ML17266A489: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:DOCKET05000389.NOTES!'EGULATORYWNFORMATIONISTRIBUTIONS-EM(RIDS)ACCESSIONNBRi8108250481DOC~DATE;!81/08/19NOTARIZED;:NOFAGILi050'89st+Lucie-PlantiUnit2'E,FloridaPowerLL'ight>>coB.'UTHBNAME'~AUTHORAFFILIATIONUHRIGpR,K','loridaPower-LLightCo~'ECIP~NAMKIRECIPIENTAFFIL>>IATIONKiISKNHUT'~D.G,DivisionofLicensingSUBJECTForwards-responsetoNRC,requestforaddiinfo.re>>FSAR~;I'nfowillbe.incorporatedinfuture'mend;.DISTRIBUTIoNCODESBOO>>0COPIESRECEIVED:LTRLEN'CL'IZE::'g''-''ITLKl:"PSAR/FSARAMDTSandRe.latedCorrespondenceRECIPIENT'Di'ODE'/NAMElACT>>ION~'/O'ICENSNGLICIBR&#xb9;3LAINTERNALi:ACCIDEVAL'R26'HKMENGBR'lCOREPERPBR10,EMRGPRPDEV35EQUIP,QUALBR13>>GEOSCIENCES28.HYD'/GEOIBR30~ILE)06LIC'UALBR32!MECH.ENGBR18OELDPOAKRSYSBR19QABR21>>REACSYSBR23>>SIT'NALBR24COPIESLiTTRENCL>1-01011111>>1113?2223>>311111.01111111RECIPIENTIDCODE/NAMEL>>IC'R&#xb9;)BCNKRSESr.VS04AUXSYS'R27CONTSYSBR09EFF,TRSYSBR12'MRGPRPLIC36.FEMA~REPDIV39HUMFACTENG40ILCSYSBR16L'IC'UIDBR33MATL>>ENGBR17MPAOPLilCBRPROC/TSTREV20RAS8R22'EGF"01TRUCTENGBR25COPIESLTTR'-ENCL>>101111111~331111'110.-1111111111>>EXTERNALi:ACRS"NRC'ORENT'IS41>>161602!111=1LPDRiNSIC03051111L/Hahb~T;TOiTAL'UMBER>>OFCOPIES'EQU1RED::L>>TTR62'NCL<57 nq4~i~s~n~iq'14nI"'IrrIq~'~gh~,i71yf4ryli4/1I.'ill'ly9gqIllyqIq'y1Iql If%OX529100MIAMI,FL33152r,QFLORIDAPOWER&LIGHTCOMPANYAugust19,1981L-81-362OfficeofNuclearReactorRegulationAttention:Nr.DarrellG.Eisenhut,DirectorDivisionofLicensingU.S.NuclearRegulatoryCommissionWashington,D.C.20555
{{#Wiki_filter:DOCKET05000389.
NOTES!'EGULATORYWNFORMAT IONISTRIBUTION S-EM(RIDS)ACCESSION NBRi8108250481 DOC~DATE;!81/08/19NOTARIZED;:
NOFAGILi050'89 st+Lucie-PlantiUnit2'E,FloridaPowerLL'ight>>coB.'UTHB NAME'~AUTHORAFFILIATION UHRIGpR,K','loridaPower-LLightCo~'ECIP~NAMKIRECIPIENT AFFIL>>IATION KiISKNHUT'~D.G, DivisionofLicensing SUBJECTForwards-responsetoNRC,requestforaddiinfo.re>>FSAR~;I'nfo willbe.incorporated infuture'mend;.
DISTRIBUTIo NCODESBOO>>0COPIESRECEIVED:LTR LEN'CL'IZE::'g''-''ITLKl:"
PSAR/FSAR AMDTSandRe.latedCorrespondence RECIPIENT'Di'ODE'/NAMEl ACT>>ION~'/O'ICENSNGLICIBR&#xb9;3LAINTERNALi:
ACCIDEVAL'R26'HKM ENGBR'lCOREPERPBR10,EMRGPRPDEV35EQUIP,QUALBR13>>GEOSCIENCES 28.HYD'/GEOI BR30~ILE)06LIC'UALBR32!MECH.ENGBR18OELDPOAKRSYSBR19QABR21>>REACSYSBR23>>SIT'NALBR24COPIESLiTTRENCL>1-01011111>>1113?2223>>311111.01111111RECIPIENT IDCODE/NAME L>>IC'R&#xb9;)BCNKRSESr.VS 04AUXSYS'R27CONTSYSBR09EFF,TRSYSBR12'MRGPRPLIC36.FEMA~REPDIV39HUMFACTENG40ILCSYSBR16L'IC'UIDBR33MATL>>ENGBR17MPAOPLilCBRPROC/TSTREV20RAS8R22'EGF"01TRUCTENGBR25COPIESLTTR'-ENCL>>101111111~331111'110.-1111111111>>EXTERNALi:
ACRS"NRC'ORENT'IS41>>161602!111=1LPDRiNSIC03051111L/Hahb~T;TOiTAL'UMBER>>
OFCOPIES'EQU1RED::
L>>TTR62'NCL<57 nq4~i~s~n~iq'14nI"'IrrIq~'~gh~,i71yf4ryli4/1I.'ill'ly9gqIllyqIq'y1Iql If%OX529100MIAMI,FL33152r,QFLORIDAPOWER&LIGHTCOMPANYAugust19,1981L-81-362OfficeofNuclearReactorRegulation Attention:
Nr.DarrellG.Eisenhut, DirectorDivisionofLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555


==Dearttr.Eisenhut:==
==Dearttr.Eisenhut:==
+ci/gRe:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsforAdditionalInformationAttachedareFloridaPower8LightCompany(FPL)responsestoNRCstaffrequestsforadditionalinformationwhichhavenotbeenformallysubmittedontheSt.LucieUnit2docket.TheseresponseswillbeincorporatedintotheSt.LucieUnit2FSARinafutureamendment.Verytrulyyours,RobertE.UhrigVicePresidentAdvancedSystems8TechnologyREU/TCG/cfAttachmentscc:J.P.O'Reilly,Director,RegionII(w/oattachments)HaroldF.Reis,Esquire{w/oattachments)poolg/~z;:lkJP>tt8i0825048i8i0819PDRADOCK05000389A,...POBPEOPLE...SERVINGPEOPLE  
 
+ci/gRe:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsforAdditional Information AttachedareFloridaPower8LightCompany(FPL)responses toNRCstaffrequestsforadditional information whichhavenotbeenformallysubmitted ontheSt.LucieUnit2docket.Theseresponses willbeincorporated intotheSt.LucieUnit2FSARinafutureamendment.
Verytrulyyours,RobertE.UhrigVicePresident AdvancedSystems8Technology REU/TCG/cf Attachments cc:J.P.O'Reilly,
: Director, RegionII(w/oattachments)
HaroldF.Reis,Esquire{w/oattachments) poolg/~z;:lkJP>tt8i0825048i 8i0819PDRADOCK05000389A,...POBPEOPLE...
SERVINGPEOPLE  
*1~E'1If1~/';'l).p-"
*1~E'1If1~/';'l).p-"
AttachmentstoL-81-362A.InformationonECCSpumpNPSHrequestedbyN.Rubinon8/3l/8l.B.Revisedresponsesto492.7,492.9and492.15C.Additionalinformationsuppliedinresponseto490.1D.DraftwriteuponCEAEjectionwithLossofOffsitePower.E.Revisedresponseto440.1,440.5,440.9,440.14,440.25,440.39,440.41and440.44F.DraftTechnicalSpecificationforsteamgeneratorinspec'tion3/4.4.6G.Revisedresponseto251.8and251.10.H.MEBreviewmeetinglistofconfirmatoryitems.I.Revisedresponsesto420.3,420.4,420.14,420.54and420.56J.Neetingminutesandcommitmentsfrom8/11/81meetingonpreserviceinspection.K.FlordiaPower5LightCompanypositiononfeedwaterhamnertesting.L.Recordofconversationandcommitmentsmade.withtheAccidentEvalua-tionBranch(MaltPasedag)on8/18/81.H.DocumentationandproposedFSARrevisionstoincorporateadditionalundergroundcabledata.N.St.LucieUnit1(proposedSt.LucieUnit2)designcriteriatobeusedforreevaluationofthemasonrywallsperSEBquestion220.370.Revisedresponseto430.498108250481  
Attachments toL-81-362A.Information onECCSpumpNPSHrequested byN.Rubinon8/3l/8l.B.Revisedresponses to492.7,492.9and492.15C.Additional information suppliedinresponseto490.1D.DraftwriteuponCEAEjectionwithLossofOffsitePower.E.Revisedresponseto440.1,440.5,440.9,440.14,440.25,440.39,440.41and440.44F.DraftTechnical Specification forsteamgenerator inspec'tion 3/4.4.6G.Revisedresponseto251.8and251.10.H.MEBreviewmeetinglistofconfirmatory items.I.Revisedresponses to420.3,420.4,420.14,420.54and420.56J.Neetingminutesandcommitments from8/11/81meetingonpreservice inspection.K.FlordiaPower5LightCompanypositiononfeedwater hamnertesting.L.Recordofconversation andcommitments made.withtheAccidentEvalua-tionBranch(MaltPasedag)on8/18/81.H.Documentation andproposedFSARrevisions toincorporate additional underground cabledata.N.St.LucieUnit1(proposed St.LucieUnit2)designcriteriatobeusedforreevaluation ofthemasonrywallsperSEBquestion220.370.Revisedresponseto430.498108250481  


REcl.aCvt.AvZOMPUMPhPSHDATAElevationofPumpSuction,FtElevationofSource,FtFluidTemperature,FFluidVaporPressure,FtHeadLossDuetoFriction,FtNPSBAvailable,FthPSHRequiredatPumpRunout,Ft-6.bd21.$23.5245QO.C.ohJTAXAME.MYSPPAYPvvP-6.432J.4224060.9J,526.352l.oThefollowingformulaisused:8PSH(available)Pt-PvPa+Ps+Pe-Pi-Pvwhere:Pt~pressureatpumpsuctioncenterlinePv~vaporpressureofpumpedwaterPa~airpressurePs=steampressurePe~elevationpressureP,.~Headlossduetofrictioninthesuctionpiping.,'igOTE!Znatcorho~q.~'<4gcpgp4.g.gpic.conto.ines<~~p<MS<<+>>sassu>>>>>>>>'l>>qua'I+oe4e0'lv'>>.d,>>fop>>>>>>p>>ess~ca.(>>e..Pa+P~=P)>>IS>>'
REcl.aCvt.AvZOM PUMPhPSHDATAElevation ofPumpSuction,FtElevation ofSource,FtFluidTemperature, FFluidVaporPressure, FtHeadLossDuetoFriction, FtNPSBAvailable, FthPSHRequiredatPumpRunout,Ft-6.bd21.$23.5245QO.C.ohJTAXAME.MY SPPAYPvvP-6.432J.4224060.9J,526.352l.oThefollowing formulaisused:8PSH(available)
Pt-PvPa+Ps+Pe-Pi-Pvwhere:Pt~pressureatpumpsuctioncenterline Pv~vaporpressureofpumpedwaterPa~airpressurePs=steampressurePe~elevation pressureP,.~Headlossduetofrictioninthesuctionpiping.,'igOTE!Znatcorho~q.
~'<4gcpgp4.g.gpic.conto.ines<~~
p<MS<<+>>sassu>>>>>>>>'l>>qua'I
+oe4e0'lv'>>.d,>>fop>>>>>>
p>>ess~ca.
(>>e..Pa+P~=P)>>IS>>'
0C  
0C  
~otsrso~~~rrsoI>4L~~'I.'4~rorI~~~s>*1.~Co~~>gib/{~Pg/I'PS'>L'pat'!'>ll~ler<<L,&Nt'>fr'>4<<ffhfa~-Lj~(,srf!sre~>A~<<cCI~>aco97rer'or.fsf'of;Sfk}aol.bGUSTO4/fof>CO/p+~~~ggIg//p'ES}GNCOND1TIONS=CPM284dKFF78PbT.H,IFT.)V~d.BHP-Sfo,~'PM/780:bRIVFRHP~cso///I/FOrCg;Mrr/J/./44/'-w88,v,oPUMP8QQ3~g/leaepstt'anil<<ltcattacS.1PROPOSALNO.OJ/-g~gfITEMSPECIALNOTESPumac~jopcyygCurves~roopfsrorimoto.Pump1<guorontkedforono<OfOfCOndil>OLS.Copoe>ty.hOOJOndepieienCyOver.onlkei~reboaodon~>sop}elfondas>cnhend>in@eicos,colJ,I>~l>iasolkr~Iofcmperofuskofnotoverf>$Ckgree<On<tnOtOrkrt5>r<<C}saffs!t.Dc}ANNBYg,/>.~,DATEJ,.Pg-)8+sr~'~1'jf;!Iitj~itt~~~~~s>>er>1j<~~sitill>>>Ifl~~I4;3I3i3,'I>>f4aalu4'I~tI~I~ltsIr;If~T>~!~I~sirr~~~s>>]~,1!s>>>>I4'IItf~~roeII">>~~i.~'QH)pa.'ttl:'II~4~~~P>>IIIIf~I-I~~>oil<1}IIII~~141~>>44~>>L~4~~<ro'art.}I4,1~~iQfflI>siat.'-'3jI.i'g4~~4S~~Zf~'3"rUth>I.3~r-.IiltL~I>~~l.tt'si!IIti.'qQe1ff.w~>~~~>w"3r~I~~,I"44~Lr~I~st>~~I~1It~olI~}~~}~11I41~~rl>>tehlsl4.~>II:at.I<>>~4>rt>4it4>>'>tf~~e>Lie~I>~I~>1gt~~~j."~IIl~>ill~TT~~~s~~~~~i>>stI<~}'t~~tfo~~ILLA'~~~~Iohos~s~o~~~~~os~~oejl.o>hei>>1ia'4~~<iiiI'>I~1~~os'~>h~~eh>se1141s,oo>~~s1Ies~~II~'Ie>iIrtewg~>~1'hr~~s'4>ST~ah>>44~~~3ejh>>I%IIssf~4>>'lit:I,Dfl-tI'.ft3:~~~I's'1~~Ihl~~~~I44Lt~'>>~~~~~tes11>>~r>a~~4<~4~4I~~so~~~.s~~~~ee~Ilt~~':'fl:rllrf~~IItf';..It'<~ah.htg$>>~ITtsflIoil~fmol~oeI>L>><4<II~4~~>>~f~~.~44>>lojf~T~>W>>4~~~sf>~L4>>~Issllm1>=}:44;fitj.tlt'ithohorjiI~4~eh1~'~4~s'I.t"Ias~LEo.hr\~80a>>s~>~~~4>~tfileoff~4~r}pt~~4>>~pr-;IgniIlk:14f~sk>~>'Ij.'I,'~L4~~t~4tLilt~~~~~~~~4444llot,~tt~iilI'th>>~'~~.~wLITT,'~hj~boo>4>lwi~illis~~>>44~~'{..jl<w>>.-'l'i.t.tIr<4rjogl~h>>4t~4~L{jf,~i,frfftkjg,tfrfoooj5I~~~4f~sfj3j~lrn)pP,~o~~IiI~4>>fofoo~rf>4r.j.~oro>>~~4~'Or>>f>>LoloaII--~4~ho14I<Qel~>>4I~>I~Ls~>~~s4>>o4'I6jITI+gTwlooIate~LLI~pro~~~.>4ff4~~rihtij't{}ol~f>l<4'affIj~a~~4(~>>44~~~<<14~>4tr>>>~4i.s>>4~f~~~shr4~~~~\<rf~re~.I>,>f34.Z~3}gil.~.IIsfl>>~ll~>>lh~f~>~4>>r.ts,f>>41I4~~.Lo>f>s4TO~aflf~44<4~~~IoeL>L<eof4~>>h4fhieI.I>L+44>>tI'",I~Hf,':43rs8<+gIrjffr',iall~IoIILitlfo~Ir~fge~4ol4>>4tw4~~~I~'3.'IWt~hla<IlltsLe~>44tpt~~~4o~ofa>lt~I~Iev.'4~Ia~~'~~O.8O..'.4~~~~L4~~r~4>>l>>e>>~>4<t~I.I:1:I~y,,'I.;"4}If'LLo{jofac4~~~4~1~~~~11~~I.'jl'f-s~aoert<<.~~fo14IL4~~LLh4~~~>hfjmssT4>w>>h>WL>44.~1I'eljt~.IIo~nor>>Lj;gg;rf~SlLp><<eOLe-4~Vo4'It~il4~I~~1~ao~s~oi~4Lilhorft~~~f'~h4~~h>>O>>h4~Ltlft~~I1'TLIto~ft+t.L~ol~~~e-+.r--L-'.jrjrr;.lhr4tlL41f>f4gjo;L~~~4~~>~~~~<>th)theirs~'fs1rL}tja'IrjttfIt!'~1~Ij4'aal4Sot4th~a~hIih74>.r,'rIjse~1eoh>>~icos::84>>43~}AD~It;;ltfggp.,~>3~TLLf~>LLIraI>>~'pp~L~4oo~~1eI's~<'ss~ee~~st>>4.~relL4~I~~>>TL~e~o).<Lo~4>>.>fort~h,pdp;,I~~Tt>>4>>~L~>Ioole>>fthm~,Lee4eeo~~~.agigags~ol~1rs:~~shLL~4~I~I~~~~~4t>f>>il\~ho>>or4~>>~>>>Sh~+LaJttl4Q~~~~~IsI~io~I~Lra>~~4>lI~~I~~ttolot1~4~4>l4~~~4~I4oo44>I~~a4~WI~Lso~~44oe~~>>>>~oo~ot~~4~'isr>~f<!t>~LlIII~~I~4>gi.>twI>~~~~~4t~.Whjm.r~e>>1~r>i~4sell.IVI)~~r>4~f'~4s>>~Il~.atlLII~~I~s~~~'i!},"-'ggjl~~~p>ig'tt'f1jt~ffsrL"-}4~ooqadiw>>>>~~4>4IIrh~tl.{fr'llI~~~>>~IIlf~oo~~~~StlI~t>>4<<.~hh~1tA4ia>>4~~\aho~hg>sl'gg+fr>'~1~1I>>rialgt1~Iols~~4~%1~so~4LL>>>>I~Tel~~ia4t~I'4~~IiW's:"<-O..',';:~'".'.":.-l'"4/4gpI-.':L-.*I,'..cpOOOI.".GALLONSP}RhflNQT5Qooo"...:;..-fOd0 8<<~~+I>oaIVER.a.i+I~l~cGUST~~rCffffQcPI'%cAI~Rcfmfcl.DESIGNCONDLTLONS)fsgj~-FFFi~PeT.H.(FT.}$70fff(P-~SC.>>ReSt/<st+~'lRf)(aafffacfooi<<4<)NoTERalrWi.iS-C/CURVE+-$'89PUMP.ggPQ~g)/=Pf}OPOSALNO03/-qgPggfTEM~SPECfALNOTESPun/fjaW/O7>ll>~to<eeeeppre<srte<eFurrpr~gs>eanteed(eroee~etefcond>)son<Cape<>)y)ced~<4c)Ictn'Yps<a<~n)eelerebaaedont)soptc<)end<<'scn)'end<it))a<eat.caa)d,)<ale<<ale<~Ietens(sera)cse0(notoct<ejda)!<oe<endnetOeot)1'LCI>en1))t.DATEDRAWN"!BYp,p~.:~0I111'tsf~I~L.I~I)jj~I~~I~<I~I~~I(fflit~f(LI~le~044rrIrew~4I~0~O~<4<'4~~Q~twI~~~'I~~'I~f.tlfff1rff''~~~~1tat<~~sJe1~~<1~~'sl'1lBlwe~4~~I0<~if~.<~sae1{~~I~<~I~I<14~~I~J~'~J~I~I~',cI1~~~r,I~I,"".",-'.0~~r::1'f4cs',I(:".1tI~~~)1014I~~~rrr~~~~IceI~~~'f("lf~<~111~r4~~4~411~.~~~I4~s~~1~~'~~~~~<4~IL)f1f~~~tsIp~~~<~~JefIIJg~-t(i~iiAA~~L~4<i;(~0j'.0~~I~~4f~~<srridMij.>1.~0>ltOC~<IM~~~4~~4~tlp~'d'.Je..~1Jr>LsI:ftfff;1:~~Jas<10<t'rrf...fa~~tf~<O1:,'~i'iFaf!:I~~SOWSfi;;;Jf'0t~~1~~~Ii~If-srII-~~40<I~IwtI~~I~I~\<~>4~~11~~~1.1.LeM~Jtw~>4M~'t"I~Ia~r~~.I~l~I~'IJr~tCJJ<ot~.~~~~1I~t.ta~~L.<fI'.<pr~~~~~~Pf~~r<~~0I~tfa.~I~1<4Js~L~OI4gl4~0'I~~~I~~rrr~~~~t14~~SJOW~~4141~1\~Ji>441~oa~<f111I~~M~I~I111(1Ir~<Iratet~~if<>p1~t1~slss1<IIIIs~'!t~I~~ft<'ff11-ffI;~ass<~4~~~'<Itf1)~0<e"J>I~~s'<<'f(:1'.1~1~~e~~I~~~4~.r.-i~~~t~I<4Jr~~~r~~40~~~~1f11111jiff~1li,'a1fLI~efw~~~~JItffiaf[lM<,(sta.tM4<4~'1JM~ttjtj~.wtf(11ja.1.f1e'lit~~f'1.L'.14I"'(Itf"!.g4~~~141-"-80'1~IL(~IawJi~IeIJI~4swIfIgw"fi~~~~M~~~~0~~f]4~tgf~~Mr~ttt~~f(~~~IIi',c:I";].f<L';1<Ljfear0~~>~eI'sala~~~1~~~I40<<<tf'fei'($$14(g~'~~~~~I44L(CL>1LL<<'LLLM-~~.~~rwL~&#x17d;<4~<4~alt~~~1~~<Japr~1~~f)~~400I4~~4~~~414<re~~~reta'1I~e1~~~toJs41<eg1~~~I~r".'Ht;~~f(.10~4~'}ILI~I~~~~/(1',1..f(fI~\~>14rrlJJ~~~14~~~tl~1~'J~~0+~~44>F4LI)L4P~40~1~~la~~~tm(pl<440~~fo(fP)fwt<~~0~f~1I~Lw~WJ4w'af~~~Irf1I4<14~<oilI~4~0~t~~~~~>o4,>fag4~L;Bt~i~I)41~~~4~<60!!l"L1fiiLfai~<4<~g<]:pf'1(sFrb's~4~~I~~atie4~1)4'<I(4I'~<.1".ifl~sf~I~~'o~4~4rJ<~rsI~I~I'1<~~444~4-<74sa~se~~JrI~>~1f~~)J41.I<ace<<le~<<4~4'.LtlfKI~~~~~~~I~0~rto~l~~~~rrf~~~~4~~~<0'54:,0~~aewrsr(4a'4~~4~atIM~M~Iwr~~~~4.>~<I~4~wa<yw4~~~Jlw11rMr<W~~~~~4Is~~Jle~~...l,1.:tufa<<eI~4~z~O'(itfff'(ill('Ji'LI.:ff'.(lt<~if~~tI~~t~4.~~~Q1r~I~~~~~MlILlIft(L~t~~~~'~.(Mfa~rsa4~~t'"I'I~e~~~4~~~-~r441<a/~11ta~~W1if<<iarotattlet1444sirif1}~J<~~.~Jt~~~I~~Itltg.<<wai041I~fff!i~i'~eeCw4~<0~we90~4I~004~~r11~I~0wtLir4~~~HHl"'oatnfl~alLimnirrr~<Jestte4~rg4~~r~,Litto4~~~0~4<<M~.1..<<"a>>oftgstCJI~)4>l4taltl~Lf':Ftt~:,tt{~I~4L'1'~+mA"~~QQ~m~n~>4~ws<r3Ie~11~I~ay)~1Iq,PIV>~sftt~~~~Mt~Me:<,fs'b'j/41~iI@-!2r~DPI'.410?l-10(lI",fff.TJlrrafeP'4<JLF~~<4~~II1~~~~4~rs~la>f~L,(.PX'>~I~~~~~:I'f4/4at~~r~~~~ra~~~~~144)~~t~:f(1rfffOQa.41-"L~<rls~41~~f~~Il'ri~','f(;ti:tf~t-ft~~er~~si>yJL(<4~~t'~tr~~4<t~1~Iv44~rt4~~~k~jjAN8:.w<<11~<JetsMtL\~v~1IMM-fP''ayJg>~~~~Wfc.r4~Lt4(\~0~1l,a.wet-~-fIme~~<.cff..4.11(~~<aJal)(t4tt~M~'L~'~~~~~<4~~4f1~0I'~'l}(.1'~rt4~w444te~f)t~Lla4ilatsr4~~4~LO'lf<'t01<'r>I/i~JL+1AQftt>1~~Itre~4t~f~1I~~~~eSa~>.M~4~MwWetw'~44r.0&>>OMaM>>~4t<wt~'44~41~jet'PP'P'.,(<(f44og~~~<4~lti0$I10:looo.:-..',":.-.-.:-::-.Qo.-,,...:gaooI.-,'-.....:...:.":yooo,.-.:::,.".-',)2/OA~'<ifigi'c.iRve!s/re&~'g~i'0000~~~'ais~~
~otsrso~~~rrsoI>4L~~'I.'4~rorI~~~s>*1.~Co~~>gib/{~Pg/I'PS'>L'pat'!
0 e492.7.(4.4.3.1)Apparentinconsistenciesareshownforcoolantconditons.Pleaseexplainormakecorrections.Theseinconsistenciesareasfollows:Table1.3-1indicatesthatthetotalflow-rateinthereactorvesselis139.4x10~lb/hrwhileTable4.9-10indicatesthatthevalueis139.5x106lb/hr;Table4.4-10indicates'hatthereactorflowrateperloop(hotleg)andsteamgeneratorprimaryside(tubeside)is61x106lb/hr.Table1.3-1alsoshowsavalueof61x10lb/hrastheflowratethroughthesteamgenerator{tubeside).Whenthisvalueismultipliedbytw~forthetwoflowloops,thetotalflowrateequals122x10lb/hrshowninTable4.4-10forthetotalflowthroughthereactor;Thecoolantoutlettemperatureislistedas597.6FinTable,4.4-10butappearstobegivenas596oF(548Fnominalinlet+48oFaveragerise)inTable1.3-1;~Resense4.2.Thevaluegivenforthereactorcoolantpumpflowis81,200GPH(324,800GPMforfourpumps)inTable4.4-10andTable1.3-1fortheratedcapacityofthecoolantpumps.Thisislessthantheminimumflowvalueof369,947GPHshownin'Table4.4-1;A'Iso,usingtheaverageinletcoolantdensityof47.0Ib/ft3isgiveninTable4.4-10theconversiontolb/hrflowislessthanthevalueof139.5x10lb/hrgiveninTable4.4-10forthetotalfourpumpflowthroughthereactor.Thetotalflowrateis139.4x10lb/hr.Thetypographicalerrors6inTable4.4-7,4.4-10,5.1-1,and5.1-3havebeencorrected.The122x10lb/hrflowrateisbasedupontheminimumdesignreactorcoolantflowrateof324,800gpm.Thisminimumdesignflowisfourtimestheminimumpumpdesigncapacity.The139.4x10lb/hrisbasedupontheminimumallowablereactorcoolantflowrateof369,947gpm.Theminimumallowableflowrateisdefinedasthelowerflowratelimitontheexpectedflowrateprobabilitydistributionbelowwhichtheactualflowratehasonlyafivepercentchangeofexisting.Thisminimumallowableflowisusedfotthethermalmarginanalyses.3.Thecoreexitaveragecoolanttemperatureis598Fandthereactorvesseloutlettemperatureis596oF.CorrectionshavebeenmadetoTables1.3-1,4.4-10,5.1-1,and5.1-3andtoFigure4.4-10"Theminimumdesignflowrateforthereactorcoolantpumpsis324,800gpm,whiletheminimumallowablereactorcoreflowrateis369,947gpm,asdiscussedinitem2ofthisresponse.  
'>ll~ler<<L,&Nt'>fr'>4<<ffhfa~-Lj~(,srf!sre~>A~<<cCI~>aco97rer'or.fsf'of;Sfk}aol.bGUSTO4/fof>CO/p+~~~
ggIg//p'ES}GNCOND1TIONS
=CPM284dKFF78PbT.H,IFT.)
V~d.BHP-Sfo,~'PM/780:bRIVFRHP~cso///I/FO rCg;Mrr/J/./44/'-w88, v,oPUMP8QQ3~g/leaepstt'anil
<<ltcattacS
.1PROPOSALNO.OJ/-g~
gfITEMSPECIALNOTESPumac~jopcyygCurves~roopfsrorimoto.
Pump1<guorontked forono<OfOfCOndil>OLS.
Copoe>ty.
hOOJOndepieienCy Over.onlkei~reboaodon~>sop}elfondas>cnhend>in@eicos,colJ,I>~l>iasolkr~Iofcmperofusk ofnotoverf>$Ckgree<On<tnOtOrkrt5>r<<C}saffs!t.Dc}ANNBYg,/>.~,DATEJ,.Pg-)8+sr~'~1'jf;!Iitj~itt~~~~~s>>er>1j<~~sitill>>>Ifl~~I4;3I3i3,'I>>f4aalu4'I~tI~I~ltsIr;If~T>~!~I~sirr~~~s>>]~,1!s>>>>I4'IItf~~roeII">>~~i.~'QH)pa.'ttl:'II~4~~~P>>IIIIf~I-I~~>oil<1}IIII~~141~>>44~>>L~4~~<ro'art.}I4,1~~iQfflI>siat.'-'3jI.i'g4~~4S~~Zf~'3"rUth>I.3~r-.IiltL~I>~~l.tt'si!IIti.'qQe1ff.w~>~~~>w"3r~I~~,I"44~Lr~I~st>~~I~1It~olI~}~~}~11I41~~rl>>tehlsl4.~>II:at.I<>>~4>rt>4it4>>'>tf~~e>Lie~I>~I~>1gt~~~j."~IIl~>ill~TT~~~s~~~~~i>>stI<~}'t~~tfo~~ILLA'~~~~Iohos~s~o~~~~~os~~oejl.o>hei>>1ia'4~~<iiiI'>I~1~~os'~>h~~eh>se1141s,oo>~~s1Ies~~II~'Ie>iIrtewg~>~1'hr~~s'4>ST~ah>>44~~~3ejh>>I%IIssf~4>>'lit:I,Dfl-tI'.ft3:~~~I's'1~~Ihl~~~~I44Lt~'>>~~~~~tes11>>~r>a~~4<~4~4I~~so~~~.s~~~~ee~Ilt~~':'fl:rllrf~~IItf';..It'<~ah.htg$>>~ITtsflIoil~fmol~oeI>L>><4<II~4~~>>~f~~.~44>>lojf~T~>W>>4~~~sf>~L4>>~Issllm1>=}:44;fitj.tlt'ithohorjiI~4~eh1~'~4~s'I.t"Ias~LEo.hr\~80a>>s~>~~~4>~tfileoff~4~r}pt~~4>>~pr-;IgniIlk:14f~sk>~>'Ij.'I,'~L4~~t~4tLilt~~~~~~~~4444llot,~tt~iilI'th>>~'~~.~wLITT,'~hj~boo>4>lwi~illis~~>>44~~'{..jl<w>>.-'l'i.t.tIr<4rjogl~h>>4t~4~L{jf,~i,frfftkjg,tfrfoooj5I~~~4f~sfj3j~lrn)pP,~o~~IiI~4>>fofoo~rf>4r.j.~oro>>~~4~'Or>>f>>LoloaII--~4~ho14I<Qel~>>4I~>I~Ls~>~~s4>>o4'I6jITI+gTwlooIate~LLI~pro~~~.>4ff4~~rihtij't{}ol~f>l<4'affIj~a~~4(~>>44~~~<<14~>4tr>>>~4i.s>>4~f~~~shr4~~~~\<rf~re~.I>,>f34.Z~3}gil.~.IIsfl>>~ll~>>lh~f~>~4>>r.ts,f>>41I4~~.Lo>f>s4TO~aflf~44<4~~~IoeL>L<eof4~>>h4fhieI.I>L+44>>tI'",I~Hf,':43rs8<+gIrjffr',iall~IoIILitlfo~Ir~fge~4ol4>>4tw4~~~I~'3.'IWt~hla<IlltsLe~>44tpt~~~4o~ofa>lt~I~Iev.'4~Ia~~'~~O.8O..'.4~~~~L4~~r~4>>l>>e>>~>4<t~I.I:1:I~y,,'I.;"4
}If'LLo{jofac4~~~4~1~~~~11~~I.'jl'f-s~aoert<<.~~fo14IL4~~LLh4~~~>hfjmssT4>w>>h>WL>44.~1I'eljt~.IIo~nor>>Lj;gg;rf~SlLp><<eOLe-4~Vo4'It~il4~I~~1~ao~s~oi~4Lilhorft~~~f'~h4~~h>>O>>h4~Ltlft~~I1'TLIto~ft+t.L~ol~~~e-+.r--L-'.jrjrr;.lhr4tlL41f>f4gjo;L~~~4~~>~~~~<>th)theirs~'fs1rL}tja'IrjttfIt!'~1~Ij4'aal4Sot4th~a~hIih74>.r,'rIjse~1eoh>>~icos::84>>43~}AD~It;;ltfggp.,~>3~TLLf~>LLIraI>>~'pp~L~4oo~~1eI's~<'ss~ee~~st>>4.~relL4~I~~>>TL~e~o).<Lo~4>>.>fort~h,pdp;,I~~Tt>>4>>~L~>Ioole>>fthm~,Lee4eeo~~~.agigags~ol~1rs:~~shLL~4~I~I~~~~~4t>f>>il\~ho>>or4~>>~>>>Sh~+LaJttl4Q~~~~~IsI~io~I~Lra>~~4>lI~~I~~ttolot1~4~4>l4~~~4~I4oo44>I~~a4~WI~Lso~~44oe~~>>>>~oo~ot~~4~'isr>~f<!t>~LlIII~~I~4>gi.>twI>~~~~~4t~.Whjm.r~e>>1~r>i~4sell.IVI)~~r>4~f'~4s>>~Il~.atlLII~~I~s~~~'i!},"-'gg jl~~~p>ig'tt'f1jt~ffsrL"-}4~ooqadiw>>>>~~4>4IIrh~tl.{fr'llI~~~>>~IIlf~oo~~~~StlI~t>>4<<.~hh~1tA4ia>>4~~\aho~hg>sl'gg+fr>'~1~1I>>rialgt1~Iols~~4~%1~so~4LL>>>>I~Tel~~ia4t~I'4~~IiW's:"<-O..',
';:~'".'.":.-l'"4/4gpI-.':L-.*
I,'..cpOOOI.".GALLONSP}RhflNQT5Qooo"...:;..-
fOd0 8<<~~+I>oa IVER.a.i+I~l~cGUST~~rCffffQcPI'%cAI~Rcfmfcl
.DESIGNCONDLTLONS
)fsgj~-FFFi~PeT.H.(FT.}
$70fff(P-~SC.>>ReSt/<st+~'lRf)(aafffacfooi<<4<)NoTERalrWi.iS-C/CURVE+-$'89PUMP.ggPQ~g)/=Pf}OPOSAL NO03/-qgPgg fTEM~SPECfALNOTESPun/fjaW/O7>ll>
~to<eeeeppre<srte<e Furrpr~gs>eanteed(eroee~etefcond>)son<
Cape<>)y)ced~<4c)Ictn'Yps<a<~n)eelerebaaedont)soptc<)end<<'scn)'end<it))
a<eat.caa)d,)<ale<<ale<~Ietens(sera)cse 0(notoct<ejda)!<oe<endnetOeot)1'LCI>en1))t.DATEDRAWN"!BYp,p~.:~0I111'tsf~I~L.I~I)jj~I~~I~<I~I~~I(fflit~f(LI~le~044rrIrew~4I~0~O~<4<'4~~Q~twI~~~'I~~'I~f.tlfff1rff''~~~~1tat<~~sJe1~~<1~~'sl'1lBlwe~4~~I0<~if~.<~sae1{~~I~<~I~I<14~~I~J~'~J~I~I~',cI1~~~r,I~I,"".",-'.0~~r::1'f4cs',I(:".1 tI~~~)1014I~~~rrr~~~~IceI~~~'f("lf~<~111~r4~~4~411~.~~~I4~s~~1~~'~~~~~<4~IL)f1f~~~tsIp~~~<~~JefIIJg~-t(i~iiAA~~L~4<i;(~0j'.0~~I~~4f~~<srridMij.>1.~0>ltOC~<IM~~~4~~4~tlp~'d'.Je..~1Jr>LsI:ftfff;1:
~~Jas<10<t'rrf...fa~~tf~<O1:,'~i'iFaf!:I~~SOWSfi;;;Jf'0 t~~1~~~Ii~If-srII-~~40<I~IwtI~~I~I~\<~>4~~11~~~1.1.LeM~Jtw~>4M~'t"I~Ia~r~~.I~l~I~'IJr~tCJJ<ot~.~~~~1I~t.ta~~L.<fI'.<pr~~~~~~Pf~~r<~~0I~tfa.~I~1<4Js~L~OI4gl4~0'I~~~I~~rrr~~~~t14~~SJOW~~4141~1\~Ji>441~oa~<f111I~~M~I~I111(1Ir~<Iratet~~if<>p1~t1~slss1<IIIIs~'!t~I~~ft<'ff11-ffI;~ass<~4~~~'<Itf1)~0<e"J>I~~s'<<'f(:1'.1
~1~~e~~I~~~4~.r.-i~~~t~I<4Jr~~~r~~40~~~~1f11111jiff~1li,'a1fLI~efw~~~~JItffiaf[lM<,(sta.tM4<4~'1JM~ttjtj~.wtf(11ja.1.f1e'lit~~f'1.L'.14I"'(Itf"!.g4~~~141-"-80'1~IL(~IawJi~IeIJI~4swIfIgw"fi~~~~M~~~~0~~f]4~tgf~~Mr~ttt~~f(~~~IIi',c:I";].f
<L';1<Ljfear0~~>~eI'sala~~~1~~~I40<<<tf'fei'($
$14(g~'~~~~~I44L(CL>1LL<<'LLLM-
~~.~~rwL~&#x17d;<4~<4~alt~~~1~~<Japr~1~~f)~~400I4~~4~~~414<re~~~reta'1I~e1~~~toJs41<eg1~~~I~r".'Ht;~~f(.10~4~'}ILI~I~~~~/(1',1..f(fI~\~>14rrlJJ~~~14~~~tl~1~'J~~0+~~44>F4LI)L4P~40~1~~la~~~tm(pl<440~~fo(fP)fwt<~~0~f~1I~Lw~WJ4w'af~~~Irf1I4<14~<oilI~4~0~t~~~~~>o4,>fag4~L;Bt~i~I)41~~~4~<60!!l"L1fiiLfai~<4<~g<]:pf'1(sFrb's~4~~I~~atie4~1)4'<I(4I'~<.1".ifl~sf~I~~'o~4~4rJ<~rsI~I~I'1<~~444~4-<74sa~se~~JrI~>~1f~~)J41.I<ace<<le~<<4~4'.LtlfKI~~~~~~~I~0~rto~l~~~~rrf~~~~4~~~<0'54:,0~~aewrsr(4a'4~~4~atIM~M~Iwr~~~~4.>~<I~4~wa<yw4~~~Jlw11rMr<W~~~~~4Is~~Jle~~...l,1.:tufa<<eI~4~z~O'(itfff'(ill('Ji'LI.:ff'.(lt<~if~~tI~~t~4.~~~Q1r~I~~~~~MlILlIft(L~t~~~~'~.(Mfa~rsa4~~t'"I'I~e~~~4~~~-~r441<a/~11ta~~W1if<<iarotattlet1444sirif1}~J<~~.~Jt~~~I~~Itltg.<<wai041I~fff!i~i'~eeCw4~<0~we90~4I~004~~r11~I~0wtLir4~~~HHl"'oatnfl~alLimnirrr~<Jestte4~rg4~~r~,Litto4~~~0~4<<M~.1..<<"a>>oft gstCJI~)4>l4taltl~Lf':Ftt~:,tt{~I~4L'1'~+mA"~~QQ~m~n~>4~ws<r3Ie~11~I~ay)~1Iq,PIV>~sftt~~~~Mt~Me:<,fs'b'j/41~iI@
-!2r~DPI'.41 0?l-10(lI",fff.TJlrrafeP'4<JLF~~<4~~II1~~~~4~rs~la>f~L,(.PX'>~I~~~~~:I'f4/4at~~r~~~~ra~~~~~144)~~t~:f(1rfffOQa.41-"L~<rls~41~~f~~Il'ri~','f(;ti:tf~t-ft~~er~~si>yJL(<4~~t'~tr~~4<t~1~Iv44~rt4~~~k~jjAN8:.w<<11~<JetsMtL\~v~1IMM-fP''ayJg>~~~~Wfc.r4~Lt4(\~0~1l,a.wet-~-fIme~~<.cff..4.11(~~<aJal)(t4tt~M~'L~'~~~~~<4~~4f1~0I'~'l}(.1'~rt4~w444te~f)t~Lla4ilatsr4~~4~LO'lf<'t01<'r>I/i~JL+1AQftt>1~~Itre~4t~f~1I~~~~eSa~>.M~4~MwWetw'~44r.0&>>OMaM>>~4t<wt~'44~41~jet'PP'P'.,(<(f44og~~~<4~lti0$I10:looo.:-..',":.-.-.:-::-
.Qo.-,,...:gaooI.-,'-.....:...:
.":yooo,.-.:::,.".-
',)2/OA~'<ifigi'c.iRve!s/re&~'g~i'0000~~~'ais~~
0 e492.7.(4.4.3.1)
Apparentinconsistencies areshownforcoolantconditons.
Pleaseexplainormakecorrections.
Theseinconsistencies areasfollows:Table1.3-1indicates thatthetotalflow-rate inthereactorvesselis139.4x10~lb/hrwhileTable4.9-10indicates thatthevalueis139.5x106lb/hr;Table4.4-10indicates'hat thereactorflowrateperloop(hotleg)andsteamgenerator primaryside(tubeside)is61x106lb/hr.Table1.3-1alsoshowsavalueof61x10lb/hrastheflowratethroughthesteamgenerator
{tubeside).Whenthisvalueismultiplied bytw~forthetwoflowloops,thetotalflowrateequals122x10lb/hrshowninTable4.4-10forthetotalflowthroughthereactor;Thecoolantoutlettemperature islistedas597.6FinTable,4.4-10butappearstobegivenas596oF(548Fnominalinlet+48oFaveragerise)inTable1.3-1;~Resense4.2.Thevaluegivenforthereactorcoolantpumpflowis81,200GPH(324,800GPMforfourpumps)inTable4.4-10andTable1.3-1fortheratedcapacityofthecoolantpumps.Thisislessthantheminimumflowvalueof369,947GPHshownin'Table4.4-1;A'Iso,usingtheaverageinletcoolantdensityof47.0Ib/ft3isgiveninTable4.4-10theconversion tolb/hrflowislessthanthevalueof139.5x10lb/hrgiveninTable4.4-10forthetotalfourpumpflowthroughthereactor.Thetotalflowrateis139.4x10lb/hr.Thetypographical errors6inTable4.4-7,4.4-10,5.1-1,and5.1-3havebeencorrected.
The122x10lb/hrflowrateisbasedupontheminimumdesignreactorcoolantflowrateof324,800gpm.Thisminimumdesignflowisfourtimestheminimumpumpdesigncapacity.
The139.4x10lb/hrisbasedupontheminimumallowable reactorcoolantflowrateof369,947gpm.Theminimumallowable flowrateisdefinedasthelowerflowratelimitontheexpectedflowrateprobability distribution belowwhichtheactualflowratehasonlyafivepercentchangeofexisting.
Thisminimumallowable flowisusedfotthethermalmarginanalyses.
3.Thecoreexitaveragecoolanttemperature is598Fandthereactorvesseloutlettemperature is596oF.Corrections havebeenmadetoTables1.3-1,4.4-10,5.1-1,and5.1-3andtoFigure4.4-10"Theminimumdesignflowrateforthereactorcoolantpumpsis324,800gpm,whiletheminimumallowable reactorcoreflowrateis369,947gpm,asdiscussed initem2ofthisresponse.  
/M/
/M/
0SL2FS~hRTABLE1.3-1(Cont'd)ItemPrincialDesinParametersnftheReactnrCoolantSstemOperatingpressure,psig0cetr'y+IQPISH~actnrinletfemperature>FOPCh,'reactorndelertemperature,FNumbernfloopsDesignpressure,psig~~2,2355482'85St.LurieUnit2ReferenceSection5.15.)5.I5.15.1'anOnofreUnits2and32,235553611.2.2,485hNO22,235553.5612.52,485St~LucieUnit12,235539.7595.72,485DesignTemperature>FeHydrostatictestpressure(cold),psigPrincialDesinParametersoftheReactorVessel6503>110'~5.15.16503,110650/3,1106503,110Haterial~Designpressure,psigDesigntemperature,FOperatingpressure,psigInsidediameterofshell,in.Outsidediameteracrossnoxsles>in.SeeTable5,232,485650.2>2351722535,24.44.45.35.3SeeTable5.2-22>4856502>235172253Sh533>GradeB~ClassI,lowalloysteel,internallycladwithType304austeniticSS2,48565021235157238Sh533,GradeB,Class1,lowalloysteel,internallycladwithType304austeniticSS2,4856502,235172253Overallheightofvesselandenclosurehead,ft-in.totopofCEDMnosxleHinimumcladthickness,in.PrincialDesinParametersoftheSteamGeneratorsNumberofUnits41-103/81/85.35.35.4~43-6-1/21/8"43-4-1/61/841-11-3/45/16  
0SL2FS~hRTABLE1.3-1(Cont'd)ItemPrincialDesinParameters nftheReactnrCoolantSstemOperating
: pressure, psig0cetr'y+IQPISH~actnrinletfemperature>
FOPCh,'reactor ndelertemperature, FNumbernfloopsDesignpressure, psig~~2,2355482'85St.LurieUnit2Reference Section5.15.)5.I5.15.1'anOnofreUnits2and32,235553611.2.2,485hNO22,235553.5612.52,485St~LucieUnit12,235539.7595.72,485DesignTemperature>
FeHydrostatic testpressure(cold),psigPrincialDesinParameters oftheReactorVessel6503>110'~5.15.16503,110650/3,1106503,110Haterial~Designpressure, psigDesigntemperature, FOperating
: pressure, psigInsidediameterofshell,in.Outsidediameteracrossnoxsles>in.SeeTable5,232,485650.2>2351722535,24.44.45.35.3SeeTable5.2-22>4856502>235172253Sh533>GradeB~ClassI,lowalloysteel,internally cladwithType304austenitic SS2,48565021235157238Sh533,GradeB,Class1,lowalloysteel,internally cladwithType304austenitic SS2,4856502,235172253Overallheightofvesselandenclosure head,ft-in.totopofCEDMnosxleHinimumcladthickness, in.PrincialDesinParameters oftheSteamGenerators NumberofUnits41-103/81/85.35.35.4~43-6-1/21/8"43-4-1/61/841-11-3/4 5/16  


SL2-FSARTABLE4.4-7.RCSFLOWRATESFlowPathTotalRCSflowCorebypass'lowCoreflowHotlegflowColdlegflow~Flow(ibm/hr)139.P'105+x10l134.3x1069.)fx10634.x10Qs-*T'inlet~548F4,446  
SL2-FSARTABLE4.4-7.RCSFLOWRATES FlowPathTotalRCSflowCorebypass'low CoreflowHotlegflowColdlegflow~Flow(ibm/hr)139.P'105+x10l134.3x1069.)fx10634.x10Qs-*T'inlet~548F4,446  
(
(
SL2-FSARTABLE4.4-10REACTORCOOLANTSYSTEMCONPONENTTHER.'fALANDHYDRAULICDATA~CooanentDataReactorVesselRatedcorethermalpower,MWtDesignpressure,psia,Operatingpressure,psia2560.25002250Designtemperature,FCoolantoutlet'emperatureF650,$46~gt..CoolantinlettemperatureCoolantoutletstate'otal,coolantflow,ibm/hr'oreaveragecoolantenthalpyInlet,Btu/lb'utlet,Btu/lbeAveragecoolantdensityInlet,Ib/ft33Outlet,lb/ft548Subcooled139;fx1054561047.043.4SteamGeneratorsNumberofunitsg~h~t',t+'~~side{tubeside)Designpressure/temperature;psia/FOperatingpressure,psiaInlettemperature,FOutlettemperature,FFlowrate,10lb/hr2500/6502250Rh'-45gg548~-61Designpressure/temperature,psi;a/FOperatingpressure/temperature,psia/F(warranted)To)alsteamflowpergenerator,10lb/hrSteamquality,1000/550815/520.3~5.60399.84.4-52 TABLE4.4-10(Cont'd)~ComonentPipesize(insidediarneter),in.HotlegSuctionleg(coldleg)Dischargeleg(coldleg)Designpressure/temperature,psia/POperatingpressure/temperature,psia/FHotlegColdleg.a.FullpowerconditionsData4230302500/6502250/Sem250/5484,4<<54 SL2-FSARTABLE5.1-1DESIGNPARAMETERSOFREACTORCOOLANTSYSTEMDesignThermalPower,Mwt(IncludingnetheatadditionfromRCP's)2570ReactorCoolantFlowRate,O~~fe~ColdLegATemperature,F+~1a~WAverage~'Femperapture,:.Fi.'-.I~.C)(erafi'~HotLeg+Temper8ture,Flb/hrNormalOperatingPressure(psia)ThermalPower,Btu/hrtk.signPressure,psia'esxgnTemperature(exreptPressurizer),FPressurizerDesignTemperature,F8.77x102500650700'f6139.x10548.572/~MS9c22505.1-3 4
SL2-FSARTABLE4.4-10REACTORCOOLANTSYSTEMCONPONENT THER.'fAL ANDHYDRAULIC DATA~CooanentDataReactorVesselRatedcorethermalpower,MWtDesignpressure, psia,Operating
6059hot58057R.570ALAJ'I560I-I550OCEDLCJ540averagecold548.532530'5200'550STEANGEt/ERATORPOWER,~75looFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TEMPERATURECONTROLPROGRAMFIGURE4.4-)0  
: pressure, psia2560.25002250Designtemperature, FCoolantoutlet'emperature F650,$46~gt..Coolantinlettemperature Coolantoutletstate'otal, coolantflow,ibm/hr'oreaveragecoolantenthalpyInlet,Btu/lb'utlet, Btu/lbeAveragecoolantdensityInlet,Ib/ft33Outlet,lb/ft548Subcooled 139;fx1054561047.043.4SteamGenerators Numberofunitsg~h~t',t+'~~side{tubeside)Designpressure/temperature; psia/FOperating
: pressure, psiaInlettemperature, FOutlettemperature, FFlowrate,10lb/hr2500/6502250Rh'-45gg548~-61Designpressure/temperature, psi;a/FOperating pressure/temperature, psia/F(warranted)
To)alsteamflowpergenerator, 10lb/hrSteamquality,1000/550815/520.3
~5.60399.84.4-52 TABLE4.4-10(Cont'd)~ComonentPipesize(insidediarneter),in.HotlegSuctionleg(coldleg)Discharge leg(coldleg)Designpressure/temperature, psia/POperating pressure/temperature, psia/FHotlegColdleg.a.Fullpowerconditions Data4230302500/6502250/Sem250/5484,4<<54 SL2-FSARTABLE5.1-1DESIGNPARAMETERS OFREACTORCOOLANTSYSTEMDesignThermalPower,Mwt(Including netheatadditionfromRCP's)2570ReactorCoolantFlowRate,O~~fe~ColdLegATemperature, F+~1a~WAverage~'Fempe rapture,:
.Fi.'-.I~.C)(erafi'~HotLeg+Temper8ture, Flb/hrNormalOperating Pressure(psia)ThermalPower,Btu/hrtk.signPressure, psia'esxgn Temperature (exreptPressurizer),
FPressurizer DesignTemperature, F8.77x102500650700'f6139.x10548.572/~MS9c22505.1-3 4
6059hot58057R.570ALAJ'I560I-I550OCEDLCJ540averagecold548.532530'5200'550STEANGEt/ERATOR POWER,~75looFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TEMPERATURECONTROLPROGRAMFIGURE4.4-)0  


ParameterSL2PSARTABLE5.1-3PROCESSDATAPOINTTABULATIONSOCn2A1RCP2hlR.VeRCP2A2peuuuutitee~xidintOutlet~xidointOutletS.ue2BlRCP281RCP282~xsdointoutletoutletDataPointPigures5.1-3and5.1-4Pressure,psiaTeaperacure,PAassPlowRace,iblnr2250653234223722962277.372)(S46372d774E69.7]{x!034.6/x!O139.4)xlO22962237548372+74.6/x!O69.7+16229654822955485S3>>9)bid.348)PI06VoluaecricPlowRace,gpss191985092,5003839700'929500.191985092~50092~500lAsdl863e8Ono (D
Parameter SL2PSARTABLE5.1-3PROCESSDATAPOINTTABULATION SOCn2A1RCP2hlR.VeRCP2A2peuuuutitee
uestionInSubsection7.2.1.1.2.4,AnalogCoreProtectionCalculators,youstatethatanalogcomputersprovideinputtothermalmargin/lowpressuretrip,.thelocalpowerdensitytrip,andthehighpowertrip.'oufurtherstatethatacalculatedlowpressurelimitrelatedtodeparturefromnucleateboilingratio{DNBR)isdeterminedusingpresetcoefficientsasafunctionofthemeasuredcoldlegtemperature,axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculatedlowpressurelimitisaninputtothethermalmargin/lowpressuretrip.Providethefunctionalrelationshipofthelowpressuretripsetpointandtheaboveparameters;anddescribeh'owthesefunctionsareobtained.ProvideinformationtoindicatethesimilarityoftheAnalogCoreProtectionCalculatorusedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrentlyunderreviewforthenextcyclereloadsinceastatisticalcombinationofuncertainties(SCU)isproposedinconjunctionoothcalculationsusedintheAnalogCoreProtectionCalculator.IsthissameapproachplannedforSt.LucieUnit2currentlyorfor,futurecycles?Answer(~eepe+p~e)  
~xidintOutlet~xidointOutletS.ue2BlRCP281RCP282~xsdointoutletoutletDataPointPigures5.1-3and5.1-4Pressure, psiaTeaperacure, PAassPlowRace,iblnr2250653234223722962277.372)(S46372d774E69.7]{x!0 34.6/x!O139.4)xlO 22962237548372+74.6/x!O69.7+16229654822955485S3>>9)bid.348)PI06Voluaecric PlowRace,gpss191985092,5003839700'929500.191985092~50092~500lAsdl863e8Ono (D
uestionInSubsection 7.2.1.1.2.4, AnalogCoreProtection Calculators, youstatethatanalogcomputers provideinputtothermalmargin/low pressuretrip,.thelocalpowerdensitytrip,andthehighpowertrip.'oufurtherstatethatacalculated lowpressurelimitrelatedtodeparture fromnucleateboilingratio{DNBR)isdetermined usingpresetcoefficients asafunctionofthemeasuredcoldlegtemperature, axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculated lowpressurelimitisaninputtothethermalmargin/low pressuretrip.Providethefunctional relationship ofthelowpressuretripsetpointandtheaboveparameters; anddescribeh'owthesefunctions areobtained.
Provideinformation toindicatethesimilarity oftheAnalogCoreProtection Calculator usedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrently underreviewforthenextcyclereloadsinceastatistical combination ofuncertainties (SCU)isproposedinconjunction oothcalculations usedintheAnalogCoreProtection Calculator.
IsthissameapproachplannedforSt.LucieUnit2currently orfor,futurecycles?Answer(~eepe+p~e)  


rAnswer9'72'Ia)Thefunctionalrelationshipforthelowpressuretripsetpointis:Pvar=e~A1~gR1g~TC+gwhere:P=calculatedlowpressurelimit,varT'measuredcoldlegtemperature,<~p,p=scfq:+cNP;i4s)C=functionofaxialshapeindex(seeattachedfigure),gR1=functionofthehigherofthethermalpowerorneutronfluxpower.'heattachedfiguresshowA1,gRI,a,8andyforSt.LucieUnit1~2560MWt.AtpresentthesearethetargetsforSt.LucieUnitII.ThisanalysisiscurrentlyunderwayaspartoftheSt.LucieUnitIITechnicalSpecificationeffort(+~g~~~(~~Q>~.-fAgeneraldiscussionofthemethodologyusedtogeneratetheThermalMargin/LowPressure(TM/LP)LSSSiscontainedinCENPD-199-P"C-ESetpointMethodology,"withfurtherinformationavailablein"ResponsetoFirstRoundquestionsontheStatisticalCombinationofUncertaintiesProgram,Part1andPart3(CEN-124(B)-P."PerNRCrequest,C-EiscurrentlyupdatingCENPD-199PforfinalNRCreviewandapproval.-b)TheattachedfunctionaldiagramsfortheSt.LucieUnit1(FSARFigure7.2-14)andtheSt.LucieUnit2(FSARFigure7.2-5)ThermalMargintripsshowthatthesecalculatorsarefunctionallyidentical.c)ApplicationofstatisticalcombinationsofuncertaintiesforSt.LucieUnitIIisnotnowplannedforthefirstorfuturecycles;however,itmaybeappliedinfuturecyclesafterNRCapproval.  
rAnswer9'72'Ia)Thefunctional relationship forthelowpressuretripsetpointis:Pvar=e~A1~gR1g~TC+gwhere:P=calculated lowpressurelimit,varT'measuredcoldlegtemperature,
<~p,p=scfq:+cNP;i4s)C=functionofaxialshapeindex(seeattachedfigure),gR1=functionofthehigherofthethermalpowerorneutronfluxpower.'heattachedfiguresshowA1,gRI,a,8andyforSt.LucieUnit1~2560MWt.AtpresentthesearethetargetsforSt.LucieUnitII.Thisanalysisiscurrently underwayaspartoftheSt.LucieUnitIITechnical Specification effort(+~
g~~~(~~Q>~.-fAgeneraldiscussion ofthemethodology usedtogeneratetheThermalMargin/Low Pressure(TM/LP)LSSSiscontained inCENPD-199-P "C-ESetpointMethodology,"
withfurtherinformation available in"Response toFirstRoundquestions ontheStatistical Combination ofUncertainties Program,Part1andPart3(CEN-124(B)-P."
PerNRCrequest,C-Eiscurrently updatingCENPD-199 PforfinalNRCreviewandapproval.
-b)Theattachedfunctional diagramsfortheSt.LucieUnit1(FSARFigure7.2-14)andtheSt.LucieUnit2(FSARFigure7.2-5)ThermalMargintripsshowthatthesecalculators arefunctionally identical.
c)Application ofstatistical combinations ofuncertainties forSt.LucieUnitIIisnotnowplannedforthefirstorfuturecycles;however,itmaybeappliedinfuturecyclesafterNRCapproval.  


1.40'l.30A11,201.101.00~O.G(Ii!I~IIIIIjI.O.n~~Iljji.IYIllii'IilII(VJ}IANDpT"'P-1)GSxO"VA))t~~+~0I~~4I'.:II)i~~~~~04~~~~I~~~~~~04~~~~~~~~~~~to0~~~~~~~~~~~~~~~~~~~\~~~I'~~~~~~~i~~~~~~~~~~I'~~II~~~~~~~~~~~~I~~~~~~~0~!~+14.13xTIN-7586:.::~~ll~~'Ii',!+jjiI'Ii!Il~.~l~~~~~~~~!IJ.i[)iItt~lI~~~~~~I~Ij!jIlliI!)I'~~~~IjjijlIl!IIll',!.')IlI~~slI~I)II'.II!!:ill:I~I)~~2QII)II~~I',!lll!IIlllIsill,I~.!I).TINCOIIE~I)~Iieet.r'.IINLIII(!,IIi'i')Ii!..IIl)I~~~[i([I'iriI)I~~~~~~~I~~~~~~~~~~~~~))I:..:I.~~~~~~~~~~~~I~~~ETTE)'A)&4~~~I~~~~a~~~~~~~~~0~~~~~k4~~~4~~~~~)IllII~~.II)i)Ill:::I:~~~~~~~~~~~~~~~~~~)~~~~~I~~~~~~~~~~~~~~~I~I~)',I[li:!I1)IiIIIIA025'lI~~~II'I,.~~~~~~~~~I~~~~~4M~~~~~~~~~I~I~t'~~~~~~~~~~~)~I~I~~~~~~~ill::.:Iill!Ill,lIlI~)I~~~F2'~0.20.2O.nlll!ljjlji:,li!Iii)iii.il!.:jill'il'::'lt'EB'E'"'XO)tDNB1~~~I~~~~~4~)~~;,lt:;I:~I~~~~~I~~~~~~~~.'::I~III'Ililt~~~~It:I)~~~~~~~~~~~~~~0~~~~~~~~~~;tt)~~~~~~).ll'''III'IO.GAXIALGI)A)'EINDEX,Ylt2I~IFIGURE2.2-3n)ermalMargin/LowPressureTripSetpoint~Part1(YIVersusA1)~~I~'I~~  
1.40'l.30A11,201.101.00~O.G(Ii!I~IIIIIjI.O.n~~Iljji.IYIllii'IilII(VJ}IANDpT"'P-1)GSxO"VA))t~~+~0I~~4I'.:II)i~~~~~04~~~~I~~~~~~04~~~~~~~~~~~to0~~~~~~~~~~~~~~~~~~~\~~~I'~~~~~~~i~~~~~~~~~~I'~~II~~~~~~~~~~~~I~~~~~~~0~!~+14.13xTIN-7586:.::~~ll~~'Ii',!+jjiI'Ii!Il~.~l~~~~~~~~!IJ.i[)iItt~lI~~~~~~I~Ij!jIlliI!)I'~~~~IjjijlIl!IIll',!.')IlI~~slI~I)II'.II!!:ill:I~I)~~2QII)II~~I',!lll!IIlllIsill,I~.!I).TINCOIIE~I)~Iieet.r'.IINLIII(!,IIi'i')Ii!..IIl)I~~~[i([I'iriI)I~~~~~~~I~~~~~~~~~~~~~))I:..:I.~~~~~~~~~~~~I~~~ETTE)'A)&4~~~I~~~~a~~~~~~~~~0~~~~~k4~~~4~~~~~)IllII~~.II)i)Ill:::I:~~~~~~~~~~~~~~~~~~)~~~~~I~~~~~~~~~~~~~~~I~I~)',I[li:!I1)IiIIIIA025'lI~~~II'I,.~~~~~~~~~I~~~~~4M~~~~~~~~~I~I~t'~~~~~~~~~~~)~I~I~~~~~~~ill::.:Iill!Ill,lIlI~)I~~~F2'~0.20.2O.nlll!ljjlji:,li!Iii)iii.il!.:jill'il'::
'lt'EB'E'"'XO)tDNB1~~~I~~~~~4~)~~;,lt:;I:~I~~~~~I~~~~~~~~.'::I~III'Ililt~~~~It:I)~~~~~~~~~~~~~~0~~~~~~~~~~;tt)~~~~~~).ll'''III'IO.GAXIALGI)A)'EINDEX,Ylt2I~IFIGURE2.2-3n)ermalMargin/Low PressureTripSetpoint~Part1(YIVersusA1)~~I~'I~~  


~0VfHEBEtA>xQR1QosN~'ND'>~><~1765xQow++14.13T<<-75861.00.541.0==-=0.80.60.40.320.2OA0.60.8FRACTIONOFRATEDTHERMALPOY(ER1.0ThermalMargin/LowPressureTripStoointPart2(FractionofRATEDTHER.'ilALPOi')ERVersusQR1)ST.LUCIE-Ui'lITg,~~~.o~~
~0VfHEBEtA>xQR1QosN~'ND'>~><~1765xQow++14.13T<<-75861.00.541.0==-=0.80.60.40.320.2OA0.60.8FRACTIONOFRATEDTHERMALPOY(ER1.0ThermalMargin/Low PressureTripStoointPart2(Fraction ofRATEDTHER.'ilAL POi')ERVersusQR1)ST.LUCIE-Ui'lITg,~~~.o~~
0 0cnW2.cg0~fQ~0A0z0'U"UCYIV0I0'CPiPSCIL)AXIALOFFSETYICAL~TC+KCB3~S3{RPSCIP)PTCALS3:FLOYDDEPENDENTSETPOINT5=LECTORSV~ITCHINRPSCIPPOSITIONS-I.4PUMiPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPl5.2PUMPS-LOOP2PiPSCIP)~'0Q-QRI]~~~asAXIALFUNCTION~DNBCAL~PvCa(CONTB"LO'>>')CEAFUNCTIONS"(RPSCIP)~34~i3VARP{ABOVE)MAXSELMINTRIPPRETRIPP=PRIMARY0"i.c<UgETRIPUNIT7ALARM:-PRETRIPTP.IP:P<PTPIPCALCULATION:VARDNB~CALWHERETCALTC+KCB,Q~MAX(O,B)TRIPVAR'IN'RETRJP'RP 0
0 0cnW2.cg0~fQ~0A0z0'U"UCYIV0I0'CPiPSCIL)AXIALOFFSETYICAL~TC+KCB3~S3{RPSCIP)
Cyz~0D'UI&~0ClXKCQPSCI?)2CALT'c'"c'XIALOFFSETY3',~2~S3(RPSCIP):~TCAXS3:FLOWDEPENDENTSETPOINTSELECTORSWITCHlNRPSCIPPOSITIONS-l.4PUMPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPI5.2PUMPS-LOOP2'I'PSCIP)QQRI)~wee~~lQAXIALFUNCTIONQRlQONSCAI.NQDNa5-(RPSCIP)'VA..(CONT.8ELOW)CEAFUNCTION~42I3'PVAR'(A8OVE)MINMAXSEl.TRIPPRETRIPIOOP=PRIMARYPP.ESSURETRIPUNIT7ALAPA:PRETRIPTP.IP:P<PTPIPCALCU.l.ATION:VARDNSPCALWHERCALC+C8'RIP&#x17d;X~VARMIN)PRETRIPTRIP  
PTCALS3:FLOYDDEPENDENT SETPOINT5=LECTORSV~ITCHINRPSCIPPOSITIONS
~~uestionInSubsection7.2.1.1.2.4,AnalogCoreProtectionCalculators,youstatethatanalogcomputersprovideinput.tothermalmargin/lowpressuretrip,thelocalpowerdensitytrip,andthehighpowertrip.Youfurtherstatethatacalculatedlowpressurelimitrelatedtodeparturefromnuc1eateboilingratio{DHBR)isdeterminedusingpresetcoefficientsasafunctionofthemeasuredcoldlegtemperature,axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculatedlowpressurelimitisaninputtothethermalmargin/loupressuretrip.~)providethefunctionalrelationshipofthe'lowpressuretripsetpointandtheaboveparameters;anddescribeh'owthesefunctionsareobtained.lo)ProvideinformationtoindicatethesimilarityoftheAnalogCoreProtectionCalculatorusedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrentlyunderreviewforthenext'cyclereloadsincea~~~~~~~~~~~~~~~~~~~statisticalcombinationofuncertainties(SCU)isproposedinconjunctionc)withcalculationsusedintheAnalogCoreProtectionCalculator.IsthissameapproachplannedforSt.LucieUnit2currentlyorforfuturecycles?AnswerTheAnalogCoreProtionCalculatorusedznStLuc.ieni't2iit2isfunctionallyidenticaltothatused>tLucie.Unitl.SONjTheStatisticalCombinationo+ncertinties(methodologycanbeappliedtoSt,LucieUnit2.d'C'elisnot~Wrrelyemployedzhowauar>If~~f4c.JC.dc4L+ea~4&gC~(wasa>4'~W2y+4ffd/a, eSL-2RoundOneuestions492.15(15.0)ProvidejustificationforusingtheMacbethcorrelationintheCHFcorrelationforChapter15transients.Dotheapplicabilityrangesofthecorrelationcoverallexpectedconditions?~Resonse:TheMacbethcorrelation(Ref.I)isusedonlyforthedeterminationofDNBRduringthepost-tripreturntopowerportionofthemainsteamlinebreak(NSLB)transientspresentedinAppendix15AoftheFSAR.('lotsofDNBRversustimeforthesetransientshavebeenfurnishedintheResponsetoguestion440.14).ForallotherChapter15tran-sientstheCE-IcorrelationisusedintheTORCcode(References2and3)tocalculateDNBR.FordeterminationofDNBRduringthepost-tripreturntopowerportionofNSLBtransientsthemethodsappliedbyLee(Ref.4)areemployedinordertousethethcbethcorrelationforrodbundlestopredictburnoutasafunctionofaxialheight,accountingfornon-uniformaxialheatflux.=Macbethdemonstratedthatfiveparameterswerenecessaryforcorrelationofcriticalheatflux(CHF)dataforrodbundleswithverticalupflow:massflux,G;inletsubcooling,hH;pressure,P;heateddiameter,dh,andchannellenght,1.HoweverthechannellengthiseliminatedfromthecorrelationbyapplicationofLee'smethodtopredictCIIFasafunctionofaxialheight.Todetermineapplicability,theheightatwhichminimumDNBRoccursiscomparedwiththechannellengthsfortheexperimentsfromwhichMacbethdrewhisdata.ThedatausedfortheMacbethrodbundlecorrelationswithverticalupflowhasarangeof'aluesforGoffrom0.18to4.1millionlbm/hrft2(Ref.5).TheuniformityofthecorrelationoftheCHFdataforrodbundlesasafunctionofGoverthisrangeandthedataandcorrelationsforCHFinheatedtubesgiveconfidencetoextendthelowerendoftherangeofapplicabilityoftherodbundlecorrelationtoatleast0.09x106Ibm/hrft~.(TheMacbethcorrelationsforheatedtubesarebasedondatafor0.01<Gx10-6<7.8lbm/hrft2.)TherangeofvaluesofhHuponwhichtherodbundlecorrelationsisbasedis-150<hH<380BTU/lbm(Ref.5).TherodbundlesfromwhichtheCHFdatawasobtainedhadvaluesofdhbetween0.113and0.902inchesandlengthsof.from17to72inches(Ref.1).Thedatausedfortherodbundlecorrelationsisallfor1000psia.HoweverapplicationofMacbeth'scorrelationsforheatedtubesindi-catesthatusingthecorrelationdevelopedfor1000psiaatlowerpressuresproducesvaluesforDNBRwhichareconservative.Further,othercorrelationsforrodbundles,suchasthoseofBowring(Ref.6),yieldavariationinDNBRoftheorderof10$aspressurevariesfrom500to1000psiafortherangeofGandhHofinterest.ThisisofthesameorderastheuncertaintyinMacbeth'scorrelationandismuchsmaIlerthanthemargintoDNBcalculatedforthepost-tripreturntopowerportionoftheMSLBtransientspresentedintheFSAR.  
-I.4PUMiPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPl5.2PUMPS-LOOP2PiPSCIP)~'0Q-QRI]~~~asAXIALFUNCTION~DNBCAL~PvCa(CONTB"LO'>>')CEAFUNCTIONS"(RPSCIP)~34~i3VARP{ABOVE)MAXSELMINTRIPPRETRIPP=PRIMARY0"i.c<UgETRIPUNIT7ALARM:-PRETRIPTP.IP:P<PTPIPCALCULATION:
VARDNB~CALWHERETCALTC+KCB,Q~MAX(O,B)TRIPVAR'IN'RETRJP'RP 0
Cyz~0D'UI&~0ClXKCQPSCI?)2CALT'c'"c'XIAL OFFSETY3',~2~S3(RPSCIP)
:~TCAXS3:FLOWDEPENDENT SETPOINTSELECTORSWITCHlNRPSCIPPOSITIONS-l.4PUMPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPI5.2PUMPS-LOOP2'I'PSCIP)
QQRI)~wee~~lQAXIALFUNCTIONQRlQONSCAI.NQDNa5-(RPSCIP)'VA..(CONT.8ELOW)CEAFUNCTION~42I3'PVAR'(A8OVE)MINMAXSEl.TRIPPRETRIPIOOP=PRIMARYPP.ESSURE TRIPUNIT7ALAPA:PRETRIPTP.IP:P<PTPIPCALCU.l.ATION:
VARDNSPCALWHERCALC+C8'RIP&#x17d;X~VARMIN)PRETRIPTRIP  
~~uestionInSubsection 7.2.1.1.2.4, AnalogCoreProtection Calculators, youstatethatanalogcomputers provideinput.tothermalmargin/low pressuretrip,thelocalpowerdensitytrip,andthehighpowertrip.Youfurtherstatethatacalculated lowpressurelimitrelatedtodeparture fromnuc1eateboilingratio{DHBR)isdetermined usingpresetcoefficients asafunctionofthemeasuredcoldlegtemperature, axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculated lowpressurelimitisaninputtothethermalmargin/lou pressuretrip.~)provide thefunctional relationship ofthe'lowpressuretripsetpointandtheaboveparameters; anddescribeh'owthesefunctions areobtained.
lo)Provideinformation toindicatethesimilarity oftheAnalogCoreProtection Calculator usedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrently underreviewforthenext'cyclereloadsincea~~~~~~~~~~~~~~~~~~~statistical combination ofuncertainties (SCU)isproposedinconjunction c)withcalculations usedintheAnalogCoreProtection Calculator.
IsthissameapproachplannedforSt.LucieUnit2currently orforfuturecycles?AnswerTheAnalogCoreProtionCalculator usedznStLuc.ieni't2iit2isfunctionally identical tothatused>tLucie.Unitl.SONjTheStatistical Combination o+ncertinties(methodology canbeappliedtoSt,LucieUnit2.d'C'elisnot~Wrrelyemployedz howauar>If~~f4c.JC.dc4L+ea~4&gC~(wasa>4'~W2y+4ffd/a, eSL-2RoundOneuestions492.15(15.0)Providejustification forusingtheMacbethcorrelation intheCHFcorrelation forChapter15transients.
Dotheapplicability rangesofthecorrelation coverallexpectedconditions?
~Resonse:TheMacbethcorrelation (Ref.I)isusedonlyforthedetermination ofDNBRduringthepost-trip returntopowerportionofthemainsteamlinebreak(NSLB)transients presented inAppendix15AoftheFSAR.('lotsofDNBRversustimeforthesetransients havebeenfurnished intheResponsetoguestion440.14).ForallotherChapter15tran-sientstheCE-Icorrelation isusedintheTORCcode(References 2and3)tocalculate DNBR.Fordetermination ofDNBRduringthepost-tripreturntopowerportionofNSLBtransients themethodsappliedbyLee(Ref.4)areemployedinordertousethethcbethcorrelation forrodbundlestopredictburnoutasafunctionofaxialheight,accounting fornon-uniform axialheatflux.=Macbethdemonstrated thatfiveparameters werenecessary forcorrelation ofcriticalheatflux(CHF)dataforrodbundleswithverticalupflow:massflux,G;inletsubcooling, hH;pressure, P;heateddiameter, dh,andchannellenght,1.Howeverthechannellengthiseliminated fromthecorrelation byapplication ofLee'smethodtopredictCIIFasafunctionofaxialheight.Todetermine applicability, theheightatwhichminimumDNBRoccursiscomparedwiththechannellengthsfortheexperiments fromwhichMacbethdrewhisdata.ThedatausedfortheMacbethrodbundlecorrelations withverticalupflowhasarangeof'aluesforGoffrom0.18to4.1millionlbm/hrft2(Ref.5).Theuniformity ofthecorrelation oftheCHFdataforrodbundlesasafunctionofGoverthisrangeandthedataandcorrelations forCHFinheatedtubesgiveconfidence toextendthelowerendoftherangeofapplicability oftherodbundlecorrelation toatleast0.09x106Ibm/hrft~.(TheMacbethcorrelations forheatedtubesarebasedondatafor0.01<Gx10-6<7.8lbm/hrft2.)TherangeofvaluesofhHuponwhichtherodbundlecorrelations isbasedis-150<hH<380BTU/lbm(Ref.5).TherodbundlesfromwhichtheCHFdatawasobtainedhadvaluesofdhbetween0.113and0.902inchesandlengthsof.from17to72inches(Ref.1).Thedatausedfortherodbundlecorrelations isallfor1000psia.Howeverapplication ofMacbeth's correlations forheatedtubesindi-catesthatusingthecorrelation developed for1000psiaatlowerpressures producesvaluesforDNBRwhichareconservative.
Further,othercorrelations forrodbundles,suchasthoseofBowring(Ref.6),yieldavariation inDNBRoftheorderof10$aspressurevariesfrom500to1000psiafortherangeofGandhHofinterest.
Thisisofthesameorderastheuncertainty inMacbeth's correlation andismuchsmaIlerthanthemargintoDNBcalculated forthepost-trip returntopowerportionoftheMSLBtransients presented intheFSAR.  


Table492.15suomerizestheaboveapplicabilityrangesandcomparesthemwiththevaluesof'heparametersobtainedfortheMSLBtransientspresentedinAppendix15AoftheFSAR.Theapplicabilityrangescoveralltheexpectedconditionsforthepost-tripreturntopowerportionoftheseMSLBtransients.
Table492.15suomerizes theaboveapplicability rangesandcomparesthemwiththevaluesof'heparameters obtainedfortheMSLBtransients presented inAppendix15AoftheFSAR.Theapplicability rangescoveralltheexpectedconditions forthepost-trip returntopowerportionoftheseMSLBtransients.


==References:==
==References:==
l.Macbeth,R.V.,"AnAppraisalofForcedConvectionBurn-outData,"Proc.Instn.Mech.Enrs,Vol.180,Pt3c,pp37-50,1965-66.2."TORCCode-AComputerCodeforDeterminingtheThermalMarginofaReactorCore,"CENPD-161-P,July1975,ProprietaryInformation.3."TORCCode-VerificationandSimplifiedModelingMethods,"CENPD-206-P,January1977,ProprietaryInformation.4.Lee,D.H.,"AnExperimentalInvestigationofForcedConvectionBurn-outinHighPressureWater-PartIV,LargeDiameterTubesatAbout1600psia,"A.E.E.W.ReportR479,1966.5.Macbeth,R.V.,"Burn-outAnalysis-Part5:ExaminationofPublishedWorldDataforRodBundles,"A.E.E.W.ReportR358,1964.6.Bowring,R.W.,"ANewMixedFlowClusterDryoutCorrelationforPressuresintheRange0.6-15.5!IN/m2(90-2250psia)-ForUseinaTransientBlowdcr~~nCode,"IMechEConferencePublications1977-8,pp175-182,1977,


~~Table492.15-1ComparisonofapplicabilityrangesforMacbethCHFcorrelationforverticaluplfowinrodbundleswithvaluesobtainedfortheMSLBtransientspresentedinAppendix15AoftheSL-2FSAR.AParameterG(106ibm/hrft2)hH{BTU/ibm)P(Psia)dh(inches)(inches)RangeofAvailability0.09-4.1-150-380500-1000.113-.90217-72RangeofValuesObtainedforMSLBsDuringPost-tripReturntoPower.*0.09-.3.0(.16)'I00-250{244)545-960(956)0.47122-33(26)***ValuesinparenthesisarethoseforminimumDNBRpredicted.**HeightatwhichminimumDNBRispredictedtooccur.
l.Macbeth,R.V.,"AnAppraisal ofForcedConvection Burn-outData,"Proc.Instn.Mech.Enrs,Vol.180,Pt3c,pp37-50,1965-66.2."TORCCode-AComputerCodeforDetermining theThermalMarginofaReactorCore,"CENPD-161-P, July1975,Proprietary Information.
Highburnupperformanceexperience,asdescribedinSubsection'iaspovidedevidencethatthefuelwillperformsatisfactorilyunderdesignconditions.Thecurrentcoredesignbasesdonotincludeaspecificre-quirementfortestingofirradiatedfuelrods.However,thefuelassemblydesignalloi:sdisassemblyandreassemblytofacilitatesuchinspections,shouldtheneedarise.-Afuelrodirradiationprogramhasbeendevelopedto.evaluatetheperform-anceoffuelroddesignedforuseinthe16x16fuelassembly.Thepro-gramincludestheirradiationofsixstandard16x16assemblies,twoeachfor1,2,and3cycles,respectively,ntheArkansasNuclearOne-Unit2reactor(ANO-2).Eachssemblywillcontainaminimumof50precharacter-ized,removablrodsdistributecwithintheassemblytoobtainaspectrumofexposurelevelsforevaluationpurposesintheinterimandterminalexaminations.Interimexaminationofallsixassembliesisplanneddur'ngrefuelingshutdownsaftereachcycle.Th'eANO-2fuelrcdandspecificcompcnentsofthefuelrcdshavereceivedadetailedpre-characterization.Theprogramcallsforsubstantialclad-dingcharacterizationtoincludemchanicalproperties,texture,hydrideorientationandoutofreactorlowstrainratebehavior.InadditiontotheIDandODdiiensionaldatanormallyobtainedonthecladtubingmaterial,aminimumof300fuel'rodswillbemeasuredtoobtainasloadeddimensions.Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurementssuchthatchangesintheseparameterscanbetrackedbysimilarmeasurementsduringinteriminspections.Also,arandomselec-tionofappro..im"tely100UOpelletsfromeachlotper.batchusedvillbecharacterizeddimensionalityandthedensitydistributionvillbedeter-mined.Aboutonehalfofthesepelletswillbeplacedinknownaxiallocaticnsinselectedfuelrodswliiletheremainderwillbesetasideasarchives.izedrodswillberemovedfromthereactcrateachrefueiingandmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisua1.inspection.Thelengthofthea"semblyandperipheralrod"willbemeasured.Duringtheshutdown,atargetof20pre-charactPrizedrod"perbatchwillhescheduledforexaminationandmPasurement.Atsometime~aftertherefuelingoutage,pre-characterized'odsretainedindischargedassemblieswillbemeasured.Atargetof100rodswillb"edditesterlaftPPaclishutdni.w.8+A-ostirradiationaeLsurvLllagZ,~nce~gramforStLucie=Knit2is,beingYeplanned.Spec'~erequirementsth~P.pl"nvillJe-'determinedbhsedontheresultsftheANO-2Dr"an.~liow'.acrF!~24~r:irrontlv~lanstowhentheoui~assemblicsapl~re-.ovo<lfriztheDreOldDlac.dPwintespentfuelstor-gi.pool.s>n.3(,I%seesApoolsidenondestructiveexaminationvillbemadeduringeachofthePfirstthreerefuelingSatANO-2.Tnesix16x16asseiablieswithcharacter-  
3."TORCCode-Verification andSimplified ModelingMethods,"
CENPD-206-P, January1977,Proprietary Information.
4.Lee,D.H.,"AnExperimental Investigation ofForcedConvection Burn-outinHighPressureWater-Part IV,LargeDiameterTubesatAbout1600psia,"A.E.E.W.ReportR479,1966.5.Macbeth,R.V.,"Burn-out Analysis-Part5:Examination ofPublished WorldDataforRodBundles,"
A.E.E.W.ReportR358,1964.6.Bowring,R.W.,"ANewMixedFlowClusterDryoutCorrelation forPressures intheRange0.6-15.5!IN/m2(90-2250psia)-ForUseinaTransient Blowdcr~~n Code,"IMechEConference Publications 1977-8,pp175-182,1977,


SL2-FSAR4.2.1.5SurveillanceProrra4.2.1.5.1~~~~RequirementsforSurveillanceandTestingof'rradiatedFuelRodsHighburnupperformanceexperience,asdescribedinSubsection4.2.3hasprovidedevidencethatthefuelwillperformsatisfactorilyunderdesignconditions.Thecurrentcoredesignbasesdonotincludeaspecificre-quirementfortestingofirradiatedfuelzods.However,thefuelassemblydesignallowsdisassemblyandreassemblytofacilitatesuchinspections,~shouldtheneedarise.Afuelrodirradiationprogramhasbeendevelopedtoevaluatetheperform-anceoffuelroddesignedforuseinthe16x16'fuelassembly.Thepro-gramincludestheirradiationofsixstandard16x16assemblies,twoeachfor1,2,and3cycles,respectively,intheArkansasNuclearOne-Unit2reactor(ANO-2).Eachassemblywillcontainaminimumof50precharacter-ized,removablerodsdistributedwithintheassemblytoobtainaspectrumofexposurelevelsforevaluationpurposesintheinterimandterminalexaminations.Interimexaminationofallsixassembliesisplannedduringrefuelingshutdownsaftereachcycle.TheANO-2fuelrodsandspecificcomponentsofthefuelrodshavereceivedadetailedpre-characterization.Theprogramcallsforsubstantialclad-dingcharacterizationtoincludemechanicalproperties,texture,hydrideorientationandoutofreactorlowstrainratebehavior.InadditiontotheIDandODdimensionaldatanormallyobtainedonthecladtubingmaterial,aminimumof300fuel.rodswillbemeasuredtoobtainasloadeddimensions.Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurementssuchthatchangesintheseparameterscanbetrackedbysimilarmeasurementsduringinteriminspections.Also,a.randomselec-tionofapproximately100UOpelletsfromeachlotperbatch'usedwillbecharacterizeddimensionalityandthedensitydistributionwillbedeter-mined.AboutonehalfofthesepelletswillbeplacedinknownaxiallocationsinselectedfuelrodsWiletheremainderwi)lbesetasideasarchives.Apoolsidenondestructiveexaminationwillbemadeduringeachofthe'~~firstthreerefuelingSatANO-2.Thesix16x16assemblieswithcharacter-izedrodswillbexemovedfromthereactorateachrefuelingandmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisualinspection.Thelengthoftheassemblyandperipheralrodswill.bemeasured.Duringtheshutdown,atargetof20pre-characterizedrodsperbatchwillbescheduledforexaminationandmeasurement.Atsometimeaftertherefuelingoutage,pre-characterizedrodsretainedindischargedassemblieswillbemeasured.Atargetof100rods.willbeeddycurrenttestedaftereachshutdown.Z<~sg7-gY~~R:&1&~qApost~xrradiatpdnfuelsurveysanceprogramo-a~~~~,planned.Sacr'.Eicrequireme~tsoftheplanwild~bedeterminedbusdon,.theresuloftheANO-2program.However~+PSLcurrentlypfanStoper-~~~~~fonotAtiiospootioZ<pre~ramQc~sYcJckrool<ocroio3-CzinitcorewhenthWfuel.assemble,areremovedfrt'ecorean~laced~oe:.spentfuel;-storagepool."=-".-.=ma'~L4,2-30 Apostirradiationfuelsurveillan'ceprogramfor54lucre4+/isplanned.,Thisprogramshallconsistofavisualinspectionofaminimumofsix.irradi-atedassembliespriortoreplacementoftheReactorVesselHeadateachofthefirstthreerefuelingoutages.Thesixassembliesinspectedshallcon-sistoftwoassembliesof'eachfueltypeandwillbefromcorelocationswhicharenonadjacent.VisualinspectionsshallconsistofviewingthetopandsidesofeachfuelassemblyviaanunderwaterTVCameraorPeriscope.Thevisualinspectionwillincludeobservationwithspecialattentiontogrossproblemsinvolvingcladdingdefects,spacergriddamageandothermajorstructuralabnormalities.Nospecialmeasurementdevicesfortheseaffectsareintendedtobeprovidedfor'hisvisualinspection.Ifmajorabnormalitiesaredetectedduringthisvisualinspectionorifplantinstrumentationindicatesgrossfuelfailures,"thefuelvendorwillbein-formedandfurtherinspectionsshallbeperformed.Dependingonthe'atureoftheobservedcondition,furtherexaminationcouldincludefuelsipping,singlerodexamination,andotherexaminations.The16x16fueldesignen-.ab)esreconstitution.Individualfuelrodsandotherstructuralcomponentsmaybeexaminedandreplaced,ifrequired.Underunusualcircumstances,de-structiveexaminationofafuelrodmayberequiredbutthiswouldnotbeaccomplishedonsiteorduringtherefuelingoutage.TheNRCshallbecontactedregardinggrossfuelfailuredetec'tedbyplantin-'strumentationormajorabnormalitiesobservedduringthepostirradiationin-.spectionsdescribedabove.Thepostfuelirradiationfuelsurveillanceprogramshallbecontinuedfol-'owingthefirstthreecyclesofoperationofSf:Lu;.el';$~,Sixassembliesshallbevisuallyinspectedduringeachrefuelingoutage,notnecessarilypriortoreplacementofthereactorvesselhead.Thevisualinspectionshallconsist.ofviewingthetopsandsidesofeachfuelassemblyviaanunderwaterTVcameraorperiscope.Thevisualinspectionwillincludeobser-vationwithspecialattentiontogrossproblemsinvolving.claddingdefects,spacergriddamage,andothermajorstructuralabnormalities.TheNRCwillbenotifiedofmajorabnormalitiesnotedasaresultoftheseinspectionactivities.
~~Table492.15-1Comparison ofapplicability rangesforMacbethCHFcorrelation forverticaluplfowinrodbundleswithvaluesobtainedfortheMSLBtransients presented inAppendix15AoftheSL-2FSAR.AParameter G(106ibm/hrft2)hH{BTU/ibm)
15.C.3CEAEjectionwithLossofOffsitePower.~~~~~The.followingCEAejectioncaseswererequestedtpower:I(1)CEAejectionwithcontrolelementhuigblowdownintocontainment.,banlj'zedwithoutoffsiteuptureandsubsequentrapidII(2)CEAejectionwherethecontrolelementhousingdoesnotruptureandtheprimarysystemleakstothesecondarysystemthroughleaksinthesteamgeneratortubes.-TheanalysisofaCEAejectionwitharapidblowdownintocontainmentispre-sentedinSection15.4.5.1.Thisanalysisalsoassumedafailureofthe4.16KYbustofasttransferfollowingturbinetrip.Themainimpactofthisistheassumptionthatthecondenserisunavailableforonehour.TheanalysisofaCEAejectionwherethehousingdoesnotruptureisdiscussedinthis'section.Thiscasewasanalyzedwithoutoffsitepower.Figures15.C.3-1and15.C.3-2arethepressureversustimecurvesforprimaryandsecondarysidepressures,respectively.Table15AC.3-1presentsinformationassociatedwithradiologicalreleasecalculations.
P(Psia)dh(inches)(inches)RangeofAvailability 0.09-4.1-150-380500-1000.113-.90217-72RangeofValuesObtainedforMSLBsDuringPost-trip ReturntoPower.*0.09-.3.0(.16)'I00-250{244)545-960(956)0.47122-33(26)***Valuesinparenthesis arethoseforminimumDNBRpredicted.
Table15.C.3-1CEAEjectionwithLossofOffsitePowerRadiologicalReleaseInformationl.SteamReleasedtoAtmosphereDuringCooldown(ibm)0-2hours:NSSYs':ADVs74400'51000EntireEvent;NSSVsADVs2.FuelPinFailure(/)(SeeSection15.4.5.1)3.PrimaryIodineConcentrationBasedon9.5%FailedFuel(pCi/gm).4.SecondaryIodineConcentration.BasedonTech.Spec.Limits(pCi/gm).5.DecontaminationFactorforSteamGeneratorIodineTransport6.TwoExclusionBoundaryThyroidDosefromSecondaryReleases(Rem).744005720009.58.3x1031016.7 0
**HeightatwhichminimumDNBRispredicted tooccur.
Highburnupperformance experience, asdescribed inSubsection
'iaspovidedevidencethatthefuelwillperformsatisfactorily underdesignconditions.
Thecurrentcoredesignbasesdonotincludeaspecificre-quirement fortestingofirradiated fuelrods.However,thefuelassemblydesignalloi:sdisassembly andreassembly tofacilitate suchinspections, shouldtheneedarise.-Afuelrodirradiation programhasbeendeveloped to.evaluate theperform-anceoffuelroddesignedforuseinthe16x16fuelassembly.
Thepro-gramincludestheirradiation ofsixstandard16x16assemblies, twoeachfor1,2,and3cycles,respectively, ntheArkansasNuclearOne-Unit2reactor(ANO-2).Eachssemblywillcontainaminimumof50precharacter-ized,removablrodsdistributec withintheassemblytoobtainaspectrumofexposurelevelsforevaluation purposesintheinterimandterminalexaminations.
Interimexamination ofallsixassemblies isplanneddur'ngrefueling shutdowns aftereachcycle.Th'eANO-2fuelrcdandspecificcompcnents ofthefuelrcdshavereceivedadetailedpre-characterization.
Theprogramcallsforsubstantial clad-dingcharacterization toincludemchanicalproperties, texture,hydrideorientation andoutofreactorlowstrainratebehavior.
InadditiontotheIDandODdiiensionaldatanormallyobtainedonthecladtubingmaterial, aminimumof300fuel'rodswillbemeasuredtoobtainasloadeddimensions.
Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurements suchthatchangesintheseparameters canbetrackedbysimilarmeasurements duringinteriminspections.
Also,arandomselec-tionofappro..im"tely 100UOpelletsfromeachlotper.batchusedvillbecharacterized dimensionality andthedensitydistribution villbedeter-mined.Aboutonehalfofthesepelletswillbeplacedinknownaxiallocaticns inselectedfuelrodswliiletheremainder willbesetasideasarchives.
izedrodswillberemovedfromthereactcrateachrefueiing andmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisua1.inspection.
Thelengthofthea"semblyandperipheral rod"willbemeasured.
Duringtheshutdown, atargetof20pre-charactPrized rod"perbatchwillhescheduled forexamination andmPasurement.
Atsometime~aftertherefueling outage,pre-characterized'ods retainedindischarged assemblies willbemeasured.
Atargetof100rodswillb"edditesterlaftPPaclishutdni.w.
8+A-ostirradiation aeLsurvLllagZ,~nce~gramforStLucie=Knit 2is,beingYeplanned.Spec'~erequirements th~P.pl"nvillJe-'determined bhsedontheresultsftheANO-2Dr"an.~liow'.acr F!~24~r:irrontlv~lanstowhentheoui~assemblics apl~re-.ovo<l friztheDreOldDlac.dPwintespentfuelstor-gi.pool.s>n.3(,I%seesApoolsidenondestructive examination villbemadeduringeachofthePfirstthreerefuelingSat ANO-2.Tnesix16x16asseiablies withcharacter-
 
SL2-FSAR4.2.1.5Surveillance Prorra4.2.1.5.1
~~~~Requirements forSurveillance andTestingof'rradiated FuelRodsHighburnupperformance experience, asdescribed inSubsection 4.2.3hasprovidedevidencethatthefuelwillperformsatisfactorily underdesignconditions.
Thecurrentcoredesignbasesdonotincludeaspecificre-quirement fortestingofirradiated fuelzods.However,thefuelassemblydesignallowsdisassembly andreassembly tofacilitate suchinspections,
~shouldtheneedarise.Afuelrodirradiation programhasbeendeveloped toevaluatetheperform-anceoffuelroddesignedforuseinthe16x16'fuelassembly.
Thepro-gramincludestheirradiation ofsixstandard16x16assemblies, twoeachfor1,2,and3cycles,respectively, intheArkansasNuclearOne-Unit2reactor(ANO-2).Eachassemblywillcontainaminimumof50precharacter-ized,removable rodsdistributed withintheassemblytoobtainaspectrumofexposurelevelsforevaluation purposesintheinterimandterminalexaminations.
Interimexamination ofallsixassemblies isplannedduringrefueling shutdowns aftereachcycle.TheANO-2fuelrodsandspecificcomponents ofthefuelrodshavereceivedadetailedpre-characterization.
Theprogramcallsforsubstantial clad-dingcharacterization toincludemechanical properties, texture,hydrideorientation andoutofreactorlowstrainratebehavior.
InadditiontotheIDandODdimensional datanormallyobtainedonthecladtubingmaterial, aminimumof300fuel.rodswillbemeasuredtoobtainasloadeddimensions.
Sufficient fuelrodswillbeprofiledtoobtaindiameterandovalitymeasurements suchthatchangesintheseparameters canbetrackedbysimilarmeasurements duringinteriminspections.
Also,a.randomselec-tionofapproximately 100UOpelletsfromeachlotperbatch'used willbecharacterized dimensionality andthedensitydistribution willbedeter-mined.Aboutonehalfofthesepelletswillbeplacedinknownaxiallocations inselectedfuelrodsWiletheremainder wi)lbesetasideasarchives.
Apoolsidenondestructive examination willbemadeduringeachofthe'~~firstthreerefuelingSat ANO-2.Thesix16x16assemblies withcharacter-izedrodswillbexemovedfromthereactorateachrefueling andmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisualinspection.
Thelengthoftheassemblyandperipheral rodswill.bemeasured.
Duringtheshutdown, atargetof20pre-characterized rodsperbatchwillbescheduled forexamination andmeasurement.
Atsometimeaftertherefueling outage,pre-characterized rodsretainedindischarged assemblies willbemeasured.
Atargetof100rods.willbeeddycurrenttestedaftereachshutdown.
Z<~sg7-gY~~R:&1&~qApost~xrradiatpdn fuelsurveysanceprogramo-a~~~~,planned.
Sacr'.Eic requireme~ts oftheplanwild~bedetermined busdon,.theresuloftheANO-2program.However~+PSL currently pfanStoper-~~~~~fonotAtiiospootioZ<pre~ram Qc~sYcJck rool<ocroio3-CzinitcorewhenthWfuel.assemble,are removedfrt'ecorean~laced~oe:.spentfuel;-storage pool."=-".-.=ma'~L4,2-30 Apostirradiation fuelsurveillan'ce programfor54lucre4+/isplanned.,Thisprogramshallconsistofavisualinspection ofaminimumofsix.irradi-atedassemblies priortoreplacement oftheReactorVesselHeadateachofthefirstthreerefueling outages.Thesixassemblies inspected shallcon-sistoftwoassemblies of'eachfueltypeandwillbefromcorelocations whicharenonadjacent.
Visualinspections shallconsistofviewingthetopandsidesofeachfuelassemblyviaanunderwater TVCameraorPeriscope.
Thevisualinspection willincludeobservation withspecialattention togrossproblemsinvolving claddingdefects,spacergriddamageandothermajorstructural abnormalities.
Nospecialmeasurement devicesfortheseaffectsareintendedtobeprovidedfor'hisvisualinspection.
Ifmajorabnormalities aredetectedduringthisvisualinspection orifplantinstrumentation indicates grossfuelfailures,"
thefuelvendorwillbein-formedandfurtherinspections shallbeperformed.
Depending onthe'ature oftheobservedcondition, furtherexamination couldincludefuelsipping,singlerodexamination, andotherexaminations.
The16x16fueldesignen-.ab)esreconstitution.
Individual fuelrodsandotherstructural components maybeexaminedandreplaced, ifrequired.
Underunusualcircumstances, de-structive examination ofafuelrodmayberequiredbutthiswouldnotbeaccomplished onsiteorduringtherefueling outage.TheNRCshallbecontacted regarding grossfuelfailuredetec'ted byplantin-'strumentation ormajorabnormalities observedduringthepostirradiation in-.spections described above.Thepostfuelirradiation fuelsurveillance programshallbecontinued fol-'owing thefirstthreecyclesofoperation ofSf:Lu;.el';$
~,Sixassemblies shallbevisuallyinspected duringeachrefueling outage,notnecessarily priortoreplacement ofthereactorvesselhead.Thevisualinspection shallconsist.ofviewingthetopsandsidesofeachfuelassemblyviaanunderwater TVcameraorperiscope.
Thevisualinspection willincludeobser-vationwithspecialattention togrossproblemsinvolving
.cladding defects,spacergriddamage,andothermajorstructural abnormalities.
TheNRCwillbenotifiedofmajorabnormalities notedasaresultoftheseinspection activities.
15.C.3CEAEjectionwithLossofOffsitePower.~~~~~The.following CEAejectioncaseswererequested tpower:I(1)CEAejectionwithcontrolelementhuigblowdownintocontainment.
,banlj'zedwithoutoffsiteuptureandsubsequent rapidII(2)CEAejectionwherethecontrolelementhousingdoesnotruptureandtheprimarysystemleakstothesecondary systemthroughleaksinthesteamgenerator tubes.-TheanalysisofaCEAejectionwitharapidblowdownintocontainment ispre-sentedinSection15.4.5.1.
Thisanalysisalsoassumedafailureofthe4.16KYbustofasttransferfollowing turbinetrip.Themainimpactofthisistheassumption thatthecondenser isunavailable foronehour.TheanalysisofaCEAejectionwherethehousingdoesnotruptureisdiscussed inthis'section.
Thiscasewasanalyzedwithoutoffsitepower.Figures15.C.3-1and15.C.3-2arethepressureversustimecurvesforprimaryandsecondary sidepressures, respectively.
Table15AC.3-1presentsinformation associated withradiological releasecalculations.
Table15.C.3-1CEAEjectionwithLossofOffsitePowerRadiological ReleaseInformation l.SteamReleasedtoAtmosphere DuringCooldown(ibm)0-2hours:NSSYs':ADVs74400'51000EntireEvent;NSSVsADVs2.FuelPinFailure(/)(SeeSection15.4.5.1) 3.PrimaryIodineConcentration Basedon9.5%FailedFuel(pCi/gm).
4.Secondary IodineConcentration
.BasedonTech.Spec.Limits(pCi/gm).
5.Decontamination FactorforSteamGenerator IodineTransport 6.TwoExclusion BoundaryThyroidDosefromSecondary Releases(Rem).744005720009.58.3x1031016.7 0
gazooI+OPgaoeizOdlcOop-sn)g,5FC'nMbX  
gazooI+OPgaoeizOdlcOop-sn)g,5FC'nMbX  


10501000.~~KD0~KQUJI~950900850~~~~~~~~8007500100200.300TIME,SFCONOS500\~~~~~~~~~FLORIDAPO>U5R8LIGHTCOMPANYST.LUCIEPLANTUNIT2STEAMGEH.PRESSUREij'S.TIME  
10501000.~~KD0~KQUJI~950900850~~~~~~~~8007500100200.300TIME,SFCONOS500\~~~~~~~~~FLORIDAPO>U5R8LIGHTCOMPANYST.LUCIEPLANTUNIT2STEAMGEH.PRESSUREij'S.TIME  


XP5+L78"Gsppnce+~+a'I)g~(g(NIOnthebasisofexperience,thehTvalueof100'FusedintheanalysisislargerthananyhTthatmightbeexpectedduringplantoperation.DuringRCScooldownusingtheshutdowncoolingsy'tem,coolantcirculationwiththereactorcoolantpumpsservestocoolthesteamgeneratortokeepthetemperaturedifferencebetweenthereactorvesselandthesteamgeneratorminimal.aSteamdumpsareusedtoreducesteamgeneratorsecondaryfluidtobelow220'F.Ifthesteamgeneratorwereheldat220'Fandthereactorvesselwerecooledtotherefuelinqtemperature,thesteamgenerator-reactorvesselATwouldstillbelessthan'l00'F.Infact,procedureswilldirecttheoperatortomaintaintheh,Tbelowapproximately20F.QLTOPtransientshavenotbeenanalyzedforthesimultaneousstartup.ofmorethanonereactorcoolantpump(RCP).Suchoperationisprocedurally.precluded,sincetheooeratorstartsonlyoneRCPatatimeandasecondRCPisnotstarteduntilsystempressureisstabilized.Additionally,thereisanLTOPtransientalarmthatshouldindicatethatapressuretransientisoccurringandthatasecondRCPshould'notbestarted.TheresultsoftheanalysesprovidedinFigures5.2-24and5.2-25showthattheuseofthePORYsprovidesufficientpressurereliefcapacitytomitigatethemostlimitingLTOPeventsidentifiedabove.~l<<l>fgCJiSr'rrL.ATechnicalSpecificationwillbewrittentorequire~mfa.o~~r~f2~5-'~RAifthebTexceeds100F.However,asmentionedabove,administrativeprocedureswillensurethatthehTismaintainedbelowapproximately20F.Also,aTechnicalSpecificationwillbewrittentoensurethatappropriateactionistakenifonePORVisoutofserviceduringtheLTOPmodeofoperation.
XP5+L78"Gsppnce+
~+a'I)g~(g(NIOnthebasisofexperience, thehTvalueof100'FusedintheanalysisislargerthananyhTthatmightbeexpectedduringplantoperation.
DuringRCScooldownusingtheshutdowncoolingsy'tem,coolantcirculation withthereactorcoolantpumpsservestocoolthesteamgenerator tokeepthetemperature difference betweenthereactorvesselandthesteamgenerator minimal.aSteamdumpsareusedtoreducesteamgenerator secondary fluidtobelow220'F.Ifthesteamgenerator wereheldat220'Fandthereactorvesselwerecooledtotherefuelinq temperature, thesteamgenerator
-reactorvesselATwouldstillbelessthan'l00'F.Infact,procedures willdirecttheoperatortomaintaintheh,Tbelowapproximately 20F.QLTOPtransients havenotbeenanalyzedforthesimultaneous startup.ofmorethanonereactorcoolantpump(RCP).Suchoperation isprocedurally
.precluded, sincetheooeratorstartsonlyoneRCPatatimeandasecondRCPisnotstarteduntilsystempressureisstabilized.
Additionally, thereisanLTOPtransient alarmthatshouldindicatethatapressuretransient isoccurring andthatasecondRCPshould'notbestarted.TheresultsoftheanalysesprovidedinFigures5.2-24and5.2-25showthattheuseofthePORYsprovidesufficient pressurereliefcapacitytomitigatethemostlimitingLTOPeventsidentified above.~l<<l>fgCJiSr'rrL.
ATechnical Specification willbewrittentorequire~mfa.o~~r~f2~5-'~RAifthebTexceeds100F.However,asmentioned above,administrative procedures willensurethatthehTismaintained belowapproximately 20F.Also,aTechnical Specification willbewrittentoensurethatappropriate actionistakenifonePORVisoutofserviceduringtheLTOPmodeofoperation.
J  
J  
'L2-FSARecapabi)itytodetermineheatremoval,coo)downrate,shutdowncoolingflow,amdthecapabilitytodetect.degradationinthef)oworheatremovalcapacity.TheinstrumentationprovidedfortheSDCSconsistsof:e1)Temperaturemeasurements-Shutdowncoo)ingheatexchangerinletandthetemperatureoftheshutdowncoolingf)owtothe)owpressureheader.A).1temperaturesareindicatedinthecohtrolroom.Theshutdowncoolingheatexchangers'nlettemperature,andthelowpressureheadertemperatures"arerecordedtofaci)itatecontrol'ftheReactorCoolantSystemcoo)downrate.2)PressureHeasurement.s-LPSIheaderpressureandshutdowncoolingheatexchangerinletpressure.Thesepressuresareindicatedinthecontrolroom,and,whenusedwiththe).ow-pressurepumpperformancecurves,provideanieanal>>ternatemeansofmeasuringsystemflowrate.3)PlowHeasurements-Totalshutdowncoolingflowratexsmeasuredbyflowindicator/control)ersFIC-3301and3306.Theinstiumentationisdiscussedfurtherin5e4.7.2.3OverpressureControlSections7.4and7.6.'ctionagainstoverpressureoftheSDCS~~~~~~rlocks.Adescriptionofreliefvalvessection6.3.2.2.6.1.isprovidedbyreliefvalvesandisprovidedbelowandinSub-TherearesixreliefvalvesintheSDCSsuctionlines.Thesevalvesaresizedtoprotectthecomponentsandpipingfromoverpressureduetothermalexpansionofthefluid.ValvesV-3482andV-3469haveasetpressureof2485psigandacapaci:ty'offivegpm.Relieffluidfromthesevalvesiscollectedinthequenchtank.Theseva)vesarelocatedinSectionsE-4andD>>5ofCEP&IDE-13172"310-131andaredeeienedto1974AS>E,SectionNBGuelityGroupA(~eeF~ure.ValvesV<<3483andV-3468haveasetpressureof335psigandacapacityof155gpm.RelieffluidfromthesevalvesiscollectedinaholduptankintheMast.eHanagementSystem.ThesevalvesarelocatedinSectionsD-7andD-6ofCEP&IDE-13172-310-131andaredesignedto1974ASHE,SeCtionBC,GuelityGroupB(zaep;~are.'4y/S)~5e4-24Inadditiontoprotectingthecomponentsandpipingfromoverpressureduetothethermalexpansionofthefluid,valvesV-366andto'otectthecomponentsandpip-ngfromoverpressureduetoaresizeto'roecsandressurizerinaverendrtentstartingofthechargi'ngpumps,HPSIpumps,anpedacaac1theaters,Thesevalveshaveaset.pressureof335psiganapy2300m.Relief'fIuidcol)ectedfromthesevalvesiscollectedgpm.exethotainmentsump.ThesevalvesarelocatedinSectionsC-6>dD-6ofCEP&IDE-13172-310"131andaredesignedto1974ASeconSHEYC(to1975summeraddenda)QualityGroupBMhencalcu)atingSectionothecapacityofvalvesV-3666andV-3667,thecap.styoes<~F'q~03-l<)~AmendmentNo.4,(6/81)  
'L2-FSARecapabi)itytodetermine heatremoval,coo)downrate,shutdowncoolingflow,amdthecapability todetect.degradation inthef)oworheatremovalcapacity.
Theinstrumentation providedfortheSDCSconsistsof:e1)Temperature measurements
-Shutdowncoo)ingheatexchanger inletandthetemperature oftheshutdowncoolingf)owtothe)owpressureheader.A).1temperatures areindicated inthecohtrolroom.Theshutdowncoolingheatexchangers'nlet temperature, andthelowpressureheadertemperatures "arerecordedtofaci)itate control'f theReactorCoolantSystemcoo)downrate.2)PressureHeasurement.s
-LPSIheaderpressureandshutdowncoolingheatexchanger inletpressure.
Thesepressures areindicated inthecontrolroom,and,whenusedwiththe).ow-pressure pumpperformance curves,provideanieanal>>ternatemeansofmeasuring systemflowrate.
3)PlowHeasurements
-Totalshutdowncoolingflowratexsmeasuredbyflowindicator/control)ers FIC-3301and3306.Theinstiumentation isdiscussed furtherin5e4.7.2.3 Overpressure ControlSections7.4and7.6.'ction againstoverpressure oftheSDCS~~~~~~rlocks.Adescription ofreliefvalvessection6.3.2.2.6.1.
isprovidedbyreliefvalvesandisprovidedbelowandinSub-TherearesixreliefvalvesintheSDCSsuctionlines.Thesevalvesaresizedtoprotectthecomponents andpipingfromoverpressure duetothermalexpansion ofthefluid.ValvesV-3482andV-3469haveasetpressureof2485psigandacapaci:ty
'offivegpm.Relieffluidfromthesevalvesiscollected inthequenchtank.Theseva)vesarelocatedinSectionsE-4andD>>5ofCEP&IDE-13172"310-131 andaredeeienedto1974AS>E,SectionNBGuelity GroupA(~eeF~ure.ValvesV<<3483andV-3468haveasetpressureof335psigandacapacityof155gpm.Relieffluidfromthesevalvesiscollected inaholduptankintheMast.eHanagement System.ThesevalvesarelocatedinSectionsD-7andD-6ofCEP&IDE-13172-310-131 andaredesignedto1974ASHE,SeCtionBC,GuelityGroupB(zaep;~are.'4y/S)~5e4-24Inadditiontoprotecting thecomponents andpipingfromoverpressure duetothethermalexpansion ofthefluid,valvesV-366andto'otectthecomponents andpip-ngfromoverpressure duetoaresizeto'roecsandressurizer inaverendrtentstartingofthechargi'ng pumps,HPSIpumps,anpedacaac1theaters,Thesevalveshaveaset.pressureof335psiganapy2300m.Relief'fIuidcol)ected fromthesevalvesiscollected gpm.exethotainmentsump.ThesevalvesarelocatedinSectionsC-6>dD-6ofCEP&IDE-13172-310"131 andaredesignedto1974ASeconSHEYC(to1975summeraddenda)QualityGroupBMhencalcu)ating SectionothecapacityofvalvesV-3666andV-3667,thecap.styoes<~F'q~03-l<)~Amendment No.4,(6/81)  


SL2-FSAR9Vo(e(~$8~TMo-manual~cefa1eJ~~.ovineRCSdepressurizationiscarriedonormallyaftertheSITsareeither.isolatedordcpressurized.~PrimaryBorationandInventoryMakeupTheSt~LucieUnit2designincorporatesthreesafetygradechargingpumps(SeismicCategory,oeIASMECodeClass2),redundantsafetygradechargingpumpi"iCategoryIASMECodeClass2boricacidmae-upans),numdeliverredundantchargingpumpsuctionpaths,andredundantchargingpumpeverypaths.Thechargingpumpsandallrelatedautomaticcontrolvalvesareconnectedtovitalpowerifthenormalpowersupplysystemshouldfail,'xcept1V-2504hargingpumpsuctionfrom,theRMT.Duringtheboronlantcooldown,thechargingsystemboratestheRCStocoldshutdownoronconcentrationand.accommoaesd.dtthereactorcoolantshrinkage,takingsuctionfromeithertheboricacidmakeuporrefuelingwatertanks.Theminimumamountofstoredorcacsoudbiidlutionthatismaintainedineitherboricacidtank'issufficienttobringtheplanttoasafeshutdowncondition.ThecapabilityoftheChemicalandVolumeControlSystem(CVCS)toborateandtomakeupisnotcompromisedbystoppingletdownflow.Ananalysisofborationwithoutletdownhasbeencompeteanhb1tedandisconfirmedinFSARSubsection9.3.4.3.Asinglefailureofoneemergencypowertrainwouldleaveatleastonechargingpumpoperaeonblthotheremergencypowertrain.Onechargingpumpstillalowsteo111hRCStobeboratedtoacoldshutdownboronconcentrationthetwohoursthattheplantisinitiallyheldathotstandby,evenwithouttheletdownsystemoperable.Thus,thechargingsyswithinthetwooursae.sstemsatisfiesthesinglefailurecriteria.SeeFSARSubsection9.3.4formoreinformation.4.SecondarytfakeupDuringcooldown,theauxiliaryfeedwatersystem(ASS)andatmosphericdumpvalvesprovie.ameanson'brigthereactorcoolantsystemtemperaturedowntotheshutdowncoolingsystementrytemperature-Theauxiliaryfeedwater~pump(s)arestartedandthesafetygradeauxiliaryfeedisolationvalves,~5-09-9,-10-11,-12,areopenedfromthecontrolroom.Theauxiliaryfeedwatersystemisdesignedsuchthatnosingleactivefailurecoupledwithalossofoffsitepower,preventsplantcooldown.Afailuremodesandeffectsanalysisi.sprovidedinthe.St.LucieUnit2FSARTable10.4.3.TheAPTScontainsonesteamdrivenandtwomotordrivenauxiliaryfeedwaterbi,tlfiapableofmaintainingtheRCSinhotstandby.Also,thesteamdrivenoreitherofthemotordrivenauxiliaryfeedwaterpumpsiscapableofdeliveringenoughfeedwatercondensateforaplantcooldown.TheAPTSisdesignedtosafetygraderequirements{SeismicCategoryISafety13AS'KCdSectionIII).Eachofthemotordrivenauxiliaryfeedwater~pumpsutilizeaClasslEacsafetyrelatedpowersupplyandtheturbinedipumptrainreliesstrictly-ondcpowersupply.Xfthemotordrivenauxiliaryh.5.4-28eAmendmentNo.4,(6/81)  
SL2-FSAR9Vo(e(~$8~TMo-manual~cefa 1eJ~~.ovineRCSdepressurization iscarriedonormallyaftertheSITsareeither.isolatedordcpressurized.
~PrimaryBorationandInventory MakeupTheSt~LucieUnit2designincorporates threesafetygradechargingpumps(SeismicCategory,oeIASMECodeClass2),redundant safetygradechargingpumpi"iCategoryIASMECodeClass2boricacidmae-upans),numdeliverredundant chargingpumpsuctionpaths,andredundant chargingpumpeverypaths.Thechargingpumpsandallrelatedautomatic controlvalvesareconnected tovitalpowerifthenormalpowersupplysystemshouldfail,'xcept 1V-2504hargingpumpsuctionfrom,theRMT.Duringtheboronlantcooldown, thechargingsystemboratestheRCStocoldshutdownoronconcentration and.accommo aesd.dtthereactorcoolantshrinkage, takingsuctionfromeithertheboricacidmakeuporrefueling watertanks.Theminimumamountofstoredorcacsoudbiidlutionthatismaintained ineitherboricacidtank'issufficient tobringtheplanttoasafeshutdowncondition.
Thecapability oftheChemicalandVolumeControlSystem(CVCS)toborateandtomakeupisnotcompromised bystoppingletdownflow.Ananalysisofborationwithoutletdownhasbeencompeteanhb1tedandisconfirmed inFSARSubsection 9.3.4.3.Asinglefailureofoneemergency powertrainwouldleaveatleastonechargingpumpoperaeonblthotheremergency powertrain.Onechargingpumpstillalowsteo111hRCStobeboratedtoacoldshutdownboronconcentration thetwohoursthattheplantisinitially heldathotstandby,evenwithouttheletdownsystemoperable.
Thus,thechargingsyswithinthetwooursae.sstemsatisfies thesinglefailurecriteria.
SeeFSARSubsection 9.3.4formoreinformation.
4.Secondary tfakeupDuringcooldown, theauxiliary feedwater system(ASS)andatmospheric dumpvalvesprovie.ameanson'brigthereactorcoolantsystemtemperature downtotheshutdowncoolingsystementrytemperature-Theauxiliary feedwater
~pump(s)arestartedandthesafetygradeauxiliary feedisolation valves,~5-09-9,-10-11,-12,areopenedfromthecontrolroom.Theauxiliary feedwater systemisdesignedsuchthatnosingleactivefailurecoupledwithalossofoffsitepower,preventsplantcooldown.
Afailuremodesandeffectsanalysisi.sprovidedinthe.St.LucieUnit2FSARTable10.4.3.TheAPTScontainsonesteamdrivenandtwomotordrivenauxiliary feedwater bi,tlfiapableofmaintaining theRCSinhotstandby.Also,thesteamdrivenoreitherofthemotordrivenauxiliary feedwater pumpsiscapableofdelivering enoughfeedwater condensate foraplantcooldown.
TheAPTSisdesignedtosafetygraderequirements
{SeismicCategoryISafety13AS'KCdSectionIII).Eachofthemotordrivenauxiliary feedwater
~pumpsutilizeaClasslEacsafetyrelatedpowersupplyandtheturbinedipumptrainreliesstrictly-ondcpowersupply.Xfthemotordrivenauxiliary h.5.4-28eAmendment No.4,(6/81)  
)
)
SL2-FSAR+9o(NCHPOSITIONepreoperationalandinitialstart'uptestprogramshallbeinconformancewithRegulatoryGuide1.68'heprogramforPHRsshallincludetestswithsupportinganalysisto(a)confirmthatadequatemixingofboratedwateraddedpriortoorduringcooldowncanbeachievedundernaturalcirculationconditionsandpermitestimationofthetimesrequiredtoachievesuchmixing,and"(b)confirmthat'hecooldownundernaturalcirculationconditionscanbeachievedwithi'nthelimitsspecifiedintheemergencyoperatingprocedures.Comparisonwithperformanceofpreviouslytestedplants'fsimilardesignmaybesubstitutedforthesetests.RESPONSE:ThepreoperationalandstartuptestprogramswillconformtheRegulatoryGuide1,68(R2).Boronmixingundernaturalcirculationconditions,willbedemonstratedinaprototypicaltestattheSanOnofreNuclearGeneration~50>MS~1g~~~4oFHtt's$4'IVY~a~/~i~e4"cpothlc.4Mc.W~'i2.Ps8PAnaturalcirculationtestandsimulatortrainingwillbeperformedforSt.LucieUnit2todemonstratethecapabilityofcoolingtheplanttoshutdowncoolingsysteminitialconditionswithinseveralhoursunderminimumcoolingcapability.AdetailedplanwillbereportedtotheNRCinaforthcomingFSARamendment.St.LucieUnit1submittalstotheNRCconcerningNaturaliculationcooldownhavebeenreviewedwithresPecttoth'eiraPPlicabilitytoStrhueieUnit2.XtisFPL'sopinionthatthesuheittalsprovidedtothe'istaffforUnit1aredirectlyapplicabletoUnit2.Insummary,Unit2willreviseemergencyoperatingprocedurestoreflectamorestringentcooldownratethantheexisting75F/hrrate.However,itisourpositionthatthemorestringentcooldownrateisnotrequiredtoprecludesafecooldownorplantshutdown.All,evaluationscompletedbyourNSSSUendor(C-E)concurwithouriiThStLucieUni,t2responsetotheabovequestionisaddressedin30FPL'lettersL-80-343datedOctober17,1'980andL-80-431datedDecember1980.5.4-28nAmendmentNo.4,(618'1)  
SL2-FSAR+9o(NCHPOSITIONepreoperational andinitialstart'uptestprogramshallbeinconformance withRegulatory Guide1.68'heprogramforPHRsshallincludetestswithsupporting analysisto(a)confirmthatadequatemixingofboratedwateraddedpriortoorduringcooldowncanbeachievedundernaturalcirculation conditions andpermitestimation ofthetimesrequiredtoachievesuchmixing,and"(b)confirmthat'hecooldownundernaturalcirculation conditions canbeachievedwithi'nthelimitsspecified intheemergency operating procedures.
Comparison withperformance ofpreviously testedplants'fsimilardesignmaybesubstituted forthesetests.RESPONSE:
Thepreoperational andstartuptestprogramswillconformtheRegulatory Guide1,68(R2).Boronmixingundernaturalcirculation conditions, willbedemonstrated inaprototypical testattheSanOnofreNuclearGeneration
~50>MS~1g~~~4oFHtt's$4'IVY~a~/~i~e4"cpothlc.4Mc.W~'i2.Ps8PAnaturalcirculation testandsimulator trainingwillbeperformed forSt.LucieUnit2todemonstrate thecapability ofcoolingtheplanttoshutdowncoolingsysteminitialconditions withinseveralhoursunderminimumcoolingcapability.
AdetailedplanwillbereportedtotheNRCinaforthcoming FSARamendment.
St.LucieUnit1submittals totheNRCconcerning NaturaliculationcooldownhavebeenreviewedwithresPecttoth'eiraPPlicability toStrhueieUnit2.XtisFPL'sopinionthatthesuheittals providedtothe'istaffforUnit1aredirectlyapplicable toUnit2.Insummary,Unit2willreviseemergency operating procedures toreflectamorestringent cooldownratethantheexisting75F/hrrate.However,itisourpositionthatthemorestringent cooldownrateisnotrequiredtoprecludesafecooldownorplantshutdown.
All,evaluations completed byourNSSSUendor(C-E)concurwithouriiThStLucieUni,t2responsetotheabovequestionisaddressed in30FPL'letters L-80-343datedOctober17,1'980andL-80-431datedDecember1980.5.4-28nAmendment No.4,(618'1)  


PucsL'>.<>r>440.5Provic)o<letails<>>>t)realr>>msa>>clir>dicatior>sw)richwoul<liriformthu<>)>orate>rst:hat:aSDCsuet:ionli>>eir;o-lationvalve)rawclosedwhiletheplanti.ir>sh<<Lclowr>cooling.Istherear>ycommor>failurewhichwouldre.-sult:i>>hot:hvalvesbeingclosedwhileinslruLdowrrcoolinc)~ItlhenLPSI)>sm)>miniflowisolationvalv<<sarec3oscddurir>gsl>ut:down<:oolir>g,whatworrldpr<.vor>tpumpclamageiFaprcssuretransie>>Cweret.ooccurwhichcausesRCSpressure:toexccc.dLPSIdeadheadpressure?Nher>t:heplantisintheSDCSmode,isthc:reanysir>gluFailurewhichwouldc:a0sethesuctionofbothSDCp>>mpstobuswitchedfromthehotlegpipingtothedrysumps?Respor>se:TheSDCis'olationvalvesareV-3480,-3481,-3651,and-3652.Chenanyofthesevalvesareclosed,alightisdisplayedonapanelintherontrolroom.ValvesV-3480and-3481areir>linewithLPSIpump2A.ValvesV-3651and-3652areinlinewithLPSIpump2B.Valves.V-3652a>>d-3481areon<.lectricalTrainA.ValvesV-3651ar>d-3480areonelectricalTrainB.Itshouldalsobenotedthatthereisacrossconnectbetweer>thetwoLPSIpumpt:rains.Thiscrossco>>>>cctissituatedbetween,thetwoisolationvalv<<soneachtrain.Thiscrossconnectpipi>>gisopenedandclosedviavalveV-3545.Powerissuppliedtothevalvefromeithercl<<c:-tricalTrainAorBviathc.swir>gBus.Thiscrosscor>neetvalvecanbeopenedfromtheco>>trolroomandalsofromaloc:alcontrolstation.Openandclosedpositionsarc.shownbycorrespondingliglrts.Theselicrhtsarepowered.fromelectricalBusA.Ir>adc)ition,thereisa0-100";indicationfort)>isvalvepowc:redfromclcctrica)BusB.Thrrs,ifoneofthevalvesfailedoxifoneofthedieselger>eratorsFailed,therewouldstillhconefunctioningLPSIpumptrain.Forexample,ifvalveV-3481failedclosed,thepil>inglinetoLPSIpump2Awouldnolongerbeopc.nrhowever,t:helinetoLPSI)><>mp2AwouldsLillbeoper>a>>dopera)>le'.Asasecond<<xamplerclu<.tri<ralTrainAfailed-t:hediesel<3er>eratorfailedt:ostart-thesevalve:sV-3652andV-3481wouldnotopen.Fl<.ctri-.calTrair>BisfuncLionalar>disus<<dtoopc>>LheSDCcrossconr>ec:tvalve(V-3545).tinterflow:-throught.heLPSI)>ump2Atrair>(u)>tot:hecrosscon>>ccLpoirrt),flowsthro>>ght:hecrosscc>r>>>e<<t.pipir>ga>>dintothe),PSIp<<mp2Bpipingtrain,thussupp)yir>gLPSIpump2Bwiththenecessaryflow.
PucsL'>.<>r>
e/~/z(Thereisnr>s>>><i)cfbi)u>'ewhichprevoritsSDCentryandth<rcisiiosi>><))efailurewhichclosesbothv>ivesi>>asiii<iletrai>>orpruveiitsonevalvefrombci>>g<:lo.,cd.Thesecondt>artofthisouc.tioriaddressesthesi,tu;itioiiwhu>>theLPSIpumpminiflowisolationvalvesareclosed(di<ri>>qtheshutd<iwn'coolingmode)aridapres-suretrinsiento<><<ursintheRCSwhichexceedstheLPSIpumpdeadheadpressure.rFortheShutdownCoolingMode,theLPSIpumpsuctionisalignedtothehotlegoftheRCS.TheflowCromthedischargesideofthepumpgoesintothecoldlegoftheRCS.Duetothisarrangement,theLPSIpumpwouldnotbedeadheadedbyanRCSpressuresurge.Reliefvalvesintheshutdowncoolingsuctionlinespreventisolationofthelineforanycredibleoverpressureevents.ThereisnosinglefailurethatwouldcausebothoftheLPSIpumpstobealignedtothedrysumpduringtheShutdownCoolingMode.TheSt.LucieUnit2hasanum-beroffeaturesincorporatedinitsdesignwhichpre-cludesthis.ForthyLPSXpumpstobealigned.intheaccidentconfi-gurationsitedinthequestion,thewatersupplyfromtheRCSwouldhavetobecutoffandthepathfromthecontainmentsumptotheLPSXpumps,wouldhivetobeopen.AninadvertantRASwo>>ldopen-theisolationvalvesfromthecontainmentsump(I-MV-07-2AandB).However,anRASalsoturnsofftheLPSIpumpsanddoesnotclosetheSDCsuctionisolationvalves.ValvesV-3444andV-3432,oneineachline,areclosedduringshutdowncoolingandmustbcopenedtoaligntheLPSXpumpstoadrysump.'I7g<existingdesignpermitsasa>>glefailureoftheAorBbatterytocloseasuctionvalveineachtrainnftheshutdowncoolingsystem.7~~<>QP;gg,P~P~/g<+<i>>Ol/~VAw(+-35+5)uzi/fbmd+Pa.iM50g4imhs44rc.+~~/y 0/  
440.5Provic)o<letails<>>>t)realr>>msa>>clir>dicatior>s w)richwoul<liriformthu<>)>orate>rs t:hat:aSDCsuet:ionli>>eir;o-lationvalve)rawclosedwhiletheplanti.ir>sh<<Lclowr>
('gr'IOfthepossiblesingleactivecomponentfailuresf'rtheSt.Lucie2Plant,onlytwocanimoactthepotentialforpost-tripreturntopowerandconsequentpossibledegradationinfuelperformance:(a)'reofamainsteamisolationvalvetocloseonactuationofinsteamisolationsignal{MSIVfa(lllure)and(h)failureofhighpressuresafetyinjection(HPSI)pumporfailureofonePSIpumpandonelowpressuresafetyinjection(LPS!)pump(thetercasebeingpossibleonlyifoffsitepowerisunavailable).heonlysignificantimpact'hesesinglefailurescanhaveisontentialpost-tripdegradationinfuelperformance.Table440e9-1showsthemaximumpost-tripreactivities,coreaveragepowers,andcoreaverageheatfluxeswithanassumedMSIVfailureandwithanassumedHPSIporn~orHPSIpumpplus'LPSIpumpfailure,asappropriate,for6.36ft~mSLBs.CasesarepresentedforSLBsinitiatedatfullpowerandatzeropower,withandwithoutlossofoffsitepower.Forcaseswithlossofoffsitepower,failureofoneHPSIpumpplusoneLPSIpumpisseentopresentthegreatestpotentialforpost-tripdegradationinfuelperformance.ThereforethiswasthesinglefailureassumedforthecaseswithlossofoffsitepowerwhicharepresentedinAppendix15AoftheFSAR.Forcaseswithoffsitepoweravailable(noreactor'coolantpumptrip)theimpactofthetwopossiblesinglefailuresisnearlyidentical.TheanalysespresentedinAppendix15AoftheFSARassumedaMSIVfailureforcaseswithoffsitepoweravailablesincethisfailureyieldsslighltyhighercoreaverageheatfluxes.Noconclusionswouldbechangedbyassuming,instead,oneHPSIpumpfailureforthesecases.{15.A)Forthelargesteamlinebreak(SLB)eventspresentedinApoendix15Atheconcernisthepossibilibyofdegradationinfuelperformanceduringpotentialpost-tripreturntopower.Pre-tripfueldegradation:.forSLBeventsisaddressedinSection15.1.(Seetheresponsetoguestion440.80(a)).RadiologicalreleasesforSLBeventsareboundedbytheLF-3eventtobe.presentedinSection15.1.5.1.Thereisnoapproachtothe110"ofdesignpressurecriterionduringSLBevents.  
cooling.Istherear>ycommor>failurewhichwouldre.-sult:i>>hot:hvalvesbeingclosedwhileinslruLdowrr coolinc)~ItlhenLPSI)>sm)>miniflowisolation valv<<sarec3oscddurir>gsl>ut:down
(9 TABLE440.9-1EFFECTOFSINGLEFAILUREOFMSIVORONEHPSIPUMPORONEHPSIPUMPPLUSONELPSIPUMPONMAXIMUMPOST-TRIPREACTIVITY,COREAVERAGEPOWER,ANDCOREAVERAGEHEATFLUXFOR6.36FT2MAINSTEAMLINEBREAKS.AUTOMATICACTUATIONOFAUXILIARYFEEDHATERISASSUMED.MAXIMUMPOST-TRIP:INITIALPOWERLEVELFF-SITEPOWERSINGLEFAILUREREACT/VITY('106p)COREAVERAGECOREAVERAGEPOyiERHEATFLUX(XOFFULLXOF2570MH)POgERVALUFULLLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVtONEHPSIPUMPMSIV+0.003-0.05-0.3'0.38.36.810.410.28.511.2ZEROLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVONEHPSIPUMPMSIV+0.3+0.1-0.5-0.50.81.6X101.1X101.1X101.00.41.41.5 01 3mr-IC.5'u.if~n,w-g//9(F/SL-2RoundOneuestions440.14OneofthekeyparametersinLOCAanalysesispeakcladtemperature.{15.0)Fornon-LOCAtransients,minimumDNBR(departurefromnucleateboilingratio)isofprimaryimportance.ForthosetransientsanalyzedinSection15oftheFSAR,providegraphicaloutputoftheDNBRasafunctionoftime.~Resense:DHBRplotsareprovidedforeventswhichshowaDNBRdecreasingbelowitsinitialvalueforallsectionsofChapter15.15.1.2.115.1.4.315.1.5.3A-~2rs-a,s-3(~~g~ar.scd)HoeventoreventcombinationminimumDHBRlessthan1.19.attachedFigure15.1.2.1-13FSARFigure15.1.1.3-9'FSARFigure15;1.5.3-9attachedFigure15A-l.lsattachedFigure15A-+5peal'Jpp'm~&dlrppcJb..PAlgRzc~Micorea8.addressedinSection15.2resultsina15.2.1.115.2.1.215.2.2.115.2.2.215.2.3.215.2.5.2DNBRremainsabove3.0.NodecreaseinDHBR.DHBRremainsabove3.0.attachedFigure15.2.2.2-12.attachedFigure15.2.3.2-12attachedFigure15.2.5.2-21EventspresentedinSection15.3oftheSt.LucieUnitHo.2FSARwhichinitiateadecreaseinreactorcoolantpumpflowratearelossofoff-si'tepower(15.3.2.3),andonepumpresistancetoforcedflowwithalossofoffsitepowerasaresultofturbinetrip(15.3.4,3).GraphicaloutputofDNBRversustimeforthelossofoffsitepowereventispre-sentedasFigure15.3.2.3-1intheFSAR.Fortheonepumpresistance,toforcedfloweventwithalossofoffsitepowerasaresultofturbinetrip,=graphicaloutputofDNBRversustimewillbeforwardedby.theendofAugust,1981(seeresponsetog440.11).15.4.1.315.4.2.315.4.2.415.4.3.115.4.4.215.4.4.315.4.5.1'5.4.5.3FSARFSARFSARNinimumDNBRisattachedattachedFigure15.4.1.3-7Figure15.4.2.3-7NodecreaseinDNBRFigure15.4.3.1-8greaterthanfor15.4.4.3.Figure15.4.4.3-8.Figure15.4.5.1-11..Tobesubmittedwithanalysi;Therearenoeventsin15.5forwhichtheNBRdecreasesbelowtheinitialvalue.{15.6)TheeventsanalysedinSection15.6ofSt.LucieUnitNo.2FSAR,whichresultinadecreaseintheRCSinventoryaresteamgeneratortube
<:oolir>g, whatworrldpr<.vor>t pumpclamageiFaprcssuretransie>>C weret.ooccurwhichcausesRCSpressure:
toexccc.dLPSIdeadheadpressure?
Nher>t:heplantisintheSDCSmode,isthc:reanysir>gluFailurewhichwouldc:a0sethesuctionofbothSDCp>>mpstobuswitchedfromthehotlegpipingtothedrysumps?Respor>se:
TheSDCis'olation valvesareV-3480,-3481,-3651,and-3652.Chenanyofthesevalvesareclosed,alightisdisplayed onapanelintherontrolroom.ValvesV-3480and-3481areir>linewithLPSIpump2A.ValvesV-3651and-3652areinlinewithLPSIpump2B.Valves.V-3652 a>>d-3481areon<.lectrical TrainA.ValvesV-3651ar>d-3480areonelectrical TrainB.Itshouldalsobenotedthatthereisacrossconnectbetweer>thetwoLPSIpumpt:rains.Thiscrossco>>>>cctissituatedbetween,thetwoisolation valv<<soneachtrain.Thiscrossconnectpipi>>gisopenedandclosedviavalveV-3545.Powerissuppliedtothevalvefromeithercl<<c:-tricalTrainAorBviathc.swir>gBus.Thiscrosscor>neetvalvecanbeopenedfromtheco>>trolroomandalsofromaloc:alcontrolstation.Openandclosedpositions arc.shownbycorresponding liglrts.Theselicrhtsarepowered.fromelectrical BusA.Ir>adc)ition, thereisa0-100";indication fort)>isvalvepowc:redfromclcctrica)
BusB.Thrrs,ifoneofthevalvesfailedoxifoneofthedieselger>erators Failed,therewouldstillhconefunctioning LPSIpumptrain.Forexample,ifvalveV-3481failedclosed,thepil>inglinetoLPSIpump2Awouldnolongerbeopc.nrhowever,t:helinetoLPSI)><>mp2AwouldsLillbeoper>a>>dopera)>le'.
Asasecond<<xamplerclu<.tri<ral TrainAfailed-t:hediesel<3er>erator failedt:ostart-thesevalve:sV-3652andV-3481wouldnotopen.Fl<.ctri-.
calTrair>BisfuncLionalar>disus<<dtoopc>>LheSDCcrossconr>ec:t valve(V-3545).tinterflow:-throught.heLPSI)>ump2Atrair>(u)>tot:hecrosscon>>ccLpoirrt),flowsthro>>ght:hecrosscc>r>>>e<<t.
pipir>ga>>dintothe),PSIp<<mp2Bpipingtrain,thussupp)yir>g LPSIpump2Bwiththenecessary flow.
e/~/z(Thereisnr>s>>><i)cfbi)u>'ewhichprevorits SDCentryandth<rcisiiosi>><))efailurewhichclosesbothv>ivesi>>asiii<iletrai>>orpruveiits onevalvefrombci>>g<:lo.,cd.
Thesecondt>artofthisouc.tioriaddresses thesi,tu;itioii whu>>theLPSIpumpminiflowisolation valvesareclosed(di<ri>>qtheshutd<iwn'cooling mode)aridapres-suretrinsient o<><<ursintheRCSwhichexceedstheLPSIpumpdeadheadpressure.
rFortheShutdownCoolingMode,theLPSIpumpsuctionisalignedtothehotlegoftheRCS.TheflowCromthedischarge sideofthepumpgoesintothecoldlegoftheRCS.Duetothisarrangement, theLPSIpumpwouldnotbedeadheaded byanRCSpressuresurge.Reliefvalvesintheshutdowncoolingsuctionlinespreventisolation ofthelineforanycredibleoverpressure events.ThereisnosinglefailurethatwouldcausebothoftheLPSIpumpstobealignedtothedrysumpduringtheShutdownCoolingMode.TheSt.LucieUnit2hasanum-beroffeaturesincorporated initsdesignwhichpre-cludesthis.ForthyLPSXpumpstobealigned.intheaccidentconfi-gurationsitedinthequestion, thewatersupplyfromtheRCSwouldhavetobecutoffandthepathfromthecontainment sumptotheLPSXpumps,wouldhivetobeopen.Aninadvertant RASwo>>ldopen-theisolation valvesfromthecontainment sump(I-MV-07-2 AandB).However,anRASalsoturnsofftheLPSIpumpsanddoesnotclosetheSDCsuctionisolation valves.ValvesV-3444andV-3432,oneineachline,areclosedduringshutdowncoolingandmustbcopenedtoaligntheLPSXpumpstoadrysump.'I7g<existingdesignpermitsasa>>glefailureoftheAorBbatterytocloseasuctionvalveineachtrainnftheshutdowncoolingsystem.7~~<>QP;gg,P~P~/g<+<i>>Ol/~VAw(+-35+5)uzi/fbmd+Pa.iM50g4imhs44rc.+~~/y 0/  
('gr'IOfthepossiblesingleactivecomponent failuresf'rtheSt.Lucie2Plant,onlytwocanimoactthepotential forpost-trip returntopowerandconsequent possibledegradation infuelperformance:
(a)'reofamainsteamisolation valvetocloseonactuation ofinsteamisolation signal{MSIVfa(lllure) and(h)failureofhighpressuresafetyinjection (HPSI)pumporfailureofonePSIpumpandonelowpressuresafetyinjection (LPS!)pump(thetercasebeingpossibleonlyifoffsitepowerisunavailable).
heonlysignificant impact'hesesinglefailurescanhaveisontentialpost-trip degradation infuelperformance.
Table440e9-1showsthemaximumpost-trip reactivities, coreaveragepowers,andcoreaverageheatfluxeswithanassumedMSIVfailureandwithanassumedHPSIporn~orHPSIpumpplus'LPSI pumpfailure,asappropriate, for6.36ft~mSLBs.Casesarepresented forSLBsinitiated atfullpowerandatzeropower,withandwithoutlossofoffsitepower.Forcaseswithlossofoffsitepower,failureofoneHPSIpumpplusoneLPSIpumpisseentopresentthegreatestpotential forpost-trip degradation infuelperformance.
Therefore thiswasthesinglefailureassumedforthecaseswithlossofoffsitepowerwhicharepresented inAppendix15AoftheFSAR.Forcaseswithoffsitepoweravailable (noreactor'coolantpumptrip)theimpactofthetwopossiblesinglefailuresisnearlyidentical.
Theanalysespresented inAppendix15AoftheFSARassumedaMSIVfailureforcaseswithoffsitepoweravailable sincethisfailureyieldsslighltyhighercoreaverageheatfluxes.Noconclusions wouldbechangedbyassuming, instead,oneHPSIpumpfailureforthesecases.{15.A)Forthelargesteamlinebreak(SLB)eventspresented inApoendix15Atheconcernisthepossibiliby ofdegradation infuelperformance duringpotential post-trip returntopower.Pre-tripfueldegradation
:.forSLBeventsisaddressed inSection15.1.(Seetheresponsetoguestion440.80(a)).
Radiological releasesforSLBeventsareboundedbytheLF-3eventtobe.presented inSection15.1.5.1.
Thereisnoapproachtothe110"ofdesignpressurecriterion duringSLBevents.  
(9 TABLE440.9-1EFFECTOFSINGLEFAILUREOFMSIVORONEHPSIPUMPORONEHPSIPUMPPLUSONELPSIPUMPONMAXIMUMPOST-TRIP REACTIVITY, COREAVERAGEPOWER,ANDCOREAVERAGEHEATFLUXFOR6.36FT2MAINSTEAMLINEBREAKS.AUTOMATIC ACTUATION OFAUXILIARY FEEDHATER ISASSUMED.MAXIMUMPOST-TRIP:INITIALPOWERLEVELFF-SITEPOWERSINGLEFAILUREREACT/VITY('106p)COREAVERAGECOREAVERAGEPOyiERHEATFLUX(XOFFULLXOF2570MH)POgERVALUFULLLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVtONEHPSIPUMPMSIV+0.003-0.05-0.3'0.38.36.810.410.28.511.2ZEROLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVONEHPSIPUMPMSIV+0.3+0.1-0.5-0.50.81.6X101.1X101.1X101.00.41.41.5 01 3mr-IC.5'u.if~n,w-g//9(F/SL-2RoundOneuestions440.14Oneofthekeyparameters inLOCAanalysesispeakcladtemperature.
{15.0)Fornon-LOCAtransients, minimumDNBR(departure fromnucleateboilingratio)isofprimaryimportance.
Forthosetransients analyzedinSection15oftheFSAR,providegraphical outputoftheDNBRasafunctionoftime.~Resense:DHBRplotsareprovidedforeventswhichshowaDNBRdecreasing belowitsinitialvalueforallsectionsofChapter15.15.1.2.115.1.4.315.1.5.3A-~2rs-a,s-3(~~g~ar.scd)Hoeventoreventcombination minimumDHBRlessthan1.19.attachedFigure15.1.2.1-13 FSARFigure15.1.1.3-9'FSARFigure15;1.5.3-9 attachedFigure15A-l.lsattachedFigure15A-+5peal'Jpp'm~&dlrppc Jb..PAlgRzc~Micorea8.addressed inSection15.2resultsina15.2.1.115.2.1.215.2.2.115.2.2.215.2.3.215.2.5.2DNBRremainsabove3.0.NodecreaseinDHBR.DHBRremainsabove3.0.attachedFigure15.2.2.2-12.
attachedFigure15.2.3.2-12 attachedFigure15.2.5.2-21 Eventspresented inSection15.3oftheSt.LucieUnitHo.2FSARwhichinitiateadecreaseinreactorcoolantpumpflowratearelossofoff-si'tepower(15.3.2.3),
andonepumpresistance toforcedflowwithalossofoffsitepowerasaresultofturbinetrip(15.3.4,3).
Graphical outputofDNBRversustimeforthelossofoffsitepowereventispre-sentedasFigure15.3.2.3-1 intheFSAR.Fortheonepumpresistance, toforcedfloweventwithalossofoffsitepowerasaresultofturbinetrip,=graphical outputofDNBRversustimewillbeforwardedby.theendofAugust,1981(seeresponsetog440.11).15.4.1.315.4.2.315.4.2.415.4.3.115.4.4.215.4.4.315.4.5.1'5.4.5.3 FSARFSARFSARNinimumDNBRisattachedattachedFigure15.4.1.3-7 Figure15.4.2.3-7 NodecreaseinDNBRFigure15.4.3.1-8 greaterthanfor15.4.4.3.
Figure15.4.4.3-8.Figure15.4.5.1-11..
Tobesubmitted withanalysi;Therearenoeventsin15.5forwhichtheNBRdecreases belowtheinitialvalue.{15.6)TheeventsanalysedinSection15.6ofSt.LucieUnitNo.2FSAR,whichresultinadecreaseintheRCSinventory aresteamgenerator tube


SL-2ROUNDONEUESTIONS;440.25(15.3.3)ProvideadetailedanalysisontheconsequencesofaRCPshaftseizureevent.Justifyselectionoflimitingsinglefailures.Thetimeattemperaturestudieswhichjustifyyourclaimsofpeakcladtemperaturebeinglimited'to1300oFarenotacceptedbythestaff.Inassessingfuelfailures,anyrodwhichexperiencesaDNBRoflessthan1.19mustbeassumedfailed.ConfirmthattheresultsoftheanalysismeettheacceptancecriteriaofSRP15.3.3.(2).Provideyourassump-tionsonflowdegradationduetothelockedrotorinthefaultedloop,andreferenceappropriatestudieswhichverifytheseassumptions.Alsoprovideasimilaranalysisforthelockedrotoreventpresentedinsection15.3.4.1,andshowthatacceptableconsequencesresult.~ResenseThemostseveresinglefailureinconjunctionwiththeRCPshaftseizureeventisthelossofoffsitepoweronturbinetrip,asdiscussedintheresponseto440.9.ResultsshowaminimumDNBRof0.36at3.6seconds,resultingin13Kofthefuelrods'experiencingDNB(seetheresponseto440.11).The2-hourthyroiddoseassuming13&#xc3;failedfuel'sapproximately30remsandthepeakRCSpressureis'lessthanorequalto2694psia(seetheresponseto440.8).~W+s-W:~d<p~:4.~i.~gg)~~(~kgc.Theflowcoastdownswhichwereusedintheanalys'isoftheonepumpresistancetoforcedflowarepresentedinFigures440.25-1and440.25-2.Theseizedshaftisassumedtoinstantaneouslystopattime0.0withtheseizedrotor'ctingonlyasaresistancetoflow.ThiscoastdownwasgeneratedusingtheCOASTcodeasdocumentedinCENPD-98(seeReference1).
SL-2ROUNDONEUESTIONS;440.25(15.3.3)Provideadetailedanalysisontheconsequences ofaRCPshaftseizureevent.Justifyselection oflimitingsinglefailures.
Thetimeattemperature studieswhichjustifyyourclaimsofpeakcladtemperature beinglimited'to1300oFarenotacceptedbythestaff.Inassessing fuelfailures, anyrodwhichexperiences aDNBRoflessthan1.19mustbeassumedfailed.Confirmthattheresultsoftheanalysismeettheacceptance criteriaofSRP15.3.3.(2).
Provideyourassump-tionsonflowdegradation duetothelockedrotorinthefaultedloop,andreference appropriate studieswhichverifytheseassumptions.
Alsoprovideasimilaranalysisforthelockedrotoreventpresented insection15.3.4.1, andshowthatacceptable consequences result.~ResenseThemostseveresinglefailureinconjunction withtheRCPshaftseizureeventisthelossofoffsitepoweronturbinetrip,asdiscussed intheresponseto440.9.ResultsshowaminimumDNBRof0.36at3.6seconds,resulting in13Kofthefuelrods'experiencing DNB(seetheresponseto440.11).The2-hourthyroiddoseassuming13&#xc3;failedfuel'sapproximately 30remsandthepeakRCSpressureis'lessthanorequalto2694psia(seetheresponseto440.8).~W+s-W:~d<p~:4.~i.~
gg)~~(~kgc.Theflowcoastdowns whichwereusedintheanalys'is oftheonepumpresistance toforcedflowarepresented inFigures440.25-1and440.25-2.
Theseizedshaftisassumedtoinstantaneously stopattime0.0withtheseizedrotor'ctingonlyasaresistance toflow.Thiscoastdown wasgenerated usingtheCOASTcodeasdocumented inCENPD-98(seeReference 1).


==Reference:==
==Reference:==
1.'CoastCodeDescription",CENPD-98,April2,1973.AchangetotheFSAR,Appendix15.C.3willbesubmittedinSeptember1981.


440.41Identifytheplantoperatingconditionsunderwhichcertainautomaticsafetyinjectionsignalsareblockedtoprecludeunwantedactuationofthesesystems.Describethealarmsavailabletoalerttheoperatortoafailureintheprimaryorsecondarsstemduringthisphaseofoperationandthetimeavailabletomitigatetheconsequencesofsuchanaccident.~ResonseWhiletheplantisinpoweroperation,thesafetyinjectionsignalsmaynotbeblocked.Duringtheinterimphase,whileRCSpressureisbeingreducedtore-fuelingmode,itbecomesnecessarytopartiallyblocktheSIAS.AsafetyinjectionblockisprovidedtopermitshutdowndepressurizationoftheReactorCoolantSystem(RCS)withoutinitiatingsafetyinjection.Thisblockisaccomplishedmanuallyafterpressurizerpressurehasbeenreducedandaper-missivesignalisgeneratedbytheEngineeredSafetyFeaturesActuationSystem.Thisblockingprocedureisunderstrictadministrativecontrol;blockandblockpermissiveisa'nnunciatedandindicatedinthecontrolroom.Itisnotpossibletoblockabove'apresetpressure:ifthesystemisblockedandpressurerisesabovethatpoint,theblockisautomaticallyremoved.Theblockcircuitcom-plieswiththesinglefailurecriterioninIEEE279-1971.TheSIASblockremovesonlythepressurizerpressuresignalfromtheSIAStriplogic.Thehighcontainmentpressuretransmittersstillremainindirectcon-nectionwiththetriplogic.Shouldaneventoccurwherebythecontainmentpressureissufficientlyraised,highcontainmentpressurealarmssoundonRTGB-206andtheSIASisinitiatedautomatically,regardlessofthepressurizersignalblock.TheTechnicalSpecificationswillpermitblockageof'heSIASinplantmodes5and6,whiletheshutdowncoolingsystemisinoperation.Inthesemodespro-tectionagainstoverpressurizationoftheReactorCoolantandShutdownCoolingSystem,'duetoaspuriousactuationoftheHPSI,isprovidedbyreliefvalvesV-3666andY-3667intheSDCsuctionlines.FSARTables7.5-1and10.4-5in-dicatesthedisplayinstrumentationandtheiralarms~4:~h<availabletotheoperatortoestablishprimaryandsecondarysystemconditions.~CDuringcoldshutdownorrevueingmodes~and6)shouldalossofcoolantoccur,levelguagesinthecontainmentandcavitysummandthesafeguardsroomsumpwithalarmswouldalerttheoperatorofsuchanaccident.Duringtheplantcooldown,operatoractionisrequiredtocontinuallymonitortheS.G.secondarywaterlevelandfeedwaterflow.Becauseofthistheoperatorisa&areofthesecondarysystemconditions.Duringarefueling,forspecificmaintenancetasks,itisexpectedthatsomeinstrumentationwillbeinoperable.Administrativeprocedureswillassurethattheoperatorwillbeabletoassessthestatusoftheprimaryandsecondarysys-emsforthespecificsituations.HoFSARchangeisrequired.  
1.'CoastCodeDescription",
CENPD-98, April2,1973.AchangetotheFSAR,Appendix15.C.3willbesubmitted inSeptember 1981.
 
440.41Identifytheplantoperating conditions underwhichcertainautomatic safetyinjection signalsareblockedtoprecludeunwantedactuation ofthesesystems.Describethealarmsavailable toalerttheoperatortoafailureintheprimaryorsecondarsstemduringthisphaseofoperation andthetimeavailable tomitigatetheconsequences ofsuchanaccident.
~ResonseWhiletheplantisinpoweroperation, thesafetyinjection signalsmaynotbeblocked.Duringtheinterimphase,whileRCSpressureisbeingreducedtore-fuelingmode,itbecomesnecessary topartially blocktheSIAS.Asafetyinjection blockisprovidedtopermitshutdowndepressurization oftheReactorCoolantSystem(RCS)withoutinitiating safetyinjection.
Thisblockisaccomplished manuallyafterpressurizer pressurehasbeenreducedandaper-missivesignalisgenerated bytheEngineered SafetyFeaturesActuation System.Thisblockingprocedure isunderstrictadministrative control;blockandblockpermissive isa'nnunciated andindicated inthecontrolroom.Itisnotpossibletoblockabove'apresetpressure:
ifthesystemisblockedandpressurerisesabovethatpoint,theblockisautomatically removed.Theblockcircuitcom-plieswiththesinglefailurecriterion inIEEE279-1971.
TheSIASblockremovesonlythepressurizer pressuresignalfromtheSIAStriplogic.Thehighcontainment pressuretransmitters stillremainindirectcon-nectionwiththetriplogic.Shouldaneventoccurwherebythecontainment pressureissufficiently raised,highcontainment pressurealarmssoundonRTGB-206andtheSIASisinitiated automatically, regardless ofthepressurizer signalblock.TheTechnical Specifications willpermitblockageof'heSIASinplantmodes5and6,whiletheshutdowncoolingsystemisinoperation.
Inthesemodespro-tectionagainstoverpressurization oftheReactorCoolantandShutdownCoolingSystem,'duetoaspuriousactuation oftheHPSI,isprovidedbyreliefvalvesV-3666andY-3667intheSDCsuctionlines.FSARTables7.5-1and10.4-5in-dicatesthedisplayinstrumentation andtheiralarms~4:~h<available totheoperatortoestablish primaryandsecondary systemconditions.
~CDuringcoldshutdownorrevueingmodes~and6)shouldalossofcoolantoccur,levelguagesinthecontainment andcavitysummandthesafeguards roomsumpwithalarmswouldalerttheoperatorofsuchanaccident.
Duringtheplantcooldown, operatoractionisrequiredtocontinually monitortheS.G.secondary waterlevelandfeedwater flow.Becauseofthistheoperatorisa&areofthesecondary systemconditions.
Duringarefueling, forspecificmaintenance tasks,itisexpectedthatsomeinstrumentation willbeinoperable.
Administrative procedures willassurethattheoperatorwillbeabletoassessthestatusoftheprimaryandsecondary sys-emsforthespecificsituations.
HoFSARchangeisrequired.  


440.44AreportedeventhasraisedaquestionrelatedtotheconservatismofNPSHcalculationswithrespecttowhethertheabsoluteminimumavail-ableNPSHhasbeentakenbythestaffasafixednumbersuppliedthroughtheapplicantbyeitherthearchitectengineerorthepump"-manufacturer.Sinceanumberofmethodsexistandthemethodusedcanaffectthesuitabilityorunsuitabilityofaparticularpump,itisrequestedthatthebasisonwhichtherequiredNPSHwasde-terminedbebranded(i.e.,test,HydraulicInstituteStandards)foralltheECCSpumpsincludingthetestinginaccuraciesbeprovided.~Res'onseTherequiredNPSHoftheSt.LucieUnit2ECCSpumpsisconfirmedbytest.ThehighpressuresafetyinjectionpumpsaresuppliedbyBingham-HillametteCo.ThesepumpsaretestedinaccordancewiththeASNEPowerpestCode8.2(cen-trifugalpumps).SimilarpumpswerealsosuppliedforSt.LucieUnitl.EachoftheSt.LucieUnit1pumpswerealsotestedfortheNPSHre-quired.Theresultsshow(seefollowingtable)littlevariancebetweenpumpsforsimilarflow.q7e,HP>Xla~~a~arePuwf~dsspradwo-o4'P~fdn~eAo~$;ue;O%J~r<+ro~.'heLPSIpumpsaresuppliedbyIngrsol-Rand.TheNPSHcharacteristiciscon-'irmedbytest.BothoftheSt.LucieUnit2LPSIpumpsweretested.TheHydrualicInstituteStandardswereusedforthytests.+~mf~~QJ~gijVP5$wf~prswr~~iaJp'Y,J~rn.L,.-~.NPSHTESTRESULTSFORST.LUCIEUNITS1AND2St.LucieUnit1HPSIPumsf200113j/200114ICI200115St.LucieUnit2HPSIPumsGPH'NPSHft64019.7640,19.964019.6$14210014(sparepump).f14210015Ii'1421001664063163919.919.019.4St.LucieUnit2LPSIPumsII1076149f1076150TheNPSHvs.flowcurvesforinFigures6.3-3a,6.3-3b,6.45CC"sPfi~>s&CLta~a'ggloyf.Iqf3$'oc(5-,~3000.13qCao300011.0=4~/+0/7~theSt.LucieUnit2HPSIandLPSIpumpsareshown3-4a,and6.3-4b.Hpg~~~Lp~~'.-4~.7-t(  
440.44Areportedeventhasraisedaquestionrelatedtotheconservatism ofNPSHcalculations withrespecttowhethertheabsoluteminimumavail-ableNPSHhasbeentakenbythestaffasafixednumbersuppliedthroughtheapplicant byeitherthearchitect engineerorthepump"-manufacturer.
Sinceanumberofmethodsexistandthemethodusedcanaffectthesuitability orunsuitability ofaparticular pump,itisrequested thatthebasisonwhichtherequiredNPSHwasde-terminedbebranded(i.e.,test,Hydraulic Institute Standards) foralltheECCSpumpsincluding thetestinginaccuracies beprovided.
~Res'onseTherequiredNPSHoftheSt.LucieUnit2ECCSpumpsisconfirmed bytest.Thehighpressuresafetyinjection pumpsaresuppliedbyBingham-Hillamette Co.Thesepumpsaretestedinaccordance withtheASNEPowerpestCode8.2(cen-trifugalpumps).SimilarpumpswerealsosuppliedforSt.LucieUnitl.EachoftheSt.LucieUnit1pumpswerealsotestedfortheNPSHre-quired.Theresultsshow(seefollowing table)littlevariancebetweenpumpsforsimilarflow.q7e,HP>Xla~~a~arePuwf~dsspradwo-o4'P~fd n~eAo~$;ue;O%J~r<+ro~.'heLPSIpumpsaresuppliedbyIngrsol-Rand.
TheNPSHcharacteristic iscon-'irmed bytest.BothoftheSt.LucieUnit2LPSIpumpsweretested.TheHydrualic Institute Standards wereusedforthytests.+~mf~~QJ~gijVP5$wf~prswr~~iaJp'Y, J~rn.L,.-~.
NPSHTESTRESULTSFORST.LUCIEUNITS1AND2St.LucieUnit1HPSIPumsf200113j/200114ICI200115 St.LucieUnit2HPSIPumsGPH'NPSHft64019.7640,19.964019.6$14210014(sparepump).f14210015 Ii'14210016 64063163919.919.019.4St.LucieUnit2LPSIPumsII1076149 f1076150TheNPSHvs.flowcurvesforinFigures6.3-3a,6.3-3b,6.45CC"sPfi~>s&CLta~a'ggloyf.Iqf3$'oc(5-,~3000.13qCao300011.0=4~/+0/7~theSt.LucieUnit2HPSIandLPSIpumpsareshown3-4a,and6.3-4b.Hpg~~~Lp~~'.-4~.7-t(  


440.39IdentifyallECCSvalvesthatarerequiredtohavepowerlockedout;(6,3)confirmtheyareincludedundertheappropriateTechnicalSpecifications,withsurveillancerequirementslisted.s~ResonseTheECCSvalvesthatarerequiredtohavepowerlockedoutarelisted"below.TheTechnicalSpcificationsectionoftheSt.Lucie-2FSARiscurrentlybeinggen-erated.Surveillancerequirementsforthesevalveswillbelisted.0V-3614,V-3624,V-3634,Y-3644-SITIso1ationValves."Ponerrackouttomotorrequiredwhenpressurizerpressuregreaterthan700'psig."~~V-3613,Y-3623,V-3633,V-3643-SITVentValves.Powertothoseval'vesisremovedinthecontrolroomduringnormaloperation.NoFSARchangeisrequired.  
440.39IdentifyallECCSvalvesthatarerequiredtohavepowerlockedout;(6,3)confirmtheyareincludedundertheappropriate Technical Specifications, withsurveillance requirements listed.s~ResonseTheECCSvalvesthatarerequiredtohavepowerlockedoutarelisted"below.TheTechnical Spcification sectionoftheSt.Lucie-2FSARiscurrently beinggen-erated.Surveillance requirements forthesevalveswillbelisted.0V-3614,V-3624,V-3634,Y-3644-SITIso1ation Valves."Ponerrackouttomotorrequiredwhenpressurizer pressuregreaterthan700'psig."~~V-3613,Y-3623,V-3633,V-3643-SITVentValves.Powertothoseval'vesisremovedinthecontrolroomduringnormaloperation.
NoFSARchangeisrequired.  


REACTORCOOL>>3rrS.ST-,~3STE>>MGc."lFRATOPSLJHITZ3(GCO,'(OITZOt<FOROP+RATIO,'J.3.4.6EachsteamgeneratorshallbeOPERABLE.APPLICABILITY:MODES1,2,3and4.ACTION:Mithoneormoresteamgeneratorsinoperable,restoretheinoperable.generator(s)toOP""itABLEstatuspriortoincreasingTabove200~F.avgSURVEILLANCEREOUIRBIEHTS4.4'.6.0EachsteamgeneratorshallbedemonstratedOPERABLEbyperformanceofthefollowingaugmentedinservice.inspecionprogramandtherequirementsofSpecification4.0.5.4..4.6~1SteamGeneratorSampleSelectionandInspection-Eachsteam.generatorshallcedetarmineaOPERABL:-duringsnutccImoyselectingand-inspe~ctingat.leas.theminimumnumberofsteamgeneratorsspecifiedin.TDle4.4"1.4.4.6.2SteamGeneratorTubeSampleSelecticnandInsoecicn-Thesteam.generatortu"eminimumsamplesie,inspec-ionresul-classification,andthecorrespondingactionrequiredshallbeasspecifiedinTable4.4"2.The-inservicinspectioncfsteangeneratortubesshallbeperformedatthefr'equenciesspecifiedinSpecificaion4.4.6.3andtheinspec.edtubesshall:beverified=acepablepertheacceptancecriteriaofSpecfication4.4.6.4.Thetubesselectedforeachinsc~icainspectionshallincludeatleast3Xcf.thetotalnumberoftubesinallsearngenerators;thetubesselectedfo-theseinspectionsshallbeselectedonarandombasisexcept:'a4)thereexpe'rienceinsimilar'lan+mwithsimilarwaterchemisryindicatescriticalareastobeinspec-ed,thenatleast50ofthetubes'inspectedshallbefromthesecriticalareas.b.Thefirstsampleoftubesselectedfcreachinserviceinspection(subsequentothepreserviceinspection)ofeachsteamgeneratorshallinclude:-C~Sh3/44"10Og01lcSO  
REACTORCOOL>>3rrS.ST-,~3STE>>MGc."lFRATOPS LJHITZ3(G CO,'(OITZOt<
FOROP+RATIO,'J
.3.4.6Eachsteamgenerator shallbeOPERABLE.
APPLICABILITY:
MODES1,2,3and4.ACTION:Mithoneormoresteamgenerators inoperable, restoretheinoperable
.generator(s) toOP""itABLE statuspriortoincreasing Tabove200~F.avgSURVEILLANCE REOUIRBIEHTS 4.4'.6.0Eachsteamgenerator shallbedemonstrated OPERABLEbyperformance ofthefollowing augmented inservice.
inspecionprogramandtherequirements ofSpecification 4.0.5.4..4.6~1SteamGenerator SampleSelection andInspection
-Eachsteam.generator shallcedetarminea OPERABL:-
duringsnutccImoyselecting and-inspe~cting at.leas.theminimumnumberofsteamgenerators specified in.TDle4.4"1.4.4.6.2SteamGenerator TubeSampleSelecticn andInsoecicn-Thesteam.generator tu"eminimumsamplesie,inspec-ion resul-classification, andthecorresponding actionrequiredshallbeasspecified inTable4.4"2.The-inservicinspection cfsteangenerator tubesshallbeperformed atthefr'equencies specified inSpecifica ion4.4.6.3andtheinspec.ed tubesshall:beverified=acepablepertheacceptance criteriaofSpecfication4.4.6.4.Thetubesselectedforeachinsc~icainspection shallincludeatleast3Xcf.thetotalnumberoftubesinallsearngenerators; thetubesselectedfo-theseinspections shallbeselectedonarandombasisexcept:'a4)thereexpe'rience insimilar'lan+m withsimilarwaterchemisryindicates criticalareastobeinspec-ed, thenatleast50ofthetubes'inspected shallbefromthesecriticalareas.b.Thefirstsampleoftubesselectedfcreachinservice inspection (subsequent othepreservice inspection) ofeachsteamgenerator shallinclude:-C~Sh3/44"10Og01lcSO  
/
/
REACTORCOOLANTSYSTE.'1-SVRVEILlAt(CEREOVIREHEHTS(Continued)Co.Allnonpluggedtubesthatpreviouslyhaddetectablewallpenetratiors(greaterthan20~).2.Tubesinthoseareaswhereexperiencehasindicatedpotentialprob1ems.3.Atubeinspection(pursuanttoSpecification4.4.6.4.a.8)shallbeperformedoneachselectedtube.Ifanyselectedtubedoesnotpermitthepassageoftheeddycurrentprobeforatubeinspection,'i'.thisshallberecordedandanadjacenttubeshallbeselectedandsubjectedtoatubeinspection.Thetubesselectedasthesecondandthirdsamples(ifrequiredbyTable4.4-2)duringeachinserviceinspectionmaybesubjectedtoapartialtubeinspectionprovided:2.Thetubesselectedforthesesamplesincludethetubesfromthoseareasofthetubesheetarraywheretubeswithimperfectionswerepreviouslyfound.-Theinspectionsincludethoseportionsofthetubeswhereimperfectionswerepreviouslyfound.Theresultsofeachsampleinspectionshallbeclassifiedintooneofthefollowingthreecategories:Cate~os'"2InsectionResults=Lessthan5&#xc3;ofthetotaltubesinspectedaredegradedtubesandnoneoftheinspectedtubes'redefective..Oneormoretubes,butnotmoreChan1&#xc3;ofthe'otaltubesinspectedaredefective,orbetween,SXand10&#xc3;ofthetotaltubesinspectedaredegradedtubes.'"3Norethan10~ofthetotaltubesinspectedaredegradedtubesormorethan1&#xc3;oftheinspectedtubesaredefective.Note:Inallinspections,previouslydegradedtubesmustexhibitsignificant(greaterthan10~)furtherwallpenetrationstobeincludedintheabovepercentagecalculations.3/44"11OCroa'-'  
REACTORCOOLANTSYSTE.'1-SVRVEILlAt(CE REOVIREHEHTS (Continued)
\0 REACTORCOOLANTSYSTE."1SSUILLANC"P."U~ReMc'O'SContinued4.4.6.3InsnecionFreouencies-Theaboverequiredinserviceinspectionsofsteamgenerator-uaessnailoeperformedatthefollowingfrequencies:a.b.cThefirstinserviceinspectionshallbeperformedafter6ffectiveFullPowerMonthsbutwithin24calendermonthsofinitialcrit"kality.Subsequentinserviceinspectionsshallbeperformedatintervalsofnotlesshan12normorethan24calendarmonthsafterthepreviousinspection.IftwoconsecuziveinspectionsfollowingserviceunderAVTconditions,notincludingthepreserviceinspection,resultinallinspectionresultsfallingintotheC-1categoryorifwoconsecutiveinspcionademons"atethatpreviouslyobserveddegradationhasnotcontinuedandnoadditionaldegradationhasoc"urred,theinspectionintervalmaybeextendedtoamaximumofonceper40months.Ifthe.resultsoftheinserviceinspecionofasteamgeneratorconductedinaccordancewihTable4.4"2at40monthintervalsfallintoCategoryC-3,theinspection,requencyshallbeincreasedtoatleast.onceper20months.Theincreaseininspectionfrequencyshallapplyuntilthesubsequentinspectionssatisfyhecri.eriaofSpecification4.4.6.3.a;theintervalmaythenbeextendedtoamaximumofonceper40months.lAdditional,unscheduledinserviceinspectionsshallbeperformedoneachsearngeneratorinaccordancewi.hthefirssampleinspecionspecifiedinTable4.4-2duringtheshutdownsubsequenttoanyofthefollowingcond-itions:1.Primary"to-secondarytubesleaks(notincludingleaksoriginatingfromtube-to"tubesheetwelds)inexcessof.helimitsofSpecification3.4.7.2.2.3.AseismicoccurrencegreaterthantheOperatingBasisEarthquake.rAloss-of-coolantaccidentrequiringactuationoftheengineeredsafeguards.4.Amainsteamlineorfeedwaterlinebreak.3/44-12  
Co.Allnonplugged tubesthatpreviously haddetectable wallpenetratiors (greaterthan20~).2.Tubesinthoseareaswhereexperience hasindicated potential prob1ems.3.Atubeinspection (pursuant toSpecification 4.4.6.4.a.8) shallbeperformed oneachselectedtube.Ifanyselectedtubedoesnotpermitthepassageoftheeddycurrentprobeforatubeinspection,'i'.this shallberecordedandanadjacenttubeshallbeselectedandsubjected toatubeinspection.
-t00 REACTORCGOLAHTSYSTEM0dSURYEILLAHCEREOUIREHEHTSContinued4.4.6.4AcceptanceCriteriaa.Asusedin'hisSpecification2.Imoerfectionmeansanexceptionto'hedimensions,finishorcontourofatvbefromthatrequiredbyfabricationdrawingsorspecifications.Eddy-currenttestingindicationsbelow20~ofthenominaltubewallthickness,ifdetectable,maybeconsideredasimperfections.~0iI-Idgeneralcorrosionoccurringoneitherinsideoroutsideofatube.3.5.'.8.~PPthanorequalto20&#xc3;ofthenominalwallthicknesscausedbydegradation.K~diuPaffectedorremovedbydegradation.Oefectmeansanimperfectionofsuchseveritythatitexceedstheplugginglimit.Atubecontainingadefectisdefective.~P1ILIthetubesnailberemovedfromserviceandisequalto(40)~"ofthenominaltvbewallthickness.'nserviceabledescribestheconditionofatubeifit'leaksorcontainsadefectlargeenoughtoaffectitsstructuraiintegrityintheeventofan,Operating8asisEarthquake,aloss-of-.coolantaccident,orasteamlineorfeedwaterlinebreakasspecifiedin4.4.6.3.c,above.ITubeInspectionmeansaninspectionofthesteamgeneratortubefromthepointofentry(hotlegside)completelyaroundthe'-bendtothetopsvpportofthecoldleg.PreserviceInspectionmieansaninspectionofthefulllengthofeachtuneineacns-earngeneratorperformedbyeddycvrrenttechniquespriortoservicetoestablishabaselineValuetobe-determinedinaccordancewiththerecommendationsofRegulatoryGuide1.121,Augvst.1976.SF~L.~c.,g3/44"13OCT01loeO It REACTORCOOLANTS'(ST="HD~~EILi&HCcREOUIREH""!ITS(CcntinuedIb.econditionofthetubing.Thisinspecionshallbeperformedfl7.4priortoinitialPOWEROPERATIONusingtheequipmentandtechniquesexpec-edtobeusedduringsuosequentinserviceinspections.ThesteamgeneratorshallbedeterminedOPERABL~aftercompletingthecorrspondingactions(plugalltubesexceedingtheplugginglimitandalltubescontainingthrough"eallcracks)requiredbyTable4.4"2.4.4.6.5Renorte-0b.Followingeachinserviceinspectionofsteamgeneratortubes,thenumberoftubespluggedineachsteamgenera-'orshallbreportedtotheCormnissionwithin15days..ThecompleteresultsofthesteamgeneratortubeinserviceinspectionshallbesubmittedtotheCommissioninaSpecialReportpur'suanttoSoecification6.9.2~sithin12monthsfollowingcom-pletionoftheinspection.ThisSpecialReportshallinclude:1..Numberandextentoftubesinspected.2.3.Locationandpercentofeall-thicknesspenetrationforeachindicationofanimperfecion.eEdentificationoftubesplugged.cResultsofsteamgeneratortubeinspecionswhichfallintoCategoryC"3andrequirepromptnotificationofheCommissionshallbereportedpursuanttoSoeciication6.9.1priortoresumptionofplantoperation.The~!rittenfolio~upof4hisreportshallprovideadescriptionofinvestigationsconduc4edtodeterminecauseofthetubedegradationandcorrectivemeasurestakentopreventrecurrence.~'l44"14 00 TABLE4;4-]lglNIiYiUMNUMBEROFSTEAI'4GEQEQATOPSTOQE.INSPECTEDDURINGINSERVICEiflSPPCT)ON0PrescrvlceInspectionNoYesNo.ofSteamGeneratorsperUnitTwoThreeFourTwoThreeFourFirstln-rvicaInspectionSecond5SubsequentInscrvlceInspectionsAllOne>OneTwoOna2TwoOne3TableNota'.Ion:1.TheinscrvicaInspectionmaybelimitedtoonesteamgeneratoronarotatingscheduleencompassing3N'IolthetubesIwhcreNisthcnun>bcrofstcamgeneratorsIntheplan!)IftheresultsofthefirstorpreviousInspectionsindicatethatallstcamgeneratorsareperforminginalikemanner.Notethatundersomecircumstances,theoperatingconditionsInoncormorestcamgeneratorsmaybetoundtobemorascvcrethanthoseinotherstcamgenerators.Undersucltcircum.stancestiresanrplesequencesltallbemodifiedtoInspectthemostscvcreconditions.2.Titcotl>crsteamgeneratornotinspectedduringthefirstinscrviceInspectionshallbeinspected.Thethirdandsubsequent:inspectionsshouldfollowtl>cInstructionsdescribedin1above.3.Eacl)oftheothertwosteamgcncratorsnotinspectedduringthefirstinservlceInspectionsshallbaInspectedduringthesecondandthirdinspections.Thafourthandsubsequentinspectionsshallfoltowtlteinstructionsdescribedin1above.~CDnI 0
Thetubesselectedasthesecondandthirdsamples(ifrequiredbyTable4.4-2)duringeachinservice inspection maybesubjected toapartialtubeinspection provided:
TABLE4.$-2n)STSAMPLEINSPECYfONSTEAMGENERATORTUB'EINSPECTION2NDSAMPLEINSPECTION3RDSAMPLEINSPECTIONSampleSleeAeiultActionRmtufrcdResuitActionflcqulrcdResultActionAcquiredAmlnhnumofSTubesperS.G.C-IC-2C-3NonePlugdclcctlvotubesendInspecteddltlonal2StubesIntlilsS.G.InspectalltubesInthisS.G.,plugde-fectivetubasandInspect2StubosIneacliotli<<rS.G.ProniptnotlllcatlontoNRCpursuanttosl>cclllcatlon6.0.lN/AC-IC-2C-3AllotherS.G.saroC-lSomeS.G.sC-2butnoadditionalS.G.araC-3AdilitionalS.G.IsC-3NonoPlllgdefectivetubesendInspectadditional4StubasIntlilsS.G.PerformactionforC-3resultofflrsl.sampleNonePerformactiontorC-2resultofsecondsaniploliispcctelltubesIncadiS.G.andplugdefectlvotubes.ProniptnotlllcatlontoNRCpursuanttospecifleetlon6.0.lC-1C-2C-3N/AN/AN/AN/AN/A'/APlugdefectivetiibcsPerformaciionforC-3resultoffirstsiWliplaN/AN/AN/AN/A.3N~V/heroNIsthonund)erof'stcamgen<<ratorslnthoUnit,andnlsthonumberofsteamgcncratorslnspcctcdduringenInspcctlon<DCDCD zs>.IProvideaconservativedemonstrationforPressurizerManwayNuts(NumberC-5364)andPressurizertlanwayStuds{NumberC-5365)thatthematerialwhentested.at40"Forlowerwillmeetorexceed25milslateralexpansion.LowerboundCVNcurvesforSA-193Gl'.8-7andSA-540Gr.B-24materialsareconsideredacceptablemethodsforextrapolatingtheCVNimpactdatafromthetesttem-peratureto40'F.Inaddition,demonstratethatthemetallurgical.conditionofthematerialsusedto'generatethelowerboundcurvesforSA-193Gr.B-7andSA-540Gr.B-24materialsareequivalentto'hemetallurgicalconditionoftheSL-2material.Thiscanbeac-complishedbyprovidingtheheattreatmentinforma'tionforthematerialusedtogeneratethelowerboundcurvesandforSL-2PressurizerHanwayStudsandNuts.Reply:A.CVNdataforSA-193Gr.B-7aregiveninTable251.g-l.Sincefullcurvesarenotrequiredforthismaterial,testingoverarangeoftemperaturesisnotnormallydone.Resultsfor.thepressurizermanwaynuts,codeno.C-5384,were:~Tem'F+10+10+10Ft-lbs5325'lIShear804060oilsLat.Ex.331827't10'F,twospecimensmetthemilslateralexpansionrequire-ment,25mils,whileone.didnot.Sincetwospecimensexhibitedover50%shear,thisisthecenterofthetemperaturerangeinwhichthetoughnessincreasesrapidlywithtemperature.Bytestingat-atemperature30'Fhigher.-40'F,C-Eexpectsthatall:specimenswouldexhibit75-100%shear.Fromthedatapre-sentedinTable251.8-1,C-Eexpectsinexcessof25milslateralexpansionat75Kshear.Heattreatmentforcodeno.5364isgivenbelow;heattreatmentdataforTable251.g-lisgiveninTable251.$-2.C-Efeelsthateachoftheseheattreatmentsproducesimilarmetallurgicalstructuresinthisalloy.AustenitizedTemperedStressRelieved1550'F,oilquenched1000F7hsprowl~d.k~)~4i4,5>gk~eeg.~-(.t*4'l~~~s~.i,.4~.l~7u'F.~l>>l<<4vifii  
2.Thetubesselectedforthesesamplesincludethetubesfromthoseareasofthetubesheetarraywheretubeswithimperfections werepreviously found.-Theinspections includethoseportionsofthetubeswhereimperfections werepreviously found.Theresultsofeachsampleinspection shallbeclassified intooneofthefollowing threecategories:
~'51.PThematerialssurvei1'lanceprogramusessix'specimencapsulesthatshouldcontainreactorvesselsteelspecimensofthelimitingbasematerial,weldmetalandheat-affected-zonematerial.TodemonstratecompliancewithAppendixf{,10CFRPart50,provideatablethatin-cludesthefollowinginformationforeachspecimen:l.Actualsurveillancematerial;2.Originofeachsurveillancespecimen(basemetal:heatnumber,plateidentificationnumber;weldmetal:weldwire,heatoffillermaterial,productionweldingconditions,andplatematerialusedtomakeweldspecimen);3.Testspecimenandtype;4.Chemicalcompositionofeachtestspecimen.Providethe.location,leadfactorandwithdrawaltimeforeachspeci-mencapsulecalculatedwithrespecttothevesselinnerwall;I0Reply:Table251.$-1lis'tstherequestedinformation.TheweldandHAZspecimensareproducedusingthesameweldprocedureasisusedtoweldthevessel.TheHAZspecimensare1/2weldmetal,and.1/2limitingbasemetal,plat'e,H-605-1.TheweldmetalspecimensareproducedbyweldingplatesM-605-2andM-605-3together.1CVlSio4  
Cate~os'"2 InsectionResults=Lessthan5&#xc3;ofthetotaltubesinspected aredegradedtubesandnoneoftheinspected tubes'redefective..
'ThesurveillancecapsulewithdrawalscheduleforSt.LucieUnit2wasestablishedinaccordancewith10CFR50,AppendixH,paragraphII.C.3(b).Thefirstcapsu'leisscheduledforwittidrawalwhentheencapsulatedbasemetal'aterialisconservativelyestimatedtoexhibitareferencetemperatureshiftof50'F.Thisispredictedtooccurafterapproximatelyoneeffectivefullpoweryear(EFPY)whichcorrespondsi:oaneutronfluenceofabout1.3x1018n/cm2(E>ltleV).Thesecondandthirdcapsulesarescheduledforwithdrawalafter12and24EFPY,respectively.Asignificantadvantagewillresultfromwithdrawalofthefirstsur-veillancecapsuleafter1EFPY,becauseitwillprovideanearlyindicationofthevalidityofthereactorvesselfluenceandreferencetemperatureshiftpredictions.usedtosetthevesseloperatinglimits.Actualdosimetryandshiftmeasurementswillthenbeavailableforprojectingradiationinducedchangesinthetougnnesspropertiesofthevesselbeltlinematerials.\ThiswithdrawalscheduleisconsistentwiththeobjectivesofASTHE185-79(StandardPracticef'rConductingSurveil'lanceTestsforLight-WaterCooledNuclearPowerReactorVessels)and10CFR50,AppendixH:-"...toverifythe'nitialpredictionsofthesurveillancematerial'responsetotheactualradi-\jationenvironment..."and"....todeterminetheconditionsunderwhichthevesselcanbeoperatedwithadequatemarginsofsafetyagainstfracture.
Oneormoretubes,butnotmoreChan1&#xc3;ofthe'otaltubesinspected aredefective, orbetween,SXand10&#xc3;ofthetotaltubesinspected aredegradedtubes.'"3Norethan10~ofthetotaltubesinspected aredegradedtubesormorethan1&#xc3;oftheinspected tubesaredefective.
0COHPTRNZTORY.XTQKSL-2-81-700Page1ofPMQRKSOuestion435-Completiono6Z;sysrznetricLoadingAnalya&ECCBPiping<<EE/8EECCSPip&a@Supports6Restraints-11/3ECKBHs-lJ,/BEReactoXnternols-12/81Fuel->f82guestion435mpreviouslycar%'ed-s"HeetingOpenResponse"duetot1:e.fec~,Chat&formationconcerningovalityttesMllssing.onI/3]/83.enovslitydiagramantheappropriatedescriptionwaspovidedCoHx'eVNerses>>~aestionf3fi-Ve"ificationoftnefunctionalcapabilityofC1sss263austeniticpipebendendelbows.additionalinfoaaatioaonfaultedallomblestressesforbolts.BeerevisedresponseCoQuestion,f41.1(b)ResponsetoQuestionNE.3.(b)hasbeenrevisedtoreflee"theadditionalin-fo~ation~~cautionfii2-Justificationofsufficien"nsrginagainstbucklingfailureforanycase~here~eexceed2/'3ofcriticalbucMXng,stressorvhreEbasco'sXncreaseFactorviolatestheconditionsoftheresponsetoQueaUon40>>l(a)(2).Questionpi9-providearesponse{cispartoflg'Qon1stores'tiononperiodicleaktestingofprim~rycoolantpressureisolationvalves.{{cautionASS"Cgtoarrangeea{ecting,todiscussthestatusofscLucreUntc2withreapecccoche8Gfg.ed~sterringevencrecentlyexperiencedacSONGS.i-""'"eventprnbabdldtyofoccurenceforasmallfeedvacerlinebreakshouldberevievedbytheNRCProba&i3,isticRevie~Group<oracceptance.Theoutcomeofthatrevuecanaffeceitefn8339/3O/81Peek.of9/21/8EHRCtorespondRoT.iceneee"NRC"toreviewresponsestoReactorSystemsbranchQuestion440.8E(Z)(tMsresponseisattachedtoQuestion8553.'  
Note:Inallinspections, previously degradedtubesmustexhibitsignificant (greaterthan10~)furtherwallpenetrations tobeincludedintheabovepercentage calculations.
3/44"11OCroa'-'  
\0 REACTORCOOLANTSYSTE."1S SUILLANC"P."U~ReMc'O'S Continued 4.4.6.3InsnecionFreouencies
-Theaboverequiredinservice inspections ofsteamgenerator
-uaessnailoeperformed atthefollowing frequencies:
a.b.cThefirstinservice inspection shallbeperformed after6ffectiveFullPowerMonthsbutwithin24calendermonthsofinitialcrit"kality.Subsequent inservice inspections shallbeperformed atintervals ofnotlesshan12normorethan24calendarmonthsafterthepreviousinspection.
Iftwoconsecuzive inspections following serviceunderAVTconditions, notincluding thepreservice inspection, resultinallinspection resultsfallingintotheC-1categoryorifwoconsecutive inspcionademons"atethatpreviously observeddegradation hasnotcontinued andnoadditional degradation hasoc"urred, theinspection intervalmaybeextendedtoamaximumofonceper40months.Ifthe.resultsoftheinservice inspecionofasteamgenerator conducted inaccordance wihTable4.4"2at40monthintervals fallintoCategoryC-3,theinspection
,requency shallbeincreased toatleast.onceper20months.Theincreaseininspection frequency shallapplyuntilthesubsequent inspections satisfyhecri.eriaofSpecification 4.4.6.3.a;theintervalmaythenbeextendedtoamaximumofonceper40months.lAdditional, unscheduled inservice inspections shallbeperformed oneachsearngenerator inaccordance wi.hthefirssampleinspecionspecified inTable4.4-2duringtheshutdownsubsequent toanyofthefollowing cond-itions:
1.Primary"to-secondary tubesleaks(notincluding leaksoriginating fromtube-to"tube sheetwelds)inexcessof.helimitsofSpecification 3.4.7.2.2.3.Aseismicoccurrence greaterthantheOperating BasisEarthquake.
rAloss-of-coolant accidentrequiring actuation oftheengineered safeguards.
4.Amainsteamlineorfeedwater linebreak.3/44-12  
-t00 REACTORCGOLAHTSYSTEM0dSURYEILLAHCE REOUIREHEHTS Continued 4.4.6.4Acceptance Criteriaa.Asusedin'hisSpecification 2.Imoerfection meansanexception to'hedimensions, finishorcontourofatvbefromthatrequiredbyfabrication drawingsorspecifications.
Eddy-current testingindications below20~ofthenominaltubewallthickness, ifdetectable, maybeconsidered asimperfections.
~0iI-Idgeneralcorrosion occurring oneitherinsideoroutsideofatube.3.5.'.8.~PPthanorequalto20&#xc3;ofthenominalwallthickness causedbydegradation.
K~diuPaffectedorremovedbydegradation.
Oefectmeansanimperfection ofsuchseveritythatitexceedstheplugginglimit.Atubecontaining adefectisdefective.
~P1ILIthetubesnailberemovedfromserviceandisequalto(40)~"ofthenominaltvbewallthickness.
'nserviceable describes thecondition ofatubeifit'leaksorcontainsadefectlargeenoughtoaffectitsstructurai integrity intheeventofan,Operating 8asisEarthquake, aloss-of-.
coolantaccident, orasteamlineorfeedwater linebreakasspecified in4.4.6.3.c, above.ITubeInspection meansaninspection ofthesteamgenerator tubefromthepointofentry(hotlegside)completely aroundthe'-bendtothetopsvpportofthecoldleg.Preservice Inspection mieansaninspection ofthefulllengthofeachtuneineacns-earngenerator performed byeddycvrrenttechniques priortoservicetoestablish abaselineValuetobe-determined inaccordance withtherecommendations ofRegulatory Guide1.121,Augvst.1976.SF~L.~c.,g3/44"13OCT01loeO It REACTORCOOLANTS'(ST="HD~~EILi&HCcREOUIREH""!ITS (CcntinuedI b.econdition ofthetubing.Thisinspecionshallbeperformed fl7.4priortoinitialPOWEROPERATION usingtheequipment andtechniques expec-edtobeusedduringsuosequent inservice inspections.
Thesteamgenerator shallbedetermined OPERABL~aftercompleting thecorrspondingactions(plugalltubesexceeding theplugginglimitandalltubescontaining through"eall cracks)requiredbyTable4.4"2.4.4.6.5Renorte-0b.Following eachinservice inspection ofsteamgenerator tubes,thenumberoftubespluggedineachsteamgenera-'or shallbreportedtotheCormnission within15days..Thecompleteresultsofthesteamgenerator tubeinservice inspection shallbesubmitted totheCommission inaSpecialReportpur'suant toSoecification 6.9.2~sithin12monthsfollowing com-pletionoftheinspection.
ThisSpecialReportshallinclude:1..Numberandextentoftubesinspected.
2.3.Locationandpercentofeall-thickness penetration foreachindication ofanimperfecion.eEdentificationoftubesplugged.cResultsofsteamgenerator tubeinspecionswhichfallintoCategoryC"3andrequirepromptnotification ofheCommission shallbereportedpursuanttoSoeciication6.9.1priortoresumption ofplantoperation.
The~!rittenfolio~upof4hisreportshallprovideadescription ofinvestigations conduc4ed todetermine causeofthetubedegradation andcorrective measurestakentopreventrecurrence.
~'l44"14 00 TABLE4;4-]lglNIiYiUM NUMBEROFSTEAI'4GEQEQATOPS TOQE.INSPECTED DURINGINSERVICE iflSPPCT)ON 0Prescrvlce Inspection NoYesNo.ofSteamGenerators perUnitTwoThreeFourTwoThreeFourFirstln-rvicaInspection Second5Subsequent Inscrvlce Inspections AllOne>OneTwoOna2TwoOne3TableNota'.Ion:
1.Theinscrvica Inspection maybelimitedtoonesteamgenerator onarotatingscheduleencompassing 3N'IolthetubesIwhcreNisthcnun>bcrofstcamgenerators Intheplan!)IftheresultsofthefirstorpreviousInspections indicatethatallstcamgenerators areperforming inalikemanner.Notethatundersomecircumstances, theoperating conditions Inoncormorestcamgenerators maybetoundtobemorascvcrethanthoseinotherstcamgenerators.
Undersucltcircum.stancestiresanrplesequencesltallbemodifiedtoInspectthemostscvcreconditions.
2.Titcotl>crsteamgenerator notinspected duringthefirstinscrvice Inspection shallbeinspected.
Thethirdandsubsequent:
inspections shouldfollowtl>cInstructions described in1above.3.Eacl)oftheothertwosteamgcncrators notinspected duringthefirstinservlce Inspections shallbaInspected duringthesecondandthirdinspections.
Thafourthandsubsequent inspections shallfoltowtlteinstructions described in1above.~CDnI 0
TABLE4.$-2n)STSAMPLEINSPECYfON STEAMGENERATOR TUB'EINSPECTION 2NDSAMPLEINSPECTION 3RDSAMPLEINSPECTION SampleSleeAeiultActionRmtufrcdResuitActionflcqulrcd ResultActionAcquiredAmlnhnumofSTubesperS.G.C-IC-2C-3NonePlugdclcctlvo tubesendInspecteddltlonal 2StubesIntlilsS.G.InspectalltubesInthisS.G.,plugde-fectivetubasandInspect2StubosIneacliotli<<rS.G.Proniptnotlllcatlon toNRCpursuanttosl>cclllcatlon 6.0.lN/AC-IC-2C-3AllotherS.G.saroC-lSomeS.G.sC-2butnoadditional S.G.araC-3Adilitional S.G.IsC-3NonoPlllgdefective tubesendInspectadditional 4StubasIntlilsS.G.PerformactionforC-3resultofflrsl.sampleNonePerformactiontorC-2resultofsecondsaniploliispcctelltubesIncadiS.G.andplugdefectlvo tubes.Proniptnotlllcatlon toNRCpursuanttospecifleetlon6.0.lC-1C-2C-3N/AN/AN/AN/AN/A'/APlugdefective tiibcsPerformaciionforC-3resultoffirstsiWliplaN/AN/AN/AN/A.3N~V/heroNIsthonund)erof'stcamgen<<rators lnthoUnit,andnlsthonumberofsteamgcncrators lnspcctcd duringenInspcctlon
<DCDCD zs>.IProvideaconservative demonstration forPressurizer ManwayNuts(NumberC-5364)andPressurizer tlanwayStuds{NumberC-5365)thatthematerialwhentested.at40"Forlowerwillmeetorexceed25milslateralexpansion.
LowerboundCVNcurvesforSA-193Gl'.8-7andSA-540Gr.B-24materials areconsidered acceptable methodsforextrapolating theCVNimpactdatafromthetesttem-peratureto40'F.Inaddition, demonstrate thatthemetallurgical
.condition ofthematerials usedto'generate thelowerboundcurvesforSA-193Gr.B-7andSA-540Gr.B-24materials areequivalent to'hemetallurgical condition oftheSL-2material.
Thiscanbeac-complished byproviding theheattreatment informa'tion forthematerialusedtogeneratethelowerboundcurvesandforSL-2Pressurizer HanwayStudsandNuts.Reply:A.CVNdataforSA-193Gr.B-7aregiveninTable251.g-l.Sincefullcurvesarenotrequiredforthismaterial, testingoverarangeoftemperatures isnotnormallydone.Resultsfor.thepressurizer manwaynuts,codeno.C-5384,were:~Tem'F+10+10+10Ft-lbs5325'lIShear804060oilsLat.Ex.331827't10'F,twospecimens metthemilslateralexpansion require-ment,25mils,whileone.didnot.Sincetwospecimens exhibited over50%shear,thisisthecenterofthetemperature rangeinwhichthetoughness increases rapidlywithtemperature.
Bytestingat-atemperature 30'Fhigher.-40'F,C-Eexpectsthatall:specimens wouldexhibit75-100%shear.Fromthedatapre-sentedinTable251.8-1,C-Eexpectsinexcessof25milslateralexpansion at75Kshear.Heattreatment forcodeno.5364isgivenbelow;heattreatment dataforTable251.g-lisgiveninTable251.$-2.C-Efeelsthateachoftheseheattreatments producesimilarmetallurgical structures inthisalloy.AustenitizedTemperedStressRelieved1550'F,oilquenched1000F7hsprowl~d.k~)~4i4,5>gk~eeg.~-(.t*4'l~~~s~.i,.4~.l~7u'F.~l>>l<<4vifii  
~'51.PThematerials survei1'lance programusessix'specimen capsulesthatshouldcontainreactorvesselsteelspecimens ofthelimitingbasematerial, weldmetalandheat-affected-zone material.
Todemonstrate compliance withAppendixf{,10CFRPart50,provideatablethatin-cludesthefollowing information foreachspecimen:
l.Actualsurveillance material; 2.Originofeachsurveillance specimen(basemetal:heatnumber,plateidentification number;weldmetal:weldwire,heatoffillermaterial, production weldingconditions, andplatematerialusedtomakeweldspecimen);
3.Testspecimenandtype;4.Chemicalcomposition ofeachtestspecimen.
Providethe.location, leadfactorandwithdrawal timeforeachspeci-mencapsulecalculated withrespecttothevesselinnerwall;I0Reply:Table251.$-1lis'tstherequested information.
TheweldandHAZspecimens areproducedusingthesameweldprocedure asisusedtoweldthevessel.TheHAZspecimens are1/2weldmetal,and.1/2limitingbasemetal,plat'e, H-605-1.Theweldmetalspecimens areproducedbyweldingplatesM-605-2andM-605-3together.
1CVlSio4  
'Thesurveillance capsulewithdrawal scheduleforSt.LucieUnit2wasestablished inaccordance with10CFR50,AppendixH,paragraph II.C.3(b).
Thefirstcapsu'leisscheduled forwittidrawal whentheencapsulated basemetal'aterialisconservatively estimated toexhibitareference temperature shiftof50'F.Thisispredicted tooccurafterapproximately oneeffective fullpoweryear(EFPY)whichcorresponds i:oaneutronfluenceofabout1.3x1018n/cm2 (E>ltleV).
Thesecondandthirdcapsulesarescheduled forwithdrawal after12and24EFPY,respectively.
Asignificant advantage willresultfromwithdrawal ofthefirstsur-veillance capsuleafter1EFPY,becauseitwillprovideanearlyindication ofthevalidityofthereactorvesselfluenceandreference temperature shiftpredictions.
usedtosetthevesseloperating limits.Actualdosimetry andshiftmeasurements willthenbeavailable forprojecting radiation inducedchangesinthetougnness properties ofthevesselbeltlinematerials.
\Thiswithdrawal scheduleisconsistent withtheobjectives ofASTHE185-79(Standard Practicef'rConducting Surveil'lance TestsforLight-Water CooledNuclearPowerReactorVessels)and10CFR50,AppendixH:-"...toverifythe'nitialpredictions ofthesurveillancematerial'response totheactualradi-\jationenvironment..."
and"....todetermine theconditions underwhichthevesselcanbeoperatedwithadequatemarginsofsafetyagainstfracture.
0COHPTRNZTORY.XTQKSL-2-81-700 Page1ofPMQRKSOuestion435-Completion o6Z;sysrznetric LoadingAnalya&ECCBPiping<<EE/8EECCSPip&a@Supports6Restraints
-11/3ECKBHs-lJ,/BEReactoXnternols
-12/81Fuel->f82guestion435mpreviously car%'ed-s"HeetingOpenResponse" duetot1:e.fec~,
Chat&formation concerning ovalityttesMllssing.on I/3]/83.enovslitydiagramantheappropriate description waspovidedCoHx'eVNerses>>~aestionf3fi-Ve"ification oftnefunctional capability ofC1sss263austenitic pipebendendelbows.additional infoaaatioa onfaultedallomblestressesforbolts.BeerevisedresponseCoQuestion, f41.1(b)ResponsetoQuestionNE.3.(b)hasbeenrevisedtoreflee"theadditional in-fo~ation~~cautionfii2-Justification ofsufficien" nsrginagainstbucklingfailureforanycase~here~eexceed2/'3ofcriticalbucMXng,stressorvhreEbasco'sXncreaseFactorviolatestheconditions oftheresponsetoQueaUon40>>l(a)(2)
.Questionpi9-providearesponse{cispartoflg'Qon1stores'tion onperiodicleaktestingofprim~rycoolantpressureisolation valves.{{caution ASS"Cgtoarrangeea{ecting, todiscussthestatusofscLucreUntc2withreapecccoche8Gfg.ed~ster ringevencrecentlyexperienced acSONGS.i-""'"eventprnbabdldty ofoccurence forasmallfeedvacer linebreakshouldberevievedbytheNRCProba&i3,istic Revie~Group<oracceptance.
Theoutcomeofthatrevuecanaffeceitefn8339/3O/81Peek.of9/21/8EHRCtorespondRoT.iceneee "NRC"toreviewresponses toReactorSystemsbranchQuestion440.8E(Z)
(tMsresponseisattachedtoQuestion8553.'  


COB"1PRAZOR'ST'ZlMSTRZSPNiSEDATETQNRCPageZoiREMI'KKSI~~Oostion956-XRBullets79-02-Pxovidedesigncz'itexiaan6sarpleCG1cl1LatiGEL,+caption841.L(c-CompareTable'.9-5withthel.eadingtaMesofSection,3.8.3aa4identffynayareaewherediapezitybetvaenAXSC.andASK'.Oupportrequfrerentaateeigaificant.81'25/81PLelhaiasry<<nbaOndeaf,'gpgivettoBooBoaaekon?jpiIII4lVIIvI~I4'jI~1I4)4I4.>I4I;J$..)~\ctiteriajBL,~g~I'I,~12:!4~&.~VV8::IVV~I4I)1I-I  
COB"1PRAZOR'ST'ZlMSTRZSPNiSEDATETQNRCPageZoiREMI'KKSI~~Oostion956-XRBullets79-02-Pxovidedesigncz'itexia an6sarpleCG1cl1LatiGEL,
+caption841.L(c-CompareTable'.9-5withthel.eadingtaMesofSection,3.8.3aa4identffynayareaewherediapezity betvaenAXSC.andASK'.Oupportrequfrerenta ateeigaificant.81'25/81PLelhaiasry
<<nbaOndeaf,'gpgivettoBooBoaaekon?jpiIII4lVIIvI~I4'jI~1I4)4I4.>I4I;J$..)~\ctiteriajBL,~g~I'I,~12:!4~&.~VV8::IVV~I4I)1I-I  


Question41.1JustifytheuseofSRSSforcombinationofSSPlandSSFOintheflu)tedCanditianeb)Providethefaultedal3,ozablostressesforhalts.CompareTable3.9-5withtheloadingtablesofSectian3.8.3.Definet:hematerialsforvhichalla~sblesaregiveninT'ablesofSection3.8.3.Resoonsea)WherethefundamentalfrequencyofthepipingsystemisbeyondtheresonantretfonofthesupportlnSstructu-.ethaSSEwillbccombinedfnt'efolloufnSmanner:SSEA'K'~+SSEhMherethepipingfundamentalfrequencyisnotbeyondthestructuralresonantregiontheSSEvillbecombinedinthefo11cn"bingmanner:SSE=lSSEXt+ISSSDl>)Faultedallo~13.esforboltsateestablishedas1.6XAXSl:allo>>wbles(noanal).HatcrfclA-925AISCAllowableTensileStress40KsiAllo@abletensilestressPorFaultedCondition64Ksi,gOf.Ult93JZjte53K(gll1lldie}61K(1l(818dias)Requirementsforcomponentsupports'axeaddressedinSection3.8.3.AnyareasvheredisparitybetvcenAXSCandAS>$supportrequirementsissigniHcsntvillbeMsntified.This~illbsperformedsotbatgoverningloadingcasesaddressorenvelopetheloadingcasesgiveninTable3.9-5.A11ovamestressesarebasedonSection1.5ofAISCvhichinturnarebasedonASTHmaterialvalues.AISCfactorsofsafetyvaryfrom1.67ta2.0onyieldstrength.i,~edevelopmentoffactorsofsafetyisdocumentedintheCmrmentarytotheA'LSCCode; sl 420e3tLualificationofContro~lSstemsIEInformationNotice79-22OperatingreactorlicenseeswereinformedbyIEInformationNotice79-22,issuedSeptember19,1979,thatcertainnon-safetygradeorcontrolequipment,ifsubjectedtotheadverseenvironmentof.a~highenergylinebreak,couldimpactthesafetyanalysesandtheadequacyoftheprotectionfunctionsperformedbythesafetygradeequipment.IntheattachmenttothisEnclosurethereisacopyofIEInformationNotice79-22,andreprintedcopiesofanAugust30,1979WestinghouseletterandaSeptember10,1979PublicServiceElectricandGasCompanyletterwhichaddressesthismatter.OperatingReactorlicenseesconductedreviewstodeterminewhethersuchproblemscouldexistatoperatingfacilities.Weareconcerned'thatasimilarpotentialmayexistatlightwaterfacilitiesnowunderconstruction.Youare,therefore,requestedtoperformareviewtodeterminewhat,ifany,designchangesoroperatoractionswouldbenecessarytoassurethathighenergylinebreakswill.notcausecontrolsystemfailurestocomplicatetheeventbeyondyourFSARanalysis.ProvidetheresultsofyourreviewsincludingallidentifiedproblemsandthemannerinwhichyouhaveresolvedthemtoNRPbyJuly6,1981.Thespecific"scenarios"discussedintheabovereferencedWestinghouseletteraretobeconsideredasexamplesofthekindsofinteractionswhichmightoccur.Yourreviewshouldincludethosescenarios,whereapplicable,butshouldnotnecessarilybelimitedtothem.ApplicantswithotherLHRdesignsshouldconsideranalogousinter-actionsasrelevanttotheirdesigns.Re~sense:AreviewofpotentialcontrolsysteminteractionsduringhighenergypipebreakshasbeenconductedforSt.LucieUnit2.ThereviewisbasedontheCombustionEngineering(C-E)genericrevieweffort.ThereviewconsideredboththespecificsystemslistedinIEInforma-tionNotice79-22andothernon-safetysystemswhichcouldpossiblyinteractwithsafetygradesystems.
Question41.1JustifytheuseofSRSSforcombination ofSSPlandSSFOintheflu)tedCanditiane b)Providethefaultedal3,ozablo stressesforhalts.CompareTable3.9-5withtheloadingtablesofSectian3.8.3.Definet:hematerials forvhichalla~sbles aregiveninT'ablesofSection3.8.3.Resoonsea)Wherethefundamental frequency ofthepipingsystemisbeyondtheresonantretfonofthesupportlnS structu-.e thaSSEwillbccombinedfnt'efolloufnS manner:SSEA'K'~+SSEh Mherethepipingfundamental frequency isnotbeyondthestructural resonantregiontheSSEvillbecombinedinthefo11cn"bing manner:SSE=lSSEXt+ISSSDl>)Faultedallo~13.es forboltsateestablished as1.6XAXSl:allo>>wbles (noanal).HatcrfclA-925AISCAllowable TensileStress40KsiAllo@able tensilestressPorFaultedCondition 64Ksi,gOf.Ult93JZjte 53K(gll1lldie}61K(1l(818dias)Requirements forcomponent supports'axe addressed inSection3.8.3.Anyareasvheredisparity betvcenAXSCandAS>$supportrequirements issigniHcsnt villbeMsntified.
I, t.Ppciy.Unit2(Ihstrfment~ationdontrolSays~krmnch+uestions)Despitethelowprobabilityofahighenergylinebreakagenericreviewhasbeenperformedofthirteencontrolsystemsinvolving'fouraccidentsscenarioswhichencompassthespectrumofpostulatedhighenergybylinebreaks.Amatrixwasestablishedofthehighenergylinebreaksandcontrolfunctions(Attachment1).Inthetimeavai'lable,thematrixwasreducedtoincludeonlythosesystemsandeventswhichrequir'efurtherevaluation.Ageneraldescriptionoftheprocedureusedtoreducethismatrixislistedbelow:I.AninitialreviewofeachpostulatedControlFunctionfailureforeachpipebreakwascompletedandservedasthebasisforconsideration.Hhereapostulatedfailurecouldpotentiallyincreasetheseverityofahighenergypipe,break,thefollowingcriteriawereemployedtoresolvetheconcern:IsthepostulatedControlFunctionfailuremodecredible72.IstheControlFunctionEquipment(Sensor,Cable,etc.)qualifiedtooperateproperlyinthepostulatedenviron-ments3.MherethepostulatedControlFunctionfailureiscredible,coulditsimpactpotentiallyaffecttheconclusionspre-sentedintheSAR?Considerationssuch.asMaximumControlFunctioncapabilities,anddelayed,butproperoperatoractionwereemployedinthiseffort.Inseveralcases,mostnotiblythePORVfailureintheopenposition,nospecificfailuremechanismhasbeenidentified.Theonlymannerforsuchafailuretooccurwouldbeforpo~ertobeinadvertentlyappliedtothevalvesolenoidandnotberemoved.Partoftheshorttermrecomendationsistoevaluatewhetherornotafailuremechanismofthistypeiscredible.Thepotentialadverseimpactofhighenergypipebreaksonreactorcoolantpumpswasconsidered.Boththeseizedshaftandthesimultanteousthreeorfourpump'lossoffIowweree1iminatedfromconsTderat>onbasedondudgementthatthesefailuresarenotcon-sideredcrediblewithinthetimeframelimitedbyoperatoraction'(30minutes)duetoenvironmentalimpactalone.Theimpactofotherpotential'lossofflowevents(e.g.,oneortwopumplossofflow)during.highenergypipebreakswasreviewedanditwasjudgedthattheresultingrapidreactortripwassufficienttoensurethattheconclusionsoftheSARwouldnotchange.
This~illbsperformed sotbatgoverning loadingcasesaddressorenvelopetheloadingcasesgiveninTable3.9-5.A11ovamestressesarebasedonSection1.5ofAISCvhichinturnarebasedonASTHmaterialvalues.AISCfactorsofsafetyvaryfrom1.67ta2.0onyieldstrength.
0 ucigUnjt2(&54rGlne~~nContAhysChmWrw5&~estions)Attachment2detailsspecificevent/interactionsscenariosanddefinesspecificshorttermrecoranendations~hichhavebeenestablished,on.agenericbasis,tominimizetheprobabilityandimpactofthepostulatedevents.Thisattachmentalsodiscussespotentiallongtermalternativeswhichhavebeenidentifiedonagenericbasis.TheresultsofareviewoftheC-EgenericevaluationappliedtotheSt.LucieUnit2designarealsoprovidedinAttachment2.Theseresultsarediscussedafterthegenericshortandlongtermrecoomendationsforeachpostulatedeventaddressed.8asedontheseresultstheitemsshownonthegenericmatrix(Attachment1)havebeeneliminated.ThereforenodesignchangesarenecessarytoassurethathighenergylinebreaksdonotcausecontrolsystemfailurestocomplicateeventsbeyondtheFSARanalysisforSt.LucieUnit2.  
i,~edevelopment offactorsofsafetyisdocumented intheCmrmentary totheA'LSCCode; sl 420e3tLualification ofContro~lS stemsIEInformation Notice79-22Operating reactorlicensees wereinformedbyIEInformation Notice79-22,issuedSeptember 19,1979,thatcertainnon-safety gradeorcontrolequipment, ifsubjected totheadverseenvironment of.a~highenergylinebreak,couldimpactthesafetyanalysesandtheadequacyoftheprotection functions performed bythesafetygradeequipment.
Intheattachment tothisEnclosure thereisacopyofIEInformation Notice79-22,andreprinted copiesofanAugust30,1979Westinghouse letterandaSeptember 10,1979PublicServiceElectricandGasCompanyletterwhichaddresses thismatter.Operating Reactorlicensees conducted reviewstodetermine whethersuchproblemscouldexistatoperating facilities.
Weareconcerned'that asimilarpotential mayexistatlightwaterfacilities nowunderconstruction.
Youare,therefore, requested toperformareviewtodetermine what,ifany,designchangesoroperatoractionswouldbenecessary toassurethathighenergylinebreakswill.notcausecontrolsystemfailurestocomplicate theeventbeyondyourFSARanalysis.
Providetheresultsofyourreviewsincluding allidentified problemsandthemannerinwhichyouhaveresolvedthemtoNRPbyJuly6,1981.Thespecific"scenarios" discussed intheabovereferenced Westinghouse letteraretobeconsidered asexamplesofthekindsofinteractions whichmightoccur.Yourreviewshouldincludethosescenarios, whereapplicable, butshouldnotnecessarily belimitedtothem.Applicants withotherLHRdesignsshouldconsideranalogous inter-actionsasrelevanttotheirdesigns.Re~sense:Areviewofpotential controlsysteminteractions duringhighenergypipebreakshasbeenconducted forSt.LucieUnit2.ThereviewisbasedontheCombustion Engineering (C-E)genericrevieweffort.Thereviewconsidered boththespecificsystemslistedinIEInforma-tionNotice79-22andothernon-safety systemswhichcouldpossiblyinteractwithsafetygradesystems.
I, t.Ppciy.Unit2(Ihstrfment~atio ndontrolSays~krmnch+uestions)
Despitethelowprobability ofahighenergylinebreakagenericreviewhasbeenperformed ofthirteencontrolsystemsinvolving'four accidents scenarios whichencompass thespectrumofpostulated highenergybylinebreaks.Amatrixwasestablished ofthehighenergylinebreaksandcontrolfunctions (Attachment 1).Inthetimeavai'lable, thematrixwasreducedtoincludeonlythosesystemsandeventswhichrequir'efurtherevaluation.
Ageneraldescription oftheprocedure usedtoreducethismatrixislistedbelow:I.Aninitialreviewofeachpostulated ControlFunctionfailureforeachpipebreakwascompleted andservedasthebasisforconsideration.
Hhereapostulated failurecouldpotentially increasetheseverityofahighenergypipe,break,thefollowing criteriawereemployedtoresolvetheconcern:Isthepostulated ControlFunctionfailuremodecredible7 2.IstheControlFunctionEquipment (Sensor,Cable,etc.)qualified tooperateproperlyinthepostulated environ-ments3.Mherethepostulated ControlFunctionfailureiscredible, coulditsimpactpotentially affecttheconclusions pre-sentedintheSAR?Considerations such.asMaximumControlFunctioncapabilities, anddelayed,butproperoperatoractionwereemployedinthiseffort.Inseveralcases,mostnotiblythePORVfailureintheopenposition, nospecificfailuremechanism hasbeenidentified.
Theonlymannerforsuchafailuretooccurwouldbeforpo~ertobeinadvertently appliedtothevalvesolenoidandnotberemoved.Partoftheshorttermrecomendations istoevaluatewhetherornotafailuremechanism ofthistypeiscredible.
Thepotential adverseimpactofhighenergypipebreaksonreactorcoolantpumpswasconsidered.
Boththeseizedshaftandthesimultanteous threeorfourpump'lossoffIowweree1iminated fromconsTderat>on basedondudgement thatthesefailuresarenotcon-sideredcrediblewithinthetimeframelimitedbyoperatoraction'(30minutes)duetoenvironmental impactalone.Theimpactofotherpotential
'lossofflowevents(e.g.,oneortwopumplossofflow)during.highenergypipebreakswasreviewedanditwasjudgedthattheresulting rapidreactortripwassufficient toensurethattheconclusions oftheSARwouldnotchange.
0 ucigUnjt2(&54rGlne~~n ContAhysChmWrw5&~estions)
Attachment 2detailsspecificevent/interactions scenarios anddefinesspecificshorttermrecoranendations
~hichhavebeenestablished, on.agenericbasis,tominimizetheprobability andimpactofthepostulated events.Thisattachment alsodiscusses potential longtermalternatives whichhavebeenidentified onagenericbasis.TheresultsofareviewoftheC-Egenericevaluation appliedtotheSt.LucieUnit2designarealsoprovidedinAttachment 2.Theseresultsarediscussed afterthegenericshortandlongtermrecoomendations foreachpostulated eventaddressed.
8asedontheseresultstheitemsshownonthegenericmatrix(Attachment 1)havebeeneliminated.
Therefore nodesignchangesarenecessary toassurethathighenergylinebreaksdonotcausecontrolsystemfailurestocomplicate eventsbeyondtheFSARanalysisforSt.LucieUnit2.  


CONTROLFUNCTIONSANDEVENTSControlFunctionsConsideredPressurizerLevelPressurizerPressurePowerOperatedReliefValves8BlockValves;ReliefandClosureReactorCoolantFlow(RCPs)RodPosition(RRS,CEINCS)BoronConcentration(BoronControlSystem)FeedwaterFlow(FHRS)SteamFlowtoTurbine(TGCS)SteamBy-PasstoCondenser(SBCS)SteamDumpstoAtmosphereUpstreamofHSIVsSteamDumpstoAtmosphereDownstreamofHSIVsSteamGeneratorBlowdown(SGBS)SafetyInjectionTankDepressurization/IsolationThelistedfunctionswereevaluatedin'conjunctionwiththefollowingevents:SmallSteamlineRuptureInsideContainmentSmallSteamlineRuptureOutsideContainmentLargeSteamlineRuptureInsideContainmentLargeSteamlineRuptureOutsideContainmentSmallFeedlineRuptureInsideContainmentSmallFeedlineRuptureOutsideContainmentLargeFeedlineRuptureInsideContainmentLargeFeedlineRuptureOutsideContainment'mallLOCAInsideContainmentSmallLOCAOutsideContainmentLargeLOCARodEjectionICJUL24SN 00  
CONTROLFUNCTIONS ANDEVENTSControlFunctions Considered Pressurizer LevelPressurizer PressurePowerOperatedReliefValves8BlockValves;ReliefandClosureReactorCoolantFlow(RCPs)RodPosition(RRS,CEINCS)BoronConcentration (BoronControlSystem)Feedwater Flow(FHRS)SteamFlowtoTurbine(TGCS)SteamBy-PasstoCondenser (SBCS)SteamDumpstoAtmosphere UpstreamofHSIVsSteamDumpstoAtmosphere Downstream ofHSIVsSteamGenerator Blowdown(SGBS)SafetyInjection TankDepressurization/Isolation Thelistedfunctions wereevaluated in'conjunction withthefollowing events:SmallSteamline RuptureInsideContainment SmallSteamline RuptureOutsideContainment LargeSteamline RuptureInsideContainment LargeSteamline RuptureOutsideContainment SmallFeedlineRuptureInsideContainment SmallFeedlineRuptureOutsideContainment LargeFeedlineRuptureInsideContainment LargeFeedlineRuptureOutsideContainment'mall LOCAInsideContainment SmallLOCAOutsideContainment LargeLOCARodEjectionICJUL24SN 00  
~~'~~~~~I~~.~C~~~~C~~IsI~Ie~~~~o~~~~~~~  
~~'~~~~~I~~.~C~~~~C~~IsI~Ie~~~~o~~~~~~~  


ATTACHMENT2DESCRIPTIONSOFREMAININGEVENTSANDCONTROLFUNCTIONSI.AssessmentofControlSystemFailuresonSteamLineBreakEventgg~~~A.SequenceofEventsforGenericSARSteamLineBreakatFullPowerinsideorOutsideContainmentDouble-endedsteamlinebreakoccurs2.Reactortriponlowsteamgeneratorpressure3.HSISinitiatestoisolatethesteamgenerators4.RCStemperaturedecreasesduetoexcessivesteamremoval5.Totalreactivityincreasesduetomoderatorcooldowneffect6.HSIVsclose7.Pressurizerempties8.LowpressurizerpressureinitiatesSIAS9.MFIYsclose10.Safetyinjectionboronreachescore11.Affectedsteamgeneratorempties,terminatingcooldowneffect,thetransientreactivityreachespeakanddecreasesgradually'duetoboroninjection12.*Limitedornopost-tripreturn-to-power13.NofuelinDNBB.SteamLineBreakWithPORYControlSstemFailure1.SignificantInteractionEffects:a.IncreasedContainmentPressureb.AstuckopenPORVincombinationwithasteamlinebreakhasnotbeenanalyzed.2.Assumptionsa.Steamlinebreak(largebreakinsidecontainmentforItem1.Aabove,anysizeorlocationforItem1.Babove).b.InadvertentlyPORVsopenandremainopenc.PORYBlockvalvealsofailstoclosewhenrequiredd.Initialcondition:fullpower3.ItmustbeemphasizedthatnomechanismhasbeenidentifiedforthePORVtoinadvertentlyopenandremainopensinceitssignaltoopencomesfromsafetygradeequipmentandtheGarrettvalvesandsolenoidsarequalifiedforanenvironmentinexcessof400'F.  
ATTACHMENT 2DESCRIPTIONS OFREMAINING EVENTSANDCONTROLFUNCTIONS I.Assessment ofControlSystemFailuresonSteamLineBreakEventgg~~~A.SequenceofEventsforGenericSARSteamLineBreakatFullPowerinsideorOutsideContainment Double-ended steamlinebreakoccurs2.Reactortriponlowsteamgenerator pressure3.HSISinitiates toisolatethesteamgenerators 4.RCStemperature decreases duetoexcessive steamremoval5.Totalreactivity increases duetomoderator cooldowneffect6.HSIVsclose7.Pressurizer empties8.Lowpressurizer pressureinitiates SIAS9.MFIYsclose10.Safetyinjection boronreachescore11.Affectedsteamgenerator empties,terminating cooldowneffect,thetransient reactivity reachespeakanddecreases gradually
'duetoboroninjection 12.*Limitedornopost-trip return-to-power 13.NofuelinDNBB.SteamLineBreakWithPORYControlSstemFailure1.Significant Interaction Effects:a.Increased Containment Pressureb.AstuckopenPORVincombination withasteamlinebreakhasnotbeenanalyzed.
2.Assumptions a.Steamlinebreak(largebreakinsidecontainment forItem1.Aabove,anysizeorlocationforItem1.Babove).b.Inadvertently PORVsopenandremainopenc.PORYBlockvalvealsofailstoclosewhenrequiredd.Initialcondition:
fullpower3.Itmustbeemphasized thatnomechanism hasbeenidentified forthePORVtoinadvertently openandremainopensinceitssignaltoopencomesfromsafetygradeequipment andtheGarrettvalvesandsolenoids arequalified foranenvironment inexcessof400'F.  


4.SequenceofEvents5:;fa.Largesteamlinebreakoccursinsidecontainment.,gg~~~b.Reactortripoccursonsteamgeneratorlowpressurewithin$98i5seconds.c.ShouldtheadverseenvironmentcausethePORVto'nadvertentlyopenandthenremainopen,thefollowingstepsmayalsooccur.Itshouldbenotedthatnomeachnismhasbeenidenti'fiedwhichwo'uldcausethistooccur.d.SteamfromPORVfillsquenchtankandburstsrupturediskreleasingsteamtothecontainmentandcuasingadditionalcontainmentpressurization.e.MassremovalviaPORVcausesadditionalvoidformationwithinthereactorcoolantsystem.5.Actionsa.Shortterm:l.UtilitiescontinuetoinvestigatequalificationlevelsandlocationofpowercablestoPORYsandPORYblockvalvestoassesscredibilityofthisfailuremode..2.Ensureoper'atorstakeactiontoshutPORVandPORVblockvalveifPORVfailsopen.b.Longterm:1.CompleteassessmentofPORVsandblockvalves.Dependentontheresultsofthatassessmenta.upgradeenvironmentalqualificationlevelofPORVsandblockvalves;orb.performdetailedanalysisofeventifrequired.6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch,issafety-gradeandpost-LOCAqualified.MedonotbelievethisitemisapplicabletoSt.LucieUnit2.C.SteamLineBreakHithFeedwaterFlowControlSstemFailure1;SignificantInteractionEffectsa.Steamgeneratorfilling-causingpotential,pipingstructuralproblems2.Assumptionsa.Smallsteamlinebreakinsidecontainmentthatdoesnotcauseanirwediatereactortrip 0
4.SequenceofEvents5:;fa.Largesteamlinebreakoccursinsidecontainment.,
b.Feedwaterflowexceedssteamflowduetofailureofsteamgeneratorlevelinstrument,indicatingflowc.SARconservatismInooperatoractionwithin30minutes'.SequenceofEventsa.Smallsteamlinebreakoccurswhichdoes:notcauseaniomediatereactortrip5g~b.Steamgeneratorlevelinstrumentfails,causinganincreaseoffeedwaterf'lowinexcessofsteamflowc.SteamgeneratorbeginsCofillcausingincreasedmoisturecontentofsteamd.Ifnooperatoractionoccursundefinedpipingstructuralproblemscouldresult.e.Itshouldbeemphasizedthatthiseventcanbepreventedbypromptoperatoraction.Safetygradesteamgeneratorlevelinstrumentationexists,enablingcomparisonwithcontrolgradelevelinstrumentsofthefeedsystem.4.Actiona.ShorttermEnsuretheoperatorisawareofthispotential,interaction,.sothathemaytakepromptcorrectiveactionshouditoccurb.LongtermAssesstheneedofupgradingsteamgenerator'levelindi-cationtothefeedwater'controlsystemii.AssesstheneedtoinsCallasafetygradehighsteam,generatorlevelalarm5.EvaluationforSt.LucieUnit2Theconcerninthisareaassumesafailureinastea'mgeneratorlevelinstrumentcausingtheFHRStosupplyfeedwaterinexcessofsteamdemand,therebyfillingtheaffectedsteamgeneratorpotentiallyleadingtoexcessivemoisturecarryover.TheSt.LucieUnit2designincorporatesadesignfeatureChatautomaticallyclosesthefeedwaterregulatingvalvesatthehighsteamgeneratorlevelandtripstheturbineandmainfeedwaterpumpsatthehigh-highlevel.Theinstrumentationtransmittingthesignalisafourchannelsystemwithportionsqualifiedtowithstandtheadverseenvironment.Thoseportionsnotqualifiedwillnotbeexposedtotheadverseenvironment.MethereforeconcludethatthisconcernisnotapplicabletoSt.LucieUnit2.
gg~~~b.Reactortripoccursonsteamgenerator lowpressurewithin$98i5seconds.c.Shouldtheadverseenvironment causethePORVto'nadvertently openandthenremainopen,thefollowing stepsmayalsooccur.Itshouldbenotedthatnomeachnism hasbeenidenti'fied whichwo'uldcausethistooccur.d.SteamfromPORVfillsquenchtankandburstsrupturediskreleasing steamtothecontainment andcuasingadditional containment pressurization.
flan-a, D.SteamLineBreakHithFailureofHainSteamPathsDownstreamofMSIV'sl.SignificantInteractionEffects'INa.Increasepost-tripreturn-to-power2.Assumptionsa.Largesteamlinebreakinsidecontainmentb.HSIVonunaffectedsteamgeneratorfailstoclose.Thissequenceofeventsispertinentonlyifthisassumptionismade.c.DownstreamofNSIV'smainsteampathsfailopend.Initialcondition:fullpowere.SARconservatismsendofcyclecoreii.themostreactiveCEAstuckoutRL2<$81iii.steamblowdownthroughsteamlinebreakI3.Thenumberoffailureswhichmustoccurduringthiseventaresignificant.Firsttheremustbethelargebreak.ThentheHSIVontheoppositesteamgeneratormustfailtoclose.Thereisastuckrodonreactortrip.ThensteampathsdownstreamoftheHSIV'smustbeaffected.Theseincludeturbinecontrolvalvesandsteamdumpandbypassvalves.Theprobabilityofthiseventoccurringismuchlessthan10-6perreactoryear.4.SequenceofEventsa.Largesteamlinebreakinsidecontainmentb.Reactortriponlowsteamgeneratorpressuretripsignalc.HSIVonunaffectedsteamgeneratorfailstocloseonHSISd.HainsteampathsdownstreamofHSIVopenorfail,tocloseduetocontrolsystemmalfunctioncausedbyadverseenvironemntfollowinglargesteamlinebreak.e.Openmainsteampathsincreasethesteamblowdownandincreasemoderatorcooldowneffectwhichaddspositivereactivitytocore.Apost-tripreturn-to-powerismoresevereundertheseconditions.
e.MassremovalviaPORVcausesadditional voidformation withinthereactorcoolantsystem.5.Actionsa.Shortterm:l.Utilities continuetoinvestigate qualification levelsandlocationofpowercablestoPORYsandPORYblockvalvestoassesscredibility ofthisfailuremode..2.Ensureoper'ators takeactiontoshutPORVandPORVblockvalveifPORVfailsopen.b.Longterm:1.Completeassessment ofPORVsandblockvalves.Dependent ontheresultsofthatassessment a.upgradeenvironmental qualification levelofPORVsandblockvalves;orb.performdetailedanalysisofeventifrequired.
0 5.Actionsa.,Shortterm'j~0<2<<g8)shouldasteamlinebreakoccur,ensureoperatortakesactiontoisolateallalternatesteamflowpathsii.determinewhetherthiseventwarrantsfurtherconsideration,inlightoflowprobabilityofallconsequentialfailureswhichmustoccurfortheeventtobesignificantb.Longtermi.*utilitiesinvestigateenvironmentalqualificatjonlevelofthesystemsinvolvedii.upgradequalificationlevelofaffectedequipmentifthis'sdeterminedtobenecessary6.EvaluationforSt.LucieUnit2ThesystemswhichmustfailinordertoopenthemainsteampathdownstreamoftheMSIVaretheturbinegeneratorcontrolsystem(TGCS)andsteambypasscontrolsystem(SBCS).ReviewoftheSt.LucieUnit2designshowsthattheTGCSandSBCSwouldnotbeexposedtotheadverseenvironment.However,theTaveinputtotheSBCS.generatedbytheRRScouldgeexposedtotheaccidentenvironment.TheTaveinputthough,isusedonlytoblockinitiationofaquickopeningsignalandcannotcausetheSBCSvalvestoopen..AquickopeningsignalwouldnotbegeneratedduetothelowsteamflowandpressureinputstotheSBCSsothe'alveswouldremainclosed.l<ethereforeconcludethatthisisnotapplicabletoSt.LucieUnit2.E.SteamLineBreakwithAtmoshericDumValveControlSstemFailure1.SignificantInteractionr~a.Post-accidentcontrolledcooldownh2.Assumptionsa.Steam.linebreakoutsidecontainmentandupstreamofHSIVb.Atmosphericdumpvalvesonoppositesteamlineopenandremainopen*,c.SARconservatismnooperatoractionwithin30minutes3.SequenceofEventsa.AsteamlinebreakoutsideofcontainmentbutupstreamoftheNSIVoccurs*Thefailuremechanismidentifiedfsafa'i,lureoftheinputsignalsthatwouldcausethevalvetoopenifoperatingintheautomaticmode.Althoughnooperatoractionisassumedfor30minutespromptoperatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.  
6.Evaluation forSt.LucieUnit2C-Ehasnotidentified afailuremechanism relativetothisconcern.Furthermore, thissystemprovidesinputtotheReactorProtective Systemand,assuch,issafety-grade andpost-LOCA qualified.
Medonotbelievethis itemisapplicable toSt.LucieUnit2.C.SteamLineBreakHithFeedwater FlowControlSstemFailure1;Significant Interaction Effectsa.Steamgenerator filling-causingpotential, pipingstructural problems2.Assumptions a.Smallsteamlinebreakinsidecontainment thatdoesnotcauseanirwediate reactortrip 0
b.Feedwater flowexceedssteamflowduetofailureofsteamgenerator levelinstrument, indicating flowc.SARconservatism Inooperatoractionwithin30minutes'.SequenceofEventsa.Smallsteamlinebreakoccurswhichdoes:notcauseaniomediate reactortrip5g~b.Steamgenerator levelinstrument fails,causinganincreaseoffeedwater f'lowinexcessofsteamflowc.Steamgenerator beginsCofillcausingincreased moisturecontentofsteamd.Ifnooperatoractionoccursundefined pipingstructural problemscouldresult.e.Itshouldbeemphasized thatthiseventcanbeprevented bypromptoperatoraction.Safetygradesteamgenerator levelinstrumentation exists,enablingcomparison withcontrolgradelevelinstruments ofthefeedsystem.4.Actiona.ShorttermEnsuretheoperatorisawareofthispotential, interaction
,.sothathemaytakepromptcorrective actionshouditoccurb.LongtermAssesstheneedofupgrading steamgenerator
'levelindi-cationtothefeedwater'control systemii.AssesstheneedtoinsCallasafetygradehighsteam,generator levelalarm5.Evaluation forSt.LucieUnit2Theconcerninthisareaassumesafailureinastea'mgenerator levelinstrumentcausing theFHRStosupplyfeedwater inexcessofsteamdemand,therebyfillingtheaffectedsteamgenerator potentially leadingtoexcessive moisturecarryover.
TheSt.LucieUnit2designincorporates adesignfeatureChatautomatically closesthefeedwater regulating valvesatthehighsteamgenerator levelandtripstheturbineandmainfeedwater pumpsatthehigh-high level.Theinstrumentation transmitting thesignalisafourchannelsystemwithportionsqualified towithstand theadverseenvironment.
Thoseportionsnotqualified willnotbeexposedtotheadverseenvironment.
Metherefore concludethatthisconcernisnotapplicable toSt.LucieUnit2.
flan-a, D.SteamLineBreakHithFailureofHainSteamPathsDownstream ofMSIV'sl.Significant Interaction Effects'INa.Increasepost-trip return-to-power 2.Assumptions a.Largesteamlinebreakinsidecontainment b.HSIVonunaffected steamgenerator failstoclose.Thissequenceofeventsispertinent onlyifthisassumption ismade.c.Downstream ofNSIV'smainsteampathsfailopend.Initialcondition:
fullpowere.SARconservatisms endofcyclecoreii.themostreactiveCEAstuckoutRL2<$81iii.steamblowdownthroughsteamlinebreakI3.Thenumberoffailureswhichmustoccurduringthiseventaresignificant.
Firsttheremustbethelargebreak.ThentheHSIVontheoppositesteamgenerator mustfailtoclose.Thereisastuckrodonreactortrip.Thensteampathsdownstream oftheHSIV'smustbeaffected.
Theseincludeturbinecontrolvalvesandsteamdumpandbypassvalves.Theprobability ofthiseventoccurring ismuchlessthan10-6perreactoryear.4.SequenceofEventsa.Largesteamlinebreakinsidecontainment b.Reactortriponlowsteamgenerator pressuretripsignalc.HSIVonunaffected steamgenerator failstocloseonHSISd.Hainsteampathsdownstream ofHSIVopenorfail,tocloseduetocontrolsystemmalfunction causedbyadverseenvironemnt following largesteamlinebreak.e.Openmainsteampathsincreasethesteamblowdownandincreasemoderator cooldowneffectwhichaddspositivereactivity tocore.Apost-trip return-to-power ismoresevereundertheseconditions.
0 5.Actionsa.,Shortterm'j~0<2<<g8)shouldasteamlinebreakoccur,ensureoperatortakesactiontoisolateallalternate steamflowpathsii.determine whetherthiseventwarrantsfurtherconsideration, inlightoflowprobability ofallconsequential failureswhichmustoccurfortheeventtobesignificant b.Longtermi.*utilities investigate environmental qualificatjonlevel ofthesystemsinvolvedii.upgradequalification levelofaffectedequipment ifthis'sdetermined tobenecessary 6.Evaluation forSt.LucieUnit2Thesystemswhichmustfailinordertoopenthemainsteampathdownstream oftheMSIVaretheturbinegenerator controlsystem(TGCS)andsteambypasscontrolsystem(SBCS).ReviewoftheSt.LucieUnit2designshowsthattheTGCSandSBCSwouldnotbeexposedtotheadverseenvironment.
However,theTaveinputtotheSBCS.generated bytheRRScouldgeexposedtotheaccidentenvironment.
TheTaveinputthough,isusedonlytoblockinitiation ofaquickopeningsignalandcannotcausetheSBCSvalvestoopen..Aquickopeningsignalwouldnotbegenerated duetothelowsteamflowandpressureinputstotheSBCSsothe'alves wouldremainclosed.l<etherefore concludethatthisisnotapplicable toSt.LucieUnit2.E.SteamLineBreakwithAtmos hericDumValveControlSstemFailure1.Significant Interaction r~a.Post-accident controlled cooldownh2.Assumptions a.Steam.linebreakoutsidecontainment andupstreamofHSIVb.Atmospheric dumpvalvesonoppositesteamlineopenandremainopen*,c.SARconservatism nooperatoractionwithin30minutes3.SequenceofEventsa.Asteamlinebreakoutsideofcontainment butupstreamoftheNSIVoccurs*Thefailuremechanism identified fsafa'i,lure oftheinputsignalsthatwouldcausethevalvetoopenifoperating intheautomatic mode.Althoughnooperatoractionisassumedfor30minutespromptoperatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.  


b.Reactortriponlowsteamgeneratorpressurec.AtmosphericdumpvalvesupstreamofHSIV'sopenandremainopenduetocontrolsystemfailurep'2joperateatmosphericdumpvalvesinmanualde,or4.Actionsa.Shorttermd.'Ifnooperatoractiontakesplacetherewouldbe,thepotentialfordry-outanddepressurizationofbothsteamgeneratorse.Failuretoshutatmosphericdumpvalvescouldinhibitacontrolledplantcooldownbylimitingtheabilityoftheauxiliaryfeedpumpstodelivertothesteam'generator(s)~Qensureoperatorshutsatmosphericdumpvalvesonsteam'iineuntilcontrolisassuredJUL2<~98b.Longtermi.Continueinvestigation.todetermineifthisfailuremechanismisplausibleIupgradeatmosphericdumpvalvecontrolsystemtowith-standtheadverseenvironment,ifrequired8~>>'<Appal>~valuationforSt.LucieUnit2i'0sp~&/Aevi'~~~gy~~Ac,<j.p~~~~gheatmosphericdumpvalvesarelocatedupstreamof,themainsteamisolationvalvesatSt.LucieUnit2,andthepostulatedfailureinthisareawouldbeavalidconcernwerethesystemtobeintheautomaticmodeduringpoweroperations.However,"*~consistentwiththeanlaysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperationsAMebelievethismethodofoperationadequatelyaddressesany'oncerninthisarea.'I.AssessmentofImactofControlSstemFailuresonFeedLineBreakEventand~EAA.SARFeedLineBreakr1.SequenceofEventsa.f4infeedlinebreakoccursdownstreamofreverseflowcheckvalve,dischargingmainfeedandsteamgeneratorfluidb.RCSheatupduetolossofsubcooledfeedflowc;Reactortripoccursonsteamgeneratorlowwaterlevelorhighpressurizerpressure.Turbinetripoccursonreactortrip.  
b.Reactortriponlowsteamgenerator pressurec.Atmospheric dumpvalvesupstreamofHSIV'sopenandremainopenduetocontrolsystemfailurep'2joperateatmospheric dumpvalvesinmanualde,or4.Actionsa.Shorttermd.'Ifnooperatoractiontakesplacetherewouldbe,thepotential fordry-outanddepressurization ofbothsteamgenerators e.Failuretoshutatmospheric dumpvalvescouldinhibitacontrolled plantcooldownbylimitingtheabilityoftheauxiliaryfeedpumpstodelivertothesteam'generator(s)
'0 d.RapidRCSheatupandpressurizationduetolossofheattransferastherupturedsteamgeneratoremptiesIe.Depressurizationoftherupturedsteam'eneratorinitiatesHSISandisolatestheintactgeneratorf.RCSpressurizationterminateswithopeningofpr'imaryrelief/safetyvalvesanddecreasingcoreheatfluxg.RCScooldownbegins,'ontrolledbythemainsteamsafetyvalvesh.Auxiliaryfeedisinitiatedautomaticallyorbyoperatoraction8.FeedLineBreakWithRCSInventorControlFailure1.SignificantInteractionEffect.a.IncreasedRCSpressurizationduetoliquidfilledpressurizer2.Assumptionsa.Smallfeedlinebreakinsidecontainmentb.Adverseenvironment,impactspressurizerlevelinstrumentcausingindicationtofaillowwhichcausesthecontrolsystemtoincreaseinventory(andpressurizerlevel)c.Initialconditions102&#xc3;powersteambypasscontrolsysteminmanualmodebeginning-of-cyclecoreparametersd.Analysisconserva'tismsnooperatoractionforat1east30minutesii.nocreditforsteamgeneratorlowwaterleveltripinrupturedunituntilemptyiii.heattransferinrupturedsteamgeneratorinstantaneouslyterminatedonemptyingiv.failureofthefeedlinereverseflowcheckvalve,ifggp~48~thebreakoccursupstreamofthevalveIq  
~Qensureoperatorshutsatmospheric dumpvalvesonsteam'iineuntilcontrolisassuredJUL2<~98b.Longtermi.Continueinvestigation
.todetermine ifthisfailuremechanism isplausible Iupgradeatmospheric dumpvalvecontrolsystemtowith-standtheadverseenvironment, ifrequired8~>>'<Appal>
~valuation forSt.LucieUnit2i'0sp~&/Aevi'~~~gy
~~Ac,<j.p~~~~g heatmospheric dumpvalvesarelocatedupstreamof,themainsteamisolation valvesatSt.LucieUnit2,andthepostulated failureinthisareawouldbeavalidconcernwerethesystemtobeintheautomatic modeduringpoweroperations.
However,"*~consistent withtheanlaysesintheFSAR,thissystemismaintained inthemanualmodeduringnormaloperationsA Mebelievethismethodofoperation adequately addresses any'oncern inthisarea.'I.Assessment ofImactofControlSstemFailuresonFeedLineBreakEventand~EAA.SARFeedLineBreakr1.SequenceofEventsa.f4infeedlinebreakoccursdownstream ofreverseflowcheckvalve,discharging mainfeedandsteamgenerator fluidb.RCSheatupduetolossofsubcooled feedflowc;Reactortripoccursonsteamgenerator lowwaterlevelorhighpressurizer pressure.
Turbinetripoccursonreactortrip.  
'0 d.RapidRCSheatupandpressurization duetolossofheattransferastherupturedsteamgenerator emptiesIe.Depressurization oftherupturedsteam'enerator initiates HSISandisolatestheintactgenerator f.RCSpressurization terminates withopeningofpr'imaryrelief/safetyvalvesanddecreasing coreheatfluxg.RCScooldownbegins,'ontrolled bythemainsteamsafetyvalvesh.Auxiliary feedisinitiated automatically orbyoperatoraction8.FeedLineBreakWithRCSInventorControlFailure1.Significant Interaction Effect.a.Increased RCSpressurization duetoliquidfilledpressurizer 2.Assumptions a.Smallfeedlinebreakinsidecontainment b.Adverseenvironment, impactspressurizer levelinstrument causingindication tofaillowwhichcausesthecontrolsystemtoincreaseinventory (andpressurizer level)c.Initialconditions 102&#xc3;powersteambypasscontrolsysteminmanualmodebeginning-of-cycle coreparameters d.Analysisconserva'tisms nooperatoractionforat1east30minutesii.nocreditforsteamgenerator lowwaterleveltripinrupturedunituntilemptyiii.heattransferinrupturedsteamgenerator instantaneously terminated onemptyingiv.failureofthefeedlinereverseflowcheckvalve,ifggp~48~thebreakoccursupstreamofthevalveIq  


s'$~ting3.SequenceofEventsa.Feedlinebreakincontainmentb.Hainfeedspillsfrombreakc.Adversecontainmentenvironmentcausespressurizerlevel'indicationtofaillowcausingRCSinventorytoincrease(d."Reactortripoccursonsteamgeneratorlowwaterlevelonhighpressurizerpressure.Turbinetripsonreactortripe.RCSheatupresultsfromrapiddecreasein,SGheattransferduetolossoffluidfromtherupturedsteamgeneratorf.Pressurizereliefand/orsafetyvalvesopeng.Potentialforpressurizertofillwithliquidexistsduetohighlevelinpressurizerpriortoheatup.Relief/safetyvalvereliefcapacityreducedbyliquiddischargeh.ExtentofincreasedRCSpressurizationisdependentontimeofpressurizerfillingrelativetotherapidheatup4.Actionsa..Shortterm'lertoperatortothispotentialfailuremode,sothatpromptcorrectiveactioncanbetakenb.LongtermPerformplantspecificanalysestodetermineupperlimitallowableforpressurizerlevelwhichisconsistentwiththemaximumrateoflevelincreaseandthemaximumRCSexpansionduringthepotentially.rapidheatupassociatedwithfeedlinebreaksupgradepressurizerlevelinstrumentation5.EvaluationforSt.LucieUnit2TheC-Econcernpostulatesthefailureofapressurizerlevelinstrumentinthecontrolsystem,which.intheabsenceofoperatoraction,causesthepressurizertofill,therebyallowingthereactorcoolantsystemtogosolid.AsdiscussedinourresponsetoIEBulletin79-01,thelevelinstrumentsarepost-LOCAqualified.Wethereforedonotbelievethereisaconcerninthisarea.
s'$~ting3.SequenceofEventsa.Feedlinebreakincontainment b.Hainfeedspillsfrombreakc.Adversecontainment environment causespressurizer level'indication tofaillowcausingRCSinventory toincrease(d."Reactortripoccursonsteamgenerator lowwaterlevelonhighpressurizer pressure.
Turbinetripsonreactortripe.RCSheatupresultsfromrapiddecreasein,SGheattransferduetolossoffluidfromtherupturedsteamgenerator f.Pressurize reliefand/orsafetyvalvesopeng.Potential forpressurizer tofillwithliquidexistsduetohighlevelinpressurizer priortoheatup.Relief/safetyvalvereliefcapacityreducedbyliquiddischarge h.Extentofincreased RCSpressurization isdependent ontimeofpressurizer fillingrelativetotherapidheatup4.Actionsa..Shortterm'lertoperatortothispotential failuremode,sothatpromptcorrective actioncanbetakenb.LongtermPerformplantspecificanalysestodetermine upperlimitallowable forpressurizer levelwhichisconsistent withthemaximumrateoflevelincreaseandthemaximumRCSexpansion duringthepotentially
.rapidheatupassociated withfeedlinebreaksupgradepressurizer levelinstrumentation 5.Evaluation forSt.LucieUnit2TheC-Econcernpostulates thefailureofapressurizer levelinstrument inthecontrolsystem,which.intheabsenceofoperatoraction,causesthepressurizer tofill,therebyallowingthereactorcoolantsystemtogosolid.Asdiscussed inourresponsetoIEBulletin79-01,thelevelinstruments arepost-LOCA qualified.
Wetherefore donotbelievethereisaconcerninthisarea.
C  
C  
'blC.FeedLineBreaklilithPORYControlFailureSignificantInteractionEffectsa.AfailedopenPORII'incombinationwithafeedlinebreakhasnotbeenanalyzed2.Assumptionsn.Feedlinebreakinidecontainmentb.PORV's.inadvertentlyopenandremainopenc.PORVblockvalvealsofailstoclosewhenrequiredd.Rooperatoractionuntil20minutes3.PORYwouldnotbeexpectedtoremainopenduetoactuationmalfunctionsinceGarrettvalvesandsolenoidsarequalified'ortemperatures.inexcessof400'F4.SequenceofEventsia.Feedlinebreakoccursinsidecontainmentb.Steamgeneratorfluidand/ormainfeedspillfrombreakc;RCSheatupandpressurizationresultsfromlossoffeedflowd.PORVopensonhighpressureandfailstorecloseduetoadverseenvironmente.Reactortripoccursonhighpressurizepressure.Turbinetripsonreactortripf.RCSdepressurizationoccursifPORY'sfailtorecloseg.HassremovalviaPORYcausesvoidformationwithinRCSh.FeedlinebreakincombinationwithafailedopenPORVhasnotbeenanalyzed5.Actionsa.Shorttermutilitiesinvestigate.qualificationlevelandlocationof.powercablestoPORV'sandPORVblockvalvestoassesscredibilityofthisfailuremodeensureoperatorstakeactionstoshutPORV'sandPORVblockvalves,shouldthisfailureoccur  
'blC.FeedLineBreaklilithPORYControlFailureSignificant Interaction Effectsa.AfailedopenPORII'incombination withafeedlinebreakhasnotbeenanalyzed2.Assumptions n.Feedlinebreakinidecontainment b.PORV's.inadvertently openandremainopenc.PORVblockvalvealsofailstoclosewhenrequiredd.Rooperatoractionuntil20minutes3.PORYwouldnotbeexpectedtoremainopenduetoactuation malfunction sinceGarrettvalvesandsolenoids arequalified
'ortemperatures.
inexcessof400'F4.SequenceofEventsia.Feedlinebreakoccursinsidecontainment b.Steamgenerator fluidand/ormainfeedspillfrombreakc;RCSheatupandpressurization resultsfromlossoffeedflowd.PORVopensonhighpressureandfailstorecloseduetoadverseenvironment e.Reactortripoccursonhighpressurize pressure.
Turbinetripsonreactortripf.RCSdepressurization occursifPORY'sfailtorecloseg.HassremovalviaPORYcausesvoidformation withinRCSh.Feedlinebreakincombination withafailedopenPORVhasnotbeenanalyzed5.Actionsa.Shorttermutilities investigate.
qualification levelandlocationof.powercablestoPORV'sandPORVblockvalvestoassesscredibility ofthisfailuremodeensureoperators takeactionstoshutPORV'sandPORVblockvalves,shouldthisfailureoccur  


b.LongtermCompleteassessmentofPORV'sandblockvalves.Dependentonresultsofthatassessment.A.upgradeenvironmentalqualificationlevelofPORV'sandblockvalves,orB.performdetailedanalysisofevent,ifrequired6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch,issafety-gradeandpost-LOCAqualified.WedonotbelievethisitemisapplicabletoSt.LucieUnit2.D.FeedLineBreakWithFeedwaterControlFailure1.SignificantInteractionEffectsa.Overfillingofthesteamgenerator(s)causingpotentialstructuralproblems2.'Assumptionsa.Smallfeedlinebreakinsidecontainmentb.Feedcontrolinautomaticmodec.Adverseenvironmentcausessteamgeneratorlevelindica-tiontofaillowwhichcausesthefeedcontrolsystemtoincreasefeedflowabovethesteamflowd.No'operatoractionfor30minutes3.SequenceofEventsa.Asmallfeedlinebreakoccursinsidecontainmentb.'ainfeedspillsfrombreakc.Steamgeneratorlevelinstrumentfailsindicatinglowandcausesincreasedfeedflowinexcessofsteamflowd;Steamgeneratorbeginstofillcausingincreasedmoisturecontentofsteame.Ifnooperatoractionoccursundefinedstructuralproblemscouldresult 0th pgf.ItshouldbeemphasizedthatthisevenCtl~.~nbypromptoperatoraction.Safetygradelevelinstru-mentationexiststocompare'tocontrolgradeinstruments.Thefeedsystemcanthenbecontrolledmanually4.Actionsa.ShorttermueL24Ig~ensuretheoperatorisawareofthepotentialfailuremodesothehemaytakepromptcorrectiveaction,shoulditoccurassesstheneedtoinstallsafetygradehighsteamgeneratorlevelalarm5.EvaluationforSt.LucieUnit2hTheconcerninthisareaassumesafailureinasteamgeneratorlevelinstrumentcausingtheFWRStosupplyfeedwaterinexcessofsteamdemand,therebyfil'lingtheaffectedsteamgeneratorpotentiallyleadingtoexcessivemoisturecarryover.TheSt.LucieUnit2designincorporatesasafetygradedesignfeaturethatautomaticallyclosesthefeedwaterregulatingvalvesatthehighsteamgeneratorlevelandtripstheturbine'andmainfeedwaterpumpsatthehigh-highlevel.Theinstrumenta-tiontransmittingthesignalisafourchannelsystemwithportionsqualifiedtowithstandtheadverseevnironment.Thoseportionsnotqualifiedwillnotbeexposedtotheadverseenvironment.HethereforeconcludethatthisconcernisnotapplicabletoSt.LucieUnit2.E.FeedlirieBreakHithAtmosphericSteamDumpControlFailure1.SignificantInteractionEffectsa.Controlledplantcooldown2.Assumptionsa.Feed'linebreakoutsidecontainmentanddownstreamofreverseflowcheckvalveb.Adverseenvironmentimpactstheatmosphericsteamdumpcontrolonunaffectedsteamgeneratorcausinganun-controlledsteamreleaseupstreamoftheHSIV'sc.Nooperatoractionuntil30minutes**Thefailuremechanismidentifiedisafailureoftheinputsignalsthatwouldcausethevalvetoopenifoperatingintheautomatic'ode.Althoughnooperatoractionisassumedfor30minutes,prompt.-operatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.  
b.LongtermCompleteassessment ofPORV'sandblockvalves.Dependent onresultsofthatassessment
.A.upgradeenvironmental qualification levelofPORV'sandblockvalves,orB.performdetailedanalysisofevent,ifrequired6.Evaluation forSt.LucieUnit2C-Ehasnotidentified afailuremechanism relativetothisconcern.Furthermore, thissystemprovidesinputtotheReactorProtective Systemand,assuch,issafety-grade andpost-LOCA qualified.
Wedonotbelievethisitemisapplicable toSt.LucieUnit2.D.FeedLineBreakWithFeedwater ControlFailure1.Significant Interaction Effectsa.Overfilling ofthesteamgenerator(s) causingpotential structural problems2.'Assumptions a.Smallfeedlinebreakinsidecontainment b.Feedcontrolinautomatic modec.Adverseenvironment causessteamgenerator levelindica-tiontofaillowwhichcausesthefeedcontrolsystemtoincreasefeedflowabovethesteamflowd.No'operator actionfor30minutes3.SequenceofEventsa.Asmallfeedlinebreakoccursinsidecontainment b.'ainfeedspillsfrombreakc.Steamgenerator levelinstrument failsindicating lowandcausesincreased feedflowinexcessofsteamflowd;Steamgenerator beginstofillcausingincreased moisturecontentofsteame.Ifnooperatoractionoccursundefined structural problemscouldresult 0th pgf.Itshouldbeemphasized thatthisevenCtl~.~nbypromptoperatoraction.Safetygradelevelinstru-mentation existstocompare'to controlgradeinstruments.
Thefeedsystemcanthenbecontrolled manually4.Actionsa.ShorttermueL24Ig~ensuretheoperatorisawareofthepotential failuremodesothehemaytakepromptcorrective action,shoulditoccurassesstheneedtoinstallsafetygradehighsteamgenerator levelalarm5.Evaluation forSt.LucieUnit2hTheconcerninthisareaassumesafailureinasteamgenerator levelinstrument causingtheFWRStosupplyfeedwater inexcessofsteamdemand,therebyfil'lingtheaffectedsteamgenerator potentially leadingtoexcessive moisturecarryover.
TheSt.LucieUnit2designincorporates asafetygradedesignfeaturethatautomatically closesthefeedwater regulating valvesatthehighsteamgenerator levelandtripstheturbine'andmainfeedwater pumpsatthehigh-high level.Theinstrumenta-tiontransmitting thesignalisafourchannelsystemwithportionsqualified towithstand theadverseevnironment.
Thoseportionsnotqualified willnotbeexposedtotheadverseenvironment.
Hetherefore concludethatthisconcernisnotapplicable toSt.LucieUnit2.E.FeedlirieBreakHithAtmospheric SteamDumpControlFailure1.Significant Interaction Effectsa.Controlled plantcooldown2.Assumptions a.Feed'linebreakoutsidecontainment anddownstream ofreverseflowcheckvalveb.Adverseenvironment impactstheatmospheric steamdumpcontrolonunaffected steamgenerator causinganun-controlled steamreleaseupstreamoftheHSIV'sc.Nooperatoractionuntil30minutes**Thefailuremechanism identified isafailureoftheinputsignalsthatwouldcausethevalvetoopenifoperating intheautomatic
'ode.Althoughnooperatoractionisassumedfor30minutes,prompt.-operatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.  


2p~$3.SequenceofEventst.a.Feedlinebreakoccursoutsidecontainmentdownstreamofcheckvalveb.Steamgeneratorfluidand/ormainfeedspill:frombreakc.Reactortripoccursonsteamgeneratorlowwaterlevelorhighpressurizerpressure.Turbinetripoccursonreactortrip~+><<ss<d.Steamgeneratorpressureincreasesfollowingturbinetripe.EnvironmentcouldcauseatmosphericdumpvalvesupstreamofNSIVinunaffectedsteamgeneratortoopenandremainopenf.Ifnooperatoractiontakesplacetherewouldbeapotentialfordryoutanddepressruizationofbothsteamgenerators9.Depressurizationofbothsteamgeneratorsmaylimittheabilityoftheauxilairyfeedpumpstadelivertothesteamgenerator(s)4.Actionsta.Shorttermoperateatmosphericsteamdumpvalvesinthemanualmode.'orensurethattheoperatorisawareofthispotential'interactionsothatpromptcorrectiveactioncanbetakenb.Longtermcontinueinvestigationtode'termineifthisfailuremechanismisplausibleupgradeatmosphericdumpvalvecontrolsstemenvirmentalqualificationifrequired:,.'~>~~c"l~5.EvaluationforSt.LucieUnit2~P'."+.4"<~"'~r/'TheatmosphericdumpvalvesarelocatedjYsS;rehNothemain.steamisolationvalvesatSt.LucieUnit2,andthepostulate'.failureinthisareawouldbeavalidconcernwerethesystemtobeintheautomaticmodeduringpoweroperations.However,consistentwiththeanalysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperations.Webelievethis-methodofoperationadequatelyaddressesanconcerninthisarea.
2p~$3.SequenceofEventst.a.Feedlinebreakoccursoutsidecontainment downstream ofcheckvalveb.Steamgenerator fluidand/ormainfeedspill:frombreakc.Reactortripoccursonsteamgenerator lowwaterlevelorhighpressurizer pressure.
jap~~I!IPttFfftfRR~ltSt~0iHih~EBreakEventsPiesc.Adverseenvironmentresultsinalowindicatedpowerlevelfromtheex-coresensorinputtotheReactorRegulatingSystemcausingCEAstobewithdrawn3.Sequenceofeventsa.Highenergypipebreakinsidecontainmentofasmallenoughsizewhereinwiediatereactortripdoesnotoccurb.Controlgradeex-coresensorindicationfails'lowduetoadverseenvironmental.impactc.ReactorregulatingsystemcausesCEAstobewithdrawnd.Reactorpowerexceedsthepowerpreviouslyassumedduringthetransiente.Reactortripoccursduetohighenergypipebreakatconditionsnotconsideredinpresentanalyses4.Actionsa.ShorttermA.CEApositionmalfunctionsdueto.steamandfeedlinebreaksandCEAejectionJOt.2)@8)1.Significantinteractioneffect:a.Potentiallyhigherreactorpowerlevelspriortoreactortripthanpresentlyanalyzed2.Assumptionsa.Smallhighenergypipebreakinsidecontainmentb.Reactorregulatingsysteminautomaticmodeplacethecontrolelementdrivesysteminmanualii.Modifyemergencyprocedurestostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeex-coredetectorsduringhighenergypipebreaksb.Longtermf.-evaluatetheconsequencesoFsmallhighenergypipebreaksincontainmentwithCEAwithdrawl,ifrequiredifrequired,upgradetheenvironmentalqualificationlevelofthecontrolgradeexcoredetectorsystem
Turbinetripoccursonreactortrip~+><<ss<d.Steamgenerator pressureincreases following turbinetripe.Environment couldcauseatmospheric dumpvalvesupstreamofNSIVinunaffected steamgenerator toopenandremainopenf.Ifnooperatoractiontakesplacetherewouldbeapotential fordryoutanddepressruization ofbothsteamgenerators 9.Depressurization ofbothsteamgenerators maylimittheabilityoftheauxilairy feedpumpstadelivertothesteamgenerator(s) 4.Actionsta.Shorttermoperateatmospheric steamdumpvalvesinthemanualmode.'orensurethattheoperatorisawareofthispotential
'interaction sothatpromptcorrective actioncanbetakenb.Longtermcontinueinvestigation tode'termine ifthisfailuremechanism isplausible upgradeatmospheric dumpvalvecontrolsstemenvirmentalqualification ifrequired:,
.'~>~~c"l~5.Evaluation forSt.LucieUnit2~P'."+.4"<~"'~r/'Theatmospheric dumpvalvesarelocatedjYsS;rehN othemain.steamisolation valvesatSt.LucieUnit2,andthepostulate
'.failureinthisareawouldbeavalidconcernwerethesystemtobeintheautomatic modeduringpoweroperations.
However,consistent withtheanalysesintheFSAR,thissystemismaintained inthemanualmodeduringnormaloperations.
Webelievethis-method ofoperation adequately addresses anconcerninthisarea.
jap~~I!IPttFfftfRR~ltSt~0iHih~EBreakEventsPiesc.Adverseenvironment resultsinalowindicated powerlevelfromtheex-coresensorinputtotheReactorRegulating SystemcausingCEAstobewithdrawn 3.Sequenceofeventsa.Highenergypipebreakinsidecontainment ofasmallenoughsizewhereinwiediate reactortripdoesnotoccurb.Controlgradeex-coresensorindication fails'lowduetoadverseenvironmental
.impactc.Reactorregulating systemcausesCEAstobewithdrawn d.Reactorpowerexceedsthepowerpreviously assumedduringthetransient e.Reactortripoccursduetohighenergypipebreakatconditions notconsidered inpresentanalyses4.Actionsa.ShorttermA.CEApositionmalfunctions dueto.steamandfeedlinebreaksandCEAejectionJOt.2)@8)1.Significant interaction effect:a.Potentially higherreactorpowerlevelspriortoreactortripthanpresently analyzed2.Assumptions a.Smallhighenergypipebreakinsidecontainment b.Reactorregulating systeminautomatic modeplacethecontrolelementdrivesysteminmanualii.Modifyemergency procedures tostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeex-coredetectors duringhighenergypipebreaksb.Longtermf.-evaluate theconsequences oFsmallhighenergypipebreaksincontainment withCEAwithdrawl, ifrequiredifrequired, upgradetheenvironmental qualification levelofthecontrolgradeexcoredetectorsystem


6.EvaluationforSt.LucieUnit29dgTheC-EconcernregardingcontrolrodwithdrawalwiththeReactorRegulatingSystem(RRS)inautomaticcontrolisconsideredvalid.However,consistentwiththeanalysesintheFSAR,tAs-syst~~~nta.ized-in-the-manual-modeduring-normalmperaiions.Nebelievethismethodofopera-tionadequatelyaddressesanyconcerninthisarea.Qe~~3(cyoJu)if(drawJ.+A'~oft><<~"~'6f$''aS(~~Lyc6'scencosyI4u<7es<~~4cvtt,d'ya~Ms~<(~M<<<~~+C~~~.<~~'~~@<..4~'v<<-<->>7~"<'~~g,(g~I-Selec,4~),  
6.Evaluation forSt.LucieUnit29dgTheC-Econcernregardingcontrolrodwithdrawal withtheReactorRegulating System(RRS)inautomatic controlisconsidered valid.However,consistent withtheanalysesintheFSAR,tAs-syst~~~nta.ized-in-the-manual-mode during-normalmperaiions.
((.g 8.SmallBreakLOCAMithCEAControlSystemHalfunctiof,IJ(f\~1.Significaritinteractioneffects>PL,"y"4(98]a.Potentialexistsforincreasingpower.Thiswouldcausepressuretoremainabovelowpressurizerpressuretripforalonger'periodthanpreviouslyassumed2.Assumptionsa.SmallbreakLOCAinsidecontainmentb.CEAcontrolsysteminautomaticmodec.AdverseenvironmentimpactsCEAcontrolsystemorrelatedsensorsresultinginconsequentialfailure.d.ControlsystemcausesCEAtowithdrawe.StandardLOCAlicensingassumptions3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainmentb.CEAcontrolsysteminautomaticmodec.Adverseenvironmentcausedby.rupturepotentiallycausesexcorepowerindicationtoindicatelowpowerleveld.SliouldCEAsbegintowithdraw,themagnitudeoftheover--powerexcursionpriortoscramwouldbeincreased.ThiscouldproduceahigherprimarysystempressurewhichcouldthendelayreactortripandSIASandresultinhigher-peakcladtemperature4.Action,,a.ShorttermPlacethecontrolelementdrivesysteminmanualModifyemergencyprocedurestostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeexcoredetectorsduringaLOCA.b.LongtermEvaluatetheconsequencesofasmallbreakLOCAwithCEAwithdrawal,andifrequiredupgradetheenvironmentalqualificationlevelofthecontrolgradeexcoreinstrumentation
Nebelievethismethodofopera-tionadequately addresses anyconcerninthisarea.Qe~~3(cyoJu)if(drawJ.+A'~oft><<~"~'6f$''aS(~~Lyc6'scencosyI4u<7es<~~4cvtt,d'ya~M s~<(~M<<<~~+C~~~.<~~'~~@<..4~'v<<-<->>7
~"<'~~g,(g~I-Selec,4~),  
((.g 8.SmallBreakLOCAMithCEAControlSystemHalfunctio f,IJ(f\~1.Significarit interaction effects>PL,"y"4(98]a.Potential existsforincreasing power.Thiswouldcausepressuretoremainabovelowpressurizer pressuretripforalonger'period thanpreviously assumed2.Assumptions a.SmallbreakLOCAinsidecontainment b.CEAcontrolsysteminautomatic modec.Adverseenvironment impactsCEAcontrolsystemorrelatedsensorsresulting inconsequential failure.d.ControlsystemcausesCEAtowithdrawe.StandardLOCAlicensing assumptions 3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainment b.CEAcontrolsysteminautomatic modec.Adverseenvironment causedby.rupturepotentially causesexcorepowerindication toindicatelowpowerleveld.SliouldCEAsbegintowithdraw, themagnitude oftheover--powerexcursion priortoscramwouldbeincreased.
ThiscouldproduceahigherprimarysystempressurewhichcouldthendelayreactortripandSIASandresultinhigher-peakcladtemperature 4.Action,,a.ShorttermPlacethecontrolelementdrivesysteminmanualModifyemergency procedures tostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeexcoredetectors duringaLOCA.b.LongtermEvaluatetheconsequences ofasmallbreakLOCAwithCEAwithdrawal, andifrequiredupgradetheenvironmental qualification levelofthecontrolgradeexcoreinstrumentation


tss5.EvaluationforSt.LucieUnit2/PITheC-Econcernregardingcontrolrodwithdrawalwiththe~84Q0~ReactorRegulatingSystem(RRS)inautomaticcontrolisconsideredvalid.However,consistentwiththeanalysesintheFSAR,thH-system-is-mHntainedN~~anuaMed~uring..normal-,operations.Hebelievethismethodofoperationadequate1yaddressesanyconcerninthisarea.',~~c.we/~>d<<~gyLNRS~si'.SmallBreakLOCAwithSITIsolationYialfunction$A1.SignificantinteractioneffectsW~'-'~0<,&#x17d;~g~aas+-t'DklYD4JDsa.Potentialexistsforinjectionofnon-condensiblegas'ntotheRCS.Thiscouldcauseproblemswithnaturalcirculationandheattransferinthesteamgeneratorsshouldthegascollectthere.~--p,-'zz7F44<'edgesd.NIQd2.Assumptionsa.SmallbreakLOCAinsidecontainmentb.Adverseenvironmentimpactssafetyinjectiontank(s)isolationresultinginconsequentialfailure.c.Operatorcannotisolatethesafetyinjectiontank(s)d.StandardLOCAlicensingassumptions3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainmentb.AdverseenvironmentcausedbyrupturedisablesSITisolationmechanismc.OperatorisunabletoisolatetheSIT(s)andnon-condensiblegas(nitrogencovergas)enterstheRCS.Ad.Possibilityexistsfordegradednaturalcirculationflowand/orbuildupofgasesinthesteamgeneratorscausingheatupofRCS.'4.Action.a.,ShorttermInstructoperatorthatthepossibilityofgasformationexistsifSITsarenotisolated.IdentifydrainlinesthatcouldbeusedtodraintheSITsandtheirqualificationlevels b.LongtermEvaluateoptionsforprovidinganothermeansofise1atingtheSITsandrevisethedesignasnecessargPLP4I@5.EvaluationforSt.Lucie2Thevalvesandinstrumentationandcontrolsystemsareenvironmentallyqualifiedtowithstandtheadverseenvironment.Backupmeans'arealsoavailabletode-.pressurizetheSITsandtherebypreventnon-condensiblegasesfromenteringtheRCS.  
tss5.Evaluation forSt.LucieUnit2/PITheC-Econcernregarding controlrodwithdrawal withthe~84Q0~ReactorRegulating System(RRS)inautomatic controlisconsidered valid.However,consistent withtheanalysesintheFSAR,thH-system-is-mHntainedN~~anuaMed~uring
..normal-,operations.
Hebelievethismethodofoperation adequate1y addresses anyconcerninthisarea.',~~c.we/~>d<<~gyLNRS~si'.SmallBreakLOCAwithSITIsolation Yialfunction
$A1.Significant interaction effectsW~'-'~0<,&#x17d;~g~aas+-t'DklYD4JDsa.Potential existsforinjection ofnon-condensible gas'ntotheRCS.Thiscouldcauseproblemswithnaturalcirculation andheattransferinthesteamgenerators shouldthegascollectthere.~--p,-'zz7F44<'edgesd.NIQd2.Assumptions a.SmallbreakLOCAinsidecontainment b.Adverseenvironment impactssafetyinjection tank(s)isolation resulting inconsequential failure.c.Operatorcannotisolatethesafetyinjection tank(s)d.StandardLOCAlicensing assumptions 3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainment b.Adverseenvironment causedbyrupturedisablesSITisolation mechanism c.OperatorisunabletoisolatetheSIT(s)andnon-condensible gas(nitrogen covergas)enterstheRCS.Ad.Possibility existsfordegradednaturalcirculation flowand/orbuildupofgasesinthesteamgenerators causingheatupofRCS.'4.Action.a.,ShorttermInstructoperatorthatthepossibility ofgasformation existsifSITsarenotisolated.
IdentifydrainlinesthatcouldbeusedtodraintheSITsandtheirqualification levels b.LongtermEvaluateoptionsforproviding anothermeansofise1ating theSITsandrevisethedesignasnecessargPL P4I@5.Evaluation forSt.Lucie2Thevalvesandinstrumentation andcontrolsystemsareenvironmentally qualified towithstand theadverseenvironment.
Backupmeans'arealsoavailable tode-.pressurize theSITsandtherebypreventnon-condensible gasesfromenteringtheRCS.  
.
.
420.4ControlSystemFaflursTheanalysesrapor;ad'fnChapter15oftheFSARarfntendedtcdemons.ratetheacauacyGsaaiysystemsinmiigatingan"ici."atedOperationaloccurrencesandaccicents.BoshCongressandACRSnaveraisedaaissuefnhisarea.CcmmissicnerAhear.".ehasrasgoncadtoCongressregardngthisissue(~=ertcattacho~nttcthisenclosure)andpartofhisresponsereferredtocontrolsys-;amrevieus:obeperi'armedinconnectionseithOLlicensing.irisedontheconserjativeassumptionsmadeindei'icingtheseChapter16desfgn-basiseventsandthedetailedreviewoftheanalysesbythestaff,ftislikelythattheyadequatelyboundtheconsequencesof'Sfnglecontrolsystemfailures.'Yeprovideassurancothatthedesignbasfs~antanalysesadequately--boundothermorefundarrentalcrediblefailuresyouararequestedtopMYfdethe.followinginformation:(1)Identifythosecontrolsystemswhosefailureormalfunctioncouldseriouslyimpactplantsafe~.(2}Indfcatwhich,ffany,of~controlsystemsfdenstiffedfn(1)lacefvepouerfromcommonpowersourcs.Thepowersourceconsideredshouldfnc'.ucaallpouersourcesunosafailurormalfunctioncouldlea'dofailureormalfurc.icnof;orethanonecontrolsystemandshculdextendto"heefactsofcascadingpowerlossesduetcthefailureofhigherlevel',dfstrfbutionpanelsandloadcnters.~a3).Tndfcatawhich,ffany,ofthecontrolsys.msidentifiedfn.0)-receive;.inputsignalsfromcoamonsensors.Tnesensorsconsideredshouldinclude,butshouldnotnessrilybelimitedto,cca-.,cnnydraulicheaderscrimpul.salinesfeedingpressure,tamper@tora,levelorothersignalstotwoormore.controlsystms.-(4)Providefust'ffcatfcnthatanysimultaneousmal,unctionsofthecontrolsystemsunidntifiedin(2)and(3)resultingfromfailuresor7al.unc.fonsoftheapplicableccr;...onpcwersourceorsensorare"oundaabyheanalysesinChaptarl~and>Auldnotrequireac-ionorrsponsabeycnd.hecapabilityofoperatorsorsafetysys.ms,s.  
420.4ControlSystemFaflursTheanalysesrapor;ad'fn Chapter15oftheFSARarfntendedtcdemons.ratetheacauacyGsaaiysystemsinmiigatingan"ici."ated Operational occurrences andaccicents.
BoshCongressandACRSnaveraisedaaissuefnhisarea.Ccmmissicner Ahear.".e hasrasgoncad toCongressregardngthisissue(~=ertcattacho~nt tcthisenclosure) andpartofhisresponsereferredtocontrolsys-;amrevieus:obeperi'armed inconnections eithOLlicensing.
irisedontheconserjative assumptions madeindei'icing theseChapter16desfgn-basis eventsandthedetailedreviewoftheanalysesbythestaff,ftislikelythattheyadequately boundtheconsequences of'Sfnglecontrolsystemfailures.
'Yeprovideassuranco thatthedesignbasfs~antanalysesadequately--
boundothermorefundarrental crediblefailuresyouararequested topMYfdethe.following information:
(1)Identifythosecontrolsystemswhosefailureormalfunction couldseriously impactplantsafe~.(2}Indfcatwhich,ffany,of~controlsystemsfdenstiffed fn(1)lacefvepouerfromcommonpowersourcs.Thepowersourceconsidered shouldfnc'.ucaallpouersourcesunosafailurormalfunction couldlea'dofailureormalfurc.icn of;orethanonecontrolsystemandshculdextendto"heefactsofcascading powerlossesduetcthefailureofhigherlevel',dfstrfbution panelsandloadcnters.~a3).Tndfcatawhich,ffany,ofthecontrolsys.msidentified fn.0)-receive;.input signalsfromcoamonsensors.Tnesensorsconsidered shouldinclude,butshouldnotnessrilybelimitedto,cca-.,cnnydraulic headerscrimpul.salinesfeedingpressure, tamper@tora, levelorothersignalstotwoormore.controlsystms.-(4)Providefust'ffcatfcn thatanysimultaneous mal,unctions ofthecontrolsystemsunidntifiedin(2)and(3)resulting fromfailuresor7al.unc.fons oftheapplicable ccr;...on pcwersourceorsensorare"oundaabyheanalysesinChaptarl~and>Auldnotrequireac-ionorrsponsabeycnd.hecapability ofoperators orsafetysys.ms,s.  


~Resonse:.(1)Thecontrolsystemswhosefailureormalfunctionmayimpactplant,safety'areshownbelow:FEElNATERREGULATIHGSYSTEMTURBINE-GENERATORCONTROLSYSTEMSTEAMBYPASSCONTROLSYSTEMADVCONTROLSYSTEf1BORONCONTROLSYSTEM'IREACTORREGULATINGSYSTEf1CONTROLELEMENTDRIVEMECHAHISf4CONTROLPRESSURIZERPRESSURECONTROLSYSTEMPRESSURIZERLEVELCONTROLSYSTEMREACTORCOOLANTPUMPSPOWEROPERATEDRELIEFVALVESSTEAMGENERATORBLOMDOHNSYSTEM(2)E(4)Thecontrolsystemsidentifiedin(1)that,receivepowerfromcommonpowersourcesareidentifiedbelow.Theeffectoflosingthepowersourcesandanevaluationofplantresponsearealsoprovided.Theresultsofthisevaluationprovidejustification~thatanysimultaneousmalfunctionsofcontrolsystemsidentifiedherein,resultingfromcowmenpowersupplymalfunctionsareboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.  
~Resonse:.(1)Thecontrolsystemswhosefailureormalfunctionmayimpactplant,safety'areshownbelow:FEElNATER REGULATIHG SYSTEMTURBINE-GENERATOR CONTROLSYSTEMSTEAMBYPASSCONTROLSYSTEMADVCONTROLSYSTEf1BORONCONTROLSYSTEM'IREACTORREGULATING SYSTEf1CONTROLELEMENTDRIVEMECHAHISf4 CONTROLPRESSURIZER PRESSURECONTROLSYSTEMPRESSURIZER LEVELCONTROLSYSTEMREACTORCOOLANTPUMPSPOWEROPERATEDRELIEFVALVESSTEAMGENERATOR BLOMDOHNSYSTEM(2)E(4)Thecontrolsystemsidentified in(1)that,receivepowerfromcommonpowersourcesareidentified below.Theeffectoflosingthepowersourcesandanevaluation ofplantresponsearealsoprovided.
Theresultsofthisevaluation providejustification
~thatanysimultaneous malfunctions ofcontrolsystemsidentified herein,resulting fromcowmenpowersupplymalfunctions areboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapability ofoperators orsafetysystems.  


420.4(2)II(4)ImactofLossofCornnonPowerSourcesLossof120VACfromPowerPanel220I,Thispowerlosswillimpactthepressurizer:levelcontrolsystem(PLCS),thepressurizerpressurecontrolsystem(PPCS),thereactorregulatingsystem(RRS),theboroncontrolsystem(BC6),andthesteambypasscontrolsystem(SBCS).Specifically,thePLCSwilllosecontrolpower,assumingtPeselectorswitchisonthatchannel(itwillbeunaffectedifontheotherchannel).Theletdowncontrolvalvewillgotoitsfailclosedpositionaridthechargiogpumpswillremainpowered,andavailableformanualcontrol.ThePPCSwilllosecontrolpower,assumingtheselectorswitchisonthatchannel.Thepressurizersprayvalvewillgotoitsfailclosedpositionandthepressurizerheaterswillremainpoweredandavailableformanualcontrol.Addition-,allythelow-lowlevelautomaticcut-offofthepressurizerheaterswilllosecontrolpower.TheRRSwilllosepowerassumingtheselectorswitchisonthatchannel(it.will.beunaffectedifontheotherchannel).Thecontrolelementassemblieswillremainintheirpositionpriortothepowerloss.TheBCS.willnotcompletelybelost.Thereactormakeupwaterflowcontroller)silllosepowerwiththeboricacidflowcontrollerunaffected.Theletdownlinewillbeaffectedwiththetemperatureelementsfortheregenerativeandletdownheatexchangerslosingpower,.howevertheletdownlinewillbeiso-latedbytheletdowncontrolvalvesmentionedpreviously.TheSBCSwillnotreceiveaTy.veinputfromtheRRSwhichmaycausetheturbinebypassvalvestoremainclosed.SecondarypressurereliefandRCSheatremovalcontrolcanbeaccomplishedthroughthemainsteamsafetyvalvesandatmosphericdumpvalves.EvaluationofPlantResponse:ThelossofthePLCS,PPCS,RRS,BCS,andSBCSduetolossof'20VACfrompowerpanel220'willnotseriouslyimpactplantsafety.Thereactorcouldfunctionforatimewithoutoperatoractionbeforeareactortripwouldresult(mostlikelyonhighpressurizerpressure).Theoperatorcanchoosetoselectthe N
420.4(2)II(4)ImactofLossofCornnonPowerSourcesLossof120VACfromPowerPanel220I,Thispowerlosswillimpactthepressurizer:level controlsystem(PLCS),thepressurizer pressurecontrolsystem(PPCS),thereactorregulating system(RRS),theboroncontrolsystem(BC6),andthesteambypasscontrolsystem(SBCS).Specifically, thePLCSwilllosecontrolpower,assumingtPeselectorswitchisonthatchannel(itwillbeunaffected ifontheotherchannel).
otherchannelforcorrectoperationofthePLCS,PPCS,andRRS.Howevermnualcontrolofthechargingpumps,pressurizerheaters,auxiliarysprays,andturbinebypassvalvesisavailable.Theoperatorwillstillhavecontroloftheboricacidflowtothechargingpumpsandhecanchoosetoaligntherefuelingwatertanktochargingifnecessary..IQg~/yg~'~gi'6VCStnC/+un@'QB/}B&#xc3;CcS'JinSec'.6+nr~.J-.z.2Joe.nels'/xJccn~~'+~//~++<46Pn/'s,~.P.2c2$$cc~egAlga~&44~Pcpgcu/A/~oaqIsJra.+4,nipi~*r~~/e~v'~ps4e~gHz)~sots+preckg/arenn,4g4f'<~ssccroui-~c:dc/><+varipr+re~g/+qi"ear.$r6ij0+<~j4~id~  
Theletdowncontrolvalvewillgotoitsfailclosedpositionaridthechargiogpumpswillremainpowered,andavailable formanualcontrol.ThePPCSwilllosecontrolpower,assumingtheselectorswitchisonthatchannel.Thepressurizer sprayvalvewillgotoitsfailclosedpositionandthepressurizer heaterswillremainpoweredandavailable formanualcontrol.Addition-,
allythelow-lowlevelautomatic cut-offofthepressurizer heaterswilllosecontrolpower.TheRRSwilllosepowerassumingtheselectorswitchisonthatchannel(it.will.beunaffected ifontheotherchannel).
Thecontrolelementassemblies willremainintheirpositionpriortothepowerloss.TheBCS.willnotcompletely belost.Thereactormakeupwaterflowcontroller
)silllosepowerwiththeboricacidflowcontroller unaffected.
Theletdownlinewillbeaffectedwiththetemperature elementsfortheregenerative andletdownheatexchangers losingpower,.howevertheletdownlinewillbeiso-latedbytheletdowncontrolvalvesmentioned previously.
TheSBCSwillnotreceiveaTy.veinputfromtheRRSwhichmaycausetheturbinebypassvalvestoremainclosed.Secondary pressurereliefandRCSheatremovalcontrolcanbeaccomplished throughthemainsteamsafetyvalvesandatmospheric dumpvalves.Evaluation ofPlantResponse:
ThelossofthePLCS,PPCS,RRS,BCS,andSBCSduetolossof'20VACfrompowerpanel220'willnotseriously impactplantsafety.Thereactorcouldfunctionforatimewithoutoperatoractionbeforeareactortripwouldresult(mostlikelyonhighpressurizer pressure).
Theoperatorcanchoosetoselectthe N
otherchannelforcorrectoperation ofthePLCS,PPCS,andRRS.Howevermnualcontrolofthechargingpumps,pressurizer heaters,auxiliary sprays,andturbinebypassvalvesisavailable.
Theoperatorwillstillhavecontroloftheboricacidflowtothechargingpumpsandhecanchoosetoaligntherefueling watertanktochargingifnecessary.
.IQg~/yg~'~gi'6VCStnC/+un@'QB/}
B&#xc3;CcS'JinSec'.6+nr~.J-.z.2Joe.nels'/x Jccn~~'+~//~++<46Pn/'s,~.P.2c2$$cc~egAlga~&44~Pcpgcu/A/~oaqIsJra.+4,nipi~*r~~/e~v'~ps4e~gHz)~sots+preckg/arenn,4g4f'<~ssccr oui-~c:dc/><+varipr+re~g/+qi"ear.$r6ij0+<~j4~id~  


Lossof120VACfromPowerPanel221Thispowerlosswillimpactthepre~wurizerlevelcontrolsystem(PLCS).thepressurizerpressurecontrolsystem,(PPCS)andthereactorregulatingsystem(RRS)',theboroncontrolsystem(BCS),andthesteanbypasscontrolsystem(SBCS).Specifically,thesameimpactaswiththelossof120VACfrompowerpanel220willoccurwiththefollowingexceptions:Thereactormakeupwaterflowcontrolwillremainpowered,howevertheboricacidflowcontrollerwilllosepower.Additionallythetemperatureelementontheletdownheatexchangercontrollingthecomponentcoolingwatercontrolvalvewilllosepower.ThevolumecontroltanklevelinputstotheBCSwilllosepower.Alsothestationalarms(annunciators)willtransferto125YDCpower.Evaluation'ofPlantResponseTherewillbenoseriousimpacttoplantsafetyfortheeventpresentedabove.Intheabsence'ofoperatoractionthereactorwouldeventuallytrip(onhighpressurizerpressure).However.,theOperatorwouldbealertedtosuchaneventduetoincorrectpressurizerpressurelevelindicationsinthecontrolroom.HemaychoosetoswitchtheredundantchannelforcorrectoperationofthePLCS,PPCSandRRS.However,manualcontrolofthechargingpumps,pressurizerheaters,andauxiliaryspraysisavailable.,Theoperatorcanalsobypasstheboricacidflowcontrollerandprovideboratedwaterdirectlytothecharginpumpsoraignterefuelingwatertank.7"~Ad4<l4<<~sfolP>lS~t.ownoeo/~an~(8~@~plj+.3/i>-ge4gqrQ,Lossof480V]CC2A6non-essentialortionTheimpactoflosingthismotorcontrolcenter(MCC)issimilartothelossof120VACfrompowerpanel220,sincepowerpanel220receivespowerfromthisHCC.EvaluationofPlantResponse:Theplantresponseforlossofpowerpanel.220(120VAC)applies.  
Lossof120VACfromPowerPanel221Thispowerlosswillimpactthepre~wurizer levelcontrolsystem(PLCS).thepressurizer pressurecontrolsystem,(PPCS) andthereactorregulating system(RRS)',theboroncontrolsystem(BCS),andthesteanbypasscontrolsystem(SBCS).Specifically, thesameimpactaswiththelossof120VACfrompowerpanel220willoccurwiththefollowing exceptions:
Thereactormakeupwaterflowcontrolwillremainpowered,howevertheboricacidflowcontroller willlosepower.Additionally thetemperature elementontheletdownheatexchanger controlling thecomponent coolingwatercontrolvalvewilllosepower.ThevolumecontroltanklevelinputstotheBCSwilllosepower.Alsothestationalarms(annunciators) willtransferto125YDCpower.Evaluation'of PlantResponseTherewillbenoseriousimpacttoplantsafetyfortheeventpresented above.Intheabsence'ofoperatoractionthereactorwouldeventually trip(onhighpressurizer pressure).
However.,
theOperatorwouldbealertedtosuchaneventduetoincorrect pressurizer pressurelevelindications inthecontrolroom.Hemaychoosetoswitchtheredundant channelforcorrectoperation ofthePLCS,PPCSandRRS.However,manualcontrolofthechargingpumps,pressurizer heaters,andauxiliary spraysisavailable.,
Theoperatorcanalsobypasstheboricacidflowcontroller andprovideboratedwaterdirectlytothecharginpumpsoraignterefueling watertank.7"~Ad4<l4<<~sfolP>lS~t.ownoeo/~an~(8~@~plj+.3/i>-ge4gqrQ,Lossof480V]CC2A6non-essential ortionTheimpactoflosingthismotorcontrolcenter(MCC)issimilartothelossof120VACfrompowerpanel220,sincepowerpanel220receivespowerfromthisHCC.Evaluation ofPlantResponse:
Theplantresponseforlossofpowerpanel.220 (120VAC)applies.  


Lossof480YtiCC286non-essentialortionTheimpactoflosingthisHCCissimilartothelossof120YACfrompowerpanel221,sincepowerpanel221receivesitspowerfromthisHCC.CvaluationofPlantResponse:'heplantresponseforlossofpowerpanel221(12CVAC)applies.Lossof120VACVITALPANEL2A1hislossofpowerwillimpactthefeedwaterregul<ltingsystem(FHRS),steambypasscontrolsystem(SBCS)andtheturbinegeneratorcontrolsystem(TGCS).Specifically,intheFWRScontrolpowertooneregulatingvalveandbypassvalvewillbelost.Additionally,mainsteamflowinputtotheSBCSfromtheFMRSisnottransmittedfromonechannel.Theturbinerunbackmechanismwillbewithoutpower.EvaluationofPlantResponse:Thefeedwaterregulatingsystemwillstillcontroloneregulating'ndbypassvalve.Thelossoftheturbinerunbackfunctionisbackedvpbyinstr~mentationon120VACvitalPanel2Bwhichwillrunbacktheturbineinrespo'nsetothedecreasedfeedwaterflow.Shouldtherunbacknotoperateproperly,areactortripmayresultonlowsteamgeneratorpressure.Manualoperationoftheatmosphericdumpvalvesandauxiliaryfeedwaterisavailable.ShouldtheSBCSoperateproperlyorreactortripnotoccurtheplantwouldstabilizeatadecreasedpowercondition.8CLSb/aj60g0F~4<5ihN+4~7I4SCCQOQ+,Q,/Q8O4chOXKisC'~e~c~1'O.f4a~alys.~inSecAo.e:gy.gass~~ciI+ibine+Ip4lln~cJ<y0r~~pSsG4of$z,g@~f~~+r~~i'>s'~<%net+64snueriJ'+6rafeardZ~p~~g6~nygnsgr~su/$igpy/-cd'/Prmy~@5gpondy'~w4Ar4<<c',~JAlqg~A.iydcACSyes~c.7&inp/toc~dr'p,)4rA'~~~s/e~~gp~ss8cohoa~s'd'r'w>~hilda>"wP'</o~ica/Pons'cgu<~<<445cgnnri'grAsso/lQ8v'Acpl7glpqg~Z.g8chic.snoreSI~~ha.pPep~46OncFV/V&CPe~6  
Lossof480YtiCC286non-essential ortionTheimpactoflosingthisHCCissimilartothelossof120YACfrompowerpanel221,sincepowerpanel221receivesitspowerfromthisHCC.Cvaluation ofPlantResponse:
'heplantresponseforlossofpowerpanel221(12CVAC)applies.Lossof120VACVITALPANEL2A1hislossofpowerwillimpactthefeedwater regul<lting system(FHRS),steambypasscontrolsystem(SBCS)andtheturbinegenerator controlsystem(TGCS).Specifically, intheFWRScontrolpowertooneregulating valveandbypassvalvewillbelost.Additionally, mainsteamflowinputtotheSBCSfromtheFMRSisnottransmitted fromonechannel.Theturbinerunbackmechanism willbewithoutpower.Evaluation ofPlantResponse:
Thefeedwater regulating systemwillstillcontroloneregulating
'ndbypassvalve.Thelossoftheturbinerunbackfunctionisbackedvpbyinstr~mentation on120VACvitalPanel2Bwhichwillrunbacktheturbineinrespo'nse tothedecreased feedwater flow.Shouldtherunbacknotoperateproperly, areactortripmayresultonlowsteamgenerator pressure.
Manualoperation oftheatmospheric dumpvalvesandauxiliary feedwater isavailable.
ShouldtheSBCSoperateproperlyorreactortripnotoccurtheplantwouldstabilize atadecreased powercondition.
8CLSb/aj60g 0F~4<5ihN+4~7I4SCCQOQ+,Q,/Q8O4chOXKisC'~e~c~1'O.f4a~alys.~inSecAo.e:gy.gass~~ciI+ibine+Ip4lln~cJ<y0r~~pSsG4of$z,g@~f~~+r~~i'>s'~<%net+64snueriJ'+6rafeardZ~p~~g6~nygnsgr~su/$igpy/-cd'/Prmy~@5gpondy'~w4Ar4<<c',~JAlqg~A.iydcACSyes~c.7&inp/toc~dr'p,)4r A'~~~s/e~~gp~ss8cohoa~s'd'r'w>~hilda>"wP'</o~ica/Pons'cgu<~<<445cgnnri'grAsso/lQ8v'Acpl7glpqg~Z.g8chic.snoreSI~~ha.pPep~46OncFV/V&CPe~6  


120VACVitalPanel2BThislossofpowerwillimpactthefeedwaterregulatingsystem(FHRS),steambypasscontrolsystem(SBCS),andtheturbinegeneratorcontrolsystem(TGCS).'pecifically,intheFNRScontrolpowertooneregulatingvalveandonebypassvalvewillbelost.Additionally,controloftheSBCSwouldbelost.TheTGCSwouldremainfunctional,butwouldsufferalossofthebackuptotheturbinerunbackfunction.EvaluationofPlantResponse:TheFMRS.willstillcontroloneregulatingandonebypassassvalve.TheSBCSwillbewithoutcontrolpowetandtheturbinewouldrunbackinresponsetodecreasedfeedwaterflow.Shoulditnotrunbackareactortripmayresultonlowsteamgeneratorpressure.re.TheauxiliaryfeedwaterandatmosphericdumpvalvesareavailableforRCSheatremoval.Shouldareactortripnotbegeneratedanewsteyadstateatadecreasedpower4(Pc/c4(cth.~i&t4+PspsC/~v/f4levelwouldoccur.7~eoac.l~>'c~-38')4I)&Wjsscgna~s5~Lossof120VACVitalPanels2Aand28ThispowerlosswillimpacttheRIRS,SBCS,and.pTGCS.Secifically,feedwaterandsteambypasscontrolwouldbelostandtheturbinerunbackmechanismwouldlosepower.EvaluationofPlantResponse:,Areactortripon'lowsteamgeneratorlevelwillresult.Automaticactuationofauxiliaryfeedwaterandopeningofthemainsteamsafetyvalveswillrel:ievesecondarysystempressure.Theatmphatmoshericdumpvalvesand'auxi18aryfeedwaterwillbeusedtocontrolRCSheatremoval.Lossof125VOC.Bus2ABThispowerlosswillimpac~elltheRRS,thePPCSandtheTGCS.Specifically,controloftheRRSandPPCS,bothchannels,wouldbedisabled.Theturbinetripsolenoidsandgeneratorunderfrequenyclockoutrelayswouldbedisabled.Theturbinetripsolenoidsandgeneratorunderfrequencylockoutrelayswouldbewithoutpower{f{failedclosed)~ance/gis/'Fw/onlOs'rnulf0ace.(emn&e/4<4~4'8.3fyOSS4'tn8ocJzTnis5ccna~l~.nnulpsis<<&cd+~/~2.4E~ssum4'c/ogr/l~~J'*v~'/~4%AoF'MA~4.ne&.'p.4l~4~rrCJCC>>dg+4Hd.yg/'-cAwf~~io(dg/c~l(n>>w<gm~cwg.F'4>>4~I~~W  
120VACVitalPanel2BThislossofpowerwillimpactthefeedwater regulating system(FHRS),steambypasscontrolsystem(SBCS),andtheturbinegenerator controlsystem(TGCS).'pecifically, intheFNRScontrolpowertooneregulating valveandonebypassvalvewillbelost.Additionally, controloftheSBCSwouldbelost.TheTGCSwouldremainfunctional, butwouldsufferalossofthebackuptotheturbinerunbackfunction.
Evaluation ofPlantResponse:
TheFMRS.willstillcontroloneregulating andonebypassassvalve.TheSBCSwillbewithoutcontrolpowetandtheturbinewouldrunbackinresponsetodecreased feedwater flow.Shoulditnotrunbackareactortripmayresultonlowsteamgenerator pressure.
re.Theauxiliary feedwater andatmospheric dumpvalvesareavailable forRCSheatremoval.Shouldareactortripnotbegenerated anewsteyadstateatadecreased power4(Pc/c4(cth.~i&t4+PspsC/~v/f4levelwouldoccur.7~eoac.l~>'c~-38')4I)&Wjsscgna~s5~Lossof120VACVitalPanels2Aand28ThispowerlosswillimpacttheRIRS,SBCS,and.pTGCS.Secifically, feedwater andsteambypasscontrolwouldbelostandtheturbinerunbackmechanism wouldlosepower.Evaluation ofPlantResponse:
,Areactortripon'lowsteamgenerator levelwillresult.Automatic actuation ofauxiliary feedwater andopeningofthemainsteamsafetyvalveswillrel:ievesecondary systempressure.
Theatmphatmoshericdumpvalvesand'auxi18ary feedwater willbeusedtocontrolRCSheatremoval.Lossof125VOC.Bus2ABThispowerlosswillimpac~elltheRRS,thePPCSandtheTGCS.Specifically, controloftheRRSandPPCS,bothchannels, wouldbedisabled.
Theturbinetripsolenoids andgenerator underfrequen yclockoutrelayswouldbedisabled.
Theturbinetripsolenoids andgenerator underfrequency lockoutrelayswouldbewithoutpower{f{failedclosed)~ance/gis/'Fw/onlOs'rnulf0ace.(emn&e/4<4~4'8.3fyOSS4'tn8ocJzTnis5ccna~l~.nnulpsis<<&cd+~/~2.4E~ssum4'c/ogr/l~~J'*v~'/~4%AoF'MA~4.ne&.'p.4l~4~rrCJCC>>dg+4Hd.yg/'-cAwf~~io(dg/c~l(n>>w<gm~cwg.F'4>>4~I~~W  


VUIEvaluationofPlantResponse:TheCEAswouldremaininthepositiontheywere-inbeforethepowerlossandcouldbecontrolledthroughtheCEDHCSbytheoperator.l(ithoutthePPCS,pressurecontrolwouldbemaintainedbymanualcontrolofthechargingpumpsandletdownandaU.xiliaryspray.Shouldareactortripresult,theturbinewouldnottripelectricallybutwouldbetrippedautomaticallyonamechanicaloverspeedtrip.IfrequiredthemainsteamisolationvalveswouldcloseisolatingtheturbineandmaintainingRCSheatremovalfunctions.9T4II/esso+~F&gkeQo~~"~~)'-~(~sp~4enp.3,Q.Q/pcs>,d5ggsca~r~8../Q/p.>5j~p/4Ac'Pks~4+~>+~c~l'~~+~'opspos~I"cS4r~o(~~Vg/o~~n4~isor~!~~y'pj'c5pgcgs8C5P'gyqkgc'J/I/cia'*np/deolo)Ic)bCrCrV~e,L~as~>prggAC/Y,S/$~~~~NA/pe4,4,oAPrA~~~<Ca.  
VUIEvaluation ofPlantResponse:
TheCEAswouldremaininthepositiontheywere-inbeforethepowerlossandcouldbecontrolled throughtheCEDHCSbytheoperator.
l(ithoutthePPCS,pressurecontrolwouldbemaintained bymanualcontrolofthechargingpumpsandletdownandaU.xiliary spray.Shouldareactortripresult,theturbinewouldnottripelectrically butwouldbetrippedautomatically onamechanical overspeed trip.Ifrequiredthemainsteamisolation valveswouldcloseisolating theturbineandmaintaining RCSheatremovalfunctions.
9T4II/esso+~F&gkeQo~~"~~)'-~(~sp~4enp.3,Q.Q/pcs>,d5ggsca~r~8../Q/p.>5j~p/4Ac'Pks~4+~>+~c~l'~~+~'opspos~I"cS4r~o(~~Vg/o~~n4~isor~!~~y'pj'c5pgcgs8C5P'gyqkgc'J/I/cia'*np
/deolo)Ic)bCrCrV~e,L~as~>prggAC/Y,S/$~~~~NA/pe4,4,oAPrA~~~<Ca.  


.84.ImactofFailureinComnonSensorsThecontrolsystemsidentifiedin(1)thatreceiveinputsignalsfromcommonsensorsareidentifiedbelow.Oescriptionsof,theeffectofthemalfunctionsonthecontrolsystemsandanevaluationofplantresponseandbackupsystemavailabilityarealsoprovided.Prudentengineeringjudgmentbasedonknowledgeofsystemdesignandtransientanalysiswasusedtodevelop'thesedescriptions.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsofcontrolsystemsidentifiedherein;resultingfromcommonsensormalfunctionsareboundedbytheanalysesofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.ftalfunctionofPressurizerPressureSinalfailslowtotheRRSandPPCSIf.malfunctioncausesalowpressurizerpressursignaltobe,trans-@])mitted,thepressurizerheaterswouldturnon~hepressurizersprayswouldshutoff+an4-0h~11,apgi~W~+~EvaluationofPlangresponse:dSyydunkr'h~rdh.;~AT>4all~iThereactoruouid]tnPonhighpressurizerpressure/tt1tdd-dttt1manuallyandcontrolpressurewiththechargingandletdownsystems.andauxiliarysprays.Shouldthereactornottrip,becausetheappropriatetripsetpointswerenotreachedbytheaffectedparameters~(pressureandpower),anewsteadystatewouldbereached.Operator,actioncouldmaintainpoweroperationuntilthesensorcouldberepairedq~LpAg'Csonario~~c~Ipp4agafpsrsgg~$prgre,gdl,pGLjhu'4c~rpDcw7P~S/rdr'd4r.rPrgz/ae~pryrrrrtISdtrli5~Drrss~r.A'>fgzbe~c~awrJr,~dsl~D@Sr'gee4'rSk5rrhr4+rart  
.84.ImactofFailureinComnonSensorsThecontrolsystemsidentified in(1)thatreceiveinputsignalsfromcommonsensorsareidentified below.Oescriptions of,theeffectofthemalfunctions onthecontrolsystemsandanevaluation ofplantresponseandbackupsystemavailability arealsoprovided.
Prudentengineering judgmentbasedonknowledge ofsystemdesignandtransient analysiswasusedtodevelop'thesedescriptions.
Theresultsofthisevaluation providejustification thatanysimultaneous malfunctions ofcontrolsystemsidentified herein;resulting fromcommonsensormalfunctions areboundedbytheanalysesofChapter15andwouldnotrequireactionorresponsebeyondthecapability ofoperators orsafetysystems.ftalfunction ofPressurizer PressureSinalfailslowtotheRRSandPPCSIf.malfunction causesalowpressurizer pressursignaltobe,trans-@])mitted,thepressurizer heaterswouldturnon~hepressurizer sprayswouldshutoff+an4-0 h~11,apgi~W~+~Evaluation ofPlangresponse:
dSyydunkr'h~rdh.;~AT>4all~iThereactoruouid]tnP onhighpressurizer pressure/
tt1tdd-dttt1manuallyandcontrolpressurewiththechargingandletdownsystems.andauxiliary sprays.Shouldthereactornottrip,becausetheappropriate tripsetpoints werenotreachedbytheaffectedparameters
~(pressure andpower),anewsteadystatewouldbereached.Operator,actioncouldmaintainpoweroperation untilthesensorcouldberepairedq~LpAg'Csonario~~c~Ipp4agafpsrsgg~$prgre,gdl,pGLjhu'4c~rpDcw7P~S/rdr'd 4r.rPrgz/ae~pryrrrrtISdtrli5~Drrss~r.A'>fgzbe~c~awrJr,~dsl~D@Sr'gee4'rSk5rrhr4+rart  


,t'q~Qtl~0MalfunctionofPressurizerPressureSinalfailshihtotheRRSandPPCSIfthemalfunctioncausesahighpressurizersignaltobetransmitted,thepressurizersprayswouldcomeonandthepressurizerheaterswouldbede-energized.TheRRSwouldadjusttherodsinresponsetothehighpressuresignaltherebydecreasingreactorpower..fEvaluationofPlantResponse:+~@,~<4"g+6'1stThereactorwouldtriponAloupressurizerpressure,andaSIASmayresult.Theoperatorcouldclosethesprayvalvesandusethechargingandletdownsystemsandauxiliaryspraytocontrolpressure.Shouldthereactornottripduetoaffectedparametersnotreachingthetripsetpoints,anewsteadystatewouldbereached.Operatoractioncouldmaintainpoweroperationuntilthesensorcouldberepaved.MalfunctionofPressurizerLevelSinalfailslowtothePLCSandPPCSIfmalfunctioncausesalowpressurizerlevelsignaltobetransmitted,thechargingflowwouldincreaseandletdownflowwoulddecrease.Thepressurizerheaterswouldbede-energizedifalowenoughsignalwastransmitted.'valuationofPlantResponse:IncreasingprasurizrlevelwouldbeidentifiedbytheoperatoronCf.~C@ffleveliud~ceticCn)alarminthecontrolroom.Iianuaicontrolofthechargingandletdownsystemscouldpreventtheoverfillingofthepressurizera}}dprecludeareactortriponhighpressurizerpressure.y~'gz~~>+>~boun)edQqP~eP'em/4lorylhyeve~legyp/r'ri2giMalfunctionofPressurizerLevelSinalfailshihtothePLCSandPPCSI'fmalfunctioncausesahighpressurizerlevelsignaltobetransmitted,thechargingflowwoulddecreaseandletdownincrease.  
,t'q~Qtl~0Malfunction ofPressurizer PressureSinalfailshihtotheRRSandPPCSIfthemalfunction causesahighpressurizer signaltobetransmitted, thepressurizer sprayswouldcomeonandthepressurizer heaterswouldbede-energized.
TheRRSwouldadjusttherodsinresponsetothehighpressuresignaltherebydecreasing reactorpower..fEvaluation ofPlantResponse:
+~@,~<4"g+
6'1stThereactorwouldtriponAloupressurizer
: pressure, andaSIASmayresult.Theoperatorcouldclosethesprayvalvesandusethechargingandletdownsystemsandauxiliary spraytocontrolpressure.
Shouldthereactornottripduetoaffectedparameters notreachingthetripsetpoints, anewsteadystatewouldbereached.Operatoractioncouldmaintainpoweroperation untilthesensorcouldberepaved.Malfunction ofPressurizer LevelSinalfailslowtothePLCSandPPCSIfmalfunction causesalowpressurizer levelsignaltobetransmitted, thechargingflowwouldincreaseandletdownflowwoulddecrease.
Thepressurizer heaterswouldbede-energized ifalowenoughsignalwastransmitted.'valuation ofPlantResponse:
Increasing prasurizrlevelwouldbeidentified bytheoperatoronCf.~C@ffleveliud~cetic Cn)alarminthecontrolroom.Iianuaicontrolofthechargingandletdownsystemscouldpreventtheoverfilling ofthepressurizer a}}dprecludeareactortriponhighpressurizer pressure.
y~'gz~~>+>~boun)edQqP~eP'em/4lorylhyeve~legyp/r'ri2giMalfunction ofPressurizer LevelSinalfailshihtothePLCSandPPCSI'fmalfunction causesahighpressurizer levelsignaltobetransmitted, thechargingflowwoulddecreaseandletdownincrease.  


N'~lf"p~r/g(f4gg+r+/p0A/ocJ/~4ri3<r'rt'sSore~cJo~(gpneYi.n7y4('~ih~,A~~8A~z-.yA~~g~~/Wc,~o~~noWr~(pJygs>+QRl'ps'gy('gAp(/j4t)Chic/+/Cw'I/.4/4/Is4>1anyplIn<ergzysgk~7(<ig~cn~/pxrJ'FWb/oej4.pc6~'lIcil41<>/+C'nSechCnrE.4.g.(goanJJ4a~o~rSc'/imari~--EvaluationofPlantResponse:AdecreasingpressurizerlevelmayleadtoapossiblereactortripIIonlowpressureandSIASiftheoperator.doesnotintervene.TheSIASwouldisolateletdownandchargingwouldbeavailabletorestorepressurizerlevel.Operatorcouldavert'areactortripandSIASthrough.manualcontrolofchargingandletdownbasedonlevelindication'ncontrolroom.MalfunctionofFirstStaeTurbinePressureSinalfailslowtotheRRSIfthemalfunctioncausesalowpressuresignaltobetransmittedtheRRSwillinserttheCEAstoproduceaTavecommensuratewiththelowpressuresignal.ThisTaveoutputsignalistransmittedtotheSBCSaffectingitsoperation.Evaluation"ofPlantResponse:ThereducedheatoutputfromtheRCS~duetotheinsertingoftheregulatingCEAsreducesthesteamflowtotheturbine..TheSBCSreceivesalowTavesignalfromtheRRSsothevalveswillnotopen.Areactor.tripwouldoccuronlowsteamgeneratorpressurewithapossibleMSIS.ThemainsteamsafetyvalvesandatmosphericdumpvalvesareavailableforcontrollingRCSheatremoval.MalfunctionofFirstStaeTurbinePressureSinalfa'ilshihtotheRRSIfthealfunctiancausesahighpressuresignaltobetransmitted~theRRSPmwithdrawregulatingCEAstoproduceaTavecommensuratewiththehighpressuresignal.4865'I'~QO(CcWOEPF7~$Olg4~7/gJ4~~0/Sg,i',g40(egg4/>~<++>c2dog0A~spy~ge(orcorpr$/J4r4cic''nCrC~SryQyI-e<<p)ASSCC4&~r~CcPrgq~/',~~<~~<C-r4'$A./6/n0$54gcfp/rssy~gyQgh(ssJd~Ae7CI'ediYPKcSgc'S~4j4,/no.~/~jp~~~gQre/~Fipcj+ill~Tubed(44pl'+Jpggw)sp$og/(Ega%/yyJfgg~r  
N'~lf"p~r/g(f4gg+r+/p0A/ocJ/~4ri3<r'rt'sSore~cJo~(gpneYi.n7y4('~ih~,A~~8A~z-.yA~~g~~/Wc,~o~~noWr~(pJygs>+QRl'ps'gy
('gAp(/j4t)Chic/+/Cw'I/.4/4/Is4>1anyplIn<ergzysgk~7(<ig~cn~/pxrJ'FWb/oej4.pc6~'lIcil41<>/+C'nSechCnrE.4.g.(goanJJ4a~o~rSc'/imari~--Evaluation ofPlantResponse:
Adecreasing pressurizer levelmayleadtoapossiblereactortripIIonlowpressureandSIASiftheoperator.doesnotintervene.
TheSIASwouldisolateletdownandchargingwouldbeavailable torestorepressurizer level.Operatorcouldavert'areactortripandSIASthrough.manualcontrolofchargingandletdownbasedonlevelindication
'ncontrolroom.Malfunction ofFirstStaeTurbinePressureSinalfailslowtotheRRSIfthemalfunction causesalowpressuresignaltobetransmitted theRRSwillinsert theCEAstoproduceaTavecommensurate withthelowpressuresignal.ThisTaveoutputsignalistransmitted totheSBCSaffecting itsoperation.
Evaluation"of PlantResponse:
ThereducedheatoutputfromtheRCS~duetotheinserting oftheregulating CEAsreducesthesteamflowtotheturbine..
TheSBCSreceivesalowTavesignalfromtheRRSsothevalveswillnotopen.Areactor.tripwouldoccuronlowsteamgenerator pressurewithapossibleMSIS.Themainsteamsafetyvalvesandatmospheric dumpvalvesareavailable forcontrolling RCSheatremoval.Malfunction ofFirstStaeTurbinePressureSinalfa'ilshihtotheRRSIfthealfunctian causesahighpressuresignaltobetransmitted~the RRSPmwithdrawregulating CEAstoproduceaTavecommensurate withthehighpressuresignal.4865'I'~QO(CcWOEPF7~$Olg4~7/gJ4~~0/Sg,i',g40(egg4/>~<++>c2dog0A~spy~ge(orcorpr$/J4r4cic''nCrC~Sry QyI-e<<p)ASSCC4&~r~CcPrgq~/',~~<~~<C-r4'$A./6/n0$54gcfp/rssy~gyQgh(ssJd~Ae7CI'ediYPKcSgc'S~4j4,/no.~/~jp~~~gQre/~Fipcj+ill~Tubed(44pl'+Jpggw)sp$og/(Ega%/yyJfgg~r  


yg~~>~,>>~</uJ~y'A~t~~~i/'~cd~wp/sI5(+st//JtrsPe~/eJS')gayAi'SeVe~dW<~/+nodDC(<~AStareS~C4an64~+a/A6,C+k~H('/IjV2CZ,~A/Cvl//damdan@'C/Cy)4Qppsan5'H.Wci'e4C<r'tEvaluationofPlantResponse:Theicreased~eatoputfomtheRCSdutowithdrawgtheegultingCEAsincreastheteamowto~hetuine.heSSreceveshiTavesignalomtRRS.Amistchbween,,aveapresureitheeamheerasmeasurdbyeSBCopen/thetrbinypas/valve.Theeningoftheevalvssenantomat'cwi~drawproibittohecorol.elmentrivechaniconolsstestopp'ngCwithdral.eopeatornmanllyowernerosorswittotheotherRRSchanneltresuastablendition.MalfunctionofMainSteamFlowSinalfailslowtotheFMRSandSBCSIfthemalfunctioncausesalowsteamflowsignaltobetransmitted,themFHRSwillreducefeedwaterflowandtheSBCS'meropentheturbinebypassvalves.EvaluationofPlantResponse:Themismatchbetweenfeedwaterflowandturbinedemandwouldproduceareactortriponlowsteamgeneratorlevel.TheauxiliaryfeedwatersystemandmanualcontroloftheSBCSoratmosphericdumpvalvesisavailabletoachieveastabilizedplantcondition.T4Zsa/~Ab~d~/taipeiyhi.5'4047IA~8CjrOn/S.4a'.8~dtaadS4isS'<tmggs/dna<aSyHO'Sst/seamerSr((recc'nasl/s~yoldeQngl'on&/ir<'prQ/casa.+/rapDm4)4/srecur<,pwas/assg~MalfunctionofMainSteamFlowSinalfailshihtotheFIIRSandSBCSIfthemalfunctioncausesahighsteamflowsignaltobetransmitted,w'(Il.mttheRNSwillincreasefeedwaterflowandtheSBCSmay<opentheturbinesvpa-,s~e~~a-w~p~.EvaluationofPlantResponse:Thesteamgeneratorlevel.wi'11increaseandthee-may-be-asteamtrill)Ml~ct.~.g""pd~l~"N~p71operatorcouldmanuallycontroltheFURSandSBCSbasedonsteamgeneratorlevelandpressureindicationsinthecontrolroom.Shouldtheoperatornottakeactionahighsteamgeneratorlevelsignalwouldclosethefeedwaterregulatingvalvesandtriptheturbine.Areactortrip  
yg~~>~,>>~</uJ~y'A~t~~~i/'~cd~w p/sI5(+st//JtrsPe~/eJS')gayAi'SeVe~dW<~/+nodDC(<~AStareS~C4an64~+a/A6,C+k~H('/I jV2CZ,~A/Cvl//damdan@'C/Cy
)4Qppsan5'H.Wci'e4C<r'tEvaluation ofPlantResponse:
Theicreased~eatoputfomtheRCSdutowithdrawgtheegultingCEAsincreastheteamowto~hetuine.heSSreceveshiTavesignalomtRRS.Amistchbween,,aveapresureitheeamheerasmeasurdbyeSBCopen/thetrbinypas/valve.Theeningoftheevalvssenantomat'cwi~drawproibittohecorol.elmentrivechaniconolsstestopp'ngCwithdral.eopeatornmanllyowernerosorswittotheotherRRSchanneltresuastablendition.Malfunction ofMainSteamFlowSinalfailslowtotheFMRSandSBCSIfthemalfunction causesalowsteamflowsignaltobetransmitted, themFHRSwillreducefeedwater flowandtheSBCS'meropentheturbinebypassvalves.Evaluation ofPlantResponse:
Themismatchbetweenfeedwater flowandturbinedemandwouldproduceareactortriponlowsteamgenerator level.Theauxiliary feedwater systemandmanualcontroloftheSBCSoratmospheric dumpvalvesisavailable toachieveastabilized plantcondition.
T4Zsa/~Ab~d~/taipeiyhi.5'4047IA~8CjrOn/S.4a'.8~dtaadS4isS'<tmggs/dna<aSyHO'Sst/seamerSr((recc'nasl/s
~yoldeQngl'on&/ir<'prQ/casa.+/rapDm4)4/srecur<,pwas/assg~Malfunction ofMainSteamFlowSinalfailshihtotheFIIRSandSBCSIfthemalfunction causesahighsteamflowsignaltobetransmitted, w'(Il.mt theRNSwillincreasefeedwater flowandtheSBCSmay<opentheturbinesvpa-,s~e~~a-w~p~.Evaluation ofPlantResponse:
Thesteamgenerator level.wi'11increaseandthee-may-be-a steamtrill)Ml~ct.~.
g""pd~l~"N~p71operatorcouldmanuallycontroltheFURSandSBCSbasedonsteamgenerator levelandpressureindications inthecontrolroom.Shouldtheoperatornottakeactionahighsteamgenerator levelsignalwouldclosethefeedwater regulating valvesandtriptheturbine.Areactortrip  


onturbinetripwouldfollowwithactuationofauxiliaryfeedwateronsteamgeneratorlowlevelsignal.AuxiliaryfeedwaterandmanualoperattonoftheSBCSoratmosphericdumpvalvesprovideamechanismfor;RCSheai;removaltostabilizetheplant.rncrcchQpgnFC+plccJ44'*tP4~cue<~is-.1~tgg~~'5~~~~,~.fh<<~/ySIsinI>~f.3.IQSSWACS~maxi'a~~>ncrC~epqQ+Mcr'locoace6giRlgreIn4I-QrE'sAirmaxi'aiea,s.>40"84spn(Le7I'gnowe/ASpu<A'7W+wnyiCcg>A,~/klc046k,/*Ill'-gPDIcAJgUPgo~n~~c4c'p,'~g+g~d,ice6-~psaysg~.erich~lg<</a~AnDgrpJzgpsAa~SLqrrylecsc2/winshe~s~>~$ua/~a~o~pZg  
onturbinetripwouldfollowwithactuation ofauxiliary feedwater onsteamgenerator lowlevelsignal.Auxiliary feedwater andmanualoperatton oftheSBCSoratmospheric dumpvalvesprovideamechanism for;RCSheai;removaltostabilize theplant.rncrcchQpgnFC+plccJ44'*t P4~cue<~is-.1~tgg~~'5~~~~,~.fh<<~/ySIsinI>~f.3.IQSSWACS~maxi'a~~>ncrC~epqQ+Mcr'locoace6giRlgreIn4I-QrE'sAirmaxi'aiea,s.>40"84spn(Le7I'gnowe/ASpu<A'7W+wnyiCcg>A,~/klc046k,/*Ill'-gPDIcAJgUPgo~n~~c4c'p,'~g+g~d,ice6-~psaysg~.erich~lg<</a~AnDgrpJzgpsAa~SLqrrylecsc2/winshe~s~>~$ua/~a~o~pZg  


Coo+onLines/Sensors13172-310-110Rev.103/4-RC-127Ins.P,T,L,FPDT-1121CPDT-1124'ZPDT-1124YPProcess/SachetSSIndicationOn1yIndicationOn1y1-RC-104PT-1104PT-1102(C)SS1-RC>>?05PT-1103PT-1108PT-1102(A)PT-1100(X)LT-1105LT-1110XSIndicationOnlySPIndicationOnlyPKS1-RC-130'T-1110V'T-1100YPT-1102(B)PT-1107PT-1105SIndicationOn)yS1-RC-107PT-1106PT-1102(0)S2998-6-074Sh'.1SG2811-1"-l51-108LT-9023ALT-9021SPindicates  
Coo+onLines/Sensors 13172-310-110 Rev.103/4-RC-127 Ins.P,T,L,FPDT-1121CPDT-1124'ZPDT-1124YPProcess/Sachet SSIndication On1yIndication On1y1-RC-104PT-1104PT-1102(C)SS1-RC>>?05PT-1103PT-1108PT-1102(A)PT-1100(X)LT-1105LT-1110XSIndication OnlySPIndication OnlyPKS1-RC-130'T-1110V'T-1100YPT-1102(B)PT-1107PT-1105SIndication On)yS1-RC-107PT-1106PT-1102(0)S2998-6-074 Sh'.1SG2811-1"-l51-108 LT-9023ALT-9021SPindicates  


Co@nonTaEns.PT.LFPPl"ocess/Sachet',2998-6-079Sh.1SG2AII-1"t51-100LT-9013A.LT-9011'E-I"lSI-101I-I"MSI-102PT-8013ALT-9013ALT-9011PT-8013BLT-9013BSSS.I-1"f4SI-103LT-9013BE-1"l61-104'T-8013CPT-8113D-9013CSSindicationSE-I"NSI-104LT-9013LSI-I"t61-106PT-8013DLT-9005LT-9013DLT-9113LT-9012SPSSindicatePI-1"HSI-116LT-9012LY-9013I-1"f51-107LT-9005LT-9013DPS  
Co@nonTaEns.PT.LFPPl"ocess/Sachet'
,2998-6-079 Sh.1SG2AII-1"t51-100LT-9013A.LT-9011'E-I"lSI-101I-I"MSI-102PT-8013ALT-9013ALT-9011PT-8013BLT-9013BSSS.I-1"f4SI-103LT-9013BE-1"l61-104'T-8013CPT-8113D-9013CSSindication SE-I"NSI-104LT-9013LSI-I"t61-106PT-8013DLT-9005LT-9013DLT-9113LT-9012SPSSindicatePI-1"HSI-116LT-9012LY-9013I-1"f51-107LT-9005LT-9013DPS  


Ins.PTLFPProcess/SafetSLT-9021LT-9023APT-8023APindicates,SSPT-8023BLT-9023BS'.SLT-9023BSPT-8023LPT>>8123LT-9023CSSindicationSLT-9023CPT-80230LT-9006LT9023LT-9022.LT-9123SPindicates$tPPindicatesLT-9123LT-9022,PindicatesPindicates.LT-9023LT-9006SPindicates  
Ins.PTLFPProcess/Safet SLT-9021LT-9023APT-8023APindicates, SSPT-8023BLT-9023BS'.SLT-9023BSPT-8023LPT>>8123LT-9023CSSindication SLT-9023CPT-80230LT-9006LT9023LT-9022.LT-9123SPindicates
$tPPindicates LT-9123LT-9022,Pindicates Pindicates.
LT-9023LT-9006SPindicates  


ImactofFailureofConmonInstrumentLineorTaTheattachedTableidentifiestheComonLine/Tapforprotectionchannelandcontrolchannels(ormultiplecontrolchannels)thatareservingmultiple--channels.Thistablehasbeenreviewedandthoselinesortapswhichweredeterminedtobelimitingintheireffectonplantresponse'reidentifiedbelow.Theeffectoflosingprotectionchannelsduetoasinglefailureonacommninstrumentlineortap,asidentifiedintheresponsetoquestion420.06doesnotdefeatrequiredprotectionsystemredundancy.Thereforetheeffectoflosingpnotectionchannelsisnotaddressedhere.Descriptionsoftheeffectofthemalfunctionsonthecontrolsystemsandanevaluationofplantresponseandbackupsystemalailabi'lityarealsoprovided.Prudentengineeringjudgement..basedonknowledgeofsystemdesigndandtransientanalysiswasusedtodevelopthesedescriptions.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsof-controlsystemsidentifiedherein,resulting~~~~~~fromcordoninstrumentlineortapmalfunctionsareboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.PressurizerPressureSinalPT-1100XandPressurizerLevelSinalLT-1110'TI-RC.IIISystemsaffectedareI'P8;PPCS,PLCS,andSBCSEvaluationofPressureSinalandLevelSinalFailinLowduetoInstrument74OamaeonP'lantResonse:d'fmalfunctioncausesalowpressureandlevelsignaltobetransmitted,.thepressurizerheaterswouldturnon~,hepressurizersprayswoulddecreaseflow.T4e-R~e~~4yM~4he~~emes~eg~e1T.N~pl~&"-RBcc5&~tff~~H~~i~~n~pew~IA~dddp.TRPCC~IddIddincreasecharging.Duetotheincreaseincharging>andpressurizerheatingthereactormaytriponhighpressurizerpressure,~I'OIRIIRP~~kipddTRpI;IICyId  
ImactofFailureofConmonInstrument LineorTaTheattachedTableidentifies theComonLine/Tapforprotection channelandcontrolchannels(ormultiplecontrolchannels) thatareservingmultiple--channels.
Thistablehasbeenreviewedandthoselinesortapswhichweredetermined tobelimitingintheireffectonplantresponse're identified below.Theeffectoflosingprotection channelsduetoasinglefailureonacommninstrument lineortap,asidentified intheresponsetoquestion420.06doesnotdefeatrequiredprotection systemredundancy.
Therefore theeffectoflosingpnotection channelsisnotaddressed here.Descriptions oftheeffectofthemalfunctions onthecontrolsystemsandanevaluation ofplantresponseandbackupsystemalailabi'lity arealsoprovided.
Prudentengineering judgement
..basedonknowledge ofsystemdesigndand transient analysiswasusedtodevelopthesedescriptions.
Theresultsofthisevaluation providejustification thatanysimultaneous malfunctions of-controlsystemsidentified herein,resulting
~~~~~~fromcordoninstrument lineortapmalfunctions areboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapability ofoperators orsafetysystems.Pressurizer PressureSinalPT-1100XandPressurizer LevelSinalLT-1110'TI-RC.III SystemsaffectedareI'P8;PPCS,PLCS,andSBCSEvaluation ofPressureSinalandLevelSinalFailinLowduetoInstrument 74OamaeonP'lantResonse:d'fmalfunction causesalowpressureandlevelsignaltobetransmitted,
.thepressurizer heaterswouldturnon~,hepressurizer sprayswoulddecreaseflow.T4e-R~e~~4yM~
4he~~emes~eg~e 1T.N~pl~&"-RBcc5&~tff~~H~~i
~~n~pew~IA~dddp.TRPCC~IddIddincreasecharging.
Duetotheincreaseincharging>
andpressurizer heatingthereactormaytriponhighpressurizer pressure,~
I'OIRIIRP~
~kipddTRpI;IICyId  


mntationfromwhichtoevaluateeventprogress;Manualcontrolofcharging,atttasphericdumpvalvesandauxiliarysprays,withouttheuseofPLCS,PPCS,andSBCSwillbringtheplanttoastablecondition.I4.P+~>>tf)geafi'e/eIASl943sueg6g/5gc/fridnS//rer//flr~6'nrl>'re//W<<ncr'erEvaluationofPressureSinalandLevelSinalFailinHihduetoInstrumentTaDamaeonPlantResonse.::Ifmalfunctioncausedahighpressureandlevelsignaltobetransmitted,thepressurizerheaters,wouldde-energize,thesprayswouldincreaseflow.TheRRSwouldadjustrodsinresponsetothehighpressuresignaltherebydecreas-ingreactorpower.TheSBCSwouldreceivealowerTaveinputduetothedecreaseinreactorpowerandnotopentheTBVs.ThePLCSwouldircreaselet-'ownanddecreasecharging.AlowpressurizerpressuresituationwouldoccurleadingtoapossiblereactortripandSIASonlowpressureoranewsteadystateatlowerpowerandpressure.Theoperatorhassafetygradeinstrumentationsfromwhichtoevaluateeventprogress.IsolationofletdownonSIASorbytheoperatorandmanualcontrolofchargingwithpressurizersprayi<~>solationwillbringtheplanttoastableconditionwithoutusingthePLCS,PPCS,andSBCS.EvaluationofPressure"Sinal'.FailinHihandLevelSinalFailinLowduetoInstrumentTaDamaeanPlantResonse:TheplantresponseissimilarforthePPCS,RRS,andSBCSasdiscussedaboveforthepressuresignalfailinghigh.ThePLCS,howeverwouldincreasecharging('fanddecreaseletdown.,Theincreaseinchargingandpressurizersprayflowwithnopressurizerheatersmayleadtoalawpressureconditionorasteadily!increasingpressurizerlevel.Theoperatorhas,safetygradeinstrumentationIfromwhichtoevaluateeventprogress.thnualcontrolofchargingandturningoff.pressurizersprayswillbringtheplanttoastablecondition.'7$c,~nMski<4oe"Qe-j/cssfere'eig~a/feqmcfg~vclgpfm/@/li/pfPi~Lwj/Q/lP/P/9gd@h+P/0+/'/'*+/pyq~~pr+ssurv~ow/cg/pcgvgg7wary~Gcu/er/enc/egnper@re/cr~~n//V(c'p-/~geerre/nA'nn)Aters49ovt:rpr/ssur/2'~grcv//;Sic%fggrg~ggpjgc/pc~grpI'@I84r88offri7PQ,pl.Q4~OJ/4e,+bpenrwpoFa/+nen.rc/frrrc/eee>>ki/eence/nnen'(Sec//cn/e$.Z/)Q/~V,/go~qgp,WF4gji0IS0wCw/pg<SGenkggC+2 8pprHisJCCharoa+A'edrA~<~ooQ~+'P~o~onom~e~~Croendlong4ooG.y~~'II"a/m>eDHgoo14I"P0/enoFo(G.Qowwo8/r'estv4/~d'GAt'6f'l(o'SSCdO'O1AOID.Idaoo]0/'CS/4o'CAMj''PSonCCWr(Is'd~/76AAsp44+++lISd'<>n7J~n4/neo.n7oo'nsooc~bn/s'.c',QoSDNz+s-IIII'P~&#xc3;IFIFIIdl1di~IFili818duetoInstrumentTaDama~eonPlantResonse:AsdiscussedintheevaluationforbothsignalsfailinglowthePPCS~~~andSBCSresponseissimilar.ThePLCS,howeverwouldincreaseletdownanddecreasechargihg.,-~.~.r,888'FFIIA~~~~Iw~muve.Theoperatorcanmanuallycontrol'chargingtoincreasepres-surizerrlevelandisolateletdownflow.The,plantcanbebroughttoastableconditionthroughoperatoractionandmanualcontrolofthePPCS,PLCS,~andS8CS.IPressurizerPressureSinalPT-1100YandPressurizerLevelSinalLT-1110Y~TaI-RC-130.PThesystemsaffectedandtheevaluationofplantresponsearethesameasthosedescribedaboveforpressurizerpressuresignal(PT-llOOX)andpres-surizerlevelsigna'i(LT-1110X)--SteamGeneratorLevelSinal.LT-9021andLT-9011TaI-1"NSI-108.SystemaffectedistheRlRSEvaluationofLevelSinalsFailinLowduetoInstrumentTaDamaeon~PlIIIfthemalfunctioncausesalowsteamgeneratorlevelsignaltobesentfrombothtransmittersthentheflo'wcontrolvalvewouldopentaincreaselevelforbothsteamgenerators.AsfeedwaterflowincreasedtheB(RSwouldnoteamismatchbetweenmain,steamandfeedwaterflow.Thiswouldclosetheflowcontrolvalvetomatchfeedwaterandsteamflow.Anoscillationoftheflowcontrolvalvewithinc&easingsteamgeneratorlevelresultsleadingtoahighsteamgeneratorlevelsignalbeingsentfromthereactorprotectionsystemtoclosethecontrolvalvesandtriptheturbine.Shouldthecontrolvalvesnotcloseandturbinenottriptheoperatorcouldtakemanualactiontoclosethevalvesorstopthefeedwaterpumps.Finallyahigh-highsteamgeneratorlevelsignalwouldclosethefe'edwaterpumpdischargevalvesshouldtheaboveactionsnotoccr.~~luwyc4fMMa-f/>c'y~Ur+/4&+Iw)fr/rf<)k>II'/ISgnac-pn~oodnnnrIIonIdopi'lvknr/jIo'.IooFMInf/oooa'uo/anfox/ul~nIpcdo.oQgEvaluationofLevelSinalsFailinHihduetoInstrumentTaDamaeon~PIfthemalfunctioncausedahighsteamgeneratorlevelsignaltobesentfrombothtransmittersthentheflowcontrolvalvewouldclosetodecreaselevelforbothsteamgenerators.AsfeedwaterflowdecreasedtheFHRSwouldnotea5@<.,
mntationfromwhichtoevaluateeventprogress; Manualcontrolofcharging, atttaspheric dumpvalvesandauxiliary sprays,withouttheuseofPLCS,PPCS,andSBCSwillbringtheplanttoastablecondition.
et, mismatchbetween'mainsteamandfeedwaterflow.Thiswouldopentheflow1controlvalvetomatchfeedwaterandsteamflow.Anoscillationoftheflow'controlvalvewithdecreasingsteamgeneratorlevelresults,leadingto'areactortriponlowsteamgeneratorlevel.Auxiliaryfeedwaterwouldbeautomatically1actuated.toaccountfortheinsuH'icienteedwaerflow.i~~~'>~"0"4-/age/lP'gjhff.cf~8r-zEs.g.(PauzAPAis,deicero694$54fP<~+~~>+~+</~~<~'4'~s>'vantihnotOneLevelGial.iaslinIi5andneLevelSinalFailinLowduetoInstrumentTaDamaeonPlantResonse:,Onesteamgeneratorwo'uldexperienceadecreasinglevelduetoclosingofthecontrolvalveonreceiptofthefailedhighlevelsignal.Theothersteamgeneratorwouldexperienceanincreasinglevelduetoopeningofthecontrolvalveonreceiptofthefailedlowlevelsignal.Theresultwouldbeeitherareactortriponlowsteamgeneratorleveloraclosureofthecontrol.valveonhighpsteamgeneratorlevelwithaturbinetrip.Additionally,theoperatorcantakeappropriateaction(manualreactbrtripwithauxiliaryfeedwateractuation)basedonsafetygradesteamgeneratorlevelinstrumentation.Qi'yjdfgsiSSm~b'av~~eepapja'djug)y~a~~)sSteamGeneratorLevelSinals'LT-9005andLT-9012Tal-l"-NSI-106SystemaffectedistheFWRSEvaluationofLevelSinalsFailinLowduetoInstrumentTaDamaeonPlant~Resonse:Hiderangesteamgeneratorlevelwillindicatealowlevelconditionononesteamgenerator.Theoperatorwillstillhavesafetygradesteamgenerator.levelindicationstorelyon(onesafetychannelofthefoursafetycharm'elswillalsobelost.foithatsteamgenerator).Additionally,onthesamesteamgeneratoYtfijgfnst'cementationandcontrolof.thefeedwaterbypassvalvesendsasignaltoopenthevalveandactuatesalowlevelalarminthecontroltroom.Howeversince,aturbinetrip,signalisnotpresentitwillnotopenthevalve.,Forconservati,smitisassumedtoopenincreasingflowtothesteamgenerator.TheintactportionoftheFWRSonthatsteamgeneratorwillseetheincreasedlevelandclosetheregulatingvalveenoughtomain'tainlevel.Shouldthisregulatingvalvecontrolworkimproperly~ahighsteamgenerator'evelwillcauseclosureofthefeedwaterregulatingvalvesandturbinetrip.Theoperatorcanuse.theauxiliaryfeedwatersystemtomaintainadequateinventoryintheaffectedsteamgeneratorandmaychoosetomanuallytriptheplantbasedonsafetygradeinstrumentationreadingsconflictingwithprocessinstrumentationandcontrolactions.-]$d.dld4sfiqvjyj5jmoupsdscEpci+i1d+nmlma5~+F~~v>~f/~~dmvmffff-P~55c+i'mn.l~~/uIfubj"E~mi55uw&'Pi~@"~<1,~+~~&#x17d;~~ii~fpmr+ilull~Q~F~g~~  
I4.P+~>>tf)geafi'e/e IASl943sueg6g/5gc/fridnS//rer//flr~6'nrl>'r e//W<<ncr'erEvaluation ofPressureSinalandLevelSinalFailinHihduetoInstrument TaDamaeonPlantResonse.::Ifmalfunction causedahighpressureandlevelsignaltobetransmitted, thepressurizer heaters,wouldde-energize, thesprayswouldincreaseflow.TheRRSwouldadjustrodsinresponsetothehighpressuresignaltherebydecreas-ingreactorpower.TheSBCSwouldreceivealowerTaveinputduetothedecreaseinreactorpowerandnotopentheTBVs.ThePLCSwouldircreaselet-'ownanddecreasecharging.
Alowpressurizer pressuresituation wouldoccurleadingtoapossiblereactortripandSIASonlowpressureoranewsteadystateatlowerpowerandpressure.
Theoperatorhassafetygradeinstrumentations fromwhichtoevaluateeventprogress.
Isolation ofletdownonSIASorbytheoperatorandmanualcontrolofchargingwithpressurizer sprayi<~>solation willbringtheplanttoastablecondition withoutusingthePLCS,PPCS,andSBCS.Evaluation ofPressure" Sinal'.FailinHihandLevelSinalFailinLowduetoInstrument TaDamaeanPlantResonse:TheplantresponseissimilarforthePPCS,RRS,andSBCSasdiscussed aboveforthepressuresignalfailinghigh.ThePLCS,howeverwouldincreasecharging('fanddecreaseletdown.,
Theincreaseinchargingandpressurizer sprayflowwithnopressurizer heatersmayleadtoalawpressurecondition orasteadily!increasing pressurizer level.Theoperatorhas,safetygradeinstrumentation Ifromwhichtoevaluateeventprogress.
thnualcontrolofchargingandturningoff.pressurizer sprayswillbringtheplanttoastablecondition.
'7$c,~nMski<4oe"Qe-j/cssfere'eig~a/f eqmcfg~vcl gpfm/@/li/pfPi~L wj/Q/lP/P/9gd@h+P/0+
/'/'*+/pyq~~pr+ssurv~ow/cg/pcgvgg7wary~Gcu/er/enc/eg nper@re/cr~~n//V(c'p-/~geerre/nA'nn
)Aters49ovt:rpr/ssur/2'~grcv//;
Sic%fggrg~ggpjgc/pc~grpI'@I84r88 offri7PQ,pl.Q4~OJ/4e,+bpenrwpoFa/+nen.rc/frrrc/eee>>ki/eence/nnen'(Sec//cn/e$.Z/)Q/~V,/go~qgp,WF4gji0IS0wCw/pg<SGenkggC+2 8pprHisJCCharoa+A'edrA~<~ooQ~+'P~o~onom~e~~Croendlong4ooG.y~~'II"a/m>eDHgoo14I"P0/enoFo(G.Qowwo8/r'estv4/~d'GAt'6f'l(o'SSCdO'O1AOID.Idaoo]0/'CS/4o'C AMj''PSonCCWr(Is'd~/76AAsp44+++lISd'<>n7J~n4/neo.n7oo'nsooc~bn/s'.c',QoSDNz+s-IIII'P~&#xc3;IFIFIIdl1di~IFili 818duetoInstrument TaDama~eonPlantResonse:Asdiscussed intheevaluation forbothsignalsfailinglowthePPCS~~~and SBCSresponseissimilar.ThePLCS,howeverwouldincreaseletdownanddecreasechargihg.
,-~.~.r,888'FFIIA~~~~Iw~muve.Theoperatorcanmanuallycontrol'charging toincreasepres-surizerrlevelandisolateletdownflow.The,plantcanbebroughttoastablecondition throughoperatoractionandmanualcontrolofthePPCS,PLCS,~andS8CS.IPressurizer PressureSinalPT-1100YandPressurizerLevelSinalLT-1110Y~TaI-RC-130.
PThesystemsaffectedandtheevaluation ofplantresponsearethesameasthosedescribed aboveforpressurizer pressuresignal(PT-llOOX) andpres-surizerlevelsigna'i(LT-1110X)--
SteamGenerator LevelSinal.LT-9021andLT-9011TaI-1"NSI-108.SystemaffectedistheRlRSEvaluation ofLevelSinalsFailinLowduetoInstrument TaDamaeon~PlIIIfthemalfunction causesalowsteamgenerator levelsignaltobesentfrombothtransmitters thentheflo'wcontrolvalvewouldopentaincreaselevelforbothsteamgenerators.
Asfeedwater flowincreased theB(RSwouldnoteamismatchbetweenmain,steamandfeedwater flow.Thiswouldclosetheflowcontrolvalvetomatchfeedwater andsteamflow.Anoscillation oftheflowcontrolvalvewithinc&easing steamgenerator levelresultsleadingtoahighsteamgenerator levelsignalbeingsentfromthereactorprotection systemtoclosethecontrolvalvesandtriptheturbine.Shouldthecontrolvalvesnotcloseandturbinenottriptheoperatorcouldtakemanualactiontoclosethevalvesorstopthefeedwater pumps.Finallyahigh-high steamgenerator levelsignalwouldclosethefe'edwater pumpdischarge valvesshouldtheaboveactionsnotoccr.~~luwyc4 fMMa-f/>c'y~Ur+/4&+Iw)fr/rf<)k>II'/ISgnac-pn~oodnnn rIIonIdopi'lvknr
/jIo'.IooFMIn f/oooa'uo/anfox/ul~nIpcdo.oQgEvaluation ofLevelSinalsFailinHihduetoInstrument TaDamaeon~PIfthemalfunction causedahighsteamgenerator levelsignaltobesentfrombothtransmitters thentheflowcontrolvalvewouldclosetodecreaselevelforbothsteamgenerators.
Asfeedwater flowdecreased theFHRSwouldnotea5@<.,
et, mismatchbetween'main steamandfeedwater flow.Thiswouldopentheflow1controlvalvetomatchfeedwater andsteamflow.Anoscillation oftheflow'controlvalvewithdecreasing steamgenerator levelresults,leadingto'areactortriponlowsteamgenerator level.Auxiliary feedwater wouldbeautomatically 1actuated.toaccountfortheinsuH'icient eedwaerflow.i~~~'>~"0"4-/age/lP'gjhff.cf~8r-zEs.g.(PauzAPAis,deicero694$54fP<~+~~>+~+</~~<~'4'~s
>'vantihnotOneLevelGial.iaslinIi5andneLevelSinalFailinLowduetoInstrument TaDamaeonPlantResonse:,Onesteamgenerator wo'uldexperience adecreasing levelduetoclosingofthecontrolvalveonreceiptofthefailedhighlevelsignal.Theothersteamgenerator wouldexperience anincreasing levelduetoopeningofthecontrolvalveonreceiptofthefailedlowlevelsignal.Theresultwouldbeeitherareactortriponlowsteamgenerator leveloraclosureofthecontrol.valveonhighpsteamgenerator levelwithaturbinetrip.Additionally, theoperatorcantakeappropriate action(manualreactbrtripwithauxiliary feedwater actuation) basedonsafetygradesteamgenerator levelinstrumentation.
Qi'yjdfgsiSS m~b'av~~eepapja'dj ug)y~a~~)sSteamGenerator LevelSinals'LT-9005andLT-9012Tal-l"-NSI-106 SystemaffectedistheFWRSEvaluation ofLevelSinalsFailinLowduetoInstrument TaDamaeonPlant~Resonse:Hiderangesteamgenerator levelwillindicatealowlevelcondition ononesteamgenerator.
Theoperatorwillstillhavesafetygradesteamgenerator
.levelindications torelyon(onesafetychannelofthefoursafetycharm'els willalsobelost.foithatsteamgenerator).
Additionally, onthesamesteamgeneratoYtfijgfnst'cementation andcontrolof.thefeedwater bypassvalvesendsasignaltoopenthevalveandactuatesalowlevelalarminthecontroltroom.Howeversince,aturbinetrip,signalisnotpresentitwillnotopenthevalve.,Forconservati,sm itisassumedtoopenincreasing flowtothesteamgenerator.
TheintactportionoftheFWRSonthatsteamgenerator willseetheincreased levelandclosetheregulating valveenoughtomain'tain level.Shouldthisregulating valvecontrolworkimproperly~a highsteamgenerator'evel willcauseclosureofthefeedwater regulating valvesandturbinetrip.Theoperatorcanuse.theauxiliary feedwater systemtomaintainadequateinventory intheaffectedsteamgenerator andmaychoosetomanuallytriptheplantbasedonsafetygradeinstrumentation readingsconflicting withprocessinstrumentation andcontrolactions.-]$d.dld4sfiqvjy j5jmoupsdscE pci+i1d+nmlma5~+F~~v>~f/~~dmvmffff-P~55c+i'mn.
l~~/uIfubj"E~mi55uw&'Pi~@"~<1,~+~~&#x17d;~~ii~fpmr+ilull~Q~F~g~~  


EvaluationofevelSinalsPailinHihduetoInstrumentationTa~DaaaeonPlantResonse:HiderangesteamgeneratorlevelIilli'ndicateahighlevelconditionononesteamgenerator.Theoperatorwi11stillhavesafetygradesteamgeneratorlevelindicationstorelyon(onesafetychannelofthefoursafetychannelsivillalsobelostforthatsteamgenerator).Thecontrolandinstrumentationforthebypassvalve>villseethehighlevelsignalandactuateahighlevelyla'larminthecontrolroom.TheoperatorbasedonsafetygradeinstrumentationwillseenormallevelbecausetheFHRSvalvesarenotactingimproperly.However,duetoerronouslevelsignalshemaytakemanualcontroloftheRJRSandeventuallytripthereaCtorusingauxiliaryfeedwatertocontrolsteamgeneratorinventdry.EvaluationofOneLevelSinalFailinHihandOneLevelSinalFailinLou<OnetoInstrusentTaOamaeonPlantResense:~~~~~~~~~~~~~Hiderangesteamgeneratorlevelindicationdoesnotcontrolasystemandtheoperatorwillcompareittosafetyrelatedinstrumentationtoascertainthetruereading.Failureoftheinstrumentationandcontrolofthefeedwaterbypassvalveis~~+br+discussedpreviously.SteamGeneratorLevelSinalsLT-9006andLT-9022Tal-l"MSI-114ThesystemsaffectedandevaluationofplantresponsearethesameasforsteamgeneratorlevelsignalsLT-9005andLT-9012forinstrumenttap1-1"tlSI-106.  
Evaluation ofevelSinalsPailinHihduetoInstrumentation Ta~DaaaeonPlantResonse:Hiderangesteamgenerator levelIilli'ndicate ahighlevelcondition ononesteamgenerator.
Theoperatorwi11stillhavesafetygradesteamgenerator levelindications torelyon(onesafetychannelofthefoursafetychannelsivillalsobelostforthatsteamgenerator).
Thecontrolandinstrumentation forthebypassvalve>villseethehighlevelsignalandactuateahighlevelyla'larminthecontrolroom.Theoperatorbasedonsafetygradeinstrumentation willseenormallevelbecausetheFHRSvalvesarenotactingimproperly.
However,duetoerronouslevelsignalshemaytakemanualcontroloftheRJRSandeventually tripthereaCtorusingauxiliary feedwater tocontrolsteamgenerator inventdry.
Evaluation ofOneLevelSinalFailinHihandOneLevelSinalFailinLou<OnetoInstrusent TaOamaeonPlantResense:~~~~~~~~~~~~~Hiderangesteamgenerator levelindication doesnotcontrolasystemandtheoperatorwillcompareittosafetyrelatedinstrumentation toascertain thetruereading.Failureoftheinstrumentation andcontrolofthefeedwater bypassvalveis~~+br+discussed previously.
SteamGenerator LevelSinalsLT-9006andLT-9022Tal-l"MSI-114Thesystemsaffectedandevaluation ofplantresponsearethesameasforsteamgenerator levelsignalsLT-9005andLT-9012forinstrument tap1-1"tlSI-106.  


CondenserStoraeTankLevelSinal.sLT-12-llAandLT.-12-11BTheothercontrolchanneltransmittersshavingacommontapnotidentifiedinthetableare'theCondensateStorageTankleveltransmitterLT-12-11Aand118.Individualrootvalvesandexcessflowcheckvalvesareaddedtoensurethatinstrumentlineruptureinonechanneldoesnotaffecttheotherchannel.Theonly,failure.affectingbothchannelsisthebreakofthetap.Fordiversity,bnsafetyrelatedlevelswitchesprovidelowlevelalarmsonthesafetyannunciators.SincethefunctionofLT-12-11Aand118isonlyindicationandalarmandsincealarmbackupisprovidedatapfailure.wouldnotcausesystem.actions,requiredtobeanalyzedbyChapter15oftheFSAR.t  
Condenser StoraeTankLevelSinal.sLT-12-llA andLT.-12-11B Theothercontrolchanneltransmitters shavingacommontapnotidentified inthetableare'theCondensate StorageTankleveltransmitter LT-12-11A and118.Individual rootvalvesandexcessflowcheckvalvesareaddedtoensurethatinstrument lineruptureinonechanneldoesnotaffecttheotherchannel.Theonly,failure.affecting bothchannelsisthebreakofthetap.Fordiversity, bnsafetyrelatedlevelswitchesprovidelowlevelalarmsonthesafetyannunciators.
SincethefunctionofLT-12-11A and118isonlyindication andalarmandsincealarmbackupisprovidedatapfailure.wouldnotcausesystem.actions,requiredtobeanalyzedbyChapter15oftheFSAR.t  


0803M-4420.14(7.2)Thereactorprotectionsystem(RPS)includestwotripinputs(turbinetripandlossofcomponentcoolingwatertrip)whichareclassifiedasnotbeingrequiredforreactorprotection.Itisthestaff'sposition(BTPXCSB26)thatallreactortripinputstotheRPSarerequiredtomeetthedesignrequirementsofIEEE279withoutexceptionsThisincludestheentiretripfunctionfromthesensortothefinalactuateddevices'SARChapter15showsthattheaccidentanalysistakscreditforreactortriponturbinetrip.FSARSubsection7.2.2.2.11statesthattheturbinetripistakenfromnon-ClassXEhydraulicoilpressureswitches.Theuseofnon-ClassIEswitchesisnotacceptable.Also,itisnotclearthatthecomponentcoolingwatertripmeetstherequirementsofXEEE-279.Therefore,provideadescriptionoftheseandothersuchRPSinputswithrespecttotheirconformancetoBTPICSB26.Thisdesigndescriptionshouldbesupportedwithelectricalschematics,logicdiagrams,pipingandinstrumentdrawings,testproceduresandtechnicalspecifications.sponoeTheChapter15accidentanalysisdoesnottakecreditforreactortriponturbinetriptomitigatetheresultsofanyevent.Thisissostatedinnote7toTable15.0-7.ThesequenceofeventsanalysespresentedinChapter15recognizethatsuchatripexistsandmayoccur.FortheIncreasedFeedwaterFlow(withfailuretoachieveafasttransferata4.16kVbus)eventpresentedinSubsection15.1..2',itwasmoreadversetotripthereactoronturbinetrip.Thiswasdonetoincreasethecooldownforthisincreasedheatremovalevent.ThiseventisdiscussedintheresponsetoQuestion420.11,~/,IMhouggthapvoa:repsat/notraq~sMa~wgr~azeqyggq>cQpis~Cia,XEaccoacwipt~&ERg2V9.~+&oint.on,e:vic6~Ad,$c4-t~irine~tr.~ptits-to~Efie-RPS-accordance-wi~gu3.atpCy'6Qp~li:Ugf.:9420.14-1  
0803M-4420.14(7.2)Thereactorprotection system(RPS)includestwotripinputs(turbinetripandlossofcomponent coolingwatertrip)whichareclassified asnotbeingrequiredforreactorprotection.
Itisthestaff'sposition(BTPXCSB26)thatallreactortripinputstotheRPSarerequiredtomeetthedesignrequirements ofIEEE279withoutexceptions Thisincludestheentiretripfunctionfromthesensortothefinalactuateddevices'SAR Chapter15showsthattheaccidentanalysistakscreditforreactortriponturbinetrip.FSARSubsection 7.2.2.2.11 statesthattheturbinetripistakenfromnon-Class XEhydraulic oilpressureswitches.
Theuseofnon-Class IEswitchesisnotacceptable.
Also,itisnotclearthatthecomponent coolingwatertripmeetstherequirements ofXEEE-279.
Therefore, provideadescription oftheseandothersuchRPSinputswithrespecttotheirconformance toBTPICSB26.Thisdesigndescription shouldbesupported withelectrical schematics, logicdiagrams, pipingandinstrument
: drawings, testprocedures andtechnical specifications.
sponoeTheChapter15accidentanalysisdoesnottakecreditforreactortriponturbinetriptomitigatetheresultsofanyevent.Thisissostatedinnote7toTable15.0-7.Thesequenceofeventsanalysespresented inChapter15recognize thatsuchatripexistsandmayoccur.FortheIncreased Feedwater Flow(withfailuretoachieveafasttransferata4.16kVbus)eventpresented inSubsection 15.1..2',itwasmoreadversetotripthereactoronturbinetrip.Thiswasdonetoincreasethecooldownforthisincreased heatremovalevent.Thiseventisdiscussed intheresponsetoQuestion420.11,~/,IMhouggthapvoa:reps at/notraq~sMa~wgr~azeqyg gq>cQpis~Cia,XEaccoacwipt~&ERg2V9.
~+&oint.on,e:vic6~Ad,$c4-t~irine~tr.~ptits-to~Efie-RPS
-accordance-wi
~gu3.atpCy'6Qp~li:U gf.:9420.14-1  


a-LossofCCWTripFour(4)flowtransmittersFT-14-15A,B,CaDarelocatedontheCCNcommonreturnheadertomonitorCCWflowfromtheRCP's.Thesefour(4)transmittersarepoweredfromredundantClasslEpowersupplies(MA,MB,MC6MD)andarephysicallyandelectricallyseparatedinaccordancewiththeRG1.75.CCWflowoutoftheRCP'sarecontinuouslymonitoredanddisplayedonRTGBoard206inthecontrolroom.UpondetectionoflossofCCWfromtheRCP'sanalarminthecontrolroomwillalerttheoperatoraboutthelowflowconditionsothatapropercorrectiveactioncanbetakenimmediately.Xfflowisnotreestablishedin10minutestheRPSisactuatedtotripthereactor.ThetestswitchesarealsoprovidedontheRTGBoard206toenabletestingtheindicator-bistable.PleaserefertotheCWDsheet206(2998-B-327)forthecompletecircuit.hecomponentcoolingwatertripmeetstherequirementsofIEEE-279-71asdescribedintheFSARChapter7.2.  
a-LossofCCWTripFour(4)flowtransmitters FT-14-15A,B,C aDarelocatedontheCCNcommonreturnheadertomonitorCCWflowfromtheRCP's.Thesefour(4)transmitters arepoweredfromredundant ClasslEpowersupplies(MA,MB,MC6MD)andarephysically andelectrically separated inaccordance withtheRG1.75.CCWflowoutoftheRCP'sarecontinuously monitored anddisplayed onRTGBoard206inthecontrolroom.Upondetection oflossofCCWfromtheRCP'sanalarminthecontrolroomwillalerttheoperatoraboutthelowflowcondition sothatapropercorrective actioncanbetakenimmediately.
Xfflowisnotreestablished in10minutestheRPSisactuatedtotripthereactor.ThetestswitchesarealsoprovidedontheRTGBoard206toenabletestingtheindicator-bistable.
PleaserefertotheCWDsheet206(2998-B-327) forthecompletecircuit.hecomponent coolingwatertripmeetstherequirements ofIEEE-279-71asdescribed intheFSARChapter7.2.  


Isolationdevices(rated2000V)areprovidedfortheturbinetripinputstotheRPSinaccordancewithRG1.75andareroutedasdescribedbelowsuchthattherearenocredibleeventsthatcancompromisethefunctionoftheRPS.GeneralTheturbinetripinputcablesareterminatedatTB'A'ocatedatthenorthendoftheTurbineGeneratorBuildingpedestalandareroutedtoEL43.00oftheReactorAuxiliaryBuilding(directlyundertheReactorProtectionSystemCabinet).EachofthefourcablesareroutedinitsowndedicatedconduittheentirelengthandisuniquelyidentifiedNMA,NMB,NMC,NMD.Noothercableispermittedtoberoutedwiththesecables.1Thecablesconcerneda~identifiedasfollows:ChannelNMA20710U(NMA)ChannelNMB20710V(NMB)ChannelNMC20710W(NMC)ChannelNMD'0710X(NMD)~SecificCableRoutinTB'A'slocatedatthenorthendoftheTurbinepedestalatEL.62.00.Eachcableisroutedinitsownembeddedconduitinthepedestalanddownthepedestalleg.Theconduitsexitthepedestallegandrunembeddedtoanelectricalmanholesasfollows:-MH256-ForCables20710U(NMA)and20710W(NMC)-MH257-ForCables20710V(NMB)and20710X(NMD)Insidemanhole256,cables20710Uand20710Wareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttotheeastwalls.Highvoltagecables,6.9kVand4.16kVareroutedinthismanhole,howevertheflexiblecondui.tsareroutedinsuchamannersoastomaintainaminimumseparationof18inchesfromallhighvoltagecables.Thisseparationisreducedto12inchesatthewestfaceforadistanceof6inches,astheflexibleconduitconvertstoanembeddedconduit.Insidemanhole257,cables20710Vand20710Kareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttothenorthwalls.Againaswasthecasefrommanhole256,high'oltagecablesofthe4.16kVand6.9kVclassareroutedwithinthemanhole.However,theflexibleconduitsareroutedinsuchamannersoastomaintainaminimumseparationof24inchesfromallhighvoltagecables.  
Isolation devices(rated2000V)areprovidedfortheturbinetripinputstotheRPSinaccordance withRG1.75andareroutedasdescribed belowsuchthattherearenocredibleeventsthatcancompromise thefunctionoftheRPS.GeneralTheturbinetripinputcablesareterminated atTB'A'ocated atthenorthendoftheTurbineGenerator BuildingpedestalandareroutedtoEL43.00oftheReactorAuxiliary Building(directly undertheReactorProtection SystemCabinet).
Eachofthefourcablesareroutedinitsowndedicated conduittheentirelengthandisuniquelyidentified NMA,NMB,NMC,NMD.Noothercableispermitted toberoutedwiththesecables.1Thecablesconcerned a~identified asfollows:ChannelNMA20710U(NMA)ChannelNMB20710V(NMB)ChannelNMC20710W(NMC)ChannelNMD'0710X(NMD)~SecificCableRoutinTB'A'slocatedatthenorthendoftheTurbinepedestalatEL.62.00.
Eachcableisroutedinitsownembeddedconduitinthepedestalanddownthepedestalleg.Theconduitsexitthepedestallegandrunembeddedtoanelectrical manholesasfollows:-MH256-ForCables20710U(NMA)and20710W(NMC)-MH257-ForCables20710V(NMB)and20710X(NMD)Insidemanhole256,cables20710Uand20710Wareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttotheeastwalls.Highvoltagecables,6.9kVand4.16kVareroutedinthismanhole,howevertheflexiblecondui.ts areroutedinsuchamannersoastomaintainaminimumseparation of18inchesfromallhighvoltagecables.Thisseparation isreducedto12inchesatthewestfaceforadistanceof6inches,astheflexibleconduitconvertstoanembeddedconduit.Insidemanhole257,cables20710Vand20710Kareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttothenorthwalls.Againaswasthecasefrommanhole256,high'oltage cablesofthe4.16kVand6.9kVclassareroutedwithinthemanhole.However,theflexibleconduitsareroutedinsuchamannersoastomaintainaminimumseparation of24inchesfromallhighvoltagecables.  


EachmanholealthoughnonsafetyrelatedandthereforecategorizedasnonseismiccategoryI,isdesignedsimilarto,ie.rebaretcaseismicmanholesuchthatduringaseismicevent,MH256orMH257willbehavesimilartoaseismicallydesignedmanholeandwillnotfail.Itmustbenotedthatthe4.16kVand6.9kVcablesaredesignedwithmetallicleadsheathsandallcableisclassIEqualified,meetingtherequirementsofIEEE383.ThecablesexitthemanholesintheirownembeddedconduitsandareroutedintotheReactorAuxiliaryBuildingbasementwheretheyenterpullboxes.,Fromeachpullbox,thecablesareroutedintheirownseparateandindepen-dentconduitsupthewestReactorAuxiliaryBuildingwalltotheisolationboxesmountedunderEL62.00gustbelowtheRPScabinet.Fromtheisolationboxes,theclassIEcables20710H-(MA)20710JMB)20710K(MC)and20710C(MD)areroutedintheirownconduitsandentertheirrespectivesectionsoftheRPSCabinet.Onthebasisofthespecialtreatmentofthesecables,beyondtherequirementsofRG1.75,asdescribedabove,wecanseenocredibleeventwherecablesofhighvoltage(6.9kVand4.16kV)cancomeincontactwiththeturbinetrip'cablestotheRPS.TurbinetripinputstotheRPSareproperlyisolatedthroughseparate-mountedisolationrelaybox.Therelay-boxisaNEMA4typecon-struction,withadequatemountingandphysicalseparationdesignthatmeetIEEE-344-1975andRG1.75requirement.pry,cfd'heisolationrelayisAgastatEGPtypewhichhabeenqualifiedtoXEEE-323-l974..Asdescribedintheattachedsystemcontrolreport,@he'Mw9.eel='a~x~~4bz~'heEGPtyperelay~atleast2000volt,RMSisolationfromthecoilsidetothecontactside.
Eachmanholealthoughnonsafetyrelatedandtherefore categorized asnonseismiccategoryI,isdesignedsimilarto,ie.rebaretcaseismicmanholesuchthatduringaseismicevent,MH256orMH257willbehavesimilartoaseismically designedmanholeandwillnotfail.Itmustbenotedthatthe4.16kVand6.9kVcablesaredesignedwithmetallicleadsheathsandallcableisclassIEqualified, meetingtherequirements ofIEEE383.ThecablesexitthemanholesintheirownembeddedconduitsandareroutedintotheReactorAuxiliary Buildingbasementwheretheyenterpullboxes.
0 OnOctober30,1980,SystemsControlconducted.43al:eel.r~testsontwoAgastatEGPrelayswhichareIEEE-323prequalifiedtyperelays,Thefirstrelay,describedhereafteras"TestVehicleNl,"wasatypeEPG1001,serialnumber80411508,andwitha120VAC,60HZcoil.Thesecondrelay,describedhereafteras"TestVehicle12<"wasatypeEPGD001,serialnumber80411510,andwitha125VDCcoil.Thetestwasdividedintotwoparts."Inpartone>>bothrelaysweresubjectedtoupwardsof5,000VDCandtheleakagecurrentmeasured.AHipotronicsseries300HipotandMegohmeter,lastcalibratedonMarch18,1980,wasusedtosupplythevoltageandmeasuretheleakagecurrent.EachtestvehiclewasattachedtoatypeCR0095socketandproperlyseatedinplacewithtypeCR0155lockingstraps.(SeetheattacheddatasheetonAgastatsocketsandstraps).Therelaysandsocketswerethenmountedona2x6woodboard.Thetestwaseffectedbyattachi.ngthehotleadfromtheHipotandMegohmetertoonesideoftherelaycoilwhilethegroundleadwasconnectedtooneotthecontactconnections.Thevoltagewasthenincreasedfromzerotoeither5,000voltsoruntiltheHipotandMegohmeterautomatically.shutitselfdownwhentheleakagecurrentexceeded5.5milliamperes.Thevoltagewasthenreducedtozeroandthegroundleadattachedtoanothercontactconnectionandthetestrepeated.Nhenallthecontactconnectionshadthuslybeentested,theHipotandMegohmeterhotleadwasconnectedtotheothersideofthecoilandthewholeseriesoftestsrepeated.Duringautomaticshutdown,thehighestattainablevoltagewasrecorded.Attachedpleasefindthedataresultsfromtheabovedescribedtests.P~Inviewoftheabove,wemustconcludetheAgastatGPtyperelaywillqualifytothespecified2,000voltsRMSisolation.Inaddition,themanufacturerguaranteesa2,000voltRMSisolationfortheAgastatrelay.  
,Fromeachpullbox,thecablesareroutedintheirownseparateandindepen-dentconduitsupthewestReactorAuxiliary Buildingwalltotheisolation boxesmountedunderEL62.00gustbelowtheRPScabinet.Fromtheisolation boxes,theclassIEcables20710H-(MA) 20710JMB)20710K(MC)and20710C(MD)areroutedintheirownconduitsandentertheirrespective sectionsoftheRPSCabinet.Onthebasisofthespecialtreatment ofthesecables,beyondtherequirements ofRG1.75,asdescribed above,wecanseenocredibleeventwherecablesofhighvoltage(6.9kVand4.16kV)cancomeincontactwiththeturbinetrip'cablestotheRPS.TurbinetripinputstotheRPSareproperlyisolatedthroughseparate-mountedisolation relaybox.Therelay-box isaNEMA4typecon-struction, withadequatemountingandphysicalseparation designthatmeetIEEE-344-1975 andRG1.75requirement.
pry,cfd'heisolation relayisAgastatEGPtypewhichhabeenqualified toXEEE-323-l974..
Asdescribed intheattachedsystemcontrolreport,@he'Mw9.eel='a~x~~4bz~'he EGPtyperelay~atleast2000volt,RMSisolation fromthecoilsidetothecontactside.
0 OnOctober30,1980,SystemsControlconducted.43al:eel.r~
testsontwoAgastatEGPrelayswhichareIEEE-323prequalified typerelays,Thefirstrelay,described hereafter as"TestVehicleNl,"wasatypeEPG1001,serialnumber80411508, andwitha120VAC,60HZcoil.Thesecondrelay,described hereafter as"TestVehicle12<"wasatypeEPGD001,serialnumber80411510, andwitha125VDCcoil.Thetestwasdividedintotwoparts."Inpartone>>bothrelaysweresubjected toupwardsof5,000VDCandtheleakagecurrentmeasured.
AHipotronics series300HipotandMegohmeter, lastcalibrated onMarch18,1980,wasusedtosupplythevoltageandmeasuretheleakagecurrent.EachtestvehiclewasattachedtoatypeCR0095socketandproperlyseatedinplacewithtypeCR0155lockingstraps.(SeetheattacheddatasheetonAgastatsocketsandstraps).Therelaysandsocketswerethenmountedona2x6woodboard.Thetestwaseffectedbyattachi.ng thehotleadfromtheHipotandMegohmeter toonesideoftherelaycoilwhilethegroundleadwasconnected tooneotthecontactconnections.
Thevoltagewasthenincreased fromzerotoeither5,000voltsoruntiltheHipotandMegohmeter automatically.
shutitselfdownwhentheleakagecurrentexceeded5.5milliamperes.
Thevoltagewasthenreducedtozeroandthegroundleadattachedtoanothercontactconnection andthetestrepeated.
Nhenallthecontactconnections hadthuslybeentested,theHipotandMegohmeter hotleadwasconnected totheothersideofthecoilandthewholeseriesoftestsrepeated.
Duringautomatic
: shutdown, thehighestattainable voltagewasrecorded.
Attachedpleasefindthedataresultsfromtheabovedescribed tests.P~Inviewoftheabove,wemustconcludetheAgastatGPtyperelaywillqualifytothespecified 2,000voltsRMSisolation.
Inaddition, themanufacturer guarantees a2,000voltRMSisolation fortheAgastatrelay.  


TestVehicleP2EGPDOOIRelayS/N80411510125VDCCoilConnectionsBetweenTerminalsVoltageAC(RMS)DCCurrentACDC84to82~84toT284toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBl5,0005,0004,2004)3004,0003,9004,2005,0005)0004,2003,9003)6003,6004,400not+~tested5,0005,0005)0005,0005,0005,0005)0005)0005,0005,0005)0005,0005,0005,000not"~tested100ua1000aeoua100ua.IOua.IOua.095ua.095ua.120ua.115ua.IIOua.090ua.IiOua.115ua.105va.120ua.120ua..115uaBltoTlBltoMlBltoRlBltoR3BItoM3BltoT3Blto83BltoT4BltoM4BItoR4BltoR2BltoM2BltoT2Blto82Bito844,4003)5003,5003,9003,9005,0005,0004,2004,0004,2004,5004,3005,000,5)000not""tested5,0005,0005,0005,0005,0005,0005,0005)0005,0005,0005,000',0005,0005)000not~~testod120ua100ua120ua110ua.I30ua.125ua.120ua.IIOua.105ua.100ua.095ua.105ua.120ua.125ua.095ua~095ua.IOOua.IIOua~'ndicatescurrentexceeded5.5milllamporos84toSlrefgre~+
TestVehicleP2EGPDOOIRelayS/N80411510125VDCCoilConnections BetweenTerminals VoltageAC(RMS)DCCurrentACDC84to82~84toT284toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBl5,0005,0004,2004)3004,0003,9004,2005,0005)0004,2003,9003)6003,6004,400not+~tested5,0005,0005)0005,0005,0005,0005)0005)0005,0005,0005)0005,0005,0005,000not"~tested100ua1000aeoua100ua.IOua.IOua.095ua.095ua.120ua.115ua.IIOua.090ua.IiOua.115ua.105va.120ua.120ua..115uaBltoTlBltoMlBltoRlBltoR3BItoM3BltoT3Blto83BltoT4BltoM4BItoR4BltoR2BltoM2BltoT2Blto82Bito844,4003)5003,5003,9003,9005,0005,0004,2004,0004,2004,5004,3005,000,5)000not""tested5,0005,0005,0005,0005,0005,0005,0005)0005,0005,0005,000',0005,0005)000not~~testod120ua100ua120ua110ua.I30ua.125ua.120ua.IIOua.105ua.100ua.095ua.105ua.120ua.125ua.095ua~095ua.IOOua.IIOua~'ndicates currentexceeded5.5milllamporos 84toSlrefgre~+
0  
0  
~~TestVehicle/llFGPIOOIRelayS/N804ll508l20VAC/60H;.ColiConnectionsBetweenTerminalsVoltage.AC(RMS)DCCurrentAcDCC84to8284toT484toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBlBltoTlBltoMlBItoRlBltoR3BltoM3BltoT3Blto83BltoT4BltoM4BltoR4BltoR2BltoM2BltoT2Blto82Blto845,0005,0004,3004,3004,2004,3004,3005,0005,0004,0003,9003,8003,8004,500noW>tested4,4003,8003>8004,IOO4,0005,0005,0004,5003>9004,0004,2004,0005,0005,000not+4,testedhh5,0005,0005>0005,0005>0005,0005>0005,0005>0005,0005>0005,0005,0005,000not"~tested5,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,000notW<tested120ual20ual20ual20uaI20ual20ua/$20ual20ua.055ua.065ua.065ua.060ua.070ua.075ua.065ua.050ua.060ua.050ua.050ua.065ua.065ua.070ua.060ua.065ua.060ua.050ua.055ua.060ua.045ua.055ua.075ua.070ua.060ua.060ua.065ua.055ua~+IIndicatedcurrentexceeded5.5millfamperesp<4.8IreL~ycoQh1~~  
~~TestVehicle/llFGPIOOIRelayS/N804ll508l20VAC/60H;.ColiConnections BetweenTerminals Voltage.AC(RMS)DCCurrentAcDCC84to8284toT484toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBlBltoTlBltoMlBItoRlBltoR3BltoM3BltoT3Blto83BltoT4BltoM4BltoR4BltoR2BltoM2BltoT2Blto82Blto845,0005,0004,3004,3004,2004,3004,3005,0005,0004,0003,9003,8003,8004,500noW>tested4,4003,8003>8004,IOO4,0005,0005,0004,5003>9004,0004,2004,0005,0005,000not+4,testedhh5,0005,0005>0005,0005>0005,0005>0005,0005>0005,0005>0005,0005,0005,000not"~tested5,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,000notW<tested120ual20ual20ual20uaI20ual20ua/$20ual20ua.055ua.065ua.065ua.060ua.070ua.075ua.065ua.050ua.060ua.050ua.050ua.065ua.065ua.070ua.060ua.065ua.060ua.050ua.055ua.060ua.045ua.055ua.075ua.070ua.060ua.060ua.065ua.055ua~+IIndicated currentexceeded5.5millfamperes p<4.8IreL~ycoQh1~~  


uestionNo.0.54FSARSubsection7.6.3describesadditionalsystemsre-quiredforsafety.Overall,theFSARinformationsuppliedtodatedoesnotsufficientlydescribetheinstrumentationandcontrolsassociatedwithmostofthesesystems.There-fore,pleaseprovidethefollowinginformation:a.Identifyanddescribetheinstrumentationand'controlsassociatedwitheachsystemlistedbelow:Fuelpoolcoolingandpurification.systemProcessandeffluentradiologicalmonitoringandsamplingsystemContainmentvacuumreliefsystemShieldbuildingventilationsystemb.Foreachinstrumentandcontrolidentifiedin(a)~above,designatewhethertheequipmentisClass,1Eornon-Class1E.c.Foreachsystemlistedin(a)above,discussthequalificationcriteriaappliedtoitsassociatedinstrumentationandcontrols.Asaminimum,youarerequestedtoincludeforeachsystem,adis-cussionofhowtheinstrumentationandcontrolsforthatsystemconformstotherequirementsofIEEE279-1971,IEEE308-1974,IEEE323-1974,andIEEE344-1975.~Reeonsa8)I)FUELPOOLCOOLINGANDPURIFICATIONSYSTEMThefuelpoolinstrumentation.systemisdescribedin"Section9.1.3.2.4.Atabulationoftheinstrument~~channelsxsincludedxnTable9.17.II)PROCESSANDEFFLUENTRADIOLOGICALMONITORINGANDSAMPLINGSYSTEMTheradiation'monitoringsystemiscomposedofthreeprocess,seveneffluent,fortyonearea,andfourinplantairbornemonitors.TabulationsofthesemonitorsaregiveninTables11.5-1,12.3-2,and12.3-3.III)CONTAINMENTVACUUMRELIEFSYSTEMTheinstrumentationprovidedforthissystemisinaccordancewiththerevisedFigure3.8-8andcontainsthefollowingequipment:-PDT-25-1A(lB)withitselectronicPDIS-25-lA(lB)isinterlockedwithpCV-25-7(8)byenergizingSE-25-10(ll)toopenFCV-25-7(8)whenthedifferentialpressurebetweenthecontainmentandannulusreaches-9'5",H20+0.25"H20PDIS-25-1A(lB)alsopro-  
uestionNo.0.54FSARSubsection 7.6.3describes additional systemsre-quiredforsafety.Overall,theFSARinformation suppliedtodatedoesnotsufficiently describetheinstrumentation andcontrolsassociated withmostofthesesystems.There-fore,pleaseprovidethefollowing information:
a.Identifyanddescribetheinstrumentation and'controls associated witheachsystemlistedbelow:Fuelpoolcoolingandpurification
.systemProcessandeffluentradiological monitoring andsamplingsystemContainment vacuumreliefsystemShieldbuildingventilation systemb.Foreachinstrument andcontrolidentified in(a)~above,designate whethertheequipment isClass,1Eornon-Class 1E.c.Foreachsystemlistedin(a)above,discussthequalification criteriaappliedtoitsassociated instrumentation andcontrols.
Asaminimum,youarerequested toincludeforeachsystem,adis-cussionofhowtheinstrumentation andcontrolsforthatsystemconformstotherequirements ofIEEE279-1971, IEEE308-1974, IEEE323-1974, andIEEE344-1975.
~Reeonsa8)I)FUELPOOLCOOLINGANDPURIFICATION SYSTEMThefuelpoolinstrumentation
.systemisdescribed in"Section9.1.3.2.4.
Atabulation oftheinstrument
~~channelsxsincludedxnTable9.17.II)PROCESSANDEFFLUENTRADIOLOGICAL MONITORING ANDSAMPLINGSYSTEMTheradiation
'monitoring systemiscomposedofthreeprocess,seveneffluent, fortyonearea,andfourinplantairbornemonitors.
Tabulations ofthesemonitorsaregiveninTables11.5-1,12.3-2,and12.3-3.III)CONTAINMENT VACUUMRELIEFSYSTEMTheinstrumentation providedforthissystemisinaccordance withtherevisedFigure3.8-8andcontainsthefollowing equipment:
-PDT-25-1A (lB)withitselectronic PDIS-25-lA (lB)isinterlocked withpCV-25-7(8) byenergizing SE-25-10(ll) toopenFCV-25-7(8) whenthedifferential pressurebetweenthecontainment andannulusreaches-9'5",H20+0.25"H20PDIS-25-1A(lB) alsopro-  


videsindicationontheHVCBforgPrangeof--25"H20to+25H20.-PDT-25-'13A(13B)withitselectronicPDS-25-13A{13B)isinterlockedwithFCV-25-7(8)bydeenergizingSE-25-10(ll)tocloseFCV-25-7(8)whenthedif-.'-'ferentialpressurereaches-7.75"H20.-PDIS-25-llA(11B)provideslocalfullrangeindicationandahighalarmontheHVCBat11.5"H20.-PDT-25-15A(15B)withitsPDI-25-15A(15B)provides.fullrange{-25"H20to25"H20)indicationontheHVCB.IV)SHIELDBUILDINGVENTILATIONSYSTEMTheShieldBuildingVentilationSystemisR,AE5FSystemandislistedinSection7.3oftheFSAR.TheSBVSswitchcve<fromFuelHandlingBuildingistheonlyportionofthissystemlistedinSection7.6.Qg@5PQQisdescribedinSection6.2.3.2oftheFSAR.TheinstrumentationrequirementsareprovidedinSection6.2.3.5andTable6.2-51oftheFSAR.b)I-Tc(legf-7('g<Qi'p'GsegggQ1'YliM~i~~~~'o~'"'"~~&P~Soli'~aVgri'$h4e~5ys/~~~II-Teassuntmonitorsaretheplantstack,asdescribedinsubsection11.5.2.2.8,andtheECCSexhaustmonitors,asdescribedinsubsection11.5.2.2.10.TheClasslEareamonitorsincludethefours]QSand6spentfuelpoolmonitors,aswellastwopost-accidentmonitors.Allthesemonitorsaredescribedinsubsection12.3.4.1.4.TheClasslEin-plantmonitorsincludethecontainmentatmospheremonitors,asdescribedinsubsection12.3.4.2.3.1,thecontrolroomairintakemonitors,describedinsubsection12.3.4.2.3.2,andtheECCSexhaust,monitors,asdescribedinsubsection12.3.4.2.3.3.rIII&#x17d;AllPDT's;PDIS's;PDS'sand.PDI'sdiscussedinitema)aboveareClass1E.IV-InstrumentationandcontrolsdiscussedaboveforSBVSsystemareClasslE.Alarmsareahnoun<ta~onnon-safetyannunciationwindowSthroughproperisolationdevices.v>
videsindication ontheHVCBforgPrangeof--25"H20to+25H20.-PDT-25-'13A(13B) withitselectronic PDS-25-13A{13B) isinterlocked withFCV-25-7(8) bydeenergizing SE-25-10(ll) tocloseFCV-25-7(8) whenthedif-.'-'ferential pressurereaches-7.75"H20.-PDIS-25-llA(11B) provideslocalfullrangeindication andahighalarmontheHVCBat11.5"H20.-PDT-25-15A(15B) withitsPDI-25-15A(15B) provides.fullrange{-25"H20to25"H20)indication ontheHVCB.IV)SHIELDBUILDINGVENTILATION SYSTEMTheShieldBuildingVentilation SystemisR,AE5FSystemandislistedinSection7.3oftheFSAR.TheSBVSswitchcve<
c)XHEE323-19'/4ANDIHEE344-1975I-jigQ~IE'/nSQ~J-Wmidc,~<'b~~i<~l~"ibTubal<j'<Alo7ECt"9z3-'79a+9<<oH7>Xr-AllClass1Einonitorsarecjualifi.edtoXEEE323-1974andIEEE344-1975.XXX-AllpressuretransmitterslisteQinitema)abovearequalifiedtoIEEE34'4-,1975andXEEE323-1974intheenvironmentinwhichtheyoperate.TheremotemountedindicatorsandbistablesaremountedontheseismicallyqualxfiedHVCBinthecontrolroom.'lIV-AllcontrolsandinstrumentationsforSBVSisqualifiedtoIEEE32-1974apdXEEEp4g-l)7$T'4~~o~i+twdi~+0<S~IO[>S~4l+~&#x17d;pgIEEE279-1971KeuheNe.EdigM<ca(LfP.c[>Pi+~/nT<''Q~/eThefourcontainmentareasradiationmonitorswhichinputintothe&$5MEAe55ISXEEE279-1971similarlywiththeESPASasdescribedinScti.3.1.2oftheFSAR.C~There@i,amenfIEEE79-1971for'gAectffiedsI/5fE'~N'Ey'egiue4QmWefy'~e.<<sfr~plefsfgapF7itabldkeC~.uSdthisinstrumentationisnotpartofaprotectionsystem.However,theintentofthedesigncriteriacontainedthereinhasbeenappliedinthedesignofthesesystemstothefollowingextent:4.1-GeneralFunctionalRequirementsThesafetyrelatedinstrumentationfortheabovesystemsisdesigneQtoprovidemonitoringandactuationasapplicableduringnormaloraccidentconditions.Theinstrumentperformancecharacteristics,responsetimesandaccuracyareselectedforcompatibilityfortheparticularfunction.4.2-SingleFailureCriterion.ThisisfunctionallyidentiCZ~tothatdescribedinSubsection7.4.2.2.4.3-QualityControlofComponentsandNodulesSeeChapter174.4EquipmentQualificationTheinstrumentationandcontrolsforthesesystemsmeettheequipmentqualificationrequirements.discussedinSections3.10and3.11.SUL34')98)sIs/i 4.5-ChannelXntegrityThe"ChannelIntegrity"isfunctionallyidenticaltothatdiscribedinSubsection7.3.2.1.2.4.6-ChannelXndependenceThechannelindependenceisfunctionally~'denti~tothatdescribedinSubsection7.3.2.1.2.4.7.-"ControlandProtectionSystemInteraction"Noportionofthesesystemsisusedforbothcontrolandprotection.4.8-"DerivationofSystemXnputs"Themonitoringsignalsfortheabovesystemsareadirectmeasurementofthedesiredvariables.4.9-"CapabilityforSensorChecks"Themonitoringsensorsarecheckedbycomparingthemonitoredvariablesofredundantchannelsorbyob-servingtheeffectsofintroducingandvaryingasub-stituteinputtothesensorsimilartothemeasuredvariable.4.10-"CapabilityforTestandCalibration"XEEE338-1971andRegulatoryGuide1.22,"PeriodicTestingofProtectionSystemActuationFunctions"2/72(RO)providesguidanceforthedevelopmentofprocedures,equipmentanddocumentationofperiodictesting.Themeasurementsignalsrequiredfortheabovesystemshavethecapabilityofbeingtestedandcalibratedunderthedesignrequirementsofthesystem.4-11-"ChannelBypassorRemovalfromOperation"Anyoneofthechannelsmaybetested,calibrated,orrepairedwithoutdetrimentaleffectsontheotherchannels.4.12-,,"OperatingBypasses"Thereareno"OperatingBypasses"forthesesystems.4.13-"IndicationofBypasses"AdiscussionofbypassandinoperablestatusindicationisprovidedinSubsection7.5.1andalistingofin-operableorbypassedcomponentsiscontainedinTable73-104.14-"AccesstoIleansforBypassing"Thissectionisnotapplicable.'i,vO<a<ms<
fromFuelHandlingBuildingistheonlyportionofthissystemlistedinSection7.6.Qg@5PQQisdescribed inSection6.2.3.2oftheFSAR.Theinstrumentation requirements areprovidedinSection6.2.3.5andTable6.2-51oftheFSAR.b)I-Tc(legf-7('g<Qi'p'Gs egggQ1'YliM~i~~~~'o
I 4.15-"MultipleSetpoints"Thissectionisnotapplicable.4.16-"CompletionofProtectiveActionOnceitisInitiated"Thissectionisnotapplicable.4;.17-"ManualInitiation"Manualinitiationofthecomponentsinthesesystemsisavai.'lable,4.18-"AccesstoSetpointAdjustments,Calibration,andTest,Points"Thissectionisnot,applicable.4.19-"XdentificationofProtectiveActions"Thissectionisnotapplicable.QJ(oo~lyQyLks~'QJlGn.Is~*p,(~~c~veaW(%vcrAY~~QnhlA6++~goo4.20-"XnformationReadouts"Themonitoringandcontrolchannelfqr~esesystemsareindicatedinthecontrolroom+'%~+it~'~"&~4.21-"SystemRepair"Replacementorrepairofcomponentscanbeaccomplishedinreasonabletimewhenthesystemsarenotactuated..OutageofsystemcomponentsforreplacementorrepairarelimitedbytheTechnicalSpecifications.li4.22-"Identification"SafetyequipmentanQcablesassociatedwiththesesystemsareuniquelyidentified.XEEE308-1971TheStLucieUnit2FSARiscommittedtoRegulatoryGuide,1.32Rev.0whichaddressesIEEE308-1971.ForafurtherdiscussionofXEEE308-1971refertoFSARSection8.3.1.2.AllclasslEelectricalcomponentsareelectricallyandphysicallyseparatedinaccordancewithRegulatoryGuide1.75asdiscussedinFSARSection8.3.1.2.Electricallyredundant,andphysicallyindependent,powersuppliestotheabovesystems,electricalcom-.~ponents,andtothesafetyrelatedpowerpanelsthatprovidepowertocontrolandinstrumentationdevicesareprovided.C'  
~'"'"~~&P~Soli'~aVgri'$h4e~5ys/~~~II-Teassuntmonitorsaretheplantstack,asdescribed insubsection 11.5.2.2.8, andtheECCSexhaustmonitors, asdescribed insubsection 11.5.2.2.10.
TheClasslEareamonitorsincludethefours]QSand6spentfuelpoolmonitors, aswellastwopost-accident monitors.
Allthesemonitorsaredescribed insubsection 12.3.4.1.4.
TheClasslEin-plantmonitorsincludethecontainment atmospheremonitors, asdescribed insubsection 12.3.4.2.3.1, thecontrolroomairintakemonitors, described insubsection 12.3.4.2.3.2, andtheECCSexhaust,monitors, asdescribed insubsection 12.3.4.2.3.3.
rIII&#x17d;AllPDT's;PDIS's;PDS'sand.PDI'sdiscussed initema)aboveareClass1E.IV-Instrumentation andcontrolsdiscussed aboveforSBVSsystemareClasslE.Alarmsareahnoun<ta~on non-safety annunciation windowSthroughproperisolation devices.v>
c)XHEE323-19'/4 ANDIHEE344-1975I-jigQ~IE'/nSQ~J-Wmidc,~<'b~
~i<~l~"ibTubal<j'<Alo7ECt"9z3-'79a+9<<oH7>Xr-AllClass1Einonitors arecjualifi.ed toXEEE323-1974andIEEE344-1975.
XXX-Allpressuretransmitters listeQinitema)abovearequalified toIEEE34'4-,1975 andXEEE323-1974intheenvironment inwhichtheyoperate.Theremotemountedindicators andbistables aremountedontheseismically qualxfied HVCBinthecontrolroom.'lIV-Allcontrolsandinstrumentations forSBVSisqualified toIEEE32-1974apdXEEEp4g-l)7$T'4~~o~i+twdi~+0<S~IO[>S~4l+~&#x17d;pgIEEE279-1971KeuheNe.EdigM<ca(Lf P.c[>Pi+~/nT<''Q~/eThefourcontainment areasradiation monitorswhichinputintothe&$5MEAe55ISXEEE279-1971similarly withtheESPASasdescribed inScti.3.1.2oftheFSAR.C~There@i,amenfIEEE79-1971for'gAectffieds I/5fE'~N'Ey'egiue4Q mWefy'~e.
<<sfr~plefsfg apF7itabldke C~.uSdthisinstrumentation isnotpartofaprotection system.However,theintentofthedesigncriteriacontained thereinhasbeenappliedinthedesignofthesesystemstothefollowing extent:4.1-GeneralFunctional Requirements Thesafetyrelatedinstrumentation fortheabovesystemsisdesigneQtoprovidemonitoring andactuation asapplicable duringnormaloraccidentconditions.
Theinstrument performance characteristics, responsetimesandaccuracyareselectedforcompatibility fortheparticular function.
4.2-SingleFailureCriterion.
Thisisfunctionally identiCZ~to thatdescribed inSubsection 7.4.2.2.4.3-QualityControlofComponents andNodulesSeeChapter174.4Equipment Qualification Theinstrumentation andcontrolsforthesesystemsmeettheequipment qualification requirements.
discussed inSections3.10and3.11.SUL34')98)sIs/i 4.5-ChannelXntegrity The"ChannelIntegrity" isfunctionally identical tothatdiscribed inSubsection 7.3.2.1.2.
4.6-ChannelXndependence Thechannelindependence isfunctionally~'denti~
tothatdescribed inSubsection 7.3.2.1.2.
4.7.-"ControlandProtection SystemInteraction" Noportionofthesesystemsisusedforbothcontrolandprotection.
4.8-"Derivation ofSystemXnputs"Themonitoring signalsfortheabovesystemsareadirectmeasurement ofthedesiredvariables.
4.9-"Capability forSensorChecks"Themonitoring sensorsarecheckedbycomparing themonitored variables ofredundant channelsorbyob-servingtheeffectsofintroducing andvaryingasub-stituteinputtothesensorsimilartothemeasuredvariable.
4.10-"Capability forTestandCalibration" XEEE338-1971andRegulatory Guide1.22,"Periodic TestingofProtection SystemActuation Functions" 2/72(RO)providesguidanceforthedevelopment ofprocedures, equipment anddocumentation ofperiodictesting.Themeasurement signalsrequiredfortheabovesystemshavethecapability ofbeingtestedandcalibrated underthedesignrequirements ofthesystem.4-11-"ChannelBypassorRemovalfromOperation" Anyoneofthechannelsmaybetested,calibrated, orrepairedwithoutdetrimental effectsontheotherchannels.
4.12-,,"Operating Bypasses" Thereareno"Operating Bypasses" forthesesystems.4.13-"Indication ofBypasses" Adiscussion ofbypassandinoperable statusindication isprovidedinSubsection 7.5.1andalistingofin-operableorbypassedcomponents iscontained inTable73-104.14-"AccesstoIleansforBypassing" Thissectionisnotapplicable.
'i,vO<a<ms<
I 4.15-"Multiple Setpoints" Thissectionisnotapplicable.
4.16-"Completion ofProtective ActionOnceitisInitiated" Thissectionisnotapplicable.
4;.17-"ManualInitiation" Manualinitiation ofthecomponents inthesesystemsisavai.'lable, 4.18-"AccesstoSetpointAdjustments, Calibration, andTest,Points"Thissectionisnot,applicable.
4.19-"Xdentification ofProtective Actions"Thissectionisnotapplicable.
QJ(oo~lyQyLks~'QJlGn.Is~*p,(~~c~veaW(%vcrAY~~QnhlA6++~goo4.20-"Xnformation Readouts" Themonitoring andcontrolchannelfqr~esesystemsareindicated inthecontrolroom+'%~+it~'
~"&~4.21-"SystemRepair"Replacement orrepairofcomponents canbeaccomplished inreasonable timewhenthesystemsarenotactuated..
Outageofsystemcomponents forreplacement orrepairarelimitedbytheTechnical Specifications.
li4.22-"Identification" Safetyequipment anQcablesassociated withthesesystemsareuniquelyidentified.
XEEE308-1971TheStLucieUnit2FSARiscommitted toRegulatory Guide,1.32 Rev.0whichaddresses IEEE308-1971.
Forafurtherdiscussion ofXEEE308-1971refertoFSARSection8.3.1.2.AllclasslEelectrical components areelectrically andphysically separated inaccordance withRegulatory Guide1.75asdiscussed inFSARSection8.3.1.2.Electrically redundant, andphysically independent, powersuppliestotheabovesystems,electrical com-.~ponents,andtothesafetyrelatedpowerpanelsthatprovidepowertocontrolandinstrumentation devicesareprovided.
C'  


IAllClasslEelectricalsystemcomponentsareuniquelyidentifiedinaccordancewithFSARSection8.3.1.3.Thefuel*poolpurificationpumpisanon-safetypumpandassuchisphysicallyindependentandelectricallyseparatedfromClass1Ecomponents.  
IAllClasslEelectrical systemcomponents areuniquelyidentified inaccordance withFSARSection8.3.1.3.Thefuel*pool purification pumpisanon-safety pumpandassuchisphysically independent andelectrically separated fromClass1Ecomponents.  


SL2-FSARh)PipingandValves~~AllthepipingintheFuelPoolSystemisstainlesssteelwithmostlyweldedconnectionsthroughout..AllthevalvesintheFuelPoolSystemarestainlesssteeel,atleast150poundclass.9.1.3.2.4InstrumentationRequirementsAtabulationofinsrumentchannelsisincludedinTable9.1"79.1.3.2.4.1TemperatureInstrumentationa)Fuelpooltemperatureindicationsareprovidedlocallyandhightemperaturealarmsareactuatedinthecontrolroomtowarntheoperatorofasystemmalfunction.Twoseparateinstrumentchannelsareusedduetotheimportanceofpreventingthefuelpoolwaterfromboilingresultinginalossoffuelpoolwater..)FuelPoolHeatExchangerInletTemperature:Localindicationofthefuelpoolheatexchangerinlettemperature(tubeside)isprovided.Thisindication,inconjunctionwiththeheatexchangeroutlettem-peratureandcomponentcoolingwatertemperature,servesasameasureoffuelpoolheatexchangerperformance.FuelPoolHeatExchangerOutletTemperature:Localindicationofthefuelpoolheatexchangeroutlettemperature(tubeside)ispro-vided.9.1.3.2.4.2PressureInstrumentationa)FuelPoolPumpDischargePressure:Thedischargepressureofeachfuelpoolpumpisindicatedlocally.FuelPool'PumpsDischargeHeaderPressure'%Adischargeheaderpressureswitchforthefuelpoolpumpsservestoactivatealowpressurealarminthecontrolroomtowarntheopera-torofsystemmalfunction.c)FuelPoolPurificationPumpSuctionPressureSuctionpressuretothefuelpoolpurificationpumpisindicatpdlocally.Thisindication,"inconjunctionwiththefuelpoolpurifi-cationpumpdischargepressuregageservesasameasureoffuelpoolpurificationpumpperformance.FuelPoolPurificationPumpDischargePressureindicated:JU<s<~Dischargepressureofthefuelpoolpurificationpumpislocally.  
SL2-FSARh)PipingandValves~~AllthepipingintheFuelPoolSystemisstainless steelwithmostlyweldedconnections throughout..
AllthevalvesintheFuelPoolSystemarestainless steeel,atleast150poundclass.9.1.3.2.4 Instrumentation Requirements Atabulation ofinsrumentchannelsisincludedinTable9.1"79.1.3.2.4.1 Temperature Instrumentation a)Fuelpooltemperature indications areprovidedlocallyandhightemperature alarmsareactuatedinthecontrolroomtowarntheoperatorofasystemmalfunction.
Twoseparateinstrument channelsareusedduetotheimportance ofpreventing thefuelpoolwaterfromboilingresulting inalossoffuelpoolwater..)FuelPoolHeatExchanger InletTemperature:
Localindication ofthefuelpoolheatexchanger inlettemperature (tubeside)isprovided.
Thisindication, inconjunction withtheheatexchanger outlettem-peratureandcomponent coolingwatertemperature, servesasameasureoffuelpoolheatexchanger performance.
FuelPoolHeatExchanger OutletTemperature:
Localindication ofthefuelpoolheatexchanger outlettemperature (tubeside)ispro-vided.9.1.3.2.4.2 PressureInstrumentation a)FuelPoolPumpDischarge Pressure:
Thedischarge pressureofeachfuelpoolpumpisindicated locally.FuelPool'Pumps Discharge HeaderPressure'%Adischarge headerpressureswitchforthefuelpoolpumpsservestoactivatealowpressurealarminthecontrolroomtowarntheopera-torofsystemmalfunction.
c)FuelPoolPurification PumpSuctionPressureSuctionpressuretothefuelpoolpurification pumpisindicatpd locally.Thisindication,"
inconjunction withthefuelpoolpurifi-cationpumpdischarge pressuregageservesasameasureoffuelpoolpurification pumpperformance.
FuelPoolPurification PumpDischarge Pressureindicated
:JU<s<~Discharge pressureofthefuelpoolpurification pumpislocally.  


SL2-FSARe)FuelPoolPurificationFilterandFuelPoolionExchangerDiCferen-~~~~~tialPressureDifferentialpresureofthefuelpoolpurificationfilterandthefuelpoolionexchangerareindicatedlocally.Periodicreadingsoftheseinstrumentsindicateanyprogressiveloadingoftheunits.9.1.3.2.4.3LevelInstrumentsa)Fuel1'oolWaterLevelThefuelpoolwater,levelismonitoredbytworedundantlevelswitches.Theseswitchesactuatehighorlowalarmsinthecontrolroomtowarntheoperatorofsystemmalfunction.Twoseparatelevel"'nstrumentchannelsareusedduetotheimportanceofmaintainingfuelpoolwaterlevel.9.1.3.3~EgretEvalua".luaWithone-thirdofacorebatch,whichisassumedtohaveundergonefiniteirradiationofthreeyears,placedinthespentfuelpoolsevendaysafterreactorshutdownandsixpreviousannualrefuelingbatches,theheatload's12.48x10BTU/hr.Undertheseconditions,withonefuelpoolpumpoperatingandthefuelpoolheatexchangerinservice,thespentfuelpooltemperaturedoesnotexceed125F.Duringafullcoreunloading,itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown.One-thirdofacorefromapreviousrefuelingisassumed'tohavebeenstoredinthespentfuelpoolfor90dayswithsixpreviousannualbatches.Theresultant.)eatloadfromonefullcozeandsevenannualrefuelingbatchesis2.99x10BTU/hr,themaximumheatloadinthefuelpool.Undertheseconditions,boththefuelpoolpumpsareinservicetolimitthemaximumfuelpoolwatertemperatureto150F.Withonefuelpoolpumpinoperable,thefuelpoolequilibriumtemperatureis160F.Allconnectionstothefuelpoolaremadesoastoprecludethepossibilityofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcool-ingsystemisdetectedbyreductioninthefuelpoolinventory.Makeuptothefuelpoolisfromtherefuelingwatertank.MakeupinventorytothefuelpoolisprovidedinSubsection9.1.3.3.1~Duringaccidentconditions,theFuelPoolCoolingSystemisisolatedfromtheComponentCoolingWaterSystem.lfowever,multiplesources(seismic,andnon-seismic)ofmakeupwaterexistnsdiscussedinSubsection9.1.3.3.1.ThepurificationloopnormallyrunscontinuouslyduringfuelpooloperationComaintainthefuelpoolwaterpuri.tyandclarity.ltispossibletooperatethepurificationsystemwitheitherthefuelpoolionexchangerorfuelpoolfilterbypassed.Localsamplepointsareprovidedtopermitana-lysisoffuelpoolionexchangerandfuelpoolfilterefficiencies.9.1-13  
SL2-FSARe)FuelPoolPurification FilterandFuelPoolionExchanger DiCferen-~~~~~tialPressureDifferential presureofthefuelpoolpurification filterandthefuelpoolionexchanger areindicated locally.Periodicreadingsoftheseinstruments indicateanyprogressive loadingoftheunits.9.1.3.2.4.3 LevelInstruments a)Fuel1'oolWaterLevelThefuelpoolwater,levelismonitored bytworedundant levelswitches.
Theseswitchesactuatehighorlowalarmsinthecontrolroomtowarntheoperatorofsystemmalfunction.
Twoseparatelevel"'nstrument channelsareusedduetotheimportance ofmaintaining fuelpoolwaterlevel.9.1.3.3~EgretEvalua".lua Withone-third ofacorebatch,whichisassumedtohaveundergone finiteirradiation ofthreeyears,placedinthespentfuelpoolsevendaysafterreactorshutdownandsixpreviousannualrefueling batches,theheatload's12.48x10BTU/hr.Undertheseconditions, withonefuelpoolpumpoperating andthefuelpoolheatexchanger inservice,thespentfuelpooltemperature doesnotexceed125F.Duringafullcoreunloading, itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown.
One-third ofacorefromapreviousrefueling isassumed'to havebeenstoredinthespentfuelpoolfor90dayswithsixpreviousannualbatches.Theresultant.
)eatloadfromonefullcozeandsevenannualrefueling batchesis2.99x10BTU/hr,themaximumheatloadinthefuelpool.Undertheseconditions, boththefuelpoolpumpsareinservicetolimitthemaximumfuelpoolwatertemperature to150F.Withonefuelpoolpumpinoperable, thefuelpoolequilibrium temperature is160F.Allconnections tothefuelpoolaremadesoastoprecludethepossibility ofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcool-ingsystemisdetectedbyreduction inthefuelpoolinventory.
Makeuptothefuelpoolisfromtherefueling watertank.Makeupinventory tothefuelpoolisprovidedinSubsection 9.1.3.3.1
~Duringaccidentconditions, theFuelPoolCoolingSystemisisolatedfromtheComponent CoolingWaterSystem.lfowever, multiplesources(seismic, andnon-seismic) ofmakeupwaterexistnsdiscussed inSubsection 9.1.3.3.1.
Thepurification loopnormallyrunscontinuously duringfuelpooloperation Comaintainthefuelpoolwaterpuri.tyandclarity.ltispossibletooperatethepurification systemwitheitherthefuelpoolionexchanger orfuelpoolfilterbypassed.
Localsamplepointsareprovidedtopermitana-lysisoffuelpoolionexchanger andfuelpoolfilterefficiencies.
9.1-13  


2-FSARTABLE9.1-7FUELPOOLSYSTEHINSTRUMENTATIOHInstruantIdentification&#xc3;uaberTI"4420TI-4421TI-4404TI-4405SystcnPar~ter6LocationFuelPoolTemperatureFuelPoolTemperatureFuelPoolHeatExchangerInletTeslpfuelPoolHeatEXChangerOutletTerip.LocalControlitsslsIndicationhlaraControllessIRoonHiHiInatruisent~RCCC0-200F0-200F0-200F0-200FHomalOperating~RcsC120-150P120-150F120-150F108"128FInstrune~RCC'JCC+4F+4PASSIN~IELS-4420LS-4421Pl-4402FuelPoolMaterLevelfuelPoolMaterLevel'FuelPoolPuapZBDischargeHi6LoHi6Lo0-60psig40-50psig+1"Cla5SIC+199CpnbSI~+1.2psiNcmlfPI-Ii401Pl-4411PS-49403P1-4412PDI-4415FuelPoolPunp2ADischargePressureFuelPoolPurificationPvilipSuctionPressuri~Fu>>lPoolPiupDiscliargcll,ad>>rI'ressur>>FuelVcipl.PurificationPu:.2)!.'C..scharg>>Pres..ureFi'i'lPs)22~Pu'rLf'LestiisnFill.cr')ifI>>r>>ntialPressure0-60psig0-25psig0-100psig0-30psid40-50psig+1.2psiIilrbl+5-10psig+.5psiId40-50psig+1psig{(~IF95-90psiis2psiiCis2+'I5-30paid+.6psiPDI-4416Fuel9"olionExr'.Rn:9:.erDiI!iirin'a'IPr"2.222I:0-30psid7-10psid+.6psidlifeIE  
2-FSARTABLE9.1-7FUELPOOLSYSTEHINSTRUMENTATIOH InstruantIdentification
&#xc3;uaberTI"4420TI-4421TI-4404TI-4405SystcnPar~ter6LocationFuelPoolTemperature FuelPoolTemperature FuelPoolHeatExchanger InletTeslpfuelPoolHeatEXChanger OutletTerip.LocalControlitsslsIndication hlaraControllessIRoonHiHiInatruisent
~RCCC0-200F0-200F0-200F0-200FHomalOperating
~RcsC120-150P120-150F120-150F108"128FInstrune~RCC'JCC+4F+4PASSIN~IELS-4420LS-4421Pl-4402FuelPoolMaterLevelfuelPoolMaterLevel'FuelPoolPuapZBDischarge Hi6LoHi6Lo0-60psig40-50psig+1"Cla5SIC+199CpnbSI~+1.2psiNcmlfPI-Ii401Pl-4411PS-49403P1-4412PDI-4415FuelPoolPunp2ADischarge PressureFuelPoolPurification PvilipSuctionPressuri~Fu>>lPoolPiupDiscliargc ll,ad>>rI'ressur>>
FuelVcipl.Purification Pu:.2)!.'C..scharg>>
Pres..ure Fi'i'lPs)22~Pu'rLf'LestiisnFill.cr')ifI>>r>>ntial Pressure0-60psig0-25psig0-100psig0-30psid40-50psig+1.2psiIilrbl+5-10psig+.5psiId40-50psig+1psig{(~IF95-90psiis2psiiCis2+'I5-30paid+.6psiPDI-4416Fuel9"olionExr'.Rn:9:.er DiI!iirin'a'IPr"2.222I:0-30psid7-10psid+.6psidlifeIE  


PJ5GiVTmIQ~<y.-..smsmmmvazau;~mrs.~~~+tn~PDM'1A00'4X~FC4t9'lPOTs,5-(9WOrtZ<<~f~r-8~TZS.t54~IFV.tb7POT'H>tI1MI'~-V,T.II,IPCC25lWIO4Z.DI:V~&#xc3;0/oh2585te4XKVtf.'5GNHVIIIAlAQ&OM~a~D!'A5oQ>f'ig.A.CIQIIC.b!6.POISP>-IV&XPC%%5-ff3'WS25-IO~4.PC'lfCG0Q~~~~i.~iT.DCV.$j7hf0AY'.I-KVy~QSIR-ACCMI4VLATOf~r1~mL,1.r4+-.X-qVO-Iaefa.FOROAT5UDYaQO5>rHyGF<<(~I)M95-.1OFn~X-PclI-26-1-~~gg-II1t:5.-.-fC4<<"~r<<IlII'PrIPC"".A~:atO0;-6IIA<I~!I'.,Frt>G<5tbI4C.IbtWOFOS~HII+IQQf~4AQ7g-05III.WQ'Q'QJA~.R,OIgr=MA$3.~~X?-p.p5iNw9AOKKmfllAicoI:ICOmfmIITI0t~oA<<-IIIfTiIgeXC~AN>g'XvhfKKVK.z-y-t5-c~X-X-ZG-tlatFL4lKXgClf.gy'llPSOD>IK4~54CON%7;RTf7CHttlt45i8ALDDTLS~IDD~I+4F-..-'f~.rOCNNVf.DPIRTENT~CTl04Qy-geFClf<<'ZS'7FC$-c.p+5...err;~.E.>C6C5I'llIsaa.teax.F'c4-t'$'-8~"KS.WPi.fmtZ~CV-C",4.~<<<EVhfaIIIINi~~f'.LIE1rfV4,LV.X.FCV-2$-7Fe4Pt-P'Cg@QPIJ@VCR.
PJ5GiVTmI Q~<y.-..smsmmmvazau;~mrs.~~
SL2-FSARvalveisopenedautomaticallywhentheannulusdifferentialpressurereachesonein.wgnegative.Thecheckvalveinthecoolingline-isdesignedtohaveapressuredropofnotmorethan2.5in.wgandtoo"..nat1.4in.wgnegativetoprovidevacuumcontrolinthesystemandtoallowoutsideairtocoolthefilters.TheSBVSisalsointerconnectedtothespentfuelpoolareaexhaustduct.Uponreceiptofahigh-highradiationsignalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltrationunits.Thec'"toroperatedbutterflyvalvesI-FCV-25-30and31openandtheexhaustfansstartautomatically.ThemotoroperatedvalvesI-FCV-25-32and33clos.tnisolatethe,annulus=;Althoughafuel.handlingaccidentinsidthconcurrentwithaLOCAisnotconsideredadesignb"isevent,aCi.'~SoverridestheFuelHandlingBuildinghigh-highradiationsignalainitiatesthedepressurizationoftheShieldBuildingannul".TheFu.lHandlingBuildingVentilationSystemisfurtherdiscussedinSub"etio.~.4.2.EachoftheSBVSintaketrainsisalsoconnectedtotheContinuousCon-tainment/HydrogenPurgeSystem.Thisconnection,manuallyin'.tiatedfromthecontrolrocm,provideshydrogenpurgecapabilitywhilemini.:.iz-ingoffsiteradiologicalconsequences.TheContinuousContainment/HydrogenPurgeSystem.descriptionisprovidedinSubsection9.4.8.8.BothSBVSsubsystemsareautomaticallystartedbyaCIASorhigh-highradiationsignalfrantheFuelHandling'uilding.Onecanbemanuallyshutdownandplacedinthestandbymode.Thestandbysubsystemauto-maticallyrestartsiftheoperatingsubsystemshouldfail.Thcrosscon-nectionvalveisopenedfromthecontrolroomtoassureairflowthrou:hthefailedsystem.Detectorsinthecharcoalbedsannunciatetempr"..""".-.:exceeding200F.6.2.3.3DesinEvaluation6.2.3.3.1PerformanceRequirementsandCapabilitiesEachofthetwofullc-pacityEan-filtertrai..softheShieldBu'entilationSystem,alongwiththeShieldBuilding,aredesignedtofulfilltheperfonnancerequir'ementsstatedinthedesignbasesinSubsection6.2.3,1.TheanalysisoftheEunc'tionalcapabilityoft'.;"S3VStoi:,:)re."s".andmaintainauniformnegativepre."2."withinth"Sh=!":.annulusisperformedEorthe9.02E-doublecnddsu:tion1s3::breakLOCAusin~tholiATFHPTcomputerco'ed=si1';1inThedescriptionoEthedevelopmentofthepipebreakmassandreleaserateandthecontainmntinitia1conditionsarecontain:..lin"section6.2.1.AnyadditionalinitialconditionsorchangesEre~t':.o.=.listedinSubsection6.2.1arecontai>>cdinT-~''6.2-49.T)is:.transfercoeEicientsareappliedwhetherthesurfacetemperaturecxccdstheannulusatmosphereortheannulusatmo""her"t..:iaratu:.u"x.'"!st!:::surfacetemperature.JULpygg6'-47A SL2-FSAR6.2.4COllTAIhMCtlTISOLATIO",SYSTEMThecontainmentieolationsystemprovidesthemeansofisolatingfluidsys-temsth-.tpassthroughcont=~"..-...cntpcnctrationssuchthatanyradioactivitythe.1.r-ybereleasedintotheccntainmentatmospherefollowingapostulateddesignbasisaccident(DEA')isconfined.Thereisnoo~eparticularrv;."':";co:..1."etcconla''sl>>neifolation,butisolationdesignisprovideda1'plyin-::-".cecr-'terico;..-.;;ontopenetrationsinmanydifferentfl<<idsystems.6.2.4.1DesignL'cesTnedesignbasesgo;crningthecontainmentisolationsystemarediscussedbelow.valvesI,.cttherenuxxeme~,l.sofmanufatu.c.sstandardc"Bu1.terf1yValves".asI6.2.4.1.1ConditionsRequiringContainmentIsolationThccontsinl-entisolationvalvesaredesignatedseismicCategoryIandde>>signedtoAS[KCode,SectonIIIandequalityGroup8requirements.Con-tainmcntisolationvalvesaredesignedtoensureleak-tightncssandrc.liabilityofoperaton.Containmentisolationglobe,checkandgatevalvesmeettherequirementsofmanufacturerssta:ldardsMSS-SP-61>"HydrostaticTestingofSteelValves"andcontainmentisolationbutterflyiiAA~'SS-SP-67Automaticinitiationofacontainmentisolationactuationsignal(CIAS)occurswhenahighcontainmentpressureof5pcigor,ahighcontainmentradiationlevelgf10R/hrisdetected.Thisprovidesdiversityofparameterssensedfor.theinitiationofcontainmentisolation.b)TheCIASclosesfluidlinepenetrationisolationvalvesnotrequiredforoperationoftheEngineeredSafetyFeatures.c)Thecontainmentisolationsystemisdesignedsuchthatnosingleac-.tivefailure(inconjunctionwithlossofoffsitepower)couldresultinoffsitedosesordosestooperatorsinthecontrolroominexcessof10CFR100andGDC19,respectively.d)ThemainsteamandfcedwatervalvescloseonMSISandthevalvesfor'hecomponentcoolingwaterforthereactorcoolantpumpmotorscloseonSIAS(seeSection7.3andSubsection6.2.4.3.2).6.2.4.1.2CriteriaforIsolationofFluidSystemPenetratingtheContainmentIa)Thecontainmcntisolationprovis'onsforthefluidsystempcnetrations(excludingtheESFsystems)aredesignedinaccordancewithGeneralDesignCriteria54;55,.56and,57(refertoTable6.2-52).Excep-tionstoGDCprovisionsarediscussedinSubsection6.2.4.3.6.2-52goal11'.  
~+tn~PDM'1A00'4X~FC4t9'lPOTs,5-(9WOrtZ<<~f~r-8~TZS.t54~IFV.tb7POT'H>tI1MI'~-V, T.II,IPCC25lWIO4Z.DI:V~&#xc3; 0/oh2585te4XKVtf.'5GNHVIIIAlAQ&OM~a~D!'A5oQ>f'ig.A.CIQIIC.b!6.
POISP>-IV&XPC%%5-ff3'WS25-IO~4.PC'lfCG0Q~~~~i.~iT.DCV.$j7hf0AY'.I-KVy~QSIR-ACCMI4VLATO f~r1~mL,1.r4+-.X-qVO-Iaefa.
FOROAT5UDYaQO5>rHyGF<<(~I)M95-.1OFn~X-PclI-26-1-~~gg-II1t:5.-.-fC4<<
"~r<<IlII'PrIPC"".A~:atO0;-6IIA<I~!I'.,Frt>G<5tbI4C.IbtWO FOS~HII+IQQ f~4AQ7g-05III.WQ'Q'QJA~.R,O Igr=MA$3.~~X?-p.p5 iNw9AOKKmfllAicoI:ICOmfmIITI0t~oA<<-IIIfTiIgeXC~AN>g'XvhfKKVK.z-y-t5-c~
X-X-ZG-tlat FL4lKXgClf.gy'll PSOD>IK4~54CON%7;RTf7CHttlt45i8ALDDTLS~IDD~I+4F-..-'f~.rO CNNVf.DPIRTENT~CTl04Qy-geFClf<<'ZS'7FC$-c.p+5...err;~.
E.>C6C5I'llIsaa.teax.F'c4-t'$'-8
~"KS.WPi.fmtZ~CV-C",4.
~<<<EVhfaIIIINi
~~f'.LIE1rf V4,LV.X.FCV-2$-7Fe4Pt-P'Cg@QPIJ@VCR.
SL2-FSARvalveisopenedautomatically whentheannulusdifferential pressurereachesonein.wgnegative.
Thecheckvalveinthecoolingline-isdesignedtohaveapressuredropofnotmorethan2.5in.wgandtoo"..nat1.4in.wgnegativetoprovidevacuumcontrolinthesystemandtoallowoutsideairtocoolthefilters.TheSBVSisalsointerconnected tothespentfuelpoolareaexhaustduct.Uponreceiptofahigh-high radiation signalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltration units.Thec'"toroperatedbutterfly valvesI-FCV-25-30 and31openandtheexhaustfansstartautomatically.
ThemotoroperatedvalvesI-FCV-25-32 and33clos.tnisolatethe,annulus=;
Althoughafuel.handlingaccidentinsidthconcurrent withaLOCAisnotconsidered adesignb"isevent,aCi.'~Soverrides theFuelHandlingBuildinghigh-high radiation signalainitiates thedepressurization oftheShieldBuildingannul".TheFu.lHandlingBuildingVentilation Systemisfurtherdiscussed inSub"etio.~.4.2.EachoftheSBVSintaketrainsisalsoconnected totheContinuous Con-tainment/Hydrogen PurgeSystem.Thisconnection, manuallyin'.tiated fromthecontrolrocm,provideshydrogenpurgecapability whilemini.:.iz-ingoffsiteradiological consequences.
TheContinuous Containment/Hydrogen PurgeSystem.description isprovidedinSubsection 9.4.8.8.BothSBVSsubsystems areautomatically startedbyaCIASorhigh-high radiation signalfrantheFuelHandling'uilding.
Onecanbemanuallyshutdownandplacedinthestandbymode.Thestandbysubsystem auto-matically restartsiftheoperating subsystem shouldfail.Thcrosscon-nectionvalveisopenedfromthecontrolroomtoassureairflowthrou:hthefailedsystem.Detectors inthecharcoalbedsannunciate tempr"..""".-.:
exceeding 200F.6.2.3.3DesinEvaluation 6.2.3.3.1 Performance Requirements andCapabilities Eachofthetwofullc-pacityEan-filter trai..softheShieldBu'entilation System,alongwiththeShieldBuilding, aredesignedtofulfilltheperfonnance requir'ements statedinthedesignbasesinSubsection 6.2.3,1.TheanalysisoftheEunc'tional capability oft'.;"S3VStoi:,:)re."s
".andmaintainauniformnegativepre."2."withinth"Sh=!":.annulusisperformed Eorthe9.02E-doublecnddsu:tion1s3::breakLOCAusin~tholiATFHPTcomputerco'ed=si1';1inThedescription oEthedevelopment ofthepipebreakmassandreleaserateandthecontainmntinitia1conditions arecontain:..l in"section6.2.1.Anyadditional initialconditions orchangesEre~t':.o.=.listedinSubsection 6.2.1arecontai>>cd inT-~''6.2-49.T)is:.transfercoeEicientsareappliedwhetherthesurfacetemperature cxccdstheannulusatmosphere ortheannulusatmo""her" t..:iaratu:.u"x.'"!st!:::surfacetemperature.
JULpygg6'-47A SL2-FSAR6.2.4COllTAIhMCtlT ISOLATIO"
,SYSTEMThecontainment ieolation systemprovidesthemeansofisolating fluidsys-temsth-.tpassthroughcont=~"..-...cnt pcnctrations suchthatanyradioactivity the.1.r-ybereleasedintotheccntainment atmosphere following apostulated designbasisaccident(DEA')isconfined.
Thereisnoo~eparticular rv;."':";
co:..1."etc conla''sl>>neifolation, butisolation designisprovideda1'plyin-::
-".cecr-'terico;..-.;;on topenetrations inmanydifferent fl<<idsystems.6.2.4.1DesignL'cesTnedesignbasesgo;crning thecontainment isolation systemarediscussed below.valvesI,.cttherenuxxeme~,l.s ofmanufatu.c.sstandardc"Bu1.terf1yValves".asI6.2.4.1.1 Conditions Requiring Containment Isolation Thccontsinl-ent isolation valvesaredesignated seismicCategoryIandde>>signedtoAS[KCode,SectonIIIandequalityGroup8requirements.
Con-tainmcntisolation valvesaredesignedtoensureleak-tightncss andrc.liability ofoperaton.Containment isolation globe,checkandgatevalvesmeettherequirements ofmanufacturers sta:ldards MSS-SP-61>
"Hydrostatic TestingofSteelValves"andcontainment isolation butterfly iiAA~'SS-SP-67 Automatic initiation ofacontainment isolation actuation signal(CIAS)occurswhenahighcontainment pressureof5pcigor,ahighcontainment radiation levelgf10R/hrisdetected.
Thisprovidesdiversity ofparameters sensedfor.theinitiation ofcontainment isolation.
b)TheCIASclosesfluidlinepenetration isolation valvesnotrequiredforoperation oftheEngineered SafetyFeatures.
c)Thecontainment isolation systemisdesignedsuchthatnosingleac-.tivefailure(inconjunction withlossofoffsitepower)couldresultinoffsitedosesordosestooperators inthecontrolroominexcessof10CFR100andGDC19,respectively.
d)Themainsteamandfcedwater valvescloseonMSISandthevalvesfor'hecomponent coolingwaterforthereactorcoolantpumpmotorscloseonSIAS(seeSection7.3andSubsection 6.2.4.3.2).
6.2.4.1.2 CriteriaforIsolation ofFluidSystemPenetrating theContainment Ia)Thecontainmcnt isolation provis'ons forthefluidsystempcnetrations (excluding theESFsystems)aredesignedinaccordance withGeneralDesignCriteria54;55,.56and,57(refertoTable6.2-52).Excep-tionstoGDCprovisions arediscussed inSubsection 6.2.4.3.6.2-52goal11'.  


SHIELDBUILDING@SL2-FSARTABLE62-51VENTILATIONSYSTENINSTRUHENTATIONAPPLICATION.?I2~SstemParameter&Lnratinnhnaulus/atanspherepressurediffcrenrialFuelpnnlarea/atchsphereprcssurediEferentialLnralCna<rnlReIndirarinnAlaredCnnrrnlIIHi-LnHi-LnCnntrnlRnna~RdrrdinhutnnctirCnntrnlFunrtinnEaergicesfand<crhargcdampercRnrnrandrepu-laresflnvrnpreddctvalueandeaergi=enutsidernnliagairvalveEnergizesEandicrhargcdampermnrnrandregu-laresflnvrnpresetvalueandeacrgiaenurside'nnlingairvalve'nstrumentRcnce-lntn+30in,-ll20-10rn+30in.H20-1tn-3in.H20-1tn-3ia.H20Instrumenthrrurcry+1.0X+1.0X,3~hirflnvremperct'urednvnstreasnfdemiaterInlettemperatureUpstreamnffiltertrain*0250F0-250F40-111F40177F+2.0X+2.0X5.Demistcr&ElertrirHearersdifEerentialpressure6dhirflnvtemperaturednvn-strccmnf30Kvhearingcnil0250F40-177F+2.0X78.9.Prc-HEPAfilterdiEfereatialprcssureAfter-HEPAEilterdifferent'ialpresddurehirElnvcRniaturednvasrrcamnfHEPAfilterHiHi0-10iaH200-10ia.H200-100X1tn3ia.H201tn3inH2050-10X+1.0X+1.0Xo2.0X10ChcrrnclcdsnrbcrdifferentialpressureindiratnrllCharrnalcdRRnrbcrrwper~rurel2,hirflnvtemperaturednvn>>streamnErharrnaladcnrbcraHi0-lOia,H200-250F0-250F1tn1.15in.+1.0XH20+2.0X40-'I77F40-117F+2OX Sl.2-FSARTA51E6.2-51(Cnnt'd)Snremparamerer6LclrnrinnIndicurinn.CRRnrrnlRralR*,AlarmCRRnrm)II**.CnnrrnlRncRa~aar*alaAutnmarirCcRnrrnlFvncrinnInarrument~RR"EHnrma1Operating~aarInatru-ent~arrarhirflnvdnvnatruamnifan~~nrhirflnMnffiltertrainKnergiaeaidlefantnRRrarratlcRvflnvandalarma0-10,000.cfee6000cfaPiltertraindifferentialpresaureCrnaa-rnnnec'tflnuenntrnlvalvepnairinn015in.H204tn8ia.~.+1.0XH0OutaidecnnlingairflnutnntrnlvalvepnritinnSbieldbuildingaurtinnvalvepnaitinnFuelhandlingbuildingauctinnvalvepnsitinnPurgediachargevalvepnaitinn  
SHIELDBUILDING@SL2-FSARTABLE62-51VENTILATION SYSTENINSTRUHENTATION APPLICATION
~>~~~s-""'""'20.56PositionCe8ofRegulatoryGuide1.45statesthat"leakagedetectionsystemsshouldbeequippedwithprovisionstoreadilypermittestingforoperabilityandcalibrationduringplantoperation".Discusshoweachofthesystemsdescribedin.Subsections5.2.5.1.1thru5.2.5.11complywiththeaboveposition.~ResesseAsrecommendedbyPositionC.8'fRegulatoryGuide'1.45,thethreeseparateunidentifiedleakagedetectionmethodsutilizedonSt.Lucie-Unit2are(1)sumplevelandflowmonitoring,(2)airborneparticulateradioactivitymonitoring,(3)airbornegaseousradioactivitymonitoring.('gTheContainmentAtmosphereRadiationMonitoringSystemwnichincludestheairborneparticulateandgaseousradioactivitymeasurementshaveradioactivechecksourcesforthedeterminationoftheoperabilityofeachoftheradiationchannelsduringfullpoweroperation.CalibrationcanalsobeperformedduringpoweroperationintheReactorAuxiliaryBuildingat19.5ftelevation.Theinstrumentationforthethirdmethodofleakdetection,sumplevelandflowmonitoring,cannotbetestedandcalibratedduringplantoperationduetothelocationoftheequipment(insideContainmentBuilding)~However,acomparisonwiththereadingsoftheothertwomethodsdescribedaboveprovidestheoperatorwithsufficientinformationtodeterminechannelinoperabilityormalfunction./ITie~ik~'~g'I,'///eb'K<1+''e~<>Gal+kl/(XdMPlfl//bs/e/bestbsd'Me~+sA~&#x17d;p(~<efJ'gn~JtJLgg~Ib,1's'4"(420.56-1 PRE-SERVICEINSPECTIONRe:PSIMeetingbetweenFPLandNRC8/ll/81PursuanttotneabovereferencedmeetingFlordiaPower5Lighthasagreedtothefollowing:l.AmeetingbetweenFPLandNRCtoaddressRegulatoryGuide1.150'obeheldon,orbefore,10/I/81,2.AnarrativedescriptionofwhatwillbedoneforReactorvesselinspectionby9/I/81,3.Aprocedure,forinformationonly,ForReactorvesselinspectionbyweekof11/I/81,4.'heultrasonicxaminationprocedurewillbechangedby8/15/81toincludethefollowing:"Examinerswillrecordallcrack-likeindicationsregardlessofamplitude""P.1pld1hP-71~di~P+ontheestimatednumberofweldstobeinspectedusingSectionXI,1977edition,Summer78Agenda,ASMECodeselectedcriteriaforclass2pipingonorbefore8/31/81,6.Toprovideasummaryofallweldsatlocationswheretnestressesundertheloadingsresultingfromnormal.andupsetplantcondi-tionsascalculatedbythesumofequations9and10inNC-3652whichexceed0.8(1.2Sh+Sa)onorbefore9/31/81,7.Ph-71~i~711pl11h7-mentedISIrequirementsofSRPsections3.6.1and3.6.2orjustifyexceptionstakenbyFPL,8.Touse,asguidance,theweldreliefrequestproceduresoutlinedinBandCoftheattachment,9.By8/31/81provideanestimateofPSIareasthatmayrequirereliefrequests,10.ProvideacopyofthePre-ServiceIns~ection~SosnmrtoNRC'sB.J.Crowley(RegionI~I.  
.?I2~SstemParameter
~r 121.13TheASHECode,SectionY!.1977Editionwi:hAddend~throughtheSummer1978AddendaspecifiesuseofAppendixIIIofSect~on):Iforferri.icpipingwelds.Ifthis:r".Jirementisnotapplicable(forexample,forausteniticpipingwelds),ultrasonicexaminationisrequiredtobeconductedinaccordancewiththe2plicable'equiSection".,asamendedbyI~'A-222.DiscussyourAr.icle5of'ectionV,asamendedby'.LA-2232.cationforanyalternaivesusedsuhasSectionrementsofArticle5ofcriteriaforapolyingProvideatechnicaljustifi-XI,AppendixIII,Supplement7forauszenitlcpipingweldsanc"icusssthefollowing:All..dificationsper.-;.itted'ySupplement7.b.Yeh""sofassu.in"adequateexaminationsensitivity'vertherequiredexar,'inationvolume.c.hethccsofqualifvingtheprocedureforexaminationthroughtheweld(ifco.-.deleteexaminationistobeconsideredforexaminationsconductedwi+l.onlyonesidaccess).Whenus'-"~poendixIIIofSectionX'.forinserviceexaminationofeitherfer.-.=ic:-aus=eni.icoipineweld=-hefollowingshouldbeincorporated:d.A.v-.=f:-r>I="in"1caior.,"-careen:oDACorgreater,discoveredsnou.-xot-..=o=t'<examinationofoipinewellesoradjacentbasemetalmaterialsberecorde'ndinves:ig-.edbyaLevelIIofLevelIIIexaminerextentnecessarytoce-.-e..-..inetheshape,identify,andlocationre.lector.Tne';.Ia~v~shouldevaluat=.htake,correc.iveactionforthedispo-ofanyindicationrvsti".atedandfoundtobeotherthangeo-.-..e=r'."alormetallur"'calinnature.  
&Lnratinnhnaulus/atansphere pressurediffcrenrial Fuelpnnlarea/atchsphere prcssurediEferential LnralCna<rnlReIndirarinn AlaredCnnrrnlIIHi-LnHi-LnCnntrnlRnna~Rdrrdinhutnnctir CnntrnlFunrtinnEaergices fand<crhargc dampercRnrnrandrepu-laresflnvrnpreddctvalueandeaergi=enutsidernnliagairvalveEnergizes Eandicrhargc dampermnrnrandregu-laresflnvrnpresetvalueandeacrgiaenurside'nnling airvalve'nstrument Rcnce-lntn+30in,-ll20-10rn+30in.H20-1tn-3in.H20-1tn-3ia.H20Instrument hrrurcry+1.0X+1.0X,3~hirflnvremperct'ure dnvnstreasnfdemiaterInlettemperature Upstreamnffiltertrain*0250F0-250F40-111F40177F+2.0X+2.0X5.Demistcr&ElertrirHearersdifEerential pressure6dhirflnvtemperature dnvn-strccmnf30Kvhearingcnil0250F40-177F+2.0X78.9.Prc-HEPAfilterdiEfereatial prcssureAfter-HEPA Eilterdifferent'ial presddure hirElnvcRniature dnvasrrcam nfHEPAfilterHiHi0-10iaH200-10ia.H200-100X1tn3ia.H201tn3inH2050-10X+1.0X+1.0Xo2.0X10Chcrrnclcdsnrbcrdifferential pressureindiratnr llCharrnalcdRRnrbcr rwper~rure l2,hirflnvtemperature dnvn>>streamnErharrnaladcnrbcra Hi0-lOia,H200-250F0-250F1tn1.15in.+1.0XH20+2.0X40-'I77F40-117F+2OX Sl.2-FSAR TA51E6.2-51(Cnnt'd)Snremparamerer 6Lclrnrinn Indicurinn.CRRnrrnlRralR*,AlarmCRRnrm)II**.CnnrrnlRncRa~aar*alaAutnmarir CcRnrrnlFvncrinnInarrument
~RR"EHnrma1Operating
~aarInatru-ent
~arrarhirflnvdnvnatruam nifan~~nrhirflnMnffiltertrainKnergiaea idlefantnRRrarratlcRvflnvandalarma0-10,000.
cfee6000cfaPiltertraindifferential presaureCrnaa-rnnnec't flnuenntrnlvalvepnairinn015in.H204tn8ia.~.+1.0XH0OutaidecnnlingairflnutnntrnlvalvepnritinnSbieldbuildingaurtinnvalvepnaitinnFuelhandlingbuildingauctinnvalvepnsitinnPurgediachargevalvepnaitinn  
~>~~~s-""'""'20.56PositionCe8ofRegulatory Guide1.45statesthat"leakagedetection systemsshouldbeequippedwithprovisions toreadilypermittestingforoperability andcalibration duringplantoperation".
Discusshoweachofthesystemsdescribed in.Subsections 5.2.5.1.1 thru5.2.5.11complywiththeaboveposition.
~ResesseAsrecommended byPositionC.8'fRegulatory Guide'1.45,thethreeseparateunidentified leakagedetection methodsutilizedonSt.Lucie-Unit2are(1)sumplevelandflowmonitoring, (2)airborneparticulate radioactivity monitoring, (3)airbornegaseousradioactivity monitoring.
('gTheContainment Atmosphere Radiation Monitoring Systemwnichincludestheairborneparticulate andgaseousradioactivity measurements haveradioactive checksourcesforthedetermination oftheoperability ofeachoftheradiation channelsduringfullpoweroperation.
Calibration canalsobeperformed duringpoweroperation intheReactorAuxiliary Buildingat19.5ftelevation.
Theinstrumentation forthethirdmethodofleakdetection, sumplevelandflowmonitoring, cannotbetestedandcalibrated duringplantoperation duetothelocationoftheequipment (insideContainment Building)
~However,acomparison withthereadingsoftheothertwomethodsdescribed aboveprovidestheoperatorwithsufficient information todetermine channelinoperability ormalfunction.
/ITie~ik~'~g'I,'///eb'K<1+''e~<>Gal+kl/(XdMPlfl//bs/e/bestbsd'Me~+sA~&#x17d;p(~<efJ'gn~JtJLgg~Ib,1's'4"(420.56-1 PRE-SERVICE INSPECTION Re:PSIMeetingbetweenFPLandNRC8/ll/81Pursuanttotneabovereferenced meetingFlordiaPower5Lighthasagreedtothefollowing:
l.AmeetingbetweenFPLandNRCtoaddressRegulatory Guide1.150'obeheldon,orbefore,10/I/81,2.Anarrative description ofwhatwillbedoneforReactorvesselinspection by9/I/81,3.Aprocedure, forinformation only,ForReactorvesselinspection byweekof11/I/81,4.'heultrasonicxamination procedure willbechangedby8/15/81toincludethefollowing:
"Examiners willrecordallcrack-like indications regardless ofamplitude" "P.1pld1hP-71~di~P+ontheestimated numberofweldstobeinspected usingSectionXI,1977edition,Summer78Agenda,ASMECodeselectedcriteriaforclass2pipingonorbefore8/31/81,6.Toprovideasummaryofallweldsatlocations wheretnestressesundertheloadingsresulting fromnormal.and upsetplantcondi-tionsascalculated bythesumofequations 9and10inNC-3652whichexceed0.8(1.2Sh+Sa)onorbefore9/31/81,7.Ph-71~i~711pl11h7-mentedISIrequirements ofSRPsections3.6.1and3.6.2orjustifyexceptions takenbyFPL,8.Touse,asguidance, theweldreliefrequestprocedures outlinedinBandCoftheattachment, 9.By8/31/81provideanestimateofPSIareasthatmayrequirereliefrequests, 10.ProvideacopyofthePre-Service Ins~ection
~SosnmrtoNRC'sB.J.Crowley(RegionI~I.  
~r 121.13TheASHECode,SectionY!.1977Editionwi:hAddend~throughtheSummer1978Addendaspecifies useofAppendixIIIofSect~on):Iforferri.icpipingwelds.Ifthis:r".Jirement isnotapplicable (forexample,foraustenitic pipingwelds),ultrasonic examination isrequiredtobeconducted inaccordance withthe2plicable'equi Section".,asamendedbyI~'A-222.DiscussyourAr.icle5of'ection V,asamendedby'.LA-2232.
cationforanyalternaivesusedsuhasSectionrementsofArticle5ofcriteriaforapolyingProvideatechnical justifi-XI,AppendixIII,Supplement 7forauszenitlc pipingweldsanc"icusssthefollowing:
All..difications per.-;.itted'y Supplement 7.b.Yeh""sofassu.in"adequateexamination sensitivity'ver therequiredexar,'ination volume.c.hethccsofqualifving theprocedure forexamination throughtheweld(ifco.-.delete examination istobeconsidered forexaminations conducted wi+l.onlyonesidaccess).Whenus'-"~poendixIIIofSectionX'.forinservice examination ofeitherfer.-.=ic
:-aus=eni.ic oipineweld=-hefollowing shouldbeincorporated:
d.A.v-.=f:-r>I="in"1caior.,"-careen:oDACorgreater,discovered snou.-xot-..=o=t'<examination ofoipinewellesoradjacentbasemetalmaterials berecorde'ndinves:ig-.edbyaLevelIIofLevelIIIexaminerextentnecessary toce-.-e..-..ine theshape,identify, andlocationre.lector.
Tne';.Ia~v~shouldevaluat=.htake,correc.ive actionforthedispo-ofanyindication rvsti".ated andfoundtobeotherthangeo-.-..e=r'."al ormetallur"'calinnature.  


ThePS:r"gra-.'ouidincludethefollowinginformation:A)ForASHECodeClass1and2co-.,ponents,providea.ablesimilartoIMB-2600andIWC-2600confinninothateitherth~entireSectionXIpreserviceexa;..inationwasperfor,.edontnecor.:""nnorreliefisrequestedwithatechnica'1justificationsuppor='."..cyourconclusion.~B)Wherereliefisrequestedf".pressureretainin"weldsinthereactorvessel,identifythespeciicweldsthatdidnotreeivea100+pre-serviceultrasonicexamira:-'cr.ar"estimatethe>:=antcftheexaminatior.thatwasper;-"r.-.:ed..C)hherereliefis'requestedforpipingsystemweld=-(=xaminationCateooryB-~,C-F,andC-G),"rovidealistofth=specificweldsthatdidnotreceiveacompleteSectionXI-preservicexaminationincludingadiawingoriscretriciden.i-.icationnumber,sy=-'.=;,'eldnumber,andphvsicalconiguration,.g.,pipetonozzle;:eld,etc.Estimatetheextento-.thepreserv'.ce=xa.-.,inaionthatwa:-."~rformed.Whenthorvolumetricex=-.,-.nationwas".erfor;-..edfromonesi-=oftheweld,discusswhe"hertheen-.-'rewelcv-'u-.andthehea:=e"=="'"n=(HfZiandbasehietalor.-.'".efarsideo-,theweldwereexa.-...'.:ed.S:=-tetheprimaryreason.hatas=="ificexa-.ira.ionisi;..oractical,e.g.,supportorcc.-..p,"-nentrestric-sac=ess,.itingpreventsadequateultrasoniccouplingononeside,cc-...""nntoco-...".onentwidpreventsv:-.=-sonicexamination,etc.Indica'=="..'lterna-.i;=orsupp;-.,e".italexa-..irationsperformedandmethods(s:.".abricaionoxamination.
ThePS:r"gra-.'ouidincludethefollowing information:
IOnpage2ofyourprogramdescription,regardingClassIIexaminations,you'havefailedtoincludetherequirementfromTableIHC-2500-1ofthe77Code,S-78Addendato-includein-theweldsselectedforexamination"allweldsatlocationswherethestressesundertheloadings,resultingfromnormalandUpsetplantconditionsas.calculatedbythesumof,Eqs."9and10inNC-3652exceed0.8{1=-.2'pa)."ExplaintheaboveandsubmitarequestforreliefifallS-78Addendarequirementsarenotfollowed.2)3)ProvidesampleresultsofPSIUT.examinationincludingresultsofinevestigatingcausesof'ltrasonicrejectivesandrepairresults.Tocompleteourreview,itwouldbehelpfultohaveyourproceduresforautomatedexaminations.Inparticular,submityour,plans,schedule,andprocedureforimp'lementingRegulatoryGuide1.150forreactorvesselweldPSI.DiscussyourplansforcompliancewithaugmentedISIofStandardReviewPlans6.6,3.6.1and3.6.2..,(~j5)InParagraph4.1.2ofyourgeneralNUTprocedureyouindicateaminimumofonLevelIIinacrewofLevelI'sorLevelITrainee's.Yourexampleexaminationresultsaresignedboth'byaLevelIIandLevelI.Sinceyourproceduresinvolvedevaluationofindicationsastogeometricornon-geometric,itwouldbegoodpracticetohaveatleastoneLevelIIdirectlyperformingorobservingeachexamination.Pleaseexplainyouractualpractices.InExhibit1ofyourprogramdescription,youhavea30"to12"joint'hichutilizesa12"calibrationblocks.Providejustificationfornotalsousinga30"block.
A)ForASHECodeClass1and2co-.,ponents, providea.ablesimilartoIMB-2600andIWC-2600confinnino thateitherth~entireSectionXIpreservice exa;..ination wasperfor,.ed ontnecor.:""nnorreliefisrequested withatechnica'1 justification suppor='."..c yourconclusion.
FLORDIAPOWER&LIGHTCOMPANY'SPOSITIONONFEEDWATER1MSIERTESTING1.St.Lucie81&82Feedwaterpipingisnotonlysimilar,itisessen-tiallyidentical.-Isometricsofbothunitswerecomparedandthedifferencesaremeasurableinfractions.Forexample,thehorizon-talsectionsofpipingenteringthestreamgenerator,whicharethesections'ofpipingmostlikelytoexperiencewaterhammerareallequalinlength(2feed),withonsectiononUnitf/1being3/8"shorterthanonUnit//2.St.Lucie1performedfeedwaterhammertestingbydrainingthefeed-ringforupto2hoursandthenmanuallyinitiatingauxiliaryfeed-.water.Thisdrainingofthefeedringisconsideredtheworstcasetotransientand,sinceithasbeenperformedonanidenticalunit,willnotberepeatedhere.2.Three(3)testswillverifythattheAuxiliaryFeedwaterSystemwillperformitsdesignfunction.a~Aux.FeedPumpInitialRun.Thistestisarecirculationfrom/totheCondensateStorageTanktoinitiallyrun.intheequipment.b.C~AuxiliaryFeedwaterFunctionandEnduranceTest.ThistestwillbeperformedpriortoandduringHotFunctionalTestingtocheckoutsystemoperation,toverifythemanufacturersendurancerun.AuxiliaryFeedwaterAutomaticInitiation.C.1.Objective.'.Toverifyauxfeedau'toinitiationb.Toverifytheabsenceofwaterhammerstothefeedwaterpipingduringautoinitiation.C-2InitialConditions'a~b.c~ReactorCoolantSystematnormal,no-loadoperatingtemperatureandpressure.SteamGeneratorSecondarySideatnormalno-loadoperatingtemperatureandpressure.MaintainingSteamGeneratorlevelswithmanualaux.feedwatercontrol.C-3TestOutlinea~b.csStationanoperatorincontainmenttolistenforanysymptomsofwaterhammer.StopfeedingSteamGeneratorsReturnAuxiliaryFeedwatertoa"NormalStandby"lineup.  
~B)Wherereliefisrequested f".pressureretainin" weldsinthereactorvessel,identifythespeciicweldsthatdidnotreeivea100+pre-serviceultrasonic examira:-'cr.
ar"estimatethe>:=antcftheexaminatior.
thatwasper;-"r.-.:ed.
.C)hherereliefis'requested forpipingsystemweld=-(=xamination CateooryB-~,C-F,andC-G),"rovidealistofth=specificweldsthatdidnotreceiveacompleteSectionXI-preservice xamination including adiawingoriscretric iden.i-.ication number,sy=-'.=;,'eld number,andphvsicalconiguration,
.g.,pipetonozzle;:eld, etc.Estimatetheextento-.thepreserv'.ce
=xa.-.,ina ionthatwa:-."~rformed.
Whenthorvolumetric ex=-.,-.nation was".erfor;-..ed fromonesi-=oftheweld,discusswhe"hertheen-.-'rewelcv-'u-.andthehea:=e"=="'"n=
(HfZiandbasehietalor.-.'".efarsideo-,theweldwereexa.-...'.:ed.
S:=-tetheprimaryreason.hatas=="ificexa-.ira.ion isi;..oractical, e.g.,supportorcc.-..p,"-
nentrestric-s ac=ess,.itingpreventsadequateultrasonic couplingononeside,cc-...""n ntoco-...".onent widpreventsv:-.=-sonicexamination, etc.Indica'=="..'lterna-.i;=
orsupp;-.,e".ital exa-..irations performed andmethods(s:
.".abricaionoxamination.
IOnpage2ofyourprogramdescription, regarding ClassIIexaminations, you'havefailedtoincludetherequirement fromTableIHC-2500-1 ofthe77Code,S-78Addendato-includein-theweldsselectedforexamination "allweldsatlocations wherethestressesundertheloadings, resulting fromnormalandUpsetplantconditions as.calculated bythesumof,Eqs."9and10inNC-3652exceed0.8{1=-.2'pa)."
ExplaintheaboveandsubmitarequestforreliefifallS-78Addendarequirements arenotfollowed.
2)3)ProvidesampleresultsofPSIUT.examination including resultsofinevestigating causesof'ltrasonic rejectives andrepairresults.Tocompleteourreview,itwouldbehelpfultohaveyourprocedures forautomated examinations.
Inparticular, submityour,plans,schedule, andprocedure forimp'lementing Regulatory Guide1.150forreactorvesselweldPSI.Discussyourplansforcompliance withaugmented ISIofStandardReviewPlans6.6,3.6.1and3.6.2..,(~j5)InParagraph 4.1.2ofyourgeneralNUTprocedure youindicateaminimumofonLevelIIinacrewofLevelI'sorLevelITrainee's.
Yourexampleexamination resultsaresignedboth'byaLevelIIandLevelI.Sinceyourprocedures involvedevaluation ofindications astogeometric ornon-geometric, itwouldbegoodpracticetohaveatleastoneLevelIIdirectlyperforming orobserving eachexamination.
Pleaseexplainyouractualpractices.
InExhibit1ofyourprogramdescription, youhavea30"to12"joint'hich utilizesa12"calibration blocks.Providejustification fornotalsousinga30"block.
FLORDIAPOWER&LIGHTCOMPANY'S POSITIONONFEEDWATER 1MSIERTESTING1.St.Lucie81&82Feedwater pipingisnotonlysimilar,itisessen-tiallyidentical.
-Isometrics ofbothunitswerecomparedandthedifferences aremeasurable infractions.
Forexample,thehorizon-talsectionsofpipingenteringthestreamgenerator, whicharethesections'ofpipingmostlikelytoexperience waterhammerareallequalinlength(2feed),withonsectiononUnitf/1being3/8"shorterthanonUnit//2.St.Lucie1performed feedwater hammertestingbydrainingthefeed-ringforupto2hoursandthenmanuallyinitiating auxiliary feed-.water.Thisdrainingofthefeedringisconsidered theworstcasetotransient and,sinceithasbeenperformed onanidentical unit,willnotberepeatedhere.2.Three(3)testswillverifythattheAuxiliary Feedwater Systemwillperformitsdesignfunction.
a~Aux.FeedPumpInitialRun.Thistestisarecirculation from/totheCondensate StorageTanktoinitially run.intheequipment.
b.C~Auxiliary Feedwater FunctionandEndurance Test.Thistestwillbeperformed priortoandduringHotFunctional Testingtocheckoutsystemoperation, toverifythemanufacturers endurance run.Auxiliary Feedwater Automatic Initiation.
C.1.Objective.'.Toverifyauxfeedau'toinitiation b.Toverifytheabsenceofwaterhammerstothefeedwaterpipingduringautoinitiation.
C-2InitialConditions
'a~b.c~ReactorCoolantSystematnormal,no-loadoperating temperature andpressure.
SteamGenerator Secondary Sideatnormalno-loadoperating temperature andpressure.
Maintaining SteamGenerator levelswithmanualaux.feedwater control.C-3TestOutlinea~b.csStationanoperatorincontainment tolistenforanysymptomsofwaterhammer.StopfeedingSteamGenerators ReturnAuxiliary Feedwater toa"NormalStandby"lineup.  


C.3(cont.)d.e.AllowSteamGeneratorstodrain.WhentheAux.,Feed-waterActuationSignaloccurs,observeproperoperationsofAutomaticAux.Feedwaterinitiation(ie.pumpsstart,valvesopen,steamgeneratorlevelsrise)-FeedSteamGeneratorstodesiredlevelsResumeManualAux.FeedtoSteamGeneratorsVisually'examinepipingexternaltotheSteamGenera-torsforeffectsofwaterhammer.Theadditionoftheautomaticactivationfeatureensuresthatthesteamgeneratorswillnotbesubjectedtoalongperiodofsteamingdown,suchashappenedatTMIandwastestedfoxonSt.Lucie//1.Xnstead,thesystemwillactivateattheactualtimeitwouldintheeventofanaccident.Thisisconsistentwiththetestbeingpex-formedattheSanOnofre2&3unitsaftertheixfeedingmodification.3.Pi'pingvibrationwillbemonitoredduringthevaxiousphasesofstart-up.XnaccordancewiththeFPLapprovedvibrationmonitoringprogram.4..Becauseofthefollowingreasons:a)ThePipingarrangementforbothunitsisalmostidentical,Eb)ExtensiveFeedwatexHammertestingwasperformedonSt.LuciefIl(5separatetestsatvarioussteam-downinternalsupto2hours)andnoresultantFeedwaterHammer,c)TheSt.LucieI2PxeoperationalTestProcedurewillverifyauto-maticinjection,whichwillbetheworstconditionforUnit/I2,d)AnoperatorwillbestationedtospecificallymonitorforFeed-waterHammer:,FloxdiaPower6LightfeelsthatouxpresentproposedprogramadequatelydemonstratesthatSt.Lucie//2will.notencounteranyFeedwaterHammerproblemsandhopesthissatisfystheNRCBranchposition.
C.3(cont.)d.e.AllowSteamGenerators todrain.WhentheAux.,Feed-waterActuation Signaloccurs,observeproperoperations ofAutomatic Aux.Feedwater initiation (ie.pumpsstart,valvesopen,steamgenerator levelsrise)-FeedSteamGenerators todesiredlevelsResumeManualAux.FeedtoSteamGenerators Visually'examine pipingexternaltotheSteamGenera-torsforeffectsofwaterhammer.Theadditionoftheautomatic activation featureensuresthatthesteamgenerators willnotbesubjected toalongperiodofsteamingdown,suchashappenedatTMIandwastestedfoxonSt.Lucie//1.Xnstead,thesystemwillactivateattheactualtimeitwouldintheeventofanaccident.
RegardingquestionsraisedbyWalterPasedag(RadiologicalAnalysisBranch,SectionAccidentEvaluationBranch)onthehydrazineadditivesyst:emandTSPlocatedinsidecon-tainment,theapplicant,willrevisetheFSAR,asnecessary,viaamendmentto,documentthefollowing:1-Aminimumof,2hoursofhydrazinewillbestoredforcontinuousinjectionataratethatwillinsureaminimumconcentrationof50ppmisavailableatthespraynozzles.2-Aslongasdosesareacceptableintheapplicablepor-tionsoftheReactorAuxiliaryBuilding,thereisthecapabilitytopermit,therefillingthehydrazine,tank.3-AquantityofTSPwillbe10acatedinsidecontainmentsuchthatthewaterpostaccidentwillhaveaminimumpHof7.0.P4.-TheTSPbasketdesignwillbesuchthataninadvertantcontainmentspraywillnotdissolvetheTSP.5-TheTSPbasketswillbelocatedinthevicinityofthe*ECCSsumpanddesignedsuchthataflowofwaterwilldissolvetheTSPwithinthebaskets.  
Thisisconsistent withthetestbeingpex-formedattheSanOnofre2&3unitsaftertheixfeedingmodification.
3.Pi'pingvibration willbemonitored duringthevaxious phasesofstart-up.Xnaccordance withtheFPLapprovedvibration monitoring program.4..Becauseofthefollowing reasons:a)ThePipingarrangement forbothunitsisalmostidentical, Eb)Extensive Feedwatex Hammertestingwasperformed onSt.LuciefIl(5separatetestsatvarioussteam-down internals upto2hours)andnoresultant Feedwater Hammer,c)TheSt.LucieI2Pxeoperational TestProcedure willverifyauto-maticinjection, whichwillbetheworstcondition forUnit/I2,d)Anoperatorwillbestationed tospecifically monitorforFeed-waterHammer:,FloxdiaPower6Lightfeelsthatouxpresentproposedprogramadequately demonstrates thatSt.Lucie//2will.notencounter anyFeedwater HammerproblemsandhopesthissatisfystheNRCBranchposition.
Regarding questions raisedbyWalterPasedag(Radiological AnalysisBranch,SectionAccidentEvaluation Branch)onthehydrazine additivesyst:emandTSPlocatedinsidecon-tainment, theapplicant, willrevisetheFSAR,asnecessary, viaamendment to,document thefollowing:
1-Aminimumof,2hoursofhydrazine willbestoredforcontinuous injection ataratethatwillinsureaminimumconcentration of50ppmisavailable atthespraynozzles.2-Aslongasdosesareacceptable intheapplicable por-tionsoftheReactorAuxiliary
: Building, thereisthecapability topermit,therefilling thehydrazine, tank.3-AquantityofTSPwillbe10acatedinsidecontainment suchthatthewaterpostaccidentwillhaveaminimumpHof7.0.P4.-TheTSPbasketdesignwillbesuchthataninadvertant containment spraywillnotdissolvetheTSP.5-TheTSPbasketswillbelocatedinthevicinityofthe*ECCSsumpanddesignedsuchthataflowofwaterwilldissolvetheTSPwithinthebaskets.  


SL2-FSARtI6.5.2COH'fAINlEN'fSPRAYSYS'fEH/IODINERE"lOVALSYS'fl;H(CSS/IRS)TheContainmentSprsySystem(CSS)isprovidedtoperfnrmthedrralfrrnc-tinnsofremovingheatandfissionprodrrctsfromapost-accidentcontain-mentatmosphere.Theheatrein>valcapabilityoftheCSSisdiscussedinSubsection6.2.2.Thefissionproductremovalfrrnctionir.carriednrrtbytheIodineRemovalSystem(IRS),nperatinginconjunctionwithtireCon-tainmentSpraySystem.TheIRSremnvesradio-indinesfromthecnntainrnentatmospherefnllowingaloss-of-coolantaccidentbyaddingcontrolledamn'untsofhydrazinetocontainmentspraywater.6.5.2.]~DecinBhCehThedesignbasesfortheCSS/IRSasafissionproductremovalsystemareasfo1l.ows:a)Tnprovidecapabilityfnrthefissionproductrcrubbingofthecontainmentatmcspherefol.lowingaDBA-LOCAsuchthatnffsitednses,anddnsestonperatorsinthecnntrolronm,arewithintheguide-linesof10CFR100andGDC19respectively.TheradioactivematerialreleaseassumptionsofRegulatoryGuide1.4"AssumptionsUsedfnrEvaluatingthePntentialRadiologicalConsequencesofaLnssofCnnlantAccidentforPMRS",6/74{R2)areusedindeterminingsystemcapability.TheradioiodineandnoblegasactivityinventoryinthecnntainmentatmnspherefollowingaDBA-LOCAisgiveninSection15.6.b)Tnmaintainaminimumhydcc;ntainmentspraynnzzlespercentbyweightindemiToachieveacontainmentrpraychemicalmixeswithrazinecnncentratinnof50-65ppmatthebasednnastoragecnncentrationof.neralizedwater.7~sumppitbetween7.0and7.5afteralltetheavailablewaterinventory.h/~hthh'"~0~hh4.d)ElementalhTnperformitsfunctionfollowingaLOCA>assumingasingleactivecomponentfailurecoincidentwithlnssofnffsitepower.BedesignedtnseismicCategoryI,QualityGroupBstandardsasapplicable.Tnremoveelementalandparticulateindineswiththefnllowingmini-mumfi~~)orderremcval.cnefficients(inaccordancewithHUREG/CR-009hIodineForm'irstOrderRemovalCrefficient-110hnursParticulate,'-~""-''~,~0.45hnurshTnmeetiodineremnvalrequirementsbasedonaneffectivespraycoveragenf85percentofthecontainmentfreevolume.6.5-6 e0 Sl.2-FSARToperformitsfunctionunderthepostaccidentenvironmentalconditionsspecifiedinSection3.11.Toprovidesystemmaterialswhicharecompatiblewithfluidche;nistry.TheContainmentSpray/IodineRem<valSystemsaredesignedtoQualityGroupBandseismicCategoryIrequirementsinaccordancewiththerecommendationsofRegulatoryGuide1.26,"QualityGroupClassificationsandStandardsforWaterSteanandRadioactiveWasteContainingComponentsofNuclearPowerPlants",2/76(R3)andRegulatoryGuide1.29,"SeismicDesignCl.assifi-cation",(R2),respectively.p'4F,F6.5.2.2.1DesignDescription',~FBoththeCSS/IRSconristoftwoindependentandredundantloops.EachCSSloopismadeupofaspraypump,shutdowncoolingheatexchanger,piping,val.ves,headers,andnozzles.ConnectedtoeachCSSloopisanindependenttrainoftheIodineReraovalSysteaconsistingnfaconstantvolumemeteringpump,soLennid-operatedisolationvalve,IRStankandassociatedpipingandvaLves.TheflowdiagramsfortheCSSandIRSappearasFigure6.2-41.ThedesigndataforIRScomponentsisshowninTable6.5-2.SimilardatafortheCVSSisgiveninTable6.2-38.,4Ir4F-.4~44CV~~F\I~ThedesignoftheIRSisbasedontheadditionofhydrazinetothecon-tainmentspraywaterataratethatensuresaminimumhydrazineconcentra-tionof50ppmatthespraynozzlesaBasedontheoffsitedoselimitsasdefinedin10CFR100,andaspraycoverageof85percentoEthetotalcontainmentnetfreevolume,hydrazineadditionproceedsforaperiodofappraxiipstatyg'rpiautas./8<Aconstantvon~iydrazineadditionpumpisselectedforsystemsimpli-ficationandeaseofoperation.Overtheentirerangeofsprayflowratestheconcentrationofhydrazineirnolessthan50ppraandnogreaterthan65ppm.Uponreceiptofacontainmentsprayactuationsignal(CSAS)the.solenoid-operatedisolationvalvesopenandthehydrazinepumpsstart.Hydrazinei.xnjcedintothesuctionsideofeachcontainmentspraypumpatarateo-'gallonsperminute(gpra)untilalowlevelswitchinthehydrazinestaetanksiraultaneouslystopsthepumpsandclosesthesolenoidvalves.ThesystenisdesignedtobefullyautnraaticyetiscapablenfLocal-manualcontrol.4sIo.gitsA<<sa.renc~~b4~W~pofi'~cfWW4>/lv'I'~8't4:p,9<~e.4~~p4Iip*p'~reW'~l'~Ly>sy'~6k..OninitiationnftheCSAS,thecontainraentspraypumpstrikesuctionfromtherefuelingwatertank(RMT)andsprayboratedwaterdirectlyintothecontainmentatmosphereAlowleveLintheRWTisreachedinapproxiraately20minutes(seeSubsection6.2.2).Alowlevelswitchinitiatestherecirculationactuationsignal(RAS)transEerringcontainmentspraysuctiontothecontainmentsump.Spraywaterinthesumpisbufferedwithtrisodiumphosphatedodecahydrate(TSP)6.5-7 SJ.2"YSARmodes<<ndeffectsan<<Lysishasbeenrpadeon<<11activecomponentsoftheIrdineRernov<<lSystemtosin'wthatasaminimumthereis<<v<<il<<bleone100percenthydrazinesprayadditivesubsystemafteranysingleactivefailure.Forafailuremodesandeffects<<n<<lysisoftheContain!nentSpraySystensee6.2-41'.5.2.3.1TheoryofIodineRemovalbyContainmentSprayThesprayremovalcon~tant~,EoriodineisevaluatedusingthemodelsdescribedinNUREG/CR-009~Themodelassumesabal.ancebetweeniodineenteringandleavingthecontainmentatmospherewithfirstorderremovalproducedbythespray.TheresuLtingequation,asgiveninNUREG/CR-009,fortheremov<<Lrateis:A~LEHwhere'acHVViodineremovalrate~hrsprayflowrate,Et/hrabsorptionefficiencyequilibriumpartitioncoefficient3netfreevolumeofcontainment,ftTheabsorptionefficiency,E,isevaluatedbyusingthestagnantEiLmmodel.FurtherguidanceonthedeterminationofthisparameterisgivenbyParsiyandhasbeenfollowedinthisevaluation.Theparametersusedinthecalcu-lationaregiveninTable6.5>>5.Forelemental.iodine,aremovalco-efficientof37hrhasbeencalculated.However,inordertoaccountforre-evolutionofiodine,creditistakenforsprayrernovaLuntil.theinitialiodineconcentrationhasbeenreducedbyafactorof100.Further,intheevaluationofthepost-LOCAoffsitedoses,theasssumptionismadethat50percentoftheinitialairborneiodineinstantaneouslyplatesout.Consequently,theremoval.ratesforelemenfaLandparticulateiodineusedintheLOCAdosecalculationsare10hrand'0.45hr,respectivel.y.6.5.2.3.2'prayandSumpMaterpHHistoryThepHoELiquidsolutionsthatarerecirculatedwithinthecontainmentfoiiowingadesignbasis~ccidentisstabilizedatapproximately7.0to7.5ThepHismaintainedwiththeuseoftrisodiumphosphatedodecahdrste(TSP)whichisstoredinnineopenbasketsLocatedinth8contarnment..ump.EachbarketisapproximateLythreeft.bythreeft.byoneft.Theareconstructedofstainlesssteelwithmeshscreensides>and-ope~pyBoratewaterfromthecontainmentspraydissolvestheTSPandthusraisethepMixingisachievedasthesolutioniscontinuousLyrecirculatedfromthesumptothespraynozzles.Thespraywaterdissolves'theTSPwithinthreehoursfollowingCSAS.Approximatelyone-thirdoftheTSPdissolvesduringtheinjecticnmade~Fordetailsofflowpathstothesump,seeSubsectionYtC.>IN=0"Cd6.2,2.'An-++PID(ls4+I)Jn.s!Qr>>~ilbr)s~c(>>~I>>tl+%wrrlaJyQe'ta)ltcalztohl~~~<$~>>IIaa'td>>ss~lve.44l~sp6.5-9 SL2"FSARTABLE6.5"2IODINEREMOVALSYSTEMCOMPONENTStlydrazineSt~oraeTankr'Volume,gallons"Mi'nimum:LiquidVolume,gallonshDesignTemperature,FDesignPressure,psigOperatingTemperature,FOperatingPressure,psigFluidMatrrialCode80~8).201007.%f10.byweighthydrazinesolutionwithnitrogen(N)covergas31%4SSASMEXII,CodeClass2B-HdrazinePums~-~~rerrr~Js~rrwwdSuQuantityTypeCapacity,gpmDischargePressure,psigDesignTemperature,FOperatingTemperature,FNPSHn,ftofwaterFluictMaterialCodeRatingSolenoidValvesQuantitySize,inche"sTypeDesignPressure,ps15DesignTemperature,FANSIClassEndConnectionPipeScheduleMaterialFluidOperatorCode2PositiveDisacgrant,Metering3s0maximum12010030QXlyweighthydrazinesolution304SSASMEIII,CodeClass2480VACr~.2.1/2Globe120600SW80s304SS)Z~yweighthydrazinesolution125Vdc*solenoidASMEIXI0CodeClass20*125V,DC6.5-19AmendmentNo.0,(12/80)
SL2-FSARtI6.5.2COH'fAINlEN'f SPRAYSYS'fEH/IODINE RE"lOVALSYS'fl;H(CSS/IRS)
SL2"l'SARTABLE6.5-3CONTAIN!1ENTSPRAYANDSPRAYAOI)ITIVEI'LOPRATESTheflovratesforthecontainmentsprayandsprayadditiveflovratesaregivenforthefollowingthreecases:Case1:Hinimumsafeguardflow,minimuminjection(i.e.,onecontainmentspraypump+oneHPSIpump+oneLPSIpump)withlossofoffsitepowerandonedie"elgeneratorfailure.Case2:Maximumsafeguardflov(i.e.,twoHPSIpump+twoLPSIpumps)andsinglefailureofonecontainmentspraypump,(i.e.,onlyonecontainmentspraypumpoperating)withoffsitepoweravailable.'Case3:Maximumsafeguardflov,maximuminjection(i.e.,twocontainmentspraypumps+twoHPSIpumps+twoLPSIpumps)vithoffsitepoweravailable.rCaseTotalTotal.Total>SafeguardSystemContainmentSprayAdditiveHydrazineAddition~Oeral.ionRodeSrettlou(m)ttlou(~m)Time(minutes)0InjectionLongTermRecirculation280035603.583.5802InjectionLongTermRecirculation280035603.583.583Injection56007.1620LongTerm7120716ggQRecirculation*BasedonRATatminimumTechSpeclevelandrunoutflowsforHPSI,LPSIandCSpumps.Thecontainmentsprayflovof2800gpmincludesaminimumrecirculationflovof150gpmrequiredduringtheinjectionphase.I3'tss4~'Vs1s~e~*'k'\e~~'g,~,6,5-21AmendmentNo,3~(6/81)
TheContainment SprsySystem(CSS)isprovidedtoperfnrmthedrralfrrnc-tinnsofremovingheatandfissionprodrrcts fromapost-accident contain-mentatmosphere.
FLORIDAPOMER6LICHTCOMPANYSTLUCIEUNIT2DOCKET50-389ENVIRONMENTALDATAFORUNDERROUNDCABLEEXPOSEDTOMET/DRYNNVINNrNNNTUI.~TeeofCablesUs.dInUnderroundDuctss~c(l44wocablevendorssupplycablesforus>inundergroundducts.TheyaretheOkoniteCompany.andSheKeriteCompany~,Okonitesupplies5KV&.15KVpowercabledKaritesupplies600Vpower,controlandinstruaeetationcable~.('.RL.rs]:~PP)s'~C~~~dgCC.'&-~The5KVand15KVpowercablesareinsulatedwithunfilled,crosslinkedpolyethylene,wrappedwithanextrudedlayerofsemiconducCinginsulationshieldmaterialcompatiblewiththeinsulation,andcoveredwithaleadsheathandaheavydutyoverallneoprenejacket.The600Vpowercablesare'nsulatedwithahightemperatureKeriteinsulation(HTK)andcoveredwithblackheavydutyflameresistant(FR)jacket.The600VcontrolcablesareinsulatedwithKeriteflameresistant(FRII)insulationandcoveredwithheavyflameresistant(FR)jackets.'he600Vinstrumentationcablesconsistsoftwistedpair'edshieldedandunshieldedcables.'UnshieldedcablesconsistoftwistedpairswithKeriteflameresistant(FRII)insulationcoveredwithanextrudedpolymerlayerandhavinganoverallflameresistant(FR)jacket.Shieldedcablesinaddition'otheabovehaveadrainwirewitheachpairindirectcontactwithalumimummylartape.EachshieldedpairisseparatedbyglassmylarCape.CoaxialcablesareconstructedwithaRockbestosFirewallIIIPolymerLDfirstinsulation,radiationcrosslinkedcellularmodifiedpolyolefinorradiationcrosslinkedmodifiedpolyolefinsecondinsulation,'overedwith(atincoatedcoppershieldandaradiationcrosslinked,noncorrosive,Iflameretardantmodifiedpolyolefinoveralljacket~Thesecablesareratedforcontinuousserviceupto110C.I XI.TestDataVendordata(Keriteend>0konitequalificationoftheircablesexposedforyouruse.regardingtheenvironmentaltoawet/dryenvironmentareattachedInadditiontotheabove,aprocedurewasdevelopedonStLucieUnit-1totestcertainundergroundcablesto'onfirmtheirfunctionability.Thefol'lowingisabriefsynopsisofthisUnit1procedure.Atleast-onceper18months,duringshutdown,byselectingonarotatingbasisatleastthree(3)cables,onefromswitchgeartointakecoolingwatermotor,onefromswitchgeartocomponentcoolingwatermotorandonefromswitchgeartodieselgeneratoraretestedwitha2500VDCmegger.Controlcablesthatareassociatedwitheachoftheabovemotorsanddieselgenerptorsaretestedwith1000VDCmegger.ThethreesparecablesareDCpro%<testedat25,000voltsandmeasuredforleakagecurrentat30secondsintervalsfor10minutes.Allreadingsmustmeettechnicalspecification4.8.1.1.3,IfanyinstalledsparecablefailstheHitPottest,theNRCwillbenotifiedandcorrectiveactiontakepertechnicalspecification4.8.1.1.3.AttachedarecopiesofactualtestdatatakenatStLucieUnit1  
Theheatrein>valcapability oftheCSSisdiscussedinSubsection 6.2.2.Thefissionproductremovalfrrnction ir.carriednrrtbytheIodineRemovalSystem(IRS),nperating inconjunction withtireCon-tainmentSpraySystem.TheIRSremnvesradio-indines fromthecnntainrnent atmosphere fnllowing aloss-of-coolant accidentbyaddingcontrolled amn'untsofhydrazine tocontainment spraywater.6.5.2.]~DecinBhCehThedesignbasesfortheCSS/IRSasafissionproductremovalsystemareasfo1l.ows:a)Tnprovidecapability fnrthefissionproductrcrubbing ofthecontainment atmcspherefol.lowing aDBA-LOCAsuchthatnffsitednses,anddnsestonperators inthecnntrolronm,arewithintheguide-linesof10CFR100andGDC19respectively.
~a~s0PeferenceIfff383Parag~rah2.3.3.2Pg.2(tSaoiplesAthroughEiveretheiioally,agedinacirculatingairovenfor168hoursat150"Ctosimulate40yearinstalledlifeat75'C.III.gsferenceIEEE383ParaELraph2.3.3.3SamplesAthroughEifIeresubsequently'subjectedinairtogamma~Ilradiationfromacobalt-60sourceatarateof0.5x10radsperhourtoacumulativedosageof2x10rads.8IV.ReferenceIEEE38~3para~rah2.4(TestingforOperationDuringDesignBasssfventInordertodemonstrateserviceabilityofFire>railIIIcoaxialhAga~~constructionsduringandafteraLOCA,theagedandirradiatedsamplesIMeresubjectedtotheLOCAprofile'forcombinedPWR/BWRasspecifiedinIEEE323,Fig.Al.Ouring'thisentireprofilethesampleshada600voltrmsvoltageappliedbetweentheinnerandouterconductors,theV.electricsandthesplicedsample(SaoiplesAthroughE).onlyexceptionbeing'whenleadsvieredisconnectedtoprovideforinsula-.'ionresistancemeasurements.''..-":.-:.'-';...*;ReferenceIEEE383Para~rah2.3.3.4AftercompletionofLOCAUiefo11oivingvvasaccomplished:=~~1l..InsulationResistanceWasoieasuredafterthe'autoclave.Mls~,sopenedandtemperaturereturnedtoambient..~..2.Sampleswereremovedfromautoclaveandwrappedona40Xmandrel(10inchdia.).3.Whilestillwrappedo>>theBOXmandrel,adielectrictestWas-performedWherea60cycleroisvoltagegasappliedbetiveenthe..innerandouterconductorsoftheco1xialconstructionsforoneminute.The'estvoltagewas2000voltsforthesoliddielectrics,thecellulardi-~t~~~a-Nes1PhrhlLthVh~h1<<~%WVEWf%~hueeh\h%1%H~tIPa~\,~~eh1eler&hhatl%lthlla~ht~el~h.h~~hY 0
Theradioactive materialreleaseassumptions ofRegulatory Guide1.4"Assumptions UsedfnrEvaluating thePntential Radiological Consequences ofaLnssofCnnlantAccidentforPMRS",6/74{R2)areusedindetermining systemcapability.
Pg.34.Theinsulationresistaircewasmeasuredwhiletiresampleswerestillwrappedonthemandrel.5.The'entiremandrelwiththecablesstillwrappedthereon'asthenimmersedinwaterandthevoltagewithstandtestwasagainapplied.6.Aftertheimmersionandvoltagetestsoftheprecedingpara-graph,samples"A"through"E"inclusivewere'madeinto40Xcoilsandputintoa200'F100>>relativehumidityenvironment.Sincethisen'-vironmentwas.notprovidedbytheautoclave,thetestvoltagewasnotappliedduringtjristestperiod.Afteroneyearinthedescribedenvironment,allsampleswere4subjectedtoaninsulationresistancetestandthenimmersedinwater.Adielectrictestwasthenperformedwherea60cyclermsvoltagewasappliedbetweentheinnerandouterconductorsofthecoaxialcon-structionsforoneminute.Thetestvoltagewas2000voltsforthesoliddielectrics,thecellulardielectricsandthesplicedsample(SamplesAthroughE).Allsamplespassedthistest.Performanceofthepreviouslydescribedtests,indicatesthatboththecellularandsoliddielectriccoaxialconstructionswillbeservice-~~~-/'ablefortheirintendedpurposebothduringandafteraLOCAwhichmayhappen"anytimeduringtire40yearlifeofthe,generatingstation.ReferencelFEEPa~ra~rahP..5(FlameTests)-Althoughpassageoftheverticalcabletraytestof1FEE383isnotarequirementforcoaxial,triaxialaridspecialinstrumentationcable,Aockbestos,nevertheless,subjectedtireASS6-102cabletoandsuccessfullypassedthistest.Note:Rockbestosbelievesthatmostcablesinitsadverseservicecoaxialcableproductlinewillpassthisverticalcabletr~ytest,butasoftlrisdateother.cableshavenotbeensubjectedtothistest.~~~~~'"~4H~~\)<mVSa.~+~..<;~'e5&lfrryyy:~~i~rig\assn;~as,%i~!vrmcer<\s~~pvma.~arra<rrqrewe+n.as~i<sswreewrmraeeeearrhs~~.~v 0  
Theradioiodine andnoblegasactivityinventory inthecnntainment atmnsphere following aDBA-LOCAisgiveninSection15.6.b)Tnmaintainaminimumhydcc;ntainment spraynnzzlespercentbyweightindemiToachieveacontainment rpraychemicalmixeswithrazinecnncentratinn of50-65ppmatthebasednnastoragecnncentration of.neralized water.7~sumppitbetween7.0and7.5afteralltetheavailable waterinventory.
~gPg.4QgCFATIFIEDCONCLUSIONFirewallIIIcoaxialconstructionsutilizingeithersolidor-cellulardielectricmaterialshavesuccessfullywithstoodthetests.andconditionsintheprecedingpages.Therefore,wecertifythattheywillfunctionforatleasttheirnodalintendedapplications.inanuc1ear40yearsingeneratingplant,includingconditionsofLOCAtestingand200megarads.ofcumulativeradiationdosageoccurringduring40yearlifeoftheplant.theexpected:~XilgvGeoygeS.BuettnerTechnicalOirector~z~~~':,',.KennethJ.Ginnotti:..'~TestEngineer'~sISTATEOFCONNECTICUT;COUNTYOFNEWHAVEN.Subscribedandsworntobeforemethisj~Q~dayof~~~~1979.'.~','~~~~~i"~'I1~0'  
h/~hthh'"~0~hh4.d)Elemental hTnperformitsfunctionfollowing aLOCA>assumingasingleactivecomponent failurecoincident withlnssofnffsitepower.BedesignedtnseismicCategoryI,QualityGroupBstandards asapplicable.
~~~~+t'UC[EAP,ElfVlROlillNTALSCRVICECYCLEREPORT(r;ESCR)ReportPreparedforEbascoServ,icesInc.l9RectorSt.t(e>vYork,N.Y.l0006Re:FloridaPower5LightCo.EbascoSpec2ll-73St.LuciePlantUnitP2HutchingsonIsland,Fla.-.q''1\1VS%SPrReportPrepared~b:"-.':4-::"":"=::.:-:-'":-."~-':~.::.'."~-..,"-..";;r~~;",;:TheAockbestosCo.".,"'*Newlfzven,Ct.06504Hayl5,1980Rev.III's-~~~',q)qasee')'t)1eat,~stL~qiPypsgp~<+go~Wf(f1P5$'~t~rrrw.PP,"%QQ;tg.+iiZC55~+~+w~04i~%+iV.h5%TQQQ  
Tnremoveelemental andparticulate indineswiththefnllowingmini-mumfi~~)orderremcval.cnefficients (inaccordance withHUREG/CR-009hIodineForm'irstOrderRemovalCrefficient
~~ae'~6.eAccc1ursteaMaterAbsorptionTest(lnsulition)Ref:Para.G.I.l.dRockbcstoshasperformedlong(ermvlaterabsorptiontestingonRSS6-102corewhichusesasolid,cross-linkedpolyolcfindielectric.MaterTeuperature-90'CContinuousEnergizedVoltape-600VAC60HzDurati'onofTest-26weeksResults-ReportedinAppendix"D"AcceleratedMaterAbsorptionTest(Jacket)Ref:Para.6.l.l.eTestswereconductedonthejacketmaterialsusedontheRockbestos-coaxialconstructionsaccordingtoICOSAS-19-81Para.6.9.3.There-suitswereOs58milligramspersquareinchandarewellwithinthere-~~quired20.0mil1igramrequirement.t~I~~~s.'r'ssla~rrHoistureResistanceRef:Para.6.l.l.fnTheRockbestosCompanyhasperformedacceleratedmoistureresistanceitests.forcontinuouslywetandalternatelywetanddryconditionswiths/,goodresultsonitsFirewall1.11instrumentcables.ThesetestsnormallyIutilizeairovensandasteainautoclave.Sinceitisnecessaryto"pot"thepenetrationoftheautoclave,it'isnotfeasibletousethismethodoftestingforcoaxialconstructions.,ltshouldbcnotedhercthatthe'.'s~s'Firewal1ll1instrunlentationcablestested'utilizeflameretardedcross"1inl'ed.polyolefincompound,asdothcjacketsofourcoaxialconstructions.'r~~~~~r~~s~~s~1~~~~~
-110hnursParticulate
,'-~""-''~,~0.45hnurshTnmeetiodineremnvalrequirements basedonaneffective spraycoveragenf85percentofthecontainment freevolume.6.5-6 e0 Sl.2-FSAR Toperformitsfunctionunderthepostaccidentenvironmental conditions specified inSection3.11.Toprovidesystemmaterials whicharecompatible withfluidche;nistry.TheContainment Spray/Iodine Rem<valSystemsaredesignedtoQualityGroupBandseismicCategoryIrequirements inaccordance withtherecommendations ofRegulatory Guide1.26,"QualityGroupClassifications andStandards forWaterSteanandRadioactive WasteContaining Components ofNuclearPowerPlants",2/76(R3)andRegulatory Guide1.29,"SeismicDesignCl.assifi-cation",(R2),respectively.
p'4F,F6.5.2.2.1DesignDescription
',~FBoththeCSS/IRSconristoftwoindependent andredundant loops.EachCSSloopismadeupofaspraypump,shutdowncoolingheatexchanger, piping,val.ves,headers,andnozzles.Connected toeachCSSloopisanindependent trainoftheIodineReraovalSysteaconsisting nfaconstantvolumemeteringpump,soLennid-operated isolationvalve,IRStankandassociated pipingandvaLves.TheflowdiagramsfortheCSSandIRSappearasFigure6.2-41.ThedesigndataforIRScomponents isshowninTable6.5-2.SimilardatafortheCVSSisgiveninTable6.2-38.,4Ir4F-.4~44CV~~F\I~ThedesignoftheIRSisbasedontheadditionofhydrazine tothecon-tainmentspraywaterataratethatensuresaminimumhydrazine concentra-tionof50ppmatthespraynozzlesaBasedontheoffsitedoselimitsasdefinedin10CFR100, andaspraycoverageof85percentoEthetotalcontainment netfreevolume,hydrazine additionproceedsforaperiodofappraxiipstaty g'rpiautas.
/8<Aconstantvon~iydrazine additionpumpisselectedforsystemsimpli-ficationandeaseofoperation.
Overtheentirerangeofsprayflowratestheconcentration ofhydrazine irnolessthan50ppraandnogreaterthan65ppm.Uponreceiptofacontainment sprayactuation signal(CSAS)the.solenoid-operated isolation valvesopenandthehydrazine pumpsstart.Hydrazine i.xnjcedintothesuctionsideofeachcontainment spraypumpatarateo-'gallonsperminute(gpra)untilalowlevelswitchinthehydrazine staetanksiraultaneously stopsthepumpsandclosesthesolenoidvalves.Thesystenisdesignedtobefullyautnraatic yetiscapablenfLocal-manual control.4sIo.gitsA<<sa.renc~~b4~W~
pofi'~cfWW4>/lv'I'~8't4:p,9<~e.4~~p4Iip*p'~reW'~l'~Ly>sy'~6k..Oninitiation nftheCSAS,thecontainraent spraypumpstrikesuctionfromtherefueling watertank(RMT)andsprayboratedwaterdirectlyintothecontainment atmosphere AlowleveLintheRWTisreachedinapproxiraately 20minutes(seeSubsection 6.2.2).Alowlevelswitchinitiates therecirculation actuation signal(RAS)transEerring containment spraysuctiontothecontainment sump.Spraywaterinthesumpisbufferedwithtrisodium phosphate dodecahydrate (TSP)6.5-7 SJ.2"YSARmodes<<ndeffectsan<<Lysishasbeenrpadeon<<11activecomponents oftheIrdineRernov<<lSystemtosin'wthatasaminimumthereis<<v<<il<<ble one100percenthydrazine sprayadditivesubsystem afteranysingleactivefailure.Forafailuremodesandeffects<<n<<lysisoftheContain!nent SpraySystensee6.2-41'.5.2.3.1 TheoryofIodineRemovalbyContainment SprayThesprayremovalcon~tant~,Eoriodineisevaluated usingthemodelsdescribed inNUREG/CR-009
~Themodelassumesabal.ancebetweeniodineenteringandleavingthecontainment atmosphere withfirstorderremovalproducedbythespray.TheresuLtingequation, asgiveninNUREG/CR-009, fortheremov<<Lrateis:A~LEHwhere'acHVViodineremovalrate~hrsprayflowrate,Et/hrabsorption efficiency equilibrium partition coefficient3 netfreevolumeofcontainment, ftTheabsorption efficiency, E,isevaluated byusingthestagnantEiLmmodel.Furtherguidanceonthedetermination ofthisparameter isgivenbyParsiyandhasbeenfollowedinthisevaluation.
Theparameters usedinthecalcu-lationaregiveninTable6.5>>5.Forelemental.
iodine,aremovalco-efficient of37hrhasbeencalculated.
However,inordertoaccountforre-evolution ofiodine,creditistakenforsprayrernovaLuntil.theinitialiodineconcentration hasbeenreducedbyafactorof100.Further,intheevaluation ofthepost-LOCA offsitedoses,theasssumption ismadethat50percentoftheinitialairborneiodineinstantaneously platesout.Consequentl y,theremoval.ratesforelemenfaL andparticulate iodineusedintheLOCAdosecalculations are10hrand'0.45hr,respective l.y.6.5.2.3.2'pray andSumpMaterpHHistoryThepHoELiquidsolutions thatarerecirculated withinthecontainment foiiowing adesignbasis~ccidentisstabilized atapproximately 7.0to7.5ThepHismaintained withtheuseoftrisodium phosphate dodecahdrste(TSP)whichisstoredinnineopenbasketsLocatedinth8contarnment
..ump.EachbarketisapproximateLy threeft.bythreeft.byoneft.Theareconstructed ofstainless steelwithmeshscreensides>and-ope~py Boratewaterfromthecontainment spraydissolves theTSPandthusraisethepMixingisachievedasthesolutioniscontinuousLy recirculated fromthesumptothespraynozzles.Thespraywaterdissolves'the TSPwithinthreehoursfollowing CSAS.Approximately one-third oftheTSPdissolves duringtheinjecticnmade~Fordetailsofflowpathstothesump,seeSubsection YtC.>IN=0"Cd6.2,2.'An-++PID(ls4+I)Jn.s!Qr>>~ilbr)s~c(>>~I>>tl+%wrrlaJyQe'ta)lt calztohl~~~<$
~>>IIaa'td>>ss~lve.
44l~sp6.5-9 SL2"FSARTABLE6.5"2IODINEREMOVALSYSTEMCOMPONENTS tlydrazine St~oraeTankr'Volume,gallons"Mi'nimum:
LiquidVolume,gallonshDesignTemperature, FDesignPressure, psigOperating Temperature, FOperating
: Pressure, psigFluidMatrrialCode80~8).201007.%f10.byweighthydrazine solutionwithnitrogen(N)covergas31%4SSASMEXII,CodeClass2B-HdrazinePums~-~~rerrr~Js~rrwwdSuQuantityTypeCapacity, gpmDischarge
: Pressure, psigDesignTemperature, FOperating Temperature, FNPSHn,ftofwaterFluictMaterialCodeRatingSolenoidValvesQuantitySize,inche"sTypeDesignPressure, ps15DesignTemperature, FANSIClassEndConnection PipeScheduleMaterialFluidOperatorCode2PositiveDisacgrant,Metering3s0maximum12010030QXlyweighthydrazine solution304SSASMEIII,CodeClass2480VACr~.2.1/2Globe120600SW80s304SS)Z~yweighthydrazine solution125Vdc*solenoidASMEIXI0CodeClass20*125V,DC6.5-19Amendment No.0,(12/80)
SL2"l'SARTABLE6.5-3CONTAIN!1ENT SPRAYANDSPRAYAOI)ITIVE I'LOPRATESTheflovratesforthecontainment sprayandsprayadditiveflovratesaregivenforthefollowing threecases:Case1:Hinimumsafeguard flow,minimuminjection (i.e.,onecontainment spraypump+oneHPSIpump+oneLPSIpump)withlossofoffsitepowerandonedie"elgenerator failure.Case2:Maximumsafeguard flov(i.e.,twoHPSIpump+twoLPSIpumps)andsinglefailureofonecontainment spraypump,(i.e.,onlyonecontainment spraypumpoperating) withoffsitepoweravailable.
'Case3:Maximumsafeguard flov,maximuminjection (i.e.,twocontainment spraypumps+twoHPSIpumps+twoLPSIpumps)vithoffsitepoweravailable.rCaseTotalTotal.Total>Safeguard SystemContainment SprayAdditiveHydrazine Addition~Oeral.ion RodeSrettlou(m)ttlou(~m)Time(minutes) 0Injection LongTermRecirculation 280035603.583.5802Injection LongTermRecirculation 280035603.583.583Injection56007.1620LongTerm7120716ggQRecirculation
*BasedonRATatminimumTechSpeclevelandrunoutflowsforHPSI,LPSIandCSpumps.Thecontainment sprayflovof2800gpmincludesaminimumrecirculation flovof150gpmrequiredduringtheinjection phase.I3'tss4~'Vs1s~e~*'k'\e~~'g,~,6,5-21Amendment No,3~(6/81)
FLORIDAPOMER6LICHTCOMPANYSTLUCIEUNIT2DOCKET50-389ENVIRONMENTAL DATAFORUNDERROUNDCABLEEXPOSEDTOMET/DRYNNVINNrNNNTU I.~TeeofCablesUs.dInUnderroundDuctss~c(l44wocablevendorssupplycablesforus>inunderground ducts.TheyaretheOkoniteCompany.and SheKeriteCompany~,Okonitesupplies5KV&.15KVpowercabledKaritesupplies600Vpower,controlandinstruaeetation cable~.('.RL.rs]:~PP)s'~C~~~dgCC.'&-~The5KVand15KVpowercablesareinsulated withunfilled, crosslinkedpolyethylene, wrappedwithanextrudedlayerofsemiconducCing insulation shieldmaterialcompatible withtheinsulation, andcoveredwithaleadsheathandaheavydutyoverallneoprenejacket.The600Vpowercablesare'nsulated withahightemperature Keriteinsulation (HTK)andcoveredwithblackheavydutyflameresistant (FR)jacket.The600Vcontrolcablesareinsulated withKeriteflameresistant (FRII)insulation andcoveredwithheavyflameresistant (FR)jackets.'he600Vinstrumentation cablesconsistsoftwistedpair'edshieldedandunshielded cables.'Unshielded cablesconsistoftwistedpairswithKeriteflameresistant (FRII)insulation coveredwithanextrudedpolymerlayerandhavinganoverallflameresistant (FR)jacket.Shieldedcablesinaddition'o theabovehaveadrainwirewitheachpairindirectcontactwithalumimummylartape.Eachshieldedpairisseparated byglassmylarCape.Coaxialcablesareconstructed withaRockbestos FirewallIIIPolymerLDfirstinsulation, radiation crosslinkedcellularmodifiedpolyolefin orradiation crosslinkedmodifiedpolyolefin secondinsulation,'overed with(atincoatedcoppershieldandaradiation crosslinked,noncorrosive, Iflameretardant modifiedpolyolefin overalljacket~Thesecablesareratedforcontinuous serviceupto110C.I XI.TestDataVendordata(Keriteend>0konite qualification oftheircablesexposedforyouruse.regarding theenvironmental toawet/dryenvironment areattachedInadditiontotheabove,aprocedure wasdeveloped onStLucieUnit-1totestcertainunderground cablesto'onfirm theirfunctionability.
Thefol'lowing isabriefsynopsisofthisUnit1procedure.
Atleast-onceper18months,duringshutdown, byselecting onarotatingbasisatleastthree(3)cables,onefromswitchgear tointakecoolingwatermotor,onefromswitchgear tocomponent coolingwatermotorandonefromswitchgear todieselgenerator aretestedwitha2500VDCmegger.Controlcablesthatareassociated witheachoftheabovemotorsanddieselgenerptors aretestedwith1000VDCmegger.ThethreesparecablesareDCpro%<tested at25,000voltsandmeasuredforleakagecurrentat30secondsintervals for10minutes.Allreadingsmustmeettechnical specification 4.8.1.1.3, Ifanyinstalled sparecablefailstheHitPottest,theNRCwillbenotifiedandcorrective actiontakepertechnical specification 4.8.1.1.3.
AttachedarecopiesofactualtestdatatakenatStLucieUnit1  
~a~s0Peference Ifff383Parag~rah2.3.3.2Pg.2(tSaoiplesAthroughEiveretheiioally, agedinacirculating airovenfor168hoursat150"Ctosimulate40yearinstalled lifeat75'C.III.gsference IEEE383ParaELraph 2.3.3.3SamplesAthroughEifIeresubsequently'subjected inairtogamma~Ilradiation fromacobalt-60 sourceatarateof0.5x10radsperhourtoacumulative dosageof2x10rads.8IV.Reference IEEE38~3para~rah2.4(TestingforOperation DuringDesignBasssfventInordertodemonstrate serviceability ofFire>rail IIIcoaxialhAga~~constructions duringandafteraLOCA,theagedandirradiated samplesIMeresubjected totheLOCAprofile'for combinedPWR/BWRasspecified inIEEE323,Fig.Al.Ouring'this entireprofilethesampleshada600voltrmsvoltageappliedbetweentheinnerandouterconductors, theV.electrics andthesplicedsample(Saoiples AthroughE).onlyexception being'whenleadsvieredisconnected toprovideforinsula-.'ionresistance measurements.
''..-":.-:.'-';...*;
Reference IEEE383Para~rah2.3.3.4Aftercompletion ofLOCAUiefo11oiving vvasaccomplished:
=~~1l..Insulation Resistance Wasoieasured afterthe'autoclave.
Mls~,sopenedandtemperature returnedtoambient..
~..2.Sampleswereremovedfromautoclave andwrappedona40Xmandrel(10inchdia.).3.Whilestillwrappedo>>theBOXmandrel,adielectric testWas-performed Wherea60cycleroisvoltagegasappliedbetiveenthe..inner andouterconductors oftheco1xialconstructions foroneminute.The'estvoltagewas2000voltsforthesoliddielectrics, thecellulardi-~t~~~a-Nes1Phrhl LthVh~h1<<~%WVEWf%~hueeh\h%1%H~tIPa~\,~~eh1eler&hhatl
%lthlla~ht~el~h.h~~hY 0
Pg.34.Theinsulation resistairce wasmeasuredwhiletiresampleswerestillwrappedonthemandrel.5.The'entire mandrelwiththecablesstillwrappedthereon'as thenimmersedinwaterandthevoltagewithstand testwasagainapplied.6.Aftertheimmersion andvoltagetestsofthepreceding para-graph,samples"A"through"E"inclusive were'made into40Xcoilsandputintoa200'F100>>relativehumidityenvironment.
Sincethisen'-vironment was.notprovidedbytheautoclave, thetestvoltagewasnotappliedduringtjristestperiod.Afteroneyearinthedescribed environment, allsampleswere4subjected toaninsulation resistance testandthenimmersedinwater.Adielectric testwasthenperformed wherea60cyclermsvoltagewasappliedbetweentheinnerandouterconductors ofthecoaxialcon-structions foroneminute.Thetestvoltagewas2000voltsforthesoliddielectrics, thecellulardielectrics andthesplicedsample(SamplesAthroughE).Allsamplespassedthistest.Performance ofthepreviously described tests,indicates thatboththecellularandsoliddielectric coaxialconstructions willbeservice-~~~-/'ablefortheirintendedpurposebothduringandafteraLOCAwhichmayhappen"anytimeduringtire40yearlifeofthe,generating station.Reference lFEEPa~ra~rahP..5(FlameTests)-Althoughpassageoftheverticalcabletraytestof1FEE383isnotarequirement forcoaxial,triaxial aridspecialinstrumentation cable,Aockbestos, nevertheless, subjected tireASS6-102cabletoandsuccessfully passedthistest.Note:Rockbestos believesthatmostcablesinitsadverseservicecoaxialcableproductlinewillpassthisverticalcabletr~ytest,butasoftlrisdateother.cableshavenotbeensubjected tothistest.~~~~~'"~4H~~\)<mVSa.~+~..<;~'e5&lfrryyy:~~i
~rig\assn;~as,%i~!vrmce r<\s~~pvma.~arra<rr qrewe+n.as~i<sswreewrmraeeee arrhs~~.~v 0  
~gPg.4QgCFATIFIED CONCLUSION FirewallIIIcoaxialconstructions utilizing eithersolidor-cellular dielectric materials havesuccessfully withstoodthetests.andconditions inthepreceding pages.Therefore, wecertifythattheywillfunctionforatleasttheirnodalintendedapplications.
inanuc1ear40yearsingenerating plant,including conditions ofLOCAtestingand200megarads.ofcumulative radiation dosageoccurring during40yearlifeoftheplant.theexpected:~XilgvGeoygeS.BuettnerTechnical Oirector~z~~~':,',.KennethJ.Ginnotti:..'~TestEngineer'
~sISTATEOFCONNECTICUT; COUNTYOFNEWHAVEN.Subscribed andsworntobeforemethisj~Q~dayof~~~~1979.'
.~','~~~~~i"~'I1~0'  
~~~~+t'UC[EAP, ElfVlROlillNTALSCRVICECYCLEREPORT(r;ESCR)ReportPreparedforEbascoServ,ices Inc.l9RectorSt.t(e>vYork,N.Y.l0006Re:FloridaPower5LightCo.EbascoSpec2ll-73St.LuciePlantUnitP2Hutchingson Island,Fla.-.q''1\1VS%SPrReportPrepared~b:"-.':4-::"":"=::.:-:-'":-."
~-':~.::.'."~-..,"-
..";;r~~;",;:
TheAockbestos Co.".,"'*Newlfzven,Ct.06504Hayl5,1980Rev.III's-~~~',q)qasee')'t)1 eat,~stL~qiPypsgp~<+go~Wf(f1 P5$'~t~rrrw.
PP,"%QQ;tg.+iiZC55~+~+w~04i~%+iV
.h5%TQQQ  
~~ae'~6.eAccc1ursteaMaterAbsorptionTest(lnsulition)Ref:Para.G.I.l.dRockbcstos hasperformed long(ermvlaterabsorption testingonRSS6-102corewhichusesasolid,cross-linked polyolcfin dielectric.
MaterTeuperature
-90'CContinuous Energized Voltape-600VAC60HzDurati'on ofTest-26weeksResults-ReportedinAppendix"D"Accelerated MaterAbsorption Test(Jacket)Ref:Para.6.l.l.eTestswereconducted onthejacketmaterials usedontheRockbestos
-coaxialconstructions according toICOSAS-19-81Para.6.9.3.There-suitswereOs58milligrams persquareinchandarewellwithinthere-~~quired20.0mil1igramrequirement.
t~I~~~s.'r'ssla~rrHoistureResistance Ref:Para.6.l.l.fnTheRockbestos Companyhasperformed accelerated moistureresistance itests.forcontinuously wetandalternately wetanddryconditions withs/,goodresultsonitsFirewall1.11instrument cables.ThesetestsnormallyIutilizeairovensandasteainautoclave.
Sinceitisnecessary to"pot"thepenetration oftheautoclave, it'isnotfeasibletousethismethodoftestingforcoaxialconstructions.,
ltshouldbcnotedhercthatthe'.'s~s'Firewal1ll1instrunlentation cablestested'utilize flameretardedcross"1inl'ed.polyolefin
: compound, asdothcjacketsofourcoaxialconstructions.
'r~~~~~r~~s~~s~1~~~~~
0  
0  
'r~~~7.Coaxialcablefunctionsasanintegralunit.Thejacketisusedtokeepthenioistuiefrowntlieinteiiorofthecable.WhilelongtermmoisturetestsoncoreinsulationwillservetoshowthecablewillmaintainvoltageandIRcharacteristics,itmustberenieinberedthatcoaxialcablesaredesignedtobebasicallydry.Therefore,theouterjacketisveryiniportant.Toprovethejacketintegrity.overandabovetherequirementsofref.para.6.1.l.band6.1.1.eRockbestosputasampleofjacketedcablein75"CwaterandmeasuredIRfrominnerconductortofirstQiI,I'L'~it'~'4~~5~~~~,'~E,shield.Aftersixinonthsthesampleshowsaninsulationresistanceof720gigohmsfor20ft.'hesampletestedwasRockbestosRSS6-208Cwiththeouterjacketandaluininumsheathremoved.Themoistureresistanceoftheconstruction,includingwetanddry,isfurtherdemonstratedbytheairovenaging,autoclavesprayconditionsandhumidityenvironment,asdocuinentedinthequalificationreport(Appendix8).AlsoattachedasAppendix"F"isdatapreviouslyreportedbyRockbestosonitsFirewallIIIcross-linkedpolyolefinasfurthersupportinodata.'ElectricalCharacteristics.'.''.:".',:"::"'"~-'.''"~fRef:Para.6.l.l.gTtieelectricalcfiaracteristicsshownonourRSSdrawingsforI~~cablestobesuppliedonthisorderwerederivedusingtestmethodsofMIL-C-170.aSincethattimetlIL-C-17Ehasbeenissued;andwhileitjsmorecomplexandinmanycasesunworkable,testingisstillaccomplished'accordingtoHJL-C-170.J*=Sincethecables.usedfornucleargeneratingstationsare.60IQz~~orless,testingtoeitherthe"0"or"f"revisionshouldnotcon-stituteanyIirob1enis.  
'r~~~7.Coaxialcablefunctions asanintegralunit.Thejacketisusedtokeepthenioistuie frowntlieinteiiorofthecable.Whilelongtermmoisturetestsoncoreinsulation willservetoshowthecablewillmaintainvoltageandIRcharacteristics, itmustberenieinbered thatcoaxialcablesaredesignedtobebasically dry.Therefore, theouterjacketisveryiniportant.
~~i<PFeV>1>Cr~gICJ""BT(OV"IB}'".8cCh.'E$T..ECO.nrvIsIIrrr<IrCl.'.ILBOCOIII'OIIATIONOctober14,1975ROCKBI':SI'OS'ltOI)UC'I'S0ll0cnosSI'ICSr*AKCAIVESVI1E?22?roncnoss.econw900?I~I404)449I96II'ABATISI800I?<ICA5ioASCOServices,inc.21McstStreetRoom1310thewYork,tlY10006Attn:Ir.DennisCronin-cloPhilgobileRECEDEDERq:Firewallill-FloridaPower6Light----<-..ST-,-LuC1C-2-----:---.:'-.~Qt;T2-':CTSinquiryFLO-211I8.CerroProposal20-3113inquiryFLO-2lII9CerroProposal20-3II4~~~~r4Gentlemen,FurthertoourlettersofAugust18,1975andSeptember26,1975,wcareFurnishing~~~~additionalinformationonthetestswehaveperformedandnotingchangesinouroriginalproposedprogram.Thepurposeofthetestwastomeasuretheeffectsofdifferentenvironmentsonthe':FirewallIllcableofferedinourproposal."llighlyacceleratedtestprocedureswereusedtoobtainmeaningful'esultslnareasonablyshortperiodoftime.~l'Samplesweresubjectedtothefollowing:'1~r.Samplel.-ContinuouslyDry:Samplewas'placedlnanairovenfor360hoursandmeasuredatregularintervalsforchanges'nIA,'SlC,andPo~erFactor.,Sample2.-ContinuouslyMet.:Samplewasplacedinastcamautoclaveat'II2Cand40PSIG.Thetestonthi'ssamplewasterminatedafter,260hoursbecau=eo'lectricaifailure,Thcsameelectricalmeasurementswercperformed.Sample3'llernatclyMet6DrySamplewasplaced'inasteaIAau'toelaveat1I2Cand~IOPSIGfor16hours,1houratroomtemperature,6hoursinanairovenat121C,1houratroomtemperatureandthen'thecyclerepeated.Thctestwascontinuedfor360hourswiththesamemeasurementsbeingmadeatregularintervals.Theresultsofthesetestsaresho'wnontheattachedchart.Samples.l03wereelectricallysoundaftercompletionoFthetestprogram.~~~~  
Toprovethejacketintegrity
.overandabovetherequirements ofref.para.6.1.l.band6.1.1.eRockbestos putasampleofjacketedcablein75"CwaterandmeasuredIRfrominnerconductor tofirstQiI,I'L'~it'~'4~~5~~~~,'~E,shield.Aftersixinonthsthesampleshowsaninsulation resistance of720gigohmsfor20ft.'hesampletestedwasRockbestos RSS6-208Cwiththeouterjacketandaluininum sheathremoved.Themoistureresistance oftheconstruction, including wetanddry,isfurtherdemonstrated bytheairovenaging,autoclave sprayconditions andhumidityenvironment, asdocuinented inthequalification report(Appendix 8).AlsoattachedasAppendix"F"isdatapreviously reportedbyRockbestos onitsFirewallIIIcross-linked polyolefin asfurthersupportinodata.'Electrical Characteristics
.'.''.:".',:
"::"'"~-'.''"~fRef:Para.6.l.l.gTtieelectrical cfiaracteristics shownonourRSSdrawingsforI~~cablestobesuppliedonthisorderwerederivedusingtestmethodsofMIL-C-170.
aSincethattimetlIL-C-17E hasbeenissued;andwhileitjsmorecomplexandinmanycasesunworkable, testingisstillaccomplished' according toHJL-C-170.
J*=Sincethecables.usedfornucleargenerating stationsare.60IQz~~orless,testingtoeitherthe"0"or"f"revisionshouldnotcon-stituteanyIirob1enis.  
~~i<PFeV>1>Cr~gICJ""BT(OV"IB}'".8cCh.'E$T..ECO.nrvIsIIrrr<IrCl.'.ILBO COIII'OIIATION October14,1975ROCKBI':S I'OS'ltOI)UC'I'S 0ll0cnosSI'ICS r*AKCAIVESVI1E?22?roncnoss.
econw900?I~I404)449I96II'ABATISI800I?<ICA5ioASCOServices, inc.21McstStreetRoom1310thewYork,tlY10006Attn:Ir.DennisCronin-cloPhilgobileRECEDEDERq:Firewallill-FloridaPower6Light----<-..ST-,-LuC1C-2
-----:---.:'-.~Qt;T2-':CTSinquiryFLO-211I8
.CerroProposal20-3113inquiryFLO-2lII9 CerroProposal20-3II4~~~~r4Gentlemen, FurthertoourlettersofAugust18,1975andSeptember 26,1975,wcareFurnishing
~~~~additional information onthetestswehaveperformed andnotingchangesinouroriginalproposedprogram.Thepurposeofthetestwastomeasuretheeffectsofdifferent environments onthe':Firewall Illcableofferedinourproposal."
llighlyaccelerated testprocedures wereusedtoobtainmeaningful'esults lnareasonably shortperiodoftime.~l'Samplesweresubjected tothefollowing:
'1~r.Samplel.-Continuously Dry:Samplewas'placedlnanairovenfor360hoursandmeasuredatregularintervals forchanges'n IA,'SlC,andPo~erFactor.,Sample2.-Continuously Met.:Samplewasplacedinastcamautoclave at'II2Cand40PSIG.Thetestonthi'ssamplewasterminated after,260hoursbecau=eo'lectricai failure,Thcsameelectrical measurements wercperformed.
Sample3'llernatcly Met6DrySamplewasplaced'inasteaIAau'toelaveat1I2Cand~IOPSIGfor16hours,1houratroomtemperature, 6hoursinanairovenat121C,1houratroomtemperature andthen'thecyclerepeated.
Thctestwascontinued for360hourswiththesamemeasurements beingmadeatregularintervals.
Theresultsofthesetestsaresho'wnontheattachedchart.Samples.l 03wereelectrically soundaftercompletion oFthetestprogram.~~~~  


A\(IJp$'vvlJVCE~lJPJCV0IV<50H0fCEBROCOBPOBA'IIONCGHzlHlll~~ALilt(4iQEBASCOServices~lnc,~~oAlcnOctober14~1975rAoc,2CUponconpletionoftheprogram,anadditionaltestwasperformedonsample0'3,tode;erinineif,anychangev~ouldoccuronthesampleifitwereplacedinacontinuouslydryenvironment.Thesamplewasplacedinanovenat121Cfor115hoursandtheresultsareasFollows:lRSicPowerFactor45000MegohmsH''33.80Youwillnote,thisaccelerateddryingcycle'causedthesampletoreturntoitsapproximateorigina)value.Franthistestprogram,itcanbeconcludedthatacontinuouslywetenvironmentisthemostsevere,thealternatelywetanddryisthenextmostsevereandthecontinuously'dry'isthcleasts'evere.ThissupportsyearsofactualexperienceonmanytypesoFinsulationusedinactualfieldinstallations.~~~~~~~1tshouldberemembered,thateachofthetestsdescribed;'arexceedconditionswhichwouldbeexperiencedinnormaloperationandwereconductedspecificallytomeasuredifferencesinseverity,ofenvironmentalexposurers..*ln'ourletteroF9/2ol/5,wefurnishedtestresultsonourFirewallillcablesthathavebeenimmersedinwateratboth75oCand90CFor,longperiodsoftime.Acomparisoncanbeeasi'lydrawntotheperfonnanceof.Butylandotherearliervintageinsulationsthathavedemonstratedanabilitytoperformforforty(40)yearsInactualservice.Thesetestresultsclearlyshow,the.vastlysuperior.performanceofFirewallill,permittingaconclusiontobereached,thattheendlifeofthisinsulationshouldfarsurpassexperiencesobtainedoncablesthat'havehad"actual40yearservicelife.RockbestosProducts'I'.R.Postma~C'~~~F.AP/gwcc:Wm.Thuc~W~~,~~'<~~~~>'aN)'pi~pi'~ygq'~'~~"w~i:cay">)~'~t~~spi,~gg~~+yg~<lo&#xc3;l'lpT~7$+~g>'ts~&-~'v6Y77P pdCi~B,,S~.OS,,i.l>>..4.<L..-...,,,-,-P.,JC,))..>,Pi...i.,i.g'>.l...i..-::."'."-.":-'j""""i."'..""::."'':::"."::-":::."."'."~.".""i:.":."i."'."''.":::::.":i."i,"CY7f~'uOU'Sl'Y."."GAY::".l~fC"4iP'.":.";:.".":::.'."-::::.:-:.-.::.:::-:..":::::::.::.=';-':::,"..":'''"-"'QOi.-.",...C.:"'.""'E11~rqI~"""":":::::"'""":.:":,:".".,~......<p<tij'....~~...:.,j~~'a~."~fbi~)'lil"]:/1~g'L~~~~~~q(IsL+0Ol~0)~l~~~~~~~~~tJ~~~~~~~~~~~I  
A\(IJp$'vvlJVCE~lJPJCV0IV<50H0fCEBROCOBPOBA'I IONCGHzlHlll~~
ALilt(4iQEBASCOServices~lnc,~~oAlcnOctober14~1975rAoc,2CUponconpletion oftheprogram,anadditional testwasperformed onsample0'3,tode;erinine if,anychangev~ouldoccuronthesampleifitwereplacedinacontinuously dryenvironment.
Thesamplewasplacedinanovenat121Cfor115hoursandtheresultsareasFollows:lRSicPowerFactor45000MegohmsH''33.80Youwillnote,thisaccelerated dryingcycle'caused thesampletoreturntoitsapproximate origina)value.Franthistestprogram,itcanbeconcluded thatacontinuously wetenvironment isthemostsevere,thealternately wetanddryisthenextmostsevereandthecontinuously
'dry'isthcleasts'evere.Thissupportsyearsofactualexperience onmanytypesoFinsulation usedinactualfieldinstallations.
~~~~~~~1tshouldberemembered, thateachofthetestsdescribed;'ar exceedconditionswhichwouldbeexperienced innormaloperation andwereconducted specifically tomeasuredifferences inseverity, ofenvironmental exposurers..
*ln'ourletteroF9/2ol/5,wefurnished testresultsonourFirewallillcablesthathavebeenimmersedinwateratboth75oCand90CFor,longperiodsoftime.Acomparison canbeeasi'lydrawntotheperfonnance of.Butylandotherearliervintageinsulations thathavedemonstrated anabilitytoperformforforty(40)yearsInactualservice.Thesetestresultsclearlyshow,the.vastlysuperior.performance ofFirewallill,permitting aconclusion tobereached,thattheendlifeofthisinsulation shouldfarsurpassexperiences obtainedoncablesthat'havehad"actual 40yearservicelife.Rockbestos Products'I'.R.Postma~C'~~~F.AP/gwcc:Wm.Thuc~W~~,~~'<~~~~>'aN)'pi~pi'~y gq'~'~~"w~i:cay">)~'~t~~spi,~gg
~~+yg~<lo&#xc3;l'lpT~7$
+~g>'ts~&-~'v 6Y77P pdCi~B,,S~.OS,,i.l>>..4
.<L..-...,,,-,-P.,JC,))..>,Pi...i
.,i.g'>.l...i..-
::."'."-.":-
'j""""i."'..""::."'':::"."::-":::."."'."~.".""i:.":."i."'."''.":::::.":i."i,"C Y7f~'uOU'Sl'Y."."GAY::".
l~fC"4iP'.":.";:.".":::.'."-::::.:-:.-.::.:::-:..":::::::
.::.=';-':::,"..":
'''"-"'QOi.-.",
...C.:"'.""'E11~rqI~"""":":::::"'""":.:":,:".".,
~......<p<tij'....~~...:.,j~~'a~."~fbi~)'lil"]:/1~g'L~~~~~~q(IsL+0Ol~0)~l~~~~~~~~~tJ~~~~~~~~~~~I  


npv~reft'"rv4''4%av4~~VNvvnvr,'.',:.)r..-."'7')':')a''")'l)I)4'vt'")''I.~t.<<i'SL2-FSARe)EmergencyCore'oolingSy"ternpipingIcontrolroddrivemechanismsfuelassembliesandspacer-grids1.9.4reactorinternalsreactorcavityshieldvallssecondaryshieldvallsI.LOWTEMPERATUREOVERPRESSUREPROTECTION(LTOP)Lowtemperatureoverpressureprotectionwillbpberovidedviatheinstalla-tionofpower-operatex'ee'vavedlif'ves{PORVs)qualifiedforbothsaturateddesteamandliquidreeservce.dlifrvice.ThePORVswillbesizedtoaccommoatewa1thepressuretransientassocaet.soci~tedwithaControlledRodWithdrawsd1{tt1lowpressuresetpoint)tomitigatethepressuretransientresultingfromeitheraspuriousinitiationofsafetynginection,1trtwithanexcessivetemperaturedifferencesisdescribedbetweentheRCSandthesteamgener'atox'.Thefi'naldesignisdescreinSubsection5.2-6.CorrespondingtransientsanalyseswillbeprovidedinSection15.8earlyin1981.1.9.51HDROLOGICALDATAecion2.4.additionalinformationforPutchinsenXslandAsdiscussedinSection..aibeingevaluatedontheseparatesub)ectsofurtereaon2~4willbefie1dpossiblepotablewelllocations.AnamendmenttoSectkoonoraboutMarch1981incorporatingtherelevantinformation.01.9.6UNDERGROUNDCABLEREVIEWKeriteinsuaepowe1tedposerandcontrolcableshaveb'eenrevievedal))~approvedjpbtheNRCforundergroundvet/dryenvironmentalqualificatonxovv4)nwl)oaaderdroandtneer44ena4)vbytleamandmenn-ot~bov"Feb".ca~98&.~Atlc~5%8~$~3,tl.4,1.9.7ENVIRONMENTALANDSEXSHICQUALXFICATION0CLASSlEEQUIPMENT0(10)-1978theNRCissuedaletterrequestingadditionalioalinformationns3.10and3.11havebeenonClasslEequipmentqualification.Sectionsdinformationonseismicandenvironmentaorganizedtoprovidetherequeste<<foqualificationtestresults.11ovever,atthedateoftenderingtieualificationtestsummax'iesandreportsofresultsares,'eceived.Therefore,amendmentsstillbeinggenex'atedandhavenotyetbeenreceve~etoSections3.10and3.11villbefiledperiodicallyinordertoprovie'ultsofrelevantanalysesthenecessaryinformationandalsotoprovideresusoewhenavailable~PeramemorandumandorderissuedonMay23,'9231980,,theNRChasorderedapplicantsforoperatinglicensestomb.etqm~tthereuirementsoff10aA4n SL2-FSARintegratedradiationexposurecombining40yearsnormal.operationandtherequired'termoffunctionalityduringthepostdesignbasisaccident(DBA)period(upto1year).Tables3.11-1presentthedesignparametersforradiationforeachspecifiedenvironmentalcondition~ThenormaloperationsexposuredoseforequipmentiseitherderivedmoreexplicityfranthedesignsourcetermspresentedinChapterlltakingaccountofequipmentarrangementandshieldingconfiguration,nrbasedonthemaximumdoserateanticipatedfortheradiationzoneinwhichtheequipmentisgenerallylocated.SeeSection12.3andthezonaldosemapsonFigures12.3%through12.3-12.Forequipmentinlowerradiationzones(I&IE)thecumulative40yearexposureisconservativelytakenas10Rads.ForZonaVequipmentwithafewexceptions,(theCVCSionexchanger,spentresintank,spentfueltransfertubeandvolumeccntroltank)thedoserateis100R/hr.'ortl>eaforementioned~~exceptiona,thedesigndose'rateishigherthan100R/hr.TheDBAexposuredoseaffectingESFsystemsandassociatedsafetyrelatedcenponentsisdependentonequipmentlocation.TheDBAconsideredforthecontainment,ReactorAuxiliary,Turbine,andDieselGeneratorouilaingsisthep~~)ulationofaLOCAinaccordancewiththerecommendationsnfTID-14B44andRegulatoryGuide1.4,"AssumptionsUsedforEvaluatingthe3PotentialRadiological,ConsequencesofaLossofCoolantAccidentforPressurizedPaterReactors",June1974(R2).TheDBAaffectingequipmentintheFuelHandlingBuildingisbasedonthepostulationofafuelIiandlingacciden'toThefeworganic,materialsthatexistwithinthecontainmentarediscussedinSubsection6,1.2.TheradjatinnexposuredoseratesgiveninTable3.11"1isbasedongammaradiationexposure.Etisrecognizedthatthebetaenergyreleasefromnoblegasesisasmuchas2.5tip'~greaterthanthegammaenergyreleasewithin30dayspostaccident.HoweverarepresentativecablegeometryinsidecontainmenthasprotectivecoversheathingtheinsulationlayerandanoverallcoveroffireprotectiveFlamemasticorequivalent.,Thereforetheintegratedbetaradiationdoseforaoneyearpostaccidentperiodislessthan10percentoftheintegratedgammaradiationdoseoverthesameperiod.Thiscomparisonincludestheconservativeassumptionofconparingeffective2.2Nevbetaswitheffeet've2,2~fevgammasandassumesasphericalcloud,radius40ft,ofairbornenuclides.Othercnnponentsinsidecontainmentareconsideredsufficientlyshieldedfrombetaradiationsinceitiseffectivelyattenuatedbyonlyafewmillsthicknessofmetal.Thereforebasedontheaforementioneddiscussionbetaradiationisnotconsideredanenvironmentalqualificatinnproblem.~~/pc>fogQ~P~3.11.6SUBMERGEDCABLES~'afetyrelatedcableslocatedoutdoorsthatcoulbesubmergedinwaterarequalifiedforoperabilityundersubmergedcnditions..P~:~<~v;r~j<'0:0i~Pok;4.Cp~y)~Ke>'4.Cp~ym(4.~<~4+~~4~r.~4~(~.~g~~&/ovaryw~t<~t~'k~s4ws~L~fl<(i~~'<</~"~+~~~f,~i<VS.C.I3.11-5  
npv~reft'"rv4''4%av4~~VNvvnvr,'.',:.)r..-."'7')':')a''")'l)I)4'vt'")''I.~t.<<i'SL2-FSARe)Emergency Core'ooling Sy"ternpipingIcontrolroddrivemechanisms fuelassemblies andspacer-grids 1.9.4reactorinternals reactorcavityshieldvallssecondary shieldvallsI.LOWTEMPERATURE OVERPRESSURE PROTECTION (LTOP)Lowtemperature overpressure protection willbpberovidedviatheinstalla-tionofpower-operate x'ee'vavedlif'ves{PORVs)qualified forbothsaturated desteamandliquidreeservce.dlifrvice.ThePORVswillbesizedtoaccommoatewa1thepressuretransient assocaet.soci~tedwithaControlled RodWithdraws d1{tt1lowpressuresetpoint) tomitigatethepressuretransient resulting fromeitheraspuriousinitiation ofsafetynginection,1trtwithanexcessive temperature difference sisdescribed betweentheRCSandthesteamgener'atox'.
+<F4''<<+~~,!'~<<dWdi>.'<<~/~BCl'AQCLPCV~NWXdWNA%%4QNACWJAMP&hNC&#xc3;r<<KAJrdlQ~&hgMVCCf40fZ'dr,lQBMF<RCVI<WAiM~\'Lrr~<<'r*SI2-FSARSECTIONF11:NFERENCES(1)D6Vassalo,(HRC)lettertoDr.,REUhrig(FPL),"EnvironmentalandSeismic(/ualificationnfClassIEEquipment"datedJuly-28,1978.(2)DryREUhrrig(FPL)letterL-78-334toDBVassalo(NRC)datedOctober16,1978.(3)JJDiNunnn,"PDAnderson,REBakerandRLK~terfield,"CalculationofDistanceFactorsforPowerandTestReactor'Sites,"TED-14844,USAEC,March23,1962.I(4)1976ANSPaper:"In-containmentRadiationEnvironmentsfollowingtheNypothetical.LOCA(LMR)."Cr)y,Kr-v4j(>->'<<3>W<<>.<-'5-3Vg4DF'<<<<'~<~Ct>d~)~W8-~~+i/,mf.(d)pggd;0t>>)-l<<A4-Rt-6'0b>~I'Agk>>-c.)4+MPr~u<<+>/W<<~.~~g'PI.',w'II~~.F11-6P  
Thefi'naldesignisdescreinSubsection 5.2-6.Corresponding transients analyseswillbeprovidedinSection15.8earlyin1981.1.9.51HDROLOGICAL DATAecion2.4.additional information forPutchinsen XslandAsdiscussed inSection..aibeingevaluated ontheseparatesub)ectsofurtereaon2~4willbefie1dpossiblepotablewelllocations.
Anamendment toSectkoonoraboutMarch1981incorporating therelevantinformation.
01.9.6UNDERGROUND CABLEREVIEWKeriteinsuaepowe1tedposerandcontrolcableshaveb'eenrevievedal))~approved jpbtheNRCforunderground vet/dryenvironmental qualificat onxovv4)nwl)o aaderdroand tneer44en a4)vbytleamandmenn-ot~bov" Feb".ca~98&
.~Atlc~5%8~$
~3,tl.4,1.9.7ENVIRONMENTAL ANDSEXSHICQUALXFICATION 0CLASSlEEQUIPMENT 0(10)-1978theNRCissuedaletterrequesting additional ioalinformation ns3.10and3.11havebeenonClasslEequipment qualification.
Sectionsdinformation onseismicandenvironmenta organized toprovidetherequeste<<
foqualification testresults.11ovever, atthedateoftendering tieualification testsummax'ies andreportsofresultsares,'eceived.
Therefore, amendments stillbeinggenex'ated andhavenotyetbeenreceve~etoSections3.10and3.11villbefiledperiodically inordertoprovie'ultsofrelevantanalysesthenecessary information andalsotoprovideresusoewhenavailable
~Peramemorandum andorderissuedonMay23,'9231980,,theNRChasorderedapplicants foroperating licensestomb.etqm~tthereuirements off10aA4n SL2-FSARintegrated radiation exposurecombining 40yearsnormal.operation andtherequired'termoffunctionalityduringthepostdesignbasisaccident(DBA)period(upto1year).Tables3.11-1presentthedesignparameters forradiation foreachspecified environmental condition
~Thenormaloperations exposuredoseforequipment iseitherderivedmoreexplicity franthedesignsourcetermspresented inChapterlltakingaccountofequipment arrangement andshielding configuration, nrbasedonthemaximumdoserateanticipated fortheradiation zoneinwhichtheequipment isgenerally located.SeeSection12.3andthezonaldosemapsonFigures12.3%through12.3-12.Forequipment inlowerradiationzones(I&IE)thecumulative 40yearexposureisconservatively takenas10Rads.ForZonaVequipment withafewexceptions, (theCVCSionexchanger, spentresintank,spentfueltransfertubeandvolumeccntroltank)thedoserateis100R/hr.'ortl>eaforementioned
~~exceptiona,thedesigndose'rateishigherthan100R/hr.TheDBAexposuredoseaffecting ESFsystemsandassociated safetyrelatedcenponents isdependent onequipment location.
TheDBAconsidered forthecontainment, ReactorAuxiliary,Turbine,andDieselGenerator ouilaings isthep~~)ulation ofaLOCAinaccordance withtherecommendations nfTID-14B44andRegulatory Guide1.4,"Assumptions UsedforEvaluating the3Potential Radiological, Consequences ofaLossofCoolantAccidentforPressurized PaterReactors",
June1974(R2).TheDBAaffecting equipment intheFuelHandlingBuildingisbasedonthepostulation ofafuelIiandling acciden'to Thefeworganic,materials thatexistwithinthecontainment arediscussed inSubsection 6,1.2.Theradjatinn exposuredoseratesgiveninTable3.11"1isbasedongammaradiation exposure.
Etisrecognized thatthebetaenergyreleasefromnoblegasesisasmuchas2.5tip'~greaterthanthegammaenergyreleasewithin30dayspostaccident.
Howeverarepresentative cablegeometryinsidecontainment hasprotective coversheathing theinsulation layerandanoverallcoveroffireprotective Flamemastic orequivalent.,
Therefore theintegrated betaradiation doseforaoneyearpostaccidentperiodislessthan10percentoftheintegrated gammaradiation doseoverthesameperiod.Thiscomparison includestheconservative assumption ofconparingeffective 2.2Nevbetaswitheffeet've2,2~fevgammasandassumesaspherical cloud,radius40ft,ofairbornenuclides.
Othercnnponents insidecontainment areconsidered sufficiently shieldedfrombetaradiationsinceitiseffectively attenuated byonlyafewmillsthickness ofmetal.Therefore basedontheaforementioned discussion betaradiation isnotconsidered anenvironmental qualificatinnproblem.~~/pc>fogQ~P~3.11.6SUBMERGED CABLES~'afetyrelatedcableslocatedoutdoorsthatcoulbesubmerged inwaterarequalified foroperability undersubmerged cnditions..
P~:~<~v;r~j<'0:0i~Pok;4.Cp~y)~Ke>'4.Cp~ym(4.~<~4+~~4~r.~4~(~.~g~~&/ovaryw~t<~t~'k~s4ws~L~fl<(i~~'<</~"~+~~~f,~i<VS.C.I3.11-5  
+<F4''<<+~~,!'~<<dWdi>.'<<~/~BC l'AQCLPCV~NWXdWNA%%4QNACWJAMP&hNC&#xc3;r<<KAJrdlQ~&hgMVCCf40 fZ'dr,lQBMF<RCVI<WAiM~
\'Lrr~<<'r*SI2-FSARSECTIONF11:NFERENCES(1)D6Vassalo,(HRC) lettertoDr.,REUhrig(FPL),"Environmental andSeismic(/ualificationnfClassIEEquipment" datedJuly-28,1978.(2)DryREUhrrig(FPL)letterL-78-334toDBVassalo(NRC)datedOctober16,1978.(3)JJDiNunnn,"PDAnderson, REBakerandRLK~terfield, "Calculation ofDistanceFactorsforPowerandTestReactor'Sites,"TED-14844, USAEC,March23,1962.I(4)1976ANSPaper:"In-containment Radiation Environments following theNypothetical.LOCA(LMR)."Cr)y,Kr-v4j(>->'<<3
>W<<>.<-'5-3Vg4DF'<<<<'~<~Ct>d~)
~W8-~~+i/,m f.(d)pggd;0t>>)-l<<A4-Rt-6'0b>~I'Agk>>-c.)4+MPr~u<<+>/W<<~.~~g'PI.',w'II~~.F11-6P  


FLORIDAPOWERANDLIGHTCOMPANYSTLUCIEUNITNO.1DESIGNCRITERIARE-EVALUATIONOFCONCRETEMASONRYWALLS&rearedBReviewedBArovedBDateOriginalR1<2/7/8G  
FLORIDAPOWERANDLIGHTCOMPANYSTLUCIEUNITNO.1DESIGNCRITERIARE-EVALUATION OFCONCRETEMASONRYWALLS&rearedBReviewedBArovedBDateOriginalR1<2/7/8G  


TABLEOFCONTENTS1.0'.0ItemINTRODUCTIONAPPLICABLECODE~Pae3.04.0MATERIAL$-LOADSANDLOADCOMBINATIONS5.0ANALYSISANDDESIGN5,1"GENERAL6.07.05.2DYNAMICANALYSIS5.3STATICANALYSISALLOWABLESTRESSESANALYTICALPROCEDUREF1UNREINFORCEDWALLS-REEVALUATEDBYCOMPUTER7.2REINFORCEDWALLS-RE-EVALUATEDBYC(NPUTER15l7'71723No.TablesIOADCOMBINATIONTABLEFORCATEGORYIMASONRYWALL6ALLOWABLESTRESSINUNREINFORCEDMASONRYALLOWABLESTRESSINREINFORCEDMASONRYMASONRYWALLSSECTIONPROPERTIES19 rt,e 0IFI'RODUCTIONThedesigncriteriacontainedhereinisapplicabletosafety-relatedcon-cretemasonrywallsaswellasnon-safetyrelatedconcretemasonrywallswhosefailurecouldadverselyaffectthesafetyrelatedsystemsandcom-ponentsintheirproximityinaNuclearPowerPlantfacilityandestablishesthedesignrequirementsforevaluationofthestructuraladeauacyofexistingconcretemasonrywalls.Thescopeofthiscriteriacoversallmasonrywallsinproximitytoorhavingattachmentsfromsafety-relatedpipingorequipmentIsuchthatwallfailurecouldaffectasafety-relatedsystem.Safetyrelatedequipmentorsubsystemstobeconsideredasattach-mentsorinproximitytothewallsshallinclude,butarenotlimitedto,pumps,valves,motors,heatexchangers,cabletrays,cable/conduit,HVACductwork,electricalcabinets,instrumentsandcontrols.2eoAPPLICABLECODESANDGUIDELINES2.1Thefollowingcodesshallbeusedforthere-evaluationofmasonrywalls,subjecttoclarificationscontainedinthecriteria.CodeTitleACI531-79AmericanConcreteInstitute"BuildingCodeRequirementsforConcretemasonryStructures"AISCAmericanInstituteofSteelConstruction"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"ACI318-77AmericanConcreteInstitute"BuildingCodeRequirementsforReinforcedConcrete"  
TABLEOFCONTENTS1.0'.0ItemINTRODUCTION APPLICABLE CODE~Pae3.04.0MATERIAL$
-LOADSANDLOADCOMBINATIONS 5.0ANALYSISANDDESIGN5,1"GENERAL6.07.05.2DYNAMICANALYSIS5.3STATICANALYSISALLOWABLE STRESSESANALYTICAL PROCEDURE F1UNREINFORCED WALLS-REEVALUATED BYCOMPUTER7.2REINFORCED WALLS-RE-EVALUATED BYC(NPUTER15l7'71723No.TablesIOADCOMBINATION TABLEFORCATEGORYIMASONRYWALL6ALLOWABLE STRESSINUNREINFORCED MASONRYALLOWABLE STRESSINREINFORCED MASONRYMASONRYWALLSSECTIONPROPERTIES 19 rt,e 0IFI'RODUCTION Thedesigncriteriacontained hereinisapplicable tosafety-related con-cretemasonrywallsaswellasnon-safety relatedconcretemasonrywallswhosefailurecouldadversely affectthesafetyrelatedsystemsandcom-ponentsintheirproximity inaNuclearPowerPlantfacilityandestablishes thedesignrequirements forevaluation ofthestructural adeauacyofexistingconcretemasonrywalls.Thescopeofthiscriteriacoversallmasonrywallsinproximity toorhavingattachments fromsafety-related pipingorequipment Isuchthatwallfailurecouldaffectasafety-related system.Safetyrelatedequipment orsubsystems tobeconsidered asattach-mentsorinproximity tothewallsshallinclude,butarenotlimitedto,pumps,valves,motors,heatexchangers, cabletrays,cable/conduit, HVACductwork, electrical
: cabinets, instruments andcontrols.
2eoAPPLICABLE CODESANDGUIDELINES 2.1Thefollowing codesshallbeusedforthere-evaluation ofmasonrywalls,subjecttoclarifications contained inthecriteria.
CodeTitleACI531-79AmericanConcreteInstitute "Building CodeRequirements forConcretemasonryStructures" AISCAmericanInstitute ofSteelConstruction "Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" ACI318-77AmericanConcreteInstitute "Building CodeRequirements forReinforced Concrete"  


2.'2GuidelinesRecommendedGuidelinesfortheReassessmentofSafetyRelatedConcreteMasonryWalls,PreparedbyOwnersandEngineeringFirmsInformal'lGrouponConcreteMasonryWalls,October6,1980.3'MATERIALSThematerialswhichhavebeinspecifiedintheprojectspecificationsanddrawingsshallbeused.4,0LOADSANDLOADCOMBINATIONS4.1LoadsDescriCionTheloadsaregroupedintothefollowingcategories:(a)normalloads(b)severeenvironmentalloads(c)extremeenvironmentalloads(d)abnormalloadsThedetaileddescriptionoftheseloadsisasfollows:(a)NormalloadsNormalloadsarethoseloadsthatareineffectduringnormalplantoperationandshutdownconditions.Forthewalls,theyincludethefollowing:(1)DeadLoad(D)Deadloadincludestheweightofthewall,andanystructuresorequipmentsupportedbythewall.(2)LiveLoad(L)Liveloadsincludealltemporaryloadingsthatactonthewall,bothintheplaneandoutoftheplaneofthewali'  
2.'2Guidelines Recommended Guidelines fortheReassessment ofSafetyRelatedConcreteMasonryWalls,PreparedbyOwnersandEngineering FirmsInformal'lGrouponConcreteMasonryWalls,October6,1980.3'MATERIALS Thematerials whichhavebeinspecified intheprojectspecifications anddrawingsshallbeused.4,0LOADSANDLOADCOMBINATIONS 4.1LoadsDescriCionTheloadsaregroupedintothefollowing categories:
(a)normalloads(b)severeenvironmental loads(c)extremeenvironmental loads(d)abnormalloadsThedetaileddescription oftheseloadsisasfollows:(a)NormalloadsNormalloadsarethoseloadsthatareineffectduringnormalplantoperation andshutdownconditions.
Forthewalls,theyincludethefollowing:
(1)DeadLoad(D)Deadloadincludestheweightofthewall,andanystructures orequipment supported bythewall.(2)LiveLoad(L)Liveloadsincludealltemporary loadingsthatactonthewall,bothintheplaneandoutoftheplaneofthewali'  


4.1LoadssrsA(Cont'd){3)ThermalLoad(T)0Thesearethermaleffectsloadingsonthewallduring'--norma)operatingorshutdownconditions,andshallbebasedon.themostcriticaltransientorsteadystate..condition.'(4).PipeReactionLoad(R),Tjiis,is.the.~'eactionofpipessupportedbythe-'~-'wallduringinformalmperatingorshutdowncondition,,~v,-='a'n8shall'-beibased=:onth'e'mostcriticaltransient--':sg--,',or'f6adyetatetco'ndit'ice;<i...{b).%ever'eEnvironmental'Loads',~.;-'.\Qev'ereenvironmental1oads.axethoseloadsthatcouldinfre-rfs-guen'eely-Se-"encos4ntereddurin~tlieplantlife.Includedin==-.-41);;-fr~ind&ad:.{8)---:.:'.g:-;..~=,:.-'-'~"-'...Tlirt"hsIte~~gsfjjn:Qesgs.:"shodjpejifiedfor,the.'-siteof~;;.":=';~,the..plant==-:-.Xtis-applicableonly'to'thosewallsfor2=.:",.~";.R~".~;;.+-.."~+.~which~gFdes3.oql:-"iN,'speci'fiepp':~~-'~~';.'-:.~='-':..-":(2)<<.Seismxc'Load',-'P-."".=):..'.~~"-.'..'*'"-",..-",.Q=;::"';=.~(if''-For".,jiasonr'yfwal1sgag'uilhingsfox''which'dynamic.'.-:=',~-'"":=",'~-".;";4n'alvsess.areperforme8:-':"'.'--:-''-.,-:Tt'i's'sth'e"loadg'ednegatedbytheoperating.basis='~.'--:~',~~'-..=-:,~:';:=.;:,~;;jYrthqiiqke'COBB).'s&#x17d;pe'cfXi'ed,;feartfiesite.ofthe'lant,.".-:-~-~x'4'>>-".~p~s::;-s""=.-"'.-'and'ge'velopEZ:.for.':t4'0>'~ill.~Is-th)dynamics"-'Analyses.'.-"..',-'"-".-.'..-,-,,~.-'m.-',,'-'--petformq'd'or'-%lie:bgi4cf5ng.;;-.-'Zn-plaiie.and'ut>>of-plane'"=:--"::r.K;=,':.':,g~".,;:.;..'~:6:..">.>>=4-',.'=-,::..=..ljadfngs'".-'and.4>4.efCdirt'sof:I)terai:.Bisplacementsofjj'a.gl''"endsrerla7'iye"t'o-'each"oth~areWonsideied.v,.~~,tr',mwe~~s,,i,~,'d,s~~.~..
4.1LoadssrsA(Cont'd){3)ThermalLoad(T)0Thesearethermaleffectsloadingsonthewallduring'--norma)operating orshutdownconditions, andshallbebasedon.themostcriticaltransient orsteadystate..condition.
LoadsDoso~rition(Cont'd).(ii)Formasonrywallsinbuildingsforwhichearthquakeloadingsaredevelopedfromempiricalequations:Unlessnotedotherwise,thisistheloadduetoearthquakecalculatedtoactonthewallaccordingtotheprovisionsoftheapplicablebuildingcodeorstandard,(c)ExtremeEnvironmentalLoadsEstremeenvironmentalloadsarethoseloadswhicharecrediblebuthighlyimprobable.Theyinclude:(1)SeismicLoad(F)eqsForseismicCategory1buildings,andthosenon-seismicCategory1buildingsforwhichtheloadisspecified,thisistheloadgeneratedbythesafeshutdownearthquake(SSE)specifiedforthesiteoftheplant,anddevelopedasdescribedforseismicload(F)~ego(2)TornadoLoad(W)Ifatornadoevent,orsimilarhigh-intensitywindpheno-menonisspecifiedforthesite'ftheplant,thisistheloadgeneratedbytheevent.,Itincludesloadsduetowindpressure,barometricpressuredropsbetweentheexteriorandinteriorsidesofthewall,andimpactloadingsduetowindgeneratedmissiles.Theseloadsareapplicableonlytothosewallsforwhichthisloadisspecified.(RL  
'(4).PipeReactionLoad(R),Tjiis,is.
the.~'eactionofpipessupported bythe-'~-'wall duringinformalmperating orshutdowncondition,
,~v,-='a'n8 shall'-beibased=:on th'e'most criticaltransient
--':sg--,',or'f6ady etatetco'ndit'ice;<i
...{b).%ever'eEnvironmental
'Loads',~.;-'.\Qev'ereenvironmental 1oads.axethoseloadsthatcouldinfre-rfs-guen'eely-Se-"encos4ntered durin~tlieplantlife.Includedin==-.-41);;-fr~ind
&ad:.{8)---:.:'.g:-;..~=,:.-'-'~"-'...
Tlirt"hsIte~~gsfjjn:Qesgs.:"shod jpejifiedfor
,the.'-site of~;;.":=';~,the..plant=
=-:-.Xtis-applicable only'to'thosewallsfor2=.:",.~";.R~".~;;.+-.."
~+.~which~gFdes3.oql:-"iN,'spec i'fiepp':~~-'~~';.'-:.
~='-':..-":(2)<<.Seismxc'Load',-'P-."".=):..'.~~"-.'..
'*'"-",..-",.Q=;::"';=.~(i f''-For".,
jiasonr'yf wal1sgag'uilhings fox''which'dynamic.'.-:=',~-'"":=",'~-".;";4n'alvsess.are performe8:-':"
'.'--:-''-.,-:Tt'i's's th'e"load g'ednegated bytheoperating
.basis='~.'--:~',~~'-..=-:,~:
';:=.;:,~;;jYrthqiiqke'COBB).'s&#x17d;pe'cfXi'ed,;
feartfiesite.ofthe'lant,
.".-:-~-~x
'4'>>-".~p~s::;-s""
=.-"'.-'and'ge'velopEZ:.for.':t4'0>'~ill.
~Is-th)dynamics"-'Analyses
.'.-"..',-'"-".-.'..-,-,,~.-'m
.-',,'-'--
petformq'd'or'-%lie:bgi4cf5 ng.;;-.-'Zn-pl aiie.and'ut>>of-plane'"=:--"::r.
K;=,':.':,g~".,;:.;..'~:6:..">.>>=4-',.'=-,::..=..ljadfngs
'".-'and.4>4.efCdirt'sof:I)terai:.Bisplacements ofjj'a.gl''"ends rerla7'iye "t'o-'each "oth~areWonsideied.
v,.~~,tr',mwe~~s,,i,~,'d,s~~.~..
LoadsDoso~rition(Cont'd).
(ii)Formasonrywallsinbuildings forwhichearthquake loadingsaredeveloped fromempirical equations:
Unlessnotedotherwise, thisistheloadduetoearthquake calculated toactonthewallaccording totheprovisions oftheapplicable buildingcodeorstandard, (c)ExtremeEnvironmental LoadsEstremeenvironmental loadsarethoseloadswhicharecrediblebuthighlyimprobable.
Theyinclude:(1)SeismicLoad(F)eqsForseismicCategory1buildings, andthosenon-seismic Category1buildings forwhichtheloadisspecified, thisistheloadgenerated bythesafeshutdownearthquake (SSE)specified forthesiteoftheplant,anddeveloped asdescribed forseismicload(F)~ego(2)TornadoLoad(W)Ifatornadoevent,orsimilarhigh-intensity windpheno-menonisspecified forthesite'ftheplant,thisistheloadgenerated bytheevent.,Itincludesloadsduetowindpressure, barometric pressuredropsbetweentheexteriorandinteriorsidesofthewall,andimpactloadingsduetowindgenerated missiles.
Theseloadsareapplicable onlytothosewallsforwhichthisloadisspecified.
(RL  


AbnormalLoadsIAbnormalloadsareloadssuchasthosegeneratedbythefailureofhighenergypiping,orequipmentfailurewhichgeneratesmissiles.Thiscategoryofloadsincludesthefollowing:(1)PressureLoad(P)Thisisthepressureequivalentstaticloadwithinthemasonr'ywallcompartmentcausedbyfailureofhighenergypipingorequipment.Theloadincludesanappropriatedynamicloadfactordeterminedbyanalysis,orbasedonempiricaldata.IRi(2)ThermalLoad(T)Thisisthethermalloadunderthermalconditionsgeneratedbytheabnormalevent,andincludesTeffects.0-(3)ReactionForce(R)aThisisthepipereactionunderthermalconditionsgeneratedbythepostulatedpipebreak,andincludesReffects.Theload0shalltakeintoaccountanychangetoRduetoredistributionofpipereactionscausedbydiscontinuitiesinthepipeduetothebreak.(4)PipeLoad(Y)Thisistheequivalentstaticloadonthewallgeneratedbythereactionoftheescapingfluidonthebrokenhigh-energypipeduringthepostulatedpipebreak,andincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.(5)JetImpingement(Y)Thisist'e)etimpingementequivalentstaticloadonthewallgeneratedbythepostulatedpipebreak,andincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.
AbnormalLoadsIAbnormalloadsareloadssuchasthosegenerated bythefailureofhighenergypiping,orequipment failurewhichgenerates missiles.
0 (d)AbnoarulLoads(Cont'd)(6)MissileLoad(Y)Thisloadisthemissileimpactequivalentstaticloadonthewallgeneratedbyequipmcntorpipefailure,andincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload,4.2LoadCombinationsSeismicCategoryIorotheraffectedmasonrywallsshallbere-evaluatedfortheloadsasgiveninTable1.TABLE1LoadCategoryLOADCOMBINATIONTABLEFORCATEGORYICONCRETEMASONRYWALLYrBValueY]tforAllowableDLTRWPWFeqoRFeqsYmT0QataaStresses(Note1NormalXXXXSevereEnvironmental(1)SevereEnvironmental(2)XXXXXXXXXXExtremeEnvironmental(1)ExtremeEnviron"mental(2)AbnormalXXXXXXXXXXXXX'UUAbnormal/SevereEnvironmentalUAbnormal/ExtremeEnvironmentalXXXXXXU'Note1ValuesforSandUarespecifiedinTable2and3forunreinforcedandreinforcedmasonry,respectively..  
Thiscategoryofloadsincludesthefollowing:
(1)PressureLoad(P)Thisisthepressureequivalent staticloadwithinthemasonr'ywallcompartment causedbyfailureofhighenergypipingorequipment.
Theloadincludesanappropriate dynamicloadfactordetermined byanalysis, orbasedonempirical data.IRi(2)ThermalLoad(T)Thisisthethermalloadunderthermalconditions generated bytheabnormalevent,andincludesTeffects.0-(3)ReactionForce(R)aThisisthepipereactionunderthermalconditions generated bythepostulated pipebreak,andincludesReffects.Theload0shalltakeintoaccountanychangetoRduetoredistribution ofpipereactions causedbydiscontinuities inthepipeduetothebreak.(4)PipeLoad(Y)Thisistheequivalent staticloadonthewallgenerated bythereactionoftheescapingfluidonthebrokenhigh-energy pipeduringthepostulated pipebreak,andincludesanappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.(5)JetImpingement (Y)Thisist'e)etimpingement equivalent staticloadonthewallgenerated bythepostulated pipebreak,andincludesanappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.
0 (d)AbnoarulLoads(Cont'd)(6)MissileLoad(Y)Thisloadisthemissileimpactequivalent staticloadonthewallgenerated byequipmcnt orpipefailure,andincludesanappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload,4.2LoadCombinations SeismicCategoryIorotheraffectedmasonrywallsshallbere-evaluated fortheloadsasgiveninTable1.TABLE1LoadCategoryLOADCOMBINATION TABLEFORCATEGORYICONCRETEMASONRYWALLYrBValueY]tforAllowable DLTRWPWFeqoRFeqsYmT0QataaStresses(Note1NormalXXXXSevereEnvironmental (1)SevereEnvironmental (2)XXXXXXXXXXExtremeEnvironmental (1)ExtremeEnviron"mental(2)AbnormalXXXXXXXXXXXXX'UUAbnormal/Severe Environmental UAbnormal/Extreme Environmental XXXXXXU'Note1ValuesforSandUarespecified inTable2and3forunreinforced andreinforced masonry,respectively..  


Table2;AllowableStressesinUnreinforcedtlasonryDescription*Al1owableY1axinum(psi)(p>>)Al1owable(psi)t'oaximum(ps'i)CompressiveAial(1)FlexuralBearingOnfullareaOnone-thirdareaorlessShearFlexuralmembersShearwalls1TensionNormaltobedjointsHollowunitsSolidorgroutedParalleltobedjoints(4)HollowunitsSolidorgroutedGroutCoreCollarjointsShearTension0.22f'.33f'.25f'.375f'.1Jf0.9P'.6Jm,1.0Jm1.0Jm1.6/m2.6P,'00012009001200503425405080'4"m""m0.62f'.95f'~7m1.350.83m1.67P1.67/m2.6Jm,4.2/f'000300022503000755162.67841341212 0
Table2;Allowable StressesinUnreinforced tlasonryDescription
40tes(l)(2)(3)(4)toTable2:h3Thesevaluesshouldbemultipliedby(l-'4>))ifthewa.lrasasignificantverticalload.Usenetbeooecareawiththesestresses.Forstackedbond-constructionusetw.-thirdsofthevaluesspecifieC.Forstackedbondconstructionusetwo-thirdsofthevaluesspci=ie"'ortensionnonraltothebeCjointsintheheadjointsof.stackedbondconstruction.  
*Al1owableY1axinum(psi)(p>>)Al1owable(psi)t'oaximum (ps'i)Compressive Aial(1)FlexuralBearingOnfullareaOnone-third areaorlessShearFlexuralmembersShearwalls1TensionNormaltobedjointsHollowunitsSolidorgroutedParalleltobedjoints(4)HollowunitsSolidorgroutedGroutCoreCollarjointsShearTension0.22f'.33f'.25f'.
375f'.1Jf0.9P'.6Jm,1.0Jm1.0Jm1.6/m2.6P,'000 12009001200503425405080'4"m""m0.62f'.95f'~7m1.350.83m1.67P1.67/m2.6Jm,4.2/f'000300022503000755162.67841341212 0
40tes(l)(2)(3)(4)toTable2:h3Thesevaluesshouldbemultiplied by(l-'4>))ifthewa.lrasasignificant verticalload.Usenetbeooecareawiththesestresses.
Forstackedbond-construction usetw.-thirdsofthevaluesspecifieC.
Forstackedbondconstruction usetwo-thirds ofthevaluesspci=ie"'or tensionnonraltothebeCjointsintheheadjointsof.stackedbondconstruction.  


Table3:AllowableStressesinPeinforcedMasonryDescriptionAl1owablet1aximum(psi)(psi)Al1owableMaximum(psi)(psi)CompressiveAxialFlexura1BearingOnfullareaOnone-thirdareaorless0.22f'.33f'.25f'.375f'000120090012000.44f'.85f'.62f'.95f'000240018002400ShearFlexuralmembersShearHalls(~)MasonryTakesShearM/Vd+1M/Yd~0ReinforcementTakesShearM/Vd)>1M/VdOReinforcementBondPlainBars~DeformedBarsTensionGrade40'Grade60JointMireCompression1.1Jf'9J'm2OJfm5074751206014020,00024,000.5F,30,0000.4F17f'5'612312518080186~60-9Fy0.9F0.9F0.9F  
Table3:Allowable StressesinPeinforced MasonryDescription Al1owablet1aximum(psi)(psi)Al1owableMaximum(psi)(psi)Compressive AxialFlexura1BearingOnfullareaOnone-third areaorless0.22f'.33f'.25f'.375f'000120090012000.44f'.85f'.62f'.95f'000240018002400ShearFlexuralmembersShearHalls(~)MasonryTakesShearM/Vd+1M/Yd~0Reinforcement TakesShearM/Vd)>1M/VdOReinforcement BondPlainBars~DeformedBarsTensionGrade40'Grade60JointMireCompression 1.1Jf'9J'm2OJfm5074751206014020,00024,000.5F,30,0000.4F17f'5'612312518080186~60-9Fy0.9F0.9F0.9F  


otstoTable3:(1)Thesevaluesshouldberiultipliedby(1-(--))i'hewallhasasign',icaritverticalload.(2)Thissressshouldbeevaluatedusingthee'fectiveareashownir,figurebelowexceptasnotedinPar.7.2.1(a).w'sor6lOiSpacingffwhicheverillr'SSlprtvnnrnlfbonrfI~v/r~yrr:rr~':r'.ri.rr~Arrrlr'i~~~~~~~~a~~~~Aresassvmesfeffecsiveinfleavralcompression,forcenormalloface(3)Netbeddedareashallbeusedwiththesestresses(4)ForYi/Vdvaluesbetween0and1interpolatebetweenthevaluesoivenfor0andl.
otstoTable3:(1)Thesevaluesshouldberiultiplied by(1-(--))i'hewallhasasign',icaritverticalload.(2)Thissressshouldbeevaluated usingthee'fective areashownir,figurebelowexceptasnotedinPar.7.2.1(a).w'sor6lOiSpacingffwhichever illr'SSlprtvnnrnlfbonrfI~v/r~yrr:r r~':r'.ri.rr~Arrrlr'i
0 ANAI.YSISAN)DESIGN,General5.1.1Concretemasonrywallsshallbere-evaluatedaccordingtoworkingstressdesignprinciples.5.1.2TheResponseSpectrumMethodshallbeusedforestablishmentofseismiceffectsonmasonrywali'.2Ib"""''"5.2.1FreuencAnalsis-SectionCrackinConsiderationFrequencyanalysisshallbeperformedusingeithercomputerorhandcalculationinordertodeterminetheout-of-planefrequenciesofmasonrywalls.Theuncrackedbehaviorandcapacitieso'fthewallsshallbeconsideredforunreinforcedwalls.Forreinforcedwalls,bothcrackedanduncrackedbe-Jhaviorandcapacitiesofthewallsshallbeconsidered.5.2.2UncrackedSectionFortheuncrackedsectionoftheunreinforcedmasonrywall,theequivalentmomentofinertiashallbeobtainedfromatransformedsectionconsistingoftheblock,mortar,cellgroutandwherepresent,coreconcrete.Fortheuncrackedreinforcedwall,thereinforcementareashallalsobetrans-formedincalculatingthemomentofinertia.  
~~~~~~~~a~~~~Aresassvmesfeffecsive infleavralcompression, forcenormalloface(3)Netbeddedareashallbeusedwiththesestresses(4)ForYi/Vdvaluesbetween0and1interpolate betweenthevaluesoivenfor0andl.
0 ANAI.YSIS AN)DESIGN,General5.1.1Concretemasonrywallsshallbere-evaluated according toworkingstressdesignprinciples.
5.1.2TheResponseSpectrumMethodshallbeusedforestablishment ofseismiceffectsonmasonrywali'.2Ib"""''"5.2.1FreuencAnalsis-SectionCrackinConsideration Frequency analysisshallbeperformed usingeithercomputerorhandcalculation inordertodetermine theout-of-plane frequencies ofmasonrywalls.Theuncracked behaviorandcapacities o'fthewallsshallbeconsidered forunreinforced walls.Forreinforced walls,bothcrackedanduncracked be-Jhaviorandcapacities ofthewallsshallbeconsidered.
5.2.2Uncracked SectionFortheuncracked sectionoftheunreinforced masonrywall,theequivalent momentofinertiashallbeobtainedfromatransformed sectionconsisting oftheblock,mortar,cellgroutandwherepresent,coreconcrete.
Fortheuncracked reinforced wall,thereinforcement areashallalsobetrans-formedincalculating themomentofinertia.  


5.2.3.CrackedSection~~Xftheappliedmoment(Ma)exceedstheuncrackedmomentcapacity(Hcr),thewallshallbeconsideredtobecracked.Theequivalentmomentofinertia(Ie)ofthereinforcedcrackedwallsshallbecomputedasfollows:where,McrIUncrackedmomentcapacity=Mcr=fr(-),Ma~AppliedmaximummomentonthewallI~MomentofinertiaofthetransformedsectionastdescribedinPar.5.2.2.IcrMomentofinertiaofthecrackedsectionModulusofruptureTensilestressdefinedinTable2formortarorgroutifthemasonryJointisassumedtobecracked.Distanceofneutralplanefromtensionface5.2.4MethodofFreuencAnalsisForthemasonrywall,whichissubJecttoseismicloadonlyandhasnolargeopenings,thestandardexpressionsforsingledegreeoffreedomsystemscanbeusedforcomputingthenaturalfrequencyofthewall.ForothertypesofwallssubJectedtodifferenttypesofloads,afiniteelementmodelshallbeused.One-waybehaviorcanbeassumediftheaspectratio,h/1(heighttolength)islessthan0.5;otherwisetwo-waybehaviorshouldbeassumedforthewallwithfour-sidesupport.  
5.2.3.CrackedSection~~Xftheappliedmoment(Ma)exceedstheuncracked momentcapacity(Hcr),thewallshallbeconsidered tobecracked.Theequivalent momentofinertia(Ie)ofthereinforced crackedwallsshallbecomputedasfollows:where,McrIUncracked momentcapacity=Mcr=fr(-),Ma~AppliedmaximummomentonthewallI~Momentofinertiaofthetransformed sectionastdescribed inPar.5.2.2.IcrMomentofinertiaofthecrackedsectionModulusofruptureTensilestressdefinedinTable2formortarorgroutifthemasonryJointisassumedtobecracked.Distanceofneutralplanefromtensionface5.2.4MethodofFreuencAnalsisForthemasonrywall,whichissubJecttoseismicloadonlyandhasnolargeopenings, thestandardexpressions forsingledegreeoffreedomsystemscanbeusedforcomputing thenaturalfrequency ofthewall.ForothertypesofwallssubJected todifferent typesofloads,afiniteelementmodelshallbeused.One-waybehaviorcanbeassumediftheaspectratio,h/1(heighttolength)islessthan0.5;otherwise two-waybehaviorshouldbeassumedforthewallwithfour-side support.  


5.2~5Damp~inThecriticaldampingvaluestobeusedshallbeasfo11ows:A.Forreinforcedandunreinforceduncrackedwallsuse2%forOBEandSSE.B.Forreinforcedcrackedwallsuse4%forOBE,7%forSSE.5,2.6BoundaConditions,Boundaryconditionsforconcretemasonrywallsshallbeselectedwithregardtotherelativestiffnessofthemasonrywallstotheir\suppo'rtsandalsotothestructuraldetailswhichprovidetheinter-facebetweenthewallandsupports.Theguidelinesfortheselectionandqualificationofboundaryconditionsare:A,SileSuort-Asimplesupportconditionmaybeassumedatthetoporsidesofamasonrywallifsheartransferacrossthejointcanbedemonstratedunderallloadingcondi.tions;however,nomomenttransferisexpected.Thesheartransfermaybeaccomplishedbyeithermechanicalmethods(embedments,dowels,masonryties,supportangles,etc.),orbywedgingactionofthemasonrywallwithitssupports.Aplainmortarjointonthebottomsupport(bedjoint)mayprovidethenecessarysheartransferiftheshearfrictionconceptcanbejustifiedasfollows:V~NQwhere:V~shearresistanceofmortarjointN~forcenormaltothebedjoint(netdownwardload)~~u~,coefficientoffriction,1.0forconcrete,0.8formortarRlplacedagainsthardenedconcrete,and0.7forcon-creteagainststructuralsteel.Aplainverticalmortarjointatsidesofthewallisnotquali-,fiedasasimplesupport.
5.2~5Damp~inThecriticaldampingvaluestobeusedshallbeasfo11ows:A.Forreinforced andunreinforced uncracked wallsuse2%forOBEandSSE.B.Forreinforced crackedwallsuse4%forOBE,7%forSSE.5,2.6BoundaConditions
0 5.2.75~2~8.5.2.9B.Fixed~Suport-Fixedsupportconditionsmaybeassumedpro-Ividedthe)ointcantransfertheflexuralstressestothesupport.Poisson'sRatioPoisson'sratioequalto0.2isappropriateforbothreinforcedandnon-reinforcedconcretemasonrywalls'eismicaccelerationshallbeselectedfromeitherthefloorresponsespectrumatthebottomofthewall,orthefloorresponse\spectrumatthehigherelevation,whicheveryieldsthemaximumresponsewiththefrequencydeterminedinPar.5.2.4.ModalParticiationForhandcalculation,seismicaccelerationshouldbe,increasedbyafactorequalto1.05toaccountfortheparticipationofhighermodesforout-of-planeflexuralcalculations.WhenthelowestfundamentalfrequencydeterminedinPar.5.2.4isgreaterthan33hertz,thefactorisunity.5,2.10InterstorvDriftEffectsIn-planeorout-of-planeinterstorydisplacementsshallbeobtainedfromtheoriginalbuildingstructuredynamicanalysis.Themaximumdiiferentialdisplacementduetoout-of-planedriftshallbeappliedatthetopsupportofthewallinstaticanalysis.'\
,Boundary conditions forconcretemasonrywallsshallbeselectedwithregardtotherelativestiffness ofthemasonrywallstotheir\suppo'rts andalsotothestructural detailswhichprovidetheinter-facebetweenthewallandsupports.
Sta~ticAnalsisandSerosaEvaluation5.3.1StressCombinationStressesduetoin-planeloadsandout-of-planeloadsshallbecombinedusingthesquarerootofthesumofthesquaresmethod(SRSS).5.3.2Multi-theWallsIndividu'alwythesofamultiplewythewallshallbe,assumedtoactindependentlyundertheactionofseismicloadsunlessbondedbyreinforcement,boltingorotherdevicesthattrans-fershearatthewytheinterface.5.3.3AttachmentInertialLoadsStressesduetoattachmentloadsshallbecombinedwithwallinertialloadsusingtheabsolutesummethod.Blockpulloutshallbecheckedlocally.5.3s4In-PlaneStrainDuetoInterstorDriftIn-planeeffectsmaybeimposedonmasonrywallsbytherelativedisplacementbetweenfloorsduringseismiceventsasdescribedinPar.5;2.10.However,thewallsdonotin-tendtocarryasignificantpartofthebuildingsstoryshear.Thestrainacceptancecriteriashallbeusedforin-planestorydriftwhileareasonablemarginremainsforoutofplaneloading.<<15-  
Theguidelines fortheselection andqualification ofboundaryconditions are:A,SileSuort-Asimplesupportcondition maybeassumedatthetoporsidesofamasonrywallifsheartransferacrossthejointcanbedemonstrated underallloadingcondi.tions; however,no momenttransferisexpected.
Thesheartransfermaybeaccomplished byeithermechanical methods(embedments, dowels,masonryties,supportangles,etc.),orbywedgingactionofthemasonrywallwithitssupports.
Aplainmortarjointonthebottomsupport(bedjoint)mayprovidethenecessary sheartransferiftheshearfrictionconceptcanbejustified asfollows:V~NQwhere:V~shearresistance ofmortarjointN~forcenormaltothebedjoint(netdownwardload)~~u~,coefficient offriction, 1.0forconcrete, 0.8formortarRlplacedagainsthardenedconcrete, and0.7forcon-creteagainststructural steel.Aplainverticalmortarjointatsidesofthewallisnotquali-,fiedasasimplesupport.
0 5.2.75~2~8.5.2.9B.Fixed~Suport-Fixedsupportconditions maybeassumedpro-Ividedthe)ointcantransfertheflexuralstressestothesupport.Poisson's RatioPoisson's ratioequalto0.2isappropriate forbothreinforced andnon-reinforced concretemasonrywalls'eismic acceleration shallbeselectedfromeitherthefloorresponsespectrumatthebottomofthewall,orthefloorresponse\spectrumatthehigherelevation, whichever yieldsthemaximumresponsewiththefrequency determined inPar.5.2.4.ModalParticiationForhandcalculation, seismicacceleration shouldbe,increased byafactorequalto1.05toaccountfortheparticipation ofhighermodesforout-of-plane flexuralcalculations.
Whenthelowestfundamental frequency determined inPar.5.2.4isgreaterthan33hertz,thefactorisunity.5,2.10Interstorv DriftEffectsIn-planeorout-of-plane interstory displacements shallbeobtainedfromtheoriginalbuildingstructure dynamicanalysis.
Themaximumdiiferential displacement duetoout-of-plane driftshallbeappliedatthetopsupportofthewallinstaticanalysis.
'\
Sta~ticAnalsisandSerosaEvaluation 5.3.1StressCombination Stressesduetoin-planeloadsandout-of-plane loadsshallbecombinedusingthesquarerootofthesumofthesquaresmethod(SRSS).5.3.2Multi-theWallsIndividu'al wythesofamultiplewythewallshallbe,assumedtoactindependently undertheactionofseismicloadsunlessbondedbyreinforcement, boltingorotherdevicesthattrans-fershearatthewytheinterface.
5.3.3Attachment InertialLoadsStressesduetoattachment loadsshallbecombinedwithwallinertialloadsusingtheabsolutesummethod.Blockpulloutshallbecheckedlocally.5.3s4In-PlaneStrainDuetoInterstor DriftIn-planeeffectsmaybeimposedonmasonrywallsbytherelativedisplacement betweenfloorsduringseismiceventsasdescribed inPar.5;2.10.However,thewallsdonotin-tendtocarryasignificant partofthebuildings storyshear.Thestrainacceptance criteriashallbeusedforin-planestorydriftwhileareasonable marginremainsforoutofplaneloading.<<15-  


Thegrossshearstrainisdefinedtobe:Y-+{whereg=strainrelativedisplacementbetweentopandbottomofwallHheightofwall.Thepermissiblein-planeshearingstrainsare:=0.0001forunconfinedwallsuY=0.001forconfinedwallscTheabove.valuesshallbeusedfornormalandsevereen-vironmentalloadcombinations.Forotherloadcombinations,thestrainsshallbemultipliedby1.67.Anunconfinedwallisattachedononeverticalboundaryanditsbase.Aconfinedwallisattachedinoneofthefollowingways:(a)onallfoursides;(b)onthetopandbottomofthewall(c)onthetop,bottomandoneverticalsideofthewall(d)onthebottomandtwoverticalsidesofthewall.
Thegrossshearstrainisdefinedtobe:Y-+{whereg=strainrelativedisplacement betweentopandbottomofwallHheightofwall.Thepermissible in-planeshearingstrainsare:=0.0001forunconfined wallsuY=0.001forconfinedwallscTheabove.valuesshallbeusedfornormalandsevereen-vironmental loadcombinations.
AllowableStresses6.1GeneralThevaluesgiveninTable2shallbethestressallowableforunreinforcedmasonry.The,valuesgiveninTable3shallbethestressallowableforreinforcedmasonry.ThevaluesofSgiveninbothtablesshallbeusedforNormalandSevereEnvironmentalloadcombinations,whereasthevaluesofUshallbeusedfor.otherloadcombinations,asindicatedinTable1,Wherethebendingduetoout-of-planeinertialloading-causesflexuralstressesinthewalltoexceedthedesignallowables,thewallcanbeevaluatedbythe'ArchingAnalysis'ortheunreinforcedcrackedwallsandbythe'Yield-LineTheory'r'EnergyBalanceTechnique'orthereinforcedcrackedwalls.7.0ANALYTICALPROCEDURE7.1UnreinforcedWalls-Re-evaluatedbComuter7.1.1FiniteElementModelforFreuencAnalsis(a)Dividethewallintoquadrilateral,rectangularortri-angularplateelements.Aminimummeshsizeof4x1isrequiredforonewaybehaviorand4x4isrequiredfortwowaybehavior.Thenumberofelementsshouldbeincreasedwhereopeningsandhighstressconcentrationsarepresent.Thecapacitiesoftheelementsshouldinclude17"  
Forotherloadcombinations, thestrainsshallbemultiplied by1.67.Anunconfined wallisattachedononeverticalboundaryanditsbase.Aconfinedwallisattachedinoneofthefollowing ways:(a)onallfoursides;(b)onthetopandbottomofthewall(c)onthetop,bottomandoneverticalsideofthewall(d)onthebottomandtwoverticalsidesofthewall.
Allowable Stresses6.1GeneralThevaluesgiveninTable2shallbethestressallowable forunreinforced masonry.The,valuesgiveninTable3shallbethestressallowable forreinforced masonry.ThevaluesofSgiveninbothtablesshallbeusedforNormalandSevereEnvironmental loadcombinations, whereasthevaluesofUshallbeusedfor.otherloadcombinations, asindicated inTable1,Wherethebendingduetoout-of-plane inertialloading-causesflexuralstressesinthewalltoexceedthedesignallowables, thewallcanbeevaluated bythe'ArchingAnalysis'or theunreinforced crackedwallsandbythe'Yield-Line Theory'r'EnergyBalanceTechnique'or thereinforced crackedwalls.7.0ANALYTICAL PROCEDURE 7.1Unreinforced Walls-Re-evaluated bComuter7.1.1FiniteElementModelforFreuencAnalsis(a)Dividethewallintoquadrilateral, rectangular ortri-angularplateelements.
Aminimummeshsizeof4x1isrequiredforonewaybehaviorand4x4isrequiredfortwowaybehavior.
Thenumberofelementsshouldbeincreased whereopeningsandhighstressconcentrations arepresent.Thecapacities oftheelementsshouldinclude17"  


7.1.1FiniteElement1fodelforFr~euenc~An~elsis(Cont'd)(a)bothout-of-planebendingandin-planeshear.ANSYSpro-gramSTIF43orSTIF63willsatisfytheserequirements.Theaspectratiooftheelement(longsidetoshortside)shallnotexceed3.]7~~P~gZCIzzF-rd8/~g.r~g)c//I/rIC>>burghSt!Fc(b)Theweightsofattachments(W.andW2)shallbeconsidered1asmassesuniformlydistributedovertheareaswheretheat-tachmentsarelocated.Theinputsofthemassesatthenodalpoints(9,10,14,13)mayusegeneralizedmasselements(STIF21inANSYSProgram).(c)Defineeachelementandnodalpointlocation.InputmaterialpropertiesEx,Ey,+xy,P(x,P(y,fasexplainedintheANSYSmanual.Anequivalentthicknessoftheplateelement(t)shallbeeobtainedforhollowblockwallssuchthatthesamemomentofinertiacanbekept.SeeTable4fort.Theequivalentdensityoftheelement(fz)shall'lsobeobtaineddhchthatthetotalweightremainsthesame."18-TABLE4-lNSONRYWALLSSECTIONPROPERTIES3'M'I.ir"BLOCKWALLDIMENSIONSEUIVALENTTHICKNESSNominalDesigntswUnreinforced12btT=87-5/81-1/417-1/23~815.31439.936.89610129-5/81-3/81-1/87-1/24.817.06876.818.67711-5/81-1/21-1/87-1/25.818.811503.4510.384Forblockwallsfilledwithmortar,theactualthicknessofthewallsmaybeusedfortheelement.(d)Twodynamicdegreesoffreedom(UZandROTX)shouldbeassignedtoeachnodalpointexceptatthe-boundary=wherethenumberofdynamicdegreeoffreedomwillbereducedtoone(ROTX),ifitissimplysupportedor0ifitisfixed.'(e)InputothernecessarydatatoperformMode-Frequencyanalysisfortheuncrackedwall.(f)Selectseismicaccelerationeitherfromthefloorresponsespectrumatthebottomofthewallorthefloorresponsespectrumatthehigherelevation,whicheveryieldsthemaximumresponsewiththefre-quencydeterminedfromtheabove.A251ofthefrequencyrangeshallbeconsideredduetovariationsofmasonrymaterialandotherfactors.-19" 7.1,2StaticAnal~sis(a)Prepareinputloadings,i.e.dead,live,seismic,equipmentloads,etc.andapplytothesamemodel.Concentratedloadsshallbeappliedtothenodalpoints,(b)Thedeadweightofthewallcanbegeneratedautomaticallyin.thecomputerifthadensity(f)hasbeeninputinrthedata.(c)SeismicloadscanbeappliedstaticallybyusingapressureloadwhichisequaltotheproductofdeadweightandtheaccelerationcoefficientselectedfromPar.7;1.1(f).(d)'heoutofp-lan-einterstorydriftofthewalldueto~R!differentialdisplacements'etweenthetwofloorsofthebuildingdynamicanalysiswillalsobeinputaspartoftheseismicloadsinthemodelbydefiningnewdisplace>>mentatthetopboundary.(e)LoadswillbecombinedintheStaticAnalysisaccordingto'heloadcpmbinationsspecifiedinPar.4.2.Themaximumbendingmomentoftheelement(Ma)shallb'ecomparedwiththemomentcapacityoftheuncrackedsection(Mcr).(f)IfMa(Mcr,i.e.sectionuncracked,allotherallowablesshallbechecked.IfMa>Mcr,thesectioniscracked.AnArchingAnalysisshallbeperformed.  
7.1.1FiniteElement1fodelforFr~euenc~
An~elsis(Cont'd)(a)bothout-of-plane bendingandin-planeshear.ANSYSpro-gramSTIF43orSTIF63willsatisfytheserequirements.
Theaspectratiooftheelement(longsidetoshortside)shallnotexceed3.]7~~P~gZCIzzF-rd8/~g.r~g)c//I/rIC>>burghSt!Fc(b)Theweightsofattachments (W.andW2)shallbeconsidered 1asmassesuniformly distributed overtheareaswheretheat-tachments arelocated.Theinputsofthemassesatthenodalpoints(9,10,14,13)mayusegeneralized masselements(STIF21inANSYSProgram).
(c)Defineeachelementandnodalpointlocation.
Inputmaterialproperties Ex,Ey,+xy,P(x,P(y,fasexplained intheANSYSmanual.Anequivalent thickness oftheplateelement(t)shallbeeobtainedforhollowblockwallssuchthatthesamemomentofinertiacanbekept.SeeTable4fort.Theequivalent densityoftheelement(fz)shall'lso beobtaineddhchthatthetotalweightremainsthesame."18-TABLE4-lNSONRYWALLSSECTIONPROPERTIES 3'M'I.ir"BLOCKWALLDIMENSIONS EUIVALENTTHICKNESS NominalDesigntswUnreinforced 12btT=87-5/81-1/417-1/23~815.31439.936.89610129-5/81-3/81-1/87-1/24.817.06876.818.67711-5/81-1/21-1/87-1/25.818.811503.4510.384Forblockwallsfilledwithmortar,theactualthickness ofthewallsmaybeusedfortheelement.(d)Twodynamicdegreesof freedom(UZandROTX)shouldbeassignedtoeachnodalpointexceptatthe-boundary=where thenumberofdynamicdegreeoffreedomwillbereducedtoone(ROTX),ifitissimplysupported or0ifitisfixed.'(e)Inputothernecessary datatoperformMode-Frequency analysisfortheuncracked wall.(f)Selectseismicacceleration eitherfromthefloorresponsespectrumatthebottomofthewallorthefloorresponsespectrumatthehigherelevation, whichever yieldsthemaximumresponsewiththefre-quencydetermined fromtheabove.A251ofthefrequency rangeshallbeconsidered duetovariations ofmasonrymaterialandotherfactors.-19" 7.1,2StaticAnal~sis(a)Prepareinputloadings, i.e.dead,live,seismic,equipment loads,etc.andapplytothesamemodel.Concentrated loadsshallbeappliedtothenodalpoints,(b)Thedeadweightofthewallcanbegenerated automatically in.thecomputerifthadensity(f)hasbeeninputinrthedata.(c)Seismicloadscanbeappliedstatically byusingapressureloadwhichisequaltotheproductofdeadweightandtheacceleration coefficient selectedfromPar.7;1.1(f).(d)'heoutofp-lan-einterstory driftofthewalldueto~R!differential displacements'etween thetwofloorsofthebuildingdynamicanalysiswillalsobeinputaspartoftheseismicloadsinthemodelbydefiningnewdisplace>>
mentatthetopboundary.
(e)LoadswillbecombinedintheStaticAnalysisaccording to'heloadcpmbinations specified inPar.4.2.Themaximumbendingmomentoftheelement(Ma)shallb'ecomparedwiththemomentcapacityoftheuncracked section(Mcr).(f)IfMa(Mcr,i.e.sectionuncracked, allotherallowables shallbechecked.IfMa>Mcr,thesectioniscracked.AnArchingAnalysisshallbeperformed.  


7,1,3Archin~Anal~sis(a)Thebehaviorofthecrackedwallmaybeconsideredasthatofathreehingedarchwithhingesformedatmidspan,topandbottomsupports.Ifagapexistsatthetopofthewall,agappedarchingactionshouldbeassumed,otherwise,arigidarchingisassumedforanalysisas'llustratedinFig.l.(b)Thereacti'onsofthethree-hingedwallcanbesolvedbyconsideringarigidbodyinequilibriumasshowninFig.2.(c)Thecompressivestressoftheblockshallbeassumedasarectangularstressdistributionoveradepth'a'ssumedequalto't'ftheblockwall.Itsmagnitudesshallbelessthan0.85f'm.(d)Thedeflectionofthemidspancanbedeterminedbythemethodofvirtualworkassumingthatarchmembersareanalogoustocompressionmembersinatruss.Thecal-culateddeflectionshouldnotbemorethan0.3t,where't'sthethicknessofthewall.(e)Checkfrictionshear,localstressesandcomparewiththeallowablesasstatedinthedesigncriteria.  
7,1,3Archin~Anal~sis (a)Thebehaviorofthecrackedwallmaybeconsidered asthatofathreehingedarchwithhingesformedatmidspan,topandbottomsupports.
Ifagapexistsatthetopofthewall,agappedarchingactionshouldbeassumed,otherwise, arigidarchingisassumedforanalysisas'llustrated inFig.l.(b)Thereacti'ons ofthethree-hinged wallcanbesolvedbyconsidering arigidbodyinequilibrium asshowninFig.2.(c)Thecompressive stressoftheblockshallbeassumedasarectangular stressdistribution overadepth'a'ssumed equalto't'ftheblockwall.Itsmagnitude sshallbelessthan0.85f'm.(d)Thedeflection ofthemidspancanbedetermined bythemethodofvirtualworkassumingthatarchmembersareanalogous tocompression membersinatruss.Thecal-culateddeflection shouldnotbemorethan0.3t,where't'sthethickness ofthewall.(e)Checkfrictionshear,localstressesandcomparewiththeallowables asstatedinthedesigncriteria.  


~~~~~1IrglDDlJICO'Ll/ACE(LLC1I~11t,OAD)MCVVTiVTlTI~INlAOII>CgalCAIICDIIIOII<<Flgt'1~Stetch111ustretl~theDifferenceslnlotionSetrccnklyldandGappedkrchl<.5~>>flaHRlCIDklCNIMCClrltgIIYIIIMCfly.2,freeSodaDiagramShmlnyForceslnk15ldandCoppedArchly.<<22>>  
~~~~~1IrglDDlJICO'Ll/ACE(LLC 1I~11t,OAD)MCVVTiVTlTI~INlAOII>CgalCAIICDIIIOII<<Flgt'1~Stetch111ustretl~
theDifferences lnlotionSetrccnklyldandGappedkrchl<.5~>>flaHRlCIDklCNIMCClrltgIIYIIIMCfly.2,freeSodaDiagramShmlnyForceslnk15ldandCoppedArchly.<<22>>  


7.2Reinforced4'alls-Re-evaluatedb~C~omuter(a)Theeffectivewidthofwall,asdeterminedbySec.9.4.6.1ofACI531canbeusedasthewidthoftheelementin"hehorizontaldirection.IfDUR-0-VALreinforcementisprovidedforstackbondwalls,theeffectivewidthofthereinforcedunitscanbeincreasedtothesameamountasthatusedforrunningbondwalls.(b)Sameasunreinforced.(c)Sameasunreinforcedexceptasnotedbelow:Theequivalentthicknessoftheelementforarein-forcedwallfilledwithmortarscanbeobtainedasfollows:i)Findtransformedsectionareabymultiplyingthereinforcingbararea(A)by(n-l),wherenisthe8modularratioequaltoE/E.smii)Findthemomentofinertiaofthecrosssectionaboutitscentroid(usuallyatcenter),Im+s.iii)EquateI(=-bt)toI13e12em~is~Solveforte.(d)to(f)Sameasunreinforced.7',2StaticAnalsis(a)to(e)Sameasunreinforced.(f)SameasunreinforcedexceptIfMa>Mcr,thesectioniscracked.Acrackedsectioniterationprocedureshallbefollowed,asdescribedinPar.7.2.3."23" t
7.2Reinforced 4'alls-Re-evaluated b~C~omuter(a)Theeffective widthofwall,asdetermined bySec.9.4.6.1ofACI531canbeusedasthewidthoftheelementin"hehorizontal direction.
7.2.3CrackedSectionIterationFindtheequivalentmomentofinertia(I)asstated"inPar,5.2.3ofthedesigncriteria.Themomentofinertiaofthecrackedsection(I)shallbecrobtainedfromthetransformedsectionconsistingofthereinforcementareainthetensionsideandcompressiveareaoftheconcreteblockandanyfilled-inmaterial(i.e.'mortarorcellgrout),(b)Findtheequivalentthicknessoftheelementbyequating1bt=I.Solvefor.t312e'e(c)Rerunthefrequencyandstaticanalysisusingthesameinputdataexceptequivalentdensityandthicknessoftheelement,andsheararea(tensionareashouldbededucted).(d)Themomentcapacityofthecrackedsection,Mcap(~fA)d)shouldbecomparedwiththeappliedssmoment(Ma).IfMa<Mcap,checkcompressivestressofthemasonryandallotherallowablesandverifythecracksize.(e)IfMa0Mcap,thewallcanbeevaluatedbythe'Yield-LineTheory'asedonmechanismsofcollapsewhichisanalogoustotheplasticdesignmethodforsteelframes.7.2.4AnalsisbYield-LineTheo~~Thedescriptionoftheevaluationofawallbythe'Yield-LineTheory'anbefoundinthetextbook,'DesignofConcreteStructures'yGeorgeMinter.
IfDUR-0-VAL reinforcement isprovidedforstackbondwalls,theeffective widthofthereinforced unitscanbeincreased tothesameamountasthatusedforrunningbondwalls.(b)Sameasunreinforced.
00 7.2.4Aeel~~sisbYield-LineThe~os(Csee'd.)Ifthe'eflectionexceedsthreetimestheyielddeflection,i.e.ductilityratio>3,theresultingdisplacementshallbemultipliedbyafactorof2andadeterminationmadeastowhethersuchfactoreddisplacementswouldadverselyimpactthefunctionofsafety-relatedsystemsattachedand/oradjacenttothewali'heevaluationandjustificationofthewallsinthiscategorywillbeperformedonawall-by-wallbasis."25-  
(c)Sameasunreinforced exceptasnotedbelow:Theequivalent thickness oftheelementforarein-forcedwallfilledwithmortarscanbeobtainedasfollows:i)Findtransformed sectionareabymultiplying thereinforcing bararea(A)by(n-l),wherenisthe8modularratioequaltoE/E.smii)Findthemomentofinertiaofthecrosssectionaboutitscentroid(usuallyatcenter),Im+s.iii)EquateI(=-bt)toI13e12em~is~Solveforte.(d)to(f)Sameasunreinforced.
7',2StaticAnalsis(a)to(e)Sameasunreinforced.
(f)Sameasunreinforced exceptIfMa>Mcr,thesectioniscracked.Acrackedsectioniteration procedure shallbefollowed, asdescribed inPar.7.2.3."23" t
7.2.3CrackedSectionIteration Findtheequivalent momentofinertia(I)asstated"inPar,5.2.3ofthedesigncriteria.
Themomentofinertiaofthecrackedsection(I)shallbecrobtainedfromthetransformed sectionconsisting ofthereinforcement areainthetensionsideandcompressive areaoftheconcreteblockandanyfilled-in material(i.e.'mortar orcellgrout),(b)Findtheequivalent thickness oftheelementbyequating1bt=I.Solvefor.t312e'e(c)Rerunthefrequency andstaticanalysisusingthesameinputdataexceptequivalent densityandthickness oftheelement,andsheararea(tensionareashouldbededucted).
(d)Themomentcapacityofthecrackedsection,Mcap(~fA)d)shouldbecomparedwiththeappliedssmoment(Ma).IfMa<Mcap,checkcompressive stressofthemasonryandallotherallowables andverifythecracksize.(e)IfMa0Mcap,thewallcanbeevaluated bythe'Yield-Line Theory'ased onmechanisms ofcollapsewhichisanalogous totheplasticdesignmethodforsteelframes.7.2.4AnalsisbYield-Line Theo~~Thedescription oftheevaluation ofawallbythe'Yield-Line Theory'an befoundinthetextbook,
'DesignofConcreteStructures'y GeorgeMinter.
00 7.2.4Aeel~~sis bYield-Line The~os(Csee'd.)
Ifthe'eflection exceedsthreetimestheyielddeflection, i.e.ductility ratio>3,theresulting displacement shallbemultiplied byafactorof2andadetermination madeastowhethersuchfactoreddisplacements wouldadversely impactthefunctionofsafety-related systemsattachedand/oradjacenttothewali'heevaluation andjustification ofthewallsinthiscategorywillbeperformed onawall-by-wall basis."25-  


SL2-1'SARuestionNo.430.49Provideadiscussionoftheinserviceinspectionprogramforthrottle-stop,control,reheatstopandinterceptorsteamvalvesandthecapabilityfortestingessentialcomponentsduringtur-binegeneratorsystemoperation.(SPR10.2,PartIII,Items5and6.)~ResonseTheturbinethrottle/stop,reheatstopandinterceptorwillbetestedonaweeklybasis.ThesevalvesconstituteallvalvesrequiredtopreventoverspeedintheunlikelyeventofaMSIVfailuretoclose.490.49-1 i~'\0~4}}
SL2-1'SAR uestionNo.430.49Provideadiscussion oftheinservice inspection programforthrottle-stop, control,reheatstopandinterceptor steamvalvesandthecapability fortestingessential components duringtur-binegenerator systemoperation.
(SPR10.2,PartIII,Items5and6.)~ResonseTheturbinethrottle/stop, reheatstopandinterceptor willbetestedonaweeklybasis.Thesevalvesconstitute allvalvesrequiredtopreventoverspeed intheunlikelyeventofaMSIVfailuretoclose.490.49-1 i~'\0~4}}

Revision as of 12:19, 29 June 2018

Forwards Response to NRC Request for Addl Info Re Fsar.Info Will Be Incorporated in Future Amend
ML17266A489
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/19/1981
From: UHRIG R E
FLORIDA POWER & LIGHT CO.
To: EISENHUT D G
Office of Nuclear Reactor Regulation
References
L-81-362, NUDOCS 8108250481
Download: ML17266A489 (310)


Text

DOCKET05000389.

NOTES!'EGULATORYWNFORMAT IONISTRIBUTION S-EM(RIDS)ACCESSION NBRi8108250481 DOC~DATE;!81/08/19NOTARIZED;:

NOFAGILi050'89 st+Lucie-PlantiUnit2'E,FloridaPowerLL'ight>>coB.'UTHB NAME'~AUTHORAFFILIATION UHRIGpR,K','loridaPower-LLightCo~'ECIP~NAMKIRECIPIENT AFFIL>>IATION KiISKNHUT'~D.G, DivisionofLicensing SUBJECTForwards-responsetoNRC,requestforaddiinfo.re>>FSAR~;I'nfo willbe.incorporated infuture'mend;.

DISTRIBUTIo NCODESBOO>>0COPIESRECEIVED:LTR LEN'CL'IZE::'g-ITLKl:"

PSAR/FSAR AMDTSandRe.latedCorrespondence RECIPIENT'Di'ODE'/NAMEl ACT>>ION~'/O'ICENSNGLICIBR¹3LAINTERNALi:

ACCIDEVAL'R26'HKM ENGBR'lCOREPERPBR10,EMRGPRPDEV35EQUIP,QUALBR13>>GEOSCIENCES 28.HYD'/GEOI BR30~ILE)06LIC'UALBR32!MECH.ENGBR18OELDPOAKRSYSBR19QABR21>>REACSYSBR23>>SIT'NALBR24COPIESLiTTRENCL>1-01011111>>1113?2223>>311111.01111111RECIPIENT IDCODE/NAME L>>IC'R¹)BCNKRSESr.VS 04AUXSYS'R27CONTSYSBR09EFF,TRSYSBR12'MRGPRPLIC36.FEMA~REPDIV39HUMFACTENG40ILCSYSBR16L'IC'UIDBR33MATL>>ENGBR17MPAOPLilCBRPROC/TSTREV20RAS8R22'EGF"01TRUCTENGBR25COPIESLTTR'-ENCL>>101111111~331111'110.-1111111111>>EXTERNALi:

ACRS"NRC'ORENT'IS41>>161602!111=1LPDRiNSIC03051111L/Hahb~T;TOiTAL'UMBER>>

OFCOPIES'EQU1RED::

L>>TTR62'NCL<57 nq4~i~s~n~iq'14nI"'IrrIq~'~gh~,i71yf4ryli4/1I.'ill'ly9gqIllyqIq'y1Iql If%OX529100MIAMI,FL33152r,QFLORIDAPOWER&LIGHTCOMPANYAugust19,1981L-81-362OfficeofNuclearReactorRegulation Attention:

Nr.DarrellG.Eisenhut, DirectorDivisionofLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555

Dearttr.Eisenhut:

+ci/gRe:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsforAdditional Information AttachedareFloridaPower8LightCompany(FPL)responses toNRCstaffrequestsforadditional information whichhavenotbeenformallysubmitted ontheSt.LucieUnit2docket.Theseresponses willbeincorporated intotheSt.LucieUnit2FSARinafutureamendment.

Verytrulyyours,RobertE.UhrigVicePresident AdvancedSystems8Technology REU/TCG/cf Attachments cc:J.P.O'Reilly,

Director, RegionII(w/oattachments)

HaroldF.Reis,Esquire{w/oattachments) poolg/~z;:lkJP>tt8i0825048i 8i0819PDRADOCK05000389A,...POBPEOPLE...

SERVINGPEOPLE

  • 1~E'1If1~/';'l).p-"

Attachments toL-81-362A.Information onECCSpumpNPSHrequested byN.Rubinon8/3l/8l.B.Revisedresponses to492.7,492.9and492.15C.Additional information suppliedinresponseto490.1D.DraftwriteuponCEAEjectionwithLossofOffsitePower.E.Revisedresponseto440.1,440.5,440.9,440.14,440.25,440.39,440.41and440.44F.DraftTechnical Specification forsteamgenerator inspec'tion 3/4.4.6G.Revisedresponseto251.8and251.10.H.MEBreviewmeetinglistofconfirmatory items.I.Revisedresponses to420.3,420.4,420.14,420.54and420.56J.Neetingminutesandcommitments from8/11/81meetingonpreservice inspection.K.FlordiaPower5LightCompanypositiononfeedwater hamnertesting.L.Recordofconversation andcommitments made.withtheAccidentEvalua-tionBranch(MaltPasedag)on8/18/81.H.Documentation andproposedFSARrevisions toincorporate additional underground cabledata.N.St.LucieUnit1(proposed St.LucieUnit2)designcriteriatobeusedforreevaluation ofthemasonrywallsperSEBquestion220.370.Revisedresponseto430.498108250481

REcl.aCvt.AvZOM PUMPhPSHDATAElevation ofPumpSuction,FtElevation ofSource,FtFluidTemperature, FFluidVaporPressure, FtHeadLossDuetoFriction, FtNPSBAvailable, FthPSHRequiredatPumpRunout,Ft-6.bd21.$23.5245QO.C.ohJTAXAME.MY SPPAYPvvP-6.432J.4224060.9J,526.352l.oThefollowing formulaisused:8PSH(available)

Pt-PvPa+Ps+Pe-Pi-Pvwhere:Pt~pressureatpumpsuctioncenterline Pv~vaporpressureofpumpedwaterPa~airpressurePs=steampressurePe~elevation pressureP,.~Headlossduetofrictioninthesuctionpiping.,'igOTE!Znatcorho~q.

~'<4gcpgp4.g.gpic.conto.ines<~~

p<MS<<+>>sassu>>>>>>>>'l>>qua'I

+oe4e0'lv'>>.d,>>fop>>>>>>

p>>ess~ca.

(>>e..Pa+P~=P)>>IS>>'

0C

~otsrso~~~rrsoI>4L~~'I.'4~rorI~~~s>*1.~Co~~>gib/{~Pg/I'PS'>L'pat'!

'>ll~ler<<L,&Nt'>fr'>4<<ffhfa~-Lj~(,srf!sre~>A~<<cCI~>aco97rer'or.fsf'of;Sfk}aol.bGUSTO4/fof>CO/p+~~~

ggIg//p'ES}GNCOND1TIONS

=CPM284dKFF78PbT.H,IFT.)

V~d.BHP-Sfo,~'PM/780:bRIVFRHP~cso///I/FO rCg;Mrr/J/./44/'-w88, v,oPUMP8QQ3~g/leaepstt'anil

<<ltcattacS

.1PROPOSALNO.OJ/-g~

gfITEMSPECIALNOTESPumac~jopcyygCurves~roopfsrorimoto.

Pump1<guorontked forono<OfOfCOndil>OLS.

Copoe>ty.

hOOJOndepieienCy Over.onlkei~reboaodon~>sop}elfondas>cnhend>in@eicos,colJ,I>~l>iasolkr~Iofcmperofusk ofnotoverf>$Ckgree<On<tnOtOrkrt5>r<<C}saffs!t.Dc}ANNBYg,/>.~,DATEJ,.Pg-)8+sr~'~1'jf;!Iitj~itt~~~~~s>>er>1j<~~sitill>>>Ifl~~I4;3I3i3,'I>>f4aalu4'I~tI~I~ltsIr;If~T>~!~I~sirr~~~s>>]~,1!s>>>>I4'IItf~~roeII">>~~i.~'QH)pa.'ttl:'II~4~~~P>>IIIIf~I-I~~>oil<1}IIII~~141~>>44~>>L~4~~<ro'art.}I4,1~~iQfflI>siat.'-'3jI.i'g4~~4S~~Zf~'3"rUth>I.3~r-.IiltL~I>~~l.tt'si!IIti.'qQe1ff.w~>~~~>w"3r~I~~,I"44~Lr~I~st>~~I~1It~olI~}~~}~11I41~~rl>>tehlsl4.~>II:at.I<>>~4>rt>4it4>>'>tf~~e>Lie~I>~I~>1gt~~~j."~IIl~>ill~TT~~~s~~~~~i>>stI<~}'t~~tfo~~ILLA'~~~~Iohos~s~o~~~~~os~~oejl.o>hei>>1ia'4~~<iiiI'>I~1~~os'~>h~~eh>se1141s,oo>~~s1Ies~~II~'Ie>iIrtewg~>~1'hr~~s'4>ST~ah>>44~~~3ejh>>I%IIssf~4>>'lit:I,Dfl-tI'.ft3:~~~I's'1~~Ihl~~~~I44Lt~'>>~~~~~tes11>>~r>a~~4<~4~4I~~so~~~.s~~~~ee~Ilt~~':'fl:rllrf~~IItf';..It'<~ah.htg$>>~ITtsflIoil~fmol~oeI>L>><4<II~4~~>>~f~~.~44>>lojf~T~>W>>4~~~sf>~L4>>~Issllm1>=}:44;fitj.tlt'ithohorjiI~4~eh1~'~4~s'I.t"Ias~LEo.hr\~80a>>s~>~~~4>~tfileoff~4~r}pt~~4>>~pr-;IgniIlk:14f~sk>~>'Ij.'I,'~L4~~t~4tLilt~~~~~~~~4444llot,~tt~iilI'th>>~'~~.~wLITT,'~hj~boo>4>lwi~illis~~>>44~~'{..jl<w>>.-'l'i.t.tIr<4rjogl~h>>4t~4~L{jf,~i,frfftkjg,tfrfoooj5I~~~4f~sfj3j~lrn)pP,~o~~IiI~4>>fofoo~rf>4r.j.~oro>>~~4~'Or>>f>>LoloaII--~4~ho14I<Qel~>>4I~>I~Ls~>~~s4>>o4'I6jITI+gTwlooIate~LLI~pro~~~.>4ff4~~rihtij't{}ol~f>l<4'affIj~a~~4(~>>44~~~<<14~>4tr>>>~4i.s>>4~f~~~shr4~~~~\<rf~re~.I>,>f34.Z~3}gil.~.IIsfl>>~ll~>>lh~f~>~4>>r.ts,f>>41I4~~.Lo>f>s4TO~aflf~44<4~~~IoeL>L<eof4~>>h4fhieI.I>L+44>>tI'",I~Hf,':43rs8<+gIrjffr',iall~IoIILitlfo~Ir~fge~4ol4>>4tw4~~~I~'3.'IWt~hla<IlltsLe~>44tpt~~~4o~ofa>lt~I~Iev.'4~Ia~~'~~O.8O..'.4~~~~L4~~r~4>>l>>e>>~>4<t~I.I:1:I~y,,'I.;"4

}If'LLo{jofac4~~~4~1~~~~11~~I.'jl'f-s~aoert<<.~~fo14IL4~~LLh4~~~>hfjmssT4>w>>h>WL>44.~1I'eljt~.IIo~nor>>Lj;gg;rf~SlLp><<eOLe-4~Vo4'It~il4~I~~1~ao~s~oi~4Lilhorft~~~f'~h4~~h>>O>>h4~Ltlft~~I1'TLIto~ft+t.L~ol~~~e-+.r--L-'.jrjrr;.lhr4tlL41f>f4gjo;L~~~4~~>~~~~<>th)theirs~'fs1rL}tja'IrjttfIt!'~1~Ij4'aal4Sot4th~a~hIih74>.r,'rIjse~1eoh>>~icos::84>>43~}AD~It;;ltfggp.,~>3~TLLf~>LLIraI>>~'pp~L~4oo~~1eI's~<'ss~ee~~st>>4.~relL4~I~~>>TL~e~o).<Lo~4>>.>fort~h,pdp;,I~~Tt>>4>>~L~>Ioole>>fthm~,Lee4eeo~~~.agigags~ol~1rs:~~shLL~4~I~I~~~~~4t>f>>il\~ho>>or4~>>~>>>Sh~+LaJttl4Q~~~~~IsI~io~I~Lra>~~4>lI~~I~~ttolot1~4~4>l4~~~4~I4oo44>I~~a4~WI~Lso~~44oe~~>>>>~oo~ot~~4~'isr>~f<!t>~LlIII~~I~4>gi.>twI>~~~~~4t~.Whjm.r~e>>1~r>i~4sell.IVI)~~r>4~f'~4s>>~Il~.atlLII~~I~s~~~'i!},"-'gg jl~~~p>ig'tt'f1jt~ffsrL"-}4~ooqadiw>>>>~~4>4IIrh~tl.{fr'llI~~~>>~IIlf~oo~~~~StlI~t>>4<<.~hh~1tA4ia>>4~~\aho~hg>sl'gg+fr>'~1~1I>>rialgt1~Iols~~4~%1~so~4LL>>>>I~Tel~~ia4t~I'4~~IiW's:"<-O..',

';:~'".'.":.-l'"4/4gpI-.':L-.*

I,'..cpOOOI.".GALLONSP}RhflNQT5Qooo"...:;..-

fOd0 8<<~~+I>oa IVER.a.i+I~l~cGUST~~rCffffQcPI'%cAI~Rcfmfcl

.DESIGNCONDLTLONS

)fsgj~-FFFi~PeT.H.(FT.}

$70fff(P-~SC.>>ReSt/<st+~'lRf)(aafffacfooi<<4<)NoTERalrWi.iS-C/CURVE+-$'89PUMP.ggPQ~g)/=Pf}OPOSAL NO03/-qgPgg fTEM~SPECfALNOTESPun/fjaW/O7>ll>

~to<eeeeppre<srte<e Furrpr~gs>eanteed(eroee~etefcond>)son<

Cape<>)y)ced~<4c)Ictn'Yps<a<~n)eelerebaaedont)soptc<)end<<'scn)'end<it))

a<eat.caa)d,)<ale<<ale<~Ietens(sera)cse 0(notoct<ejda)!<oe<endnetOeot)1'LCI>en1))t.DATEDRAWN"!BYp,p~.:~0I111'tsf~I~L.I~I)jj~I~~I~<I~I~~I(fflit~f(LI~le~044rrIrew~4I~0~O~<4<'4~~Q~twI~~~'I~~'I~f.tlfff1rff~~~~1tat<~~sJe1~~<1~~'sl'1lBlwe~4~~I0<~if~.<~sae1{~~I~<~I~I<14~~I~J~'~J~I~I~',cI1~~~r,I~I,"".",-'.0~~r::1'f4cs',I(:".1 tI~~~)1014I~~~rrr~~~~IceI~~~'f("lf~<~111~r4~~4~411~.~~~I4~s~~1~~'~~~~~<4~IL)f1f~~~tsIp~~~<~~JefIIJg~-t(i~iiAA~~L~4<i;(~0j'.0~~I~~4f~~<srridMij.>1.~0>ltOC~<IM~~~4~~4~tlp~'d'.Je..~1Jr>LsI:ftfff;1:

~~Jas<10<t'rrf...fa~~tf~<O1:,'~i'iFaf!:I~~SOWSfi;;;Jf'0 t~~1~~~Ii~If-srII-~~40<I~IwtI~~I~I~\<~>4~~11~~~1.1.LeM~Jtw~>4M~'t"I~Ia~r~~.I~l~I~'IJr~tCJJ<ot~.~~~~1I~t.ta~~L.<fI'.<pr~~~~~~Pf~~r<~~0I~tfa.~I~1<4Js~L~OI4gl4~0'I~~~I~~rrr~~~~t14~~SJOW~~4141~1\~Ji>441~oa~<f111I~~M~I~I111(1Ir~<Iratet~~if<>p1~t1~slss1<IIIIs~'!t~I~~ft<'ff11-ffI;~ass<~4~~~'<Itf1)~0<e"J>I~~s'<<'f(:1'.1

~1~~e~~I~~~4~.r.-i~~~t~I<4Jr~~~r~~40~~~~1f11111jiff~1li,'a1fLI~efw~~~~JItffiaf[lM<,(sta.tM4<4~'1JM~ttjtj~.wtf(11ja.1.f1e'lit~~f'1.L'.14I"'(Itf"!.g4~~~141-"-80'1~IL(~IawJi~IeIJI~4swIfIgw"fi~~~~M~~~~0~~f]4~tgf~~Mr~ttt~~f(~~~IIi',c:I";].f

<L';1<Ljfear0~~>~eI'sala~~~1~~~I40<<<tf'fei'($

$14(g~'~~~~~I44L(CL>1LL<<'LLLM-

~~.~~rwL~Ž<4~<4~alt~~~1~~<Japr~1~~f)~~400I4~~4~~~414<re~~~reta'1I~e1~~~toJs41<eg1~~~I~r".'Ht;~~f(.10~4~'}ILI~I~~~~/(1',1..f(fI~\~>14rrlJJ~~~14~~~tl~1~'J~~0+~~44>F4LI)L4P~40~1~~la~~~tm(pl<440~~fo(fP)fwt<~~0~f~1I~Lw~WJ4w'af~~~Irf1I4<14~<oilI~4~0~t~~~~~>o4,>fag4~L;Bt~i~I)41~~~4~<60!!l"L1fiiLfai~<4<~g<]:pf'1(sFrb's~4~~I~~atie4~1)4'<I(4I'~<.1".ifl~sf~I~~'o~4~4rJ<~rsI~I~I'1<~~444~4-<74sa~se~~JrI~>~1f~~)J41.I<ace<<le~<<4~4'.LtlfKI~~~~~~~I~0~rto~l~~~~rrf~~~~4~~~<0'54:,0~~aewrsr(4a'4~~4~atIM~M~Iwr~~~~4.>~<I~4~wa<yw4~~~Jlw11rMr<W~~~~~4Is~~Jle~~...l,1.:tufa<<eI~4~z~O'(itfff'(ill('Ji'LI.:ff'.(lt<~if~~tI~~t~4.~~~Q1r~I~~~~~MlILlIft(L~t~~~~'~.(Mfa~rsa4~~t'"I'I~e~~~4~~~-~r441<a/~11ta~~W1if<<iarotattlet1444sirif1}~J<~~.~Jt~~~I~~Itltg.<<wai041I~fff!i~i'~eeCw4~<0~we90~4I~004~~r11~I~0wtLir4~~~HHl"'oatnfl~alLimnirrr~<Jestte4~rg4~~r~,Litto4~~~0~4<<M~.1..<<"a>>oft gstCJI~)4>l4taltl~Lf':Ftt~:,tt{~I~4L'1'~+mA"~~QQ~m~n~>4~ws<r3Ie~11~I~ay)~1Iq,PIV>~sftt~~~~Mt~Me:<,fs'b'j/41~iI@

-!2r~DPI'.41 0?l-10(lI",fff.TJlrrafeP'4<JLF~~<4~~II1~~~~4~rs~la>f~L,(.PX'>~I~~~~~:I'f4/4at~~r~~~~ra~~~~~144)~~t~:f(1rfffOQa.41-"L~<rls~41~~f~~Il'ri~','f(;ti:tf~t-ft~~er~~si>yJL(<4~~t'~tr~~4<t~1~Iv44~rt4~~~k~jjAN8:.w<<11~<JetsMtL\~v~1IMM-fPayJg>~~~~Wfc.r4~Lt4(\~0~1l,a.wet-~-fIme~~<.cff..4.11(~~<aJal)(t4tt~M~'L~'~~~~~<4~~4f1~0I'~'l}(.1'~rt4~w444te~f)t~Lla4ilatsr4~~4~LO'lf<'t01<'r>I/i~JL+1AQftt>1~~Itre~4t~f~1I~~~~eSa~>.M~4~MwWetw'~44r.0&>>OMaM>>~4t<wt~'44~41~jet'PP'P'.,(<(f44og~~~<4~lti0$I10:looo.:-..',":.-.-.:-::-

.Qo.-,,...:gaooI.-,'-.....:...:

.":yooo,.-.:::,.".-

',)2/OA~'<ifigi'c.iRve!s/re&~'g~i'0000~~~'ais~~

0 e492.7.(4.4.3.1)

Apparentinconsistencies areshownforcoolantconditons.

Pleaseexplainormakecorrections.

Theseinconsistencies areasfollows:Table1.3-1indicates thatthetotalflow-rate inthereactorvesselis139.4x10~lb/hrwhileTable4.9-10indicates thatthevalueis139.5x106lb/hr;Table4.4-10indicates'hat thereactorflowrateperloop(hotleg)andsteamgenerator primaryside(tubeside)is61x106lb/hr.Table1.3-1alsoshowsavalueof61x10lb/hrastheflowratethroughthesteamgenerator

{tubeside).Whenthisvalueismultiplied bytw~forthetwoflowloops,thetotalflowrateequals122x10lb/hrshowninTable4.4-10forthetotalflowthroughthereactor;Thecoolantoutlettemperature islistedas597.6FinTable,4.4-10butappearstobegivenas596oF(548Fnominalinlet+48oFaveragerise)inTable1.3-1;~Resense4.2.Thevaluegivenforthereactorcoolantpumpflowis81,200GPH(324,800GPMforfourpumps)inTable4.4-10andTable1.3-1fortheratedcapacityofthecoolantpumps.Thisislessthantheminimumflowvalueof369,947GPHshownin'Table4.4-1;A'Iso,usingtheaverageinletcoolantdensityof47.0Ib/ft3isgiveninTable4.4-10theconversion tolb/hrflowislessthanthevalueof139.5x10lb/hrgiveninTable4.4-10forthetotalfourpumpflowthroughthereactor.Thetotalflowrateis139.4x10lb/hr.Thetypographical errors6inTable4.4-7,4.4-10,5.1-1,and5.1-3havebeencorrected.

The122x10lb/hrflowrateisbasedupontheminimumdesignreactorcoolantflowrateof324,800gpm.Thisminimumdesignflowisfourtimestheminimumpumpdesigncapacity.

The139.4x10lb/hrisbasedupontheminimumallowable reactorcoolantflowrateof369,947gpm.Theminimumallowable flowrateisdefinedasthelowerflowratelimitontheexpectedflowrateprobability distribution belowwhichtheactualflowratehasonlyafivepercentchangeofexisting.

Thisminimumallowable flowisusedfotthethermalmarginanalyses.

3.Thecoreexitaveragecoolanttemperature is598Fandthereactorvesseloutlettemperature is596oF.Corrections havebeenmadetoTables1.3-1,4.4-10,5.1-1,and5.1-3andtoFigure4.4-10"Theminimumdesignflowrateforthereactorcoolantpumpsis324,800gpm,whiletheminimumallowable reactorcoreflowrateis369,947gpm,asdiscussed initem2ofthisresponse.

/M/

0SL2FS~hRTABLE1.3-1(Cont'd)ItemPrincialDesinParameters nftheReactnrCoolantSstemOperating

pressure, psig0cetr'y+IQPISH~actnrinletfemperature>

FOPCh,'reactor ndelertemperature, FNumbernfloopsDesignpressure, psig~~2,2355482'85St.LurieUnit2Reference Section5.15.)5.I5.15.1'anOnofreUnits2and32,235553611.2.2,485hNO22,235553.5612.52,485St~LucieUnit12,235539.7595.72,485DesignTemperature>

FeHydrostatic testpressure(cold),psigPrincialDesinParameters oftheReactorVessel6503>110'~5.15.16503,110650/3,1106503,110Haterial~Designpressure, psigDesigntemperature, FOperating

pressure, psigInsidediameterofshell,in.Outsidediameteracrossnoxsles>in.SeeTable5,232,485650.2>2351722535,24.44.45.35.3SeeTable5.2-22>4856502>235172253Sh533>GradeB~ClassI,lowalloysteel,internally cladwithType304austenitic SS2,48565021235157238Sh533,GradeB,Class1,lowalloysteel,internally cladwithType304austenitic SS2,4856502,235172253Overallheightofvesselandenclosure head,ft-in.totopofCEDMnosxleHinimumcladthickness, in.PrincialDesinParameters oftheSteamGenerators NumberofUnits41-103/81/85.35.35.4~43-6-1/21/8"43-4-1/61/841-11-3/4 5/16

SL2-FSARTABLE4.4-7.RCSFLOWRATES FlowPathTotalRCSflowCorebypass'low CoreflowHotlegflowColdlegflow~Flow(ibm/hr)139.P'105+x10l134.3x1069.)fx10634.x10Qs-*T'inlet~548F4,446

(

SL2-FSARTABLE4.4-10REACTORCOOLANTSYSTEMCONPONENT THER.'fAL ANDHYDRAULIC DATA~CooanentDataReactorVesselRatedcorethermalpower,MWtDesignpressure, psia,Operating

pressure, psia2560.25002250Designtemperature, FCoolantoutlet'emperature F650,$46~gt..Coolantinlettemperature Coolantoutletstate'otal, coolantflow,ibm/hr'oreaveragecoolantenthalpyInlet,Btu/lb'utlet, Btu/lbeAveragecoolantdensityInlet,Ib/ft33Outlet,lb/ft548Subcooled 139;fx1054561047.043.4SteamGenerators Numberofunitsg~h~t',t+'~~side{tubeside)Designpressure/temperature; psia/FOperating
pressure, psiaInlettemperature, FOutlettemperature, FFlowrate,10lb/hr2500/6502250Rh'-45gg548~-61Designpressure/temperature, psi;a/FOperating pressure/temperature, psia/F(warranted)

To)alsteamflowpergenerator, 10lb/hrSteamquality,1000/550815/520.3

~5.60399.84.4-52 TABLE4.4-10(Cont'd)~ComonentPipesize(insidediarneter),in.HotlegSuctionleg(coldleg)Discharge leg(coldleg)Designpressure/temperature, psia/POperating pressure/temperature, psia/FHotlegColdleg.a.Fullpowerconditions Data4230302500/6502250/Sem250/5484,4<<54 SL2-FSARTABLE5.1-1DESIGNPARAMETERS OFREACTORCOOLANTSYSTEMDesignThermalPower,Mwt(Including netheatadditionfromRCP's)2570ReactorCoolantFlowRate,O~~fe~ColdLegATemperature, F+~1a~WAverage~'Fempe rapture,:

.Fi.'-.I~.C)(erafi'~HotLeg+Temper8ture, Flb/hrNormalOperating Pressure(psia)ThermalPower,Btu/hrtk.signPressure, psia'esxgn Temperature (exreptPressurizer),

FPressurizer DesignTemperature, F8.77x102500650700'f6139.x10548.572/~MS9c22505.1-3 4

6059hot58057R.570ALAJ'I560I-I550OCEDLCJ540averagecold548.532530'5200'550STEANGEt/ERATOR POWER,~75looFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TEMPERATURECONTROLPROGRAMFIGURE4.4-)0

Parameter SL2PSARTABLE5.1-3PROCESSDATAPOINTTABULATION SOCn2A1RCP2hlR.VeRCP2A2peuuuutitee

~xidintOutlet~xidointOutletS.ue2BlRCP281RCP282~xsdointoutletoutletDataPointPigures5.1-3and5.1-4Pressure, psiaTeaperacure, PAassPlowRace,iblnr2250653234223722962277.372)(S46372d774E69.7]{x!0 34.6/x!O139.4)xlO 22962237548372+74.6/x!O69.7+16229654822955485S3>>9)bid.348)PI06Voluaecric PlowRace,gpss191985092,5003839700'929500.191985092~50092~500lAsdl863e8Ono (D

uestionInSubsection 7.2.1.1.2.4, AnalogCoreProtection Calculators, youstatethatanalogcomputers provideinputtothermalmargin/low pressuretrip,.thelocalpowerdensitytrip,andthehighpowertrip.'oufurtherstatethatacalculated lowpressurelimitrelatedtodeparture fromnucleateboilingratio{DNBR)isdetermined usingpresetcoefficients asafunctionofthemeasuredcoldlegtemperature, axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculated lowpressurelimitisaninputtothethermalmargin/low pressuretrip.Providethefunctional relationship ofthelowpressuretripsetpointandtheaboveparameters; anddescribeh'owthesefunctions areobtained.

Provideinformation toindicatethesimilarity oftheAnalogCoreProtection Calculator usedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrently underreviewforthenextcyclereloadsinceastatistical combination ofuncertainties (SCU)isproposedinconjunction oothcalculations usedintheAnalogCoreProtection Calculator.

IsthissameapproachplannedforSt.LucieUnit2currently orfor,futurecycles?Answer(~eepe+p~e)

rAnswer9'72'Ia)Thefunctional relationship forthelowpressuretripsetpointis:Pvar=e~A1~gR1g~TC+gwhere:P=calculated lowpressurelimit,varT'measuredcoldlegtemperature,

<~p,p=scfq:+cNP;i4s)C=functionofaxialshapeindex(seeattachedfigure),gR1=functionofthehigherofthethermalpowerorneutronfluxpower.'heattachedfiguresshowA1,gRI,a,8andyforSt.LucieUnit1~2560MWt.AtpresentthesearethetargetsforSt.LucieUnitII.Thisanalysisiscurrently underwayaspartoftheSt.LucieUnitIITechnical Specification effort(+~

g~~~(~~Q>~.-fAgeneraldiscussion ofthemethodology usedtogeneratetheThermalMargin/Low Pressure(TM/LP)LSSSiscontained inCENPD-199-P "C-ESetpointMethodology,"

withfurtherinformation available in"Response toFirstRoundquestions ontheStatistical Combination ofUncertainties Program,Part1andPart3(CEN-124(B)-P."

PerNRCrequest,C-Eiscurrently updatingCENPD-199 PforfinalNRCreviewandapproval.

-b)Theattachedfunctional diagramsfortheSt.LucieUnit1(FSARFigure7.2-14)andtheSt.LucieUnit2(FSARFigure7.2-5)ThermalMargintripsshowthatthesecalculators arefunctionally identical.

c)Application ofstatistical combinations ofuncertainties forSt.LucieUnitIIisnotnowplannedforthefirstorfuturecycles;however,itmaybeappliedinfuturecyclesafterNRCapproval.

1.40'l.30A11,201.101.00~O.G(Ii!I~IIIIIjI.O.n~~Iljji.IYIllii'IilII(VJ}IANDpT"'P-1)GSxO"VA))t~~+~0I~~4I'.:II)i~~~~~04~~~~I~~~~~~04~~~~~~~~~~~to0~~~~~~~~~~~~~~~~~~~\~~~I'~~~~~~~i~~~~~~~~~~I'~~II~~~~~~~~~~~~I~~~~~~~0~!~+14.13xTIN-7586:.::~~ll~~'Ii',!+jjiI'Ii!Il~.~l~~~~~~~~!IJ.i[)iItt~lI~~~~~~I~Ij!jIlliI!)I'~~~~IjjijlIl!IIll',!.')IlI~~slI~I)II'.II!!:ill:I~I)~~2QII)II~~I',!lll!IIlllIsill,I~.!I).TINCOIIE~I)~Iieet.r'.IINLIII(!,IIi'i')Ii!..IIl)I~~~[i([I'iriI)I~~~~~~~I~~~~~~~~~~~~~))I:..:I.~~~~~~~~~~~~I~~~ETTE)'A)&4~~~I~~~~a~~~~~~~~~0~~~~~k4~~~4~~~~~)IllII~~.II)i)Ill:::I:~~~~~~~~~~~~~~~~~~)~~~~~I~~~~~~~~~~~~~~~I~I~)',I[li:!I1)IiIIIIA025'lI~~~II'I,.~~~~~~~~~I~~~~~4M~~~~~~~~~I~I~t'~~~~~~~~~~~)~I~I~~~~~~~ill::.:Iill!Ill,lIlI~)I~~~F2'~0.20.2O.nlll!ljjlji:,li!Iii)iii.il!.:jill'il'::

'lt'EB'E'"'XO)tDNB1~~~I~~~~~4~)~~;,lt:;I:~I~~~~~I~~~~~~~~.'::I~III'Ililt~~~~It:I)~~~~~~~~~~~~~~0~~~~~~~~~~;tt)~~~~~~).llIII'IO.GAXIALGI)A)'EINDEX,Ylt2I~IFIGURE2.2-3n)ermalMargin/Low PressureTripSetpoint~Part1(YIVersusA1)~~I~'I~~

~0VfHEBEtA>xQR1QosN~'ND'>~><~1765xQow++14.13T<<-75861.00.541.0==-=0.80.60.40.320.2OA0.60.8FRACTIONOFRATEDTHERMALPOY(ER1.0ThermalMargin/Low PressureTripStoointPart2(Fraction ofRATEDTHER.'ilAL POi')ERVersusQR1)ST.LUCIE-Ui'lITg,~~~.o~~

0 0cnW2.cg0~fQ~0A0z0'U"UCYIV0I0'CPiPSCIL)AXIALOFFSETYICAL~TC+KCB3~S3{RPSCIP)

PTCALS3:FLOYDDEPENDENT SETPOINT5=LECTORSV~ITCHINRPSCIPPOSITIONS

-I.4PUMiPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPl5.2PUMPS-LOOP2PiPSCIP)~'0Q-QRI]~~~asAXIALFUNCTION~DNBCAL~PvCa(CONTB"LO'>>')CEAFUNCTIONS"(RPSCIP)~34~i3VARP{ABOVE)MAXSELMINTRIPPRETRIPP=PRIMARY0"i.c<UgETRIPUNIT7ALARM:-PRETRIPTP.IP:P<PTPIPCALCULATION:

VARDNB~CALWHERETCALTC+KCB,Q~MAX(O,B)TRIPVAR'IN'RETRJP'RP 0

Cyz~0D'UI&~0ClXKCQPSCI?)2CALT'c'"c'XIAL OFFSETY3',~2~S3(RPSCIP)

~TCAXS3:FLOWDEPENDENT SETPOINTSELECTORSWITCHlNRPSCIPPOSITIONS-l.4PUMPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPI5.2PUMPS-LOOP2'I'PSCIP)

QQRI)~wee~~lQAXIALFUNCTIONQRlQONSCAI.NQDNa5-(RPSCIP)'VA..(CONT.8ELOW)CEAFUNCTION~42I3'PVAR'(A8OVE)MINMAXSEl.TRIPPRETRIPIOOP=PRIMARYPP.ESSURE TRIPUNIT7ALAPA:PRETRIPTP.IP:P<PTPIPCALCU.l.ATION:

VARDNSPCALWHERCALC+C8'RIPŽX~VARMIN)PRETRIPTRIP

~~uestionInSubsection 7.2.1.1.2.4, AnalogCoreProtection Calculators, youstatethatanalogcomputers provideinput.tothermalmargin/low pressuretrip,thelocalpowerdensitytrip,andthehighpowertrip.Youfurtherstatethatacalculated lowpressurelimitrelatedtodeparture fromnuc1eateboilingratio{DHBR)isdetermined usingpresetcoefficients asafunctionofthemeasuredcoldlegtemperature, axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculated lowpressurelimitisaninputtothethermalmargin/lou pressuretrip.~)provide thefunctional relationship ofthe'lowpressuretripsetpointandtheaboveparameters; anddescribeh'owthesefunctions areobtained.

lo)Provideinformation toindicatethesimilarity oftheAnalogCoreProtection Calculator usedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrently underreviewforthenext'cyclereloadsincea~~~~~~~~~~~~~~~~~~~statistical combination ofuncertainties (SCU)isproposedinconjunction c)withcalculations usedintheAnalogCoreProtection Calculator.

IsthissameapproachplannedforSt.LucieUnit2currently orforfuturecycles?AnswerTheAnalogCoreProtionCalculator usedznStLuc.ieni't2iit2isfunctionally identical tothatused>tLucie.Unitl.SONjTheStatistical Combination o+ncertinties(methodology canbeappliedtoSt,LucieUnit2.d'C'elisnot~Wrrelyemployedz howauar>If~~f4c.JC.dc4L+ea~4&gC~(wasa>4'~W2y+4ffd/a, eSL-2RoundOneuestions492.15(15.0)Providejustification forusingtheMacbethcorrelation intheCHFcorrelation forChapter15transients.

Dotheapplicability rangesofthecorrelation coverallexpectedconditions?

~Resonse:TheMacbethcorrelation (Ref.I)isusedonlyforthedetermination ofDNBRduringthepost-trip returntopowerportionofthemainsteamlinebreak(NSLB)transients presented inAppendix15AoftheFSAR.('lotsofDNBRversustimeforthesetransients havebeenfurnished intheResponsetoguestion440.14).ForallotherChapter15tran-sientstheCE-Icorrelation isusedintheTORCcode(References 2and3)tocalculate DNBR.Fordetermination ofDNBRduringthepost-tripreturntopowerportionofNSLBtransients themethodsappliedbyLee(Ref.4)areemployedinordertousethethcbethcorrelation forrodbundlestopredictburnoutasafunctionofaxialheight,accounting fornon-uniform axialheatflux.=Macbethdemonstrated thatfiveparameters werenecessary forcorrelation ofcriticalheatflux(CHF)dataforrodbundleswithverticalupflow:massflux,G;inletsubcooling, hH;pressure, P;heateddiameter, dh,andchannellenght,1.Howeverthechannellengthiseliminated fromthecorrelation byapplication ofLee'smethodtopredictCIIFasafunctionofaxialheight.Todetermine applicability, theheightatwhichminimumDNBRoccursiscomparedwiththechannellengthsfortheexperiments fromwhichMacbethdrewhisdata.ThedatausedfortheMacbethrodbundlecorrelations withverticalupflowhasarangeof'aluesforGoffrom0.18to4.1millionlbm/hrft2(Ref.5).Theuniformity ofthecorrelation oftheCHFdataforrodbundlesasafunctionofGoverthisrangeandthedataandcorrelations forCHFinheatedtubesgiveconfidence toextendthelowerendoftherangeofapplicability oftherodbundlecorrelation toatleast0.09x106Ibm/hrft~.(TheMacbethcorrelations forheatedtubesarebasedondatafor0.01<Gx10-6<7.8lbm/hrft2.)TherangeofvaluesofhHuponwhichtherodbundlecorrelations isbasedis-150<hH<380BTU/lbm(Ref.5).TherodbundlesfromwhichtheCHFdatawasobtainedhadvaluesofdhbetween0.113and0.902inchesandlengthsof.from17to72inches(Ref.1).Thedatausedfortherodbundlecorrelations isallfor1000psia.Howeverapplication ofMacbeth's correlations forheatedtubesindi-catesthatusingthecorrelation developed for1000psiaatlowerpressures producesvaluesforDNBRwhichareconservative.

Further,othercorrelations forrodbundles,suchasthoseofBowring(Ref.6),yieldavariation inDNBRoftheorderof10$aspressurevariesfrom500to1000psiafortherangeofGandhHofinterest.

Thisisofthesameorderastheuncertainty inMacbeth's correlation andismuchsmaIlerthanthemargintoDNBcalculated forthepost-trip returntopowerportionoftheMSLBtransients presented intheFSAR.

Table492.15suomerizes theaboveapplicability rangesandcomparesthemwiththevaluesof'heparameters obtainedfortheMSLBtransients presented inAppendix15AoftheFSAR.Theapplicability rangescoveralltheexpectedconditions forthepost-trip returntopowerportionoftheseMSLBtransients.

References:

l.Macbeth,R.V.,"AnAppraisal ofForcedConvection Burn-outData,"Proc.Instn.Mech.Enrs,Vol.180,Pt3c,pp37-50,1965-66.2."TORCCode-AComputerCodeforDetermining theThermalMarginofaReactorCore,"CENPD-161-P, July1975,Proprietary Information.

3."TORCCode-Verification andSimplified ModelingMethods,"

CENPD-206-P, January1977,Proprietary Information.

4.Lee,D.H.,"AnExperimental Investigation ofForcedConvection Burn-outinHighPressureWater-Part IV,LargeDiameterTubesatAbout1600psia,"A.E.E.W.ReportR479,1966.5.Macbeth,R.V.,"Burn-out Analysis-Part5:Examination ofPublished WorldDataforRodBundles,"

A.E.E.W.ReportR358,1964.6.Bowring,R.W.,"ANewMixedFlowClusterDryoutCorrelation forPressures intheRange0.6-15.5!IN/m2(90-2250psia)-ForUseinaTransient Blowdcr~~n Code,"IMechEConference Publications 1977-8,pp175-182,1977,

~~Table492.15-1Comparison ofapplicability rangesforMacbethCHFcorrelation forverticaluplfowinrodbundleswithvaluesobtainedfortheMSLBtransients presented inAppendix15AoftheSL-2FSAR.AParameter G(106ibm/hrft2)hH{BTU/ibm)

P(Psia)dh(inches)(inches)RangeofAvailability 0.09-4.1-150-380500-1000.113-.90217-72RangeofValuesObtainedforMSLBsDuringPost-trip ReturntoPower.*0.09-.3.0(.16)'I00-250{244)545-960(956)0.47122-33(26)***Valuesinparenthesis arethoseforminimumDNBRpredicted.

    • HeightatwhichminimumDNBRispredicted tooccur.

Highburnupperformance experience, asdescribed inSubsection

'iaspovidedevidencethatthefuelwillperformsatisfactorily underdesignconditions.

Thecurrentcoredesignbasesdonotincludeaspecificre-quirement fortestingofirradiated fuelrods.However,thefuelassemblydesignalloi:sdisassembly andreassembly tofacilitate suchinspections, shouldtheneedarise.-Afuelrodirradiation programhasbeendeveloped to.evaluate theperform-anceoffuelroddesignedforuseinthe16x16fuelassembly.

Thepro-gramincludestheirradiation ofsixstandard16x16assemblies, twoeachfor1,2,and3cycles,respectively, ntheArkansasNuclearOne-Unit2reactor(ANO-2).Eachssemblywillcontainaminimumof50precharacter-ized,removablrodsdistributec withintheassemblytoobtainaspectrumofexposurelevelsforevaluation purposesintheinterimandterminalexaminations.

Interimexamination ofallsixassemblies isplanneddur'ngrefueling shutdowns aftereachcycle.Th'eANO-2fuelrcdandspecificcompcnents ofthefuelrcdshavereceivedadetailedpre-characterization.

Theprogramcallsforsubstantial clad-dingcharacterization toincludemchanicalproperties, texture,hydrideorientation andoutofreactorlowstrainratebehavior.

InadditiontotheIDandODdiiensionaldatanormallyobtainedonthecladtubingmaterial, aminimumof300fuel'rodswillbemeasuredtoobtainasloadeddimensions.

Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurements suchthatchangesintheseparameters canbetrackedbysimilarmeasurements duringinteriminspections.

Also,arandomselec-tionofappro..im"tely 100UOpelletsfromeachlotper.batchusedvillbecharacterized dimensionality andthedensitydistribution villbedeter-mined.Aboutonehalfofthesepelletswillbeplacedinknownaxiallocaticns inselectedfuelrodswliiletheremainder willbesetasideasarchives.

izedrodswillberemovedfromthereactcrateachrefueiing andmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisua1.inspection.

Thelengthofthea"semblyandperipheral rod"willbemeasured.

Duringtheshutdown, atargetof20pre-charactPrized rod"perbatchwillhescheduled forexamination andmPasurement.

Atsometime~aftertherefueling outage,pre-characterized'ods retainedindischarged assemblies willbemeasured.

Atargetof100rodswillb"edditesterlaftPPaclishutdni.w.

8+A-ostirradiation aeLsurvLllagZ,~nce~gramforStLucie=Knit 2is,beingYeplanned.Spec'~erequirements th~P.pl"nvillJe-'determined bhsedontheresultsftheANO-2Dr"an.~liow'.acr F!~24~r:irrontlv~lanstowhentheoui~assemblics apl~re-.ovo<l friztheDreOldDlac.dPwintespentfuelstor-gi.pool.s>n.3(,I%seesApoolsidenondestructive examination villbemadeduringeachofthePfirstthreerefuelingSat ANO-2.Tnesix16x16asseiablies withcharacter-

SL2-FSAR4.2.1.5Surveillance Prorra4.2.1.5.1

~~~~Requirements forSurveillance andTestingof'rradiated FuelRodsHighburnupperformance experience, asdescribed inSubsection 4.2.3hasprovidedevidencethatthefuelwillperformsatisfactorily underdesignconditions.

Thecurrentcoredesignbasesdonotincludeaspecificre-quirement fortestingofirradiated fuelzods.However,thefuelassemblydesignallowsdisassembly andreassembly tofacilitate suchinspections,

~shouldtheneedarise.Afuelrodirradiation programhasbeendeveloped toevaluatetheperform-anceoffuelroddesignedforuseinthe16x16'fuelassembly.

Thepro-gramincludestheirradiation ofsixstandard16x16assemblies, twoeachfor1,2,and3cycles,respectively, intheArkansasNuclearOne-Unit2reactor(ANO-2).Eachassemblywillcontainaminimumof50precharacter-ized,removable rodsdistributed withintheassemblytoobtainaspectrumofexposurelevelsforevaluation purposesintheinterimandterminalexaminations.

Interimexamination ofallsixassemblies isplannedduringrefueling shutdowns aftereachcycle.TheANO-2fuelrodsandspecificcomponents ofthefuelrodshavereceivedadetailedpre-characterization.

Theprogramcallsforsubstantial clad-dingcharacterization toincludemechanical properties, texture,hydrideorientation andoutofreactorlowstrainratebehavior.

InadditiontotheIDandODdimensional datanormallyobtainedonthecladtubingmaterial, aminimumof300fuel.rodswillbemeasuredtoobtainasloadeddimensions.

Sufficient fuelrodswillbeprofiledtoobtaindiameterandovalitymeasurements suchthatchangesintheseparameters canbetrackedbysimilarmeasurements duringinteriminspections.

Also,a.randomselec-tionofapproximately 100UOpelletsfromeachlotperbatch'used willbecharacterized dimensionality andthedensitydistribution willbedeter-mined.Aboutonehalfofthesepelletswillbeplacedinknownaxiallocations inselectedfuelrodsWiletheremainder wi)lbesetasideasarchives.

Apoolsidenondestructive examination willbemadeduringeachofthe'~~firstthreerefuelingSat ANO-2.Thesix16x16assemblies withcharacter-izedrodswillbexemovedfromthereactorateachrefueling andmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisualinspection.

Thelengthoftheassemblyandperipheral rodswill.bemeasured.

Duringtheshutdown, atargetof20pre-characterized rodsperbatchwillbescheduled forexamination andmeasurement.

Atsometimeaftertherefueling outage,pre-characterized rodsretainedindischarged assemblies willbemeasured.

Atargetof100rods.willbeeddycurrenttestedaftereachshutdown.

Z<~sg7-gY~~R:&1&~qApost~xrradiatpdn fuelsurveysanceprogramo-a~~~~,planned.

Sacr'.Eic requireme~ts oftheplanwild~bedetermined busdon,.theresuloftheANO-2program.However~+PSL currently pfanStoper-~~~~~fonotAtiiospootioZ<pre~ram Qc~sYcJck rool<ocroio3-CzinitcorewhenthWfuel.assemble,are removedfrt'ecorean~laced~oe:.spentfuel;-storage pool."=-".-.=ma'~L4,2-30 Apostirradiation fuelsurveillan'ce programfor54lucre4+/isplanned.,Thisprogramshallconsistofavisualinspection ofaminimumofsix.irradi-atedassemblies priortoreplacement oftheReactorVesselHeadateachofthefirstthreerefueling outages.Thesixassemblies inspected shallcon-sistoftwoassemblies of'eachfueltypeandwillbefromcorelocations whicharenonadjacent.

Visualinspections shallconsistofviewingthetopandsidesofeachfuelassemblyviaanunderwater TVCameraorPeriscope.

Thevisualinspection willincludeobservation withspecialattention togrossproblemsinvolving claddingdefects,spacergriddamageandothermajorstructural abnormalities.

Nospecialmeasurement devicesfortheseaffectsareintendedtobeprovidedfor'hisvisualinspection.

Ifmajorabnormalities aredetectedduringthisvisualinspection orifplantinstrumentation indicates grossfuelfailures,"

thefuelvendorwillbein-formedandfurtherinspections shallbeperformed.

Depending onthe'ature oftheobservedcondition, furtherexamination couldincludefuelsipping,singlerodexamination, andotherexaminations.

The16x16fueldesignen-.ab)esreconstitution.

Individual fuelrodsandotherstructural components maybeexaminedandreplaced, ifrequired.

Underunusualcircumstances, de-structive examination ofafuelrodmayberequiredbutthiswouldnotbeaccomplished onsiteorduringtherefueling outage.TheNRCshallbecontacted regarding grossfuelfailuredetec'ted byplantin-'strumentation ormajorabnormalities observedduringthepostirradiation in-.spections described above.Thepostfuelirradiation fuelsurveillance programshallbecontinued fol-'owing thefirstthreecyclesofoperation ofSf:Lu;.el';$

~,Sixassemblies shallbevisuallyinspected duringeachrefueling outage,notnecessarily priortoreplacement ofthereactorvesselhead.Thevisualinspection shallconsist.ofviewingthetopsandsidesofeachfuelassemblyviaanunderwater TVcameraorperiscope.

Thevisualinspection willincludeobser-vationwithspecialattention togrossproblemsinvolving

.cladding defects,spacergriddamage,andothermajorstructural abnormalities.

TheNRCwillbenotifiedofmajorabnormalities notedasaresultoftheseinspection activities.

15.C.3CEAEjectionwithLossofOffsitePower.~~~~~The.following CEAejectioncaseswererequested tpower:I(1)CEAejectionwithcontrolelementhuigblowdownintocontainment.

,banlj'zedwithoutoffsiteuptureandsubsequent rapidII(2)CEAejectionwherethecontrolelementhousingdoesnotruptureandtheprimarysystemleakstothesecondary systemthroughleaksinthesteamgenerator tubes.-TheanalysisofaCEAejectionwitharapidblowdownintocontainment ispre-sentedinSection15.4.5.1.

Thisanalysisalsoassumedafailureofthe4.16KYbustofasttransferfollowing turbinetrip.Themainimpactofthisistheassumption thatthecondenser isunavailable foronehour.TheanalysisofaCEAejectionwherethehousingdoesnotruptureisdiscussed inthis'section.

Thiscasewasanalyzedwithoutoffsitepower.Figures15.C.3-1and15.C.3-2arethepressureversustimecurvesforprimaryandsecondary sidepressures, respectively.

Table15AC.3-1presentsinformation associated withradiological releasecalculations.

Table15.C.3-1CEAEjectionwithLossofOffsitePowerRadiological ReleaseInformation l.SteamReleasedtoAtmosphere DuringCooldown(ibm)0-2hours:NSSYs':ADVs74400'51000EntireEvent;NSSVsADVs2.FuelPinFailure(/)(SeeSection15.4.5.1) 3.PrimaryIodineConcentration Basedon9.5%FailedFuel(pCi/gm).

4.Secondary IodineConcentration

.BasedonTech.Spec.Limits(pCi/gm).

5.Decontamination FactorforSteamGenerator IodineTransport 6.TwoExclusion BoundaryThyroidDosefromSecondary Releases(Rem).744005720009.58.3x1031016.7 0

gazooI+OPgaoeizOdlcOop-sn)g,5FC'nMbX

10501000.~~KD0~KQUJI~950900850~~~~~~~~8007500100200.300TIME,SFCONOS500\~~~~~~~~~FLORIDAPO>U5R8LIGHTCOMPANYST.LUCIEPLANTUNIT2STEAMGEH.PRESSUREij'S.TIME

XP5+L78"Gsppnce+

~+a'I)g~(g(NIOnthebasisofexperience, thehTvalueof100'FusedintheanalysisislargerthananyhTthatmightbeexpectedduringplantoperation.

DuringRCScooldownusingtheshutdowncoolingsy'tem,coolantcirculation withthereactorcoolantpumpsservestocoolthesteamgenerator tokeepthetemperature difference betweenthereactorvesselandthesteamgenerator minimal.aSteamdumpsareusedtoreducesteamgenerator secondary fluidtobelow220'F.Ifthesteamgenerator wereheldat220'Fandthereactorvesselwerecooledtotherefuelinq temperature, thesteamgenerator

-reactorvesselATwouldstillbelessthan'l00'F.Infact,procedures willdirecttheoperatortomaintaintheh,Tbelowapproximately 20F.QLTOPtransients havenotbeenanalyzedforthesimultaneous startup.ofmorethanonereactorcoolantpump(RCP).Suchoperation isprocedurally

.precluded, sincetheooeratorstartsonlyoneRCPatatimeandasecondRCPisnotstarteduntilsystempressureisstabilized.

Additionally, thereisanLTOPtransient alarmthatshouldindicatethatapressuretransient isoccurring andthatasecondRCPshould'notbestarted.TheresultsoftheanalysesprovidedinFigures5.2-24and5.2-25showthattheuseofthePORYsprovidesufficient pressurereliefcapacitytomitigatethemostlimitingLTOPeventsidentified above.~l<<l>fgCJiSr'rrL.

ATechnical Specification willbewrittentorequire~mfa.o~~r~f2~5-'~RAifthebTexceeds100F.However,asmentioned above,administrative procedures willensurethatthehTismaintained belowapproximately 20F.Also,aTechnical Specification willbewrittentoensurethatappropriate actionistakenifonePORVisoutofserviceduringtheLTOPmodeofoperation.

J

'L2-FSARecapabi)itytodetermine heatremoval,coo)downrate,shutdowncoolingflow,amdthecapability todetect.degradation inthef)oworheatremovalcapacity.

Theinstrumentation providedfortheSDCSconsistsof:e1)Temperature measurements

-Shutdowncoo)ingheatexchanger inletandthetemperature oftheshutdowncoolingf)owtothe)owpressureheader.A).1temperatures areindicated inthecohtrolroom.Theshutdowncoolingheatexchangers'nlet temperature, andthelowpressureheadertemperatures "arerecordedtofaci)itate control'f theReactorCoolantSystemcoo)downrate.2)PressureHeasurement.s

-LPSIheaderpressureandshutdowncoolingheatexchanger inletpressure.

Thesepressures areindicated inthecontrolroom,and,whenusedwiththe).ow-pressure pumpperformance curves,provideanieanal>>ternatemeansofmeasuring systemflowrate.

3)PlowHeasurements

-Totalshutdowncoolingflowratexsmeasuredbyflowindicator/control)ers FIC-3301and3306.Theinstiumentation isdiscussed furtherin5e4.7.2.3 Overpressure ControlSections7.4and7.6.'ction againstoverpressure oftheSDCS~~~~~~rlocks.Adescription ofreliefvalvessection6.3.2.2.6.1.

isprovidedbyreliefvalvesandisprovidedbelowandinSub-TherearesixreliefvalvesintheSDCSsuctionlines.Thesevalvesaresizedtoprotectthecomponents andpipingfromoverpressure duetothermalexpansion ofthefluid.ValvesV-3482andV-3469haveasetpressureof2485psigandacapaci:ty

'offivegpm.Relieffluidfromthesevalvesiscollected inthequenchtank.Theseva)vesarelocatedinSectionsE-4andD>>5ofCEP&IDE-13172"310-131 andaredeeienedto1974AS>E,SectionNBGuelity GroupA(~eeF~ure.ValvesV<<3483andV-3468haveasetpressureof335psigandacapacityof155gpm.Relieffluidfromthesevalvesiscollected inaholduptankintheMast.eHanagement System.ThesevalvesarelocatedinSectionsD-7andD-6ofCEP&IDE-13172-310-131 andaredesignedto1974ASHE,SeCtionBC,GuelityGroupB(zaep;~are.'4y/S)~5e4-24Inadditiontoprotecting thecomponents andpipingfromoverpressure duetothethermalexpansion ofthefluid,valvesV-366andto'otectthecomponents andpip-ngfromoverpressure duetoaresizeto'roecsandressurizer inaverendrtentstartingofthechargi'ng pumps,HPSIpumps,anpedacaac1theaters,Thesevalveshaveaset.pressureof335psiganapy2300m.Relief'fIuidcol)ected fromthesevalvesiscollected gpm.exethotainmentsump.ThesevalvesarelocatedinSectionsC-6>dD-6ofCEP&IDE-13172-310"131 andaredesignedto1974ASeconSHEYC(to1975summeraddenda)QualityGroupBMhencalcu)ating SectionothecapacityofvalvesV-3666andV-3667,thecap.styoes<~F'q~03-l<)~Amendment No.4,(6/81)

SL2-FSAR9Vo(e(~$8~TMo-manual~cefa 1eJ~~.ovineRCSdepressurization iscarriedonormallyaftertheSITsareeither.isolatedordcpressurized.

~PrimaryBorationandInventory MakeupTheSt~LucieUnit2designincorporates threesafetygradechargingpumps(SeismicCategory,oeIASMECodeClass2),redundant safetygradechargingpumpi"iCategoryIASMECodeClass2boricacidmae-upans),numdeliverredundant chargingpumpsuctionpaths,andredundant chargingpumpeverypaths.Thechargingpumpsandallrelatedautomatic controlvalvesareconnected tovitalpowerifthenormalpowersupplysystemshouldfail,'xcept 1V-2504hargingpumpsuctionfrom,theRMT.Duringtheboronlantcooldown, thechargingsystemboratestheRCStocoldshutdownoronconcentration and.accommo aesd.dtthereactorcoolantshrinkage, takingsuctionfromeithertheboricacidmakeuporrefueling watertanks.Theminimumamountofstoredorcacsoudbiidlutionthatismaintained ineitherboricacidtank'issufficient tobringtheplanttoasafeshutdowncondition.

Thecapability oftheChemicalandVolumeControlSystem(CVCS)toborateandtomakeupisnotcompromised bystoppingletdownflow.Ananalysisofborationwithoutletdownhasbeencompeteanhb1tedandisconfirmed inFSARSubsection 9.3.4.3.Asinglefailureofoneemergency powertrainwouldleaveatleastonechargingpumpoperaeonblthotheremergency powertrain.Onechargingpumpstillalowsteo111hRCStobeboratedtoacoldshutdownboronconcentration thetwohoursthattheplantisinitially heldathotstandby,evenwithouttheletdownsystemoperable.

Thus,thechargingsyswithinthetwooursae.sstemsatisfies thesinglefailurecriteria.

SeeFSARSubsection 9.3.4formoreinformation.

4.Secondary tfakeupDuringcooldown, theauxiliary feedwater system(ASS)andatmospheric dumpvalvesprovie.ameanson'brigthereactorcoolantsystemtemperature downtotheshutdowncoolingsystementrytemperature-Theauxiliary feedwater

~pump(s)arestartedandthesafetygradeauxiliary feedisolation valves,~5-09-9,-10-11,-12,areopenedfromthecontrolroom.Theauxiliary feedwater systemisdesignedsuchthatnosingleactivefailurecoupledwithalossofoffsitepower,preventsplantcooldown.

Afailuremodesandeffectsanalysisi.sprovidedinthe.St.LucieUnit2FSARTable10.4.3.TheAPTScontainsonesteamdrivenandtwomotordrivenauxiliary feedwater bi,tlfiapableofmaintaining theRCSinhotstandby.Also,thesteamdrivenoreitherofthemotordrivenauxiliary feedwater pumpsiscapableofdelivering enoughfeedwater condensate foraplantcooldown.

TheAPTSisdesignedtosafetygraderequirements

{SeismicCategoryISafety13AS'KCdSectionIII).Eachofthemotordrivenauxiliary feedwater

~pumpsutilizeaClasslEacsafetyrelatedpowersupplyandtheturbinedipumptrainreliesstrictly-ondcpowersupply.Xfthemotordrivenauxiliary h.5.4-28eAmendment No.4,(6/81)

)

SL2-FSAR+9o(NCHPOSITIONepreoperational andinitialstart'uptestprogramshallbeinconformance withRegulatory Guide1.68'heprogramforPHRsshallincludetestswithsupporting analysisto(a)confirmthatadequatemixingofboratedwateraddedpriortoorduringcooldowncanbeachievedundernaturalcirculation conditions andpermitestimation ofthetimesrequiredtoachievesuchmixing,and"(b)confirmthat'hecooldownundernaturalcirculation conditions canbeachievedwithi'nthelimitsspecified intheemergency operating procedures.

Comparison withperformance ofpreviously testedplants'fsimilardesignmaybesubstituted forthesetests.RESPONSE:

Thepreoperational andstartuptestprogramswillconformtheRegulatory Guide1,68(R2).Boronmixingundernaturalcirculation conditions, willbedemonstrated inaprototypical testattheSanOnofreNuclearGeneration

~50>MS~1g~~~4oFHtt's$4'IVY~a~/~i~e4"cpothlc.4Mc.W~'i2.Ps8PAnaturalcirculation testandsimulator trainingwillbeperformed forSt.LucieUnit2todemonstrate thecapability ofcoolingtheplanttoshutdowncoolingsysteminitialconditions withinseveralhoursunderminimumcoolingcapability.

AdetailedplanwillbereportedtotheNRCinaforthcoming FSARamendment.

St.LucieUnit1submittals totheNRCconcerning NaturaliculationcooldownhavebeenreviewedwithresPecttoth'eiraPPlicability toStrhueieUnit2.XtisFPL'sopinionthatthesuheittals providedtothe'istaffforUnit1aredirectlyapplicable toUnit2.Insummary,Unit2willreviseemergency operating procedures toreflectamorestringent cooldownratethantheexisting75F/hrrate.However,itisourpositionthatthemorestringent cooldownrateisnotrequiredtoprecludesafecooldownorplantshutdown.

All,evaluations completed byourNSSSUendor(C-E)concurwithouriiThStLucieUni,t2responsetotheabovequestionisaddressed in30FPL'letters L-80-343datedOctober17,1'980andL-80-431datedDecember1980.5.4-28nAmendment No.4,(618'1)

PucsL'>.<>r>

440.5Provic)o<letails<>>>t)realr>>msa>>clir>dicatior>s w)richwoul<liriformthu<>)>orate>rs t:hat:aSDCsuet:ionli>>eir;o-lationvalve)rawclosedwhiletheplanti.ir>sh<<Lclowr>

cooling.Istherear>ycommor>failurewhichwouldre.-sult:i>>hot:hvalvesbeingclosedwhileinslruLdowrr coolinc)~ItlhenLPSI)>sm)>miniflowisolation valv<<sarec3oscddurir>gsl>ut:down

<:oolir>g, whatworrldpr<.vor>t pumpclamageiFaprcssuretransie>>C weret.ooccurwhichcausesRCSpressure:

toexccc.dLPSIdeadheadpressure?

Nher>t:heplantisintheSDCSmode,isthc:reanysir>gluFailurewhichwouldc:a0sethesuctionofbothSDCp>>mpstobuswitchedfromthehotlegpipingtothedrysumps?Respor>se:

TheSDCis'olation valvesareV-3480,-3481,-3651,and-3652.Chenanyofthesevalvesareclosed,alightisdisplayed onapanelintherontrolroom.ValvesV-3480and-3481areir>linewithLPSIpump2A.ValvesV-3651and-3652areinlinewithLPSIpump2B.Valves.V-3652 a>>d-3481areon<.lectrical TrainA.ValvesV-3651ar>d-3480areonelectrical TrainB.Itshouldalsobenotedthatthereisacrossconnectbetweer>thetwoLPSIpumpt:rains.Thiscrossco>>>>cctissituatedbetween,thetwoisolation valv<<soneachtrain.Thiscrossconnectpipi>>gisopenedandclosedviavalveV-3545.Powerissuppliedtothevalvefromeithercl<<c:-tricalTrainAorBviathc.swir>gBus.Thiscrosscor>neetvalvecanbeopenedfromtheco>>trolroomandalsofromaloc:alcontrolstation.Openandclosedpositions arc.shownbycorresponding liglrts.Theselicrhtsarepowered.fromelectrical BusA.Ir>adc)ition, thereisa0-100";indication fort)>isvalvepowc:redfromclcctrica)

BusB.Thrrs,ifoneofthevalvesfailedoxifoneofthedieselger>erators Failed,therewouldstillhconefunctioning LPSIpumptrain.Forexample,ifvalveV-3481failedclosed,thepil>inglinetoLPSIpump2Awouldnolongerbeopc.nrhowever,t:helinetoLPSI)><>mp2AwouldsLillbeoper>a>>dopera)>le'.

Asasecond<<xamplerclu<.tri<ral TrainAfailed-t:hediesel<3er>erator failedt:ostart-thesevalve:sV-3652andV-3481wouldnotopen.Fl<.ctri-.

calTrair>BisfuncLionalar>disus<<dtoopc>>LheSDCcrossconr>ec:t valve(V-3545).tinterflow:-throught.heLPSI)>ump2Atrair>(u)>tot:hecrosscon>>ccLpoirrt),flowsthro>>ght:hecrosscc>r>>>e<<t.

pipir>ga>>dintothe),PSIp<<mp2Bpipingtrain,thussupp)yir>g LPSIpump2Bwiththenecessary flow.

e/~/z(Thereisnr>s>>><i)cfbi)u>'ewhichprevorits SDCentryandth<rcisiiosi>><))efailurewhichclosesbothv>ivesi>>asiii<iletrai>>orpruveiits onevalvefrombci>>g<:lo.,cd.

Thesecondt>artofthisouc.tioriaddresses thesi,tu;itioii whu>>theLPSIpumpminiflowisolation valvesareclosed(di<ri>>qtheshutd<iwn'cooling mode)aridapres-suretrinsient o<><<ursintheRCSwhichexceedstheLPSIpumpdeadheadpressure.

rFortheShutdownCoolingMode,theLPSIpumpsuctionisalignedtothehotlegoftheRCS.TheflowCromthedischarge sideofthepumpgoesintothecoldlegoftheRCS.Duetothisarrangement, theLPSIpumpwouldnotbedeadheaded byanRCSpressuresurge.Reliefvalvesintheshutdowncoolingsuctionlinespreventisolation ofthelineforanycredibleoverpressure events.ThereisnosinglefailurethatwouldcausebothoftheLPSIpumpstobealignedtothedrysumpduringtheShutdownCoolingMode.TheSt.LucieUnit2hasanum-beroffeaturesincorporated initsdesignwhichpre-cludesthis.ForthyLPSXpumpstobealigned.intheaccidentconfi-gurationsitedinthequestion, thewatersupplyfromtheRCSwouldhavetobecutoffandthepathfromthecontainment sumptotheLPSXpumps,wouldhivetobeopen.Aninadvertant RASwo>>ldopen-theisolation valvesfromthecontainment sump(I-MV-07-2 AandB).However,anRASalsoturnsofftheLPSIpumpsanddoesnotclosetheSDCsuctionisolation valves.ValvesV-3444andV-3432,oneineachline,areclosedduringshutdowncoolingandmustbcopenedtoaligntheLPSXpumpstoadrysump.'I7g<existingdesignpermitsasa>>glefailureoftheAorBbatterytocloseasuctionvalveineachtrainnftheshutdowncoolingsystem.7~~<>QP;gg,P~P~/g<+>Ol/~VAw(+-35+5)uzi/fbmd+Pa.iM50g4imhs44rc.+~~/y 0/

('gr'IOfthepossiblesingleactivecomponent failuresf'rtheSt.Lucie2Plant,onlytwocanimoactthepotential forpost-trip returntopowerandconsequent possibledegradation infuelperformance:

(a)'reofamainsteamisolation valvetocloseonactuation ofinsteamisolation signal{MSIVfa(lllure) and(h)failureofhighpressuresafetyinjection (HPSI)pumporfailureofonePSIpumpandonelowpressuresafetyinjection (LPS!)pump(thetercasebeingpossibleonlyifoffsitepowerisunavailable).

heonlysignificant impact'hesesinglefailurescanhaveisontentialpost-trip degradation infuelperformance.

Table440e9-1showsthemaximumpost-trip reactivities, coreaveragepowers,andcoreaverageheatfluxeswithanassumedMSIVfailureandwithanassumedHPSIporn~orHPSIpumpplus'LPSI pumpfailure,asappropriate, for6.36ft~mSLBs.Casesarepresented forSLBsinitiated atfullpowerandatzeropower,withandwithoutlossofoffsitepower.Forcaseswithlossofoffsitepower,failureofoneHPSIpumpplusoneLPSIpumpisseentopresentthegreatestpotential forpost-trip degradation infuelperformance.

Therefore thiswasthesinglefailureassumedforthecaseswithlossofoffsitepowerwhicharepresented inAppendix15AoftheFSAR.Forcaseswithoffsitepoweravailable (noreactor'coolantpumptrip)theimpactofthetwopossiblesinglefailuresisnearlyidentical.

Theanalysespresented inAppendix15AoftheFSARassumedaMSIVfailureforcaseswithoffsitepoweravailable sincethisfailureyieldsslighltyhighercoreaverageheatfluxes.Noconclusions wouldbechangedbyassuming, instead,oneHPSIpumpfailureforthesecases.{15.A)Forthelargesteamlinebreak(SLB)eventspresented inApoendix15Atheconcernisthepossibiliby ofdegradation infuelperformance duringpotential post-trip returntopower.Pre-tripfueldegradation

.forSLBeventsisaddressed inSection15.1.(Seetheresponsetoguestion440.80(a)).

Radiological releasesforSLBeventsareboundedbytheLF-3eventtobe.presented inSection15.1.5.1.

Thereisnoapproachtothe110"ofdesignpressurecriterion duringSLBevents.

(9 TABLE440.9-1EFFECTOFSINGLEFAILUREOFMSIVORONEHPSIPUMPORONEHPSIPUMPPLUSONELPSIPUMPONMAXIMUMPOST-TRIP REACTIVITY, COREAVERAGEPOWER,ANDCOREAVERAGEHEATFLUXFOR6.36FT2MAINSTEAMLINEBREAKS.AUTOMATIC ACTUATION OFAUXILIARY FEEDHATER ISASSUMED.MAXIMUMPOST-TRIP:INITIALPOWERLEVELFF-SITEPOWERSINGLEFAILUREREACT/VITY('106p)COREAVERAGECOREAVERAGEPOyiERHEATFLUX(XOFFULLXOF2570MH)POgERVALUFULLLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVtONEHPSIPUMPMSIV+0.003-0.05-0.3'0.38.36.810.410.28.511.2ZEROLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVONEHPSIPUMPMSIV+0.3+0.1-0.5-0.50.81.6X101.1X101.1X101.00.41.41.5 01 3mr-IC.5'u.if~n,w-g//9(F/SL-2RoundOneuestions440.14Oneofthekeyparameters inLOCAanalysesispeakcladtemperature.

{15.0)Fornon-LOCAtransients, minimumDNBR(departure fromnucleateboilingratio)isofprimaryimportance.

Forthosetransients analyzedinSection15oftheFSAR,providegraphical outputoftheDNBRasafunctionoftime.~Resense:DHBRplotsareprovidedforeventswhichshowaDNBRdecreasing belowitsinitialvalueforallsectionsofChapter15.15.1.2.115.1.4.315.1.5.3A-~2rs-a,s-3(~~g~ar.scd)Hoeventoreventcombination minimumDHBRlessthan1.19.attachedFigure15.1.2.1-13 FSARFigure15.1.1.3-9'FSARFigure15;1.5.3-9 attachedFigure15A-l.lsattachedFigure15A-+5peal'Jpp'm~&dlrppc Jb..PAlgRzc~Micorea8.addressed inSection15.2resultsina15.2.1.115.2.1.215.2.2.115.2.2.215.2.3.215.2.5.2DNBRremainsabove3.0.NodecreaseinDHBR.DHBRremainsabove3.0.attachedFigure15.2.2.2-12.

attachedFigure15.2.3.2-12 attachedFigure15.2.5.2-21 Eventspresented inSection15.3oftheSt.LucieUnitHo.2FSARwhichinitiateadecreaseinreactorcoolantpumpflowratearelossofoff-si'tepower(15.3.2.3),

andonepumpresistance toforcedflowwithalossofoffsitepowerasaresultofturbinetrip(15.3.4,3).

Graphical outputofDNBRversustimeforthelossofoffsitepowereventispre-sentedasFigure15.3.2.3-1 intheFSAR.Fortheonepumpresistance, toforcedfloweventwithalossofoffsitepowerasaresultofturbinetrip,=graphical outputofDNBRversustimewillbeforwardedby.theendofAugust,1981(seeresponsetog440.11).15.4.1.315.4.2.315.4.2.415.4.3.115.4.4.215.4.4.315.4.5.1'5.4.5.3 FSARFSARFSARNinimumDNBRisattachedattachedFigure15.4.1.3-7 Figure15.4.2.3-7 NodecreaseinDNBRFigure15.4.3.1-8 greaterthanfor15.4.4.3.

Figure15.4.4.3-8.Figure15.4.5.1-11..

Tobesubmitted withanalysi;Therearenoeventsin15.5forwhichtheNBRdecreases belowtheinitialvalue.{15.6)TheeventsanalysedinSection15.6ofSt.LucieUnitNo.2FSAR,whichresultinadecreaseintheRCSinventory aresteamgenerator tube

SL-2ROUNDONEUESTIONS;440.25(15.3.3)Provideadetailedanalysisontheconsequences ofaRCPshaftseizureevent.Justifyselection oflimitingsinglefailures.

Thetimeattemperature studieswhichjustifyyourclaimsofpeakcladtemperature beinglimited'to1300oFarenotacceptedbythestaff.Inassessing fuelfailures, anyrodwhichexperiences aDNBRoflessthan1.19mustbeassumedfailed.Confirmthattheresultsoftheanalysismeettheacceptance criteriaofSRP15.3.3.(2).

Provideyourassump-tionsonflowdegradation duetothelockedrotorinthefaultedloop,andreference appropriate studieswhichverifytheseassumptions.

Alsoprovideasimilaranalysisforthelockedrotoreventpresented insection15.3.4.1, andshowthatacceptable consequences result.~ResenseThemostseveresinglefailureinconjunction withtheRCPshaftseizureeventisthelossofoffsitepoweronturbinetrip,asdiscussed intheresponseto440.9.ResultsshowaminimumDNBRof0.36at3.6seconds,resulting in13Kofthefuelrods'experiencing DNB(seetheresponseto440.11).The2-hourthyroiddoseassuming13Ãfailedfuel'sapproximately 30remsandthepeakRCSpressureis'lessthanorequalto2694psia(seetheresponseto440.8).~W+s-W:~d<p~:4.~i.~

gg)~~(~kgc.Theflowcoastdowns whichwereusedintheanalys'is oftheonepumpresistance toforcedflowarepresented inFigures440.25-1and440.25-2.

Theseizedshaftisassumedtoinstantaneously stopattime0.0withtheseizedrotor'ctingonlyasaresistance toflow.Thiscoastdown wasgenerated usingtheCOASTcodeasdocumented inCENPD-98(seeReference 1).

Reference:

1.'CoastCodeDescription",

CENPD-98, April2,1973.AchangetotheFSAR,Appendix15.C.3willbesubmitted inSeptember 1981.

440.41Identifytheplantoperating conditions underwhichcertainautomatic safetyinjection signalsareblockedtoprecludeunwantedactuation ofthesesystems.Describethealarmsavailable toalerttheoperatortoafailureintheprimaryorsecondarsstemduringthisphaseofoperation andthetimeavailable tomitigatetheconsequences ofsuchanaccident.

~ResonseWhiletheplantisinpoweroperation, thesafetyinjection signalsmaynotbeblocked.Duringtheinterimphase,whileRCSpressureisbeingreducedtore-fuelingmode,itbecomesnecessary topartially blocktheSIAS.Asafetyinjection blockisprovidedtopermitshutdowndepressurization oftheReactorCoolantSystem(RCS)withoutinitiating safetyinjection.

Thisblockisaccomplished manuallyafterpressurizer pressurehasbeenreducedandaper-missivesignalisgenerated bytheEngineered SafetyFeaturesActuation System.Thisblockingprocedure isunderstrictadministrative control;blockandblockpermissive isa'nnunciated andindicated inthecontrolroom.Itisnotpossibletoblockabove'apresetpressure:

ifthesystemisblockedandpressurerisesabovethatpoint,theblockisautomatically removed.Theblockcircuitcom-plieswiththesinglefailurecriterion inIEEE279-1971.

TheSIASblockremovesonlythepressurizer pressuresignalfromtheSIAStriplogic.Thehighcontainment pressuretransmitters stillremainindirectcon-nectionwiththetriplogic.Shouldaneventoccurwherebythecontainment pressureissufficiently raised,highcontainment pressurealarmssoundonRTGB-206andtheSIASisinitiated automatically, regardless ofthepressurizer signalblock.TheTechnical Specifications willpermitblockageof'heSIASinplantmodes5and6,whiletheshutdowncoolingsystemisinoperation.

Inthesemodespro-tectionagainstoverpressurization oftheReactorCoolantandShutdownCoolingSystem,'duetoaspuriousactuation oftheHPSI,isprovidedbyreliefvalvesV-3666andY-3667intheSDCsuctionlines.FSARTables7.5-1and10.4-5in-dicatesthedisplayinstrumentation andtheiralarms~4:~h<available totheoperatortoestablish primaryandsecondary systemconditions.

~CDuringcoldshutdownorrevueingmodes~and6)shouldalossofcoolantoccur,levelguagesinthecontainment andcavitysummandthesafeguards roomsumpwithalarmswouldalerttheoperatorofsuchanaccident.

Duringtheplantcooldown, operatoractionisrequiredtocontinually monitortheS.G.secondary waterlevelandfeedwater flow.Becauseofthistheoperatorisa&areofthesecondary systemconditions.

Duringarefueling, forspecificmaintenance tasks,itisexpectedthatsomeinstrumentation willbeinoperable.

Administrative procedures willassurethattheoperatorwillbeabletoassessthestatusoftheprimaryandsecondary sys-emsforthespecificsituations.

HoFSARchangeisrequired.

440.44Areportedeventhasraisedaquestionrelatedtotheconservatism ofNPSHcalculations withrespecttowhethertheabsoluteminimumavail-ableNPSHhasbeentakenbythestaffasafixednumbersuppliedthroughtheapplicant byeitherthearchitect engineerorthepump"-manufacturer.

Sinceanumberofmethodsexistandthemethodusedcanaffectthesuitability orunsuitability ofaparticular pump,itisrequested thatthebasisonwhichtherequiredNPSHwasde-terminedbebranded(i.e.,test,Hydraulic Institute Standards) foralltheECCSpumpsincluding thetestinginaccuracies beprovided.

~Res'onseTherequiredNPSHoftheSt.LucieUnit2ECCSpumpsisconfirmed bytest.Thehighpressuresafetyinjection pumpsaresuppliedbyBingham-Hillamette Co.Thesepumpsaretestedinaccordance withtheASNEPowerpestCode8.2(cen-trifugalpumps).SimilarpumpswerealsosuppliedforSt.LucieUnitl.EachoftheSt.LucieUnit1pumpswerealsotestedfortheNPSHre-quired.Theresultsshow(seefollowing table)littlevariancebetweenpumpsforsimilarflow.q7e,HP>Xla~~a~arePuwf~dsspradwo-o4'P~fd n~eAo~$;ue;O%J~r<+ro~.'heLPSIpumpsaresuppliedbyIngrsol-Rand.

TheNPSHcharacteristic iscon-'irmed bytest.BothoftheSt.LucieUnit2LPSIpumpsweretested.TheHydrualic Institute Standards wereusedforthytests.+~mf~~QJ~gijVP5$wf~prswr~~iaJp'Y, J~rn.L,.-~.

NPSHTESTRESULTSFORST.LUCIEUNITS1AND2St.LucieUnit1HPSIPumsf200113j/200114ICI200115 St.LucieUnit2HPSIPumsGPH'NPSHft64019.7640,19.964019.6$14210014(sparepump).f14210015 Ii'14210016 64063163919.919.019.4St.LucieUnit2LPSIPumsII1076149 f1076150TheNPSHvs.flowcurvesforinFigures6.3-3a,6.3-3b,6.45CC"sPfi~>s&CLta~a'ggloyf.Iqf3$'oc(5-,~3000.13qCao300011.0=4~/+0/7~theSt.LucieUnit2HPSIandLPSIpumpsareshown3-4a,and6.3-4b.Hpg~~~Lp~~'.-4~.7-t(

440.39IdentifyallECCSvalvesthatarerequiredtohavepowerlockedout;(6,3)confirmtheyareincludedundertheappropriate Technical Specifications, withsurveillance requirements listed.s~ResonseTheECCSvalvesthatarerequiredtohavepowerlockedoutarelisted"below.TheTechnical Spcification sectionoftheSt.Lucie-2FSARiscurrently beinggen-erated.Surveillance requirements forthesevalveswillbelisted.0V-3614,V-3624,V-3634,Y-3644-SITIso1ation Valves."Ponerrackouttomotorrequiredwhenpressurizer pressuregreaterthan700'psig."~~V-3613,Y-3623,V-3633,V-3643-SITVentValves.Powertothoseval'vesisremovedinthecontrolroomduringnormaloperation.

NoFSARchangeisrequired.

REACTORCOOL>>3rrS.ST-,~3STE>>MGc."lFRATOPS LJHITZ3(G CO,'(OITZOt<

FOROP+RATIO,'J

.3.4.6Eachsteamgenerator shallbeOPERABLE.

APPLICABILITY:

MODES1,2,3and4.ACTION:Mithoneormoresteamgenerators inoperable, restoretheinoperable

.generator(s) toOP""itABLE statuspriortoincreasing Tabove200~F.avgSURVEILLANCE REOUIRBIEHTS 4.4'.6.0Eachsteamgenerator shallbedemonstrated OPERABLEbyperformance ofthefollowing augmented inservice.

inspecionprogramandtherequirements ofSpecification 4.0.5.4..4.6~1SteamGenerator SampleSelection andInspection

-Eachsteam.generator shallcedetarminea OPERABL:-

duringsnutccImoyselecting and-inspe~cting at.leas.theminimumnumberofsteamgenerators specified in.TDle4.4"1.4.4.6.2SteamGenerator TubeSampleSelecticn andInsoecicn-Thesteam.generator tu"eminimumsamplesie,inspec-ion resul-classification, andthecorresponding actionrequiredshallbeasspecified inTable4.4"2.The-inservicinspection cfsteangenerator tubesshallbeperformed atthefr'equencies specified inSpecifica ion4.4.6.3andtheinspec.ed tubesshall:beverified=acepablepertheacceptance criteriaofSpecfication4.4.6.4.Thetubesselectedforeachinsc~icainspection shallincludeatleast3Xcf.thetotalnumberoftubesinallsearngenerators; thetubesselectedfo-theseinspections shallbeselectedonarandombasisexcept:'a4)thereexpe'rience insimilar'lan+m withsimilarwaterchemisryindicates criticalareastobeinspec-ed, thenatleast50ofthetubes'inspected shallbefromthesecriticalareas.b.Thefirstsampleoftubesselectedfcreachinservice inspection (subsequent othepreservice inspection) ofeachsteamgenerator shallinclude:-C~Sh3/44"10Og01lcSO

/

REACTORCOOLANTSYSTE.'1-SVRVEILlAt(CE REOVIREHEHTS (Continued)

Co.Allnonplugged tubesthatpreviously haddetectable wallpenetratiors (greaterthan20~).2.Tubesinthoseareaswhereexperience hasindicated potential prob1ems.3.Atubeinspection (pursuant toSpecification 4.4.6.4.a.8) shallbeperformed oneachselectedtube.Ifanyselectedtubedoesnotpermitthepassageoftheeddycurrentprobeforatubeinspection,'i'.this shallberecordedandanadjacenttubeshallbeselectedandsubjected toatubeinspection.

Thetubesselectedasthesecondandthirdsamples(ifrequiredbyTable4.4-2)duringeachinservice inspection maybesubjected toapartialtubeinspection provided:

2.Thetubesselectedforthesesamplesincludethetubesfromthoseareasofthetubesheetarraywheretubeswithimperfections werepreviously found.-Theinspections includethoseportionsofthetubeswhereimperfections werepreviously found.Theresultsofeachsampleinspection shallbeclassified intooneofthefollowing threecategories:

Cate~os'"2 InsectionResults=Lessthan5Ãofthetotaltubesinspected aredegradedtubesandnoneoftheinspected tubes'redefective..

Oneormoretubes,butnotmoreChan1Ãofthe'otaltubesinspected aredefective, orbetween,SXand10Ãofthetotaltubesinspected aredegradedtubes.'"3Norethan10~ofthetotaltubesinspected aredegradedtubesormorethan1Ãoftheinspected tubesaredefective.

Note:Inallinspections, previously degradedtubesmustexhibitsignificant (greaterthan10~)furtherwallpenetrations tobeincludedintheabovepercentage calculations.

3/44"11OCroa'-'

\0 REACTORCOOLANTSYSTE."1S SUILLANC"P."U~ReMc'O'S Continued 4.4.6.3InsnecionFreouencies

-Theaboverequiredinservice inspections ofsteamgenerator

-uaessnailoeperformed atthefollowing frequencies:

a.b.cThefirstinservice inspection shallbeperformed after6ffectiveFullPowerMonthsbutwithin24calendermonthsofinitialcrit"kality.Subsequent inservice inspections shallbeperformed atintervals ofnotlesshan12normorethan24calendarmonthsafterthepreviousinspection.

Iftwoconsecuzive inspections following serviceunderAVTconditions, notincluding thepreservice inspection, resultinallinspection resultsfallingintotheC-1categoryorifwoconsecutive inspcionademons"atethatpreviously observeddegradation hasnotcontinued andnoadditional degradation hasoc"urred, theinspection intervalmaybeextendedtoamaximumofonceper40months.Ifthe.resultsoftheinservice inspecionofasteamgenerator conducted inaccordance wihTable4.4"2at40monthintervals fallintoCategoryC-3,theinspection

,requency shallbeincreased toatleast.onceper20months.Theincreaseininspection frequency shallapplyuntilthesubsequent inspections satisfyhecri.eriaofSpecification 4.4.6.3.a;theintervalmaythenbeextendedtoamaximumofonceper40months.lAdditional, unscheduled inservice inspections shallbeperformed oneachsearngenerator inaccordance wi.hthefirssampleinspecionspecified inTable4.4-2duringtheshutdownsubsequent toanyofthefollowing cond-itions:

1.Primary"to-secondary tubesleaks(notincluding leaksoriginating fromtube-to"tube sheetwelds)inexcessof.helimitsofSpecification 3.4.7.2.2.3.Aseismicoccurrence greaterthantheOperating BasisEarthquake.

rAloss-of-coolant accidentrequiring actuation oftheengineered safeguards.

4.Amainsteamlineorfeedwater linebreak.3/44-12

-t00 REACTORCGOLAHTSYSTEM0dSURYEILLAHCE REOUIREHEHTS Continued 4.4.6.4Acceptance Criteriaa.Asusedin'hisSpecification 2.Imoerfection meansanexception to'hedimensions, finishorcontourofatvbefromthatrequiredbyfabrication drawingsorspecifications.

Eddy-current testingindications below20~ofthenominaltubewallthickness, ifdetectable, maybeconsidered asimperfections.

~0iI-Idgeneralcorrosion occurring oneitherinsideoroutsideofatube.3.5.'.8.~PPthanorequalto20Ãofthenominalwallthickness causedbydegradation.

K~diuPaffectedorremovedbydegradation.

Oefectmeansanimperfection ofsuchseveritythatitexceedstheplugginglimit.Atubecontaining adefectisdefective.

~P1ILIthetubesnailberemovedfromserviceandisequalto(40)~"ofthenominaltvbewallthickness.

'nserviceable describes thecondition ofatubeifit'leaksorcontainsadefectlargeenoughtoaffectitsstructurai integrity intheeventofan,Operating 8asisEarthquake, aloss-of-.

coolantaccident, orasteamlineorfeedwater linebreakasspecified in4.4.6.3.c, above.ITubeInspection meansaninspection ofthesteamgenerator tubefromthepointofentry(hotlegside)completely aroundthe'-bendtothetopsvpportofthecoldleg.Preservice Inspection mieansaninspection ofthefulllengthofeachtuneineacns-earngenerator performed byeddycvrrenttechniques priortoservicetoestablish abaselineValuetobe-determined inaccordance withtherecommendations ofRegulatory Guide1.121,Augvst.1976.SF~L.~c.,g3/44"13OCT01loeO It REACTORCOOLANTS'(ST="HD~~EILi&HCcREOUIREH""!ITS (CcntinuedI b.econdition ofthetubing.Thisinspecionshallbeperformed fl7.4priortoinitialPOWEROPERATION usingtheequipment andtechniques expec-edtobeusedduringsuosequent inservice inspections.

Thesteamgenerator shallbedetermined OPERABL~aftercompleting thecorrspondingactions(plugalltubesexceeding theplugginglimitandalltubescontaining through"eall cracks)requiredbyTable4.4"2.4.4.6.5Renorte-0b.Following eachinservice inspection ofsteamgenerator tubes,thenumberoftubespluggedineachsteamgenera-'or shallbreportedtotheCormnission within15days..Thecompleteresultsofthesteamgenerator tubeinservice inspection shallbesubmitted totheCommission inaSpecialReportpur'suant toSoecification 6.9.2~sithin12monthsfollowing com-pletionoftheinspection.

ThisSpecialReportshallinclude:1..Numberandextentoftubesinspected.

2.3.Locationandpercentofeall-thickness penetration foreachindication ofanimperfecion.eEdentificationoftubesplugged.cResultsofsteamgenerator tubeinspecionswhichfallintoCategoryC"3andrequirepromptnotification ofheCommission shallbereportedpursuanttoSoeciication6.9.1priortoresumption ofplantoperation.

The~!rittenfolio~upof4hisreportshallprovideadescription ofinvestigations conduc4ed todetermine causeofthetubedegradation andcorrective measurestakentopreventrecurrence.

~'l44"14 00 TABLE4;4-]lglNIiYiUM NUMBEROFSTEAI'4GEQEQATOPS TOQE.INSPECTED DURINGINSERVICE iflSPPCT)ON 0Prescrvlce Inspection NoYesNo.ofSteamGenerators perUnitTwoThreeFourTwoThreeFourFirstln-rvicaInspection Second5Subsequent Inscrvlce Inspections AllOne>OneTwoOna2TwoOne3TableNota'.Ion:

1.Theinscrvica Inspection maybelimitedtoonesteamgenerator onarotatingscheduleencompassing 3N'IolthetubesIwhcreNisthcnun>bcrofstcamgenerators Intheplan!)IftheresultsofthefirstorpreviousInspections indicatethatallstcamgenerators areperforming inalikemanner.Notethatundersomecircumstances, theoperating conditions Inoncormorestcamgenerators maybetoundtobemorascvcrethanthoseinotherstcamgenerators.

Undersucltcircum.stancestiresanrplesequencesltallbemodifiedtoInspectthemostscvcreconditions.

2.Titcotl>crsteamgenerator notinspected duringthefirstinscrvice Inspection shallbeinspected.

Thethirdandsubsequent:

inspections shouldfollowtl>cInstructions described in1above.3.Eacl)oftheothertwosteamgcncrators notinspected duringthefirstinservlce Inspections shallbaInspected duringthesecondandthirdinspections.

Thafourthandsubsequent inspections shallfoltowtlteinstructions described in1above.~CDnI 0

TABLE4.$-2n)STSAMPLEINSPECYfON STEAMGENERATOR TUB'EINSPECTION 2NDSAMPLEINSPECTION 3RDSAMPLEINSPECTION SampleSleeAeiultActionRmtufrcdResuitActionflcqulrcd ResultActionAcquiredAmlnhnumofSTubesperS.G.C-IC-2C-3NonePlugdclcctlvo tubesendInspecteddltlonal 2StubesIntlilsS.G.InspectalltubesInthisS.G.,plugde-fectivetubasandInspect2StubosIneacliotli<<rS.G.Proniptnotlllcatlon toNRCpursuanttosl>cclllcatlon 6.0.lN/AC-IC-2C-3AllotherS.G.saroC-lSomeS.G.sC-2butnoadditional S.G.araC-3Adilitional S.G.IsC-3NonoPlllgdefective tubesendInspectadditional 4StubasIntlilsS.G.PerformactionforC-3resultofflrsl.sampleNonePerformactiontorC-2resultofsecondsaniploliispcctelltubesIncadiS.G.andplugdefectlvo tubes.Proniptnotlllcatlon toNRCpursuanttospecifleetlon6.0.lC-1C-2C-3N/AN/AN/AN/AN/A'/APlugdefective tiibcsPerformaciionforC-3resultoffirstsiWliplaN/AN/AN/AN/A.3N~V/heroNIsthonund)erof'stcamgen<<rators lnthoUnit,andnlsthonumberofsteamgcncrators lnspcctcd duringenInspcctlon

<DCDCD zs>.IProvideaconservative demonstration forPressurizer ManwayNuts(NumberC-5364)andPressurizer tlanwayStuds{NumberC-5365)thatthematerialwhentested.at40"Forlowerwillmeetorexceed25milslateralexpansion.

LowerboundCVNcurvesforSA-193Gl'.8-7andSA-540Gr.B-24materials areconsidered acceptable methodsforextrapolating theCVNimpactdatafromthetesttem-peratureto40'F.Inaddition, demonstrate thatthemetallurgical

.condition ofthematerials usedto'generate thelowerboundcurvesforSA-193Gr.B-7andSA-540Gr.B-24materials areequivalent to'hemetallurgical condition oftheSL-2material.

Thiscanbeac-complished byproviding theheattreatment informa'tion forthematerialusedtogeneratethelowerboundcurvesandforSL-2Pressurizer HanwayStudsandNuts.Reply:A.CVNdataforSA-193Gr.B-7aregiveninTable251.g-l.Sincefullcurvesarenotrequiredforthismaterial, testingoverarangeoftemperatures isnotnormallydone.Resultsfor.thepressurizer manwaynuts,codeno.C-5384,were:~Tem'F+10+10+10Ft-lbs5325'lIShear804060oilsLat.Ex.331827't10'F,twospecimens metthemilslateralexpansion require-ment,25mils,whileone.didnot.Sincetwospecimens exhibited over50%shear,thisisthecenterofthetemperature rangeinwhichthetoughness increases rapidlywithtemperature.

Bytestingat-atemperature 30'Fhigher.-40'F,C-Eexpectsthatall:specimens wouldexhibit75-100%shear.Fromthedatapre-sentedinTable251.8-1,C-Eexpectsinexcessof25milslateralexpansion at75Kshear.Heattreatment forcodeno.5364isgivenbelow;heattreatment dataforTable251.g-lisgiveninTable251.$-2.C-Efeelsthateachoftheseheattreatments producesimilarmetallurgical structures inthisalloy.AustenitizedTemperedStressRelieved1550'F,oilquenched1000F7hsprowl~d.k~)~4i4,5>gk~eeg.~-(.t*4'l~~~s~.i,.4~.l~7u'F.~l>>l<<4vifii

~'51.PThematerials survei1'lance programusessix'specimen capsulesthatshouldcontainreactorvesselsteelspecimens ofthelimitingbasematerial, weldmetalandheat-affected-zone material.

Todemonstrate compliance withAppendixf{,10CFRPart50,provideatablethatin-cludesthefollowing information foreachspecimen:

l.Actualsurveillance material; 2.Originofeachsurveillance specimen(basemetal:heatnumber,plateidentification number;weldmetal:weldwire,heatoffillermaterial, production weldingconditions, andplatematerialusedtomakeweldspecimen);

3.Testspecimenandtype;4.Chemicalcomposition ofeachtestspecimen.

Providethe.location, leadfactorandwithdrawal timeforeachspeci-mencapsulecalculated withrespecttothevesselinnerwall;I0Reply:Table251.$-1lis'tstherequested information.

TheweldandHAZspecimens areproducedusingthesameweldprocedure asisusedtoweldthevessel.TheHAZspecimens are1/2weldmetal,and.1/2limitingbasemetal,plat'e, H-605-1.Theweldmetalspecimens areproducedbyweldingplatesM-605-2andM-605-3together.

1CVlSio4

'Thesurveillance capsulewithdrawal scheduleforSt.LucieUnit2wasestablished inaccordance with10CFR50,AppendixH,paragraph II.C.3(b).

Thefirstcapsu'leisscheduled forwittidrawal whentheencapsulated basemetal'aterialisconservatively estimated toexhibitareference temperature shiftof50'F.Thisispredicted tooccurafterapproximately oneeffective fullpoweryear(EFPY)whichcorresponds i:oaneutronfluenceofabout1.3x1018n/cm2 (E>ltleV).

Thesecondandthirdcapsulesarescheduled forwithdrawal after12and24EFPY,respectively.

Asignificant advantage willresultfromwithdrawal ofthefirstsur-veillance capsuleafter1EFPY,becauseitwillprovideanearlyindication ofthevalidityofthereactorvesselfluenceandreference temperature shiftpredictions.

usedtosetthevesseloperating limits.Actualdosimetry andshiftmeasurements willthenbeavailable forprojecting radiation inducedchangesinthetougnness properties ofthevesselbeltlinematerials.

\Thiswithdrawal scheduleisconsistent withtheobjectives ofASTHE185-79(Standard Practicef'rConducting Surveil'lance TestsforLight-Water CooledNuclearPowerReactorVessels)and10CFR50,AppendixH:-"...toverifythe'nitialpredictions ofthesurveillancematerial'response totheactualradi-\jationenvironment..."

and"....todetermine theconditions underwhichthevesselcanbeoperatedwithadequatemarginsofsafetyagainstfracture.

0COHPTRNZTORY.XTQKSL-2-81-700 Page1ofPMQRKSOuestion435-Completion o6Z;sysrznetric LoadingAnalya&ECCBPiping<<EE/8EECCSPip&a@Supports6Restraints

-11/3ECKBHs-lJ,/BEReactoXnternols

-12/81Fuel->f82guestion435mpreviously car%'ed-s"HeetingOpenResponse" duetot1:e.fec~,

Chat&formation concerning ovalityttesMllssing.on I/3]/83.enovslitydiagramantheappropriate description waspovidedCoHx'eVNerses>>~aestionf3fi-Ve"ification oftnefunctional capability ofC1sss263austenitic pipebendendelbows.additional infoaaatioa onfaultedallomblestressesforbolts.BeerevisedresponseCoQuestion, f41.1(b)ResponsetoQuestionNE.3.(b)hasbeenrevisedtoreflee"theadditional in-fo~ation~~cautionfii2-Justification ofsufficien" nsrginagainstbucklingfailureforanycase~here~eexceed2/'3ofcriticalbucMXng,stressorvhreEbasco'sXncreaseFactorviolatestheconditions oftheresponsetoQueaUon40>>l(a)(2)

.Questionpi9-providearesponse{cispartoflg'Qon1stores'tion onperiodicleaktestingofprim~rycoolantpressureisolation valves.{{caution ASS"Cgtoarrangeea{ecting, todiscussthestatusofscLucreUntc2withreapecccoche8Gfg.ed~ster ringevencrecentlyexperienced acSONGS.i-""'"eventprnbabdldty ofoccurence forasmallfeedvacer linebreakshouldberevievedbytheNRCProba&i3,istic Revie~Group<oracceptance.

Theoutcomeofthatrevuecanaffeceitefn8339/3O/81Peek.of9/21/8EHRCtorespondRoT.iceneee "NRC"toreviewresponses toReactorSystemsbranchQuestion440.8E(Z)

(tMsresponseisattachedtoQuestion8553.'

COB"1PRAZOR'ST'ZlMSTRZSPNiSEDATETQNRCPageZoiREMI'KKSI~~Oostion956-XRBullets79-02-Pxovidedesigncz'itexia an6sarpleCG1cl1LatiGEL,

+caption841.L(c-CompareTable'.9-5withthel.eadingtaMesofSection,3.8.3aa4identffynayareaewherediapezity betvaenAXSC.andASK'.Oupportrequfrerenta ateeigaificant.81'25/81PLelhaiasry

<<nbaOndeaf,'gpgivettoBooBoaaekon?jpiIII4lVIIvI~I4'jI~1I4)4I4.>I4I;J$..)~\ctiteriajBL,~g~I'I,~12:!4~&.~VV8::IVV~I4I)1I-I

Question41.1JustifytheuseofSRSSforcombination ofSSPlandSSFOintheflu)tedCanditiane b)Providethefaultedal3,ozablo stressesforhalts.CompareTable3.9-5withtheloadingtablesofSectian3.8.3.Definet:hematerials forvhichalla~sbles aregiveninT'ablesofSection3.8.3.Resoonsea)Wherethefundamental frequency ofthepipingsystemisbeyondtheresonantretfonofthesupportlnS structu-.e thaSSEwillbccombinedfnt'efolloufnS manner:SSEA'K'~+SSEh Mherethepipingfundamental frequency isnotbeyondthestructural resonantregiontheSSEvillbecombinedinthefo11cn"bing manner:SSE=lSSEXt+ISSSDl>)Faultedallo~13.es forboltsateestablished as1.6XAXSl:allo>>wbles (noanal).HatcrfclA-925AISCAllowable TensileStress40KsiAllo@able tensilestressPorFaultedCondition 64Ksi,gOf.Ult93JZjte 53K(gll1lldie}61K(1l(818dias)Requirements forcomponent supports'axe addressed inSection3.8.3.Anyareasvheredisparity betvcenAXSCandAS>$supportrequirements issigniHcsnt villbeMsntified.

This~illbsperformed sotbatgoverning loadingcasesaddressorenvelopetheloadingcasesgiveninTable3.9-5.A11ovamestressesarebasedonSection1.5ofAISCvhichinturnarebasedonASTHmaterialvalues.AISCfactorsofsafetyvaryfrom1.67ta2.0onyieldstrength.

i,~edevelopment offactorsofsafetyisdocumented intheCmrmentary totheA'LSCCode; sl 420e3tLualification ofContro~lS stemsIEInformation Notice79-22Operating reactorlicensees wereinformedbyIEInformation Notice79-22,issuedSeptember 19,1979,thatcertainnon-safety gradeorcontrolequipment, ifsubjected totheadverseenvironment of.a~highenergylinebreak,couldimpactthesafetyanalysesandtheadequacyoftheprotection functions performed bythesafetygradeequipment.

Intheattachment tothisEnclosure thereisacopyofIEInformation Notice79-22,andreprinted copiesofanAugust30,1979Westinghouse letterandaSeptember 10,1979PublicServiceElectricandGasCompanyletterwhichaddresses thismatter.Operating Reactorlicensees conducted reviewstodetermine whethersuchproblemscouldexistatoperating facilities.

Weareconcerned'that asimilarpotential mayexistatlightwaterfacilities nowunderconstruction.

Youare,therefore, requested toperformareviewtodetermine what,ifany,designchangesoroperatoractionswouldbenecessary toassurethathighenergylinebreakswill.notcausecontrolsystemfailurestocomplicate theeventbeyondyourFSARanalysis.

Providetheresultsofyourreviewsincluding allidentified problemsandthemannerinwhichyouhaveresolvedthemtoNRPbyJuly6,1981.Thespecific"scenarios" discussed intheabovereferenced Westinghouse letteraretobeconsidered asexamplesofthekindsofinteractions whichmightoccur.Yourreviewshouldincludethosescenarios, whereapplicable, butshouldnotnecessarily belimitedtothem.Applicants withotherLHRdesignsshouldconsideranalogous inter-actionsasrelevanttotheirdesigns.Re~sense:Areviewofpotential controlsysteminteractions duringhighenergypipebreakshasbeenconducted forSt.LucieUnit2.ThereviewisbasedontheCombustion Engineering (C-E)genericrevieweffort.Thereviewconsidered boththespecificsystemslistedinIEInforma-tionNotice79-22andothernon-safety systemswhichcouldpossiblyinteractwithsafetygradesystems.

I, t.Ppciy.Unit2(Ihstrfment~atio ndontrolSays~krmnch+uestions)

Despitethelowprobability ofahighenergylinebreakagenericreviewhasbeenperformed ofthirteencontrolsystemsinvolving'four accidents scenarios whichencompass thespectrumofpostulated highenergybylinebreaks.Amatrixwasestablished ofthehighenergylinebreaksandcontrolfunctions (Attachment 1).Inthetimeavai'lable, thematrixwasreducedtoincludeonlythosesystemsandeventswhichrequir'efurtherevaluation.

Ageneraldescription oftheprocedure usedtoreducethismatrixislistedbelow:I.Aninitialreviewofeachpostulated ControlFunctionfailureforeachpipebreakwascompleted andservedasthebasisforconsideration.

Hhereapostulated failurecouldpotentially increasetheseverityofahighenergypipe,break,thefollowing criteriawereemployedtoresolvetheconcern:Isthepostulated ControlFunctionfailuremodecredible7 2.IstheControlFunctionEquipment (Sensor,Cable,etc.)qualified tooperateproperlyinthepostulated environ-ments3.Mherethepostulated ControlFunctionfailureiscredible, coulditsimpactpotentially affecttheconclusions pre-sentedintheSAR?Considerations such.asMaximumControlFunctioncapabilities, anddelayed,butproperoperatoractionwereemployedinthiseffort.Inseveralcases,mostnotiblythePORVfailureintheopenposition, nospecificfailuremechanism hasbeenidentified.

Theonlymannerforsuchafailuretooccurwouldbeforpo~ertobeinadvertently appliedtothevalvesolenoidandnotberemoved.Partoftheshorttermrecomendations istoevaluatewhetherornotafailuremechanism ofthistypeiscredible.

Thepotential adverseimpactofhighenergypipebreaksonreactorcoolantpumpswasconsidered.

Boththeseizedshaftandthesimultanteous threeorfourpump'lossoffIowweree1iminated fromconsTderat>on basedondudgement thatthesefailuresarenotcon-sideredcrediblewithinthetimeframelimitedbyoperatoraction'(30minutes)duetoenvironmental impactalone.Theimpactofotherpotential

'lossofflowevents(e.g.,oneortwopumplossofflow)during.highenergypipebreakswasreviewedanditwasjudgedthattheresulting rapidreactortripwassufficient toensurethattheconclusions oftheSARwouldnotchange.

0 ucigUnjt2(&54rGlne~~n ContAhysChmWrw5&~estions)

Attachment 2detailsspecificevent/interactions scenarios anddefinesspecificshorttermrecoranendations

~hichhavebeenestablished, on.agenericbasis,tominimizetheprobability andimpactofthepostulated events.Thisattachment alsodiscusses potential longtermalternatives whichhavebeenidentified onagenericbasis.TheresultsofareviewoftheC-Egenericevaluation appliedtotheSt.LucieUnit2designarealsoprovidedinAttachment 2.Theseresultsarediscussed afterthegenericshortandlongtermrecoomendations foreachpostulated eventaddressed.

8asedontheseresultstheitemsshownonthegenericmatrix(Attachment 1)havebeeneliminated.

Therefore nodesignchangesarenecessary toassurethathighenergylinebreaksdonotcausecontrolsystemfailurestocomplicate eventsbeyondtheFSARanalysisforSt.LucieUnit2.

CONTROLFUNCTIONS ANDEVENTSControlFunctions Considered Pressurizer LevelPressurizer PressurePowerOperatedReliefValves8BlockValves;ReliefandClosureReactorCoolantFlow(RCPs)RodPosition(RRS,CEINCS)BoronConcentration (BoronControlSystem)Feedwater Flow(FHRS)SteamFlowtoTurbine(TGCS)SteamBy-PasstoCondenser (SBCS)SteamDumpstoAtmosphere UpstreamofHSIVsSteamDumpstoAtmosphere Downstream ofHSIVsSteamGenerator Blowdown(SGBS)SafetyInjection TankDepressurization/Isolation Thelistedfunctions wereevaluated in'conjunction withthefollowing events:SmallSteamline RuptureInsideContainment SmallSteamline RuptureOutsideContainment LargeSteamline RuptureInsideContainment LargeSteamline RuptureOutsideContainment SmallFeedlineRuptureInsideContainment SmallFeedlineRuptureOutsideContainment LargeFeedlineRuptureInsideContainment LargeFeedlineRuptureOutsideContainment'mall LOCAInsideContainment SmallLOCAOutsideContainment LargeLOCARodEjectionICJUL24SN 00

~~'~~~~~I~~.~C~~~~C~~IsI~Ie~~~~o~~~~~~~

ATTACHMENT 2DESCRIPTIONS OFREMAINING EVENTSANDCONTROLFUNCTIONS I.Assessment ofControlSystemFailuresonSteamLineBreakEventgg~~~A.SequenceofEventsforGenericSARSteamLineBreakatFullPowerinsideorOutsideContainment Double-ended steamlinebreakoccurs2.Reactortriponlowsteamgenerator pressure3.HSISinitiates toisolatethesteamgenerators 4.RCStemperature decreases duetoexcessive steamremoval5.Totalreactivity increases duetomoderator cooldowneffect6.HSIVsclose7.Pressurizer empties8.Lowpressurizer pressureinitiates SIAS9.MFIYsclose10.Safetyinjection boronreachescore11.Affectedsteamgenerator empties,terminating cooldowneffect,thetransient reactivity reachespeakanddecreases gradually

'duetoboroninjection 12.*Limitedornopost-trip return-to-power 13.NofuelinDNBB.SteamLineBreakWithPORYControlSstemFailure1.Significant Interaction Effects:a.Increased Containment Pressureb.AstuckopenPORVincombination withasteamlinebreakhasnotbeenanalyzed.

2.Assumptions a.Steamlinebreak(largebreakinsidecontainment forItem1.Aabove,anysizeorlocationforItem1.Babove).b.Inadvertently PORVsopenandremainopenc.PORYBlockvalvealsofailstoclosewhenrequiredd.Initialcondition:

fullpower3.Itmustbeemphasized thatnomechanism hasbeenidentified forthePORVtoinadvertently openandremainopensinceitssignaltoopencomesfromsafetygradeequipment andtheGarrettvalvesandsolenoids arequalified foranenvironment inexcessof400'F.

4.SequenceofEvents5:;fa.Largesteamlinebreakoccursinsidecontainment.,

gg~~~b.Reactortripoccursonsteamgenerator lowpressurewithin$98i5seconds.c.Shouldtheadverseenvironment causethePORVto'nadvertently openandthenremainopen,thefollowing stepsmayalsooccur.Itshouldbenotedthatnomeachnism hasbeenidenti'fied whichwo'uldcausethistooccur.d.SteamfromPORVfillsquenchtankandburstsrupturediskreleasing steamtothecontainment andcuasingadditional containment pressurization.

e.MassremovalviaPORVcausesadditional voidformation withinthereactorcoolantsystem.5.Actionsa.Shortterm:l.Utilities continuetoinvestigate qualification levelsandlocationofpowercablestoPORYsandPORYblockvalvestoassesscredibility ofthisfailuremode..2.Ensureoper'ators takeactiontoshutPORVandPORVblockvalveifPORVfailsopen.b.Longterm:1.Completeassessment ofPORVsandblockvalves.Dependent ontheresultsofthatassessment a.upgradeenvironmental qualification levelofPORVsandblockvalves;orb.performdetailedanalysisofeventifrequired.

6.Evaluation forSt.LucieUnit2C-Ehasnotidentified afailuremechanism relativetothisconcern.Furthermore, thissystemprovidesinputtotheReactorProtective Systemand,assuch,issafety-grade andpost-LOCA qualified.

Medonotbelievethis itemisapplicable toSt.LucieUnit2.C.SteamLineBreakHithFeedwater FlowControlSstemFailure1;Significant Interaction Effectsa.Steamgenerator filling-causingpotential, pipingstructural problems2.Assumptions a.Smallsteamlinebreakinsidecontainment thatdoesnotcauseanirwediate reactortrip 0

b.Feedwater flowexceedssteamflowduetofailureofsteamgenerator levelinstrument, indicating flowc.SARconservatism Inooperatoractionwithin30minutes'.SequenceofEventsa.Smallsteamlinebreakoccurswhichdoes:notcauseaniomediate reactortrip5g~b.Steamgenerator levelinstrument fails,causinganincreaseoffeedwater f'lowinexcessofsteamflowc.Steamgenerator beginsCofillcausingincreased moisturecontentofsteamd.Ifnooperatoractionoccursundefined pipingstructural problemscouldresult.e.Itshouldbeemphasized thatthiseventcanbeprevented bypromptoperatoraction.Safetygradesteamgenerator levelinstrumentation exists,enablingcomparison withcontrolgradelevelinstruments ofthefeedsystem.4.Actiona.ShorttermEnsuretheoperatorisawareofthispotential, interaction

,.sothathemaytakepromptcorrective actionshouditoccurb.LongtermAssesstheneedofupgrading steamgenerator

'levelindi-cationtothefeedwater'control systemii.AssesstheneedtoinsCallasafetygradehighsteam,generator levelalarm5.Evaluation forSt.LucieUnit2Theconcerninthisareaassumesafailureinastea'mgenerator levelinstrumentcausing theFHRStosupplyfeedwater inexcessofsteamdemand,therebyfillingtheaffectedsteamgenerator potentially leadingtoexcessive moisturecarryover.

TheSt.LucieUnit2designincorporates adesignfeatureChatautomatically closesthefeedwater regulating valvesatthehighsteamgenerator levelandtripstheturbineandmainfeedwater pumpsatthehigh-high level.Theinstrumentation transmitting thesignalisafourchannelsystemwithportionsqualified towithstand theadverseenvironment.

Thoseportionsnotqualified willnotbeexposedtotheadverseenvironment.

Metherefore concludethatthisconcernisnotapplicable toSt.LucieUnit2.

flan-a, D.SteamLineBreakHithFailureofHainSteamPathsDownstream ofMSIV'sl.Significant Interaction Effects'INa.Increasepost-trip return-to-power 2.Assumptions a.Largesteamlinebreakinsidecontainment b.HSIVonunaffected steamgenerator failstoclose.Thissequenceofeventsispertinent onlyifthisassumption ismade.c.Downstream ofNSIV'smainsteampathsfailopend.Initialcondition:

fullpowere.SARconservatisms endofcyclecoreii.themostreactiveCEAstuckoutRL2<$81iii.steamblowdownthroughsteamlinebreakI3.Thenumberoffailureswhichmustoccurduringthiseventaresignificant.

Firsttheremustbethelargebreak.ThentheHSIVontheoppositesteamgenerator mustfailtoclose.Thereisastuckrodonreactortrip.Thensteampathsdownstream oftheHSIV'smustbeaffected.

Theseincludeturbinecontrolvalvesandsteamdumpandbypassvalves.Theprobability ofthiseventoccurring ismuchlessthan10-6perreactoryear.4.SequenceofEventsa.Largesteamlinebreakinsidecontainment b.Reactortriponlowsteamgenerator pressuretripsignalc.HSIVonunaffected steamgenerator failstocloseonHSISd.Hainsteampathsdownstream ofHSIVopenorfail,tocloseduetocontrolsystemmalfunction causedbyadverseenvironemnt following largesteamlinebreak.e.Openmainsteampathsincreasethesteamblowdownandincreasemoderator cooldowneffectwhichaddspositivereactivity tocore.Apost-trip return-to-power ismoresevereundertheseconditions.

0 5.Actionsa.,Shortterm'j~0<2<<g8)shouldasteamlinebreakoccur,ensureoperatortakesactiontoisolateallalternate steamflowpathsii.determine whetherthiseventwarrantsfurtherconsideration, inlightoflowprobability ofallconsequential failureswhichmustoccurfortheeventtobesignificant b.Longtermi.*utilities investigate environmental qualificatjonlevel ofthesystemsinvolvedii.upgradequalification levelofaffectedequipment ifthis'sdetermined tobenecessary 6.Evaluation forSt.LucieUnit2Thesystemswhichmustfailinordertoopenthemainsteampathdownstream oftheMSIVaretheturbinegenerator controlsystem(TGCS)andsteambypasscontrolsystem(SBCS).ReviewoftheSt.LucieUnit2designshowsthattheTGCSandSBCSwouldnotbeexposedtotheadverseenvironment.

However,theTaveinputtotheSBCS.generated bytheRRScouldgeexposedtotheaccidentenvironment.

TheTaveinputthough,isusedonlytoblockinitiation ofaquickopeningsignalandcannotcausetheSBCSvalvestoopen..Aquickopeningsignalwouldnotbegenerated duetothelowsteamflowandpressureinputstotheSBCSsothe'alves wouldremainclosed.l<etherefore concludethatthisisnotapplicable toSt.LucieUnit2.E.SteamLineBreakwithAtmos hericDumValveControlSstemFailure1.Significant Interaction r~a.Post-accident controlled cooldownh2.Assumptions a.Steam.linebreakoutsidecontainment andupstreamofHSIVb.Atmospheric dumpvalvesonoppositesteamlineopenandremainopen*,c.SARconservatism nooperatoractionwithin30minutes3.SequenceofEventsa.Asteamlinebreakoutsideofcontainment butupstreamoftheNSIVoccurs*Thefailuremechanism identified fsafa'i,lure oftheinputsignalsthatwouldcausethevalvetoopenifoperating intheautomatic mode.Althoughnooperatoractionisassumedfor30minutespromptoperatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.

b.Reactortriponlowsteamgenerator pressurec.Atmospheric dumpvalvesupstreamofHSIV'sopenandremainopenduetocontrolsystemfailurep'2joperateatmospheric dumpvalvesinmanualde,or4.Actionsa.Shorttermd.'Ifnooperatoractiontakesplacetherewouldbe,thepotential fordry-outanddepressurization ofbothsteamgenerators e.Failuretoshutatmospheric dumpvalvescouldinhibitacontrolled plantcooldownbylimitingtheabilityoftheauxiliaryfeedpumpstodelivertothesteam'generator(s)

~Qensureoperatorshutsatmospheric dumpvalvesonsteam'iineuntilcontrolisassuredJUL2<~98b.Longtermi.Continueinvestigation

.todetermine ifthisfailuremechanism isplausible Iupgradeatmospheric dumpvalvecontrolsystemtowith-standtheadverseenvironment, ifrequired8~>>'<Appal>

~valuation forSt.LucieUnit2i'0sp~&/Aevi'~~~gy

~~Ac,<j.p~~~~g heatmospheric dumpvalvesarelocatedupstreamof,themainsteamisolation valvesatSt.LucieUnit2,andthepostulated failureinthisareawouldbeavalidconcernwerethesystemtobeintheautomatic modeduringpoweroperations.

However,"*~consistent withtheanlaysesintheFSAR,thissystemismaintained inthemanualmodeduringnormaloperationsA Mebelievethismethodofoperation adequately addresses any'oncern inthisarea.'I.Assessment ofImactofControlSstemFailuresonFeedLineBreakEventand~EAA.SARFeedLineBreakr1.SequenceofEventsa.f4infeedlinebreakoccursdownstream ofreverseflowcheckvalve,discharging mainfeedandsteamgenerator fluidb.RCSheatupduetolossofsubcooled feedflowc;Reactortripoccursonsteamgenerator lowwaterlevelorhighpressurizer pressure.

Turbinetripoccursonreactortrip.

'0 d.RapidRCSheatupandpressurization duetolossofheattransferastherupturedsteamgenerator emptiesIe.Depressurization oftherupturedsteam'enerator initiates HSISandisolatestheintactgenerator f.RCSpressurization terminates withopeningofpr'imaryrelief/safetyvalvesanddecreasing coreheatfluxg.RCScooldownbegins,'ontrolled bythemainsteamsafetyvalvesh.Auxiliary feedisinitiated automatically orbyoperatoraction8.FeedLineBreakWithRCSInventorControlFailure1.Significant Interaction Effect.a.Increased RCSpressurization duetoliquidfilledpressurizer 2.Assumptions a.Smallfeedlinebreakinsidecontainment b.Adverseenvironment, impactspressurizer levelinstrument causingindication tofaillowwhichcausesthecontrolsystemtoincreaseinventory (andpressurizer level)c.Initialconditions 102Ãpowersteambypasscontrolsysteminmanualmodebeginning-of-cycle coreparameters d.Analysisconserva'tisms nooperatoractionforat1east30minutesii.nocreditforsteamgenerator lowwaterleveltripinrupturedunituntilemptyiii.heattransferinrupturedsteamgenerator instantaneously terminated onemptyingiv.failureofthefeedlinereverseflowcheckvalve,ifggp~48~thebreakoccursupstreamofthevalveIq

s'$~ting3.SequenceofEventsa.Feedlinebreakincontainment b.Hainfeedspillsfrombreakc.Adversecontainment environment causespressurizer level'indication tofaillowcausingRCSinventory toincrease(d."Reactortripoccursonsteamgenerator lowwaterlevelonhighpressurizer pressure.

Turbinetripsonreactortripe.RCSheatupresultsfromrapiddecreasein,SGheattransferduetolossoffluidfromtherupturedsteamgenerator f.Pressurize reliefand/orsafetyvalvesopeng.Potential forpressurizer tofillwithliquidexistsduetohighlevelinpressurizer priortoheatup.Relief/safetyvalvereliefcapacityreducedbyliquiddischarge h.Extentofincreased RCSpressurization isdependent ontimeofpressurizer fillingrelativetotherapidheatup4.Actionsa..Shortterm'lertoperatortothispotential failuremode,sothatpromptcorrective actioncanbetakenb.LongtermPerformplantspecificanalysestodetermine upperlimitallowable forpressurizer levelwhichisconsistent withthemaximumrateoflevelincreaseandthemaximumRCSexpansion duringthepotentially

.rapidheatupassociated withfeedlinebreaksupgradepressurizer levelinstrumentation 5.Evaluation forSt.LucieUnit2TheC-Econcernpostulates thefailureofapressurizer levelinstrument inthecontrolsystem,which.intheabsenceofoperatoraction,causesthepressurizer tofill,therebyallowingthereactorcoolantsystemtogosolid.Asdiscussed inourresponsetoIEBulletin79-01,thelevelinstruments arepost-LOCA qualified.

Wetherefore donotbelievethereisaconcerninthisarea.

C

'blC.FeedLineBreaklilithPORYControlFailureSignificant Interaction Effectsa.AfailedopenPORII'incombination withafeedlinebreakhasnotbeenanalyzed2.Assumptions n.Feedlinebreakinidecontainment b.PORV's.inadvertently openandremainopenc.PORVblockvalvealsofailstoclosewhenrequiredd.Rooperatoractionuntil20minutes3.PORYwouldnotbeexpectedtoremainopenduetoactuation malfunction sinceGarrettvalvesandsolenoids arequalified

'ortemperatures.

inexcessof400'F4.SequenceofEventsia.Feedlinebreakoccursinsidecontainment b.Steamgenerator fluidand/ormainfeedspillfrombreakc;RCSheatupandpressurization resultsfromlossoffeedflowd.PORVopensonhighpressureandfailstorecloseduetoadverseenvironment e.Reactortripoccursonhighpressurize pressure.

Turbinetripsonreactortripf.RCSdepressurization occursifPORY'sfailtorecloseg.HassremovalviaPORYcausesvoidformation withinRCSh.Feedlinebreakincombination withafailedopenPORVhasnotbeenanalyzed5.Actionsa.Shorttermutilities investigate.

qualification levelandlocationof.powercablestoPORV'sandPORVblockvalvestoassesscredibility ofthisfailuremodeensureoperators takeactionstoshutPORV'sandPORVblockvalves,shouldthisfailureoccur

b.LongtermCompleteassessment ofPORV'sandblockvalves.Dependent onresultsofthatassessment

.A.upgradeenvironmental qualification levelofPORV'sandblockvalves,orB.performdetailedanalysisofevent,ifrequired6.Evaluation forSt.LucieUnit2C-Ehasnotidentified afailuremechanism relativetothisconcern.Furthermore, thissystemprovidesinputtotheReactorProtective Systemand,assuch,issafety-grade andpost-LOCA qualified.

Wedonotbelievethisitemisapplicable toSt.LucieUnit2.D.FeedLineBreakWithFeedwater ControlFailure1.Significant Interaction Effectsa.Overfilling ofthesteamgenerator(s) causingpotential structural problems2.'Assumptions a.Smallfeedlinebreakinsidecontainment b.Feedcontrolinautomatic modec.Adverseenvironment causessteamgenerator levelindica-tiontofaillowwhichcausesthefeedcontrolsystemtoincreasefeedflowabovethesteamflowd.No'operator actionfor30minutes3.SequenceofEventsa.Asmallfeedlinebreakoccursinsidecontainment b.'ainfeedspillsfrombreakc.Steamgenerator levelinstrument failsindicating lowandcausesincreased feedflowinexcessofsteamflowd;Steamgenerator beginstofillcausingincreased moisturecontentofsteame.Ifnooperatoractionoccursundefined structural problemscouldresult 0th pgf.Itshouldbeemphasized thatthisevenCtl~.~nbypromptoperatoraction.Safetygradelevelinstru-mentation existstocompare'to controlgradeinstruments.

Thefeedsystemcanthenbecontrolled manually4.Actionsa.ShorttermueL24Ig~ensuretheoperatorisawareofthepotential failuremodesothehemaytakepromptcorrective action,shoulditoccurassesstheneedtoinstallsafetygradehighsteamgenerator levelalarm5.Evaluation forSt.LucieUnit2hTheconcerninthisareaassumesafailureinasteamgenerator levelinstrument causingtheFWRStosupplyfeedwater inexcessofsteamdemand,therebyfil'lingtheaffectedsteamgenerator potentially leadingtoexcessive moisturecarryover.

TheSt.LucieUnit2designincorporates asafetygradedesignfeaturethatautomatically closesthefeedwater regulating valvesatthehighsteamgenerator levelandtripstheturbine'andmainfeedwater pumpsatthehigh-high level.Theinstrumenta-tiontransmitting thesignalisafourchannelsystemwithportionsqualified towithstand theadverseevnironment.

Thoseportionsnotqualified willnotbeexposedtotheadverseenvironment.

Hetherefore concludethatthisconcernisnotapplicable toSt.LucieUnit2.E.FeedlirieBreakHithAtmospheric SteamDumpControlFailure1.Significant Interaction Effectsa.Controlled plantcooldown2.Assumptions a.Feed'linebreakoutsidecontainment anddownstream ofreverseflowcheckvalveb.Adverseenvironment impactstheatmospheric steamdumpcontrolonunaffected steamgenerator causinganun-controlled steamreleaseupstreamoftheHSIV'sc.Nooperatoractionuntil30minutes**Thefailuremechanism identified isafailureoftheinputsignalsthatwouldcausethevalvetoopenifoperating intheautomatic

'ode.Althoughnooperatoractionisassumedfor30minutes,prompt.-operatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.

2p~$3.SequenceofEventst.a.Feedlinebreakoccursoutsidecontainment downstream ofcheckvalveb.Steamgenerator fluidand/ormainfeedspill:frombreakc.Reactortripoccursonsteamgenerator lowwaterlevelorhighpressurizer pressure.

Turbinetripoccursonreactortrip~+><<ss<d.Steamgenerator pressureincreases following turbinetripe.Environment couldcauseatmospheric dumpvalvesupstreamofNSIVinunaffected steamgenerator toopenandremainopenf.Ifnooperatoractiontakesplacetherewouldbeapotential fordryoutanddepressruization ofbothsteamgenerators 9.Depressurization ofbothsteamgenerators maylimittheabilityoftheauxilairy feedpumpstadelivertothesteamgenerator(s) 4.Actionsta.Shorttermoperateatmospheric steamdumpvalvesinthemanualmode.'orensurethattheoperatorisawareofthispotential

'interaction sothatpromptcorrective actioncanbetakenb.Longtermcontinueinvestigation tode'termine ifthisfailuremechanism isplausible upgradeatmospheric dumpvalvecontrolsstemenvirmentalqualification ifrequired:,

.'~>~~c"l~5.Evaluation forSt.LucieUnit2~P'."+.4"<~"'~r/'Theatmospheric dumpvalvesarelocatedjYsS;rehN othemain.steamisolation valvesatSt.LucieUnit2,andthepostulate

'.failureinthisareawouldbeavalidconcernwerethesystemtobeintheautomatic modeduringpoweroperations.

However,consistent withtheanalysesintheFSAR,thissystemismaintained inthemanualmodeduringnormaloperations.

Webelievethis-method ofoperation adequately addresses anconcerninthisarea.

jap~~I!IPttFfftfRR~ltSt~0iHih~EBreakEventsPiesc.Adverseenvironment resultsinalowindicated powerlevelfromtheex-coresensorinputtotheReactorRegulating SystemcausingCEAstobewithdrawn 3.Sequenceofeventsa.Highenergypipebreakinsidecontainment ofasmallenoughsizewhereinwiediate reactortripdoesnotoccurb.Controlgradeex-coresensorindication fails'lowduetoadverseenvironmental

.impactc.Reactorregulating systemcausesCEAstobewithdrawn d.Reactorpowerexceedsthepowerpreviously assumedduringthetransient e.Reactortripoccursduetohighenergypipebreakatconditions notconsidered inpresentanalyses4.Actionsa.ShorttermA.CEApositionmalfunctions dueto.steamandfeedlinebreaksandCEAejectionJOt.2)@8)1.Significant interaction effect:a.Potentially higherreactorpowerlevelspriortoreactortripthanpresently analyzed2.Assumptions a.Smallhighenergypipebreakinsidecontainment b.Reactorregulating systeminautomatic modeplacethecontrolelementdrivesysteminmanualii.Modifyemergency procedures tostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeex-coredetectors duringhighenergypipebreaksb.Longtermf.-evaluate theconsequences oFsmallhighenergypipebreaksincontainment withCEAwithdrawl, ifrequiredifrequired, upgradetheenvironmental qualification levelofthecontrolgradeexcoredetectorsystem

6.Evaluation forSt.LucieUnit29dgTheC-Econcernregardingcontrolrodwithdrawal withtheReactorRegulating System(RRS)inautomatic controlisconsidered valid.However,consistent withtheanalysesintheFSAR,tAs-syst~~~nta.ized-in-the-manual-mode during-normalmperaiions.

Nebelievethismethodofopera-tionadequately addresses anyconcerninthisarea.Qe~~3(cyoJu)if(drawJ.+A'~oft><<~"~'6f$aS(~~Lyc6'scencosyI4u<7es<~~4cvtt,d'ya~M s~<(~M<<<~~+C~~~.<~~'~~@<..4~'v<<-<->>7

~"<'~~g,(g~I-Selec,4~),

((.g 8.SmallBreakLOCAMithCEAControlSystemHalfunctio f,IJ(f\~1.Significarit interaction effects>PL,"y"4(98]a.Potential existsforincreasing power.Thiswouldcausepressuretoremainabovelowpressurizer pressuretripforalonger'period thanpreviously assumed2.Assumptions a.SmallbreakLOCAinsidecontainment b.CEAcontrolsysteminautomatic modec.Adverseenvironment impactsCEAcontrolsystemorrelatedsensorsresulting inconsequential failure.d.ControlsystemcausesCEAtowithdrawe.StandardLOCAlicensing assumptions 3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainment b.CEAcontrolsysteminautomatic modec.Adverseenvironment causedby.rupturepotentially causesexcorepowerindication toindicatelowpowerleveld.SliouldCEAsbegintowithdraw, themagnitude oftheover--powerexcursion priortoscramwouldbeincreased.

ThiscouldproduceahigherprimarysystempressurewhichcouldthendelayreactortripandSIASandresultinhigher-peakcladtemperature 4.Action,,a.ShorttermPlacethecontrolelementdrivesysteminmanualModifyemergency procedures tostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeexcoredetectors duringaLOCA.b.LongtermEvaluatetheconsequences ofasmallbreakLOCAwithCEAwithdrawal, andifrequiredupgradetheenvironmental qualification levelofthecontrolgradeexcoreinstrumentation

tss5.Evaluation forSt.LucieUnit2/PITheC-Econcernregarding controlrodwithdrawal withthe~84Q0~ReactorRegulating System(RRS)inautomatic controlisconsidered valid.However,consistent withtheanalysesintheFSAR,thH-system-is-mHntainedN~~anuaMed~uring

..normal-,operations.

Hebelievethismethodofoperation adequate1y addresses anyconcerninthisarea.',~~c.we/~>d<<~gyLNRS~si'.SmallBreakLOCAwithSITIsolation Yialfunction

$A1.Significant interaction effectsW~'-'~0<,Ž~g~aas+-t'DklYD4JDsa.Potential existsforinjection ofnon-condensible gas'ntotheRCS.Thiscouldcauseproblemswithnaturalcirculation andheattransferinthesteamgenerators shouldthegascollectthere.~--p,-'zz7F44<'edgesd.NIQd2.Assumptions a.SmallbreakLOCAinsidecontainment b.Adverseenvironment impactssafetyinjection tank(s)isolation resulting inconsequential failure.c.Operatorcannotisolatethesafetyinjection tank(s)d.StandardLOCAlicensing assumptions 3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainment b.Adverseenvironment causedbyrupturedisablesSITisolation mechanism c.OperatorisunabletoisolatetheSIT(s)andnon-condensible gas(nitrogen covergas)enterstheRCS.Ad.Possibility existsfordegradednaturalcirculation flowand/orbuildupofgasesinthesteamgenerators causingheatupofRCS.'4.Action.a.,ShorttermInstructoperatorthatthepossibility ofgasformation existsifSITsarenotisolated.

IdentifydrainlinesthatcouldbeusedtodraintheSITsandtheirqualification levels b.LongtermEvaluateoptionsforproviding anothermeansofise1ating theSITsandrevisethedesignasnecessargPL P4I@5.Evaluation forSt.Lucie2Thevalvesandinstrumentation andcontrolsystemsareenvironmentally qualified towithstand theadverseenvironment.

Backupmeans'arealsoavailable tode-.pressurize theSITsandtherebypreventnon-condensible gasesfromenteringtheRCS.

.

420.4ControlSystemFaflursTheanalysesrapor;ad'fn Chapter15oftheFSARarfntendedtcdemons.ratetheacauacyGsaaiysystemsinmiigatingan"ici."ated Operational occurrences andaccicents.

BoshCongressandACRSnaveraisedaaissuefnhisarea.Ccmmissicner Ahear.".e hasrasgoncad toCongressregardngthisissue(~=ertcattacho~nt tcthisenclosure) andpartofhisresponsereferredtocontrolsys-;amrevieus:obeperi'armed inconnections eithOLlicensing.

irisedontheconserjative assumptions madeindei'icing theseChapter16desfgn-basis eventsandthedetailedreviewoftheanalysesbythestaff,ftislikelythattheyadequately boundtheconsequences of'Sfnglecontrolsystemfailures.

'Yeprovideassuranco thatthedesignbasfs~antanalysesadequately--

boundothermorefundarrental crediblefailuresyouararequested topMYfdethe.following information:

(1)Identifythosecontrolsystemswhosefailureormalfunction couldseriously impactplantsafe~.(2}Indfcatwhich,ffany,of~controlsystemsfdenstiffed fn(1)lacefvepouerfromcommonpowersourcs.Thepowersourceconsidered shouldfnc'.ucaallpouersourcesunosafailurormalfunction couldlea'dofailureormalfurc.icn of;orethanonecontrolsystemandshculdextendto"heefactsofcascading powerlossesduetcthefailureofhigherlevel',dfstrfbution panelsandloadcnters.~a3).Tndfcatawhich,ffany,ofthecontrolsys.msidentified fn.0)-receive;.input signalsfromcoamonsensors.Tnesensorsconsidered shouldinclude,butshouldnotnessrilybelimitedto,cca-.,cnnydraulic headerscrimpul.salinesfeedingpressure, tamper@tora, levelorothersignalstotwoormore.controlsystms.-(4)Providefust'ffcatfcn thatanysimultaneous mal,unctions ofthecontrolsystemsunidntifiedin(2)and(3)resulting fromfailuresor7al.unc.fons oftheapplicable ccr;...on pcwersourceorsensorare"oundaabyheanalysesinChaptarl~and>Auldnotrequireac-ionorrsponsabeycnd.hecapability ofoperators orsafetysys.ms,s.

~Resonse:.(1)Thecontrolsystemswhosefailureormalfunctionmayimpactplant,safety'areshownbelow:FEElNATER REGULATIHG SYSTEMTURBINE-GENERATOR CONTROLSYSTEMSTEAMBYPASSCONTROLSYSTEMADVCONTROLSYSTEf1BORONCONTROLSYSTEM'IREACTORREGULATING SYSTEf1CONTROLELEMENTDRIVEMECHAHISf4 CONTROLPRESSURIZER PRESSURECONTROLSYSTEMPRESSURIZER LEVELCONTROLSYSTEMREACTORCOOLANTPUMPSPOWEROPERATEDRELIEFVALVESSTEAMGENERATOR BLOMDOHNSYSTEM(2)E(4)Thecontrolsystemsidentified in(1)that,receivepowerfromcommonpowersourcesareidentified below.Theeffectoflosingthepowersourcesandanevaluation ofplantresponsearealsoprovided.

Theresultsofthisevaluation providejustification

~thatanysimultaneous malfunctions ofcontrolsystemsidentified herein,resulting fromcowmenpowersupplymalfunctions areboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapability ofoperators orsafetysystems.

420.4(2)II(4)ImactofLossofCornnonPowerSourcesLossof120VACfromPowerPanel220I,Thispowerlosswillimpactthepressurizer:level controlsystem(PLCS),thepressurizer pressurecontrolsystem(PPCS),thereactorregulating system(RRS),theboroncontrolsystem(BC6),andthesteambypasscontrolsystem(SBCS).Specifically, thePLCSwilllosecontrolpower,assumingtPeselectorswitchisonthatchannel(itwillbeunaffected ifontheotherchannel).

Theletdowncontrolvalvewillgotoitsfailclosedpositionaridthechargiogpumpswillremainpowered,andavailable formanualcontrol.ThePPCSwilllosecontrolpower,assumingtheselectorswitchisonthatchannel.Thepressurizer sprayvalvewillgotoitsfailclosedpositionandthepressurizer heaterswillremainpoweredandavailable formanualcontrol.Addition-,

allythelow-lowlevelautomatic cut-offofthepressurizer heaterswilllosecontrolpower.TheRRSwilllosepowerassumingtheselectorswitchisonthatchannel(it.will.beunaffected ifontheotherchannel).

Thecontrolelementassemblies willremainintheirpositionpriortothepowerloss.TheBCS.willnotcompletely belost.Thereactormakeupwaterflowcontroller

)silllosepowerwiththeboricacidflowcontroller unaffected.

Theletdownlinewillbeaffectedwiththetemperature elementsfortheregenerative andletdownheatexchangers losingpower,.howevertheletdownlinewillbeiso-latedbytheletdowncontrolvalvesmentioned previously.

TheSBCSwillnotreceiveaTy.veinputfromtheRRSwhichmaycausetheturbinebypassvalvestoremainclosed.Secondary pressurereliefandRCSheatremovalcontrolcanbeaccomplished throughthemainsteamsafetyvalvesandatmospheric dumpvalves.Evaluation ofPlantResponse:

ThelossofthePLCS,PPCS,RRS,BCS,andSBCSduetolossof'20VACfrompowerpanel220'willnotseriously impactplantsafety.Thereactorcouldfunctionforatimewithoutoperatoractionbeforeareactortripwouldresult(mostlikelyonhighpressurizer pressure).

Theoperatorcanchoosetoselectthe N

otherchannelforcorrectoperation ofthePLCS,PPCS,andRRS.Howevermnualcontrolofthechargingpumps,pressurizer heaters,auxiliary sprays,andturbinebypassvalvesisavailable.

Theoperatorwillstillhavecontroloftheboricacidflowtothechargingpumpsandhecanchoosetoaligntherefueling watertanktochargingifnecessary.

.IQg~/yg~'~gi'6VCStnC/+un@'QB/}

BÃCcS'JinSec'.6+nr~.J-.z.2Joe.nels'/x Jccn~~'+~//~++<46Pn/'s,~.P.2c2$$cc~egAlga~&44~Pcpgcu/A/~oaqIsJra.+4,nipi~*r~~/e~v'~ps4e~gHz)~sots+preckg/arenn,4g4f'<~ssccr oui-~c:dc/><+varipr+re~g/+qi"ear.$r6ij0+<~j4~id~

Lossof120VACfromPowerPanel221Thispowerlosswillimpactthepre~wurizer levelcontrolsystem(PLCS).thepressurizer pressurecontrolsystem,(PPCS) andthereactorregulating system(RRS)',theboroncontrolsystem(BCS),andthesteanbypasscontrolsystem(SBCS).Specifically, thesameimpactaswiththelossof120VACfrompowerpanel220willoccurwiththefollowing exceptions:

Thereactormakeupwaterflowcontrolwillremainpowered,howevertheboricacidflowcontroller willlosepower.Additionally thetemperature elementontheletdownheatexchanger controlling thecomponent coolingwatercontrolvalvewilllosepower.ThevolumecontroltanklevelinputstotheBCSwilllosepower.Alsothestationalarms(annunciators) willtransferto125YDCpower.Evaluation'of PlantResponseTherewillbenoseriousimpacttoplantsafetyfortheeventpresented above.Intheabsence'ofoperatoractionthereactorwouldeventually trip(onhighpressurizer pressure).

However.,

theOperatorwouldbealertedtosuchaneventduetoincorrect pressurizer pressurelevelindications inthecontrolroom.Hemaychoosetoswitchtheredundant channelforcorrectoperation ofthePLCS,PPCSandRRS.However,manualcontrolofthechargingpumps,pressurizer heaters,andauxiliary spraysisavailable.,

Theoperatorcanalsobypasstheboricacidflowcontroller andprovideboratedwaterdirectlytothecharginpumpsoraignterefueling watertank.7"~Ad4<l4<<~sfolP>lS~t.ownoeo/~an~(8~@~plj+.3/i>-ge4gqrQ,Lossof480V]CC2A6non-essential ortionTheimpactoflosingthismotorcontrolcenter(MCC)issimilartothelossof120VACfrompowerpanel220,sincepowerpanel220receivespowerfromthisHCC.Evaluation ofPlantResponse:

Theplantresponseforlossofpowerpanel.220 (120VAC)applies.

Lossof480YtiCC286non-essential ortionTheimpactoflosingthisHCCissimilartothelossof120YACfrompowerpanel221,sincepowerpanel221receivesitspowerfromthisHCC.Cvaluation ofPlantResponse:

'heplantresponseforlossofpowerpanel221(12CVAC)applies.Lossof120VACVITALPANEL2A1hislossofpowerwillimpactthefeedwater regul<lting system(FHRS),steambypasscontrolsystem(SBCS)andtheturbinegenerator controlsystem(TGCS).Specifically, intheFWRScontrolpowertooneregulating valveandbypassvalvewillbelost.Additionally, mainsteamflowinputtotheSBCSfromtheFMRSisnottransmitted fromonechannel.Theturbinerunbackmechanism willbewithoutpower.Evaluation ofPlantResponse:

Thefeedwater regulating systemwillstillcontroloneregulating

'ndbypassvalve.Thelossoftheturbinerunbackfunctionisbackedvpbyinstr~mentation on120VACvitalPanel2Bwhichwillrunbacktheturbineinrespo'nse tothedecreased feedwater flow.Shouldtherunbacknotoperateproperly, areactortripmayresultonlowsteamgenerator pressure.

Manualoperation oftheatmospheric dumpvalvesandauxiliary feedwater isavailable.

ShouldtheSBCSoperateproperlyorreactortripnotoccurtheplantwouldstabilize atadecreased powercondition.

8CLSb/aj60g 0F~4<5ihN+4~7I4SCCQOQ+,Q,/Q8O4chOXKisC'~e~c~1'O.f4a~alys.~inSecAo.e:gy.gass~~ciI+ibine+Ip4lln~cJ<y0r~~pSsG4of$z,g@~f~~+r~~i'>s'~<%net+64snueriJ'+6rafeardZ~p~~g6~nygnsgr~su/$igpy/-cd'/Prmy~@5gpondy'~w4Ar4<<c',~JAlqg~A.iydcACSyes~c.7&inp/toc~dr'p,)4r A'~~~s/e~~gp~ss8cohoa~s'd'r'w>~hilda>"wP'</o~ica/Pons'cgu<~<<445cgnnri'grAsso/lQ8v'Acpl7glpqg~Z.g8chic.snoreSI~~ha.pPep~46OncFV/V&CPe~6

120VACVitalPanel2BThislossofpowerwillimpactthefeedwater regulating system(FHRS),steambypasscontrolsystem(SBCS),andtheturbinegenerator controlsystem(TGCS).'pecifically, intheFNRScontrolpowertooneregulating valveandonebypassvalvewillbelost.Additionally, controloftheSBCSwouldbelost.TheTGCSwouldremainfunctional, butwouldsufferalossofthebackuptotheturbinerunbackfunction.

Evaluation ofPlantResponse:

TheFMRS.willstillcontroloneregulating andonebypassassvalve.TheSBCSwillbewithoutcontrolpowetandtheturbinewouldrunbackinresponsetodecreased feedwater flow.Shoulditnotrunbackareactortripmayresultonlowsteamgenerator pressure.

re.Theauxiliary feedwater andatmospheric dumpvalvesareavailable forRCSheatremoval.Shouldareactortripnotbegenerated anewsteyadstateatadecreased power4(Pc/c4(cth.~i&t4+PspsC/~v/f4levelwouldoccur.7~eoac.l~>'c~-38')4I)&Wjsscgna~s5~Lossof120VACVitalPanels2Aand28ThispowerlosswillimpacttheRIRS,SBCS,and.pTGCS.Secifically, feedwater andsteambypasscontrolwouldbelostandtheturbinerunbackmechanism wouldlosepower.Evaluation ofPlantResponse:

,Areactortripon'lowsteamgenerator levelwillresult.Automatic actuation ofauxiliary feedwater andopeningofthemainsteamsafetyvalveswillrel:ievesecondary systempressure.

Theatmphatmoshericdumpvalvesand'auxi18ary feedwater willbeusedtocontrolRCSheatremoval.Lossof125VOC.Bus2ABThispowerlosswillimpac~elltheRRS,thePPCSandtheTGCS.Specifically, controloftheRRSandPPCS,bothchannels, wouldbedisabled.

Theturbinetripsolenoids andgenerator underfrequen yclockoutrelayswouldbedisabled.

Theturbinetripsolenoids andgenerator underfrequency lockoutrelayswouldbewithoutpower{f{failedclosed)~ance/gis/'Fw/onlOs'rnulf0ace.(emn&e/4<4~4'8.3fyOSS4'tn8ocJzTnis5ccna~l~.nnulpsis<<&cd+~/~2.4E~ssum4'c/ogr/l~~J'*v~'/~4%AoF'MA~4.ne&.'p.4l~4~rrCJCC>>dg+4Hd.yg/'-cAwf~~io(dg/c~l(n>>w<gm~cwg.F'4>>4~I~~W

VUIEvaluation ofPlantResponse:

TheCEAswouldremaininthepositiontheywere-inbeforethepowerlossandcouldbecontrolled throughtheCEDHCSbytheoperator.

l(ithoutthePPCS,pressurecontrolwouldbemaintained bymanualcontrolofthechargingpumpsandletdownandaU.xiliary spray.Shouldareactortripresult,theturbinewouldnottripelectrically butwouldbetrippedautomatically onamechanical overspeed trip.Ifrequiredthemainsteamisolation valveswouldcloseisolating theturbineandmaintaining RCSheatremovalfunctions.

9T4II/esso+~F&gkeQo~~"~~)'-~(~sp~4enp.3,Q.Q/pcs>,d5ggsca~r~8../Q/p.>5j~p/4Ac'Pks~4+~>+~c~l'~~+~'opspos~I"cS4r~o(~~Vg/o~~n4~isor~!~~y'pj'c5pgcgs8C5P'gyqkgc'J/I/cia'*np

/deolo)Ic)bCrCrV~e,L~as~>prggAC/Y,S/$~~~~NA/pe4,4,oAPrA~~~<Ca.

.84.ImactofFailureinComnonSensorsThecontrolsystemsidentified in(1)thatreceiveinputsignalsfromcommonsensorsareidentified below.Oescriptions of,theeffectofthemalfunctions onthecontrolsystemsandanevaluation ofplantresponseandbackupsystemavailability arealsoprovided.

Prudentengineering judgmentbasedonknowledge ofsystemdesignandtransient analysiswasusedtodevelop'thesedescriptions.

Theresultsofthisevaluation providejustification thatanysimultaneous malfunctions ofcontrolsystemsidentified herein;resulting fromcommonsensormalfunctions areboundedbytheanalysesofChapter15andwouldnotrequireactionorresponsebeyondthecapability ofoperators orsafetysystems.ftalfunction ofPressurizer PressureSinalfailslowtotheRRSandPPCSIf.malfunction causesalowpressurizer pressursignaltobe,trans-@])mitted,thepressurizer heaterswouldturnon~hepressurizer sprayswouldshutoff+an4-0 h~11,apgi~W~+~Evaluation ofPlangresponse:

dSyydunkr'h~rdh.;~AT>4all~iThereactoruouid]tnP onhighpressurizer pressure/

tt1tdd-dttt1manuallyandcontrolpressurewiththechargingandletdownsystems.andauxiliary sprays.Shouldthereactornottrip,becausetheappropriate tripsetpoints werenotreachedbytheaffectedparameters

~(pressure andpower),anewsteadystatewouldbereached.Operator,actioncouldmaintainpoweroperation untilthesensorcouldberepairedq~LpAg'Csonario~~c~Ipp4agafpsrsgg~$prgre,gdl,pGLjhu'4c~rpDcw7P~S/rdr'd 4r.rPrgz/ae~pryrrrrtISdtrli5~Drrss~r.A'>fgzbe~c~awrJr,~dsl~D@Sr'gee4'rSk5rrhr4+rart

,t'q~Qtl~0Malfunction ofPressurizer PressureSinalfailshihtotheRRSandPPCSIfthemalfunction causesahighpressurizer signaltobetransmitted, thepressurizer sprayswouldcomeonandthepressurizer heaterswouldbede-energized.

TheRRSwouldadjusttherodsinresponsetothehighpressuresignaltherebydecreasing reactorpower..fEvaluation ofPlantResponse:

+~@,~<4"g+

6'1stThereactorwouldtriponAloupressurizer

pressure, andaSIASmayresult.Theoperatorcouldclosethesprayvalvesandusethechargingandletdownsystemsandauxiliary spraytocontrolpressure.

Shouldthereactornottripduetoaffectedparameters notreachingthetripsetpoints, anewsteadystatewouldbereached.Operatoractioncouldmaintainpoweroperation untilthesensorcouldberepaved.Malfunction ofPressurizer LevelSinalfailslowtothePLCSandPPCSIfmalfunction causesalowpressurizer levelsignaltobetransmitted, thechargingflowwouldincreaseandletdownflowwoulddecrease.

Thepressurizer heaterswouldbede-energized ifalowenoughsignalwastransmitted.'valuation ofPlantResponse:

Increasing prasurizrlevelwouldbeidentified bytheoperatoronCf.~C@ffleveliud~cetic Cn)alarminthecontrolroom.Iianuaicontrolofthechargingandletdownsystemscouldpreventtheoverfilling ofthepressurizer a}}dprecludeareactortriponhighpressurizer pressure.

y~'gz~~>+>~boun)edQqP~eP'em/4lorylhyeve~legyp/r'ri2giMalfunction ofPressurizer LevelSinalfailshihtothePLCSandPPCSI'fmalfunction causesahighpressurizer levelsignaltobetransmitted, thechargingflowwoulddecreaseandletdownincrease.

N'~lf"p~r/g(f4gg+r+/p0A/ocJ/~4ri3<r'rt'sSore~cJo~(gpneYi.n7y4('~ih~,A~~8A~z-.yA~~g~~/Wc,~o~~noWr~(pJygs>+QRl'ps'gy

('gAp(/j4t)Chic/+/Cw'I/.4/4/Is4>1anyplIn<ergzysgk~7(<ig~cn~/pxrJ'FWb/oej4.pc6~'lIcil41<>/+C'nSechCnrE.4.g.(goanJJ4a~o~rSc'/imari~--Evaluation ofPlantResponse:

Adecreasing pressurizer levelmayleadtoapossiblereactortripIIonlowpressureandSIASiftheoperator.doesnotintervene.

TheSIASwouldisolateletdownandchargingwouldbeavailable torestorepressurizer level.Operatorcouldavert'areactortripandSIASthrough.manualcontrolofchargingandletdownbasedonlevelindication

'ncontrolroom.Malfunction ofFirstStaeTurbinePressureSinalfailslowtotheRRSIfthemalfunction causesalowpressuresignaltobetransmitted theRRSwillinsert theCEAstoproduceaTavecommensurate withthelowpressuresignal.ThisTaveoutputsignalistransmitted totheSBCSaffecting itsoperation.

Evaluation"of PlantResponse:

ThereducedheatoutputfromtheRCS~duetotheinserting oftheregulating CEAsreducesthesteamflowtotheturbine..

TheSBCSreceivesalowTavesignalfromtheRRSsothevalveswillnotopen.Areactor.tripwouldoccuronlowsteamgenerator pressurewithapossibleMSIS.Themainsteamsafetyvalvesandatmospheric dumpvalvesareavailable forcontrolling RCSheatremoval.Malfunction ofFirstStaeTurbinePressureSinalfa'ilshihtotheRRSIfthealfunctian causesahighpressuresignaltobetransmitted~the RRSPmwithdrawregulating CEAstoproduceaTavecommensurate withthehighpressuresignal.4865'I'~QO(CcWOEPF7~$Olg4~7/gJ4~~0/Sg,i',g40(egg4/>~<++>c2dog0A~spy~ge(orcorpr$/J4r4cicnCrC~Sry QyI-e<<p)ASSCC4&~r~CcPrgq~/',~~<~~<C-r4'$A./6/n0$54gcfp/rssy~gyQgh(ssJd~Ae7CI'ediYPKcSgc'S~4j4,/no.~/~jp~~~gQre/~Fipcj+ill~Tubed(44pl'+Jpggw)sp$og/(Ega%/yyJfgg~r

yg~~>~,>>~</uJ~y'A~t~~~i/'~cd~w p/sI5(+st//JtrsPe~/eJS')gayAi'SeVe~dW<~/+nodDC(<~AStareS~C4an64~+a/A6,C+k~H('/I jV2CZ,~A/Cvl//damdan@'C/Cy

)4Qppsan5'H.Wci'e4C<r'tEvaluation ofPlantResponse:

Theicreased~eatoputfomtheRCSdutowithdrawgtheegultingCEAsincreastheteamowto~hetuine.heSSreceveshiTavesignalomtRRS.Amistchbween,,aveapresureitheeamheerasmeasurdbyeSBCopen/thetrbinypas/valve.Theeningoftheevalvssenantomat'cwi~drawproibittohecorol.elmentrivechaniconolsstestopp'ngCwithdral.eopeatornmanllyowernerosorswittotheotherRRSchanneltresuastablendition.Malfunction ofMainSteamFlowSinalfailslowtotheFMRSandSBCSIfthemalfunction causesalowsteamflowsignaltobetransmitted, themFHRSwillreducefeedwater flowandtheSBCS'meropentheturbinebypassvalves.Evaluation ofPlantResponse:

Themismatchbetweenfeedwater flowandturbinedemandwouldproduceareactortriponlowsteamgenerator level.Theauxiliary feedwater systemandmanualcontroloftheSBCSoratmospheric dumpvalvesisavailable toachieveastabilized plantcondition.

T4Zsa/~Ab~d~/taipeiyhi.5'4047IA~8CjrOn/S.4a'.8~dtaadS4isS'<tmggs/dna<aSyHO'Sst/seamerSr((recc'nasl/s

~yoldeQngl'on&/ir<'prQ/casa.+/rapDm4)4/srecur<,pwas/assg~Malfunction ofMainSteamFlowSinalfailshihtotheFIIRSandSBCSIfthemalfunction causesahighsteamflowsignaltobetransmitted, w'(Il.mt theRNSwillincreasefeedwater flowandtheSBCSmay<opentheturbinesvpa-,s~e~~a-w~p~.Evaluation ofPlantResponse:

Thesteamgenerator level.wi'11increaseandthee-may-be-a steamtrill)Ml~ct.~.

g""pd~l~"N~p71operatorcouldmanuallycontroltheFURSandSBCSbasedonsteamgenerator levelandpressureindications inthecontrolroom.Shouldtheoperatornottakeactionahighsteamgenerator levelsignalwouldclosethefeedwater regulating valvesandtriptheturbine.Areactortrip

onturbinetripwouldfollowwithactuation ofauxiliary feedwater onsteamgenerator lowlevelsignal.Auxiliary feedwater andmanualoperatton oftheSBCSoratmospheric dumpvalvesprovideamechanism for;RCSheai;removaltostabilize theplant.rncrcchQpgnFC+plccJ44'*t P4~cue<~is-.1~tgg~~'5~~~~,~.fh<<~/ySIsinI>~f.3.IQSSWACS~maxi'a~~>ncrC~epqQ+Mcr'locoace6giRlgreIn4I-QrE'sAirmaxi'aiea,s.>40"84spn(Le7I'gnowe/ASpu<A'7W+wnyiCcg>A,~/klc046k,/*Ill'-gPDIcAJgUPgo~n~~c4c'p,'~g+g~d,ice6-~psaysg~.erich~lg<</a~AnDgrpJzgpsAa~SLqrrylecsc2/winshe~s~>~$ua/~a~o~pZg

Coo+onLines/Sensors 13172-310-110 Rev.103/4-RC-127 Ins.P,T,L,FPDT-1121CPDT-1124'ZPDT-1124YPProcess/Sachet SSIndication On1yIndication On1y1-RC-104PT-1104PT-1102(C)SS1-RC>>?05PT-1103PT-1108PT-1102(A)PT-1100(X)LT-1105LT-1110XSIndication OnlySPIndication OnlyPKS1-RC-130'T-1110V'T-1100YPT-1102(B)PT-1107PT-1105SIndication On)yS1-RC-107PT-1106PT-1102(0)S2998-6-074 Sh'.1SG2811-1"-l51-108 LT-9023ALT-9021SPindicates

Co@nonTaEns.PT.LFPPl"ocess/Sachet'

,2998-6-079 Sh.1SG2AII-1"t51-100LT-9013A.LT-9011'E-I"lSI-101I-I"MSI-102PT-8013ALT-9013ALT-9011PT-8013BLT-9013BSSS.I-1"f4SI-103LT-9013BE-1"l61-104'T-8013CPT-8113D-9013CSSindication SE-I"NSI-104LT-9013LSI-I"t61-106PT-8013DLT-9005LT-9013DLT-9113LT-9012SPSSindicatePI-1"HSI-116LT-9012LY-9013I-1"f51-107LT-9005LT-9013DPS

Ins.PTLFPProcess/Safet SLT-9021LT-9023APT-8023APindicates, SSPT-8023BLT-9023BS'.SLT-9023BSPT-8023LPT>>8123LT-9023CSSindication SLT-9023CPT-80230LT-9006LT9023LT-9022.LT-9123SPindicates

$tPPindicates LT-9123LT-9022,Pindicates Pindicates.

LT-9023LT-9006SPindicates

ImactofFailureofConmonInstrument LineorTaTheattachedTableidentifies theComonLine/Tapforprotection channelandcontrolchannels(ormultiplecontrolchannels) thatareservingmultiple--channels.

Thistablehasbeenreviewedandthoselinesortapswhichweredetermined tobelimitingintheireffectonplantresponse're identified below.Theeffectoflosingprotection channelsduetoasinglefailureonacommninstrument lineortap,asidentified intheresponsetoquestion420.06doesnotdefeatrequiredprotection systemredundancy.

Therefore theeffectoflosingpnotection channelsisnotaddressed here.Descriptions oftheeffectofthemalfunctions onthecontrolsystemsandanevaluation ofplantresponseandbackupsystemalailabi'lity arealsoprovided.

Prudentengineering judgement

..basedonknowledge ofsystemdesigndand transient analysiswasusedtodevelopthesedescriptions.

Theresultsofthisevaluation providejustification thatanysimultaneous malfunctions of-controlsystemsidentified herein,resulting

~~~~~~fromcordoninstrument lineortapmalfunctions areboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapability ofoperators orsafetysystems.Pressurizer PressureSinalPT-1100XandPressurizer LevelSinalLT-1110'TI-RC.III SystemsaffectedareI'P8;PPCS,PLCS,andSBCSEvaluation ofPressureSinalandLevelSinalFailinLowduetoInstrument 74OamaeonP'lantResonse:d'fmalfunction causesalowpressureandlevelsignaltobetransmitted,

.thepressurizer heaterswouldturnon~,hepressurizer sprayswoulddecreaseflow.T4e-R~e~~4yM~

4he~~emes~eg~e 1T.N~pl~&"-RBcc5&~tff~~H~~i

~~n~pew~IA~dddp.TRPCC~IddIddincreasecharging.

Duetotheincreaseincharging>

andpressurizer heatingthereactormaytriponhighpressurizer pressure,~

I'OIRIIRP~

~kipddTRpI;IICyId

mntationfromwhichtoevaluateeventprogress; Manualcontrolofcharging, atttaspheric dumpvalvesandauxiliary sprays,withouttheuseofPLCS,PPCS,andSBCSwillbringtheplanttoastablecondition.

I4.P+~>>tf)geafi'e/e IASl943sueg6g/5gc/fridnS//rer//flr~6'nrl>'r e//W<<ncr'erEvaluation ofPressureSinalandLevelSinalFailinHihduetoInstrument TaDamaeonPlantResonse.::Ifmalfunction causedahighpressureandlevelsignaltobetransmitted, thepressurizer heaters,wouldde-energize, thesprayswouldincreaseflow.TheRRSwouldadjustrodsinresponsetothehighpressuresignaltherebydecreas-ingreactorpower.TheSBCSwouldreceivealowerTaveinputduetothedecreaseinreactorpowerandnotopentheTBVs.ThePLCSwouldircreaselet-'ownanddecreasecharging.

Alowpressurizer pressuresituation wouldoccurleadingtoapossiblereactortripandSIASonlowpressureoranewsteadystateatlowerpowerandpressure.

Theoperatorhassafetygradeinstrumentations fromwhichtoevaluateeventprogress.

Isolation ofletdownonSIASorbytheoperatorandmanualcontrolofchargingwithpressurizer sprayi<~>solation willbringtheplanttoastablecondition withoutusingthePLCS,PPCS,andSBCS.Evaluation ofPressure" Sinal'.FailinHihandLevelSinalFailinLowduetoInstrument TaDamaeanPlantResonse:TheplantresponseissimilarforthePPCS,RRS,andSBCSasdiscussed aboveforthepressuresignalfailinghigh.ThePLCS,howeverwouldincreasecharging('fanddecreaseletdown.,

Theincreaseinchargingandpressurizer sprayflowwithnopressurizer heatersmayleadtoalawpressurecondition orasteadily!increasing pressurizer level.Theoperatorhas,safetygradeinstrumentation Ifromwhichtoevaluateeventprogress.

thnualcontrolofchargingandturningoff.pressurizer sprayswillbringtheplanttoastablecondition.

'7$c,~nMski<4oe"Qe-j/cssfere'eig~a/f eqmcfg~vcl gpfm/@/li/pfPi~L wj/Q/lP/P/9gd@h+P/0+

/'/'*+/pyq~~pr+ssurv~ow/cg/pcgvgg7wary~Gcu/er/enc/eg nper@re/cr~~n//V(c'p-/~geerre/nA'nn

)Aters49ovt:rpr/ssur/2'~grcv//;

Sic%fggrg~ggpjgc/pc~grpI'@I84r88 offri7PQ,pl.Q4~OJ/4e,+bpenrwpoFa/+nen.rc/frrrc/eee>>ki/eence/nnen'(Sec//cn/e$.Z/)Q/~V,/go~qgp,WF4gji0IS0wCw/pg<SGenkggC+2 8pprHisJCCharoa+A'edrA~<~ooQ~+'P~o~onom~e~~Croendlong4ooG.y~~'II"a/m>eDHgoo14I"P0/enoFo(G.Qowwo8/r'estv4/~d'GAt'6f'l(o'SSCdO'O1AOID.Idaoo]0/'CS/4o'C AMjPSonCCWr(Is'd~/76AAsp44+++lISd'<>n7J~n4/neo.n7oo'nsooc~bn/s'.c',QoSDNz+s-IIII'P~ÃIFIFIIdl1di~IFili 818duetoInstrument TaDama~eonPlantResonse:Asdiscussed intheevaluation forbothsignalsfailinglowthePPCS~~~and SBCSresponseissimilar.ThePLCS,howeverwouldincreaseletdownanddecreasechargihg.

,-~.~.r,888'FFIIA~~~~Iw~muve.Theoperatorcanmanuallycontrol'charging toincreasepres-surizerrlevelandisolateletdownflow.The,plantcanbebroughttoastablecondition throughoperatoractionandmanualcontrolofthePPCS,PLCS,~andS8CS.IPressurizer PressureSinalPT-1100YandPressurizerLevelSinalLT-1110Y~TaI-RC-130.

PThesystemsaffectedandtheevaluation ofplantresponsearethesameasthosedescribed aboveforpressurizer pressuresignal(PT-llOOX) andpres-surizerlevelsigna'i(LT-1110X)--

SteamGenerator LevelSinal.LT-9021andLT-9011TaI-1"NSI-108.SystemaffectedistheRlRSEvaluation ofLevelSinalsFailinLowduetoInstrument TaDamaeon~PlIIIfthemalfunction causesalowsteamgenerator levelsignaltobesentfrombothtransmitters thentheflo'wcontrolvalvewouldopentaincreaselevelforbothsteamgenerators.

Asfeedwater flowincreased theB(RSwouldnoteamismatchbetweenmain,steamandfeedwater flow.Thiswouldclosetheflowcontrolvalvetomatchfeedwater andsteamflow.Anoscillation oftheflowcontrolvalvewithinc&easing steamgenerator levelresultsleadingtoahighsteamgenerator levelsignalbeingsentfromthereactorprotection systemtoclosethecontrolvalvesandtriptheturbine.Shouldthecontrolvalvesnotcloseandturbinenottriptheoperatorcouldtakemanualactiontoclosethevalvesorstopthefeedwater pumps.Finallyahigh-high steamgenerator levelsignalwouldclosethefe'edwater pumpdischarge valvesshouldtheaboveactionsnotoccr.~~luwyc4 fMMa-f/>c'y~Ur+/4&+Iw)fr/rf<)k>II'/ISgnac-pn~oodnnn rIIonIdopi'lvknr

/jIo'.IooFMIn f/oooa'uo/anfox/ul~nIpcdo.oQgEvaluation ofLevelSinalsFailinHihduetoInstrument TaDamaeon~PIfthemalfunction causedahighsteamgenerator levelsignaltobesentfrombothtransmitters thentheflowcontrolvalvewouldclosetodecreaselevelforbothsteamgenerators.

Asfeedwater flowdecreased theFHRSwouldnotea5@<.,

et, mismatchbetween'main steamandfeedwater flow.Thiswouldopentheflow1controlvalvetomatchfeedwater andsteamflow.Anoscillation oftheflow'controlvalvewithdecreasing steamgenerator levelresults,leadingto'areactortriponlowsteamgenerator level.Auxiliary feedwater wouldbeautomatically 1actuated.toaccountfortheinsuH'icient eedwaerflow.i~~~'>~"0"4-/age/lP'gjhff.cf~8r-zEs.g.(PauzAPAis,deicero694$54fP<~+~~>+~+</~~<~'4'~s

>'vantihnotOneLevelGial.iaslinIi5andneLevelSinalFailinLowduetoInstrument TaDamaeonPlantResonse:,Onesteamgenerator wo'uldexperience adecreasing levelduetoclosingofthecontrolvalveonreceiptofthefailedhighlevelsignal.Theothersteamgenerator wouldexperience anincreasing levelduetoopeningofthecontrolvalveonreceiptofthefailedlowlevelsignal.Theresultwouldbeeitherareactortriponlowsteamgenerator leveloraclosureofthecontrol.valveonhighpsteamgenerator levelwithaturbinetrip.Additionally, theoperatorcantakeappropriate action(manualreactbrtripwithauxiliary feedwater actuation) basedonsafetygradesteamgenerator levelinstrumentation.

Qi'yjdfgsiSS m~b'av~~eepapja'dj ug)y~a~~)sSteamGenerator LevelSinals'LT-9005andLT-9012Tal-l"-NSI-106 SystemaffectedistheFWRSEvaluation ofLevelSinalsFailinLowduetoInstrument TaDamaeonPlant~Resonse:Hiderangesteamgenerator levelwillindicatealowlevelcondition ononesteamgenerator.

Theoperatorwillstillhavesafetygradesteamgenerator

.levelindications torelyon(onesafetychannelofthefoursafetycharm'els willalsobelost.foithatsteamgenerator).

Additionally, onthesamesteamgeneratoYtfijgfnst'cementation andcontrolof.thefeedwater bypassvalvesendsasignaltoopenthevalveandactuatesalowlevelalarminthecontroltroom.Howeversince,aturbinetrip,signalisnotpresentitwillnotopenthevalve.,Forconservati,sm itisassumedtoopenincreasing flowtothesteamgenerator.

TheintactportionoftheFWRSonthatsteamgenerator willseetheincreased levelandclosetheregulating valveenoughtomain'tain level.Shouldthisregulating valvecontrolworkimproperly~a highsteamgenerator'evel willcauseclosureofthefeedwater regulating valvesandturbinetrip.Theoperatorcanuse.theauxiliary feedwater systemtomaintainadequateinventory intheaffectedsteamgenerator andmaychoosetomanuallytriptheplantbasedonsafetygradeinstrumentation readingsconflicting withprocessinstrumentation andcontrolactions.-]$d.dld4sfiqvjy j5jmoupsdscE pci+i1d+nmlma5~+F~~v>~f/~~dmvmffff-P~55c+i'mn.

l~~/uIfubj"E~mi55uw&'Pi~@"~<1,~+~~Ž~~ii~fpmr+ilull~Q~F~g~~

Evaluation ofevelSinalsPailinHihduetoInstrumentation Ta~DaaaeonPlantResonse:Hiderangesteamgenerator levelIilli'ndicate ahighlevelcondition ononesteamgenerator.

Theoperatorwi11stillhavesafetygradesteamgenerator levelindications torelyon(onesafetychannelofthefoursafetychannelsivillalsobelostforthatsteamgenerator).

Thecontrolandinstrumentation forthebypassvalve>villseethehighlevelsignalandactuateahighlevelyla'larminthecontrolroom.Theoperatorbasedonsafetygradeinstrumentation willseenormallevelbecausetheFHRSvalvesarenotactingimproperly.

However,duetoerronouslevelsignalshemaytakemanualcontroloftheRJRSandeventually tripthereaCtorusingauxiliary feedwater tocontrolsteamgenerator inventdry.

Evaluation ofOneLevelSinalFailinHihandOneLevelSinalFailinLou<OnetoInstrusent TaOamaeonPlantResense:~~~~~~~~~~~~~Hiderangesteamgenerator levelindication doesnotcontrolasystemandtheoperatorwillcompareittosafetyrelatedinstrumentation toascertain thetruereading.Failureoftheinstrumentation andcontrolofthefeedwater bypassvalveis~~+br+discussed previously.

SteamGenerator LevelSinalsLT-9006andLT-9022Tal-l"MSI-114Thesystemsaffectedandevaluation ofplantresponsearethesameasforsteamgenerator levelsignalsLT-9005andLT-9012forinstrument tap1-1"tlSI-106.

Condenser StoraeTankLevelSinal.sLT-12-llA andLT.-12-11B Theothercontrolchanneltransmitters shavingacommontapnotidentified inthetableare'theCondensate StorageTankleveltransmitter LT-12-11A and118.Individual rootvalvesandexcessflowcheckvalvesareaddedtoensurethatinstrument lineruptureinonechanneldoesnotaffecttheotherchannel.Theonly,failure.affecting bothchannelsisthebreakofthetap.Fordiversity, bnsafetyrelatedlevelswitchesprovidelowlevelalarmsonthesafetyannunciators.

SincethefunctionofLT-12-11A and118isonlyindication andalarmandsincealarmbackupisprovidedatapfailure.wouldnotcausesystem.actions,requiredtobeanalyzedbyChapter15oftheFSAR.t

0803M-4420.14(7.2)Thereactorprotection system(RPS)includestwotripinputs(turbinetripandlossofcomponent coolingwatertrip)whichareclassified asnotbeingrequiredforreactorprotection.

Itisthestaff'sposition(BTPXCSB26)thatallreactortripinputstotheRPSarerequiredtomeetthedesignrequirements ofIEEE279withoutexceptions Thisincludestheentiretripfunctionfromthesensortothefinalactuateddevices'SAR Chapter15showsthattheaccidentanalysistakscreditforreactortriponturbinetrip.FSARSubsection 7.2.2.2.11 statesthattheturbinetripistakenfromnon-Class XEhydraulic oilpressureswitches.

Theuseofnon-Class IEswitchesisnotacceptable.

Also,itisnotclearthatthecomponent coolingwatertripmeetstherequirements ofXEEE-279.

Therefore, provideadescription oftheseandothersuchRPSinputswithrespecttotheirconformance toBTPICSB26.Thisdesigndescription shouldbesupported withelectrical schematics, logicdiagrams, pipingandinstrument

drawings, testprocedures andtechnical specifications.

sponoeTheChapter15accidentanalysisdoesnottakecreditforreactortriponturbinetriptomitigatetheresultsofanyevent.Thisissostatedinnote7toTable15.0-7.Thesequenceofeventsanalysespresented inChapter15recognize thatsuchatripexistsandmayoccur.FortheIncreased Feedwater Flow(withfailuretoachieveafasttransferata4.16kVbus)eventpresented inSubsection 15.1..2',itwasmoreadversetotripthereactoronturbinetrip.Thiswasdonetoincreasethecooldownforthisincreased heatremovalevent.Thiseventisdiscussed intheresponsetoQuestion420.11,~/,IMhouggthapvoa:reps at/notraq~sMa~wgr~azeqyg gq>cQpis~Cia,XEaccoacwipt~&ERg2V9.

~+&oint.on,e:vic6~Ad,$c4-t~irine~tr.~ptits-to~Efie-RPS

-accordance-wi

~gu3.atpCy'6Qp~li:U gf.:9420.14-1

a-LossofCCWTripFour(4)flowtransmitters FT-14-15A,B,C aDarelocatedontheCCNcommonreturnheadertomonitorCCWflowfromtheRCP's.Thesefour(4)transmitters arepoweredfromredundant ClasslEpowersupplies(MA,MB,MC6MD)andarephysically andelectrically separated inaccordance withtheRG1.75.CCWflowoutoftheRCP'sarecontinuously monitored anddisplayed onRTGBoard206inthecontrolroom.Upondetection oflossofCCWfromtheRCP'sanalarminthecontrolroomwillalerttheoperatoraboutthelowflowcondition sothatapropercorrective actioncanbetakenimmediately.

Xfflowisnotreestablished in10minutestheRPSisactuatedtotripthereactor.ThetestswitchesarealsoprovidedontheRTGBoard206toenabletestingtheindicator-bistable.

PleaserefertotheCWDsheet206(2998-B-327) forthecompletecircuit.hecomponent coolingwatertripmeetstherequirements ofIEEE-279-71asdescribed intheFSARChapter7.2.

Isolation devices(rated2000V)areprovidedfortheturbinetripinputstotheRPSinaccordance withRG1.75andareroutedasdescribed belowsuchthattherearenocredibleeventsthatcancompromise thefunctionoftheRPS.GeneralTheturbinetripinputcablesareterminated atTB'A'ocated atthenorthendoftheTurbineGenerator BuildingpedestalandareroutedtoEL43.00oftheReactorAuxiliary Building(directly undertheReactorProtection SystemCabinet).

Eachofthefourcablesareroutedinitsowndedicated conduittheentirelengthandisuniquelyidentified NMA,NMB,NMC,NMD.Noothercableispermitted toberoutedwiththesecables.1Thecablesconcerned a~identified asfollows:ChannelNMA20710U(NMA)ChannelNMB20710V(NMB)ChannelNMC20710W(NMC)ChannelNMD'0710X(NMD)~SecificCableRoutinTB'A'slocatedatthenorthendoftheTurbinepedestalatEL.62.00.

Eachcableisroutedinitsownembeddedconduitinthepedestalanddownthepedestalleg.Theconduitsexitthepedestallegandrunembeddedtoanelectrical manholesasfollows:-MH256-ForCables20710U(NMA)and20710W(NMC)-MH257-ForCables20710V(NMB)and20710X(NMD)Insidemanhole256,cables20710Uand20710Wareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttotheeastwalls.Highvoltagecables,6.9kVand4.16kVareroutedinthismanhole,howevertheflexiblecondui.ts areroutedinsuchamannersoastomaintainaminimumseparation of18inchesfromallhighvoltagecables.Thisseparation isreducedto12inchesatthewestfaceforadistanceof6inches,astheflexibleconduitconvertstoanembeddedconduit.Insidemanhole257,cables20710Vand20710Kareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttothenorthwalls.Againaswasthecasefrommanhole256,high'oltage cablesofthe4.16kVand6.9kVclassareroutedwithinthemanhole.However,theflexibleconduitsareroutedinsuchamannersoastomaintainaminimumseparation of24inchesfromallhighvoltagecables.

Eachmanholealthoughnonsafetyrelatedandtherefore categorized asnonseismiccategoryI,isdesignedsimilarto,ie.rebaretcaseismicmanholesuchthatduringaseismicevent,MH256orMH257willbehavesimilartoaseismically designedmanholeandwillnotfail.Itmustbenotedthatthe4.16kVand6.9kVcablesaredesignedwithmetallicleadsheathsandallcableisclassIEqualified, meetingtherequirements ofIEEE383.ThecablesexitthemanholesintheirownembeddedconduitsandareroutedintotheReactorAuxiliary Buildingbasementwheretheyenterpullboxes.

,Fromeachpullbox,thecablesareroutedintheirownseparateandindepen-dentconduitsupthewestReactorAuxiliary Buildingwalltotheisolation boxesmountedunderEL62.00gustbelowtheRPScabinet.Fromtheisolation boxes,theclassIEcables20710H-(MA) 20710JMB)20710K(MC)and20710C(MD)areroutedintheirownconduitsandentertheirrespective sectionsoftheRPSCabinet.Onthebasisofthespecialtreatment ofthesecables,beyondtherequirements ofRG1.75,asdescribed above,wecanseenocredibleeventwherecablesofhighvoltage(6.9kVand4.16kV)cancomeincontactwiththeturbinetrip'cablestotheRPS.TurbinetripinputstotheRPSareproperlyisolatedthroughseparate-mountedisolation relaybox.Therelay-box isaNEMA4typecon-struction, withadequatemountingandphysicalseparation designthatmeetIEEE-344-1975 andRG1.75requirement.

pry,cfd'heisolation relayisAgastatEGPtypewhichhabeenqualified toXEEE-323-l974..

Asdescribed intheattachedsystemcontrolreport,@he'Mw9.eel='a~x~~4bz~'he EGPtyperelay~atleast2000volt,RMSisolation fromthecoilsidetothecontactside.

0 OnOctober30,1980,SystemsControlconducted.43al:eel.r~

testsontwoAgastatEGPrelayswhichareIEEE-323prequalified typerelays,Thefirstrelay,described hereafter as"TestVehicleNl,"wasatypeEPG1001,serialnumber80411508, andwitha120VAC,60HZcoil.Thesecondrelay,described hereafter as"TestVehicle12<"wasatypeEPGD001,serialnumber80411510, andwitha125VDCcoil.Thetestwasdividedintotwoparts."Inpartone>>bothrelaysweresubjected toupwardsof5,000VDCandtheleakagecurrentmeasured.

AHipotronics series300HipotandMegohmeter, lastcalibrated onMarch18,1980,wasusedtosupplythevoltageandmeasuretheleakagecurrent.EachtestvehiclewasattachedtoatypeCR0095socketandproperlyseatedinplacewithtypeCR0155lockingstraps.(SeetheattacheddatasheetonAgastatsocketsandstraps).Therelaysandsocketswerethenmountedona2x6woodboard.Thetestwaseffectedbyattachi.ng thehotleadfromtheHipotandMegohmeter toonesideoftherelaycoilwhilethegroundleadwasconnected tooneotthecontactconnections.

Thevoltagewasthenincreased fromzerotoeither5,000voltsoruntiltheHipotandMegohmeter automatically.

shutitselfdownwhentheleakagecurrentexceeded5.5milliamperes.

Thevoltagewasthenreducedtozeroandthegroundleadattachedtoanothercontactconnection andthetestrepeated.

Nhenallthecontactconnections hadthuslybeentested,theHipotandMegohmeter hotleadwasconnected totheothersideofthecoilandthewholeseriesoftestsrepeated.

Duringautomatic

shutdown, thehighestattainable voltagewasrecorded.

Attachedpleasefindthedataresultsfromtheabovedescribed tests.P~Inviewoftheabove,wemustconcludetheAgastatGPtyperelaywillqualifytothespecified 2,000voltsRMSisolation.

Inaddition, themanufacturer guarantees a2,000voltRMSisolation fortheAgastatrelay.

TestVehicleP2EGPDOOIRelayS/N80411510125VDCCoilConnections BetweenTerminals VoltageAC(RMS)DCCurrentACDC84to82~84toT284toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBl5,0005,0004,2004)3004,0003,9004,2005,0005)0004,2003,9003)6003,6004,400not+~tested5,0005,0005)0005,0005,0005,0005)0005)0005,0005,0005)0005,0005,0005,000not"~tested100ua1000aeoua100ua.IOua.IOua.095ua.095ua.120ua.115ua.IIOua.090ua.IiOua.115ua.105va.120ua.120ua..115uaBltoTlBltoMlBltoRlBltoR3BItoM3BltoT3Blto83BltoT4BltoM4BItoR4BltoR2BltoM2BltoT2Blto82Bito844,4003)5003,5003,9003,9005,0005,0004,2004,0004,2004,5004,3005,000,5)000not""tested5,0005,0005,0005,0005,0005,0005,0005)0005,0005,0005,000',0005,0005)000not~~testod120ua100ua120ua110ua.I30ua.125ua.120ua.IIOua.105ua.100ua.095ua.105ua.120ua.125ua.095ua~095ua.IOOua.IIOua~'ndicates currentexceeded5.5milllamporos 84toSlrefgre~+

0

~~TestVehicle/llFGPIOOIRelayS/N804ll508l20VAC/60H;.ColiConnections BetweenTerminals Voltage.AC(RMS)DCCurrentAcDCC84to8284toT484toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBlBltoTlBltoMlBItoRlBltoR3BltoM3BltoT3Blto83BltoT4BltoM4BltoR4BltoR2BltoM2BltoT2Blto82Blto845,0005,0004,3004,3004,2004,3004,3005,0005,0004,0003,9003,8003,8004,500noW>tested4,4003,8003>8004,IOO4,0005,0005,0004,5003>9004,0004,2004,0005,0005,000not+4,testedhh5,0005,0005>0005,0005>0005,0005>0005,0005>0005,0005>0005,0005,0005,000not"~tested5,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,000notW<tested120ual20ual20ual20uaI20ual20ua/$20ual20ua.055ua.065ua.065ua.060ua.070ua.075ua.065ua.050ua.060ua.050ua.050ua.065ua.065ua.070ua.060ua.065ua.060ua.050ua.055ua.060ua.045ua.055ua.075ua.070ua.060ua.060ua.065ua.055ua~+IIndicated currentexceeded5.5millfamperes p<4.8IreL~ycoQh1~~

uestionNo.0.54FSARSubsection 7.6.3describes additional systemsre-quiredforsafety.Overall,theFSARinformation suppliedtodatedoesnotsufficiently describetheinstrumentation andcontrolsassociated withmostofthesesystems.There-fore,pleaseprovidethefollowing information:

a.Identifyanddescribetheinstrumentation and'controls associated witheachsystemlistedbelow:Fuelpoolcoolingandpurification

.systemProcessandeffluentradiological monitoring andsamplingsystemContainment vacuumreliefsystemShieldbuildingventilation systemb.Foreachinstrument andcontrolidentified in(a)~above,designate whethertheequipment isClass,1Eornon-Class 1E.c.Foreachsystemlistedin(a)above,discussthequalification criteriaappliedtoitsassociated instrumentation andcontrols.

Asaminimum,youarerequested toincludeforeachsystem,adis-cussionofhowtheinstrumentation andcontrolsforthatsystemconformstotherequirements ofIEEE279-1971, IEEE308-1974, IEEE323-1974, andIEEE344-1975.

~Reeonsa8)I)FUELPOOLCOOLINGANDPURIFICATION SYSTEMThefuelpoolinstrumentation

.systemisdescribed in"Section9.1.3.2.4.

Atabulation oftheinstrument

~~channelsxsincludedxnTable9.17.II)PROCESSANDEFFLUENTRADIOLOGICAL MONITORING ANDSAMPLINGSYSTEMTheradiation

'monitoring systemiscomposedofthreeprocess,seveneffluent, fortyonearea,andfourinplantairbornemonitors.

Tabulations ofthesemonitorsaregiveninTables11.5-1,12.3-2,and12.3-3.III)CONTAINMENT VACUUMRELIEFSYSTEMTheinstrumentation providedforthissystemisinaccordance withtherevisedFigure3.8-8andcontainsthefollowing equipment:

-PDT-25-1A (lB)withitselectronic PDIS-25-lA (lB)isinterlocked withpCV-25-7(8) byenergizing SE-25-10(ll) toopenFCV-25-7(8) whenthedifferential pressurebetweenthecontainment andannulusreaches-9'5",H20+0.25"H20PDIS-25-1A(lB) alsopro-

videsindication ontheHVCBforgPrangeof--25"H20to+25H20.-PDT-25-'13A(13B) withitselectronic PDS-25-13A{13B) isinterlocked withFCV-25-7(8) bydeenergizing SE-25-10(ll) tocloseFCV-25-7(8) whenthedif-.'-'ferential pressurereaches-7.75"H20.-PDIS-25-llA(11B) provideslocalfullrangeindication andahighalarmontheHVCBat11.5"H20.-PDT-25-15A(15B) withitsPDI-25-15A(15B) provides.fullrange{-25"H20to25"H20)indication ontheHVCB.IV)SHIELDBUILDINGVENTILATION SYSTEMTheShieldBuildingVentilation SystemisR,AE5FSystemandislistedinSection7.3oftheFSAR.TheSBVSswitchcve<

fromFuelHandlingBuildingistheonlyportionofthissystemlistedinSection7.6.Qg@5PQQisdescribed inSection6.2.3.2oftheFSAR.Theinstrumentation requirements areprovidedinSection6.2.3.5andTable6.2-51oftheFSAR.b)I-Tc(legf-7('g<Qi'p'Gs egggQ1'YliM~i~~~~'o

~'"'"~~&P~Soli'~aVgri'$h4e~5ys/~~~II-Teassuntmonitorsaretheplantstack,asdescribed insubsection 11.5.2.2.8, andtheECCSexhaustmonitors, asdescribed insubsection 11.5.2.2.10.

TheClasslEareamonitorsincludethefours]QSand6spentfuelpoolmonitors, aswellastwopost-accident monitors.

Allthesemonitorsaredescribed insubsection 12.3.4.1.4.

TheClasslEin-plantmonitorsincludethecontainment atmospheremonitors, asdescribed insubsection 12.3.4.2.3.1, thecontrolroomairintakemonitors, described insubsection 12.3.4.2.3.2, andtheECCSexhaust,monitors, asdescribed insubsection 12.3.4.2.3.3.

rIIIŽAllPDT's;PDIS's;PDS'sand.PDI'sdiscussed initema)aboveareClass1E.IV-Instrumentation andcontrolsdiscussed aboveforSBVSsystemareClasslE.Alarmsareahnoun<ta~on non-safety annunciation windowSthroughproperisolation devices.v>

c)XHEE323-19'/4 ANDIHEE344-1975I-jigQ~IE'/nSQ~J-Wmidc,~<'b~

~i<~l~"ibTubal<j'<Alo7ECt"9z3-'79a+9<<oH7>Xr-AllClass1Einonitors arecjualifi.ed toXEEE323-1974andIEEE344-1975.

XXX-Allpressuretransmitters listeQinitema)abovearequalified toIEEE34'4-,1975 andXEEE323-1974intheenvironment inwhichtheyoperate.Theremotemountedindicators andbistables aremountedontheseismically qualxfied HVCBinthecontrolroom.'lIV-Allcontrolsandinstrumentations forSBVSisqualified toIEEE32-1974apdXEEEp4g-l)7$T'4~~o~i+twdi~+0<S~IO[>S~4l+~ŽpgIEEE279-1971KeuheNe.EdigM<ca(Lf P.c[>Pi+~/nT<Q~/eThefourcontainment areasradiation monitorswhichinputintothe&$5MEAe55ISXEEE279-1971similarly withtheESPASasdescribed inScti.3.1.2oftheFSAR.C~There@i,amenfIEEE79-1971for'gAectffieds I/5fE'~N'Ey'egiue4Q mWefy'~e.

<<sfr~plefsfg apF7itabldke C~.uSdthisinstrumentation isnotpartofaprotection system.However,theintentofthedesigncriteriacontained thereinhasbeenappliedinthedesignofthesesystemstothefollowing extent:4.1-GeneralFunctional Requirements Thesafetyrelatedinstrumentation fortheabovesystemsisdesigneQtoprovidemonitoring andactuation asapplicable duringnormaloraccidentconditions.

Theinstrument performance characteristics, responsetimesandaccuracyareselectedforcompatibility fortheparticular function.

4.2-SingleFailureCriterion.

Thisisfunctionally identiCZ~to thatdescribed inSubsection 7.4.2.2.4.3-QualityControlofComponents andNodulesSeeChapter174.4Equipment Qualification Theinstrumentation andcontrolsforthesesystemsmeettheequipment qualification requirements.

discussed inSections3.10and3.11.SUL34')98)sIs/i 4.5-ChannelXntegrity The"ChannelIntegrity" isfunctionally identical tothatdiscribed inSubsection 7.3.2.1.2.

4.6-ChannelXndependence Thechannelindependence isfunctionally~'denti~

tothatdescribed inSubsection 7.3.2.1.2.

4.7.-"ControlandProtection SystemInteraction" Noportionofthesesystemsisusedforbothcontrolandprotection.

4.8-"Derivation ofSystemXnputs"Themonitoring signalsfortheabovesystemsareadirectmeasurement ofthedesiredvariables.

4.9-"Capability forSensorChecks"Themonitoring sensorsarecheckedbycomparing themonitored variables ofredundant channelsorbyob-servingtheeffectsofintroducing andvaryingasub-stituteinputtothesensorsimilartothemeasuredvariable.

4.10-"Capability forTestandCalibration" XEEE338-1971andRegulatory Guide1.22,"Periodic TestingofProtection SystemActuation Functions" 2/72(RO)providesguidanceforthedevelopment ofprocedures, equipment anddocumentation ofperiodictesting.Themeasurement signalsrequiredfortheabovesystemshavethecapability ofbeingtestedandcalibrated underthedesignrequirements ofthesystem.4-11-"ChannelBypassorRemovalfromOperation" Anyoneofthechannelsmaybetested,calibrated, orrepairedwithoutdetrimental effectsontheotherchannels.

4.12-,,"Operating Bypasses" Thereareno"Operating Bypasses" forthesesystems.4.13-"Indication ofBypasses" Adiscussion ofbypassandinoperable statusindication isprovidedinSubsection 7.5.1andalistingofin-operableorbypassedcomponents iscontained inTable73-104.14-"AccesstoIleansforBypassing" Thissectionisnotapplicable.

'i,vO<a<ms<

I 4.15-"Multiple Setpoints" Thissectionisnotapplicable.

4.16-"Completion ofProtective ActionOnceitisInitiated" Thissectionisnotapplicable.

4;.17-"ManualInitiation" Manualinitiation ofthecomponents inthesesystemsisavai.'lable, 4.18-"AccesstoSetpointAdjustments, Calibration, andTest,Points"Thissectionisnot,applicable.

4.19-"Xdentification ofProtective Actions"Thissectionisnotapplicable.

QJ(oo~lyQyLks~'QJlGn.Is~*p,(~~c~veaW(%vcrAY~~QnhlA6++~goo4.20-"Xnformation Readouts" Themonitoring andcontrolchannelfqr~esesystemsareindicated inthecontrolroom+'%~+it~'

~"&~4.21-"SystemRepair"Replacement orrepairofcomponents canbeaccomplished inreasonable timewhenthesystemsarenotactuated..

Outageofsystemcomponents forreplacement orrepairarelimitedbytheTechnical Specifications.

li4.22-"Identification" Safetyequipment anQcablesassociated withthesesystemsareuniquelyidentified.

XEEE308-1971TheStLucieUnit2FSARiscommitted toRegulatory Guide,1.32 Rev.0whichaddresses IEEE308-1971.

Forafurtherdiscussion ofXEEE308-1971refertoFSARSection8.3.1.2.AllclasslEelectrical components areelectrically andphysically separated inaccordance withRegulatory Guide1.75asdiscussed inFSARSection8.3.1.2.Electrically redundant, andphysically independent, powersuppliestotheabovesystems,electrical com-.~ponents,andtothesafetyrelatedpowerpanelsthatprovidepowertocontrolandinstrumentation devicesareprovided.

C'

IAllClasslEelectrical systemcomponents areuniquelyidentified inaccordance withFSARSection8.3.1.3.Thefuel*pool purification pumpisanon-safety pumpandassuchisphysically independent andelectrically separated fromClass1Ecomponents.

SL2-FSARh)PipingandValves~~AllthepipingintheFuelPoolSystemisstainless steelwithmostlyweldedconnections throughout..

AllthevalvesintheFuelPoolSystemarestainless steeel,atleast150poundclass.9.1.3.2.4 Instrumentation Requirements Atabulation ofinsrumentchannelsisincludedinTable9.1"79.1.3.2.4.1 Temperature Instrumentation a)Fuelpooltemperature indications areprovidedlocallyandhightemperature alarmsareactuatedinthecontrolroomtowarntheoperatorofasystemmalfunction.

Twoseparateinstrument channelsareusedduetotheimportance ofpreventing thefuelpoolwaterfromboilingresulting inalossoffuelpoolwater..)FuelPoolHeatExchanger InletTemperature:

Localindication ofthefuelpoolheatexchanger inlettemperature (tubeside)isprovided.

Thisindication, inconjunction withtheheatexchanger outlettem-peratureandcomponent coolingwatertemperature, servesasameasureoffuelpoolheatexchanger performance.

FuelPoolHeatExchanger OutletTemperature:

Localindication ofthefuelpoolheatexchanger outlettemperature (tubeside)ispro-vided.9.1.3.2.4.2 PressureInstrumentation a)FuelPoolPumpDischarge Pressure:

Thedischarge pressureofeachfuelpoolpumpisindicated locally.FuelPool'Pumps Discharge HeaderPressure'%Adischarge headerpressureswitchforthefuelpoolpumpsservestoactivatealowpressurealarminthecontrolroomtowarntheopera-torofsystemmalfunction.

c)FuelPoolPurification PumpSuctionPressureSuctionpressuretothefuelpoolpurification pumpisindicatpd locally.Thisindication,"

inconjunction withthefuelpoolpurifi-cationpumpdischarge pressuregageservesasameasureoffuelpoolpurification pumpperformance.

FuelPoolPurification PumpDischarge Pressureindicated

JU<s<~Discharge pressureofthefuelpoolpurification pumpislocally.

SL2-FSARe)FuelPoolPurification FilterandFuelPoolionExchanger DiCferen-~~~~~tialPressureDifferential presureofthefuelpoolpurification filterandthefuelpoolionexchanger areindicated locally.Periodicreadingsoftheseinstruments indicateanyprogressive loadingoftheunits.9.1.3.2.4.3 LevelInstruments a)Fuel1'oolWaterLevelThefuelpoolwater,levelismonitored bytworedundant levelswitches.

Theseswitchesactuatehighorlowalarmsinthecontrolroomtowarntheoperatorofsystemmalfunction.

Twoseparatelevel"'nstrument channelsareusedduetotheimportance ofmaintaining fuelpoolwaterlevel.9.1.3.3~EgretEvalua".lua Withone-third ofacorebatch,whichisassumedtohaveundergone finiteirradiation ofthreeyears,placedinthespentfuelpoolsevendaysafterreactorshutdownandsixpreviousannualrefueling batches,theheatload's12.48x10BTU/hr.Undertheseconditions, withonefuelpoolpumpoperating andthefuelpoolheatexchanger inservice,thespentfuelpooltemperature doesnotexceed125F.Duringafullcoreunloading, itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown.

One-third ofacorefromapreviousrefueling isassumed'to havebeenstoredinthespentfuelpoolfor90dayswithsixpreviousannualbatches.Theresultant.

)eatloadfromonefullcozeandsevenannualrefueling batchesis2.99x10BTU/hr,themaximumheatloadinthefuelpool.Undertheseconditions, boththefuelpoolpumpsareinservicetolimitthemaximumfuelpoolwatertemperature to150F.Withonefuelpoolpumpinoperable, thefuelpoolequilibrium temperature is160F.Allconnections tothefuelpoolaremadesoastoprecludethepossibility ofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcool-ingsystemisdetectedbyreduction inthefuelpoolinventory.

Makeuptothefuelpoolisfromtherefueling watertank.Makeupinventory tothefuelpoolisprovidedinSubsection 9.1.3.3.1

~Duringaccidentconditions, theFuelPoolCoolingSystemisisolatedfromtheComponent CoolingWaterSystem.lfowever, multiplesources(seismic, andnon-seismic) ofmakeupwaterexistnsdiscussed inSubsection 9.1.3.3.1.

Thepurification loopnormallyrunscontinuously duringfuelpooloperation Comaintainthefuelpoolwaterpuri.tyandclarity.ltispossibletooperatethepurification systemwitheitherthefuelpoolionexchanger orfuelpoolfilterbypassed.

Localsamplepointsareprovidedtopermitana-lysisoffuelpoolionexchanger andfuelpoolfilterefficiencies.

9.1-13

2-FSARTABLE9.1-7FUELPOOLSYSTEHINSTRUMENTATIOH InstruantIdentification

ÃuaberTI"4420TI-4421TI-4404TI-4405SystcnPar~ter6LocationFuelPoolTemperature FuelPoolTemperature FuelPoolHeatExchanger InletTeslpfuelPoolHeatEXChanger OutletTerip.LocalControlitsslsIndication hlaraControllessIRoonHiHiInatruisent

~RCCC0-200F0-200F0-200F0-200FHomalOperating

~RcsC120-150P120-150F120-150F108"128FInstrune~RCC'JCC+4F+4PASSIN~IELS-4420LS-4421Pl-4402FuelPoolMaterLevelfuelPoolMaterLevel'FuelPoolPuapZBDischarge Hi6LoHi6Lo0-60psig40-50psig+1"Cla5SIC+199CpnbSI~+1.2psiNcmlfPI-Ii401Pl-4411PS-49403P1-4412PDI-4415FuelPoolPunp2ADischarge PressureFuelPoolPurification PvilipSuctionPressuri~Fu>>lPoolPiupDiscliargc ll,ad>>rI'ressur>>

FuelVcipl.Purification Pu:.2)!.'C..scharg>>

Pres..ure Fi'i'lPs)22~Pu'rLf'LestiisnFill.cr')ifI>>r>>ntial Pressure0-60psig0-25psig0-100psig0-30psid40-50psig+1.2psiIilrbl+5-10psig+.5psiId40-50psig+1psig{(~IF95-90psiis2psiiCis2+'I5-30paid+.6psiPDI-4416Fuel9"olionExr'.Rn:9:.er DiI!iirin'a'IPr"2.222I:0-30psid7-10psid+.6psidlifeIE

PJ5GiVTmI Q~<y.-..smsmmmvazau;~mrs.~~

~+tn~PDM'1A00'4X~FC4t9'lPOTs,5-(9WOrtZ<<~f~r-8~TZS.t54~IFV.tb7POT'H>tI1MI'~-V, T.II,IPCC25lWIO4Z.DI:V~Ã 0/oh2585te4XKVtf.'5GNHVIIIAlAQ&OM~a~D!'A5oQ>f'ig.A.CIQIIC.b!6.

POISP>-IV&XPC%%5-ff3'WS25-IO~4.PC'lfCG0Q~~~~i.~iT.DCV.$j7hf0AY'.I-KVy~QSIR-ACCMI4VLATO f~r1~mL,1.r4+-.X-qVO-Iaefa.

FOROAT5UDYaQO5>rHyGF<<(~I)M95-.1OFn~X-PclI-26-1-~~gg-II1t:5.-.-fC4<<

"~r<<IlII'PrIPC"".A~:atO0;-6IIA<I~!I'.,Frt>G<5tbI4C.IbtWO FOS~HII+IQQ f~4AQ7g-05III.WQ'Q'QJA~.R,O Igr=MA$3.~~X?-p.p5 iNw9AOKKmfllAicoI:ICOmfmIITI0t~oA<<-IIIfTiIgeXC~AN>g'XvhfKKVK.z-y-t5-c~

X-X-ZG-tlat FL4lKXgClf.gy'll PSOD>IK4~54CON%7;RTf7CHttlt45i8ALDDTLS~IDD~I+4F-..-'f~.rO CNNVf.DPIRTENT~CTl04Qy-geFClf<<'ZS'7FC$-c.p+5...err;~.

E.>C6C5I'llIsaa.teax.F'c4-t'$'-8

~"KS.WPi.fmtZ~CV-C",4.

~<<<EVhfaIIIINi

~~f'.LIE1rf V4,LV.X.FCV-2$-7Fe4Pt-P'Cg@QPIJ@VCR.

SL2-FSARvalveisopenedautomatically whentheannulusdifferential pressurereachesonein.wgnegative.

Thecheckvalveinthecoolingline-isdesignedtohaveapressuredropofnotmorethan2.5in.wgandtoo"..nat1.4in.wgnegativetoprovidevacuumcontrolinthesystemandtoallowoutsideairtocoolthefilters.TheSBVSisalsointerconnected tothespentfuelpoolareaexhaustduct.Uponreceiptofahigh-high radiation signalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltration units.Thec'"toroperatedbutterfly valvesI-FCV-25-30 and31openandtheexhaustfansstartautomatically.

ThemotoroperatedvalvesI-FCV-25-32 and33clos.tnisolatethe,annulus=;

Althoughafuel.handlingaccidentinsidthconcurrent withaLOCAisnotconsidered adesignb"isevent,aCi.'~Soverrides theFuelHandlingBuildinghigh-high radiation signalainitiates thedepressurization oftheShieldBuildingannul".TheFu.lHandlingBuildingVentilation Systemisfurtherdiscussed inSub"etio.~.4.2.EachoftheSBVSintaketrainsisalsoconnected totheContinuous Con-tainment/Hydrogen PurgeSystem.Thisconnection, manuallyin'.tiated fromthecontrolrocm,provideshydrogenpurgecapability whilemini.:.iz-ingoffsiteradiological consequences.

TheContinuous Containment/Hydrogen PurgeSystem.description isprovidedinSubsection 9.4.8.8.BothSBVSsubsystems areautomatically startedbyaCIASorhigh-high radiation signalfrantheFuelHandling'uilding.

Onecanbemanuallyshutdownandplacedinthestandbymode.Thestandbysubsystem auto-matically restartsiftheoperating subsystem shouldfail.Thcrosscon-nectionvalveisopenedfromthecontrolroomtoassureairflowthrou:hthefailedsystem.Detectors inthecharcoalbedsannunciate tempr"..""".-.:

exceeding 200F.6.2.3.3DesinEvaluation 6.2.3.3.1 Performance Requirements andCapabilities Eachofthetwofullc-pacityEan-filter trai..softheShieldBu'entilation System,alongwiththeShieldBuilding, aredesignedtofulfilltheperfonnance requir'ements statedinthedesignbasesinSubsection 6.2.3,1.TheanalysisoftheEunc'tional capability oft'.;"S3VStoi:,:)re."s

".andmaintainauniformnegativepre."2."withinth"Sh=!":.annulusisperformed Eorthe9.02E-doublecnddsu:tion1s3::breakLOCAusin~tholiATFHPTcomputerco'ed=si1';1inThedescription oEthedevelopment ofthepipebreakmassandreleaserateandthecontainmntinitia1conditions arecontain:..l in"section6.2.1.Anyadditional initialconditions orchangesEre~t':.o.=.listedinSubsection 6.2.1arecontai>>cd inT-~6.2-49.T)is:.transfercoeEicientsareappliedwhetherthesurfacetemperature cxccdstheannulusatmosphere ortheannulusatmo""her" t..:iaratu:.u"x.'"!st!:::surfacetemperature.

JULpygg6'-47A SL2-FSAR6.2.4COllTAIhMCtlT ISOLATIO"

,SYSTEMThecontainment ieolation systemprovidesthemeansofisolating fluidsys-temsth-.tpassthroughcont=~"..-...cnt pcnctrations suchthatanyradioactivity the.1.r-ybereleasedintotheccntainment atmosphere following apostulated designbasisaccident(DEA')isconfined.

Thereisnoo~eparticular rv;."':";

co:..1."etc conlasl>>neifolation, butisolation designisprovideda1'plyin-::

-".cecr-'terico;..-.;;on topenetrations inmanydifferent fl<<idsystems.6.2.4.1DesignL'cesTnedesignbasesgo;crning thecontainment isolation systemarediscussed below.valvesI,.cttherenuxxeme~,l.s ofmanufatu.c.sstandardc"Bu1.terf1yValves".asI6.2.4.1.1 Conditions Requiring Containment Isolation Thccontsinl-ent isolation valvesaredesignated seismicCategoryIandde>>signedtoAS[KCode,SectonIIIandequalityGroup8requirements.

Con-tainmcntisolation valvesaredesignedtoensureleak-tightncss andrc.liability ofoperaton.Containment isolation globe,checkandgatevalvesmeettherequirements ofmanufacturers sta:ldards MSS-SP-61>

"Hydrostatic TestingofSteelValves"andcontainment isolation butterfly iiAA~'SS-SP-67 Automatic initiation ofacontainment isolation actuation signal(CIAS)occurswhenahighcontainment pressureof5pcigor,ahighcontainment radiation levelgf10R/hrisdetected.

Thisprovidesdiversity ofparameters sensedfor.theinitiation ofcontainment isolation.

b)TheCIASclosesfluidlinepenetration isolation valvesnotrequiredforoperation oftheEngineered SafetyFeatures.

c)Thecontainment isolation systemisdesignedsuchthatnosingleac-.tivefailure(inconjunction withlossofoffsitepower)couldresultinoffsitedosesordosestooperators inthecontrolroominexcessof10CFR100andGDC19,respectively.

d)Themainsteamandfcedwater valvescloseonMSISandthevalvesfor'hecomponent coolingwaterforthereactorcoolantpumpmotorscloseonSIAS(seeSection7.3andSubsection 6.2.4.3.2).

6.2.4.1.2 CriteriaforIsolation ofFluidSystemPenetrating theContainment Ia)Thecontainmcnt isolation provis'ons forthefluidsystempcnetrations (excluding theESFsystems)aredesignedinaccordance withGeneralDesignCriteria54;55,.56and,57(refertoTable6.2-52).Excep-tionstoGDCprovisions arediscussed inSubsection 6.2.4.3.6.2-52goal11'.

SHIELDBUILDING@SL2-FSARTABLE62-51VENTILATION SYSTENINSTRUHENTATION APPLICATION

.?I2~SstemParameter

&Lnratinnhnaulus/atansphere pressurediffcrenrial Fuelpnnlarea/atchsphere prcssurediEferential LnralCna<rnlReIndirarinn AlaredCnnrrnlIIHi-LnHi-LnCnntrnlRnna~Rdrrdinhutnnctir CnntrnlFunrtinnEaergices fand<crhargc dampercRnrnrandrepu-laresflnvrnpreddctvalueandeaergi=enutsidernnliagairvalveEnergizes Eandicrhargc dampermnrnrandregu-laresflnvrnpresetvalueandeacrgiaenurside'nnling airvalve'nstrument Rcnce-lntn+30in,-ll20-10rn+30in.H20-1tn-3in.H20-1tn-3ia.H20Instrument hrrurcry+1.0X+1.0X,3~hirflnvremperct'ure dnvnstreasnfdemiaterInlettemperature Upstreamnffiltertrain*0250F0-250F40-111F40177F+2.0X+2.0X5.Demistcr&ElertrirHearersdifEerential pressure6dhirflnvtemperature dnvn-strccmnf30Kvhearingcnil0250F40-177F+2.0X78.9.Prc-HEPAfilterdiEfereatial prcssureAfter-HEPA Eilterdifferent'ial presddure hirElnvcRniature dnvasrrcam nfHEPAfilterHiHi0-10iaH200-10ia.H200-100X1tn3ia.H201tn3inH2050-10X+1.0X+1.0Xo2.0X10Chcrrnclcdsnrbcrdifferential pressureindiratnr llCharrnalcdRRnrbcr rwper~rure l2,hirflnvtemperature dnvn>>streamnErharrnaladcnrbcra Hi0-lOia,H200-250F0-250F1tn1.15in.+1.0XH20+2.0X40-'I77F40-117F+2OX Sl.2-FSAR TA51E6.2-51(Cnnt'd)Snremparamerer 6Lclrnrinn Indicurinn.CRRnrrnlRralR*,AlarmCRRnrm)II**.CnnrrnlRncRa~aar*alaAutnmarir CcRnrrnlFvncrinnInarrument

~RR"EHnrma1Operating

~aarInatru-ent

~arrarhirflnvdnvnatruam nifan~~nrhirflnMnffiltertrainKnergiaea idlefantnRRrarratlcRvflnvandalarma0-10,000.

cfee6000cfaPiltertraindifferential presaureCrnaa-rnnnec't flnuenntrnlvalvepnairinn015in.H204tn8ia.~.+1.0XH0OutaidecnnlingairflnutnntrnlvalvepnritinnSbieldbuildingaurtinnvalvepnaitinnFuelhandlingbuildingauctinnvalvepnsitinnPurgediachargevalvepnaitinn

~>~~~s-""'""'20.56PositionCe8ofRegulatory Guide1.45statesthat"leakagedetection systemsshouldbeequippedwithprovisions toreadilypermittestingforoperability andcalibration duringplantoperation".

Discusshoweachofthesystemsdescribed in.Subsections 5.2.5.1.1 thru5.2.5.11complywiththeaboveposition.

~ResesseAsrecommended byPositionC.8'fRegulatory Guide'1.45,thethreeseparateunidentified leakagedetection methodsutilizedonSt.Lucie-Unit2are(1)sumplevelandflowmonitoring, (2)airborneparticulate radioactivity monitoring, (3)airbornegaseousradioactivity monitoring.

('gTheContainment Atmosphere Radiation Monitoring Systemwnichincludestheairborneparticulate andgaseousradioactivity measurements haveradioactive checksourcesforthedetermination oftheoperability ofeachoftheradiation channelsduringfullpoweroperation.

Calibration canalsobeperformed duringpoweroperation intheReactorAuxiliary Buildingat19.5ftelevation.

Theinstrumentation forthethirdmethodofleakdetection, sumplevelandflowmonitoring, cannotbetestedandcalibrated duringplantoperation duetothelocationoftheequipment (insideContainment Building)

~However,acomparison withthereadingsoftheothertwomethodsdescribed aboveprovidestheoperatorwithsufficient information todetermine channelinoperability ormalfunction.

/ITie~ik~'~g'I,'///eb'K<1+e~<>Gal+kl/(XdMPlfl//bs/e/bestbsd'Me~+sA~Žp(~<efJ'gn~JtJLgg~Ib,1's'4"(420.56-1 PRE-SERVICE INSPECTION Re:PSIMeetingbetweenFPLandNRC8/ll/81Pursuanttotneabovereferenced meetingFlordiaPower5Lighthasagreedtothefollowing:

l.AmeetingbetweenFPLandNRCtoaddressRegulatory Guide1.150'obeheldon,orbefore,10/I/81,2.Anarrative description ofwhatwillbedoneforReactorvesselinspection by9/I/81,3.Aprocedure, forinformation only,ForReactorvesselinspection byweekof11/I/81,4.'heultrasonicxamination procedure willbechangedby8/15/81toincludethefollowing:

"Examiners willrecordallcrack-like indications regardless ofamplitude" "P.1pld1hP-71~di~P+ontheestimated numberofweldstobeinspected usingSectionXI,1977edition,Summer78Agenda,ASMECodeselectedcriteriaforclass2pipingonorbefore8/31/81,6.Toprovideasummaryofallweldsatlocations wheretnestressesundertheloadingsresulting fromnormal.and upsetplantcondi-tionsascalculated bythesumofequations 9and10inNC-3652whichexceed0.8(1.2Sh+Sa)onorbefore9/31/81,7.Ph-71~i~711pl11h7-mentedISIrequirements ofSRPsections3.6.1and3.6.2orjustifyexceptions takenbyFPL,8.Touse,asguidance, theweldreliefrequestprocedures outlinedinBandCoftheattachment, 9.By8/31/81provideanestimateofPSIareasthatmayrequirereliefrequests, 10.ProvideacopyofthePre-Service Ins~ection

~SosnmrtoNRC'sB.J.Crowley(RegionI~I.

~r 121.13TheASHECode,SectionY!.1977Editionwi:hAddend~throughtheSummer1978Addendaspecifies useofAppendixIIIofSect~on):Iforferri.icpipingwelds.Ifthis:r".Jirement isnotapplicable (forexample,foraustenitic pipingwelds),ultrasonic examination isrequiredtobeconducted inaccordance withthe2plicable'equi Section".,asamendedbyI~'A-222.DiscussyourAr.icle5of'ection V,asamendedby'.LA-2232.

cationforanyalternaivesusedsuhasSectionrementsofArticle5ofcriteriaforapolyingProvideatechnical justifi-XI,AppendixIII,Supplement 7forauszenitlc pipingweldsanc"icusssthefollowing:

All..difications per.-;.itted'y Supplement 7.b.Yeh""sofassu.in"adequateexamination sensitivity'ver therequiredexar,'ination volume.c.hethccsofqualifving theprocedure forexamination throughtheweld(ifco.-.delete examination istobeconsidered forexaminations conducted wi+l.onlyonesidaccess).Whenus'-"~poendixIIIofSectionX'.forinservice examination ofeitherfer.-.=ic

-aus=eni.ic oipineweld=-hefollowing shouldbeincorporated:

d.A.v-.=f:-r>I="in"1caior.,"-careen:oDACorgreater,discovered snou.-xot-..=o=t'<examination ofoipinewellesoradjacentbasemetalmaterials berecorde'ndinves:ig-.edbyaLevelIIofLevelIIIexaminerextentnecessary toce-.-e..-..ine theshape,identify, andlocationre.lector.

Tne';.Ia~v~shouldevaluat=.htake,correc.ive actionforthedispo-ofanyindication rvsti".ated andfoundtobeotherthangeo-.-..e=r'."al ormetallur"'calinnature.

ThePS:r"gra-.'ouidincludethefollowing information:

A)ForASHECodeClass1and2co-.,ponents, providea.ablesimilartoIMB-2600andIWC-2600confinnino thateitherth~entireSectionXIpreservice exa;..ination wasperfor,.ed ontnecor.:""nnorreliefisrequested withatechnica'1 justification suppor='."..c yourconclusion.

~B)Wherereliefisrequested f".pressureretainin" weldsinthereactorvessel,identifythespeciicweldsthatdidnotreeivea100+pre-serviceultrasonic examira:-'cr.

ar"estimatethe>:=antcftheexaminatior.

thatwasper;-"r.-.:ed.

.C)hherereliefis'requested forpipingsystemweld=-(=xamination CateooryB-~,C-F,andC-G),"rovidealistofth=specificweldsthatdidnotreceiveacompleteSectionXI-preservice xamination including adiawingoriscretric iden.i-.ication number,sy=-'.=;,'eld number,andphvsicalconiguration,

.g.,pipetonozzle;:eld, etc.Estimatetheextento-.thepreserv'.ce

=xa.-.,ina ionthatwa:-."~rformed.

Whenthorvolumetric ex=-.,-.nation was".erfor;-..ed fromonesi-=oftheweld,discusswhe"hertheen-.-'rewelcv-'u-.andthehea:=e"=="'"n=

(HfZiandbasehietalor.-.'".efarsideo-,theweldwereexa.-...'.:ed.

S:=-tetheprimaryreason.hatas=="ificexa-.ira.ion isi;..oractical, e.g.,supportorcc.-..p,"-

nentrestric-s ac=ess,.itingpreventsadequateultrasonic couplingononeside,cc-...""n ntoco-...".onent widpreventsv:-.=-sonicexamination, etc.Indica'=="..'lterna-.i;=

orsupp;-.,e".ital exa-..irations performed andmethods(s:

.".abricaionoxamination.

IOnpage2ofyourprogramdescription, regarding ClassIIexaminations, you'havefailedtoincludetherequirement fromTableIHC-2500-1 ofthe77Code,S-78Addendato-includein-theweldsselectedforexamination "allweldsatlocations wherethestressesundertheloadings, resulting fromnormalandUpsetplantconditions as.calculated bythesumof,Eqs."9and10inNC-3652exceed0.8{1=-.2'pa)."

ExplaintheaboveandsubmitarequestforreliefifallS-78Addendarequirements arenotfollowed.

2)3)ProvidesampleresultsofPSIUT.examination including resultsofinevestigating causesof'ltrasonic rejectives andrepairresults.Tocompleteourreview,itwouldbehelpfultohaveyourprocedures forautomated examinations.

Inparticular, submityour,plans,schedule, andprocedure forimp'lementing Regulatory Guide1.150forreactorvesselweldPSI.Discussyourplansforcompliance withaugmented ISIofStandardReviewPlans6.6,3.6.1and3.6.2..,(~j5)InParagraph 4.1.2ofyourgeneralNUTprocedure youindicateaminimumofonLevelIIinacrewofLevelI'sorLevelITrainee's.

Yourexampleexamination resultsaresignedboth'byaLevelIIandLevelI.Sinceyourprocedures involvedevaluation ofindications astogeometric ornon-geometric, itwouldbegoodpracticetohaveatleastoneLevelIIdirectlyperforming orobserving eachexamination.

Pleaseexplainyouractualpractices.

InExhibit1ofyourprogramdescription, youhavea30"to12"joint'hich utilizesa12"calibration blocks.Providejustification fornotalsousinga30"block.

FLORDIAPOWER&LIGHTCOMPANY'S POSITIONONFEEDWATER 1MSIERTESTING1.St.Lucie81&82Feedwater pipingisnotonlysimilar,itisessen-tiallyidentical.

-Isometrics ofbothunitswerecomparedandthedifferences aremeasurable infractions.

Forexample,thehorizon-talsectionsofpipingenteringthestreamgenerator, whicharethesections'ofpipingmostlikelytoexperience waterhammerareallequalinlength(2feed),withonsectiononUnitf/1being3/8"shorterthanonUnit//2.St.Lucie1performed feedwater hammertestingbydrainingthefeed-ringforupto2hoursandthenmanuallyinitiating auxiliary feed-.water.Thisdrainingofthefeedringisconsidered theworstcasetotransient and,sinceithasbeenperformed onanidentical unit,willnotberepeatedhere.2.Three(3)testswillverifythattheAuxiliary Feedwater Systemwillperformitsdesignfunction.

a~Aux.FeedPumpInitialRun.Thistestisarecirculation from/totheCondensate StorageTanktoinitially run.intheequipment.

b.C~Auxiliary Feedwater FunctionandEndurance Test.Thistestwillbeperformed priortoandduringHotFunctional Testingtocheckoutsystemoperation, toverifythemanufacturers endurance run.Auxiliary Feedwater Automatic Initiation.

C.1.Objective.'.Toverifyauxfeedau'toinitiation b.Toverifytheabsenceofwaterhammerstothefeedwaterpipingduringautoinitiation.

C-2InitialConditions

'a~b.c~ReactorCoolantSystematnormal,no-loadoperating temperature andpressure.

SteamGenerator Secondary Sideatnormalno-loadoperating temperature andpressure.

Maintaining SteamGenerator levelswithmanualaux.feedwater control.C-3TestOutlinea~b.csStationanoperatorincontainment tolistenforanysymptomsofwaterhammer.StopfeedingSteamGenerators ReturnAuxiliary Feedwater toa"NormalStandby"lineup.

C.3(cont.)d.e.AllowSteamGenerators todrain.WhentheAux.,Feed-waterActuation Signaloccurs,observeproperoperations ofAutomatic Aux.Feedwater initiation (ie.pumpsstart,valvesopen,steamgenerator levelsrise)-FeedSteamGenerators todesiredlevelsResumeManualAux.FeedtoSteamGenerators Visually'examine pipingexternaltotheSteamGenera-torsforeffectsofwaterhammer.Theadditionoftheautomatic activation featureensuresthatthesteamgenerators willnotbesubjected toalongperiodofsteamingdown,suchashappenedatTMIandwastestedfoxonSt.Lucie//1.Xnstead,thesystemwillactivateattheactualtimeitwouldintheeventofanaccident.

Thisisconsistent withthetestbeingpex-formedattheSanOnofre2&3unitsaftertheixfeedingmodification.

3.Pi'pingvibration willbemonitored duringthevaxious phasesofstart-up.Xnaccordance withtheFPLapprovedvibration monitoring program.4..Becauseofthefollowing reasons:a)ThePipingarrangement forbothunitsisalmostidentical, Eb)Extensive Feedwatex Hammertestingwasperformed onSt.LuciefIl(5separatetestsatvarioussteam-down internals upto2hours)andnoresultant Feedwater Hammer,c)TheSt.LucieI2Pxeoperational TestProcedure willverifyauto-maticinjection, whichwillbetheworstcondition forUnit/I2,d)Anoperatorwillbestationed tospecifically monitorforFeed-waterHammer:,FloxdiaPower6Lightfeelsthatouxpresentproposedprogramadequately demonstrates thatSt.Lucie//2will.notencounter anyFeedwater HammerproblemsandhopesthissatisfystheNRCBranchposition.

Regarding questions raisedbyWalterPasedag(Radiological AnalysisBranch,SectionAccidentEvaluation Branch)onthehydrazine additivesyst:emandTSPlocatedinsidecon-tainment, theapplicant, willrevisetheFSAR,asnecessary, viaamendment to,document thefollowing:

1-Aminimumof,2hoursofhydrazine willbestoredforcontinuous injection ataratethatwillinsureaminimumconcentration of50ppmisavailable atthespraynozzles.2-Aslongasdosesareacceptable intheapplicable por-tionsoftheReactorAuxiliary

Building, thereisthecapability topermit,therefilling thehydrazine, tank.3-AquantityofTSPwillbe10acatedinsidecontainment suchthatthewaterpostaccidentwillhaveaminimumpHof7.0.P4.-TheTSPbasketdesignwillbesuchthataninadvertant containment spraywillnotdissolvetheTSP.5-TheTSPbasketswillbelocatedinthevicinityofthe*ECCSsumpanddesignedsuchthataflowofwaterwilldissolvetheTSPwithinthebaskets.

SL2-FSARtI6.5.2COH'fAINlEN'f SPRAYSYS'fEH/IODINE RE"lOVALSYS'fl;H(CSS/IRS)

TheContainment SprsySystem(CSS)isprovidedtoperfnrmthedrralfrrnc-tinnsofremovingheatandfissionprodrrcts fromapost-accident contain-mentatmosphere.

Theheatrein>valcapability oftheCSSisdiscussedinSubsection 6.2.2.Thefissionproductremovalfrrnction ir.carriednrrtbytheIodineRemovalSystem(IRS),nperating inconjunction withtireCon-tainmentSpraySystem.TheIRSremnvesradio-indines fromthecnntainrnent atmosphere fnllowing aloss-of-coolant accidentbyaddingcontrolled amn'untsofhydrazine tocontainment spraywater.6.5.2.]~DecinBhCehThedesignbasesfortheCSS/IRSasafissionproductremovalsystemareasfo1l.ows:a)Tnprovidecapability fnrthefissionproductrcrubbing ofthecontainment atmcspherefol.lowing aDBA-LOCAsuchthatnffsitednses,anddnsestonperators inthecnntrolronm,arewithintheguide-linesof10CFR100andGDC19respectively.

Theradioactive materialreleaseassumptions ofRegulatory Guide1.4"Assumptions UsedfnrEvaluating thePntential Radiological Consequences ofaLnssofCnnlantAccidentforPMRS",6/74{R2)areusedindetermining systemcapability.

Theradioiodine andnoblegasactivityinventory inthecnntainment atmnsphere following aDBA-LOCAisgiveninSection15.6.b)Tnmaintainaminimumhydcc;ntainment spraynnzzlespercentbyweightindemiToachieveacontainment rpraychemicalmixeswithrazinecnncentratinn of50-65ppmatthebasednnastoragecnncentration of.neralized water.7~sumppitbetween7.0and7.5afteralltetheavailable waterinventory.

h/~hthh'"~0~hh4.d)Elemental hTnperformitsfunctionfollowing aLOCA>assumingasingleactivecomponent failurecoincident withlnssofnffsitepower.BedesignedtnseismicCategoryI,QualityGroupBstandards asapplicable.

Tnremoveelemental andparticulate indineswiththefnllowingmini-mumfi~~)orderremcval.cnefficients (inaccordance withHUREG/CR-009hIodineForm'irstOrderRemovalCrefficient

-110hnursParticulate

,'-~""-~,~0.45hnurshTnmeetiodineremnvalrequirements basedonaneffective spraycoveragenf85percentofthecontainment freevolume.6.5-6 e0 Sl.2-FSAR Toperformitsfunctionunderthepostaccidentenvironmental conditions specified inSection3.11.Toprovidesystemmaterials whicharecompatible withfluidche;nistry.TheContainment Spray/Iodine Rem<valSystemsaredesignedtoQualityGroupBandseismicCategoryIrequirements inaccordance withtherecommendations ofRegulatory Guide1.26,"QualityGroupClassifications andStandards forWaterSteanandRadioactive WasteContaining Components ofNuclearPowerPlants",2/76(R3)andRegulatory Guide1.29,"SeismicDesignCl.assifi-cation",(R2),respectively.

p'4F,F6.5.2.2.1DesignDescription

',~FBoththeCSS/IRSconristoftwoindependent andredundant loops.EachCSSloopismadeupofaspraypump,shutdowncoolingheatexchanger, piping,val.ves,headers,andnozzles.Connected toeachCSSloopisanindependent trainoftheIodineReraovalSysteaconsisting nfaconstantvolumemeteringpump,soLennid-operated isolationvalve,IRStankandassociated pipingandvaLves.TheflowdiagramsfortheCSSandIRSappearasFigure6.2-41.ThedesigndataforIRScomponents isshowninTable6.5-2.SimilardatafortheCVSSisgiveninTable6.2-38.,4Ir4F-.4~44CV~~F\I~ThedesignoftheIRSisbasedontheadditionofhydrazine tothecon-tainmentspraywaterataratethatensuresaminimumhydrazine concentra-tionof50ppmatthespraynozzlesaBasedontheoffsitedoselimitsasdefinedin10CFR100, andaspraycoverageof85percentoEthetotalcontainment netfreevolume,hydrazine additionproceedsforaperiodofappraxiipstaty g'rpiautas.

/8<Aconstantvon~iydrazine additionpumpisselectedforsystemsimpli-ficationandeaseofoperation.

Overtheentirerangeofsprayflowratestheconcentration ofhydrazine irnolessthan50ppraandnogreaterthan65ppm.Uponreceiptofacontainment sprayactuation signal(CSAS)the.solenoid-operated isolation valvesopenandthehydrazine pumpsstart.Hydrazine i.xnjcedintothesuctionsideofeachcontainment spraypumpatarateo-'gallonsperminute(gpra)untilalowlevelswitchinthehydrazine staetanksiraultaneously stopsthepumpsandclosesthesolenoidvalves.Thesystenisdesignedtobefullyautnraatic yetiscapablenfLocal-manual control.4sIo.gitsA<<sa.renc~~b4~W~

pofi'~cfWW4>/lv'I'~8't4:p,9<~e.4~~p4Iip*p'~reW'~l'~Ly>sy'~6k..Oninitiation nftheCSAS,thecontainraent spraypumpstrikesuctionfromtherefueling watertank(RMT)andsprayboratedwaterdirectlyintothecontainment atmosphere AlowleveLintheRWTisreachedinapproxiraately 20minutes(seeSubsection 6.2.2).Alowlevelswitchinitiates therecirculation actuation signal(RAS)transEerring containment spraysuctiontothecontainment sump.Spraywaterinthesumpisbufferedwithtrisodium phosphate dodecahydrate (TSP)6.5-7 SJ.2"YSARmodes<<ndeffectsan<<Lysishasbeenrpadeon<<11activecomponents oftheIrdineRernov<<lSystemtosin'wthatasaminimumthereis<<v<<il<<ble one100percenthydrazine sprayadditivesubsystem afteranysingleactivefailure.Forafailuremodesandeffects<<n<<lysisoftheContain!nent SpraySystensee6.2-41'.5.2.3.1 TheoryofIodineRemovalbyContainment SprayThesprayremovalcon~tant~,Eoriodineisevaluated usingthemodelsdescribed inNUREG/CR-009

~Themodelassumesabal.ancebetweeniodineenteringandleavingthecontainment atmosphere withfirstorderremovalproducedbythespray.TheresuLtingequation, asgiveninNUREG/CR-009, fortheremov<<Lrateis:A~LEHwhere'acHVViodineremovalrate~hrsprayflowrate,Et/hrabsorption efficiency equilibrium partition coefficient3 netfreevolumeofcontainment, ftTheabsorption efficiency, E,isevaluated byusingthestagnantEiLmmodel.Furtherguidanceonthedetermination ofthisparameter isgivenbyParsiyandhasbeenfollowedinthisevaluation.

Theparameters usedinthecalcu-lationaregiveninTable6.5>>5.Forelemental.

iodine,aremovalco-efficient of37hrhasbeencalculated.

However,inordertoaccountforre-evolution ofiodine,creditistakenforsprayrernovaLuntil.theinitialiodineconcentration hasbeenreducedbyafactorof100.Further,intheevaluation ofthepost-LOCA offsitedoses,theasssumption ismadethat50percentoftheinitialairborneiodineinstantaneously platesout.Consequentl y,theremoval.ratesforelemenfaL andparticulate iodineusedintheLOCAdosecalculations are10hrand'0.45hr,respective l.y.6.5.2.3.2'pray andSumpMaterpHHistoryThepHoELiquidsolutions thatarerecirculated withinthecontainment foiiowing adesignbasis~ccidentisstabilized atapproximately 7.0to7.5ThepHismaintained withtheuseoftrisodium phosphate dodecahdrste(TSP)whichisstoredinnineopenbasketsLocatedinth8contarnment

..ump.EachbarketisapproximateLy threeft.bythreeft.byoneft.Theareconstructed ofstainless steelwithmeshscreensides>and-ope~py Boratewaterfromthecontainment spraydissolves theTSPandthusraisethepMixingisachievedasthesolutioniscontinuousLy recirculated fromthesumptothespraynozzles.Thespraywaterdissolves'the TSPwithinthreehoursfollowing CSAS.Approximately one-third oftheTSPdissolves duringtheinjecticnmade~Fordetailsofflowpathstothesump,seeSubsection YtC.>IN=0"Cd6.2,2.'An-++PID(ls4+I)Jn.s!Qr>>~ilbr)s~c(>>~I>>tl+%wrrlaJyQe'ta)lt calztohl~~~<$

~>>IIaa'td>>ss~lve.

44l~sp6.5-9 SL2"FSARTABLE6.5"2IODINEREMOVALSYSTEMCOMPONENTS tlydrazine St~oraeTankr'Volume,gallons"Mi'nimum:

LiquidVolume,gallonshDesignTemperature, FDesignPressure, psigOperating Temperature, FOperating

Pressure, psigFluidMatrrialCode80~8).201007.%f10.byweighthydrazine solutionwithnitrogen(N)covergas31%4SSASMEXII,CodeClass2B-HdrazinePums~-~~rerrr~Js~rrwwdSuQuantityTypeCapacity, gpmDischarge
Pressure, psigDesignTemperature, FOperating Temperature, FNPSHn,ftofwaterFluictMaterialCodeRatingSolenoidValvesQuantitySize,inche"sTypeDesignPressure, ps15DesignTemperature, FANSIClassEndConnection PipeScheduleMaterialFluidOperatorCode2PositiveDisacgrant,Metering3s0maximum12010030QXlyweighthydrazine solution304SSASMEIII,CodeClass2480VACr~.2.1/2Globe120600SW80s304SS)Z~yweighthydrazine solution125Vdc*solenoidASMEIXI0CodeClass20*125V,DC6.5-19Amendment No.0,(12/80)

SL2"l'SARTABLE6.5-3CONTAIN!1ENT SPRAYANDSPRAYAOI)ITIVE I'LOPRATESTheflovratesforthecontainment sprayandsprayadditiveflovratesaregivenforthefollowing threecases:Case1:Hinimumsafeguard flow,minimuminjection (i.e.,onecontainment spraypump+oneHPSIpump+oneLPSIpump)withlossofoffsitepowerandonedie"elgenerator failure.Case2:Maximumsafeguard flov(i.e.,twoHPSIpump+twoLPSIpumps)andsinglefailureofonecontainment spraypump,(i.e.,onlyonecontainment spraypumpoperating) withoffsitepoweravailable.

'Case3:Maximumsafeguard flov,maximuminjection (i.e.,twocontainment spraypumps+twoHPSIpumps+twoLPSIpumps)vithoffsitepoweravailable.rCaseTotalTotal.Total>Safeguard SystemContainment SprayAdditiveHydrazine Addition~Oeral.ion RodeSrettlou(m)ttlou(~m)Time(minutes) 0Injection LongTermRecirculation 280035603.583.5802Injection LongTermRecirculation 280035603.583.583Injection56007.1620LongTerm7120716ggQRecirculation

  • BasedonRATatminimumTechSpeclevelandrunoutflowsforHPSI,LPSIandCSpumps.Thecontainment sprayflovof2800gpmincludesaminimumrecirculation flovof150gpmrequiredduringtheinjection phase.I3'tss4~'Vs1s~e~*'k'\e~~'g,~,6,5-21Amendment No,3~(6/81)

FLORIDAPOMER6LICHTCOMPANYSTLUCIEUNIT2DOCKET50-389ENVIRONMENTAL DATAFORUNDERROUNDCABLEEXPOSEDTOMET/DRYNNVINNrNNNTU I.~TeeofCablesUs.dInUnderroundDuctss~c(l44wocablevendorssupplycablesforus>inunderground ducts.TheyaretheOkoniteCompany.and SheKeriteCompany~,Okonitesupplies5KV&.15KVpowercabledKaritesupplies600Vpower,controlandinstruaeetation cable~.('.RL.rs]:~PP)s'~C~~~dgCC.'&-~The5KVand15KVpowercablesareinsulated withunfilled, crosslinkedpolyethylene, wrappedwithanextrudedlayerofsemiconducCing insulation shieldmaterialcompatible withtheinsulation, andcoveredwithaleadsheathandaheavydutyoverallneoprenejacket.The600Vpowercablesare'nsulated withahightemperature Keriteinsulation (HTK)andcoveredwithblackheavydutyflameresistant (FR)jacket.The600Vcontrolcablesareinsulated withKeriteflameresistant (FRII)insulation andcoveredwithheavyflameresistant (FR)jackets.'he600Vinstrumentation cablesconsistsoftwistedpair'edshieldedandunshielded cables.'Unshielded cablesconsistoftwistedpairswithKeriteflameresistant (FRII)insulation coveredwithanextrudedpolymerlayerandhavinganoverallflameresistant (FR)jacket.Shieldedcablesinaddition'o theabovehaveadrainwirewitheachpairindirectcontactwithalumimummylartape.Eachshieldedpairisseparated byglassmylarCape.Coaxialcablesareconstructed withaRockbestos FirewallIIIPolymerLDfirstinsulation, radiation crosslinkedcellularmodifiedpolyolefin orradiation crosslinkedmodifiedpolyolefin secondinsulation,'overed with(atincoatedcoppershieldandaradiation crosslinked,noncorrosive, Iflameretardant modifiedpolyolefin overalljacket~Thesecablesareratedforcontinuous serviceupto110C.I XI.TestDataVendordata(Keriteend>0konite qualification oftheircablesexposedforyouruse.regarding theenvironmental toawet/dryenvironment areattachedInadditiontotheabove,aprocedure wasdeveloped onStLucieUnit-1totestcertainunderground cablesto'onfirm theirfunctionability.

Thefol'lowing isabriefsynopsisofthisUnit1procedure.

Atleast-onceper18months,duringshutdown, byselecting onarotatingbasisatleastthree(3)cables,onefromswitchgear tointakecoolingwatermotor,onefromswitchgear tocomponent coolingwatermotorandonefromswitchgear todieselgenerator aretestedwitha2500VDCmegger.Controlcablesthatareassociated witheachoftheabovemotorsanddieselgenerptors aretestedwith1000VDCmegger.ThethreesparecablesareDCpro%<tested at25,000voltsandmeasuredforleakagecurrentat30secondsintervals for10minutes.Allreadingsmustmeettechnical specification 4.8.1.1.3, Ifanyinstalled sparecablefailstheHitPottest,theNRCwillbenotifiedandcorrective actiontakepertechnical specification 4.8.1.1.3.

AttachedarecopiesofactualtestdatatakenatStLucieUnit1

~a~s0Peference Ifff383Parag~rah2.3.3.2Pg.2(tSaoiplesAthroughEiveretheiioally, agedinacirculating airovenfor168hoursat150"Ctosimulate40yearinstalled lifeat75'C.III.gsference IEEE383ParaELraph 2.3.3.3SamplesAthroughEifIeresubsequently'subjected inairtogamma~Ilradiation fromacobalt-60 sourceatarateof0.5x10radsperhourtoacumulative dosageof2x10rads.8IV.Reference IEEE38~3para~rah2.4(TestingforOperation DuringDesignBasssfventInordertodemonstrate serviceability ofFire>rail IIIcoaxialhAga~~constructions duringandafteraLOCA,theagedandirradiated samplesIMeresubjected totheLOCAprofile'for combinedPWR/BWRasspecified inIEEE323,Fig.Al.Ouring'this entireprofilethesampleshada600voltrmsvoltageappliedbetweentheinnerandouterconductors, theV.electrics andthesplicedsample(Saoiples AthroughE).onlyexception being'whenleadsvieredisconnected toprovideforinsula-.'ionresistance measurements.

..-":.-:.'-';...*;

Reference IEEE383Para~rah2.3.3.4Aftercompletion ofLOCAUiefo11oiving vvasaccomplished:

=~~1l..Insulation Resistance Wasoieasured afterthe'autoclave.

Mls~,sopenedandtemperature returnedtoambient..

~..2.Sampleswereremovedfromautoclave andwrappedona40Xmandrel(10inchdia.).3.Whilestillwrappedo>>theBOXmandrel,adielectric testWas-performed Wherea60cycleroisvoltagegasappliedbetiveenthe..inner andouterconductors oftheco1xialconstructions foroneminute.The'estvoltagewas2000voltsforthesoliddielectrics, thecellulardi-~t~~~a-Nes1Phrhl LthVh~h1<<~%WVEWf%~hueeh\h%1%H~tIPa~\,~~eh1eler&hhatl

%lthlla~ht~el~h.h~~hY 0

Pg.34.Theinsulation resistairce wasmeasuredwhiletiresampleswerestillwrappedonthemandrel.5.The'entire mandrelwiththecablesstillwrappedthereon'as thenimmersedinwaterandthevoltagewithstand testwasagainapplied.6.Aftertheimmersion andvoltagetestsofthepreceding para-graph,samples"A"through"E"inclusive were'made into40Xcoilsandputintoa200'F100>>relativehumidityenvironment.

Sincethisen'-vironment was.notprovidedbytheautoclave, thetestvoltagewasnotappliedduringtjristestperiod.Afteroneyearinthedescribed environment, allsampleswere4subjected toaninsulation resistance testandthenimmersedinwater.Adielectric testwasthenperformed wherea60cyclermsvoltagewasappliedbetweentheinnerandouterconductors ofthecoaxialcon-structions foroneminute.Thetestvoltagewas2000voltsforthesoliddielectrics, thecellulardielectrics andthesplicedsample(SamplesAthroughE).Allsamplespassedthistest.Performance ofthepreviously described tests,indicates thatboththecellularandsoliddielectric coaxialconstructions willbeservice-~~~-/'ablefortheirintendedpurposebothduringandafteraLOCAwhichmayhappen"anytimeduringtire40yearlifeofthe,generating station.Reference lFEEPa~ra~rahP..5(FlameTests)-Althoughpassageoftheverticalcabletraytestof1FEE383isnotarequirement forcoaxial,triaxial aridspecialinstrumentation cable,Aockbestos, nevertheless, subjected tireASS6-102cabletoandsuccessfully passedthistest.Note:Rockbestos believesthatmostcablesinitsadverseservicecoaxialcableproductlinewillpassthisverticalcabletr~ytest,butasoftlrisdateother.cableshavenotbeensubjected tothistest.~~~~~'"~4H~~\)<mVSa.~+~..<;~'e5&lfrryyy:~~i

~rig\assn;~as,%i~!vrmce r<\s~~pvma.~arra<rr qrewe+n.as~i<sswreewrmraeeee arrhs~~.~v 0

~gPg.4QgCFATIFIED CONCLUSION FirewallIIIcoaxialconstructions utilizing eithersolidor-cellular dielectric materials havesuccessfully withstoodthetests.andconditions inthepreceding pages.Therefore, wecertifythattheywillfunctionforatleasttheirnodalintendedapplications.

inanuc1ear40yearsingenerating plant,including conditions ofLOCAtestingand200megarads.ofcumulative radiation dosageoccurring during40yearlifeoftheplant.theexpected:~XilgvGeoygeS.BuettnerTechnical Oirector~z~~~':,',.KennethJ.Ginnotti:..'~TestEngineer'

~sISTATEOFCONNECTICUT; COUNTYOFNEWHAVEN.Subscribed andsworntobeforemethisj~Q~dayof~~~~1979.'

.~','~~~~~i"~'I1~0'

~~~~+t'UC[EAP, ElfVlROlillNTALSCRVICECYCLEREPORT(r;ESCR)ReportPreparedforEbascoServ,ices Inc.l9RectorSt.t(e>vYork,N.Y.l0006Re:FloridaPower5LightCo.EbascoSpec2ll-73St.LuciePlantUnitP2Hutchingson Island,Fla.-.q1\1VS%SPrReportPrepared~b:"-.':4-::"":"=::.:-:-'":-."

~-':~.::.'."~-..,"-

..";;r~~;",;:

TheAockbestos Co.".,"'*Newlfzven,Ct.06504Hayl5,1980Rev.III's-~~~',q)qasee')'t)1 eat,~stL~qiPypsgp~<+go~Wf(f1 P5$'~t~rrrw.

PP,"%QQ;tg.+iiZC55~+~+w~04i~%+iV

.h5%TQQQ

~~ae'~6.eAccc1ursteaMaterAbsorptionTest(lnsulition)Ref:Para.G.I.l.dRockbcstos hasperformed long(ermvlaterabsorption testingonRSS6-102corewhichusesasolid,cross-linked polyolcfin dielectric.

MaterTeuperature

-90'CContinuous Energized Voltape-600VAC60HzDurati'on ofTest-26weeksResults-ReportedinAppendix"D"Accelerated MaterAbsorption Test(Jacket)Ref:Para.6.l.l.eTestswereconducted onthejacketmaterials usedontheRockbestos

-coaxialconstructions according toICOSAS-19-81Para.6.9.3.There-suitswereOs58milligrams persquareinchandarewellwithinthere-~~quired20.0mil1igramrequirement.

t~I~~~s.'r'ssla~rrHoistureResistance Ref:Para.6.l.l.fnTheRockbestos Companyhasperformed accelerated moistureresistance itests.forcontinuously wetandalternately wetanddryconditions withs/,goodresultsonitsFirewall1.11instrument cables.ThesetestsnormallyIutilizeairovensandasteainautoclave.

Sinceitisnecessary to"pot"thepenetration oftheautoclave, it'isnotfeasibletousethismethodoftestingforcoaxialconstructions.,

ltshouldbcnotedhercthatthe'.'s~s'Firewal1ll1instrunlentation cablestested'utilize flameretardedcross"1inl'ed.polyolefin

compound, asdothcjacketsofourcoaxialconstructions.

'r~~~~~r~~s~~s~1~~~~~

0

'r~~~7.Coaxialcablefunctions asanintegralunit.Thejacketisusedtokeepthenioistuie frowntlieinteiiorofthecable.Whilelongtermmoisturetestsoncoreinsulation willservetoshowthecablewillmaintainvoltageandIRcharacteristics, itmustberenieinbered thatcoaxialcablesaredesignedtobebasically dry.Therefore, theouterjacketisveryiniportant.

Toprovethejacketintegrity

.overandabovetherequirements ofref.para.6.1.l.band6.1.1.eRockbestos putasampleofjacketedcablein75"CwaterandmeasuredIRfrominnerconductor tofirstQiI,I'L'~it'~'4~~5~~~~,'~E,shield.Aftersixinonthsthesampleshowsaninsulation resistance of720gigohmsfor20ft.'hesampletestedwasRockbestos RSS6-208Cwiththeouterjacketandaluininum sheathremoved.Themoistureresistance oftheconstruction, including wetanddry,isfurtherdemonstrated bytheairovenaging,autoclave sprayconditions andhumidityenvironment, asdocuinented inthequalification report(Appendix 8).AlsoattachedasAppendix"F"isdatapreviously reportedbyRockbestos onitsFirewallIIIcross-linked polyolefin asfurthersupportinodata.'Electrical Characteristics

.'..:".',:

"::"'"~-'."~fRef:Para.6.l.l.gTtieelectrical cfiaracteristics shownonourRSSdrawingsforI~~cablestobesuppliedonthisorderwerederivedusingtestmethodsofMIL-C-170.

aSincethattimetlIL-C-17E hasbeenissued;andwhileitjsmorecomplexandinmanycasesunworkable, testingisstillaccomplished' according toHJL-C-170.

J*=Sincethecables.usedfornucleargenerating stationsare.60IQz~~orless,testingtoeitherthe"0"or"f"revisionshouldnotcon-stituteanyIirob1enis.

~~i<PFeV>1>Cr~gICJ""BT(OV"IB}'".8cCh.'E$T..ECO.nrvIsIIrrr<IrCl.'.ILBO COIII'OIIATION October14,1975ROCKBI':S I'OS'ltOI)UC'I'S 0ll0cnosSI'ICS r*AKCAIVESVI1E?22?roncnoss.

econw900?I~I404)449I96II'ABATISI800I?<ICA5ioASCOServices, inc.21McstStreetRoom1310thewYork,tlY10006Attn:Ir.DennisCronin-cloPhilgobileRECEDEDERq:Firewallill-FloridaPower6Light----<-..ST-,-LuC1C-2


:---.:'-.~Qt;T2-':CTSinquiryFLO-211I8

.CerroProposal20-3113inquiryFLO-2lII9 CerroProposal20-3II4~~~~r4Gentlemen, FurthertoourlettersofAugust18,1975andSeptember 26,1975,wcareFurnishing

~~~~additional information onthetestswehaveperformed andnotingchangesinouroriginalproposedprogram.Thepurposeofthetestwastomeasuretheeffectsofdifferent environments onthe':Firewall Illcableofferedinourproposal."

llighlyaccelerated testprocedures wereusedtoobtainmeaningful'esults lnareasonably shortperiodoftime.~l'Samplesweresubjected tothefollowing:

'1~r.Samplel.-Continuously Dry:Samplewas'placedlnanairovenfor360hoursandmeasuredatregularintervals forchanges'n IA,'SlC,andPo~erFactor.,Sample2.-Continuously Met.:Samplewasplacedinastcamautoclave at'II2Cand40PSIG.Thetestonthi'ssamplewasterminated after,260hoursbecau=eo'lectricai failure,Thcsameelectrical measurements wercperformed.

Sample3'llernatcly Met6DrySamplewasplaced'inasteaIAau'toelaveat1I2Cand~IOPSIGfor16hours,1houratroomtemperature, 6hoursinanairovenat121C,1houratroomtemperature andthen'thecyclerepeated.

Thctestwascontinued for360hourswiththesamemeasurements beingmadeatregularintervals.

Theresultsofthesetestsaresho'wnontheattachedchart.Samples.l 03wereelectrically soundaftercompletion oFthetestprogram.~~~~

A\(IJp$'vvlJVCE~lJPJCV0IV<50H0fCEBROCOBPOBA'I IONCGHzlHlll~~

ALilt(4iQEBASCOServices~lnc,~~oAlcnOctober14~1975rAoc,2CUponconpletion oftheprogram,anadditional testwasperformed onsample0'3,tode;erinine if,anychangev~ouldoccuronthesampleifitwereplacedinacontinuously dryenvironment.

Thesamplewasplacedinanovenat121Cfor115hoursandtheresultsareasFollows:lRSicPowerFactor45000MegohmsH33.80Youwillnote,thisaccelerated dryingcycle'caused thesampletoreturntoitsapproximate origina)value.Franthistestprogram,itcanbeconcluded thatacontinuously wetenvironment isthemostsevere,thealternately wetanddryisthenextmostsevereandthecontinuously

'dry'isthcleasts'evere.Thissupportsyearsofactualexperience onmanytypesoFinsulation usedinactualfieldinstallations.

~~~~~~~1tshouldberemembered, thateachofthetestsdescribed;'ar exceedconditionswhichwouldbeexperienced innormaloperation andwereconducted specifically tomeasuredifferences inseverity, ofenvironmental exposurers..

  • ln'ourletteroF9/2ol/5,wefurnished testresultsonourFirewallillcablesthathavebeenimmersedinwateratboth75oCand90CFor,longperiodsoftime.Acomparison canbeeasi'lydrawntotheperfonnance of.Butylandotherearliervintageinsulations thathavedemonstrated anabilitytoperformforforty(40)yearsInactualservice.Thesetestresultsclearlyshow,the.vastlysuperior.performance ofFirewallill,permitting aconclusion tobereached,thattheendlifeofthisinsulation shouldfarsurpassexperiences obtainedoncablesthat'havehad"actual 40yearservicelife.Rockbestos Products'I'.R.Postma~C'~~~F.AP/gwcc:Wm.Thuc~W~~,~~'<~~~~>'aN)'pi~pi'~y gq'~'~~"w~i:cay">)~'~t~~spi,~gg

~~+yg~<loÃl'lpT~7$

+~g>'ts~&-~'v 6Y77P pdCi~B,,S~.OS,,i.l>>..4

.<L..-...,,,-,-P.,JC,))..>,Pi...i

.,i.g'>.l...i..-

."'."-.":-

'j""""i."'..""::.":::"."::-":::."."'."~.".""i:.":."i."'.".":::::.":i."i,"C Y7f~'uOU'Sl'Y."."GAY::".

l~fC"4iP'.":.";:.".":::.'."-::::.:-:.-.::.:::-:..":::::::

.::.=';-':::,"..":

"-"'QOi.-.",

...C.:"'.""'E11~rqI~"""":":::::"'""":.:":,:".".,

~......<p<tij'....~~...:.,j~~'a~."~fbi~)'lil"]:/1~g'L~~~~~~q(IsL+0Ol~0)~l~~~~~~~~~tJ~~~~~~~~~~~I

npv~reft'"rv44%av4~~VNvvnvr,'.',:.)r..-."'7')':')a")'l)I)4'vt'")I.~t.<<i'SL2-FSARe)Emergency Core'ooling Sy"ternpipingIcontrolroddrivemechanisms fuelassemblies andspacer-grids 1.9.4reactorinternals reactorcavityshieldvallssecondary shieldvallsI.LOWTEMPERATURE OVERPRESSURE PROTECTION (LTOP)Lowtemperature overpressure protection willbpberovidedviatheinstalla-tionofpower-operate x'ee'vavedlif'ves{PORVs)qualified forbothsaturated desteamandliquidreeservce.dlifrvice.ThePORVswillbesizedtoaccommoatewa1thepressuretransient assocaet.soci~tedwithaControlled RodWithdraws d1{tt1lowpressuresetpoint) tomitigatethepressuretransient resulting fromeitheraspuriousinitiation ofsafetynginection,1trtwithanexcessive temperature difference sisdescribed betweentheRCSandthesteamgener'atox'.

Thefi'naldesignisdescreinSubsection 5.2-6.Corresponding transients analyseswillbeprovidedinSection15.8earlyin1981.1.9.51HDROLOGICAL DATAecion2.4.additional information forPutchinsen XslandAsdiscussed inSection..aibeingevaluated ontheseparatesub)ectsofurtereaon2~4willbefie1dpossiblepotablewelllocations.

Anamendment toSectkoonoraboutMarch1981incorporating therelevantinformation.

01.9.6UNDERGROUND CABLEREVIEWKeriteinsuaepowe1tedposerandcontrolcableshaveb'eenrevievedal))~approved jpbtheNRCforunderground vet/dryenvironmental qualificat onxovv4)nwl)o aaderdroand tneer44en a4)vbytleamandmenn-ot~bov" Feb".ca~98&

.~Atlc~5%8~$

~3,tl.4,1.9.7ENVIRONMENTAL ANDSEXSHICQUALXFICATION 0CLASSlEEQUIPMENT 0(10)-1978theNRCissuedaletterrequesting additional ioalinformation ns3.10and3.11havebeenonClasslEequipment qualification.

Sectionsdinformation onseismicandenvironmenta organized toprovidetherequeste<<

foqualification testresults.11ovever, atthedateoftendering tieualification testsummax'ies andreportsofresultsares,'eceived.

Therefore, amendments stillbeinggenex'ated andhavenotyetbeenreceve~etoSections3.10and3.11villbefiledperiodically inordertoprovie'ultsofrelevantanalysesthenecessary information andalsotoprovideresusoewhenavailable

~Peramemorandum andorderissuedonMay23,'9231980,,theNRChasorderedapplicants foroperating licensestomb.etqm~tthereuirements off10aA4n SL2-FSARintegrated radiation exposurecombining 40yearsnormal.operation andtherequired'termoffunctionalityduringthepostdesignbasisaccident(DBA)period(upto1year).Tables3.11-1presentthedesignparameters forradiation foreachspecified environmental condition

~Thenormaloperations exposuredoseforequipment iseitherderivedmoreexplicity franthedesignsourcetermspresented inChapterlltakingaccountofequipment arrangement andshielding configuration, nrbasedonthemaximumdoserateanticipated fortheradiation zoneinwhichtheequipment isgenerally located.SeeSection12.3andthezonaldosemapsonFigures12.3%through12.3-12.Forequipment inlowerradiationzones(I&IE)thecumulative 40yearexposureisconservatively takenas10Rads.ForZonaVequipment withafewexceptions, (theCVCSionexchanger, spentresintank,spentfueltransfertubeandvolumeccntroltank)thedoserateis100R/hr.'ortl>eaforementioned

~~exceptiona,thedesigndose'rateishigherthan100R/hr.TheDBAexposuredoseaffecting ESFsystemsandassociated safetyrelatedcenponents isdependent onequipment location.

TheDBAconsidered forthecontainment, ReactorAuxiliary,Turbine,andDieselGenerator ouilaings isthep~~)ulation ofaLOCAinaccordance withtherecommendations nfTID-14B44andRegulatory Guide1.4,"Assumptions UsedforEvaluating the3Potential Radiological, Consequences ofaLossofCoolantAccidentforPressurized PaterReactors",

June1974(R2).TheDBAaffecting equipment intheFuelHandlingBuildingisbasedonthepostulation ofafuelIiandling acciden'to Thefeworganic,materials thatexistwithinthecontainment arediscussed inSubsection 6,1.2.Theradjatinn exposuredoseratesgiveninTable3.11"1isbasedongammaradiation exposure.

Etisrecognized thatthebetaenergyreleasefromnoblegasesisasmuchas2.5tip'~greaterthanthegammaenergyreleasewithin30dayspostaccident.

Howeverarepresentative cablegeometryinsidecontainment hasprotective coversheathing theinsulation layerandanoverallcoveroffireprotective Flamemastic orequivalent.,

Therefore theintegrated betaradiation doseforaoneyearpostaccidentperiodislessthan10percentoftheintegrated gammaradiation doseoverthesameperiod.Thiscomparison includestheconservative assumption ofconparingeffective 2.2Nevbetaswitheffeet've2,2~fevgammasandassumesaspherical cloud,radius40ft,ofairbornenuclides.

Othercnnponents insidecontainment areconsidered sufficiently shieldedfrombetaradiationsinceitiseffectively attenuated byonlyafewmillsthickness ofmetal.Therefore basedontheaforementioned discussion betaradiation isnotconsidered anenvironmental qualificatinnproblem.~~/pc>fogQ~P~3.11.6SUBMERGED CABLES~'afetyrelatedcableslocatedoutdoorsthatcoulbesubmerged inwaterarequalified foroperability undersubmerged cnditions..

P~:~<~v;r~j<'0:0i~Pok;4.Cp~y)~Ke>'4.Cp~ym(4.~<~4+~~4~r.~4~(~.~g~~&/ovaryw~t<~t~'k~s4ws~L~fl<(i~~'<</~"~+~~~f,~i<VS.C.I3.11-5

+<F4<<+~~,!'~<<dWdi>.'<<~/~BC l'AQCLPCV~NWXdWNA%%4QNACWJAMP&hNCÃr<<KAJrdlQ~&hgMVCCf40 fZ'dr,lQBMF<RCVI<WAiM~

\'Lrr~<<'r*SI2-FSARSECTIONF11:NFERENCES(1)D6Vassalo,(HRC) lettertoDr.,REUhrig(FPL),"Environmental andSeismic(/ualificationnfClassIEEquipment" datedJuly-28,1978.(2)DryREUhrrig(FPL)letterL-78-334toDBVassalo(NRC)datedOctober16,1978.(3)JJDiNunnn,"PDAnderson, REBakerandRLK~terfield, "Calculation ofDistanceFactorsforPowerandTestReactor'Sites,"TED-14844, USAEC,March23,1962.I(4)1976ANSPaper:"In-containment Radiation Environments following theNypothetical.LOCA(LMR)."Cr)y,Kr-v4j(>->'<<3

>W<<>.<-'5-3Vg4DF'<<<<'~<~Ct>d~)

~W8-~~+i/,m f.(d)pggd;0t>>)-l<<A4-Rt-6'0b>~I'Agk>>-c.)4+MPr~u<<+>/W<<~.~~g'PI.',w'II~~.F11-6P

FLORIDAPOWERANDLIGHTCOMPANYSTLUCIEUNITNO.1DESIGNCRITERIARE-EVALUATION OFCONCRETEMASONRYWALLS&rearedBReviewedBArovedBDateOriginalR1<2/7/8G

TABLEOFCONTENTS1.0'.0ItemINTRODUCTION APPLICABLE CODE~Pae3.04.0MATERIAL$

-LOADSANDLOADCOMBINATIONS 5.0ANALYSISANDDESIGN5,1"GENERAL6.07.05.2DYNAMICANALYSIS5.3STATICANALYSISALLOWABLE STRESSESANALYTICAL PROCEDURE F1UNREINFORCED WALLS-REEVALUATED BYCOMPUTER7.2REINFORCED WALLS-RE-EVALUATED BYC(NPUTER15l7'71723No.TablesIOADCOMBINATION TABLEFORCATEGORYIMASONRYWALL6ALLOWABLE STRESSINUNREINFORCED MASONRYALLOWABLE STRESSINREINFORCED MASONRYMASONRYWALLSSECTIONPROPERTIES 19 rt,e 0IFI'RODUCTION Thedesigncriteriacontained hereinisapplicable tosafety-related con-cretemasonrywallsaswellasnon-safety relatedconcretemasonrywallswhosefailurecouldadversely affectthesafetyrelatedsystemsandcom-ponentsintheirproximity inaNuclearPowerPlantfacilityandestablishes thedesignrequirements forevaluation ofthestructural adeauacyofexistingconcretemasonrywalls.Thescopeofthiscriteriacoversallmasonrywallsinproximity toorhavingattachments fromsafety-related pipingorequipment Isuchthatwallfailurecouldaffectasafety-related system.Safetyrelatedequipment orsubsystems tobeconsidered asattach-mentsorinproximity tothewallsshallinclude,butarenotlimitedto,pumps,valves,motors,heatexchangers, cabletrays,cable/conduit, HVACductwork, electrical

cabinets, instruments andcontrols.

2eoAPPLICABLE CODESANDGUIDELINES 2.1Thefollowing codesshallbeusedforthere-evaluation ofmasonrywalls,subjecttoclarifications contained inthecriteria.

CodeTitleACI531-79AmericanConcreteInstitute "Building CodeRequirements forConcretemasonryStructures" AISCAmericanInstitute ofSteelConstruction "Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" ACI318-77AmericanConcreteInstitute "Building CodeRequirements forReinforced Concrete"

2.'2Guidelines Recommended Guidelines fortheReassessment ofSafetyRelatedConcreteMasonryWalls,PreparedbyOwnersandEngineering FirmsInformal'lGrouponConcreteMasonryWalls,October6,1980.3'MATERIALS Thematerials whichhavebeinspecified intheprojectspecifications anddrawingsshallbeused.4,0LOADSANDLOADCOMBINATIONS 4.1LoadsDescriCionTheloadsaregroupedintothefollowing categories:

(a)normalloads(b)severeenvironmental loads(c)extremeenvironmental loads(d)abnormalloadsThedetaileddescription oftheseloadsisasfollows:(a)NormalloadsNormalloadsarethoseloadsthatareineffectduringnormalplantoperation andshutdownconditions.

Forthewalls,theyincludethefollowing:

(1)DeadLoad(D)Deadloadincludestheweightofthewall,andanystructures orequipment supported bythewall.(2)LiveLoad(L)Liveloadsincludealltemporary loadingsthatactonthewall,bothintheplaneandoutoftheplaneofthewali'

4.1LoadssrsA(Cont'd){3)ThermalLoad(T)0Thesearethermaleffectsloadingsonthewallduring'--norma)operating orshutdownconditions, andshallbebasedon.themostcriticaltransient orsteadystate..condition.

'(4).PipeReactionLoad(R),Tjiis,is.

the.~'eactionofpipessupported bythe-'~-'wall duringinformalmperating orshutdowncondition,

,~v,-='a'n8 shall'-beibased=:on th'e'most criticaltransient

--':sg--,',or'f6ady etatetco'ndit'ice;<i

...{b).%ever'eEnvironmental

'Loads',~.;-'.\Qev'ereenvironmental 1oads.axethoseloadsthatcouldinfre-rfs-guen'eely-Se-"encos4ntered durin~tlieplantlife.Includedin==-.-41);;-fr~ind

&ad:.{8)---:.:'.g:-;..~=,:.-'-'~"-'...

Tlirt"hsIte~~gsfjjn:Qesgs.:"shod jpejifiedfor

,the.'-site of~;;.":=';~,the..plant=

=-:-.Xtis-applicable only'to'thosewallsfor2=.:",.~";.R~".~;;.+-.."

~+.~which~gFdes3.oql:-"iN,'spec i'fiepp':~~-'~~';.'-:.

~='-':..-":(2)<<.Seismxc'Load',-'P-."".=):..'.~~"-.'..

'*'"-",..-",.Q=;::"';=.~(i f-For".,

jiasonr'yf wal1sgag'uilhings foxwhich'dynamic.'.-:=',~-'"":=",'~-".;";4n'alvsess.are performe8:-':"

'.'--:--.,-:Tt'i's's th'e"load g'ednegated bytheoperating

.basis='~.'--:~',~~'-..=-:,~:

';:=.;:,~;;jYrthqiiqke'COBB).'sŽpe'cfXi'ed,;

feartfiesite.ofthe'lant,

.".-:-~-~x

'4'>>-".~p~s::;-s""

=.-"'.-'and'ge'velopEZ:.for.':t4'0>'~ill.

~Is-th)dynamics"-'Analyses

.'.-"..',-'"-".-.'..-,-,,~.-'m

.-',,'-'--

petformq'd'or'-%lie:bgi4cf5 ng.;;-.-'Zn-pl aiie.and'ut>>of-plane'"=:--"::r.

K;=,':.':,g~".,;:.;..'~:6:..">.>>=4-',.'=-,::..=..ljadfngs

'".-'and.4>4.efCdirt'sof:I)terai:.Bisplacements ofjj'a.gl"ends rerla7'iye "t'o-'each "oth~areWonsideied.

v,.~~,tr',mwe~~s,,i,~,'d,s~~.~..

LoadsDoso~rition(Cont'd).

(ii)Formasonrywallsinbuildings forwhichearthquake loadingsaredeveloped fromempirical equations:

Unlessnotedotherwise, thisistheloadduetoearthquake calculated toactonthewallaccording totheprovisions oftheapplicable buildingcodeorstandard, (c)ExtremeEnvironmental LoadsEstremeenvironmental loadsarethoseloadswhicharecrediblebuthighlyimprobable.

Theyinclude:(1)SeismicLoad(F)eqsForseismicCategory1buildings, andthosenon-seismic Category1buildings forwhichtheloadisspecified, thisistheloadgenerated bythesafeshutdownearthquake (SSE)specified forthesiteoftheplant,anddeveloped asdescribed forseismicload(F)~ego(2)TornadoLoad(W)Ifatornadoevent,orsimilarhigh-intensity windpheno-menonisspecified forthesite'ftheplant,thisistheloadgenerated bytheevent.,Itincludesloadsduetowindpressure, barometric pressuredropsbetweentheexteriorandinteriorsidesofthewall,andimpactloadingsduetowindgenerated missiles.

Theseloadsareapplicable onlytothosewallsforwhichthisloadisspecified.

(RL

AbnormalLoadsIAbnormalloadsareloadssuchasthosegenerated bythefailureofhighenergypiping,orequipment failurewhichgenerates missiles.

Thiscategoryofloadsincludesthefollowing:

(1)PressureLoad(P)Thisisthepressureequivalent staticloadwithinthemasonr'ywallcompartment causedbyfailureofhighenergypipingorequipment.

Theloadincludesanappropriate dynamicloadfactordetermined byanalysis, orbasedonempirical data.IRi(2)ThermalLoad(T)Thisisthethermalloadunderthermalconditions generated bytheabnormalevent,andincludesTeffects.0-(3)ReactionForce(R)aThisisthepipereactionunderthermalconditions generated bythepostulated pipebreak,andincludesReffects.Theload0shalltakeintoaccountanychangetoRduetoredistribution ofpipereactions causedbydiscontinuities inthepipeduetothebreak.(4)PipeLoad(Y)Thisistheequivalent staticloadonthewallgenerated bythereactionoftheescapingfluidonthebrokenhigh-energy pipeduringthepostulated pipebreak,andincludesanappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.(5)JetImpingement (Y)Thisist'e)etimpingement equivalent staticloadonthewallgenerated bythepostulated pipebreak,andincludesanappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.

0 (d)AbnoarulLoads(Cont'd)(6)MissileLoad(Y)Thisloadisthemissileimpactequivalent staticloadonthewallgenerated byequipmcnt orpipefailure,andincludesanappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload,4.2LoadCombinations SeismicCategoryIorotheraffectedmasonrywallsshallbere-evaluated fortheloadsasgiveninTable1.TABLE1LoadCategoryLOADCOMBINATION TABLEFORCATEGORYICONCRETEMASONRYWALLYrBValueY]tforAllowable DLTRWPWFeqoRFeqsYmT0QataaStresses(Note1NormalXXXXSevereEnvironmental (1)SevereEnvironmental (2)XXXXXXXXXXExtremeEnvironmental (1)ExtremeEnviron"mental(2)AbnormalXXXXXXXXXXXXX'UUAbnormal/Severe Environmental UAbnormal/Extreme Environmental XXXXXXU'Note1ValuesforSandUarespecified inTable2and3forunreinforced andreinforced masonry,respectively..

Table2;Allowable StressesinUnreinforced tlasonryDescription

  • Al1owableY1axinum(psi)(p>>)Al1owable(psi)t'oaximum (ps'i)Compressive Aial(1)FlexuralBearingOnfullareaOnone-third areaorlessShearFlexuralmembersShearwalls1TensionNormaltobedjointsHollowunitsSolidorgroutedParalleltobedjoints(4)HollowunitsSolidorgroutedGroutCoreCollarjointsShearTension0.22f'.33f'.25f'.

375f'.1Jf0.9P'.6Jm,1.0Jm1.0Jm1.6/m2.6P,'000 12009001200503425405080'4"m""m0.62f'.95f'~7m1.350.83m1.67P1.67/m2.6Jm,4.2/f'000300022503000755162.67841341212 0

40tes(l)(2)(3)(4)toTable2:h3Thesevaluesshouldbemultiplied by(l-'4>))ifthewa.lrasasignificant verticalload.Usenetbeooecareawiththesestresses.

Forstackedbond-construction usetw.-thirdsofthevaluesspecifieC.

Forstackedbondconstruction usetwo-thirds ofthevaluesspci=ie"'or tensionnonraltothebeCjointsintheheadjointsof.stackedbondconstruction.

Table3:Allowable StressesinPeinforced MasonryDescription Al1owablet1aximum(psi)(psi)Al1owableMaximum(psi)(psi)Compressive AxialFlexura1BearingOnfullareaOnone-third areaorless0.22f'.33f'.25f'.375f'000120090012000.44f'.85f'.62f'.95f'000240018002400ShearFlexuralmembersShearHalls(~)MasonryTakesShearM/Vd+1M/Yd~0Reinforcement TakesShearM/Vd)>1M/VdOReinforcement BondPlainBars~DeformedBarsTensionGrade40'Grade60JointMireCompression 1.1Jf'9J'm2OJfm5074751206014020,00024,000.5F,30,0000.4F17f'5'612312518080186~60-9Fy0.9F0.9F0.9F

otstoTable3:(1)Thesevaluesshouldberiultiplied by(1-(--))i'hewallhasasign',icaritverticalload.(2)Thissressshouldbeevaluated usingthee'fective areashownir,figurebelowexceptasnotedinPar.7.2.1(a).w'sor6lOiSpacingffwhichever illr'SSlprtvnnrnlfbonrfI~v/r~yrr:r r~':r'.ri.rr~Arrrlr'i

~~~~~~~~a~~~~Aresassvmesfeffecsive infleavralcompression, forcenormalloface(3)Netbeddedareashallbeusedwiththesestresses(4)ForYi/Vdvaluesbetween0and1interpolate betweenthevaluesoivenfor0andl.

0 ANAI.YSIS AN)DESIGN,General5.1.1Concretemasonrywallsshallbere-evaluated according toworkingstressdesignprinciples.

5.1.2TheResponseSpectrumMethodshallbeusedforestablishment ofseismiceffectsonmasonrywali'.2Ib""""5.2.1FreuencAnalsis-SectionCrackinConsideration Frequency analysisshallbeperformed usingeithercomputerorhandcalculation inordertodetermine theout-of-plane frequencies ofmasonrywalls.Theuncracked behaviorandcapacities o'fthewallsshallbeconsidered forunreinforced walls.Forreinforced walls,bothcrackedanduncracked be-Jhaviorandcapacities ofthewallsshallbeconsidered.

5.2.2Uncracked SectionFortheuncracked sectionoftheunreinforced masonrywall,theequivalent momentofinertiashallbeobtainedfromatransformed sectionconsisting oftheblock,mortar,cellgroutandwherepresent,coreconcrete.

Fortheuncracked reinforced wall,thereinforcement areashallalsobetrans-formedincalculating themomentofinertia.

5.2.3.CrackedSection~~Xftheappliedmoment(Ma)exceedstheuncracked momentcapacity(Hcr),thewallshallbeconsidered tobecracked.Theequivalent momentofinertia(Ie)ofthereinforced crackedwallsshallbecomputedasfollows:where,McrIUncracked momentcapacity=Mcr=fr(-),Ma~AppliedmaximummomentonthewallI~Momentofinertiaofthetransformed sectionastdescribed inPar.5.2.2.IcrMomentofinertiaofthecrackedsectionModulusofruptureTensilestressdefinedinTable2formortarorgroutifthemasonryJointisassumedtobecracked.Distanceofneutralplanefromtensionface5.2.4MethodofFreuencAnalsisForthemasonrywall,whichissubJecttoseismicloadonlyandhasnolargeopenings, thestandardexpressions forsingledegreeoffreedomsystemscanbeusedforcomputing thenaturalfrequency ofthewall.ForothertypesofwallssubJected todifferent typesofloads,afiniteelementmodelshallbeused.One-waybehaviorcanbeassumediftheaspectratio,h/1(heighttolength)islessthan0.5;otherwise two-waybehaviorshouldbeassumedforthewallwithfour-side support.

5.2~5Damp~inThecriticaldampingvaluestobeusedshallbeasfo11ows:A.Forreinforced andunreinforced uncracked wallsuse2%forOBEandSSE.B.Forreinforced crackedwallsuse4%forOBE,7%forSSE.5,2.6BoundaConditions

,Boundary conditions forconcretemasonrywallsshallbeselectedwithregardtotherelativestiffness ofthemasonrywallstotheir\suppo'rts andalsotothestructural detailswhichprovidetheinter-facebetweenthewallandsupports.

Theguidelines fortheselection andqualification ofboundaryconditions are:A,SileSuort-Asimplesupportcondition maybeassumedatthetoporsidesofamasonrywallifsheartransferacrossthejointcanbedemonstrated underallloadingcondi.tions; however,no momenttransferisexpected.

Thesheartransfermaybeaccomplished byeithermechanical methods(embedments, dowels,masonryties,supportangles,etc.),orbywedgingactionofthemasonrywallwithitssupports.

Aplainmortarjointonthebottomsupport(bedjoint)mayprovidethenecessary sheartransferiftheshearfrictionconceptcanbejustified asfollows:V~NQwhere:V~shearresistance ofmortarjointN~forcenormaltothebedjoint(netdownwardload)~~u~,coefficient offriction, 1.0forconcrete, 0.8formortarRlplacedagainsthardenedconcrete, and0.7forcon-creteagainststructural steel.Aplainverticalmortarjointatsidesofthewallisnotquali-,fiedasasimplesupport.

0 5.2.75~2~8.5.2.9B.Fixed~Suport-Fixedsupportconditions maybeassumedpro-Ividedthe)ointcantransfertheflexuralstressestothesupport.Poisson's RatioPoisson's ratioequalto0.2isappropriate forbothreinforced andnon-reinforced concretemasonrywalls'eismic acceleration shallbeselectedfromeitherthefloorresponsespectrumatthebottomofthewall,orthefloorresponse\spectrumatthehigherelevation, whichever yieldsthemaximumresponsewiththefrequency determined inPar.5.2.4.ModalParticiationForhandcalculation, seismicacceleration shouldbe,increased byafactorequalto1.05toaccountfortheparticipation ofhighermodesforout-of-plane flexuralcalculations.

Whenthelowestfundamental frequency determined inPar.5.2.4isgreaterthan33hertz,thefactorisunity.5,2.10Interstorv DriftEffectsIn-planeorout-of-plane interstory displacements shallbeobtainedfromtheoriginalbuildingstructure dynamicanalysis.

Themaximumdiiferential displacement duetoout-of-plane driftshallbeappliedatthetopsupportofthewallinstaticanalysis.

'\

Sta~ticAnalsisandSerosaEvaluation 5.3.1StressCombination Stressesduetoin-planeloadsandout-of-plane loadsshallbecombinedusingthesquarerootofthesumofthesquaresmethod(SRSS).5.3.2Multi-theWallsIndividu'al wythesofamultiplewythewallshallbe,assumedtoactindependently undertheactionofseismicloadsunlessbondedbyreinforcement, boltingorotherdevicesthattrans-fershearatthewytheinterface.

5.3.3Attachment InertialLoadsStressesduetoattachment loadsshallbecombinedwithwallinertialloadsusingtheabsolutesummethod.Blockpulloutshallbecheckedlocally.5.3s4In-PlaneStrainDuetoInterstor DriftIn-planeeffectsmaybeimposedonmasonrywallsbytherelativedisplacement betweenfloorsduringseismiceventsasdescribed inPar.5;2.10.However,thewallsdonotin-tendtocarryasignificant partofthebuildings storyshear.Thestrainacceptance criteriashallbeusedforin-planestorydriftwhileareasonable marginremainsforoutofplaneloading.<<15-

Thegrossshearstrainisdefinedtobe:Y-+{whereg=strainrelativedisplacement betweentopandbottomofwallHheightofwall.Thepermissible in-planeshearingstrainsare:=0.0001forunconfined wallsuY=0.001forconfinedwallscTheabove.valuesshallbeusedfornormalandsevereen-vironmental loadcombinations.

Forotherloadcombinations, thestrainsshallbemultiplied by1.67.Anunconfined wallisattachedononeverticalboundaryanditsbase.Aconfinedwallisattachedinoneofthefollowing ways:(a)onallfoursides;(b)onthetopandbottomofthewall(c)onthetop,bottomandoneverticalsideofthewall(d)onthebottomandtwoverticalsidesofthewall.

Allowable Stresses6.1GeneralThevaluesgiveninTable2shallbethestressallowable forunreinforced masonry.The,valuesgiveninTable3shallbethestressallowable forreinforced masonry.ThevaluesofSgiveninbothtablesshallbeusedforNormalandSevereEnvironmental loadcombinations, whereasthevaluesofUshallbeusedfor.otherloadcombinations, asindicated inTable1,Wherethebendingduetoout-of-plane inertialloading-causesflexuralstressesinthewalltoexceedthedesignallowables, thewallcanbeevaluated bythe'ArchingAnalysis'or theunreinforced crackedwallsandbythe'Yield-Line Theory'r'EnergyBalanceTechnique'or thereinforced crackedwalls.7.0ANALYTICAL PROCEDURE 7.1Unreinforced Walls-Re-evaluated bComuter7.1.1FiniteElementModelforFreuencAnalsis(a)Dividethewallintoquadrilateral, rectangular ortri-angularplateelements.

Aminimummeshsizeof4x1isrequiredforonewaybehaviorand4x4isrequiredfortwowaybehavior.

Thenumberofelementsshouldbeincreased whereopeningsandhighstressconcentrations arepresent.Thecapacities oftheelementsshouldinclude17"

7.1.1FiniteElement1fodelforFr~euenc~

An~elsis(Cont'd)(a)bothout-of-plane bendingandin-planeshear.ANSYSpro-gramSTIF43orSTIF63willsatisfytheserequirements.

Theaspectratiooftheelement(longsidetoshortside)shallnotexceed3.]7~~P~gZCIzzF-rd8/~g.r~g)c//I/rIC>>burghSt!Fc(b)Theweightsofattachments (W.andW2)shallbeconsidered 1asmassesuniformly distributed overtheareaswheretheat-tachments arelocated.Theinputsofthemassesatthenodalpoints(9,10,14,13)mayusegeneralized masselements(STIF21inANSYSProgram).

(c)Defineeachelementandnodalpointlocation.

Inputmaterialproperties Ex,Ey,+xy,P(x,P(y,fasexplained intheANSYSmanual.Anequivalent thickness oftheplateelement(t)shallbeeobtainedforhollowblockwallssuchthatthesamemomentofinertiacanbekept.SeeTable4fort.Theequivalent densityoftheelement(fz)shall'lso beobtaineddhchthatthetotalweightremainsthesame."18-TABLE4-lNSONRYWALLSSECTIONPROPERTIES 3'M'I.ir"BLOCKWALLDIMENSIONS EUIVALENTTHICKNESS NominalDesigntswUnreinforced 12btT=87-5/81-1/417-1/23~815.31439.936.89610129-5/81-3/81-1/87-1/24.817.06876.818.67711-5/81-1/21-1/87-1/25.818.811503.4510.384Forblockwallsfilledwithmortar,theactualthickness ofthewallsmaybeusedfortheelement.(d)Twodynamicdegreesof freedom(UZandROTX)shouldbeassignedtoeachnodalpointexceptatthe-boundary=where thenumberofdynamicdegreeoffreedomwillbereducedtoone(ROTX),ifitissimplysupported or0ifitisfixed.'(e)Inputothernecessary datatoperformMode-Frequency analysisfortheuncracked wall.(f)Selectseismicacceleration eitherfromthefloorresponsespectrumatthebottomofthewallorthefloorresponsespectrumatthehigherelevation, whichever yieldsthemaximumresponsewiththefre-quencydetermined fromtheabove.A251ofthefrequency rangeshallbeconsidered duetovariations ofmasonrymaterialandotherfactors.-19" 7.1,2StaticAnal~sis(a)Prepareinputloadings, i.e.dead,live,seismic,equipment loads,etc.andapplytothesamemodel.Concentrated loadsshallbeappliedtothenodalpoints,(b)Thedeadweightofthewallcanbegenerated automatically in.thecomputerifthadensity(f)hasbeeninputinrthedata.(c)Seismicloadscanbeappliedstatically byusingapressureloadwhichisequaltotheproductofdeadweightandtheacceleration coefficient selectedfromPar.7;1.1(f).(d)'heoutofp-lan-einterstory driftofthewalldueto~R!differential displacements'etween thetwofloorsofthebuildingdynamicanalysiswillalsobeinputaspartoftheseismicloadsinthemodelbydefiningnewdisplace>>

mentatthetopboundary.

(e)LoadswillbecombinedintheStaticAnalysisaccording to'heloadcpmbinations specified inPar.4.2.Themaximumbendingmomentoftheelement(Ma)shallb'ecomparedwiththemomentcapacityoftheuncracked section(Mcr).(f)IfMa(Mcr,i.e.sectionuncracked, allotherallowables shallbechecked.IfMa>Mcr,thesectioniscracked.AnArchingAnalysisshallbeperformed.

7,1,3Archin~Anal~sis (a)Thebehaviorofthecrackedwallmaybeconsidered asthatofathreehingedarchwithhingesformedatmidspan,topandbottomsupports.

Ifagapexistsatthetopofthewall,agappedarchingactionshouldbeassumed,otherwise, arigidarchingisassumedforanalysisas'llustrated inFig.l.(b)Thereacti'ons ofthethree-hinged wallcanbesolvedbyconsidering arigidbodyinequilibrium asshowninFig.2.(c)Thecompressive stressoftheblockshallbeassumedasarectangular stressdistribution overadepth'a'ssumed equalto't'ftheblockwall.Itsmagnitude sshallbelessthan0.85f'm.(d)Thedeflection ofthemidspancanbedetermined bythemethodofvirtualworkassumingthatarchmembersareanalogous tocompression membersinatruss.Thecal-culateddeflection shouldnotbemorethan0.3t,where't'sthethickness ofthewall.(e)Checkfrictionshear,localstressesandcomparewiththeallowables asstatedinthedesigncriteria.

~~~~~1IrglDDlJICO'Ll/ACE(LLC 1I~11t,OAD)MCVVTiVTlTI~INlAOII>CgalCAIICDIIIOII<<Flgt'1~Stetch111ustretl~

theDifferences lnlotionSetrccnklyldandGappedkrchl<.5~>>flaHRlCIDklCNIMCClrltgIIYIIIMCfly.2,freeSodaDiagramShmlnyForceslnk15ldandCoppedArchly.<<22>>

7.2Reinforced 4'alls-Re-evaluated b~C~omuter(a)Theeffective widthofwall,asdetermined bySec.9.4.6.1ofACI531canbeusedasthewidthoftheelementin"hehorizontal direction.

IfDUR-0-VAL reinforcement isprovidedforstackbondwalls,theeffective widthofthereinforced unitscanbeincreased tothesameamountasthatusedforrunningbondwalls.(b)Sameasunreinforced.

(c)Sameasunreinforced exceptasnotedbelow:Theequivalent thickness oftheelementforarein-forcedwallfilledwithmortarscanbeobtainedasfollows:i)Findtransformed sectionareabymultiplying thereinforcing bararea(A)by(n-l),wherenisthe8modularratioequaltoE/E.smii)Findthemomentofinertiaofthecrosssectionaboutitscentroid(usuallyatcenter),Im+s.iii)EquateI(=-bt)toI13e12em~is~Solveforte.(d)to(f)Sameasunreinforced.

7',2StaticAnalsis(a)to(e)Sameasunreinforced.

(f)Sameasunreinforced exceptIfMa>Mcr,thesectioniscracked.Acrackedsectioniteration procedure shallbefollowed, asdescribed inPar.7.2.3."23" t

7.2.3CrackedSectionIteration Findtheequivalent momentofinertia(I)asstated"inPar,5.2.3ofthedesigncriteria.

Themomentofinertiaofthecrackedsection(I)shallbecrobtainedfromthetransformed sectionconsisting ofthereinforcement areainthetensionsideandcompressive areaoftheconcreteblockandanyfilled-in material(i.e.'mortar orcellgrout),(b)Findtheequivalent thickness oftheelementbyequating1bt=I.Solvefor.t312e'e(c)Rerunthefrequency andstaticanalysisusingthesameinputdataexceptequivalent densityandthickness oftheelement,andsheararea(tensionareashouldbededucted).

(d)Themomentcapacityofthecrackedsection,Mcap(~fA)d)shouldbecomparedwiththeappliedssmoment(Ma).IfMa<Mcap,checkcompressive stressofthemasonryandallotherallowables andverifythecracksize.(e)IfMa0Mcap,thewallcanbeevaluated bythe'Yield-Line Theory'ased onmechanisms ofcollapsewhichisanalogous totheplasticdesignmethodforsteelframes.7.2.4AnalsisbYield-Line Theo~~Thedescription oftheevaluation ofawallbythe'Yield-Line Theory'an befoundinthetextbook,

'DesignofConcreteStructures'y GeorgeMinter.

00 7.2.4Aeel~~sis bYield-Line The~os(Csee'd.)

Ifthe'eflection exceedsthreetimestheyielddeflection, i.e.ductility ratio>3,theresulting displacement shallbemultiplied byafactorof2andadetermination madeastowhethersuchfactoreddisplacements wouldadversely impactthefunctionofsafety-related systemsattachedand/oradjacenttothewali'heevaluation andjustification ofthewallsinthiscategorywillbeperformed onawall-by-wall basis."25-

SL2-1'SAR uestionNo.430.49Provideadiscussion oftheinservice inspection programforthrottle-stop, control,reheatstopandinterceptor steamvalvesandthecapability fortestingessential components duringtur-binegenerator systemoperation.

(SPR10.2,PartIII,Items5and6.)~ResonseTheturbinethrottle/stop, reheatstopandinterceptor willbetestedonaweeklybasis.Thesevalvesconstitute allvalvesrequiredtopreventoverspeed intheunlikelyeventofaMSIVfailuretoclose.490.49-1 i~'\0~4