1 lzidcJ I I 100 I
lzlcl:l~l.Dm.I j-'
I
~
I 100 r-~
""""'~ !I I I I :, ..,
i I I
~
.... ~
,..,;x. *-- ....
Ii!3 i
llJ 20 '
/
10 m.I_,. "
I T4 .*, 25'C I !.I I
20 10 Vz
- 1sv+r, "~
n_ 'I is 10 I\ y *zlacl
- 0.1 lzldcl Si 7.0
.i .d s.o Z7Y HW I l I
,,:i SD "
- 1
- ~
~
20 Ill.I I"
'I lZ 15 20 ta ll Ill D.5 I* 2.D I
~8 ID ZO :io 100 30 zo 2.0 J.O 5.0 7.0 10 20 llJ !O 70 100 GE NOLISI fa.JElllllST~- Wz, ZEIU llllTAIZ AT 1z NOi.TS!
- (4$¢.Wf4* 2 1&0.4@!.. S.,f~P.&.QC# ...... ,4_ ..d!I@'.¥& A:;;stqfr..CLfFF .ZL4.
-*~!
- -;4.A?TS Ll1sr-TONR ,_.,,/ ... ~"~**-
-*S*I~.
r" l*lfZfl Attachment #11 -#4 _,,,,, rsr DW~/1>.Art' NO. DelC~11'T10N
"""~
(NS1QA/ATION
., -*"~
I I 9#Z*l'6Z81,S *OStl PC. l'JOAltO (!) .
I m:;. * ~z-'I" .ees1STO~, J! .. ~tJ. I~- "',
I I?~ .et
't'!l*U*"
J74.Jt,.*f1.
..J
' fH~t.710"
'*-"~*
z*.4"' z<1.1v.
4!1
<~
,,,,z,,_,, -I~&. !*.C:,
' ""0~#
! "* I "'"'
'"*l*i*
li!4
.e*
I ' '!9.1'4,H J.8SC',
,. *"°" *¢.' ?.
I
?)"'""" Z!>.<<. t,,.17, e~,.
,,,,. ...,,,H ,.e!"' *rl.1?. .e:: -
I
, :0" '"~ t.j~<.. *~*I-" It$
I ,~,z,,.,.-
l,eL~1sro*. '~*/*
4!--'.t..
,,,,,,~
.e e e ,.. ,.,'!t'Jfj/4, r~te,,.,1~TDli'. /.c P.T.C I
I I 91<0 _ ,,./j,,,,,, iz-t. 1'v1.>G. 1ue~.
4 4' 4 'Jt<<O * ZZ6?'
CAP.,
ColP., *"'" i:..,_r. Ce~,f"11C
"" + :
I , I "". ~14/t;l.ttl<I CA'., rJ-'. llll'Dt! ~<<.
Cl I '*
D a1r.-~1,Jr.1<1~
c,,r..7,e
' CAP., ... , '"'* 1-., v c.i!.t.fl'ltC f
-c.ea
-;1e **' s~ "'"
8 /!) ,010~. ,el!<Jl!.I! 1+11, 1"'5it.4f~ i:.e1 z z Z- 918*:.l.fJ'41<1' D,oo~. tM4 C.C!t. llfJ I I !Jli>-~Zl~!Jlf'i' IC, 741(fJ U.I z z
' z
' uz.'
919* fjl,&".'!l,S<J
'"* fU'.l:ll I
I fZ IZ I
I IZ I
I 919*
9>> *
- ,r.e>e&t"Z,~/I"
,Z9~4 IAd 1c. ee~1../er5e~
IC, 74~r.
.e<<~/QTACJ.~1 45-1 U4
~
J I - JIL
~
z 4
z "z. 9~.Z: *?19(.d~
9'.t. 9l'.l,~ol
.el!LAY,
.f:eLAI,
~PDT iJ~OT A!l*.<!4
¥1$ (.
+ 4- 4 916
- J:> ""' 'Z4# 1M.- ~.eeA.ct.A:JwN oewc~
I I I ':>Z4* 1Z.Z'::>~ JuMPee, o.,*w11u~ WI
~ wz.
~
I "
w4 I I ...,~
I wr.
W7 we ws-wue G o:; , WP U!iE CNloeo\RO 10 SMU "THERMIS'TORS Af!t:NE. 9.t4 *,Z7f,3~¢'1 JUMP~*. d.,. Wl~I! W5 Nor~J: f!O'RO SURf"ACE. '
0 11£.r A£F R£r LCC.1C., 114*00Z815 .()'"...()
I, I.ISi 111"47" SINlt Wll4JI .50<.~,elNtf TN4.$1! ~<<IS/ON COMPICWl!NTS. 0 OETAILA II .
D.lllWllCa*
a.a .....: IEVISIOllS TINNICOMP SYSTEMS.
'ff Tennecomp Systems TONR 73-81 Computer Products Attachment lla RTP 7480 Series Wide-Range Functional Characteristics Cont'd. Analog Input System 7th Ed 19~7 Channel Selection: Random .Ai.ccess under program control or from optional control panel.
Integration Time: 1. o millisecond for 100 and 200 samples/
- second models.
- 16. 667 milliseconds for 40 samples/ second model.
2 O. 0 milliseconds for 33. 33 samples I second model Operating Temperature: 0° C to 50° C .Ai.mbient with convection cooling.
0°C to 63°C Ambient with forced air cooling (minimum of 2 Ft. /Sec. air velocity around power supply)
Operating Relative Humidity: 80% Maximum Electrical Specifications Full-scale Analog Input Voltage +/-2. 5mV, :!::5mV, +/-iOmV, +/-20mV, :!::40mV, Ranges: (Progr;;i.mmable on a +/-80niV, +/-160mV, :!::320mV, +/-640mV, :!::l. 28V, per channel basis) +/-2. 56V, +/-5. 12V, and :::10. 24V.
Input Resistance: 50 Megohms minimum (From signal line to signal line, pr from either signal line to guard shield).
Input Capacitance: 300pfd typical from either signal line to guard shield lOOOpfd typical from guard shield to digital ground Source Impedance: 1000 ohms maximum at ,;pecified accuracies.
Feedback Current: 10 nanoamperes maximum, +/-0. 5 nanoamperes/°F Common Mode Voltage: +/-200 volts maximum, DC or peak AC Common l\lode Rejection: See Table 1-1.
Input Filter Characteristics:
Single-Pole: Cutoff Frequency (3 db point) 2. 5Hz, Terminal Slope 6 db per oct:ive (down 28db at 60 Hz.)
1-10
TONR 73-81 Attachment #12 Consumers Power Company Subject J:~,,,-£C,/ 0 ,: ,,<Ze:;;; - Di..:::.
Cl! C.'-< rr /11r/.U:f.JA/C.{lo~!. . AT Nuclear Activities Dept .
- .:Z Engineering Calculation
/'(,,(.'2r?o~.,. :
~~ C::0,,..,.;0AA1~(
t:!;td.t..£ f'£.G LJeT~.~""~/~
By
/t-/4:.
71-1,.i-;-/,e14,.;~,,.,,..,.-f .:T,..,i.J,,-,._r. lo 14c /tf:,.J.Jt:co,..I'
/'<'47' 10/c./n /~co~ 71./~ Al;Zc. ,e..-'i),,.ucS"'='"L).) Tl.I,.,..,..
E,:~ec.7"'.S: cJF Date 10/9ft1 Chk
/..J SWt1/!.r-ro-~Lov>-J'!::J PATA Lo4'~A:,:_
'"' -n.1c;:
Sy57"£fl:(D1.:S)
- ,,,e~,.,-
- 7,Z*.~ i?eAc~A!, 1~4r~T1dA./ ~j57"/(.p1._ .,*~ C~L<=.uLA"7"'10U..S:
/;.1e:, .. ZJ.c..,.CL/"~"£.. '"il 1 £.,
£;:!,&£c7" or -;-,1..;,..-5, /Jf'l'C.. o,& /'7.4.l.r::'v,.*c.7"'1,.Af, A~ /,...)li:.4..L ,4.:. 07'J.1.1t:.f!. />7*>/U!. C./C.lr-'> C..:.ft.:.
rA/LU/l...S'. :Z-... ll./t).L.1),,.1(-, ,,..-.1,../A~O(:, ;z-,,./1'7<J-_,; 7°0*7,A./,C lJJ,.5. /l,._IAJ..o<e, _._;/<7AIA.I..~
O'T/.1£lt. /NllAI _,-1'c;:aT",-uuJ 1:=:.u" ~A..<:.£71 ,4~ *£"-A,.-,,µQ .;,v ,~.:;.-s.:.~ I f"l'l~=*~Vi!-/
~I
.:;;J, / \ £.c.rr.t:..o;J ,_,,,A
......... )C. .Nit/ L.o4
...,J.N l' u.7..r .::1_,;- ,-
/ *~ e::v.~1'>1,.hi-u
_,. 6,..t It<**::.-~> ? - * / -v:>r :1 ,/v'"c , , _,__.,";,
- Z: /J5s-,u... e-r':*'-t.t. ,4,,..,?J ~fC"££.<.. 1c1£.S ;
- 1) S'-;-£,,;P"I (!;,.~,;/(.Aloi!. 11~.ss. c.J/(..k_ Lc-.~p /~ ec.,..1~1,l;.~1!....t!!:..i:l /L-; A
/1f'tCA4- ,ee~c-;-ta.. lb..)1~r:...,..,ro.J ~y~7"</1'7 (.:~.,;~) .:r.,..rpr..J....- .,..,,_ .,.. ,_,..,c
- u...~ . ..Co~ Ar-IA..t.o<t,
- r,...1;Jv..,~ ()-r~c,e. '/',NA.Ai /\ 1~:..,._,:"':* ;:'.,t.:.J'i. S,t~~ . . . 1 J:,~ 1n1r (U--11-r,., ,N,..1 ricc,.,*er:::y a..: =o.s ",{. ~,.._,...,,) ..I"'~ ....,.,;:,;.
- .._-,.,,,_.,.
- -n~.< -,_/,.,"I/~. -r",<. ~ /.Joo"< fal...'So I-.ti:JK~TIC..S (t-1"'7' 11-1~. feA.;S.-
3.) /."- ~ /'.->.,. .. -'- ,,:~c..,-'-"",u::.t!- ( S££ £°"-!c(..oSJC.b ~-"".,,e___'.. o.: ~-~<<:..'*'*~IS'?)
- r,.1J1c;;.,...::. '7'"Nt.r 1/r'/$;. ::,,1.' -;;z,,:",.'°.""'~-t.J:..s !.,i * .:...;... 1l..J1,::iG ,.._.,_,
dl
(_)..,_,.,.f',_,~
A cu/r./t..-'*... .,...
'.'.)
- ~7"",e.'
- "'1dl..I,..,,_
10 ~--c:
~" .. r'*"""' ;J 1u.; __ ._;,t.:..
S1 (,,.; ,41.. 17'....o :.J 1ili£ 2) IA IJ r 71': ~ /it,,; ,;.JM ;7..,-~..c, .!; .Lo,,;ib Q.£ .:<' >"""",.; ,.1.;-_.*~
./~ ~00 o,,...,,.,.,. .,...," ~ - ..;1<> ~ ..
-'"T) /'/.fc 72:.,-:1 .. *.::,....,,1--rl!..,zs '~"-'.-t:.<!. .S'""'l'l"f I.$ .r'l ;=;)\o:_.s .*,..:o ~J/~10. >~ 1<"-,,:...-
.z::,.,..Jc, -,-;; ,-;,:G. ~c.u;( 1~ ::f,__.rr "I ::;r,v s7;t..uc ...,...o,..f / ' J,.,;",.,_/(-' *..; .::._. n c: 5~,..c>/"' f
£°1"'1,aLc-1.S A V:-0.eov/J..._.~ LoAl::J J?£'.::1.s"ro.<:,. .*o _,Ll~':'jv.:.~ ,......, -S
- /.~<',-:'
G?r~7£_'! /
- 7:--. -~
r:?e.!.1.S"rANC' AN'-3 ..z o,.c:
c~~1l..fM177""~~ La,...22)
/""'£.. _,_-A.f.s ;-~ucr,.,:i.J Z.riT.e.u.c..,. ,.i..J /'17.,q ,.r '-"-14 .t.. . .::f'/41 o<<.J..S. 77..r .C ~ .......r..,e Vo1..
- i!'"D..... .-1~,.c.,.~ TN 7"'/('~~ <. 7iJ 1*~ "!fa v'tJC No/>1 nJ t4 J..
/J'Jc:*, .,£.L. # o,:-
To
/11A;\../u,...4 G(.~0 !::;-...Ms.
/.,-=.-c_ E*tct..0£.,~"'>.)
.S<>;-',a"/
(.Dr......1,ry ..;ic;,:.c.- o - ..3114 o?~-;,.:S j /.';.;7:;-1/3' E~'C:.'-*
(j'-" .,- *
-'TONR 73-81 Attachment #12 Consumers Power Company Nuclear Activities Dept .
- Engineering Calculation
~) /)-!~
_:t-... 1
..$r/4<,A7 ~-VI'<:..£/:."~~
Z>w~ £-9.2 (E"-1c.'-o~£ .a),
By ~A7" Chk l'~s-.s u,<,£ C<..1# .. n- kcf I~ ....r.'-:J:J.J~i t..) -t"#IC. 77;;:.._1,..1/lcontfl j)~ /-IA!A(o(.., IA..l~i,1-r Ci.cc...~"--;.'( /~
.51.Jc,w1--l a,./ Cl'**'*'(,. /(,;,/-oo.j_J?"1':J--ooc- (£Jc~s~:?:::..). C11~'-,_.,.,..
D1,££A7"10,..r 1:5. ,4.s .Dc.s~R.u'3~1-) ""' t/'JtS. ~a.o.J-£'...~ .:)y,; ?"<--:,
7J£.S.e.L1,J"r'.:i..J'. ~& Z.1/fJ..,.,. C1;'2.c.u1-r1Zf ..;if'O<...JA' At.JO i:Jl'(...s.cl!.. ,t;e_ ~\
/.s .F~ Z.117,_,-r ..Sr~ ... 1.qJ...~ ~..; 7' 1t£. R4w~-G oc 0-10 I). f~A1>1 (:,f.:-cl-Ar1J/l ks:..rvµ;. 1 /J.s. ~~J..i.. ~.s "'-E. o.,..,..,..<< .;S#4"rf -k.i.A.,...c..6 ANALO<., .:I:Jf"'-'7"!! lo -f;..t-_ h~ (p{.,.rrZ~~.tfC.~ w1r1./ ~/J~) /(tte n<-1
/;./£. ~._tc., E. eJ,: 0-IO I/.
I I
.el'~ Loe~ ---.t CAtJl..E. ~ .DI$ .r"""I'"'-.,.. Ci<T I I l
I I .---'V'vl\N.--__,__ _ _ __
~5" I r I
=
11 (I'? *.S) I
.z.
--- C/ £'
rJ.
I .
I i °£1 .
L e~ j
~ 70 ~:.t K-A.D-!.
z"'-'I"-',- TO
.:S"H"~"-C.
Ge.c?UA./l:)
R1= l;g"-'-'lrt..S....,,.I'.'/ :2c.u.;.,...,:i;11_ ..:J'Kr 70 ~"!.l'.'.)-S ~_... aP .L.:.4/ ~o,;1::-1'<*..-~
,,.::;.do 77zA u..t,.., , ?"7"'"~ ~ .to~ A j ~ = C.Oo - (loo-' 100) "' -'loo -A-ft?:?..= ~.L,.1'16.L-'f... ~..{1._t7"0/.. t,t,,£.:> 70 /'Joe;, - lJ,o 7,1..'..c. er~....:::-:- Q.*~ 1 ..... ~
~12.J,,v&-:-0 .... / ,..::/,..,,r1.,f:, ..:-...:.. /"" 7?:1.c. '"i:e...,* ... 1...r,.,..,,-r-r-a. ::z7-A-rr""'.s. ~
P~~ 1s7"A ..... 1<:..JZ. ::r;:.,.-,,,:..,... ~.e..c1.E...:: ~'--::. /.e.,._;.1..:;,...,,...-r"-'-=. ~-,,,..r~
- (...tco,P) C~LL..£"11 /fo~a,er10.../At_ 70/1'1~
A
/.:>y 7N~
~
.£..J;A,1'.NL.4t:;n
@> ..:Jo;rl..~, ,.c;=
i...:_e...*,,L.J,..,,~,c/2..
?.:1-/S'- { 4co ~100
( 30'\(_lo- 3 )
100)
J)e_&.._."C.:-.,, ... /
?
_;;::,//'"" ~ .. ,.!,,r >-
(.30'(10*:!.) :=.
<.,!/ ~
\
'~'..:-.'-'*-~.:..,.
-::--:..:, ".'--r..
TONR 73-81 Att~~~~ ....~~~~~~~~~~...,-,...,_~~~~~~~~...:-...;_~~..,.-._.~~~~
Consumers Power Company Subject ,,e.I'~- 1.:u.. ~ Page~
Nuclear Activities Dept. c.i.1U.u.,..,.. 11 '-~v,.,icr 10 "' 1.t "1~ Of 7
'ALI ADI S Engineering Calculation By J<fq'?" Date;o/1,41 Chk e3: R,,:J...1' ~/"' U,Y17" ~/1""1 KC.Si.J.,.-ofZ. : /oDwA...
~-: i),(S J)~f7 1../C:, ~1.f'TO./:.. ":: 100_,_
x;:.~-:: ~(, ::- /K ,A.. ~o,w 1 ,._,A._) ~.;, -ri i.JI(. T,c~f1 J<:.e;"/ !v~~ &,,,e,&f"1(..1~...;-:-
7i-/ ;£,4!,.,1"', _. ro~
~~/ '=' UA/'/Jr11'7"7'<< ;<l,,..,l',.,,,.,,g.~ dl/7'-'-r Z,c,..'<L .LJ10.:i-c..' ?/-<,,,?"' kft"3cJ.f':<
/~l/!>C...
<!; = DJ.s ;./16J..i' t=rLc:.~u.~'~/ /'2..<!At~"~ ,r.:;;.1-rc::.<: -.: o.f,.....,._j DI=- D.<. = 2-'~'~ i:J1ci~r...~ -/?4T..b :;;; ;:J,<:t.(.-.:~:JW..J ,,<17" :T,v~,,,...,..
,:-,~N'A.:... Va"-rA *£ _>1::;,-v. l(i*.J fi,e.,c,,;;~/~ow~IJ Cut£/'_-r,..*-
"r/oltlocJ-~ '-; es-A.._,!:.,:?~ 6~eo,..,,C-' V~..:.y / .../,~_,,, ... n.11~ c::!!.J,:,:.-;.*
/v~T~ /?.5 ~'-<"' 7(j A ~1.S.,-~AIC~ ..,...A/~"7""./..,,,.. ....,s Z.v, ... 7"
- .'r..1,tt,e,c..;..!7'" 7"'->'1to:1:;;.,: Rs-.,..~1.., 70 c,,,,,.,,..._. /.. t Q,~o ~'!:'-.:..~* *_l**-**
.,.)1 ... -'< £ '111 c. le 'f' C ,,4 ~2 ,,~ s <.J.,o 7"o :S-o .- ~ / A ,.,1 1~ !:> i:J ', T ttu.I A 1.. ~ .A !::,
i!J;: ~/'I""- l<.J1J..J.. ~T j}P/)A.4.s:..1A/SL'j 4...Ab -n. 4: lou...1~,e ~~._i 1 t.*.H,Jlf:..f'(
n ~tt....i. ;..,.. ~.3,... ..... (/Jl1.....J).
'X..I = t31,0aJ,.A£. ~.£,..11(.-l,., .1l10~£. t:*.Hv't'-" ~~"-' .lJoc..J>..1 fJ:r ..)eoi1 71a1 /?.""-'. <u .01 AN Jj /a£.. Dz.. 10 L-1,,.., ,.,.. ~u ,r_,t.~.A ,<J~ 2:1 ~.sc:.AZ .. .6t<:.2>
/-l~<J ~ ro.<. '):)1 A~ t:: *.'.) Z,
- r- /;( C.o>.'-"::.r<:.;;:.t::,i:J /N"17' A ..$,t./a/{_7'-To-G~:>~.*-~ -'"" /3c;~I-( C:o4.!,::.u~"-:;t:.-"-
~ I r'.z.) /4 /'1oL,/t. &,,,JA3~ /'A',(,_{ ,q~l-io-<.'"'"_.,..o -C.,.l!cilJ._*,;:, OA.t s,._,,._ c:u ...: )J<-***.C..
/1 C'7~,A ,,;:,.-=~R.c..7"' ,(,,,,<r' T<,L_
.. O/</ 7°;41£- f?/_;;
£<-<:c~-" '*/ /..$ ~°""' 'r'*w4 " A/Jout!.. ~LacJAJ/:; *
/!A=- loo--...
TONR 73-81 Attachment #12 Consumers Power Company Subject 5F",,::-~r o,c ~...5- ~
C.1llc..Lt1I /'JA~t.1.vc.110..J.$ ,,4-r Nuclear Activities Dept. ~ALI~~ b ,.S.
Engineering Calculation By ,':!A-r Date Joh/;; Ch
'"-'-£ .SJA/a,CT - To - C,,/l.AtJNh t...>11...1... kDu.c::~ 7fa'~ /~N~,,..,,-;-r~'::: ,LcJAA 0
~1.5?""A'A.1C..C 70 .S'oo...A.. /AJ1>J1t:..N 1.;. .s...,.,,_J... i,...),r;.11...J ~oo ..A- +;o /o-..l"~*~.
77-'-£. /,t2,.:A1.t./'11'!7"Jt.~ f?~1~rr4 .....1U:.. (.e-4) b->1.w..,. /JD""J"~.~-.,- /a
"?0-1-S--(*lao ,..100)(:30X1<:.-3) = /C.(,,7...A.- To /YJ,<-1,-.!'7"',:1.._( //V-C k.'1*.? C.u.u-~*~
(.3o'L ro- ~ ')
/!.,.. 30;?11a. /IA.I() /fi.Al'o/-11*1...l.t.J.. Ta T'r'ft:: .:5-U< 1:11-..(rAT£. ~..C.,,<,_*_*,,n,-.-Tif.
I,_;t1'-' I f't!J!: !. .; 1)1--?
- a,,.:. ,E', .,..r.1 £fe.. .:s' 16 ,_,A"- ::{(..I. 1u, "-..: Q ~ C.:o,,./'d"-f1"!V7" ~,_,(,,(,,I.. I!:, 1
.J,(.
C! I _d ~ /!G::..1 lJ,; ,._,..,-/(..:.Al ~/./tJtt rt;_}> Dvt..,"-'Gi ::1 )~/,;_/{~""'-') .i....,.L.s C1 /l<:...u * ! .Lc:A /:l..S ~/ ~1-J.!:. .Z... t<...J/LJ.. & .:;.Nfltt ""-<-'.'::i ioGc-1..:'<.l. Do._,_..,.J-R~
1 10-V
/<? I= ..tfoo.A,..
- "?oV
.:51~'0Li1..J(,., r:::..1 ~,L"1c1c.S &.,.. rK,._,.,.,,.., . ,..'"'""'j ..:;\('./C.3....1\. 1 AJ' /::.i IJ;!_;..~ .;._}1-1 1 t2 >-( /fJ 1'.S ;::,, 1!...4 ,f..(.. CJ_, c, ,..., /3 I../ /Q "r 10.J ~D 1.L C:...G.S /ly,(}...,.. A,:!.,.'"'"' :JI: ,t{?/AI..:-
IH.C:,u:..;zy~ r#..i:: ;;;.,...A.£. LoA2i To (~o""' /oo 1-95")..A.. d.(. ~-_,5".A.. (JJ~"<<'.. *
/~ t...J,'?"',.._,,.._1 ~ClO...A-r10Ya -~0%_ IN,z. 7;!.~ ..1..1,,..,,rr~ ,.2,,:-..s,_s?"AA.!c'-(.;;>~)
GPt"-£ ;:J~"TuS.7 70 ?c - /~-(.I.loo +1oc +9.s"'~o~ro-3) ...,, /~72.. _,,_
(.30 *(fo-.:3') .
- To
/11 I
/'?A1...tTA1J
.,...,. " T "'l"1 u k4f' Cull~._,..,.. /1.,- 3o
.,j .
...-a.. (/;1!.A>j?ot...'7"1...w,.,1,., (.; f')'lt£ 1,(J(, i-
TONR 73-81 Attachment #12 Consumers Power Company Nuclear Activities Dept.
Engineering Calculation By /d47 I
C. .s'llol.1,C.b -Z..£,./1~ bJoD.c.S i)/ 1 /:):1.. 7 i!../.."
e.1) Z>uL1~~7 Of'~~IOAf µ 17"N Alo ~J'l I.. ~r(:,,,JA "- ~.(.i"'AG,~ 4..C.llC..£..5)
..5.l./o.lf!."T1A..I(:, i)1oi:>R-S DI ,.<J,_tb/r:.t<. J);i_ W14.4. k~"-'-.,. IN ~ C.1.<!*
<!.r..u.,.. ~o,.J~f(,, t..J,t/l.,,..IOA/ ,..!~ JtZSc..;t..1t51C.~ ::r-r£;t1 ..z:zz 13. .::r;..1 £,:.~~ ~
.:r-r£/f'? .III. ,;3 .:S~~v L..S. ,../ .s 7?"1~ /"J,<t,;_,:'v,.,;c 7"'/e.AI A w.l) /.i:rr~er t==""L Awl L11'/tE,.-To-l-.1,..11(!. (41.NJS:~i-.z.) _;r/-'ot<....,. Dot..U.J.!>"T~<../J/'? ::;,t:'
P.L .s .:Z:N~I.I.-;- k I~ TO/Z....S. K...s- f R.. (.. .
.i
<Z..:z.) ~rlod.7nv~ Ot..t."7" ..V1oll~ ~I. (}tJ,e.,,,,a~ No.t,r1A.1..*..,t1oll!& Vo.1...,..A<1'i:.
~?~;o.171'o,_( WI.LL aA:U!. £1-r/</Ef?,. J...1-./-C. #"/ oL .l...1~1. .zf.Z... 70 E;tao..i...:b.
~u ~"' $Et:nt>"1.:ai) D£f'£,..1i::J1Af(r ON 1 tJ,.r,£-rA. ,cL. !J1 o.C.. lli /$.
1'7.itt: ...... ALa ~1AS~ . .::s /.lofZ.T',.J(',, errH.U:.. L 1..JIC To ~ Jt!,,u ..1D u o~
A 1o fi1t<Jj'oA. 6...t".S'..::(+)c...l..C:,./C.G s',,.1~ '77t<. ,,e.i:i..:; kop A'-liJ jJ._~ .L ,.._.*.c_o~ -=,
~ .J. A~ ..z:ro,4Ar~ ,.:"µ,,.. d',..e!>'-'"-'~
- TONR 73-81 Attachment #12 Consumers Power Company Subject £",C.,.::c-c.7" ",.,: ,er:.!.- D.J....5.
Nuclear Activities Dept. C1~c.(.,J ,..,.. /?J.f4.1../tJAj~7,~,_,._s: A-,
- * * . ~.;<iZ.X A 21.es Engineering Calculation
!.) /\/u~.ie /"7..(',<J~U~/t'1.G.t7~ Sy.!'rl£M L,,._11?:..AI:. fot....1,,;.(. C,;.1,1,.._,,._,.~.J..
,i.Jv~.e~/!... ,,..:,;,,.,01-1~/c~ C11tc....u17..S {fM/I'~""- /ls. D.C..:cK-*1$""2:J '"'
C,~4,C- GN-llf:..(_IU... /)7-0,,.,1(.. /""'AA.r1,,.1..A!.:,., ,.:;,,c /1'?0':1.-£~ ,.,.//'-<.., J?.c.,::.~,c .'6
/1 . ..;//"
1'"!"77'"A ~ I../,.,, ~.,,/?"..$ ~ ')l ~ *
..::i) 0..1..5 ..I'....,-/v7'. Cutc..u 11""Rj /,,1 ('.,,.o: *<S,~LJC-) ,,,a,..*:) c.:p.-<;,.!,....,..~ * °7-'< ;f,:.,-.*::_.
/.1 !> ;r;_, ~ ;- S~r ~ J.J .._: OJ'/ a~< <.. Z 7".-1/0? Ir
.3.) tp,,<J,,..r' ;,v;:JC/7" /~ 0-1:JV ,t::,L.o.M /,,.... L,,_,...,U... t<.->'1:.(. ;LJ,..r"-**"'*-£.L (f'i:"~
/-11.S~~ ~.1(6,._1c1....0.s<*)) c/. />""'"A.1.... Uk...rt!.:..*A".C~ ,µ 1.) A:IJ.:JI/,._
- 4) .s"1C',,*1.r:;. t,.1ur>I'" ,.:""~,.. -'.1,..,1/'i:.,<'.i...1~ .... tt.K. <!1-IA"l;..'lf:-"- 7o !:l1..>: IS. O*;o\/
To ~d...ou....t.:i. (-~-£".*=<.~..::. 70 DLAJ<~ .1£.t..:r.1.J../7-00.10 /A./ />:A,'u,..*;,, 2-t:..At<:,til'.1 ... .c..., 1*)
!-) A/301.H...)
..:r.) 01'"'1,.,,.f',,,µ-..,4 ~o 9'~ /'.e,L.&D~.c'.c/c.-t C?t./AU~'T.£~u~,c .s .A:s 7:>£s~1t..16e..J:> 1,../
rA1~c;..i1,1o-z;, 'i)ATA S/.Jil.JC."r_t IA~.c.s j-~<?, S* 71 1 ?- 7.3 A-../~ -S-*7.4 (EA..!ua. \"-~).
I I
~c=A&e:r- i::i~.s Iivfu-r' C*~ 1'
( :S~c_ ,::>~ 2, ~OJ:.
1 I
/)~ l!..:i- ;S,;:_:. E:/>'*.)
-1sy .
I'ONR 73-81 Attachment #12 Consumers Power Company Subject.=.:...:.-.=~-=-~~-=::..=...
c1l!cu Ir /'>'}().J.../:t.)l>Jc_ 7"'10,.j Nuclear Activities Dept.
Engineering Calculation By K-4r Date 1ot.4t Chk Ii. :!H~"'P Tci- ~bthl.b o;: VP/9/111' ~ur,au."T i.EA~ /1c.rwi£.,.,../ ;t~ ([) AN.ll I.
($~Ou4/1J1J<, ~,s l.uJ~ /)...,~"'"- fl t<..JD~7'"- e,,o,.5~ C!o"'.JJ1"1'P:.N Ill,&° IC tl.:J1.r~ K!-
.lu.1..r~ /A/ A .s'#o{l...:r- e,~~1r ~cti,11.tL,...,.E.<n- ~..= rt+S./-"-A7t?J9<!. a~ /ovj:i.Jo..A..
oil.. 4:5"",,.,,,,o.., A.J SJJo"",./ 1w ~.(. e,.1ag5A,D~?o"'f <: D1rr.4 S1./1E£"r'~J "n-1£ C>f'19rn~ 1 s.
fA,...<.D ~12 ;:/"' tPu~pv-r- Yoc...,..A'9..C .$(..AJ,..tt!, a.F l/v I'-/' A.,- A l..oAD o,:- ..200 ..A.. "*
- )~tJ.1..r~ /.VA Cu.Al?.~rr oF 50 m.d... t.A-JN1e1~ 1.S 4L£A7"
- £12 /iv;.1# -r,v~ E'f74~c-r.c.)
..frt.,,Lr e112cu ,..,. CufUlL.:J 7":' llJ..S.oJ Ci1Joc..,1.,.JJ:inJ~ r.H.c. up /J""fJ .2cs I.JI. .... /N PL.Ac I .... ,~
- ~,47o"lc. /),41 .Z ~ Gita~N.:b "4"1.D E.Sr/111~1~.N,,.;(7 ,4 ~?oCI~ D1JCJ:.C~.,_,.,..,,,,_
.Z.11f'".,.. v'o ....rA 6 4: (J ~ fy
.. {NorG.J A lo I/,~,...,. /,i.JJJ.:; A.ssvll".U::. /-Ir f'r. @; o2 ~-v 70
°7#& ~A"'I'). 7/.f4_,µ..;4 7o"i<!. j),;d'T.4 $.;ttU:-r (f'4 5"'-~Y) :!tHa~.S /~~.,. tN 0/'A/Hf'
<'AN w,.,./ol~AMO IN,£. ];),,.:,Ptl(U,.Jr1141. Ztp" .,._ fl'{ou~.;:,. 71.rcE; j),,,:,,.-<,t..,..,J( '- ""' -?V
/Jc.. 6v_~,£.~:Z,t;.,),l-lotJJ.<.V~1 -r;.,.. iJ1,1~p :.vl'..,r.Tt2.AJ>JS1SToi?. Cfa. /'?Av ~.i::.:L'"""'"":
.4t41JJ Up~ l:/oLA...,.,...t~ ~£ qA,,.,./3 T..rf-' r (;:f~"'rJt.o,.J ~t..o..t>t ~-"'JQ') P",t..,,,., Tl-IC Vp/4,,.,.p &u r-11,...7": -r;..1c /f'?e>S'f' ~,;a.t:. z,,.~A<..,. OAJ Tri;;: /11£u"T~o ..* .i'i...t'!I Cute.ct,...,. wo .... t..>
- Sv J .
~&" .s'Ho~.,. )1J#.A"i"10..J /SK.J- 01.. 1~ .4.J:Jl:JinuJA(. k,,.iJ ~10.(. To o. 13Lu.*c:..Jo~...J.
Zr- ~N'o<JU ;J,c N*'1"~ -r,.o,-r jt-1oa..ru.J6 .<1 ...1e, I Tb i..1wC. .z.. #As ..,../'(,£; ~ ,..,, ~~;t:c_-:;-.
/Y~ 2l~:::.41'1,-r~ IN ;(lr/AcN;*"'C.1-1'- #-rJ ::r,.::- ,,</A. 1 UCJ~~,_, .... CAA-'.~
rA'-U.. ;- Te1C.$ ~ LJ;e._,(./tf;. if.1,c A/l~.J...1/C1""-/... U1.1 ~"'~,.,. /l"o.(.,(. fi..;~;..!
15"'// /,;::-µ,.,., (..,l'loo,,_ih ;r,..1 .t1rN.4A. p1/Z.JC.<.....,-,o,.J 1 o.Jt:. c;yr: 7'-/~
lo<--'~..e .p 1o)J<.,s; (c~.q o..c. c!t!.:5'") WILi. /...JL...J 01--I <!o,,.rlJ U.<'.. ~,_,.(,
.Sc.,t_,r-,&1c..1.<..,./,. ~~~?- ~ 1L~C...."r4. '/ 70 .,.,,.,....!(,. lo1...J1C,,<.. ,;',__!'I '--1
,{'A/ if:,~ 7o !'SI-a t.J T.W.G (Jlt_.,.,.17 u..,.. ,Cc..t.S ,.£. (;:.I J ;<J;.; iJ Q I~ c..o"°' ,._,* t'.:~ -:-
7/./& ~,,,ec:.c..r1vJC. F-~T££..,1/A"- C-1,e.:. ....... ,~ ::r.,- S1-1ouL.JJ /1.c..
/ 1./o7"'-.{j rH~7 TH~ ~IS"V f'o,,..,,z..e ..J,_,_p~1...1 /:S. ~/-<_I'!> _,.,-f..,. S/V-*17~
,:JM~ TNl'E.. s-v ~<->P;2L '/ IS. :<A-;-c.J> /.)r /,t(J,,.,,,_ ( ,C,i:_,e .i)w<..,
£".t.'.:r-1.1./7-00 /0) . "T~-££4'_.,r;o~ /~_,.1CN 5up14L'f ~ ~ ,-H",z.
CAJPA/3.1,(.1/{ 7D .;S'-'t°f'.1.. '/ ,t!:°,.Jov4 ""' (!~,e.A..A..,./r- la i.J~:...J Cu.ti£:-~/ .TA/ ?rl:~ ~V'!';J._'7° t),,t; A V<.>1...7".<<.. ,(.. I~~.., ...~,.,,,,,._;
£¥.c.;t;.::s;. or- +/-1-:J v 0""" 7;.<J'!:. D/?-",,,,..I° <!.u~c_c.t , I c!J'-'-r?..._..,_
l>e1~,,.,~ /#,,~ C"u.v~,,,..,*,, ... ~ 7"H',e. C.1~c..u. 1 r /~r-.::.<:.c...: ,.(~ . 4oL..L<>u.>~
~to,..,,P'4.<:1Jei Z>w<;, oAJ Pr,,(. 1.~nrAI l"Au!.0/1~ PAT-4 ~~!t,£7'" 0<:1 S--7.i,?J °S".#o,_.s /i.tA'T Al>£~u~
Our.. u"7"..51o1oi7"- C.1R617'" .:rN ~7" - /(1)ouJ&.1 /J,.,~ ~ L C:Ve~Vo,..,..~~ ~T,C'f"'10./ I~ Art:t::oL"tJE:.IJ
- TONR 73-81 Attachment #12 Consumers Power Company Subject £;:;:&er o/'= Rr.s -i).t.S Nuclear Activities Dept. C!.1~eu ,.,. /'1~Lr'-'N' .,.,oA/ ,<?..,.
---** ------"J',t,,1..1.iAlf:.£.i;.-- -
- Engineering Calculation (iv/./ IC. J¥ /.31A.>~ CL..J. Ay c.J,..IL'f I VoL,;}
.:S"u,e.~7 t£.. .!):'-u..l.S
,4A/b
,A7' A ~*-* -
//-<$; v,,. . """'1~*
As
-l-0.7V E.Nc '~ E:. I;::, C!.A ~ .:.4.. 5 ~,... --£ :::i '"'-..e r (!h .r.£ ...u*) ..:5 At o ~ ~ r 11 -< , ,,,. ,_,,...
-=- r1
- r. o.;;:~-1111-+-
/~V
- o. Jl'i * </4 4A.i£. ~~ ~,..; O I"" * ~~ ~IC<":"",
- $...,...i). H,A "n) ;?.oo IC r".e. ,£ '-'!. '-.,.,C...1.; ~ ' -
_..£.J_z. . . . . . . - .... / cS,
.:: I ,JIr.-<./{.~ I h ,.JJ.:. i, <:A LC.:.'.:... ) I!)IH Rl!AS4S. /(,,,\! Et:J. TA~'-£ .L/-lt..~A.ICJ..~.$E:'::>J .=-...:,:...'1.
- r
- /YA(.,..J{7 c.'o,.,~,_,c.,...o.C.. ~~,.:'~*:..J'-'/
0;?/1/91,0 c:: .4t'r (},__,..,l'uT Ci3J- A..,- ~. 7,2. OH~~ /1000 ;::'"-7:
1'r" C'l).L.. ~.ri;,o~ c/c.i.5-z -<:.11 _/l~AC~.'P?*IA!'?"'" 7 J-vo,_~_,;;. {)'-'"'/2~,...
C'4!flL<. r.:, /.S..£ ~f ,<w(-.
eC!.,<16,1..c '= (4S-/1000\(.G.,773J= 0.30-s' ~
1 =-(l(~-o.?-l"~;*)/0,30"5'" = o.9~~ ~ ">"'> D.tooca_
(i. &l',,c;o/ Ci~c. ..~ ,-;- J3..;:r~it..fV-..I tJ_;;AJ""'fJ C::.1/2(;.d.17" .4~" !)4~ ..r.--17v.,..
c:. / ,ec_ j,L I ~.'
r/cco,e;:i,,./C";. /c -r,...-~ /'1,,,:;µ~~~c.;~ (-s<1t.c,....*._.u
~~IC.OA.fh (..lC.~IJ.e)) R~-,r..)1,,../ C'.> ('7.-1~ Lc.-1...b ~~'!"? ,1. ,1 1 ct~~~,A/~ ~A ?o~(! d,.2tt'l"',r:' {,..Ju.. 1., ;?c..:u.:. - /.../ A f..:_,~..1.,-*7"' ~,..,./-'JLJJ C:s ... ,~;q .,....,dA./ /.U -r1-1-c. k/'.i.. ,,c.,IC/! ~
,q.,e_1Col~A .arc..,C. , /;..'/.$ o~c;_,~..,../<J~} ,..foc.J.C.1.J..<.JZ. 1 _),(,'oLJQ Afo..,.... & p..cT.e.,A IC.A....,._,1 /.., fO T,..,-,.C *~flt/),1..JC-'.C.~ .:Jlfl.... ~~"<:._C ; -
/PC. Jl~ .L I~ r IC.,l .( ..?,,vt4 f.,...:7"' <:; IZ..c..GA..A "'r",,,('_/c./
- TONR 73-81 Foxboro M611 Transmitter Attachment #12 Instruction Manual 13-17:;
1'11,,;1* :!
Enclosure CP Co Vendor File #M206...:.56 0 ,., r" I~
Measurement Hans:c: i ~- ~l ...
*-**--- *-*- *- -- *--*---**--*----- A c Jtan,:<? 1Jm11-;, p~t -15 to +350 -15 t.o +750 -15 t.o +1500 Span l.lr:iils, psi 25 to 250 50 to 500 100 to 1000
?.lax. Ovcrrnm;e, psi 1000 2000
- - --- - ----- .500 The Instrument. sp:-.u tn:1s b1* rlev:ltrd or dcpn*r-sr:l up to :ioo pr.n.:rnt or spnn. Add1Llon:il c-lr.\*:x,Ucn up to 1000 percent o! ~p:m Is :i.v:11l:ihlc with :i.n op~1t111al ck*vatlon kit. In either ca..sc, !ht: .!;IJ:m plus the c:~
'l:lti<<Jn or dc1.r~~ion mu::.!. nut. exceed ~h~ r:m~e !imits o! t.hc rap:m!t*.
- i. Outp!Jt: 10-50 m:i. d-c into eoo ohms --!-10% *-2'1':':*
Accurncy: :!:0.5 percent of sp.:m Workini; 'I'.:mpcr:i.ture Limit.<;
tor Tr:ms:nittei: D1.ldj": -*IO I*' to +250 F Ambient Temperature Limits .
tor Ampliflrr: -20 F t-0 +lSO F Powt>r Supply: 63 ~5 volts d-<'. 1m m:i.
Process Co11m*c ~ion: *.:~-inch or ~-2,-inch :.:p*r Elcc trical Comu*d i 011.s: Two l!l-im:h lr...lcls !rom hllle t:i.ppNl :or !*~-inch cond\iit Wei~hL: 20 lb Power Consum11t!on: 5 \":\ <l-c 1n:...'Cimum Prucess Connect.ion UICJ.:k: For1*:t*'1 '1"::*1ie '.HG St;i:nks:> Steel
- Topworks Cov!!r: CML alu:ninum, wntrrti;;ht.
BPllows Cnpsu!e: Type 3l6 Sl~in!c;;.: Stcd The t.r:in:;mlttcr m:i.y :.ie mounted in an7 position. The transmitter cover must be hnnd tightened only, to provide n. wnt~rth;ht seal.
7 V2N MUST OE ALLOWi!D TO REMOVE COVE.'~
-11**- I "t
I LEt... E I I ,3.!.
16j 18 I
CLUR"-NCE 11 FOR :ri;c 'ilf (1 1 ~ \~\.
~ I . !1. JfJf .~lJt1 \ .
IEl"CABLE AO ..nJ:in.: ENT
- . :. I .. J.,_.ll. ~l .. ; /
- 0
- - ., ,:t .. ' - *. ~ **t
- ~-~-/t.*'-
\Lr- ....... ~* *\:~r---
,-.. r1 ("<:' ""E 1
-r.*"
c... ' -*~"
fI ... ~:::~
o;~ .
"lfl.lff BAS(
EL£V.\TION (l~l ! '{.i) ASSf \10LY I
SPJ\INc.i . .,-- * ... I _j-1!
COPTION"-1..y""* -1:'- .
- \ * '\ -1 i:'"'IOIJI T - - * -I 2° 1 l'IPE
/"
Le&_.* ! \
~:: I coNNtc11or4 PRESS. CON~. l_ ~ -*
I . t>C' NOT ! OR .t ICPT ' I~
t' 0 l C*
~-!:>.l~V£ r<'t*N*"CT:f" ..
lit.Cl\!\ H~H 11
.. 2 _,ii.
r -y IN~lAL.L.AI *CN ,
l* ;,e. *.,.,.~ 1 I
MOU,..Tmta r:s*r. MAY-Oi: "UklJON ff.L.
t t
f!'
- TONR 73-81 Attachment #1-Q.
Enclosure 1u:conn OF T~:r.r::corr
. Sheet
. No / ..3 'K
......;::.--~---
J>atc: _....;/-~,_!'7.,u./..l:?.~'1-- 'fiMe: - - *~"~'"-f;.3::;.CJ=...;}~~~.S-.__. By: ?S-i.~'\.-'
- ~*tn ..-'1.
Vho Mkcd To: ** iJrlz ~
- Bis (Iler) Dept: E""'&AJ Coz=pan;r:_~b---...::;?<;r/;.,.:::...::iun_=-,:;;;,:Q~Gry-...::i:;;c;..;:,,,c;.;..;;7~----*---- .Phone: AC G./ z No S"l/.3 ?75'.
Ext _ _ __
- . r¢h<n..o / /Yk:zte.. cl.~ -;t-,u
!l'opics Discussed:
.. ~~ -~ "&a. ~ -ff._ 4+-~:..t;. 1,,_~
"Wt.LL 41; 1 .tLL.1 .. ~.AJ * ~. LJ,gcJ-."~ d.;f ~
l",,_.~.f_ -6. *~ ~ ~ ~'*+4 1i
.-lk ~.L*~ ~-fa;~
. ,a.a,. ~.*2 -~L. ~ .bJ. c-e*
- &. 00 .:..,._ .+I(, % :_ ,;i~ o/. .'* ti, ,, II"-'->'
-=- 'iov ..
IOCU.
- - - 70 })L..S
I I TONR 73-81 Attachment #12 Enclosure 18-i*:.6 Ju.'1.e 1 67 Pase l1 HODEL 6lOA POWER SUPPLY P&rt Nur.tber N0-140-~A I(
- m:i--*.
~he Model 610A Power SupplY is designed to. t'J.rnish power to ~ 31ngle electronic !orce-oalance tr:;i.r.3::iitter.
?he power supply e:tiloys a con-ventional circuit ~n ~hi.ch !'\ill wave rec~1r1cati~n occurs a.cross ~he diode . .....
bridge. See sc~e::a.tic on ~~ge 3~
!!l.t:erin; is accc~;l~3hed by ~a;acitors Cl, C2 and Re~~stcr ?J.. Resis~ors R2 a.nd 'E.3 ser*re to ::.:::;:rc*re 'Toltai;e regu-ls.tion by ac-::!.."lg as a. bleeder 3.cross
- ut =~ tri.e ~.o,~er su~~J...*1.
- at,en-
~s a. ~~~~ res~s~or used .
sys~eo lccp res~stance .
,~~
- For m.ounti:.6 i,ni'or"...ation, reter
~~~:;.~ ...
to Inst:-u.cticr.13-260. Ba.ck :*10Ul'lt ed Stlecif1cat1or.s output. Volt:;i.ge:
.:o volts *i-c ~ot:'.i::.a!..
ootent~~~eter se~ ~~ zer~:
':i1th l*~ad.
54 volts* d-~ +/-*1 *.*o::.:::;~. 9.1: ::J ~
76 volts d.-c :2 *;o.l.-:s ::.:: ;c ::a.
lOO, ll'3, _'2.2.0, ~;3 *::JJ.t:~ J.-C :l:;;,
A-C SupplY itolta;e: 50 or cJ c-:.s 3 watts (11 ~a) a~~~ -:~s PQWer Requirecent~: 3 wa.~ts l!.~ *.;a.) a~ '.;'.J -:;.s 40 to l4-0 "F Az!tbien~ Tecmer&ture :J,::iits: *Jener:li ?ur:iose ~r :Ji*:!.s:!.:in 2 nectrical- cia.ssii':!..:a t:ion:
- 'the r.,~.ro C.*mpiany Fosbl>ro. ~l:if*** t! .:3 .*\.
Printed in t: .$.A.
TONR 73-81 Attachment #12 Enciosure FORCE -BALANCE EXTERNAL TRANSMITTER CONNECTION BOX RECEIVER (SUPPLIED BY TERMINAL PANEL MODEL610A USERI POWER
~
SUPPLY
+ 0 0 60 0
- GRAY 0 0 0 19* CABLE (SUPPLIED BY FOXBORO) 0 0 0 0 0
0 0 0
A-C SUPPt..Y VOL.T~GE (SEE OATA
,,,...- - "L.ATEI Wiring Load Ad;'ust~ent output load resistance :::iust*~e 600 oh::ls ~10 -20 percent.
l trsi."1.g the table bel::w, deter:ni."l.e the c*1t;ut l.:iad :e.a!..3ta."'l.ce by 2. Set the !.CAD .~::*s-::.r:::l""'
su:imi.~g ~~e :!...~~ut ~esista.nces ~! dial to the l~~~e~e~~e all recei7ers i."l. the 1000. I.~cl~de between the ~es~~~a~~e the re~13~a.n~e ~~ ~~e t~3..~s~i3s1~n determined !..."'l. 3te9 l l!.ne it 1: !:.3 ~corec!~ble. Do :-:.~t and 600 ohm~.---~~--
1.'lclude ** 0 ,.~c:~3ta.:::e .~:: 1:he t~~
J.se ~n. ~r~e~c: t;~ =ea...s"J.:e t e i*e.:istar..:e ::i: any receiver not l!sted i."'l. the table.
~t!C':EO!*!!C Coi;~ Cl!'P..O !.
r.:s:~:::-s:rr~ =r !.Jo? RZS!.:T*.\::cz lJO ohms lOO o~ 0
?.ec~r:ers ~00 o.h:ns + OUT 0 0
- !cdel c~ ::::.i!~at~rs l-3 .Ji'J:tS L.1 0 1.2
... 0 0
~=}'4. ~=-:!..~:=..3s~-:>:l .
~i) eh.~/lJuJ t"t 01" C3.=>:.~
- .:onj*J.:-:~r c:.~!~
r~,d>oro Company Printed in t'.S.A.
Folh1>ro, ~1.i,,.* U~ .*\.
TONR 73-81 Attachment #12 t*
i Enclosure
~
u I
i PT-07~8
~ 1eoit1 M/l-11
... l I
2 0
P.o1~18 l'Oo"jER SUf'F'l..Y l'01<&0RO M,k.101' 51 ~y R SU' -'Ott I
... lo. + :ljl I -~
.....J
~
2 I
t"'"'° I.
w~no I ,-.
I J! -~
I I I I I '
I I I I I I
- I sn l<OT'&' 1 1 I
- I I I I I
I 1
I I t
I I
I.
L--1--+--1---. TO wL *"' ___ ......
'R"'E"",."""c."'-r"'"o"'""'""'c"'CN""T=.i.i.,..,.,.N""...-=1"'1;i-1=T1 2 OUT OS: 4 COINC1ca-;;.i
...,.TRl'I.. 1 O..OS2S '
~* --*-****. . ..
C:V* <=01 4- C:'J*0!:> 10
'--...,....--+---1.....,..-+---J l!E.F Q"""' <L.A-Tl!.R)
I I
- t. SF'E' O\~ ~9G~ O* '3? 16 F'OR I
SPECllll.. <lll"IPl'IRTiollONT ""1R1t1G I. 16" TWl'STl!:l) PAIR. SUPPL.lED WIN IWST'l=l.UMCNr I
I II I
................ _____..I THIS IS l'IOT AN ORIGINAi.
T
- J P 0 0'r;1~
POWl..i&
0
~1'1'1.'t ----, ~~.:.?.7.~!._:;;l'!t,;..*- - - - - - - - - - - .
--- -*PIG*07~1A
. *cu; ... 1-.
Cl"lJ:
IPU I 1 PU
~-~1 110Y.~CFUUCJ A*G. 11ov. PRE,..iltl?Er. A*' '"'"" u ICNU.tl.1o IP1S ti PH r.r..,1u. vio. *a*** PIJI. "11<>, Ol<IZ
~
!i
- '-Oll 11 *- --
i* 1 'S I 16.
WJ UI
- o.ionn
- CMO..tlt
---I Pt6 IPU t
-rl~9
.,Hl""lt ll'f,;, (I I ~,, ..t.--~-,-~----~*-----
Low PIZE'SS. 1 I 1/4 l.O~*C ' " ' ---.Jl.--4---1---'11,._ Tl, II: ...... !!It I . "' """'"* 1-111 6:.-L---J:...-..::.-...S..--l'..-~ AT <:.!1J.
I 1** 12*~ ._ r.ill <;Cwl,..1 IP21 111*1 ,zz&>* ,.oil \Cw'" IPZ1 I ..._,,,____.
. 12*~:.:.*:.t>
PTI PTt I
l*SV STCMI G[N. E*50A PRfS~Ullf :!i16NAL To PAI PAI DATALOGGU CHA!INElS MlS, l*S;f,
-- *-*-:J> . I (DWG. f*SJ $H, iHI PTI PY1 ,.... -- - * .:::, ~ I co*. owe;., .....
.....1
-t-.-:.i r -t-,
~
I t t-1 ti*
.....1.,,.,, ,....".
(T..,,.ICAL)
I
~UAM
~ i I
I I
1.
~
Sf PAIZ.ATE llACIWAV sv.. TU.A
&AR.II.II.ft &ITw&I."' c:u.a.t..i...,r.LS *
....,,,..,,,... ::r..\c.f.*.*.,,.,.
~ C*~ ToP~~~ss~~;.,. I To 1.ow E*C::lPT s161JALS I TlllP UNIT. I T ... -
Pf:,'.n~IJ"tl T~
- ~.
1lJ P.ATA P?.<JC i; :.;_:"'~
- C.f*. ~lil"li ~li.OJC' r:iwc s PTOZS1& L_ PA075111o _j L ,.A07'i*A '29'-w* ,.,_ !l*O'lo '""'f'~* *!l~c-J
- - J "*!lie.* .......... $ 't1'1 I il_iM:!_..W..~"-'i.flATO~ E'?.~~.b.QW__E>.BS!,'.<;iU~l'i Cll2CL,IJ,!_~OJ CIRCUIT t.JO.t . ::J. Joes ,..,.._,.~.9-q)
$Cl-'UAI lD24 'ICMIM' 1192*
,,. !l*C\;. , ... , .. ~. 9,.,,
(COM"'0"" l'OI& Al.I. 9CMl ..... I* la.C*Pr .. CMhAC. lP16 f l .. U) (*C"4U.AI 1,.21 **Ml~Art) ., /II I ,.,~ ';I y :'\ . >I f:; ~
' l '
~r *:t*!. TONR 73-81
~!**
- 1 I*,,,,
I,.,.*
..a. Attachment #12 Enclosure llCHTIL COMPANY CONSUM~JS row:* cc~.1~ANY l
sc HIi vA r, CD'iA*c-~*-A-...,.---*""
STEAM C.Et.JE.~ATOk:.
P~lissu:a Ii I t..J s T ~u~1.:: !o.JT ,\TIO~
. t" ~
~ i 1
....:_'_.J_-.*_,__ ~_:_;_~----=-~--~-*-~==r-~**
-* .~ .. ' ........ ~ .
- i,.
I.
(
l' J:
f'*.
I
,.f
~ .
- . ti:4; .£J!l$:!!J£1J t :;*
- r :.. * ** * ** , * ** ~ , \ :! :, * . 4, * : ,
a I
A.ANT C.IU:UIT DL<;.
DL,, ----1--- Cl.~
,,.. PTC '?'t-ttl;.Y ;T.:f\.
.;,= .. - ~ ... ~ft.lJrto':'
I CONOITIQNI ....
C>RO CONDtT10N1~4 I HICllOf'ttlXil-CARD I
l4 .. .. i;-,. ;J.~.
Rt:1;-.:~
I ;~ :;
I H** .:...Fr.r .. -
- ..
- : . ,.. '* ,z.~. =-'!;
P!~ ~ -:;"
41 .. o.'9* ,;_#ti .. '
t *t=*~-='"'
c AT - IE1tcl!'ll. _t; .. ",,&.!af
~
~
c:.. CL lOO
- e~t:~r-oc.,.,.
... E,__,cs:i-..
D Ju"'"e"
~
OPTIOll 3 CAUllllATt MLAY' CAI.
&I.IS
- {I.HS TONR 73-81 NOTU~
Attachment #12 t.m CAlllM!T 4flOUN0
- 2. WITHSTANDS NOllM .... MODe ....D c,a..._c.. M:>ae Enclosure <**) 11:ee 41.Z-1974 SUflql! WA*ffCllM
(~J *EEe. * ., ... 9'-8 1a4P1.JL.'6E- Tf-~r{*~,,. ~e*"~
(C.) "<Hl "'"'~ CA oc: (G .. T*M-Co.~LI' jl.Pll'o:.oec l'OlllUICU e B . .
OlQl&M.A:
ijii1 .......
"""'"*' ! . ** 1 dH! CIUCU
~!
MlllUI !
- '-"IHNOl'ID 11'1l*"'91M
- ~;pf hi.11
TONR 73-81 Attachment #12 Tennecomp Systems, Inc 1978 Enclosure Technical Information and Instruction Manual for the Data Logger Sys*tem
. -** --- -*--***.--* ... Volume II-Maintenance Part 7 - FRS 7.4 ANALO§ 7.4.1 General
~UBSYSTEM Analog inputs to the Field Remote Station are conditioned, converted to digital values, and compared with appropriate alarm limits by several pieces of equipment in the field remote station cabinet.
The input connectors are wired directly to terminals of signal con-ditioning cards in panels Fl~ and Fll. T.he conditioning card provides protection against high voltage surges an~ overloads *. It also provides relays which disconnect the fiel~ input wires from the input to the analog-to-digital converter (ADC) ~nd substitute a precision ADC calibration voltage. Each analog inp~t signal leaves the con-ditioning card at the edge connector and is carried through a shielded twisted pair_ to a relay multiplexer input card in the ADC chassis, panel Fl2. The multiplexer card has a low pass RC filter for each input signal and relays to connect the signal to the common ADC input bus.
The ADC is controlled by the microcomputer system, panel F9, through an interface which permits th2 microcomputer to select an inp.ut signal for conversion- and the amplifier gain to be L1Sed. The microcomputer receives a digital value for the selected channel in binary code.
This value is compared in the microcomputer with binary limit values previously transmitted from the CCS *. If the input value is out of limits,the FRS advises the CCS over the serial communication lines.
If the selected analog *input channel has been assigned to a PRE/POST history.group, its binary value is stored in core memory by the microcomputer. An analog input may have its binary value returned to the CCS over the serial communication lines if it is a member of a logging group or if a printout of its value has been requested.
7.4.2 Detailed Description 7.4.2.1 Signal Conditioning Signal conditioning cards for up to 60 customer channels are contained in panel Fll, drawing 113-002815-001. The first card position is used to hold 4 ~hannels required for thermocouple referencing and permanent calibration. See "CALIBRATION" section.
If more than 60 customer channels a.re required, a *second conditioning crate is installed in panel FlO.
It is the purpose of the signal conditioning card to provide protection to the ADC from overloads which may be applied to input wiring.
A second function of the conditioning card is to provide signal sub-stitution calibration of eac:h ADC channel. The conditioning circuitry.
is best understood on Tennecomp drawing 161~002815-000. For all input signal ranges below 10 volts full scale, Rl and R2 are lK (nominal)
~
positive temperature coefficient thermistors. R3 is not used. The
.01 mf capacitor filters high frequency transients. 01 and 02 are* v zener diodes which break down if the normal mode voltage on an input 7-8
" --~
TONR 73-81 Attachment #12 (See Page 7-8 for origin referencel Enclosure exceeds 15V. If the zeners breakdown, the input current through Rl and R2 becomes very high. This current heats the thermistors and within 1/2 second their resistance increases to limit the current to 6 ma.
The ADC can accept* common mode voltages of up to 200V. Should the common mode voltage exceed 200V, bipolar zener Zl will*break down through Dl and/or D2, l imi ting the common mode seen by the ADC to 200 volts. Rl and R2 again act to limit current.
The relay shown is used to swtich the ADC input from the field input to a calibration voltage.
7.4.2.2 Detailed Conditioning Circuitry - 10 volts or less full scale Actual circuitry used on all conditioning cards for lOV fu.11 scale or less is shown on schematic 114-002815-000. Component location and values are shown on 141-002815-000. The first sheet of logic shows input circuitry similar to 161-002815-000. R12, R15, R18,.*and R21 correspond to R3 and are omitted. R6-R9 are omitted as these would be required only for sensing current inputs.
Sheet 2 of the logic diagram shows the elements required to support calibration and gain assignment. This logic is connected to the micro-computer through an analog conditioning interface (see information on panel F9). The four channels connected to any one card must be of the same input range. Rl through RS are 0.1% resistors selected to provide a voltage 903 of full scale when lOV is applied between CALSIG and CALCOM. Jumpers 11 P11 are installed, as is W2. W2 selects calibration for one analog panel at one time. For additional details of calibration see 11 CALIBRATION 11
- Jumpers W4-~l7 are selectively installed (as shown on 141-002815-000) to provide the appropriate ADC gain code for the input signal range assigned to the card. The microcomputer reads this gain code through its analog conditioning interface and sends this code to the ADC through its inter-face. This technique permits input ranges to be changed for any four-channel group on one conditioning card by replacing the conditioning card with one for the desired new range. No changes in the microcomputer program are required to accommodate the input range change.
7 .4 *.2.3 Detailed Conditioning Circuitry - 120V input The voltage attenuator shown on 161-002815-000 for the 120-volt range was reconfigured to achieve proper operatiOn with the ADC. R2 was replaced with a fuse which opens on overloads applied to the 11 low 11 input terminal. Rl and R3 form a.100:1 divider.* All other components perform as on the lower -voltage boards.
Details of the 120V conditioning logic are shown on drawing 114-002856-000 and physical component location is shown on 141-002856-000 .. Sheet l of 141-002856-000 shows input circuitry. RlO and Rll correspond to Rl on 161-002815-000, Rl2 corresponds to R3, and the network forms a 100:1 divider. This ratio requires an ADC range of 1.2 volts ful1 scale, and the balance of the card is set up for that range. R6 through R9 are not used.
7-9
TONR 73-81 Attachment #12 Gulf General Atomic Enclosure Dual Linear Power Channel Model NP-6 Instruction Manual This summin_g junction is a virtual ground.
Feedback Resistor determines Ion or Fission current to voltage conversion.
Chamber
/
- .
- Output voltage to meter, bistables, recorder, etc.
- Iov
-HV ~---j High voltage High gain, low off set chamber supply . .- current amplifier
- .i f
j Figure 2. 1
- SIMPLIFIED SCHEMATIC - LINEAR POWER AMPLIFIER 1[.. . '*1:...*,.)_J.
-~~
Fairchild Linear OP .AMP Data Book August 1979
- I'* '>Mir s#io$ ,.. rt ebrt de
- aa e;c*Ib- ~>tt * ! s 1** . . . . . . . Hr
,;,-f A n TONR 73-81 Attachment #12 Enclosure pA709 r ELECTRICl HIGH-PERFORMANCE OPERATIONAL AMPLIFIER CHARACTE FAIRC.HILO LINEAR INTEGRATED CIRCUITS lsee definitic Input Offset Input Offset Input Bias C" Input Resista:
Output Resist Supply Currer Power Consur GENERAL DESCRIPTION - The 11A709 is a monolithic High Gain Operational Amplifier con*
strueted using the Fairchild Planar* epitaxial process. It features low offset, high input impedance, CONNECTION DIAGRAMS Transient RIIS!
large input c:-mm:>n mode range, high output swing under load and !Ow po-r consumption. The II-PIN METAL CAl\I device displays exceptional temperature stability and will operate* over a wide range of supply voltages (TOPVIEWI with little performance ctegradarion. The amplifier is intended for use in de servo systems, high PACKAGE OUTLINE SS impedance analog computers, low level instrumentation applications and for the generation of ~ial PACKAGE CODE H Tho following linear and nonlinear transfer functions. Input Offset V tN FRECI COMP Average TemP<
of Input Of I
ABSOLUTE MAXIMUM RATINGS Supply Voltage ~18V Intl!rnal Power Dissipation (Note I Metal Can 500mW I Input Offset C.L Mini DIP 310mW .;
DIP 670mW Average Tempe Flatpak 570mW v- of Input Off Differential Input Voltage tS.OV Input Bias Curr<
Input Voltage :t10V NOTE: Pin 4 connected to caae Input flesist1nc
.Storage Temperature Range Metal, Hermetic DIP, and Flatpek -65°C to +15o"C Input Voltag& f; Molded DIP and Mini DIP -ss clo +12s*c 0
- -..; Ope.-ating Temperature Range ORDER INFORMATION Common Mode
-' Military (11A709A andpA7091 -ss*c to +12s c 0 TYPE PART NO. Supply Voltage r Commercial (µA709CI o*c to +7o"c pA709A pA709AHM Large Signal Vo1
- Pin Temperature pA.709 pA709HM i Metal Can, Hermetic DIP, and Flatpak (Soldering 60 sl Molded DIP and Mini OIP 300"C 2so0 c pA709C pA709HC iI Output Voltage :
Cutout Short*Circuit Duration Ss I 14.PIN DIP Supply Current
'I
[
NOTE:
RatinA applies to ambient temp*f'atunr up to 70cC. Above 70°C ambient derat* linearly at 6.3mW.!°C:
for Metal Can~ 8.3mw/'c for CIP, 7.1mWt'C for thtr Flatpak and 5.6mWt'C for the Mini CIP.
CONNECTION DIAGRAMS PACKAGE OUTLINE
!TOPVIEWI PACKAGE CODE 6A D
SA P I Power Consumpt
..ftF B*PIN MINI DIP ITOPVIEWJ 10.PIN FLATPAK
!TOP VIEWI NC NC PACKAGE OUTLINE 9T PACKAGE CODE T PACKAGE OUTLINE 3F PACKAGE CODE F IN FREQ tQ'AP
-IN 3 12 IN FREQ CCM*
V*
1 j VOLTA*
ASA FUlll la*~----
SUPPLY'
- =i !NFffEQ~B NC *L>;.a
- IN
- Mo'C-.TaS*tJ'"C .
COMP INFREO COMF INCOM, 1 7 g OIJT FAEO v-I
-IN - 'I* COM*
J
- IN t . OL,""T NC NC 4 5 '--i:==::iour v- OUT FREQ OUT FREQ C01.1P v- co...
lt ORDER INFORMATION ORDER ll~FORMATION ORDER INFORMATION I TYPE . PART NO. TYPE PART NO. TYPE PART NO.
t pA70!lC pA109TC 11A709A µA709AFM µA709A ,.A709ADM
µA709 pA709FM pA.709 ,.A709DM pA709C ,.A7090C
µA709C pA709PC
- Pl01nat Ja
- P*ten1oe1 F airchtld pror....._
S-68
......--*** ... -.......... *~-~-- ...~~ .....~*--*~***-.- "L A ..... I CF - -.. ~*~--.- .. _...,.,.......,,,_ _ _ _ _ _ _,..._
TONR 73-81 Attachment #12 Enclosure
+= > ** *s..- ~~ ...:...~.:.. ......... _......___._... .~*.........._._ ____ ,& __ !...-...~~-....... ~~a*.;.,a.~-~- --i~~-*-*- .--- . _...... -*-** -~
- l. FAIRCHILD* µA709 ELECTRICAL CHARACTERISTICS: V~ ~ :15 V, TA~ 25°C unless otherwise specified.
µA709C I CHARACTERISTICS (see defin<tions~ CONDITIOris MIN TYP MAX UNITS MAX UNITS f Input Offset Voltage Rs s; 10 kn, *9 vs: vs s: :1s v 2.0 7.5 mV Input Offset Current 100 500 nA 5.0 mV tnput Bias Current 0.3 1.5 µ.J..
200 nA I Input Resistance 50 250 kn
' n I Output Resistance 150 500 nA
' Large Signal Voltage G*ir. RL 2: 2 kn. VouT * +/-10 V 15,COO 45,000 ' VIV kn I R1 ~ 10 ~n I *12 *14 v Output Voltage Swing n Rt ~2 k!'l :10 :t13 i I v Input Voltag~ Range :t8.0 :t10 I 'I I 165 mW Common Mode Roj.-ction Ratio Rs s: 10 kn 65 90 Cl6 Supply Voltage Re!ection Rario Rs S: 10 ~ll i 25 200 I µVN 1.0 Power Consumption 80 200 mW V1N = 20 mV, RL 2 kn, =
30 % Transient RMponse Rise time C1=5000 pf, R1=1.5 kn, C2 = 200 pF, R2 *son 0.3 I 11.1 Overshoot CL.S:100pF 10 %
6.0 mV The following specificaticns apply for O'C S: TA~ +7o'C:
Vf"C Input Offset Voltage Rs.S: 10 kn. +/-9 vs: Vs< :15 v 10 mV
µ.V/"C Input Offset Current 750 nA Input Bias Current 2.0 µA Large Signal Voltage Gain RL~2k!l,VoUT=t10V 12,000 I V/\/
70,000 VIV Input Resistance 35 kfl v
v v
dB
µ.VIV PERFORMANCE CURVES FOR µA709C nA
. VOLTAGE GAIN OUTPUT VOLTAGE SWING nA AS A FUNCTION OF AS A FUNCTION OF
µ.A SUPPLY VOLTAGE SUPPLY VOLTAGE kn
~
~&~1t----1':::;,..-"""i--4--,.---1
~<01f-.....+~-+-~+-'-<......-+--l Lt---+-"-~...---;
0
- 10 1:1
~Y\IOLTACol*tW FREQUENCY COMPENSATION CURVES FOR ALL TYPES VER CONS.UMPTION I A FUNCTION OF OUTPUT VOLTAGE SWING AS A UPPLVVOLTAGE OPEN-t.OOP FREQUENCY FREQUENCY RESPONSE FUNCTION OF FREQUENCY RESPONSE FOR VARIOUS FOR VARIOUS FOR VARIOUS VALUES OF COMPENSATION CLOSED LOOP GAl~JS COMPENSATION NETWORKS
!* *1---.,..---.--...--;;,t---;
-~-*~1_____ ,_,. ~- . -.. .:...;.
i oi-'*-*-....,."-'*-*-"-'"-**...*-*'-"._.,_.'-+-;
i *-*~ *t** ... i . *- '_. __
~ XI CJ* YIDul .,*rttU.t::*XI°"
-~-? ---~*- ~
~
" . -.:.-~
...-*-t-****
C1*'!0K'oll' lf1 *lt*U t:o*/'atl.,I 5-71
- !"'~- . ..,, liW \WJ!h¢4
-*" ; Q #. Q.A .; 4 *.fa¥,!!. 'SJ.J>7 - ~ a;u-._.._~r~:,,:*
- . l :.. Jl...,.11& . ... - - ** - "9'1<::"~':":-.:*
TONR 73-81 ~
Attachment #12 ~
Enclosure i.
- .**-.~~..... _.. ~...... ~.-~......~
FAIRCHILD e µA709 TYPICAL PERFORMANCE CURVES FOR µA709 AND µA709C LTAGESwlNG INPUT BIAS CURRENT INPUT OFFSET CURRENT
.iCTION OF VOLTAGE TRANSFER AS A FUNCTION OF AS A FUNCTION OF
- SISTANCE CHARACTERISTIC
.. AMBIENT TEMPERATURE AMBIENT TEMPERATURE
- ~
I I
-s**l!IY I ! I I
... i---+-.....-+--+-.....--+--l
~ I I I I .1
~ M~-t-~-.-.....,...-;-;-1---1 ! ! I I i i I
~
i! ....... I i I
~
i .........;..-.--.-~-~-_,..-t ! "'I.._ I I
~
I i"-- I I s
! <Ot---+--..,-.......,..-...,....,...-i
" I
.... I :--.... LI. i I I "t.UllCl-'4 I 10
... ~~tt:I:ro 0.1 -41 *<U -41 0
"""1'YO'-TAGl-ffN G.I Cll
-zo I
1' ID 11WIAAf'UAl *"C 111:)
i
- 41(1 TCURRENT INPUT RESISTANCE ASA FUNCTION OF POWER CONSUMPTION AS A FUNCTION OF INPUT BIAS CURRENT AS A FUNCTION OF I
-:TION OF llPERATURE AMBIENT TEMPERATURE
... AMBIENT TEMPERATURE SUPPLY VOLTAGE !
I
~-111v J I
! ! I I I r ""
! I 1 I ! i-,-.
i:r, j
~
ii 1--"--f--t--'-?'""
L
!~
I
- z ...
I3 111
_l- '-"":"""*
iu._.._...,,c--+---+-'-_,__-l I ' I
- t-,-'"+---+-..,........------l
- i. I i i. .
I I .... ~-.
i I I I
i I ,31!--'_.,.,,0_.1*~,~,.....~,,,.....~,~,-i'-!,...-..,;,.
TIWIU.l'U*l .. "C Wflft.YYCH.TAGl-tlil
- ONoF
'°'PERATURE I I I OUTPUT VOL TAGE'SWING AS A FUNCTION OF I.DAD RESISTANCE
- ~:~ -t--r---':=-_,
~ai-....,.--.+_...,_....,,,c-_...__,
FREQUENCY COMPENSATION CIRCUIT TRANSIENT RESPONSE
! i 1"1--'--"-i'--Jo----.-~ ~ *Df----+---,4-~
£ aUf----!--,f-+--f---f--+---1
.....~-i-~"---1
- ~
' r 1:1------.. . .
~~!----++--+------_,
<---+--'------l ~
~ o.tl--+-+--+--_,__....._,.__.,
I ;? Ut---t-1--+--+-.....-+---I
.*, ! a ..
i1*t----fr-..,...,.--t-____..__-i i , I 0 Uie R2
- 50 n when me T**a*c
. I amplifier 11 operated with CapKitlve IO*ding.
l.O 'U 2.C :U
, ~-*c A FUNCTION
.OOPGAIN fREQUENCY CHARACTERISTICS FREQUENCY CHARACTERISTICS
, WllENOEO AS A FUNCTION. CF AS A FUNCTION OF
- NETWORKS SUPPLY VOLTAGE AMBIENT TEMPERATURE
....... ~r.tGl-11' 5-73
- --t-.
ORPORATION
- TONR 73-81 CIRCUIT SCHEDULE
- Attachment l~
(E553-R13/ 46) Enclosure DATE . 11 DEC 80 JOB NOI0512 16 0 PALISADES FEEDWATER MODIFICATIONS REV. 9 RUN 21 PG. 46 A CABLE OWG CllOIE s WIRES CONN c DESTINATION OESCAlrTION T OWG T CABLE "A VIAS >
l NUMBER T I I I w FROM
- lfNr.TH u I COLOR I COLOR I COLOR FROM n:
0 ro svs* AMot*n
'Ci)oi .. nua.sro NO. NO; NO. ID-N *icn;~c* s I I I w x 1482 . 0 IG04 F C253 53 1 33 F 33 IBK N331WH 34 llm w
- 35. N341WH 35 IGR N351WH :x:
C13 518 VS6 u 36 1oR N36:WH 37 1aL Ul N37:WH 30 1w-BK N30:WH :::>
. SP IBLBK SP IWH SP IWH SP IR-WH
- SP IBK-W SP lwH
. lJ SI> IG-WH SP lwH SP laL-W SP IIWH SP 1I BK - R SP 1I WH ' ::E SP 1w-Ro SP 1WH I n:
I alL I I I IG05 0 C253 53 1 45 F 27AIBK 27AIWH 27BIRO XR123 XR303 XR305 XR307 HI 16 C11 518 VS6 45 T 27BIWH 27CIGR 27CIWH 210'0R 27D~WH 27EIBL 27E,WH 27F 1W-BK 21Fjw1-.1 27G 1R-BK 27GljlWH 27H1G-BK 271-1fWH 32C1D~BK 3ICfWH SP.IBLBK SP IWH SP IBK-W SP IWH 333AR-WH 333ltWH 33AIG-WH 33B WH 332ABL-W I 337.1WH 7VA BK-R 7VA,Wl*I 34A 1W-RD 348 WH I
IG05 E C253 53 I 45. F 28A!BK 288 WH G RO XR123 XR303 XR305 XR307 HI 16 Cl I 5 I 0 VS6 45 T Pt IWH G GR P4 WH
- r. IOR N4 WH NI AL G 'w1-1 IG05 f C253 53 1 45 F 13A RK 138 WH 14A RO XRl23 XR303 XR305 XR307 Ht 16 C 11 518 VSG .45 T 148 WH l~iA GR 158 WH 16A OR 1GB WH 17A BL 178 WH 18A W-BK !BB WH 19A R-BK 198 WH 20AIG-CJK 2013 Wll 21A D-8K 218 WH 2211 BLBK 228 WH 23A BK-W 2:1B Wit ?.4A R-WH ?.40 Wit SP G-WH SP WH 26A BL-W 2GB WH 29A BK-R 29B WH JOA W-RD 30B WH 1
IG05 G C 11 53 I 22 F 33348K 3331~WH SP RO HI 14 H044 C04-2 5 IO 124 .35 SP 1GR I . -
I I IG05 II C 11 53 I 47 F 2GAABK 26 IWH HI 12 XV305 XU 113 XV205 H011 COl-2 510 191 80 I I I I I I I I I I I I
4 t rd tt' +foWwtor-.,,.,...~J..A*~c.. ....._.~~~...._.J.*...-4..-;._~u.~--..:-'1.l_* ..-**:..-.~- .*.:*-*~:' :.. :.i*: . .;. *-*-~-* ****** * *.~ *
--*--*-*--------*-~-****---*"
...* *t*it.b.A.ii.:li""""WU.-1mil:lld.*~~¢~'
- .. .. ...*,t"~*,;*
TONR 73-Bl S rd Handbook for Electrical Engineers i' **:
Attachment #12 Fi & Carroll 10th Edition ,,._;
..*,. Enclosure
":! Tobie (-18. Copper Cable, Classes AA, A, D-Weight, Breaking Strength, D-C Reslstance.-Concluded : .,
. i*
Conduotor Hard Medium Sou woi11ht, lb r:~*
No. of 11*lrea Con* !
Conductor (ASTl\I Wiro ductor Conduc-abo, Mcm etrantlin11 diam- diam- tor ?-rea, D-o rcoiet.- D-o resist- D-o reolst.-
Brealdn1 11nce11t20C Breakln11 Breaking ance at 200 etrenicth, or A"'I ciaos) etcr, lo. etor, In. *II m. Per 1000 etrengtli, nuce at 20C atreogth, (68 I'), (68 }'),
ft
. Per mile lb (68 1).
minimum.* oh1ne Jl('r minimum.* ohms fier maximum,f obma r:r 1000 ft lb 1000 t lb 1000 t 700 0.13711 0.963 0.5408 2,161 11,410 31, 170 0.01672 24,*llO 0.01563 20,340 0.01511 700 37 61 rA)
A-D) 0.1071 0.064 0. 5408 2,161 11,410 . 31,920 0.01572 24,740 0.01563 20,340 0.01511 650 37 AA) 0.1325 0.028 0.5105 2,007 10,600 29,130 0.01692 22.670 0.0168-l 18,890 0.01627 650 61 A-ll 0, 1032 0.929 0.5105 2,007 10,600 20, 770 0.01G92 22,970 0.0168-i 18,890 0.01627 600 37 AA1) 0.J273 0.89J O. .J712 1,853 9,781 27,020 0.0183-l 21,000 0.01824 17 ,440 0.01703 800 650 61 in1 37 AA-A) 0.0992 O.J2J9 0.803 0.853 0.4712 0.4320 1,853 1,098 9,781 8,006 27 ,530 24,760 0.01834 0.02000 21,350 JO ,310 0.01824 0.0l!JOO J8, 140 J5,980 0.01763 0.01023 650 600 61 fBl J9 AA) 0.0950 0.1622 0.855 0.811 0.4!120 0.3027
'1,608 J,544 8,966 9;1s1 25,230 21,050 0.02000 0.02200 10,570 17,320 0.01000 0.02189 J6,630 J4,530 0.01023 0.0'lll6 600 37 (A-D) 0.1162 0.813 0.:1927 1,544 8, J51 22,510 0.02200 17 ,550 0.02180 li,530' 0.02116 41io lO*(AAJ 0.1539 0.770 0.353-& 1,389 7,336 19,750 0.02145 J5,500 0.02432 J3,080 0.02351 450 37 (A* ) 0.1103 0.772 U.3534 1,389 7,336 20,450 0.02-145 IG,900 0.024!12 J3,0RO -0.0235J 400 10 (AA*A) 0.1451 0.726 0.3142 J,235 6,62J 17,810 0.02750 J3,950 0.02730 11,620 0.026U 400 37 ill) 0.1040 0.728 0.3142 J,235 6,621 J8,320 0.02750 14,140 0.02736 11,620 0.021H5 350 J2 AA) O.J708 *0.710 0.27-19 J,08J 5,706 15, 1(0 0,03143 J2,040 0.03127 10, 170 0.03022 350 19 (A) 0.1357 0.670 0.2749 1,081 11,706 111,500 0.03143 12.200 0.03127 10, J70 0.03022 350 0.0973 0.68J 0.2749 1,08J 6,700 J0,060 0.03143 J2,450 0.03127 J0,580 0.03022 300 37 J2 !B)
AA) O.J581 0.657 0.2356 920.3 4,801 J3, 170 0.03flll7 10,390 0.03fll8 8.718 0. 03526 800 10 A) O.J257 0.629 0.2356 926.3 4,89J 13,510 0.03UG7 10,530 ' 0.036-J8 8,718 0.03520
... 300 ll50 37 (8) 0.0900 0.1443 0.630 0.600 0.2356 O. J063 026.3 771.11 4,891 4,076 13,870 11, J30 0.03fi07 o.ouoo J0,740 8,7J7 0.031148 0.04378 9,071 7,265 0.03620 0.0423J 12 rA) 0.1147 0.574 0. 1963 771.9 4,076 11,360 0.0-1400 8,836 0.04378 7,2115 0.04231 250 ID Al 250 37 B 0.0822 0.675 O. J!163 771.9 .4,076 11,560 0.IHIOO 8,052 0.04378 7,659 0.0-123J 4/0 7 (AA-A) 0.1739 0.522 O. J602 653.3 3,460 9,Jli-1 0.05100 7,278 0.05172 6,140 0.040!19 4/0 12- O. J328 0.652 0. 1662 653.3 3,450 9,483 0.05199 7,378 0.05172 8,140 o.o.agoo 4/0 lo iB) O.J055 0.528 O.J662 6~3.8 8,450 9,6J7 0.05J99 7,479 0.01117:1 6,149 0.049911 8/0 7 AA-A) 0.1648 0.404 O. J3J8 518.l 2,736 7,360 0.00/iSO 5,812 0.061122 4,876 0.003().S 8/0 12- 0.1183 0.402 O.J318 5J8.l 2,730 7,556 0.00550 11,600 0.06522 4,1170 0.06304 3/0 10 lB) 0.0940 0.470 O.J3J8 6J8.l 2,736 7,608 0.06550 5,1170 0.06522 5,074 0.06304 2/0 7 AA-A) O. J379 0.4H 0.1045 410.0 2,160 6,026 0.08:467 4,640 0.08224 3,867 0.07911 2/0 12- 0.1053 0.438 0.1045 410.9 2,169 6,048 0,08267 4,703 0.08226 3,867 0.0711tll 2/0 1/0 19 fB)
. 1 AA-A) 0.0837 0.1228 0.4111 0.368 0.10411 0.082811 110.11 325.8 2,1611 l,720 8,1112 l,762 0.08267 0.10-&a 4,765 3,7U5 0.082H
- 0. J037 1,02, 3,067 0.07Hll 0.1002 1/0 UI-- 0.0938 0.390 0.08289 326.8 1,720 . 4,841 0.1042 3.755" O. J037 3,J91 0. J002 1/0 Ill (B) 0.0745 0.373 0.082811 326.8 1,720 4,001 0.1042 3,805 O. J037 a, 10J 0.1002
_ _ _ _ _ _.. _.,..._..__... .,., ................... * *1 ****r*" '**** ""**** ... ,.,_...,.,. .... ,_.,,, .. _ _ _ _ _ _ ...lliN* -
...,._.,,....,~!"'*o.:__~**1*..._.:,
',.i I :I (AA) O.W711 ll.31i0 O.llli57:\ 255.0 l,351 3,621 O.J302 2,87!1 0.1205 2,432 O.J252 1 7 (,\) 0.100:1 0.:129 O.Oll57:1 2[,8.4 J ,31l1 3,80*1 O.J314 2,058 O.l:tOB 2 ,-132 0.121i4 1 JU (0) O.OGM 0.:132 O.OU.~7:1 2:i8.4 J,3M 3,8110 0. 1314 3,0:17 o.J:I08 2,531 0.121l4 I 3 (AA) 0.1187 0.:120 0.05213 202.!l J,071 2,013 0.11141 2,209 II. lfi33 J ,020 0.1578 I 7 (A-ll) 0.007*1 0.2112 0.05U3 204.0 1,082 3,045 0.1657 2,:rnJ 0.1649 2,007 'l.1504
\.
ii 3 (AA) O.J32.~ 0.28,i 0.0-11:1-1 160.!l 8*19.6 2,350 0.2070 J,835 0.2050 1,530 0.111!10 3 7 (A*ll) 0.08fi7 0.2"0 0.011:11 IG2.!i 858.0 2,13:1 0.2000 l,R8!i . 0.2070 1,592* 0.21110 4 3 CAA) 11.1180 0.21H 11.0:1278 127.11 li7:J.8 J ,8711 0.21il0 I ,*lfi:'i 0.2!i!Jft 1,213 0.2;,IJll
- II 7
7 (A-H)
(B) 0.0772 0.11688 11.232 0.20fl 0.0:1218 0.02000 128.11 102.2 li80.5 530.li J ,1138 1,542 0.2fi:lli 0.:1323 t ,:m:;
1,201 0.2H22 o.3:ior.
1,262 J,OOJ 0.25:S4 0.3JU6 7
8 7 CBI 7 (II) 7 (JI) 0.0612 0.0545 0.0400 0.184 0.164 11.146 0.0201l2 o.orn:1,5 0.012!17 8J.05 64.28 50.97 427.0 330.4 269.J J ,288 977.J 777.2 0.410J 0.5284 0.61ifl3 058.6 705.2 610.7 0.4169 0.52.57 O.f>li20 70:1.8 620.5 4!*9.2 0.4030 0.5081 0.1>408
~b 9 7 (D) 0.04:12 0.130 0.011128 . 40.42 213.4 6J8.2 0.8102 487.4 O.S:l50 '39.'i.O 0.8080
..,. 10 7 (II) 0.0385 0.1111 . 0.008155 32.00 169.3 491.7 J .OliO . 388.9 J .054 314.0 1.019
,i
- -~ H 7 CR) 0.0305 0.0916 0.005J29 20. Jfl JOll,f; 311.J 1.685 2*17.7 J .676 J07.5 1.620 ,
- *
H 7 (II) 0.0242 0.0726 0.0113225 12.68 6fl.95 JD7.I 2.679 157.7 2.665
- J24.2 2.5711 <:::
C) 16 7 (Ill O.OID2 0.0576 0.002028 7.974 42.JO 124.7 4.25!1 100.4 4.237 81.14 4.090 ta 10
'7 7
(8 (II) 0.0152 0.0121 0.0456 O.O:lll:I 0.001276 0.1100002:1 6.011;
- I IM 211.48 1n nr.
78.00 r.11 n.t 6.773 10 .,.,
63.01
..tn r"T .~*!~8 51.03 .~-~!3 ~
TONR 73-81 Attachment #12 Enclosure 0 *
,"'i.---.wne~,----'"!!*!!!"::**=-~-~----***-- . ._. . ._. _.. . . . . . . . . , _. ;*.,. .; .* *.
<a#i:ii.ttaie&.:.;.,;*.;;;iiir,;.;-:;:<<u;.o..*..,,o '*"':. . :.i-'+s. :'-.;.* ;.1ii.l~*"n...cm...,CU1=-a.**-......;.*,,;,e..,;,**w.-.*r4.;.....e_;1.....- -4"... _,. :_-;, *_ _._____
I FAIRCHILD* µA709
., PROTECTION CIRCUITS'
='; II
-z !
'j
'I u:; t OUTPUT SHORT.CIRCUIT PROTECTION BREAKDOWN-PROTECTION INPUT
~ DESCRIPTION I
I. structed using !!
signal amplificat i
are required. Tt r as w'eil as wide range of inslrum
.l I'
- LATCH,UP PROTECTION SUPPLY
- LOW OFFSET' OVERVOLTAGE.PROTECTION
- LOW OFFSET'
- LOW INPIJT NC
~
l .!!ii'"
- HIGH OPEN LC
~
I I *
- LOW INPUT OF HIGH COMMO~
Ii
- WIDE POWER :
I'
!'b1**-V I ; ABSOLUTE MA Nctes ,.,;, rcllowing Supply Voltage Internal Power MelalCan Differential lnpu 0 Input Voltage (JI.
V" Storage Tempe' Metal Can Operating Temi:
Pin numbers apply to metal can or mini DIP package only. 'Military Commercial Pin Temperatur EQUIVALENT CIRCUIT Metal Can (Sol EQUIVALENT Cl
/ 1 I I I
I I
'--------+.---------+--__,....___._....,.__-+"""'C~
u*o
. l"YllllTU*Ci o---------1( co,
....... * ..,01~
R2A dnd R28 are t!'lec a: tne tac1orv tor '"'"
f -* . ., . . ._.
S-74
~ -~, ~...__ ,..,p..,..-, ......, ...._......---*....*'.....!!Oll.fllllJii-'i!"**_r";-*-**:"",.____::-*'!"'.. -'-~"*""i-'""'_____- ..-*-*--....--...,*--*-*- ......,,..,........__.""....- --..._. .. ,~*-*-*~
~ .
TONR 73-81 Attachment #13 Page l of 2 CIRCUIT DESCRIPTION
- R4 1"45Mf' CR!
CR<.
SINK 3 40 2! !I 12 OR\VE CKT CKTI CKT Cl<.T C><.T. CKt'.
I
~ i 3 4
" 30 7 C:KT a
C.KT.
'!I CKT 10 9 I!> lO 21 22
'"' 8 23 4 II 1"7 20 24
- UJP-.JT "N'P*:"AL CIRCUIT COO c..._P. Gi~O. SM:*~o { __.1,__o+i---~;...;..--4.,__ _.++---~1----+-t+--+t-t---4Tt--+t-t---'
31 I*
+ OUTPUo 43~~--f.<'---~:.+-~~-+.._~~f+.~~-:f;O--~f+.-~-f+---f+---t+---f' 41
- r. \;
LO~IC Dl~RA.M
~~.-!...~.~
iJ . ~)1 LOW LE.VEL MU X
.*u ~I ,.;._,:I
-(.H~/:I) - -
1 i
-...i:itll -N i.t.OQ
- '- ~O'<l.C.8
\
j .~_,;.;;;.;,;..,
SC'30-1542 0
...........~............~...._......~......__,.___._~..__.~...._......~.....................~........
/
!'>OuRCE ORIVE.
T l 1 SINK OR\VE I<. I
~6 CKT 3'!
CK:1 I
I 3.
Cl(T 40 C~T, I
28 CKT i~n . r,Jl.JlJl 1JcKT.1'I I lcKt'.
icKT:
- c.KTI i I CKT I
i I 3 ~ c;. ' 7 ' S * . '!I 1 !0
-<1-------vv<-
R.'2 I 9 ll~~ lO 1c;. 21 I 130 : *22 I i e ; i 23 i'~
<e> l~PU"T 10~*;-;--i
'f'ZW I R3 I '
20 A-;
-IWPUT -1,...-----,Yoo""n.
y,.,
l"=f ___,
I I 2 4 II 24 "N'PICAL CIRCUIT
+ OUTPUo 43
- OUTPUT 41 NOoE.:
LO~IC Dl~RA.M LOIVt.E.VEL MUX (HC.,.. t R.EE.0) 5C'30-154S
........ ,.. \o(.0Q ....
._.._1* IS "'O" C.8 1-31
TONR 73-81 Fischer & Porter Co Attachment #13 Series 3000 Data System Page 2 of 2 Instruction Manual CF Co Vendor File #Ml-PA,
- 4. 2. 8 Multiplexer The ha.sic function of the Multiplexer is to progra input signals to the measuring system and to each input point.
Reference:
Schematic SC 3 0- 15 42 /
SC30-1545 The Multiplexer circuit card cons is ts of ten relay channels. One side of all relays are common and connected to the output of one Source Driver Switch. The other side of each individual relay is in.dependently connected to the output of an individual Typer Driver Switch for.the sink drive circuit.
The relays have been specially selected for low level multiplexing opera-tion and generate a maximum of 7 microvolts of offset for 100% duty cycle.
Diode CRl, across the relay coil serves as arc SUJ:>pression while diode CR2 in the "source driver" side of the relay is used for steering.
The relay~ contain 2 sets of form A contacts. These contacts are used for the positive and negative side of the input signal thru a filter network.
The input data. is connected from* the input termipal strips to these data contacts. The output of the data contacts are combined iri groups of ten and are r routed .to the Analog-to-Digital Converter.
Thus, via the means of upper and lower driver control, the indi-vidual relays are energized sequentially or selectively as the need de-mands. The relay coil is rated to operate at 14 VDC; contact ratings are 0.2 amperes.
+ +IS
~+INPUT
--1.~l.. -
Y'L_ . .
+ ~+ TOAOC
+ + +IS
- .(. ~<.
- SOURCE DRIVER FIGURE 4-13 MULTIPLEXING
~ .~; e-:,-.. '"':"..., ~
l._ ... .....,, ......... '--
1-30
70JJ.L 7.2-y/ Arr A,;.; ~4 Consumers Power Company Subject c:~u:J'-'£. 1~1 ~u~ s 1 ..1 Page _j_
Nuclear Activities Dept. Of --=!.._
Engineering Calculation
.z-. 8...o?t'QS.e; V£T£.tl../>11A11#;.. £1::,,c<cr t!J;=" <!tll~b1/3J.£. r?l1.L4J/l.L..$ 1A/
Co...rt:Jv..e..Tot<J lNAT /M"1.t.~1( .Rr'.S ~16.,.../lfl...~ 70 ;:i:::e1l~ f ?o.e1..,.e f'"-"1/JT" ~-1',,,..rtr../~.
S-r~.GEl>f. A ol( d CH.1.3 Pu~.s.ul!.~
.. f'1"71r113 +
I ,.e,,s VA.(!.. ---------~
1~1=~0 I -(t~ .... 100 .......j I
I+ - I
.e:a:.
+---
I -=- I "'6ov TO
- ~~
L-r _J~/$'"""'
/00..IL.
T~P l..UoJIT
/.:i-~ ....
~
)
r '/::'1P-e;;;T1.. -
I 1?ui..r1P1..~'i. ~
.______+--4-"N\J\,\,...~li--- R7
'-------~-~II---
r -_ _ _ _ _ _ +___,__.~~llW9V----t~
.e10
..--------""""'rv---t ~
I_____
f:. 7-.e /712£ lo IX>-A-
/.) .;S'r,..,,, G~.v. 1~~(.)~ L.oo13 : ..JJ ~C"AC"!"OA. U,o.t..A ,.,, 1.:-'..&...D...J Loo;;;
/a.) ~w ~ E- f .3 ..5 llow.S ~ ~ bl.WC.. E- ""' .:S"U' .SH(>l.o.l~ ,L°"P
- 16) ,A:.,(7 ..:19(.,.,-J} - 31f4- ~ 1./0~!:. /+o?S'1t:!. {. .;20) ~~ ~.311 ~/'<"41-'7.$#-'"1.:*J.O-.
l'o7SI~ A~ nYJ5o4.o. l")/t,.11 ~ /11/t:..10 A dP7°0ll2.A/9 ,;J.S ~,.,,,.,,...,- //£1/'P
.;:t I<:) Fo'£C3olto "J:>,.:rr,.i ~1'-11£.£-:0-~ (,:(,£~ ,.frrAO( l:J. ~c:::) Du.Jq.:J?".-j)-.]112_5H,,1& o.'II011:zM
$.vc1...) $(>{ow RI~,;- '%' kv1i:."- ?ro7:.-1.i.3 l;:"zo1o2/} A.s .,S,,.,/1?A 'l..;i.i3-£-a~
L4A iJ or:' t.oo ...._ . .,;:S",c:;,,-,. ilorA 5l,.JIU<J..S ~t)..5;,to 9.J..:i.3 -~ -oo ~s1.r'TA ..JC£ As
..J/..,.A. f5A. /...,.._. SI"'°'"' ~ S..-
Fo.c:. /oo-..A. ~!'"'"'*.a~~""'
J::,,rrIJ 31-1C.Cr~ J/'I ,,,u :,' . u '= </ "::.-'./
/
7'0,,..112.. 7 :l - 'ii _,,+,..-,..,4.:..,..V ~,4 Consumers Power Company Subject u.caJ&J:. tf4,1.u.<.li...$ ~ Page-==.
Nuclear Activities Dept. Of _!:f:_
Engineering Calculation By ,k',4T A ~ # o,1_,"r ",,&:" ,4,1..4. C!. 0 N ~ "' c.'rO "~ /1-r .:r...iiJ /./. 'T CJ ;: f='~ I' Cc "'I' 1.<.'T iC. ~
.z; J.i..
+ RT.., - + - eJjs"" - tfI _,.
v..;i.e.
~-
.r~ (z-~ RG"~
t..:<.S l..<..S' ='
33...C.~
K'I= /~..A, R~*
- ~
-c.
=
4i4.J..
~ l:z~ Vl'I~
+
"tov A .10 ....
_ezA:
+
.J./~-=-
- 3 3 ..,._
.;S'Ho"'.._;::. /#£ {!a..rt>uc:roa e_ ..S,.to1t..r~ /l"'y""'t+~ ,6/£.,..~~...J TAI,£ ~s /..,1.v.<:1 "TN£. F'f' r' /17u.J. ;-,,:1"-;e;:1£'£/t. .J 7-v~~ lAJ,... ._ /-1£. "/o
/'?'-'.,-..._A'- £~4-er~. o~r ?"'Al.E; ~~.S: ,::',._,.~£. .:;:..,.~11.uZlu.~4. Lo,,.~ C<.J~.1o.!""r
/<'/Joi.. E"- rr l"r.S ,L."'°f /a ;$yf'A~.S rr.s ,~~* ;:' C'tU'l'ltptArll!-<._ i>~"f'(-J ,,J~ ~ISTol..
(/?2 o~ R Co) AM.A R- ...nU /;.,t.£ ,<.,,,;,~. 7?"£~ ,c. 1..$ ,,_/o ~ 7e,.17'1A "- j),,,r,,a -
JC,..te..<. n ;J,t..11,J c, El'r"lofc~ ~Of' C:uµ~;./,. /N 7'"'o /;r£_ c!JTN IC..I... L.~'}J.
/;,1£ t:J.J4'f CHA.</~ .C. 'ro e.,J~/.f /.*uf' /.J11..1o.. ,de. IN£. .Los.~ ~;: ;4 ;?_,,L71*...l I
dt&= r,..,c. 7'2.A.AIJ""'1 /rrt<.tt..J: ,L.o.t..d 2.Ls:1.$"7'AAL~ (/(.,..!I... ~olt l"ro15"11d AND /0
..A- nit.. o(.;:'7" 0 11~;1/ ) * .:T..J eA c~ 01"" /ic!IC. A4*1J.C. L<J 4f.S) 7"'1!""< /~..,.;., -
,.r?J 1'rr<.4 t...J1.1-.t... All "J"'1A-.t7" /7""'.:I; V..-1i(.1~Bk£ L.fne:..LN"~L ~:1~ T/4,./t..£ To t!o,..,,l'~.t.SAT;t:. ,..::U,c. /N.-J Lo.s.s ,-.1 .L...A°h lo /17A1,J/l4'1./ /"r~ cfl'-""7'"'-r
<!tJ./t.A.....c.A./..,.. ;04>/oA..r101o..fA* Tu~~ I.JI'.,....,.. 1~~.S~ * .7-.1 (.97-1<.tU-
,{..J..,.Ll>S, /i./-C. L...a,.~* c,_,~~r~ tu/~ ... ~ 7" C.NA ~c.. "* 7#£ ,.::Z,1(6'.l.Q
~A ~/"("IC..,..... c~/E~ A"1"7'AC.H,...,<.,.( / ,;=;,.* .£:NCL-Q.S 17.C.I(.,) -s 1¥0 ~..$, f;.t,,-r ...,..!</~
/?1/t.11 7:t.Au.i,,.,.,1rr.cA tJ1.1..4 />7A1..r"rAr..I 1r~ ej..,..,.~u7" LJJ/..:.L ,< ~,,Ai::..
/2.A-..tr;,~ ar= ~00 -JI.. +10 'Yo -.2.a~ * -..!t-<aA..?-, ..14 <!Jc...,.. TNJ1:. Fi.I' I
/>/Loi'/""'<;, ~ u; r<),(. IJ() rJ.4.J::J ~t. T , '41 A ~Al.s.- .iTT1L..
- ~ 4 o;= (,f,oo -It. \-A- o,4.. S-ir4 ....-. r?e~o~,.... 1(1 70 ;-,v.::_ :i?o.s,c.,.,,,uo.1
_s', £.:.,F1CA"'7"1tll\.I~ /?v',,;:_ //'!>-~ 1-/{J 77e ,.J..f;'>"1..,...,-.<./!. /,$ l\.fo..,. ,1_,,:l"ICC..iJ!°..~
Consumers Power Company Subject c.~ 6 ,a"-<- ;:::;:;1 '--ue..A-S. /"' Page~
Nuclear Activities Dept. Of ..!/.__
Engineering Calculation
.:s'rlo""-L...J:l /,._..~ ~f'V'oA......,- ,4-'~Y ~o 70 C-7,eO<-Ll\/ll (,4-r ;?,,,._*-:-A .J r;e £'{.A/'1/--..C) 7>-1c ~~~ ....::- ?-J11<J.1..)J ,de //./£.~-~ 4~ "!:J~~12.,st11D A&:>v,£ .;:)',NC£. /µ£. 121'..f .Loo~s ,,.:l/Z.4:. u,.J~it..LJUA!*'J~..;i:. &" /C~,<'7"1-..f.:1)
G£ou...l.il1..J<-, 7N£. .(...,.,,,r /Jr ,4,.,/ ri,.._,,7"' t--'t'--'- /../~(/A,.__(.. £~~~.:..r o ,._r /N .<.. "-4. 'Y' ~, ..._, c ~ A.lo F-£ 7"'U;LJ..t ?A" 1£Y-1 .rr.5 Fa"- A Sr<"~ ;-_
(! I /2 C <.LJ 7" (" <..< "'-d...A ,J 7':
A~.t.. //./L/[_£; ~~ °'/JIA.,..~ /~ 1 ,,1Are. Ot-1 rt../!!:. .:{,.ct"'(. t.C...-/1:'-
/A/4.t... .dLcx.t~ /]s SNaw.J..J "3/C....(....4..J;
~1v:E,.1 Tf'/n:.. ~t-o~-"£. lux.,,..,.,. 1 0 ,: /1.1,£~ /Zt?.s. C1ec.v..,-.s.,
7"/-1£ /,,1:.s;,,a,'-'7 re'£7""Z. fl.;Ar ,J,ui rt.vo /'ie,t.,,.,,,.,1,,;4.5 /""!~'/
/3.C. ~~oLrr<..b toc:fr.CrN.C.,C. PtJL1..tC, /'?A*,..J7£N9,_rLJE. ;:{._,,,../
/:J S N~4i9 1-'1LJ... N4vlf.. ;>Jo C~,c~-;- o.v /1o1,c.. k.,.,f s:: :;.,.,*~IC...
A /2£-ru.L-.N /,qr,., ,.:::;,.l.. .:fµa,LT- ~,rzcu *":"" <!u.~....J'I r.L-.. ,., , v...1.c..
.La"!° /a ,,</,._torJJ~ Wau~b ,,,.../o;-
~1/i..~17' /~ ~~o,_,..J ~"'-'*
r._____j
+
ro ref.? ,£" Ct..7: ~...... ,..~
Co'?'"' TIC R.. :r,:.a..7
,.,.., l.L \(.
°/D ,., ,e 7 J, - f I /.J.rrf'. c. !-! .ptu.{
Consumers Power Company Subject e~c1:i I/JI-£ ~-v"'-JU ;..J Page_:!_
Nuclear Activities Dept. ~I'~/;:£;:; C:,,,.17"~ Z-IT4.,(c,,,J,.;~7iuo,J Of _1_
Engineering Calculation By /.!A-r Date 1~/r1 1 Chkc:tJttl Date.,7h7/.q,~
//'/
<1.
7r-I" ~ IJ...t.1,<...A. LJo<.J"'-2::. /.j,,.v.£ J....lo £r°l'=c. 7 OJ.I n.1.c j?/J$ ~,
_;f'oJc.£, 7'#£ rf ~ C'"-~ ,.,..,...1..t. kA l:l W<l<*"'-* b $,,.,,r'.._'/ ,.1..: ...ec.-
/1?oi.J IUJ r;t..o;>J "/N.C... /!/..! kJf' T;v£. ~<p t4...Al\/jMl1"'"r'l'f.../LJ ~*i.&.1..~
~c.....,,.. lly At::."JiJrr-1,.,/(7 /N£11L t/,<1~,A4"'"'- ~Sr~~rJ"'1c.IC. A~
Z>G ~ 1,./. D 1,./ A1--7" ,4.
/N~ LAtt.t,IC.S.1"'" t/o,,,.:r,q~~ .0.,...,.... ,%...'l!::~ !3y TH£. rftJ Cu,..11~7"'/C.I...
IS /~a VAt:..* )./ow,-c,_;~t:. 1 /Is JLSc:..C...-l!u ,X,,.J 7'NC. .£.J<:.1-1Jsvru!;.
A...r 4 Lo~ _$ 1t:.,.JA l (",;tiJL.£.S /112<.. LocA .,...~ Ar L-£A r..,,. S 1'1( tC~ll!..,...
r,4:,1'1 ~ ~~4~L.. ~u:.,'T/.I ofl! Ac. /,,,~..£.Ii, <!.A4~ /(il'LA h.o-01
' /'IAc /YJAe.1.../11,//£.L'f* .:T'4 /l/~Z>/7'?cv~ /.3" VAC. --r.At...du-r r < ,,.
-> "" ..t;( ~
- "' 7o
/N£ ,,.:::-tff' &,,,,,~~,,.~~ /~~/,,/~7"'1 1'AI 13.J..o(./<-$ .$'4f'-4L.1J'r'~)
- '~ /I-IC. ~,,.,.A~ d"-Oc..C
- . //. 1 .:-r fZE:.c..lf:.1C)il:.J /;t-£ ~.S_ ~"T'v"'r~
"'T?-l~<J.l..C 7?1£. At,t:J41~?'*a,J tJr /~ 11.fc. /c °Tl-'£. £./'..S Looi'~
/.$ #.:;,""~ '( ..Z..,f',tl.AiSA<3.v£. *
~vi-r"'f,£,(""of-.. ~1-wo(.. 7/../~~ k'f's A~..,. A~!Juf:.
1 t.;.~o"'N".,,C r!C?t:1,').t...~.ri'.._ty .5"~~ ~,,./~ G:JN'-<.. S,'::lC.. c,.: ,4 /.,lcVA<.!.
1
~<..>~"'-'!:. 0..e Oi& A,J't OTNJCL. //o~T,,. 4.C:. 5..,..u.c."-..) ""~ 1-J""'"'- ,*./o e!i!tCec...,. """ ~~ Lc.t:f'.
No1'"L /. /.#£ ~~u.UZ..ifi",e ~JSu,1.£ S14.NAL.. (.sc#~-' .:z:::;.>(..,o) /:(,,,,; ,(oc..u Vo~TAi'
- si& ..hf'- ..:A?..,., A c,_,_~,c,J-r- ~.,~ _:s,,.,, .. A1t.. ro 7,..,£ ,/t,P.5 ~'°Y'.s ~..s:.:..c.*6'.c.;) .
7.Z--.& .5n:.Al'A4 1
No~v~, /$. ~t.;.J-..S-4~£-r-j. ~~1£~7'~ o.& '7"V*~ .!oof' 1..t 07,.,,,££.. h.$ "'-0c>ps. /.S ,;r;J.S1<S1V,t: *f'A""-1 '7" 4..,.~ 1.s Ji~ J:Jc~c.IL,4,C.:::. Al!ov-'.
S1&,.-,,a ZN.sTlf!...L,Ln->CA.1 1~ ,..:r"'~*
Cf.:Z.:z 3-~ :Z:...Vi::.1CA7"1.JC7 ~i'JIA...ot..'-£" H697
~s r.e..r.Le r-1 o..V..S rf- G. 9 '7 7li1J.t. 73 - Fl
~eo Ylf:A!Da.e. A.I-If£. # /'?.:J.Q/ ~/¥ 7o AT'1"t4C...rJ F 14 Specifications £,.1c. L.oSu ..c.£.
1.0 1.1 Model 9223-E Electrical Characteristics Input: Specified on meter scale. For example: 10-50 Ma DC.
Output: Sigma 67R4 relay; 5 amperes at 120 VAC resistive; 2.5 amperes at 240 VAC resistive; 3 amperes at 28 VDC re-sistive. Consult factory for ratings for inductive loads. Life in excess of 200,000 operations at maxi-mum rating.
Number of contacts: SPDT on standard units; DPDT on special order.
Internal Resistance: Approximately 40 ohm for 1 MA span to approxi-mately 5 ohm for l00°Ma span.
Power: 120 VAC +/- 10%, 60 Hz. at 6 VA
- 1.2 *Model 9223-E Performance Characteristics 1.2.l Vertical Mounted Indicator Accuracy: ~% of Full Scale -at standard conditions Indicator Accuracy: l'~ of Full Scale, 15-55°G
/
~~
~~ INFORMATION $)
Indicator Repeatability: t% of Full Scale
~ ~
I~ COPY
~
Set Point Accuracy: 2% of Full Scale.
( OCT271981 Set Point Repeatability: 1/3~ of Span
\ \ *"'()PnP* .,..,~
- L-.....-.-:~;;jf,i.tn:; J: 10VlER Set Point Differential: ~% of Span t~pical
/';',;,.
/i / ,/ i CO. "v 't".
(:'JM ~\/ i\ ;\
"r,'Vl/;1, 11 Response: l sec. max., critically damped
.
- 11 \"
Operating Temperature: -10 to 60°C Max. Allowable Temperature: -10 to +60°C Photo Sensor Life: Greater than 200 ,.000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.
- l. 3 Model 9223-E Physical Charac,teristics Mou~ting: Flush Panel Material: Case - Steel, Green enamel finish Bezel - Cast aluminum Face - Glass l
Overpressure Effect Overpressure Effect Electrical Connections: 1/2-14 NPT 2000 psig overpressure will cause a Model 1152DP: 2000 psi overpressure conduit. Test jack type screw zero shift of less than::: 0.25% of Upper will cause a zero shift of less than +/- terminals.
Range Limit tor Range Codes 3 & 4 0.25% of Upper Range Limit (Range Weight: 12 lbs. with aluminum nly Range 4 for AP); less than+/- 1.0% Codes 3, 4); less than+/- 1.0% of Upper
- housing; 16 lbs. with stainless steel Upper Range Limit for Range Code Range Limit (Range Code 5); less than housing, excluding options.
- less than +/- 3.0% of Upper Range +/- 3.0% of Upper Range Limit (Range Limit for Range Codes 6 & 7; less than Codes 6 and 7); less than +/- 6.0% of Functional Specifications
+/- 6.0% of Upper Range Limit for Range Upper Range Limit (Range Code 8). Model 1152AP and 1152GP Code 8; less than+/- .5% of Upper Range Model 1152HP: 4500 psi overpressure Limit for Range Code 9 up to 4500 psig will cause a zero shift of less than +/- Ranges (For GP only). 1.0% of Upper Range Limit (Range (3) 0-5/3!) in. H2 0 (GP Units Only)
Code 4); less than +/- 2.0% of Upper (4) 0-25/150 in. H2 0; 0-2/11 in. HgA Power Supply Effect Range Limit (Range Code 5); less (5) 0-125/750 in. H2 0; 0-10/55 in. HgA than +/- 5.0% of Upper Range Limit (6) 0-17/100 psig/psia Less than 0.005% of span per volt.
(Range Codes 6, 7). (7) 0-50/300 psig/psia Static Pressure Effect (8) 0-170/1000 psig/psia Load Effect (9) 0-500/3000 psig (GP Units Only)
No load effect other than the change in Model 11520P Zero Error: +/- 0.25% of voltage supplied to the transmitter. Upper Range L.imit per 2000 psi (Range Codes 4, 5); +/- 0.5% of Upper Range Output Limit per 2000 psi (Range Codes 3, 6, 7, 4-20 mAOC Mounting Position Effect*
8). .
Zero shift of up to 1 inch H2 0 which Power Supply Span Error: -1.0+/-0.25% of reading per External power supply required, up to can be calibrated out. No effect in 1000 psi (Range Codes 4, 5, 6, 7, 8);
plane of diaphragm. No span effect. 45 VOC. Transmitter operates on 12
-1.5+/-0.25% of reading per 1000 psi VDC with no load for E output code. 15 (Range Code 3). VOC for A and 0 output codes.
Model 1152HP Zero Error: +/- 2.0% of Upper Range Limit per 4500 psi (all Span and Zero Performance Range Codes). Continuously adjustable externally.
Specifications Span Error: -'-1.0+/-0.25% of reading per Elevation and Suppression 1000 psi (all Range Codes). Output Codes A and O: Maximum zero Model 1152DP and 1152HP elevation: down to 0.5 psia for Span error is systematic and can be compound ranges (for MoC:lel ro-basea ranges. Reference Conditions)" calibrated out for a particular pressure 1152GP). Maximum zero suppression:
before installation.
100% of calibrated span. End points Accuracy including effects of linearity, Power Supply Effect cannot exceed +/-100% of Upper Range hystersls and repeatability Limit.
Le~s than 0.005% per volt.
Model 1152DP: +/- 0.2% of calibrated Output Code E: Maximum zero Load Effect span for Range Codes 3, 4, 5; +/- 0.25% elevation: 600% of calibrated span.
for Range Codes 6, 7, 8. No load effect other than the change in Maximum zero suppression: 500% of Model 1152HP: +/- 0.25% of calibrated voltage supplied to the transmitter. calibrated span. Calibrated span span (all Range Codes) Mounting Position Effect cannot exceed +/-100% of Upper Range Limit.
Dead Band Zero shift of up to 1 in. H 2 0 which can .
None be calibrated out. No span effect. No Temperature Limits effect in plane of diaphragm. -20 to 200° F Amplifier operating Stability -20 to 220° F Sensing Element
+/-0.25% of Upper Range Limit for 6 operating.
months. -60 to 250° F Storage Temperature Effect at Maximum Span Physical Specifications Overpressure Limits Operating within specifications from
- (e.g. 0-150 in. for0-25/150 in. H 2 range) All Models 0.5 psi a to 2000 psig (Range Codes3, 4, Zero Error~ +/- 0.5% of span per 100° F. 5, 6, 7, 8); 4500 psig (Range Code 9);
Total Effect including Span and Zero Materials of Construction .
without damage to transmitter.
Errors: +/- 1.0% of span per 100°F. Isolating Diaphragms and Drain/Vent (Note: Double the specified effect for Valves: 316SS Humidity Llrtjits Range Code 3)*
- Process Flanges: 316SS 0-100% RH .
Non-wetted 0-Rlngs: Ethylene Temperature Effect at Minimum Span Turn-on Time Propylene and Buna-N (e.g. 0-25 in. for 0-25/150 In. H 2 0 2 seconds. No warmup required.
Fill Fluid: Silicone Oil range) Flange Bolts: Plated Alloy Steel, per Damping ero Error: +/- 3.0% of span per 100°F. ASTM A-540 Output Code A: Nominal fixed tal Effect including Span and Zero ors: +/- 3.5% of span per 100° F.
Electronics Housing: Low-copper aluminum, epoxy polyester painted or response times of 0.3 seconds (Range Code 3), 0.2 seconds (Range Code 4,
(_;
ote: Double the specified effect of austentic stainless steel. 5), and 0.1 seconds (Range Codes 6, 7, Range .Code 3) Process Connections: 1/4-18 NPT 8, 9).
12
70"-'ll. 7 3
- y I Output Code D: 4-position variable Volumetric Displacement AnAc1{m1C,.1., Fl';l.f time constant switch for nominal Less than 0.01 cubic inches.
response times of 2.0 seconds, 1.0 Turn-on Time seconds, 0.5 seconds, or as above.
2 seconds. No warmup required.
Output Code E: Time constant Damping continuously adjustable between 0.2 Output Code A: Nominal fixed and 1.67 seconds. response times of 0.3 seconds (Range Code 3), 0.2 seconds (Range Codes 4, 5), and 0.1 seconds (Range Codes 6, 7, Functional Specifications 8).
Model 1152DP and 1152HP Output Code D: 4-position variable Ranges time constant switch for nominal (3) 0-5 to 0-30 in. H 2 0 (DP Units Only) response times of 2.0 seconds, 1.0 (4) 0-25 to 0-150 in. H2 0 . seconds, 0.5 seconds or as above.
(5) 0-125 to 0-750 in. H2 0 Output Code E: Time constant (6) 0-17 to 0-100 psi continuously adjustable between 0.2 (7) d-50 to 0-300 psi and 1.67 seconds.
(8) 0-170 to 0-1000 psi (DP Units Only)
Output 4-20 mADC Power Supply External power supply required, up to LOAD LIMITATIONS 45 VDC. Transmitter operates on 12 A & D OUTPUT CODES VDC with no load for E output codes; 15 VDC for A and D output codes. 4*20 mADC
- r Span and Zero Continuously adjustab_le externally.
Elevation and Suppression LOAD Output Codes A and D: Maximum zero (OHMS) elevation and suppression: 150% of calibrated span (Range Codes 3, 4, 5) ~ OPERATING or 50% of calibrated span (Range REGION Codes 6, 7, 8). End points cannot .
exceed +/-100% of Upper Range Limit. 20* 30 40 Output Code E: Maximum zero POWER SUPPLY (VDC) elevation: 600% of calibrated span.
Maximum zero suppression; 500% of calibrated span. Calibrated span cannot exceed +/-100% of Upper Range Limit.
LOAD LIMITATIONS Temperature Limits E OUTPUT CODE
-20 to 200° F Amplifier operating.
-20 to 220° F Sensing Element operating.
-60 to 250° F Storage 4*20 mADC Static Pressure and Over Pressure 1650 1500 Limits.
Model 1152DP: 0.5 psia to 2000 psig static pressure for operation within 1000 specifications. 2000 psig overpressure LOAD (OHMS) on either side without damage to the transmitter. 500 Model 1152HP: 0.5 psia to 4.500 psig static pressure for operation within 0 specifications. 4500 psig overpressure 12 20 30 40 on either side without damage to the transmitter. POWER SUPPLY (VDC)
Humidity Limits 0-100% RH.
13
To 1-1,e 73- rt A rr.a c "'. "# , .;. -- -INSTALLATION
!.E:Alcl..P~ u"-C.
- b) High level analog signals (1 volt to 10 volts) 'are transmitted over twisted pairs which may be cabled with other pairs carrying .a similar volt-age level and current levels less than 100 MA. Shielding is 'not required :
except as noted be low. ",
c) Analog signals are not transmitted in the same -cable as digital signals.
d) Analog signal cables are located at least six feet from a parallel length of AC power cable and from AC machinery.
e) If signal cables are located in a high electromagnetic field area, they are run in ferrous conduit which is insulated from ground at the sig-nal source end only. The conduit is nG:>t connected to the sys tern cabinet.
f) If signal cables are located in a high electro-static field area, or close to AC power cables or digital signal carrying cables, they may be constructed with a conducting shield insulated with an overall jacket.
Provisions are made to connect the shield to ground or to the computer (but not both) at the time of system startup.
g) Digital signals are transmitted over twisted pairs which may .
be cabled with other pairs carrying like signals. The cable does not carry AC power'. Shielding is not required.
h) Pulse inputs are transmitted in the same cable as other digital signals. Twisted pairs are required.
- 2. 3. 3 AC Power Wiring a) It is recommended that system power should be provided from an independent isolation transformer located as close to the system as practical. The transformer primary shield should be connected to the primary low side and the secondary shield connected to the system ground.
b) A circuit breaker is connected between the isolation transformer and the system AC input connections.
c) The isolation trans~ormer must not supply power to any device other than the system cabinet. Peripheral devices such as typewriter, i i card punches, etc., must be connected to other power sources.
d) The system requires 11 7 volts AC +/-1 0%, .6 0 Hz .
- H~eH.eA_ ~ 13~7~ c~
C?eo t/~~c/2.. ,c;~
I
.;z:;v~ rlf!.u.a. '"o.../ /1-J,.t "'1"""'"
.d'~,JC~ .300 o lJ,,n--4 Sy.t-rlLM
- z;t" /]11-/1'4
- :t'H/o?o 1-8