ML17318A033: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 11/13/2017
| issue date = 11/13/2017
| title = Issuance of the Core Operating Limits Report for Reload 21, Cycle 22
| title = Issuance of the Core Operating Limits Report for Reload 21, Cycle 22
| author name = Navin P D
| author name = Navin P
| author affiliation = Exelon Generation Co, LLC
| author affiliation = Exelon Generation Co, LLC
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Exelon Generation November 13, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Peach Bottom Atomic Power Station, Unit 3 Renewed Facility Operating License No. DPR-56 NRG Docket No. 50-278 TS 5.6.5.d
{{#Wiki_filter:Exelon Generation TS 5.6.5.d November 13, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Peach Bottom Atomic Power Station, Unit 3 Renewed Facility Operating License No. DPR-56 NRG Docket No. 50-278


==Subject:==
==Subject:==
Issuance of the Core Operating Limits Report for Reload 21, Cycle 22 Enclosed is a copy of Revision 12 of the Core Operating Limits Report (COLA) for Peach Bottom Atomic Power Station (PBAPS) Unit 3 for Reload 21, Cycle 22. Revision 12 of this report incorporates the revised cycle specific parameters resulting from the new core configuration as a result of the PBAPS Unit 3 refueling outage. This COLR is being submitted to the NRG as required by the PBAPS, Unit 3 Technical Specifications (TS) Section 5.6.5.d. If you have any questions concerning this letter, please contact Ms. Stephanie J. Hanson at (717) 456-3756.
Issuance of the Core Operating Limits Report for Reload 21, Cycle 22 Enclosed is a copy of Revision 12 of the Core Operating Limits Report (COLA) for Peach Bottom Atomic Power Station (PBAPS) Unit 3 for Reload 21, Cycle 22. Revision 12 of this report incorporates the revised cycle specific parameters resulting from the new core configuration as a result of the PBAPS Unit 3 refueling outage.
Patrick D. Navin Site Vice President Peach Bottom Atomic Power Station CCN: 17-94  
This COLR is being submitted to the NRG as required by the PBAPS, Unit 3 Technical Specifications (TS) Section 5.6.5.d.
If you have any questions concerning this letter, please contact Ms. Stephanie J. Hanson at (717) 456-3756.
Patrick D. Navin Site Vice President Peach Bottom Atomic Power Station CCN: 17-94


==Enclosure:==
==Enclosure:==
 
Unit 3 Core Operating Limits Report for Reload 21, Cycle 22, Revision 12 cc:     Regional Administrator, Region I, USNRC (without attachment)
Unit 3 Core Operating Limits Report for Reload 21, Cycle 22, Revision 12 cc: Regional Administrator, Region I, USNRC (without attachment)
USNRC Senior Resident Inspector, PBAPS (without attachment)
USNRC Senior Resident Inspector, PBAPS (without attachment)
Project Manager -PBAPS, USNRC (with attachment) R. R. Janati, Pennsylvania Bureau of Radiation Protection (without attachment)
Project Manager - PBAPS, USNRC (with attachment)
R. R. Janati, Pennsylvania Bureau of Radiation Protection (without attachment)
S. T. Gray, State of Maryland (without attachment)
S. T. Gray, State of Maryland (without attachment)
Exelon Nuclear -Nuclear Fucb P3C22 C'orc Operating Limits Repon COLR PEACH BOTTOM 3 Rev. 12 Page I of26 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 3 RELOAD 21, CYCLE 22 (This revision is a complete re-write)
Prepared By: .-r-r . Tae Wook Ahn -Nuclear Fuels Prepared By: Reviewed By: ___
__ l£. _____ _ Matthew Miller -Reactor Engineering Reviewed By: Supplementary Review By: Independent Review By: Travis Bement Engineering Safety Analysis Patricia Henry -Cycle Management Lead -Ta_m_a-ra_S_t-at-he_s_ Nuclear Fuels A [)(/jJrri'P;J Approved By: ____ ___ 0_ "'0_0 ____ _ Armando Johnson -NF Senior Manager SQRBy: Date: 10/09/2017 D 10/9/2017 ate: ----Date: I0/10/1? Date: 10/9/17 Date: 10/9/2017 Date: 10/10/17 Date: _1_1 O_C_T_1_7 Date: /O /nj;'}
Exelon Nuclear
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 2 of 26  Table of Contents Page  1.0            Terms and Definitions 5  2.0            General Information 6  3.0            MAPLHGR Limits 7
4.0            MCPR Limits 8  5.0            LHGR Limits 1 2  6.0            Rod Block Monitor Setpoints 1 4  7.0            Turbine Bypass Valve Parameters 1 5 8.0            EOC Recirculation Pump Trip (EOC
-RPT) Operability 1 6 
===9.0 Stability===
Protection 1 7  10.0 Asymmetric Feedwater Temperature Operation (AFTO) 1 9  11.0 Modes of Operation 2 4  12.0 Methodology 2 4  13.0 References 2 5  Appendix A (Power/Flow Operating Map for MELLLA+)
2 6 Exelon Nuclear
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 3 of 26  Revision History Revision Description Revision 12 New issue for Cycle 22 Exelon Nuclear
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 4 of 26  List of Tables Page Table 3-1 MAPLHGR Versus Average Planar Exposure 7  Table 3-2 MAPLHGR Single Loop Operation (SLO) Multiplier 7  Table 4-1 Operating Limit Minimum Critical Power Ratio 9  Table 4-2 Power Dependent MCPR(P) Limit Adjustments and Multipliers 10  Table 4-3 Flow Dependent MCPR Limits MCPR(F) 1 1  Table 4-4 SLO Flow Dependent MCPR Limits MCPR(F) 1 1 Table 5-1 Linear Heat Generation Rate Limits
- UO2 rods 1 2  Table 5-2 Linear Heat Generation Rate Limits
- Gad rods 1 2 Table 5-3 Power Dependent LHGR Multiplier LHGRFAC(P) 1 3  Table 5-4 Flow Dependent LHGR Multiplier LHGRFAC(F) 1 3  Table 6-1 Rod Block Monitor Setpoints 1 4  Table 7-1 Turbine Bypass System Response Time 1 5  Table 7-2 Minimum Required Bypass Valves to Maintain System Operability 1 5 Table 8-1 Recirculation Pump Trip Response Time 1 6  Table 9-1 Automatic BSP Setpoints for the Scram Region 1 7 Table 9-2 Manual BSP Endpoints for Normal Feedwater Temperature 1 8  Table 9-3 Manual BSP Endpoints for Reduced Feedwater Temperature 1 8  Table 10-1 AFTO Thermal Limit Penalties 1 9 Table 10-2 AFTO Power Dependent LHGR Multiplier LHGRFAC(P) 20
&deg;F < FWT DELTA  55&deg;F 20  Table 10-3 AFTO Flow Dependent LHGR Multiplier LHGRFAC(F) 20&deg;F < FWT DELTA  55&deg;F 20 Table 10-4 AFTO Operating Limit Minimum Critical Power Ratio 20
&deg;F < FWT DELTA  55&deg;F 21  Table 10-5 AFTO Power Dependent MCPR Limit Adjustments and Multipliers 22  MCPR(P) 20&deg;F < FWT DELTA  55&deg;F Table 10-6 AFTO Flow Dependent MCPR Limits MCPR(F) 20
&deg;F < FWT DELTA  55&deg;F 22 Table 10-7 AFTO MAPLHGR Reduction Factor 23  Table 11-1 Modes of Operation 24  Table 11-2 EOOS Options Included in 'Base' Conditions 24 


Exelon Nuclear  
Exelon Nuclear - Nuclear Fucb                                              COLR PEACH BOTTOM 3 Rev. 12 P3C22 C'orc Operating Limits Repon                                                                  Page I of26 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 3 RELOAD 21, CYCLE 22 (This revision is a complete re-write)
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 5 of 26  1.0 Terms and Definitions ABSP Automatic Backup Stability Protection AFTO Asymmetric Feedwater Temperature Operation AFTO LFWH Asymmetric Feedwater Temperature Operation Loss
                                                      ~/
-of-Feedwater Heating APRM Average Power Range Monitor ARTS APRM and RBM Technical Specification Analysis BASE The "BASE" condition is defined by a group of individual operating conditions that are applicable to all Modes of Operation discussed in Section 11. The "BASE" condition includes the EOOS conditions provided in Table 11
                                                .-r-r .                       Date: 10/09/2017 Prepared By:
-2 as well as operation with FWHOOS/FFWTR. BOC Beginning Of Cycle BSP Backup Stability Protection DSS-CD Detect and Suppress Solution
Tae Wook Ahn - Nuclear Fuels 10/9/2017 Prepared By:                                                        Date: - - - -
- Confirmation Density DTSP Rod Block Monitor Downscale Trip Setpoint EOC End of Cycle EOOS Equipment Out of Service. An analyzed option that assumes certain equipment to be non
Reviewed By:        _~____./_*_~l&#xa3;.______
-operational. EOR End of Rated. The cycle exposure at which reactor power is equal to 100% with recirculation system flow equal to 100%, all control rods fully withdrawn, all feedwater heating in service and equilibrium Xenon. FFWTR Final Feedwater Temperature Reduction FWHOOS Feedwater Heaters Out of Service FWT Feedwater Temperature HFCL High Flow Control Line HTSP Rod Block Monitor High Trip Setpoint ICF Increased Core Flow ITSP Rod Block Monitor Intermediate Trip Setpoint LHGR Linear Heat Generation Rate LHGRFAC(F)
___                    __                    Date:  I0/10/1?
ARTS LHGR thermal limit flow dependent adjustments and multipliers LHGRFAC(P)
Matthew Miller - Reactor Engineering Reviewed By:        ----~        ----*-~  --------
ARTS LHGR thermal limit power dependent adjustments and multipliers LTSP Rod Block Monitor Low Trip Setpoint MAPLHGR Maximum Average Planar Linear Heat Generation Rate MCPR Minimum Critical Power Ratio MCPR(F) ARTS MCPR thermal limit flow dependent adjustments and multipliers MCPR(P) ARTS MCPR thermal limit power dependent adjustments and multipliers MELLLA Maximum Extended Load Line Limit Analysis MELLLA+ Maximum Extended Load Line Limit Analysis Plus MSIVOOS Main Steam Isolation Valve Out of Service NCL Natural Circulation Line OLMCPR Operating Limit Minimum Critical Power Ratio PLUOOS Power Load Unbalance Out of Service PROOS Pressure Regulator Out of Service RBM Rod Block Monitor RDF Rated Drive Flow RPTOOS Recirculation Pump Trip Out of Service RTP Rated Thermal Power RWE Rod Withdrawal Error SLMCPR Safety Limit Minimum Critical Power Ratio SLO Single Loop Operation TB SOOS Turbine Bypass System Out of Service TCV/TSVOOS Turbine Control Valve and/or Turbine Stop Valve Out of Service
Travis Bement Engineering Safety Analysis Date: 10/9/17 Supplementary Review By:                                                          Date: 10/9/2017 Patricia Henry - Cycle Management Lead Independent Review By:
                                -Ta_m J~~
_a-ra_S_t-at-he_s_ Nuclear Fuels Date:    10/10/17 A      [)(/jJrri'P;J Approved By: _ _ _ _~                _ _ __
0
                                                            "'0_0
_ _ _ __      Date: _1_1O_C_T_1_7 Armando Johnson - NF Senior Manager SQRBy:                                                              Date:  /O /nj;'}


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                     COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                 Page 2 of 26 Table of Contents Page 1.0          Terms and Definitions                                              5 2.0         General Information                                               6 3.0          MAPLHGR Limits                                                    7 4.0          MCPR Limits                                                        8 5.0          LHGR Limits                                                      12 6.0          Rod Block Monitor Setpoints                                      14 7.0          Turbine Bypass Valve Parameters                                  15 8.0          EOC Recirculation Pump Trip (EOC-RPT) Operability                16 9.0          Stability Protection                                             17 10.0        Asymmetric Feedwater Temperature Operation (AFTO)                 19 11.0        Modes of Operation                                                24 12.0        Methodology                                                      24 13.0        References                                                        25 Appendix A (Power/Flow Operating Map for MELLLA+)                26
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 6 of 26 2.0 General Information This report provides the following cycle
-specific parameter limits for Peach Bottom Atomic Power Station Unit 3 CYCLE 2 2 (RELOAD 21):  Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)
Single Loop Operation (SLO) MAPLHGR multipliers Operating Limit Minimum Critical Power Ratio (OLMCPR)
ARTS MCPR thermal limit adjustments and multipliers SLO MCPR adjustment Linear Heat Generation Rate (LHGR)  ARTS LHGR thermal limit multipliers SLO LHGR multipliers Rod Block Monitor (RBM) allowable values and MCPR limits  Turbine Bypass Valve parameters  EOC Recirculation Pump Trip (EOC
-RPT) parameters  Stability Protection Setpoints Asymmetric Feedwater Temperature Operation (AFTO) thermal limit penalties These values have been determined using NRC
-approved methodology and are established such that all applicable limits of the plant safety analysis are met. SLO, FWHOOS operation, and FFWTR operation are not permitted in the MELLLA+ Region as controlled by station procedures. For the MELLLA+ Region, a specific definition of FWHOOS is provided in Facility Operating License (FOL) Section 2.C(16).
This report provides cycle
-specific Operating Limit MCPR, LHGR, MAPLHGR thermal limits, and related information for the following conditions:
All points in the operating region of the power/flow map including MELLLA+ Region down to 83% of rated core flow during full power (3 951 MWt) operation (Appendix A)
Increased Core Flow (ICF), up to 110% of rated core flow End-of-Cycle Power Coastdown to a minimum power level of 40%
Feedwater Heaters Out of Service (FWHOOS) to 55&deg; F temperature reduction Final Feedwater Temperature Reduction (FFWTR) between End
-of-Rated (EOR) and End-of-Cycle (EOC) to 90&deg; F temperature reduction (4 th and 5 th stage FWHOOS)  Asymmetric Feedwater Temperature Operation ARTS provides for power and flow
-dependent thermal limit adjustments and multipliers that allow for a more reliable administration of the MCPR and LHGR thermal limits. The OLMCPR is determined by the cycle
-specific reload analyses in Reference 2. Rated LHGR values are obtained from the bundle
-specific thermal
-mechanical analysis. Supporting documentation for the ARTS
-based limits is provided in Reference 2.
The off-rated limits assumed in the ECCS
-LOCA analyses bound the cycle
-specific limits calculated for MELLLA+ operation.
The Allowable Values documented in Reference 5 for feedwater temperature as a function of thermal power for both FWHOOS and FFWTR are specified in the appropriate Peach Bottom procedures.
The Peach Bottom Unit 3 Cycle 22 core is comprised entirely of GNF2 fuel.
Also note that the following description of MAPLHGR, LHGR and MCPR limits pertain to NON-AFTO conditions. A separate description of AFTO limits and their associated ARTS tables is in Section 10. Preparation of this report was performed in accordance with Exelon Nuclear procedures. This report is provided to the NRC in accordance with Technical Specification 5.6.5 of Reference 1 and contains all thermal limit parameters related to the implementation of the ARTS Improvement Program and MELLLA+ for Peach Bottom Unit 3 Cycle 2 2.
Exelon Nuclear
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 7 of 26   3.0 MAPLHGR LIMITS


===3.1 Technical===
Exelon Nuclear - Nuclear Fuels                          COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                      Page 3 of 26 Revision History Revision                            Description Revision 12                        New issue for Cycle 22
Specification Section 3.2.1, 3.3.4.2, 3.4.1 and 3.7.6


===3.2 Description===
Exelon Nuclear - Nuclear Fuels                                    COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                Page 4 of 26 List of Tables Page Table 3-1      MAPLHGR Versus Average Planar Exposure                                        7 Table 3-2     MAPLHGR Single Loop Operation (SLO) Multiplier                                7 Table 4-1      Operating Limit Minimum Critical Power Ratio                                  9 Table 4-2      Power Dependent MCPR(P) Limit Adjustments and Multipliers                    10 Table 4-3     Flow Dependent MCPR Limits MCPR(F)                                            11 Table 4-4      SLO Flow Dependent MCPR Limits MCPR(F)                                        11 Table 5-1     Linear Heat Generation Rate Limits - UO2 rods                                12 Table 5-2     Linear Heat Generation Rate Limits - Gad rods                                12 Table 5-3     Power Dependent LHGR Multiplier LHGRFAC(P)                                    13 Table 5-4      Flow Dependent LHGR Multiplier LHGRFAC(F)                                    13 Table 6-1      Rod Block Monitor Setpoints                                                  14 Table 7-1      Turbine Bypass System Response Time                                          15 Table 7-2     Minimum Required Bypass Valves to Maintain System Operability                15 Table 8-1      Recirculation Pump Trip Response Time                                        16 Table 9-1      Automatic BSP Setpoints for the Scram Region                                  17 Table 9-2      Manual BSP Endpoints for Normal Feedwater Temperature                        18 Table 9-3     Manual BSP Endpoints for Reduced Feedwater Temperature                        18 Table 10-1 AFTO Thermal Limit Penalties                                                      19 Table 10-2 AFTO Power Dependent LHGR Multiplier LHGRFAC(P) 20&deg;F < FWT DELTA  55&deg;F          20 Table 10-3 AFTO Flow Dependent LHGR Multiplier LHGRFAC(F) 20&deg;F < FWT DELTA  55&deg;F            20 Table 10-4 AFTO Operating Limit Minimum Critical Power Ratio 20&deg;F < FWT DELTA  55&deg;F        21 Table 10-5 AFTO Power Dependent MCPR Limit Adjustments and Multipliers                      22 MCPR(P) 20&deg;F < FWT DELTA  55&deg;F Table 10-6 AFTO Flow Dependent MCPR Limits MCPR(F) 20&deg;F < FWT DELTA  55&deg;F                  22 Table 10-7 AFTO MAPLHGR Reduction Factor                                                    23 Table 11-1 Modes of Operation                                                               24 Table 11-2 EOOS Options Included in Base Conditions                                        24
The MAPLHGR limits (kW/ft) obtained from the emergency core cooling system (ECCS) analysis are provided in Table 3-1. The MAPLHGR limits comprise a given fuel type as a function of average planar exposure.
All MAPLHGR values for GNF2 as a function of axial location and average planar exposure shall be less than or equal to the applicable MAPLHGR limits for GNF2 fuel and lattice type. These MAPLHGR limits are specified in Reference 2 and the process computer databank.
The SLO MAPLHGR multiplier is provided in Table 3
-2 per Reference 2 and must be applied to the Table 3-1 limits when operating in SLO.
The impact o f AFTO on MAPLHGR is addressed in Section 10.0.
TABLE 3-1 MAPLHGR Versus Average Planar Exposure (Reference 2)
Average Planar Exposure (GW d/ST) MAPLHGR Limit (kW/ft) 0.0 13.78 17.52 13.78 60.78 7.50 63.50 6.69  TABLE 3-2 MAPLHGR Single Loop Operation (SLO) Multiplier (Reference 2)
SLO Multiplier 0.73 Exelon Nuclear
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 8 of 26  4.0 MCPR LIMITS


===4.1 Technical===
Exelon Nuclear - Nuclear Fuels                                                        COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                                                    Page 5 of 26 1.0 Terms and Definitions ABSP                          Automatic Backup Stability Protection AFTO                          Asymmetric Feedwater Temperature Operation AFTO LFWH                    Asymmetric Feedwater Temperature Operation Loss-of-Feedwater Heating APRM                          Average Power Range Monitor ARTS                          APRM and RBM Technical Specification Analysis BASE                          The BASE condition is defined by a group of individual operating conditions that are applicable to all Modes of Operation discussed in Section 11. The BASE condition includes the EOOS conditions provided in Table 11-2 as well as operation with FWHOOS/FFWTR.
Specification Section 2.1.1.2, 3.2.2, 3.3.4.2, 3.4.1 and 3.7.6
BOC                          Beginning Of Cycle BSP                          Backup Stability Protection DSS-CD                        Detect and Suppress Solution - Confirmation Density DTSP                          Rod Block Monitor Downscale Trip Setpoint EOC                          End of Cycle EOOS                          Equipment Out of Service. An analyzed option that assumes certain equipment to be non-operational.
EOR                          End of Rated. The cycle exposure at which reactor power is equal to 100% with recirculation system flow equal to 100%, all control rods fully withdrawn, all feedwater heating in service and equilibrium Xenon.
FFWTR                        Final Feedwater Temperature Reduction FWHOOS                        Feedwater Heaters Out of Service FWT                          Feedwater Temperature HFCL                          High Flow Control Line HTSP                          Rod Block Monitor High Trip Setpoint ICF                          Increased Core Flow ITSP                          Rod Block Monitor Intermediate Trip Setpoint LHGR                          Linear Heat Generation Rate LHGRFAC(F)                    ARTS LHGR thermal limit flow dependent adjustments and multipliers LHGRFAC(P)                    ARTS LHGR thermal limit power dependent adjustments and multipliers LTSP                          Rod Block Monitor Low Trip Setpoint MAPLHGR                      Maximum Average Planar Linear Heat Generation Rate MCPR                          Minimum Critical Power Ratio MCPR(F)                      ARTS MCPR thermal limit flow dependent adjustments and multipliers MCPR(P)                      ARTS MCPR thermal limit power dependent adjustments and multipliers MELLLA                        Maximum Extended Load Line Limit Analysis MELLLA+                      Maximum Extended Load Line Limit Analysis Plus MSIVOOS                      Main Steam Isolation Valve Out of Service NCL                          Natural Circulation Line OLMCPR                        Operating Limit Minimum Critical Power Ratio PLUOOS                        Power Load Unbalance Out of Service PROOS                        Pressure Regulator Out of Service RBM                          Rod Block Monitor RDF                          Rated Drive Flow RPTOOS                        Recirculation Pump Trip Out of Service RTP                          Rated Thermal Power RWE                          Rod Withdrawal Error SLMCPR                        Safety Limit Minimum Critical Power Ratio SLO                          Single Loop Operation TBSOOS                        Turbine Bypass System Out of Service TCV/TSVOOS                    Turbine Control Valve and/or Turbine Stop Valve Out of Service


===4.2 Description===
Exelon Nuclear - Nuclear Fuels                                            COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                                Page 6 of 26 2.0 General Information This report provides the following cycle-specific parameter limits for Peach Bottom Atomic Power Station Unit 3 CYCLE 22 (RELOAD 21):
The Operating Limit MCPR (OLMCPR) for GNF2 fuel is provided in Table s 4-1 and 4-2. These values are determined by the cycle
* Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)
-specific fuel reload analyses in Reference 2. Control rod scram time verification is required as per Technical Specification 3.1.4, "Control Rod Scram Times". Tau
* Single Loop Operation (SLO) MAPLHGR multipliers
(), a measure of scram time performance to notch position 36 throughout the cycle, is determined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Linear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).
* Operating Limit Minimum Critical Power Ratio (OLMCPR)
Separate OLMCPR values are presented in Table 4
* ARTS MCPR thermal limit adjustments and multipliers
-1 for the following conditions
* SLO MCPR adjustment
:
* Linear Heat Generation Rate (LHGR)
* TB S In-Service (per Section 7.0), RPT In
* ARTS LHGR thermal limit multipliers
-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90  F (a.k.a. "BASE")
* SLO LHGR multipliers
* TBS Out-of-Service (per Section 7.0), RPT In
* Rod Block Monitor (RBM) allowable values and MCPR limits
-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90  F
* Turbine Bypass Valve parameters
* TBS In-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU Out-of-Service, and maximum FFWTR of 90 F
* EOC Recirculation Pump Trip (EOC-RPT) parameters
* TBS In-Service (per Section 7.0), RPT Out
* Stability Protection Setpoints
-of-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90  F  The ARTS-based power
* Asymmetric Feedwater Temperature Operation (AFTO) thermal limit penalties These values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met. SLO, FWHOOS operation, and FFWTR operation are not permitted in the MELLLA+ Region as controlled by station procedures. For the MELLLA+ Region, a specific definition of FWHOOS is provided in Facility Operating License (FOL) Section 2.C(16).
-dependent MCPR limits are provided in Table 4
This report provides cycle-specific Operating Limit MCPR, LHGR, MAPLHGR thermal limits, and related information for the following conditions:
-2. Table 4
* All points in the operating region of the power/flow map including MELLLA+ Region down to 83%
-2 is valid for a maximum temperature reduction of 90 F for FFWTR operation (bounding for FWHOOS operation). The flow
of rated core flow during full power (3951 MWt) operation (Appendix A)
-dependent MCPR limits are provided in Table s 4-3 and 4-4. Table 4
* Increased Core Flow (ICF), up to 110% of rated core flow
-3 is valid for dual loop operating conditions with symmetric feedwater temperature operation and Table 4-4 is valid for single loop operating conditions with symmetric feedwater temperature operation.
* End-of-Cycle Power Coastdown to a minimum power level of 40%
The impact of AFTO on MCPR is addressed in Section 10
* Feedwater Heaters Out of Service (FWHOOS) to 55&deg; F temperature reduction
.0. For PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS conditions, the limits are listed in Section 10
* Final Feedwater Temperature Reduction (FFWTR) between End-of-Rated (EOR) and End-of-Cycle (EOC) to 90&deg; F temperature reduction (4th and 5th stage FWHOOS)
.0, these values are bounding for non
* Asymmetric Feedwater Temperature Operation ARTS provides for power and flow-dependent thermal limit adjustments and multipliers that allow for a more reliable administration of the MCPR and LHGR thermal limits. The OLMCPR is determined by the cycle-specific reload analyses in Reference 2. Rated LHGR values are obtained from the bundle-specific thermal-mechanical analysis. Supporting documentation for the ARTS-based limits is provided in Reference 2. The off-rated limits assumed in the ECCS-LOCA analyses bound the cycle-specific limits calculated for MELLLA+ operation. The Allowable Values documented in Reference 5 for feedwater temperature as a function of thermal power for both FWHOOS and FFWTR are specified in the appropriate Peach Bottom procedures. The Peach Bottom Unit 3 Cycle 22 core is comprised entirely of GNF2 fuel.
-AFTO conditions.  
Also note that the following description of MAPLHGR, LHGR and MCPR limits pertain to NON-AFTO conditions. A separate description of AFTO limits and their associated ARTS tables is in Section 10. Preparation of this report was performed in accordance with Exelon Nuclear procedures. This report is provided to the NRC in accordance with Technical Specification 5.6.5 of Reference 1 and contains all thermal limit parameters related to the implementation of the ARTS Improvement Program and MELLLA+ for Peach Bottom Unit 3 Cycle 22.


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                         COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                               Page 7 of 26 3.0      MAPLHGR LIMITS 3.1    Technical Specification Section 3.2.1, 3.3.4.2, 3.4.1 and 3.7.6 3.2    Description The MAPLHGR limits (kW/ft) obtained from the emergency core cooling system (ECCS) analysis are provided in Table 3-1. The MAPLHGR limits comprise a given fuel type as a function of average planar exposure. All MAPLHGR values for GNF2 as a function of axial location and average planar exposure shall be less than or equal to the applicable MAPLHGR limits for GNF2 fuel and lattice type. These MAPLHGR limits are specified in Reference 2 and the process computer databank. The SLO MAPLHGR multiplier is provided in Table 3-2 per Reference 2 and must be applied to the Table 3-1 limits when operating in SLO. The impact of AFTO on MAPLHGR is addressed in Section 10.0.
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 9 of 26   TABLE 4-1 Operating Limit Minimum Critical Power Ratio (Reference 2)
TABLE 3-1 MAPLHGR Versus Average Planar Exposure (Reference 2)
EOOS Combination SCRAM Time Option (1) Cycle Exposure
Average Planar Exposure              MAPLHGR Limit (GWd/ST)                            (kW/ft) 0.0                                13.78 17.52                              13.78 60.78                                7.50 63.50                                6.69 TABLE 3-2 MAPLHGR Single Loop Operation (SLO) Multiplier (Reference 2)
< EOR - 3915 MWd/ST > EOR - 3915 MWd/ST BASE B 1.40 1.42   B*(3) 1.38 1.41 A 1.48 1.50 BASE SLO(2) B 1.43 1.4 5 A 1.51 1.5 3 RPTOOS B 1.43 1.45 A 1.60 1.62 RPTOOS SLO(2) B 1.46 1.48 A 1.63 1.65 PR/PLUOOS B 1.40 1.42 A 1.48 1.50 PR/PLUOOS SLO(2) B 1.43 1.45 A 1.51 1.53 TBSOOS B 1.44 1.47 A 1.53 1.56 TBSOOS SLO (2) B 1.47 1.50 A 1.56 1.59 (1) When Tau does not equal 0 or 1, use linear interpolation.
SLO Multiplier                0.73
(2) For single
-loop operatio n, the MCPR operating limit is 0.03 higher than the two loop value (Reference 2).
(3) Limit is only applicable if it i s confirmed that a 45ms or greater delay exists between the time of the first TCV movement and the time of first TSV movement following a turbine trip; this may be selected per applicable station procedures.


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                         COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                               Page 8 of 26 4.0     MCPR LIMITS 4.1    Technical Specification Section 2.1.1.2, 3.2.2, 3.3.4.2, 3.4.1 and 3.7.6 4.2    Description The Operating Limit MCPR (OLMCPR) for GNF2 fuel is provided in Tables 4-1 and 4-2. These values are determined by the cycle-specific fuel reload analyses in Reference 2. Control rod scram time verification is required as per Technical Specification 3.1.4, "Control Rod Scram Times". Tau (), a measure of scram time performance to notch position 36 throughout the cycle, is determined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Linear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 10 of 26   TABLE 4-2 Power Dependent MCPR(P) Limit Adjustments and Multipliers (Symmetric Feedwater Heating)
Separate OLMCPR values are presented in Table 4-1 for the following conditions:
(Reference
* TBS In-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90 &deg;F (a.k.a. BASE)
: 2)  EOOS Combination Core Flow (% of rated) Core Thermal Power (% of rated) 0 2 3 <26.7 26.7 40 55 65 85 100 Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base < 60 2.67 2.67 2.60 1.392 1.288 1.237 1.130 1.067 1.000 > 60 2.99 2.99 2.83 Base SLO < 60 2.70 2.70 2.63 1.392 1.288 1.237 1.130 1.067 1.000 > 60 3.02 3.02 2.86 RPTOOS < 60 2.67 2.67 2.60 1.392 1.288 1.237 1.130 1.067 1.000 > 60 2.99 2.99 2.83 RPTOOS SLO
* TBS Out-of-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90 &deg;F
< 60 2.70 2.70 2.63 1.392 1.288 1.237 1.130 1.067 1.000 > 60 3.02 3.02 2.86 PR/PLUOOS < 60 2.67 2.67 2.60 1.392 1.288 1.237 1.210 1.147 1.000 > 60 2.99 2.99 2.83 PR/PLUOOS SLO
* TBS In-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU Out-of-Service, and maximum FFWTR of 90&deg;F
< 60 2.70 2.70 2.63 1.392 1.2 88 1.237 1.210 1.147 1.000 > 60 3.02 3.02 2.86 TBSOOS < 60 3.64 3.64 3.25 1.399 1.323 1.237 1.155 1.079 1.000 > 60 4.15 4.15 3.78 TBSOOS SLO
* TBS In-Service (per Section 7.0), RPT Out-of-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90 &deg;F The ARTS-based power-dependent MCPR limits are provided in Table 4-2. Table 4-2 is valid for a maximum temperature reduction of 90 &deg;F for FFWTR operation (bounding for FWHOOS operation). The flow-dependent MCPR limits are provided in Tables 4-3 and 4-4. Table 4-3 is valid for dual loop operating conditions with symmetric feedwater temperature operation and Table 4-4 is valid for single loop operating conditions with symmetric feedwater temperature operation. The impact of AFTO on MCPR is addressed in Section 10.0. For PR/PLUOOS +
< 60 3.6 7 3.6 7 3.2 8 1.399 1.323 1.237 1.155 1.079 1.000 > 60 4.1 8 4.1 8 3.81             
TBSOOS and PR/PLUOOS + RPTOOS conditions, the limits are listed in Section 10.0, these values are bounding for non-AFTO conditions.


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                       COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                     Page 9 of 26 TABLE 4-1 Operating Limit Minimum Critical Power Ratio (Reference 2)
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 11 of 26   TABLE 4-3 Flow Dependent MCPR Limits MCPR(F)
SCRAM            Cycle Exposure Time      < EOR - 3915 > EOR - 3915 EOOS Combination          Option(1)     MWd/ST        MWd/ST B          1.40          1.42 BASE              B*(3)       1.38          1.41 A          1.48          1.50 B          1.43          1.45 BASE SLO(2)
(Symmetric Feedwater Heating)
A          1.51          1.53 B          1.43          1.45 RPTOOS A          1.60          1.62 B          1.46          1.48 RPTOOS SLO(2)
(Reference
A          1.63          1.65 B          1.40          1.42 PR/PLUOOS A          1.48          1.50 B          1.43          1.45 PR/PLUOOS SLO(2)
: 2) Core Flow (% rated) MCPR(F) Limit 0.0 1.7 4 30.0 1.5 7 86.0 1.2 5 110.0 1.2 5  TABLE 4-4 SLO Flow Dependent MCPR Limits MCPR(F)
A          1.51          1.53 B          1.44          1.47 TBSOOS A          1.53          1.56 B          1.47          1.50 TBSOOS SLO (2)
(Symmetric Feedwater Heating)
A          1.56          1.59 (1) When Tau does not equal 0 or 1, use linear interpolation.
(Reference 2)
(2) For single-loop operation, the MCPR operating limit is 0.03 higher than the two loop value (Reference 2).
Core Flow (% rated) MCPR(F) Limit 0.0 1.7 7 30.0 1.60 86.0 1.2 8 110.0 1.2 8 Exelon Nuclear
(3) Limit is only applicable if it is confirmed that a 45ms or greater delay exists between the time of the first TCV movement and the time of first TSV movement following a turbine trip; this may be selected per applicable station procedures.
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 12 of 26  5.0 LHGR LIM I TS  5.1 Technical Specification Section 3.2.3, 3.3.4.2, 3.4.1 and 3.7.6


===5.2 Description===
Exelon Nuclear - Nuclear Fuels                                        COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                        Page 10 of 26 TABLE 4-2 Power Dependent MCPR(P) Limit Adjustments and Multipliers (Symmetric Feedwater Heating)
The LHGR values for GNF2 fuel type are provided in Table s 5-1 and 5-2. The ARTS
(Reference 2)
-based LHGR power
Core                      Core Thermal Power (% of rated)
-dependent multipliers are provided in Table 5
Flow    0      23    <26.7 26.7      40      55    65    85        100 EOOS Combination
-3. Table 5
(% of rated) Operating Limit MCPR          Operating Limit MCPR Multiplier, Kp
-3 is valid for a maximum temperature reduction of 90 o F for FFWTR operation (bounding for FWHOOS operation). The flow
                                < 60  2.67    2.67    2.60 Base                                                    1.392  1.288  1.237 1.130  1.067    1.000
-dependent multipliers are provided in Table 5
                                > 60  2.99    2.99    2.83
-4 as a function of the number of recirculation loops in operation. The SLO LHGR multiplier is provided and accounted for in Table 5
                                < 60  2.70    2.70    2.63 Base SLO                                                   1.392  1.288  1.237 1.130  1.067    1.000
-4. The power
                                > 60  3.02    3.02    2.86
- and flow-dependent LHGR multipliers were obtained from Reference
                                < 60  2.67    2.67    2.60 RPTOOS                                                    1.392  1.288  1.237 1.130  1.067    1.000
: 2. The impact of AFTO on LHGR is addressed in Section 10.
                                > 60  2.99    2.99    2.83
For PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS conditions, the limits are listed in Section 10; these values are bounding for non
                                < 60  2.70    2.70    2.63 RPTOOS SLO                                                    1.392  1.288  1.237 1.130  1.067    1.000
-AFTO conditions. The power and flow dependent LHGR multipliers are sufficient to provide adequate protection for the off
                                > 60  3.02    3.02    2.86
-rated conditions from an ECCS
                                < 60  2.67    2.67    2.60 PR/PLUOOS                                                     1.392  1.288  1.237 1.210  1.147    1.000
-LOCA analysis perspective.
                                > 60  2.99    2.99    2.83
TABLE 5-1 Linear Heat Generation Rate Limits
                                < 60  2.70    2.70    2.63 PR/PLUOOS SLO                                                  1.392  1.288  1.237 1.210  1.147    1.000
- UO2 rods (References 4 and 11)  Fuel Type LHGR Limit GNF2 See Appendix B of Reference TABLE 5-2 Linear Heat Generation Rate Limits
                                > 60  3.02    3.02    2.86
- Gad rods (References 4 and 11)  Fuel Type LHGR Limit GNF2 See Appendix B of Reference 4
                                < 60  3.64    3.64    3.25 TBSOOS                                                    1.399  1.323  1.237 1.155  1.079    1.000
                                > 60  4.15    4.15    3.78
                                < 60  3.67    3.67    3.28 TBSOOS SLO                                                    1.399 1.323  1.237 1.155  1.079    1.000
                                > 60  4.18    4.18    3.81


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                     COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                 Page 11 of 26 TABLE 4-3 Flow Dependent MCPR Limits MCPR(F)
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 13 of 26   TABLE 5-3 Power Dependent LHGR Multiplier LHGRFAC(P)
(Symmetric Feedwater Heating)
(Symmetric Feedwater Heating)
(Reference 2)
(Reference  
Core Flow     MCPR(F)
: 2) EOOS Combination Core Flow (% of rated)
(% rated)       Limit 0.0           1.74 30.0         1.57 86.0         1.25 110.0         1.25 TABLE 4-4 SLO Flow Dependent MCPR Limits MCPR(F)
Core Thermal Power (% of rated) 0 23 <26.7 7 40 55 65 85  100 LHGRFAC(P) Multiplier Base  0.5 08 0.5 08 0.5 22 0.620 0.696 0.751 0.817 0.930 1.000 > 60 0.5 08 0.5 08 0.5 22 Base SLO  0.508 0.508 0.522 0.620 0.696 0.751 0.817 0.930 1.000 > 60 0.508 0.508 0.522 RPTOOS  0.508 0.508 0.522 0.620 0.696 0.751 0.817 0.930 1.000 > 60 0.508 0.508 0.522 RPTOOS SLO 0.508 0.508 0.522 0.620 0.696 0.751 0.817 0.930 1.000 > 60 0.508 0.508 0.522 PR/PLUOOS  0.508 0.508 0.522 0.620 0.696 0.751 0.817 0.930 1.000 > 60 0.508 0.508 0.522 PR/PLUOOS SLO 0.508 0.508 0.522 0.620 0.696 0.751 0.817 0.930 1.000 > 60 0.508 0.508 0.522 TBSOOS  0.397 0.397 0.442 0.620 0.655 0.714 0.817 0.930 1.000 > 60 0.397 0.397 0.417 TBSOOS SLO 0.397 0.397 0.442 0.620 0.655 0.714 0.817 0.930 1.000 > 60 0.397 0.397 0.417  TABLE 5-4 Flow Dependent LHGR Multiplier LHGRFAC(F)
(Symmetric Feedwater Heating)
(Symmetric Feedwater Heating)
(Reference 2)
(Reference 2)
Core Flow     MCPR(F)
EOOS Combination Core Flow (% of rated) 0 30 33.6 70 80 110 LHGRFAC(F) Multiplier Dual Loop 0.506 0.706 0.730 0.973 1.000 1.000 Single Loop 0.506 0.706 0.730 0.730 0.730 0.730 Exelon Nuclear
(% rated)       Limit 0.0           1.77 30.0         1.60 86.0         1.28 110.0         1.28
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 14 of 26  6.0 ROD BLOCK MONITOR SETPOINTS


===6.1 Technical===
Exelon Nuclear - Nuclear Fuels                                        COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                          Page 12 of 26 5.0      LHGR LIMITS 5.1   Technical Specification Section 3.2.3, 3.3.4.2, 3.4.1 and 3.7.6 5.2    Description The LHGR values for GNF2 fuel type are provided in Tables 5-1 and 5-2. The ARTS-based LHGR power-dependent multipliers are provided in Table 5-3. Table 5-3 is valid for a maximum temperature reduction of 90o F for FFWTR operation (bounding for FWHOOS operation). The flow-dependent multipliers are provided in Table 5-4 as a function of the number of recirculation loops in operation. The SLO LHGR multiplier is provided and accounted for in Table 5-4. The power- and flow-dependent LHGR multipliers were obtained from Reference 2. The impact of AFTO on LHGR is addressed in Section 10. For PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS conditions, the limits are listed in Section 10; these values are bounding for non-AFTO conditions. The power and flow dependent LHGR multipliers are sufficient to provide adequate protection for the off-rated conditions from an ECCS-LOCA analysis perspective.
Specification Section 3.3.2.1
TABLE 5-1 Linear Heat Generation Rate Limits - UO2 rods (References 4 and 11)
Fuel Type                    LHGR Limit GNF2              See Appendix B of Reference 4 TABLE 5-2 Linear Heat Generation Rate Limits - Gad rods (References 4 and 11)
Fuel Type                    LHGR Limit GNF2                See Appendix B of Reference 4


===6.2 Description===
Exelon Nuclear - Nuclear Fuels                                          COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                          Page 13 of 26 TABLE 5-3 Power Dependent LHGR Multiplier LHGRFAC(P)
The RBM power
(Symmetric Feedwater Heating)
-biased Allowable Values and MCPR Limits are provided in Table 6
(Reference 2)
-1 with supporting documentation in References 2 and 9.
Core Thermal Power (% of rated)
The values correspond to the OLMCPR values provide in Table 4
Core Flow EOOS Combination                                0        23      <26.7    26.7    40    55  65    85    100
-1. TABLE 6-1 Rod Block Monitor Setpoints (References 2 and 9) Power Level Allowable Value (1) MCPR Limit LTSP 118.2% < 1.83 (2) < 1.50 (3) ITSP 113.4% < 1.83 (2) < 1.50 (3) HTSP 108.4% < 1.83 (2) < 1.50 (3) INOP N/A < 1.83 (2) < 1.50 (3)                         
(% of rated)
  (1) These setpoints (with RBM filter time const ant between 0.1 seconds and 0.55 seconds) are based on a cycle
LHGRFAC(P) Multiplier 60        0.508    0.508      0.522 Base                                                                0.620  0.696 0.751 0.817 0.930 1.000
-specific rated RWE MCPR limit which is less than or equal to the minimum cycle OLMCPR based on other events (see COLR R eference s 2 and 9)(2) This is the MCPR limit (given THERMAL POWER is
                                  > 60        0.508    0.508      0.522 60        0.508    0.508      0.522 Base SLO                                                                0.620  0.696 0.751 0.817 0.930 1.000
> 28.4% and <
                                  > 60        0.508    0.508      0.522 60        0.508    0.508      0.522 RPTOOS                                                                0.620  0.696 0.751 0.817 0.930 1.000
90%) below which the RBM is required to be OPERABLE (see COLR R eference 2 and TS Table 3.3.2.1
                                  > 60        0.508    0.508      0.522 60        0.508    0.508      0.522 RPTOOS SLO                                                                0.620  0.696 0.751 0.817 0.930 1.000
-1)(3) This is the MCPR limit (given THERMAL POWER is
                                  > 60        0.508    0.508      0.522 60        0.508    0.508      0.522 PR/PLUOOS                                                                0.620  0.696 0.751 0.817 0.930 1.000
> 90%) below which the RBM is required to be OPERABLE (see COLR R eference 2 and TS Table 3.3.
                                  > 60        0.508    0.508      0.522 60        0.508    0.508      0.522 PR/PLUOOS SLO                                                              0.620 0.696 0.751 0.817 0.930 1.000
2.1-1).
                                  > 60        0.508    0.508      0.522 60        0.397    0.397      0.442 TBSOOS                                                                0.620 0.655 0.714 0.817 0.930 1.000
Exelon Nuclear
                                  > 60        0.397    0.397      0.417 60        0.397    0.397      0.442 TBSOOS SLO                                                                0.620  0.655 0.714 0.817 0.930 1.000
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 15 of 26  7.0 TURBINE BYPASS VALVE PARAMETERS
                                  > 60        0.397    0.397      0.417 TABLE 5-4 Flow Dependent LHGR Multiplier LHGRFAC(F)
(Symmetric Feedwater Heating)
(Reference 2)
Core Flow (% of rated)
EOOS Combination                      0          30        33.6        70        80        110 LHGRFAC(F) Multiplier Dual Loop                    0.506      0.706      0.730      0.973      1.000      1.000 Single Loop                    0.506      0.706      0.730      0.730      0.730      0.730


===7.1 Technical===
Exelon Nuclear - Nuclear Fuels                                    COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                        Page 14 of 26 6.0      ROD BLOCK MONITOR SETPOINTS 6.1   Technical Specification Section 3.3.2.1 6.2    Description The RBM power-biased Allowable Values and MCPR Limits are provided in Table 6-1 with supporting documentation in References 2 and 9. The values correspond to the OLMCPR values provide in Table 4-1.
Specification Section 3.7.6
TABLE 6-1 Rod Block Monitor Setpoints (References 2 and 9)
Power Level        Allowable Value(1)          MCPR Limit LTSP                118.2%                  < 1.83 (2)
                                                                          < 1.50 (3)
ITSP                113.4%                  < 1.83 (2)
                                                                          < 1.50 (3)
HTSP                108.4%                  < 1.83 (2)
                                                                          < 1.50 (3)
INOP                  N/A                    < 1.83 (2)
                                                                          < 1.50 (3)
(1) These setpoints (with RBM filter time constant between 0.1 seconds and 0.55 seconds) are based on a cycle-specific rated RWE MCPR limit which is less than or equal to the minimum cycle OLMCPR based on other events (see COLR References 2 and 9).
(2) This is the MCPR limit (given THERMAL POWER is > 28.4% and < 90%) below which the RBM is required to be OPERABLE (see COLR Reference 2 and TS Table 3.3.2.1-1).
(3) This is the MCPR limit (given THERMAL POWER is > 90%) below which the RBM is required to be OPERABLE (see COLR Reference 2 and TS Table 3.3.2.1-1).


===7.2 Description===
Exelon Nuclear - Nuclear Fuels                                                        COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                                            Page 15 of 26 7.0      TURBINE BYPASS VALVE PARAMETERS 7.1    Technical Specification Section 3.7.6 7.2   Description The operability requirements for the steam bypass system are governed by Technical Specification 3.7.6. If the requirements cannot be met, the appropriate power and flow dependent limits for Turbine Bypass System Out-of-Service (TBSOOS) must be used. Additionally, the OLMCPR for TBSOOS must be applied. Table 7-1 includes the Turbine Bypass Valve response time parameters. The minimum number of bypass valves to maintain system operability is provided in Table 7-2.
The operability requirements for the steam bypass system are governed by Technical Specification 3.7.6. If the requirements cannot be met, the appropriate power and flow dependent limits for Turbine Bypass System Out-of-Service (TBSOOS) must be used. Additionally
TABLE 7-1 Turbine Bypass System Response Time (Reference 12)
, the OLMCPR for TBSOOS must be applied. Table 7-1 includes the Turbine Bypass Valve response time parameters. The minimum number of bypass valves to maintain system operability is provided in Table 7
Maximum delay time before start of bypass valve opening following 0.10 sec initial turbine inlet valve movement(1)
-2. TABLE 7-1 Turbine Bypass System Response Time (Reference 1
Maximum time after initial turbine inlet valve movement(1) for bypass 0.30 sec valve position to reach 80% of full flow (includes the above delay time)
: 2)  Maximum delay time before start of bypass valve opening following initial turbine inlet valve movement(1) 0.10 sec Maximum time after initial turbine inlet valve movement(1) for bypass valve position to reach 80% of full flow (includes the above delay time) 0.30 sec (1) First movement of any TSV or any TCV (whichever occurs first)
(1) First movement of any TSV or any TCV (whichever occurs first)
TABLE 7-2 Minimum Required Bypass Valves To Maintain System Operability (Reference 1
TABLE 7-2 Minimum Required Bypass Valves To Maintain System Operability (Reference 12)
: 2)  Reactor Power No. of Valves in Service 3% 7 Exelon Nuclear
Reactor Power                               No. of Valves in Service P  23%                                             7
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 1 6 of 26  8.0 EOC RECIRCULATION PUMP TRIP (EOC
-RPT) OPERABILITY


===8.1 Technical===
Exelon Nuclear - Nuclear Fuels                                        COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                            Page 16 of 26 8.0      EOC RECIRCULATION PUMP TRIP (EOC-RPT) OPERABILITY 8.1   Technical Specification Section 3.3.4.2 8.2    Description The operability requirements for the EOC Recirculation Pump Trip are governed by Technical Specification 3.3.4.2. If the requirements cannot be met, the appropriate power and flow dependent limits for EOC Recirculation Pump Trip Out Of Service (RPTOOS) must be used.
Specification Section 3.3.4.2
Additionally, the OLMCPR for RPTOOS must be applied. Table 8-1 includes the total RPT response time parameter.
TABLE 8-1 Recirculation Pump Trip Response Time (Reference 12)
Total Recirculation Pump Trip Response Time The time from when the turbine valves (turbine control valve or                  0.175 sec turbine stop valve) start to close until complete arc suppression of the EOC-RPT circuit breakers as described in Reference 7.


===8.2 Description===
Exelon Nuclear - Nuclear Fuels                                           COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                           Page 17 of 26 9.0     STABILITY PROTECTION 9.1   Technical Specification Section 3.3.1.1, Table 3.3.1.1-1 Function 2.f 9.2   Description Per Reference 2, the Cycle 22 DSS-CD SAD Setpoint was confirmed to be 1.10 for DLO and SLO.
The operability requirements for the EOC Recirculation Pump Trip are governed by Technical Specification 3.3.4
The Automatic Backup Stability Protection (BSP) Setpoints are provided in Table 9-1. The Manual BSP Endpoints for Normal Feedwater Temperature and Reduced Feedwater Temperature are provided in Tables 9-2 and 9-3. Reduced FWT as stated in Table 9-3 is intended for feedwater temperatures 10-90&deg;F below nominal.
.2. If the requirements cannot be met, the appropriate power and flow dependent limits for EOC Recirculation Pump Trip Out Of Service (RPTOOS) must be used. Additionally
, the OLMCPR for RPTOOS must be applied. Table 8-1 includes the total RPT response time parameter.
TABLE 8-1 Recirculation Pump Trip Response Time (Reference 12
)  Total Recirculation Pump Trip Response Time The time from when the turbine valves (turbine control valve or turbine stop valve) start to close until complete arc suppression of the EOC
-RPT circuit breakers as described in Reference 7.
0.175 sec Exelon Nuclear  
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 17 of 26   9.0 STABILITY PROTECTION  
 
===9.1 Technical===
Specification Section 3.3.1
.1, Table 3.3.1.1
-1 Function 2.f
 
===9.2 Description===
Per Reference 2, the Cycle 22 DSS-CD S AD Setpoint was confirmed to be 1.10 for DLO and SLO. The Automatic Backup Stability Protection (BSP) Setpoints are provided in Table 9
-1. The Manual BSP Endpoints for Normal Feedwater Temperature and Reduced Feedwater Temperature are provided in Tables 9
-2 and 9-3. Reduced FWT as stated in Table 9
-3 is intended for feedwater temperatures 10-90&deg;F below nominal.
TABLE 9-1 Automatic BSP Setpoints for the Scram Region (Reference 2)
TABLE 9-1 Automatic BSP Setpoints for the Scram Region (Reference 2)
Parameter Symbol Value Slope of ABSP APRM flow
Parameter               Symbol         Value Slope of ABSP APRM flow-mTrip          1.37 biased trip linear segment.
-biased trip linear segment.
ABSP APRM flow-biased trip setpoint power intercept.
mTrip 1.3 7 ABSP APRM flow
Constant Power Line for Trip         PBSP-Trip  39.3 %RTP from zero Drive Flow to Flow Breakpoint value.
-biased trip setpoint power intercept.
ABSP APRM flow-biased trip setpoint drive flow intercept.     WBSP-Trip   46.5 %RDF Constant Flow Line for Trip.
Constant Power Line for Trip from zero Drive Flow to Flow Breakpoint value.
Flow Breakpoint value             WBSP-Break   20.0 %RDF
PBSP-Trip 39.3 %RTP ABSP APRM flow
-biased trip setpoint drive flow intercept. Constant Flow Line for Trip.
WBSP-Trip 46.5 %RDF Flow Breakpoint value WBSP-Break 20.0 %RDF              


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                             COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                                   Page 18 of 26 TABLE 9-2(1)
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 18 of 26   TABLE 9-2 (1) Manual BSP Endpoints for Normal Feedwater Temperature (Reference 2)
Manual BSP Endpoints for Normal Feedwater Temperature (Reference 2)
Endpoint Power (%) Flow (%) Definition A1 74.3 49.2 Scram Region Boundary, HFCL B1 40.7 31.0 Scram Region Boundary, NCL A2 64.5 50.0 Controlled Entry Region Boundary, HFCL B2 28.1 30.1 Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal and Reduced Feedwater Temperature is defined by the MELLLA boundary line, per       Reference 2.
Endpoint         Power (%)   Flow (%)                         Definition A1             74.3       49.2             Scram Region Boundary, HFCL B1             40.7       31.0             Scram Region Boundary, NCL A2             64.5       50.0       Controlled Entry Region Boundary, HFCL B2             28.1       30.1       Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal and Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 2.
TABLE 9-3 (1) Manual BSP Endpoints for Reduced Feedwater Temperature (Reference 2)
TABLE 9-3(1)
Endpoint Power (%) Flow (%) Definition A1 6 4.0 49.4 Scram Region Boundary, HFCL B1 34.4 30.6 Scram Region Boundary, NCL A2 66.4 52.4 Controlled Entry Region Boundary, HFCL B2 28.1 30.1 Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal and Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 2.
Manual BSP Endpoints for Reduced Feedwater Temperature (Reference 2)
Endpoint         Power (%)   Flow (%)                         Definition A1             64.0       49.4             Scram Region Boundary, HFCL B1             34.4       30.6             Scram Region Boundary, NCL A2             66.4       52.4       Controlled Entry Region Boundary, HFCL B2             28.1       30.1       Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal and Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 2.
(1) Station may elect to place additional administrative margin on the endpoints provided in Table 9-2 and Table 9-3.


(1) Station may elect to place additional administrative margin on the e ndpoints provided in Table 9-2 and Table 9
Exelon Nuclear - Nuclear Fuels                                             COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                               Page 19 of 26 10.0     ASYMMETRIC FEEDWATER TEMPERATURE OPERATION (AFTO)
-3.
Asymmetric feedwater heating (resulting from removing a heater string, or individual feedwater heaters, from operation) is the result of the specific configuration of the feedwater lines at Peach Bottom. A reduction in heating in either the A or the C heater strings will result in a temperature mismatch between the feedwater flows entering the opposite sides of the reactor vessel. This temperature mismatch may result in errors in the thermal limit values calculated by the core monitoring system. Thermal limit values for all conditions and events are impacted by these errors excluding SLO conditions. The station no longer requires SLO AFTO files or penalties due to a 3D MONICORE upgrade required for EPU operation. Asymmetric feedwater temperature operation (AFTO) is defined as operation in a feedwater heater/string configuration that results in a specified threshold difference as described in Reference 10. To simplify the implementation of the AFTO limits, only the maximum AFTO penalties indicated in Table 10-1 will be implemented when the threshold asymmetry temperature (temperature above which a penalty is required) is exceeded. This will minimize the number of AFTO thermal limit tables in the COLR and core monitoring system.
Exelon Nuclear  
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 19 of 26   10.0 ASYMMETRIC FEEDWATER TEMPERATURE OPERATION (AFTO)
Asymmetric feedwater heating (resulting from removing a heater string, or individual feedwater heaters, from operation) is the result of the specific configuration of the feedwater lines at Peach Bottom. A reduction in heating in either the 'A' or the 'C' heater strings will result in a temperature mismatch between the feedwater flows entering the opposite sides of the reactor vessel. This temperature mismatch may result in errors in the thermal limit values calculated by the core monitoring system. Thermal limit values for all conditions and events are impacted by these errors excluding SLO conditions. The station no longer requires SLO AFTO files or penalties due to a 3D MONICORE upgrade required for EPU operation. Asymmetric feedwater temperature operation (AFTO) is defined as operation in a feedwater heater/string configuration that results in a specified threshold difference as described in Reference 10.
To simplify the implementation of the AFTO limits, only the maximum AFTO penalties indicated in Table 10-1 will be implemented when the threshold asymmetry temperature (temperature above which a penalty is required) is exceeded. This will minimize the number of AFTO thermal limit tables in the COLR and core monitoring system.
TABLE 10-1 AFTO Thermal Limit Penalties (Asymmetric Feedwater Heating)
TABLE 10-1 AFTO Thermal Limit Penalties (Asymmetric Feedwater Heating)
(Reference 10)
(Reference 10)
MFLCPR MFLPD/MAPRAT 40&deg;&deg;F 3% 4% 30&deg;&deg;F 2% 3% 20&deg;&deg;F 2% 2%   0&deg;&deg;F No Penalty No Penalty LHGR LIMITS The ARTS-based LHGR power
MFLCPR                         MFLPD/MAPRAT 40&deg;F < FWT DELTA  55&deg;F                           3%                                 4%
-dependent multipliers for AFTO operation are provided in Table 10
30&deg;F < FWT DELTA  40&deg;F                           2%                                 3%
-2. The flow-dependent multipliers for AFTO in DLO are provided in Table 10
20&deg;F < FWT DELTA  30&deg;F                           2%                                 2%
-3. The power
0&deg;F < FWT DELTA  20&deg;F                       No Penalty                           No Penalty LHGR LIMITS The ARTS-based LHGR power-dependent multipliers for AFTO operation are provided in Table 10-2. The flow-dependent multipliers for AFTO in DLO are provided in Table 10-3. The power-and flow-dependent LHGR multipliers were obtained from Reference 2 and were adjusted with the appropriate penalties displayed in Table 10-1 as per Reference 10. PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS values were obtained by taking the most limiting values of the two EOOS conditions (Reference 8). The maximum feedwater temperature difference allowed without a thermal limit penalty is 20 &deg;F. Once the temperature difference exceeds 20 &deg;F the maximum penalties from Table 10-1 are applied to the thermal limits.
-and flow-dependent LHGR multipliers were obtained from Reference 2 and were adjusted with the appropriate penalties displayed in Table 10
Additionally, no LHGR penalties are required for AFTO while in SLO as previously discussed.
-1 as per Reference 10
 
. PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS values were obtained by taking the most limiting values of the two EOOS conditions (Reference 8). The maximum feedwater temperature difference allowed without a thermal limit penalty is 20 F. Once the temperature difference exceeds 20 F the maximum penalties from Table 10
Exelon Nuclear - Nuclear Fuels                                          COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                          Page 20 of 26 TABLE 10-2 AFTO Power Dependent LHGR Multiplier LHGRFAC(P) 20&deg;F < FWT DELTA  55&deg;F (Asymmetric Feedwater Heating)
-1 are applied to the thermal limits. Additionally, no LHGR penalties are required for AFTO while in SLO as previously discussed.  
(References 2, 8, and 10)
Core                            Core Thermal Power (% of rated)
EOOS Combination Flow        0          23        <26.7      26.7    40    55    65      85    100
(% of rated)                                LHGRFAC(P) Multiplier 60    0.488      0.488      0.501 Base                                                                0.595    0.668 0.721  0.784    0.893 0.960
                                  > 60    0.488      0.488      0.501 60    0.488      0.488      0.501 RPTOOS                                                                0.595    0.668 0.721  0.784    0.893 0.960
                                  > 60    0.488      0.488      0.501 60    0.488      0.488      0.501 PR/PLUOOS                                                              0.595    0.668 0.721  0.784    0.893 0.960
                                  > 60    0.488      0.488      0.501 60    0.381      0.381      0.424 TBSOOS                                                                0.595    0.629 0.685  0.784    0.893 0.960
                                  > 60    0.381      0.381      0.400 60    0.381      0.381      0.424 PR/PLUOOS + TBSOOS                                                          0.595    0.629 0.685  0.784    0.893 0.960
                                  > 60    0.381      0.381      0.400 60    0.488      0.488      0.501 PR/PLUOOS + RPTOOS                                                          0.595    0.668 0.721  0.784    0.893 0.960
                                  > 60    0.488      0.488      0.501 TABLE 10-3 AFTO Flow Dependent LHGR Multiplier LHGRFAC(F) 20&deg;F < FWT DELTA  55&deg;F (Asymmetric Feedwater Heating)
(References 2 and 10)
Core Flow (% of rated)
EOOS Combination                  0            30        33.6          70          80        110 LHGRFAC(F) Multiplier Dual Loop                  0.486        0.678      0.701        0.934      0.960      0.960


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                         COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                             Page 21 of 26 MCPR LIMITS The OLMCPRs during asymmetric feedwater temperature operation with a feedwater temperature difference greater than 20&deg;F are provided in Table 10-4. The ARTS-based power-dependent MCPR limits for use during AFTO conditions are provided in Table 10-5. The flow-dependent MCPR limits for AFTO are provided in Table 10-6. The power and flow-dependent OLMCPR curves were obtained from Reference 2 and were adjusted with a 3% penalty for feedwater temperature difference greater than 20&deg;F as displayed in Table 10-1 as per Reference 10. PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS values were obtained by taking the most limiting OLMCPR values of the two EOOS conditions (Reference 8). No MCPR penalties are required for asymmetric temperature differentials less than or equal to 20&deg;F. Additionally, no MCPR penalties are required for AFTO while in SLO as previously discussed.
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 20 of 26  TABLE 10-2 AFTO Power Dependent LHGR Multiplier LHGRFAC(P) 2 0&deg;&deg;F (Asymmetric Feedwater Heating)
TABLE 10-4 AFTO Operating Limit Minimum Critical Power Ratio 20&deg;F < FWT DELTA  55&deg;F (Asymmetric Feedwater Heating)
(References 2 , 8, and 1 0)  EOOS Combination Core Flow (% of rated) Core Thermal Power (% of rated) 0 23 <26.7 7 40 55 65 85 100 LHGRFAC(P) Multiplier Base  0.488 0.488 0.501 0.595 0.668 0.721 0.784 0.893 0.960 > 60 0.488 0.488 0.501 RPTOOS  0.488 0.488 0.501 0.595 0.668 0.721 0.784 0.893 0.960 > 60 0.488 0.488 0.501 PR/PLUOOS  0.488 0.488 0.501 0.595 0.668 0.721 0.784 0.893 0.960 > 60 0.488 0.488 0.501 TBSOOS  0.381 0.381 0.424 0.595 0.629 0.685 0.784 0.893 0.960 > 60 0.381 0.381 0.400 PR/PLUOOS + TBSOOS 0.381 0.381 0.424 0.595 0.629 0.685 0.784 0.893 0.960 > 60 0.381 0.381 0.400 PR/PLUOOS + RPTOOS 0.488 0.488 0.501 0.595 0.668 0.721 0.784 0.893 0.960 > 60 0.488 0.488 0.501    TABLE 10-3 AFTO Flow Dependent LHGR Multiplier LHGRFAC(F) 2 0&deg;&deg;F (Asymmetric Feedwater Heating)
(References 2, 8, and 10)
(References 2 and 10)  EOOS Combination Core Flow (% of rated) 0 30 33.6 70 80 110 LHGRFAC(F) Multiplier Dual Loop 0.486 0.6 78 0.701 0.934 0.960 0.960 Exelon Nuclear
SCRAM                 Cycle Exposure Time        < EOR - 3915 > EOR - 3915 EOOS Combination        Option(1)        MWd/ST          MWd/ST B               1.44             1.46 (2)
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 21 of 26   MCPR LIMITS The OLMCPR s during asymmetric feedwater temperature operation with a feedwater temperature difference greater than 2 0 F are provided in Table 10-4. The ARTS
BASE            B*              1.42             1.45 A               1.52             1.55 B               1.47             1.49 RPTOOS A               1.65             1.67 B               1.44             1.46 PR/PLUOOS A               1.52             1.55 B               1.48             1.51 TBSOOS A               1.58             1.61 B               1.48             1.51 PR/PLUOOS + TBSOOS A               N/A               N/A B               1.47             1.49 PR/PLUOOS + RPTOOS A               N/A               N/A (1) When Tau does not equal 0 or 1, use linear interpolation.
-based power
(2) Limit is only applicable if it is confirmed that a 45ms or greater delay exists between the time of the first TCV movement and the time of first TSV movement following a turbine trip; this may be selected per applicable station procedures.
-dependent MCPR limits for use during AFTO conditions are provided in Table 10
-5. The flow
-dependent MCPR limits for AFTO are provided in Table 10-6. The power and flow
-dependent OLMCPR curves were obtained from Reference 2 and were adjusted with a 3% penalty for feedwater temperature difference greater than 2 0F as displayed in Table 10
-1 as per Reference 10. PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS values were obtained by taking the most limiting OLMCPR values of the two EOOS conditions (Reference 8). No MCPR penalties are required for asymmetric temperature differentials less than or equal to 2 0 F. Additionally, no MCPR penalties are required for AFTO while in SLO as previously discussed.
TABLE 10-4 AFTO Operating Limit Minimum Critical Power Ratio 2 0&deg;&deg;F (Asymmetric Feedwater Heating)
(References 2 , 8, and 10) EOOS Combination SCRAM Time Option (1) Cycle Exposure
< EOR - 3915 MWd/ST > EOR - 3915 MWd/ST BASE B 1.44 1.46   B*(2) 1.42 1.45 A 1.52 1.55 RPTOOS B 1.47 1.49 A 1.65 1.67 PR/PLUOOS B 1.44 1.46 A 1.52 1.55 TBSOOS B 1.48 1.51 A 1.58 1.61 PR/PLUOOS + TBSOOS B 1.48 1.51 A N/A N/A PR/PLUOOS + RPTOOS B 1.47 1.49 A N/A N/A            


  (1) When Tau does not equal 0 or 1, use linear interpolation.
Exelon Nuclear - Nuclear Fuels                                              COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                              Page 22 of 26 TABLE 10-5 AFTO Power Dependent MCPR Limit Adjustments And Multipliers MCPR(P) 20&deg;F < FWT DELTA 55&deg;F (Asymmetric Feedwater Heating)
  (2) Limit is only applicable if it is confirmed that a 45ms or greater delay exists between the time of the first TCV movement and the time of first TSV movement following a turbine trip; this may be selected per applicable station procedures.
(References 2, 8, and 10)
Core                          Core Thermal Power (% of rated)
Flow    0       23      <26.7 26.7      40      55    65      85      100 EOOS Combination
(% of rated) Operating Limit MCPR              Operating Limit MCPR Multiplier, Kp
                                        < 60  2.75      2.75      2.68 Base                                                              1.392  1.288  1.237 1.130    1.067  1.000
                                        > 60  3.08      3.08      2.91
                                        < 60  2.75      2.75      2.68 RPTOOS                                                              1.392  1.288  1.237 1.130    1.067  1.000
                                        > 60  3.08      3.08      2.91
                                        < 60  2.75      2.75      2.68 PR/PLUOOS                                                              1.392  1.288  1.237  1.210    1.147  1.000
                                        > 60  3.08      3.08      2.91
                                        < 60  3.75      3.75      3.35 TBSOOS                                                              1.399  1.323  1.237  1.155    1.079  1.000
                                        > 60  4.27      4.27      3.89
                                        < 60  3.75      3.75      3.35 PR/PLUOOS + TBSOOS                                                          1.399  1.323  1.237  1.210    1.147  1.000
                                        > 60  4.27      4.27      3.89
                                        < 60  2.75      2.75      2.68 PR/PLUOOS + RPTOOS                                                          1.392  1.288  1.237  1.210    1.147  1.000
                                        > 60  3.08      3.08      2.91 TABLE 10-6 AFTO Flow Dependent MCPR Limits MCPR(F) 20&deg;F < FWT DELTA 55&deg;F (Asymmetric Feedwater Heating)
(References 2 and 10)
Flow          MCPR(F)
(% rated)          Limit 0.0              1.79 30.0            1.62 86.0            1.29 110.0            1.29


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                         COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                           Page 23 of 26 MAPLHGR LIMITS An appropriate penalty must be applied to MAPLHGR limits under asymmetric feedwater temperature operation (AFTO) for varying temperature differentials as displayed in Table 10-1 as per Reference 10. The reduction factor listed in Table 10-1 is the maximum penalty for the full range of analyzed FWT mismatches, bounding all smaller temperature deltas. No MAPLHGR penalties are required for AFTO while in SLO as previously discussed.
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 22 of 26  TABLE 10-5 AFTO Power Dependent MCPR Limit Adjustments And Multipliers MCPR(P) 2 0&deg;&deg;F    (Asymmetric Feedwater Heating)
(References 2, 8, and 1 0)  EOOS Combination Core Flow (% of rated) Core Thermal Power (% of rated) 0 23 <26.7 7 40 55 65 85 100 Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base < 60 2.75 2.75 2.68 1.392 1.288 1.237 1.130 1.067 1.000 > 60 3.08 3.08 2.91 RPTOOS < 60 2.75 2.75 2.68 1.392 1.288 1.237 1.130 1.067 1.000 > 60 3.08 3.08 2.91 PR/PLUOOS < 60 2.75 2.75 2.68 1.392 1.288 1.237 1.210 1.147 1.000 > 60 3.08 3.08 2.91 TBSOOS < 60 3.75 3.75 3.35 1.399 1.323 1.237 1.155 1.079 1.000 > 60 4.27 4.27 3.89 PR/PLUOOS + TBSOOS
< 60 3.75 3.75 3.35 1.399 1.323 1.237 1.210 1.147 1.000 > 60 4.27 4.27 3.89 PR/PLUOOS + RPTOOS
< 60 2.75 2.75 2.68 1.392 1.288 1.237 1.210 1.147 1.000 > 60 3.08 3.08 2.91  TABLE 10-6 AFTO Flow Dependent MCPR Limits MCPR(F) 2 0&deg;&deg;F (Asymmetric Feedwater Heating)
(References 2 and 10)  Flow (% rated) MCPR(F) Limit 0.0 1.79 30.0 1.62 86.0 1.29 110.0 1.29 Exelon Nuclear
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 23 of 26   MAPLHGR LIMITS An appropriate penalty must be applied to MAPLHGR limits under asymmetric feedwater temperature operation (AFTO) for varying temperature differentials as displayed in Table 10
-1 as per Reference 10. The reduction factor listed in Table 10
-1 is the maximum penalty for the full range of analyzed FWT mismatches, bounding all smaller temperature deltas.
No MAPLHGR penalties are required for AFTO while in SLO as previously discussed.
TABLE 10-7 AFTO MAPLHGR Reduction Factor (Asymmetric Feedwater Heating)
TABLE 10-7 AFTO MAPLHGR Reduction Factor (Asymmetric Feedwater Heating)
  (References 2 and 10)
(References 2 and 10)
AFTO Reduction Factor 2 0&deg;55&deg;F 0.9 6 0 Exelon Nuclear
AFTO Reduction Factor 20&deg;F < FWT DELTA  55&deg;F             0.960
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 24 of 26    11.0 MODES OF OPERATION The following conditions are supported by the Peach Bottom 3 Cycle 22 licensing analysis; operation in a condition (or conditions) is controlled by station procedures. If a combination of options is not listed, it is not supported. Table 11-1 provides allowed modes of operation with thermal limit sets in the COLR. Table 11-2 provides allowed modes of operation that do not contain explicit thermal limit sets in the COLR. TABLE 11-1 Modes of Operation (Reference 2)
EOOS Options Supported Scram Speed Option Supported Recirculation Loop Operation Supported SFTO/AFTO Base 1 , 2 A or B DLO or SLO 3 SFTO or AFTO TBSOOS A or B DLO or SLO 3 SFTO or AFTO RPTOOS A or B DLO or SLO 3 SFTO or AFTO PLUOOS A or B DLO or SLO 3 SFTO or AFTO PROOS A or B DLO or SLO 3 SFTO or AFTO PR/PLUOOS and TBSOOS B DLO AFTO 4 PR/PLUOOS and RPTOOS B DLO AFTO 4  TABLE 11-2 EOOS Options Included in 'Base' Conditions (Reference 2)
EOOS Condition TCV/TSVOOS 5 MSIVOOS 5 SRVOOS TBVOOS  12.0 METHODOLOGY


The analytical methods used in determining the core operating limits have been previously reviewed and approved by the NRC, specifically those described in the following document s: 1. "General Electric Standard Application for Reactor Fuel," Global Nuclear Fuel Document No.
Exelon Nuclear - Nuclear Fuels                                        COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                            Page 24 of 26 11.0      MODES OF OPERATION The following conditions are supported by the Peach Bottom 3 Cycle 22 licensing analysis; operation in a condition (or conditions) is controlled by station procedures. If a combination of options is not listed, it is not supported. Table 11-1 provides allowed modes of operation with thermal limit sets in the COLR.
NEDE-24011-P-A-2 5 , August 201 7 and U.S. Supplement NEDE
Table 11-2 provides allowed modes of operation that do not contain explicit thermal limit sets in the COLR.
-24011-P-A-2 5-US, August 2017
TABLE 11-1 Modes of Operation (Reference 2)
.
Supported Scram    Supported Recirculation          Supported EOOS Options                  Speed Option            Loop Operation            SFTO/AFTO Base 1,2                                A or B                DLO or SLO 3            SFTO or AFTO TBSOOS                                  A or B                DLO or SLO3              SFTO or AFTO RPTOOS                                  A or B                DLO or SLO3              SFTO or AFTO PLUOOS                                  A or B                DLO or SLO3              SFTO or AFTO PROOS                                    A or B                DLO or SLO3              SFTO or AFTO PR/PLUOOS and TBSOOS                      B                        DLO                      AFTO 4 PR/PLUOOS and RPTOOS                      B                        DLO                      AFTO4 TABLE 11-2 EOOS Options Included in Base Conditions (Reference 2)
1 The 'Base' condition includes the options listed in Table 11
EOOS Condition TCV/TSVOOS5 MSIVOOS 5 SRVOOS TBVOOS 12.0      METHODOLOGY The analytical methods used in determining the core operating limits have been previously reviewed and approved by the NRC, specifically those described in the following documents:
-2. 2 The 'Base' condition includes operation with FWHOOS/FFWTR. Operation not permitted in the MELLLA+ Region for reduced FWT conditions as controlled by station procedures.
: 1. General Electric Standard Application for Reactor Fuel, Global Nuclear Fuel Document No. NEDE-24011-P-A-25, August 2017 and U.S. Supplement NEDE-24011-P-A-25-US, August 2017.
1 The Base condition includes the options listed in Table 11-2.
2 The Base condition includes operation with FWHOOS/FFWTR. Operation not permitted in the MELLLA+ Region for reduced FWT conditions as controlled by station procedures.
3 Operation in SLO not permitted in the MELLLA+ Region as controlled by station procedures.
3 Operation in SLO not permitted in the MELLLA+ Region as controlled by station procedures.
4 AFTO limits bound SFTO limits.
4 AFTO limits bound SFTO limits.
5 Permitted at power levels provided in the applicable station procedure.
5 Permitted at power levels provided in the applicable station procedure.


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                     COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                         Page 25 of 26
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 25 of 26    


==13.0 REFERENCES==
==13.0     REFERENCES==
: 1. "Technical Specifications for Peach Bottom Atomic Power Station Unit 3 ," Exelon Document, Docket No. 50-27 8, Appendix A to License No. DPR-56.
: 1. "Technical Specifications for Peach Bottom Atomic Power Station Unit 3, Exelon Document, Docket No. 50-278, Appendix A to License No. DPR-56.
: 2. "Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21 Cycle 2 2 ," Global Nuclear Fuel Document No. 003N1452, Revision 0 , September 2017.
: 2. "Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21 Cycle 22," Global Nuclear Fuel Document No. 003N1452, Revision 0, September 2017.
: 3. "General Electric Standard Application for Reactor Fuel (GESTAR II)
: 3. General Electric Standard Application for Reactor Fuel (GESTAR II), Global Nuclear Fuel Document No. NEDE-24011-P-A-25, August 2017 and U.S. Supplement NEDE-24011-P-A-25-US, August 2017.
," Global Nuclear Fuel Document No. NEDE-24011-P-A-2 5 , August 2017 and U.S. Supplement NEDE
: 4. GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR II), Global Nuclear Fuel Document No. NEDC-33270P, Revision 8, April 2017.
-24011-P-A-2 5-US, August 2017
: 5. Peach Bottom EPU Evaluation of Feedwater Temperature vs. Reactor Power for Feedwater Temperature Conditions of Nominal Rated, FWHOOS (Nominal -55F) and FFWTR (Nominal -90F), General Electric Hitachi Nuclear Energy Document No. 001N2494-R0, Revision 0, July 2014. This document is searchable in Exelon EDMS under document number PEAM-EPU-1 Rev. 0A.
. 4. "GNF2 Advantage Generic Compliance with NEDE
: 6. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 & 3 Maximum Extended Load Line Limit Analysis Plus, General Electric Hitachi Nuclear Energy Document No. NEDO-33720, Revision 0, September 2014.
-24011-P-A (GESTAR II)," Global Nuclear Fuel Document No. NEDC
: 7. Determination of Total Time Required to Initiate the Trip Signal to the EOC-RPT Circuit Breakers Trip Coils and to Complete the Recirculation Pump Trip, PECO Calculation No. PE-0173, Revision 1, December 1998.
-33270P, Revision 8, April 201 7. 5. "Peach Bottom EPU Evaluation of Feedwater Temperature vs. Reactor Power for Feedwater Temperature Conditions of Nominal Rated, FWHOOS (Nominal  
: 8. Peach Bottom Units 2 and 3 TRACG Cycle-Independent PROOS & PLUOOS Analysis Report, Global Nuclear Fuel Document No. 002N8351, Revision 2, May 25, 2016.
--," General Electric Hitachi Nuclear Energy Document No. 001N2494
: 9. Provide Allowable Values (AV) and Nominal Trip Setpoints (NTSP) for Various Setpoint Functions of the NUMAC PRNM System, PECO Calculation No. PE-0251, Revision 3, October 2016.
-R0, Revision 0, July 2014. This document is searchable in Exelon EDMS under document number "PEAM
: 10. Final Evaluation Report Exelon Nuclear Generating Company LLC, Peach Bottom Units 2 & 3, MELLLA+, Asymmetric Feedwater Temperature Operation for EPU/MELLLA+, General Electric Hitachi Nuclear Energy Document No. 001N6733-R1, Revision 1, September 2014. This document is searchable in Exelon EDMS under document number PEAM-EPU-68 Rev. 1.
-EPU-1 Rev. 0A.
: 11. "Fuel Bundle Information Report for Peach Bottom Unit 3 Reload 21 Cycle 22," Global Nuclear Fuel Document No. 003N1453, Revision 0, August 2017.
: 6. "Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 & 3 Maximum Extended Load Line Limit Analysis Plus", General Electric Hitachi Nuclear Energy Document No. NEDO
: 12. Final Resolved OPL-3 Parameters for Peach Bottom Unit 3 Cycle 22, Exelon TODI ENSAF ID#
-33720, Revision 0, September 2014.
ES1700007, Revision 1, June 2017.
: 7. "Determination of Total Time Required to Initiate the Trip Signal to the EOC
-RPT Circuit Breakers Trip Coils and to Complete the Recirculation Pump Trip
," PECO Calculation No. PE
-0173, Revision 1, December 1998.
: 8. "Peach Bottom Units 2 and 3 TRACG Cycle
-Independent PROOS & PLUOOS Analysis Repor t ," Global Nuclear Fuel Document No. 002N8351, Revision 2, May 25, 2016.
: 9. "Provide Allowable Values (AV) and Nominal Trip Setpoints (NTSP) for Various Setpoint Functions of the NUMAC PRNM System
", PECO Calculation No. PE
-0251, Revision 3, October 2016.
: 10. "Final Evaluation Report Exelon Nuclear Generating Company LLC
, Peach Bottom Units 2 & 3
, MELLLA+, Asymmetric Feedwater Temperature Operation for EPU/MELLLA+
," General Electric Hitachi Nuclear Energy Document No. 001N6733
-R1, Revision 1 , September 2014. This document is searchable in Exelon EDMS under document number "PEAM
-EPU-68 Rev. 1.11. "Fuel Bundle Information Report for Peach Bottom Unit 3 Reload 21 Cycle 2 2 ," Global Nuclear Fuel Document No.
003 N 1453, Revision 0, August 2017
.
: 12. "Final Resolved OPL
-3 Parameters for Peach Bottom Unit 3 Cycle 22," Exelon TODI ENSAF ID#
ES1700007, Revision 1 , June 201 7.  


Exelon Nuclear  
Exelon Nuclear - Nuclear Fuels                                       COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report                                                 Page 26 of 26 APPENDIX A Power/Flow Operating Map for MELLLA+
- Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P 3 C 22 Core Operating Limits Report Page 26 of 26   APPENDIX A Power/Flow Operating Map for MELLLA+
(Reference 6)
(Reference 6)
BSP Boundary}}
BSP Boundary}}

Latest revision as of 07:05, 29 October 2019

Issuance of the Core Operating Limits Report for Reload 21, Cycle 22
ML17318A033
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 11/13/2017
From: Pat Navin
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CCN: 17-94
Download: ML17318A033 (27)


Text

Exelon Generation TS 5.6.5.d November 13, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Peach Bottom Atomic Power Station, Unit 3 Renewed Facility Operating License No. DPR-56 NRG Docket No. 50-278

Subject:

Issuance of the Core Operating Limits Report for Reload 21, Cycle 22 Enclosed is a copy of Revision 12 of the Core Operating Limits Report (COLA) for Peach Bottom Atomic Power Station (PBAPS) Unit 3 for Reload 21, Cycle 22. Revision 12 of this report incorporates the revised cycle specific parameters resulting from the new core configuration as a result of the PBAPS Unit 3 refueling outage.

This COLR is being submitted to the NRG as required by the PBAPS, Unit 3 Technical Specifications (TS) Section 5.6.5.d.

If you have any questions concerning this letter, please contact Ms. Stephanie J. Hanson at (717) 456-3756.

Patrick D. Navin Site Vice President Peach Bottom Atomic Power Station CCN: 17-94

Enclosure:

Unit 3 Core Operating Limits Report for Reload 21, Cycle 22, Revision 12 cc: Regional Administrator, Region I, USNRC (without attachment)

USNRC Senior Resident Inspector, PBAPS (without attachment)

Project Manager - PBAPS, USNRC (with attachment)

R. R. Janati, Pennsylvania Bureau of Radiation Protection (without attachment)

S. T. Gray, State of Maryland (without attachment)

Exelon Nuclear - Nuclear Fucb COLR PEACH BOTTOM 3 Rev. 12 P3C22 C'orc Operating Limits Repon Page I of26 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 3 RELOAD 21, CYCLE 22 (This revision is a complete re-write)

~/

.-r-r . Date: 10/09/2017 Prepared By:

Tae Wook Ahn - Nuclear Fuels 10/9/2017 Prepared By: Date: - - - -

Reviewed By: _~____./_*_~l£.______

___ __ Date: I0/10/1?

Matthew Miller - Reactor Engineering Reviewed By: ----~ ----*-~ --------

Travis Bement Engineering Safety Analysis Date: 10/9/17 Supplementary Review By: Date: 10/9/2017 Patricia Henry - Cycle Management Lead Independent Review By:

-Ta_m J~~

_a-ra_S_t-at-he_s_ Nuclear Fuels Date: 10/10/17 A [)(/jJrri'P;J Approved By: _ _ _ _~ _ _ __

0

"'0_0

_ _ _ __ Date: _1_1O_C_T_1_7 Armando Johnson - NF Senior Manager SQRBy: Date: /O /nj;'}

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 2 of 26 Table of Contents Page 1.0 Terms and Definitions 5 2.0 General Information 6 3.0 MAPLHGR Limits 7 4.0 MCPR Limits 8 5.0 LHGR Limits 12 6.0 Rod Block Monitor Setpoints 14 7.0 Turbine Bypass Valve Parameters 15 8.0 EOC Recirculation Pump Trip (EOC-RPT) Operability 16 9.0 Stability Protection 17 10.0 Asymmetric Feedwater Temperature Operation (AFTO) 19 11.0 Modes of Operation 24 12.0 Methodology 24 13.0 References 25 Appendix A (Power/Flow Operating Map for MELLLA+) 26

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 3 of 26 Revision History Revision Description Revision 12 New issue for Cycle 22

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 4 of 26 List of Tables Page Table 3-1 MAPLHGR Versus Average Planar Exposure 7 Table 3-2 MAPLHGR Single Loop Operation (SLO) Multiplier 7 Table 4-1 Operating Limit Minimum Critical Power Ratio 9 Table 4-2 Power Dependent MCPR(P) Limit Adjustments and Multipliers 10 Table 4-3 Flow Dependent MCPR Limits MCPR(F) 11 Table 4-4 SLO Flow Dependent MCPR Limits MCPR(F) 11 Table 5-1 Linear Heat Generation Rate Limits - UO2 rods 12 Table 5-2 Linear Heat Generation Rate Limits - Gad rods 12 Table 5-3 Power Dependent LHGR Multiplier LHGRFAC(P) 13 Table 5-4 Flow Dependent LHGR Multiplier LHGRFAC(F) 13 Table 6-1 Rod Block Monitor Setpoints 14 Table 7-1 Turbine Bypass System Response Time 15 Table 7-2 Minimum Required Bypass Valves to Maintain System Operability 15 Table 8-1 Recirculation Pump Trip Response Time 16 Table 9-1 Automatic BSP Setpoints for the Scram Region 17 Table 9-2 Manual BSP Endpoints for Normal Feedwater Temperature 18 Table 9-3 Manual BSP Endpoints for Reduced Feedwater Temperature 18 Table 10-1 AFTO Thermal Limit Penalties 19 Table 10-2 AFTO Power Dependent LHGR Multiplier LHGRFAC(P) 20°F < FWT DELTA 55°F 20 Table 10-3 AFTO Flow Dependent LHGR Multiplier LHGRFAC(F) 20°F < FWT DELTA 55°F 20 Table 10-4 AFTO Operating Limit Minimum Critical Power Ratio 20°F < FWT DELTA 55°F 21 Table 10-5 AFTO Power Dependent MCPR Limit Adjustments and Multipliers 22 MCPR(P) 20°F < FWT DELTA 55°F Table 10-6 AFTO Flow Dependent MCPR Limits MCPR(F) 20°F < FWT DELTA 55°F 22 Table 10-7 AFTO MAPLHGR Reduction Factor 23 Table 11-1 Modes of Operation 24 Table 11-2 EOOS Options Included in Base Conditions 24

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 5 of 26 1.0 Terms and Definitions ABSP Automatic Backup Stability Protection AFTO Asymmetric Feedwater Temperature Operation AFTO LFWH Asymmetric Feedwater Temperature Operation Loss-of-Feedwater Heating APRM Average Power Range Monitor ARTS APRM and RBM Technical Specification Analysis BASE The BASE condition is defined by a group of individual operating conditions that are applicable to all Modes of Operation discussed in Section 11. The BASE condition includes the EOOS conditions provided in Table 11-2 as well as operation with FWHOOS/FFWTR.

BOC Beginning Of Cycle BSP Backup Stability Protection DSS-CD Detect and Suppress Solution - Confirmation Density DTSP Rod Block Monitor Downscale Trip Setpoint EOC End of Cycle EOOS Equipment Out of Service. An analyzed option that assumes certain equipment to be non-operational.

EOR End of Rated. The cycle exposure at which reactor power is equal to 100% with recirculation system flow equal to 100%, all control rods fully withdrawn, all feedwater heating in service and equilibrium Xenon.

FFWTR Final Feedwater Temperature Reduction FWHOOS Feedwater Heaters Out of Service FWT Feedwater Temperature HFCL High Flow Control Line HTSP Rod Block Monitor High Trip Setpoint ICF Increased Core Flow ITSP Rod Block Monitor Intermediate Trip Setpoint LHGR Linear Heat Generation Rate LHGRFAC(F) ARTS LHGR thermal limit flow dependent adjustments and multipliers LHGRFAC(P) ARTS LHGR thermal limit power dependent adjustments and multipliers LTSP Rod Block Monitor Low Trip Setpoint MAPLHGR Maximum Average Planar Linear Heat Generation Rate MCPR Minimum Critical Power Ratio MCPR(F) ARTS MCPR thermal limit flow dependent adjustments and multipliers MCPR(P) ARTS MCPR thermal limit power dependent adjustments and multipliers MELLLA Maximum Extended Load Line Limit Analysis MELLLA+ Maximum Extended Load Line Limit Analysis Plus MSIVOOS Main Steam Isolation Valve Out of Service NCL Natural Circulation Line OLMCPR Operating Limit Minimum Critical Power Ratio PLUOOS Power Load Unbalance Out of Service PROOS Pressure Regulator Out of Service RBM Rod Block Monitor RDF Rated Drive Flow RPTOOS Recirculation Pump Trip Out of Service RTP Rated Thermal Power RWE Rod Withdrawal Error SLMCPR Safety Limit Minimum Critical Power Ratio SLO Single Loop Operation TBSOOS Turbine Bypass System Out of Service TCV/TSVOOS Turbine Control Valve and/or Turbine Stop Valve Out of Service

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 6 of 26 2.0 General Information This report provides the following cycle-specific parameter limits for Peach Bottom Atomic Power Station Unit 3 CYCLE 22 (RELOAD 21):

  • Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)
  • Operating Limit Minimum Critical Power Ratio (OLMCPR)
  • ARTS MCPR thermal limit adjustments and multipliers
  • Linear Heat Generation Rate (LHGR)
  • Rod Block Monitor (RBM) allowable values and MCPR limits
  • Stability Protection Setpoints
  • Asymmetric Feedwater Temperature Operation (AFTO) thermal limit penalties These values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met. SLO, FWHOOS operation, and FFWTR operation are not permitted in the MELLLA+ Region as controlled by station procedures. For the MELLLA+ Region, a specific definition of FWHOOS is provided in Facility Operating License (FOL) Section 2.C(16).

This report provides cycle-specific Operating Limit MCPR, LHGR, MAPLHGR thermal limits, and related information for the following conditions:

  • All points in the operating region of the power/flow map including MELLLA+ Region down to 83%

of rated core flow during full power (3951 MWt) operation (Appendix A)

  • Increased Core Flow (ICF), up to 110% of rated core flow
  • End-of-Cycle Power Coastdown to a minimum power level of 40%
  • Final Feedwater Temperature Reduction (FFWTR) between End-of-Rated (EOR) and End-of-Cycle (EOC) to 90° F temperature reduction (4th and 5th stage FWHOOS)
  • Asymmetric Feedwater Temperature Operation ARTS provides for power and flow-dependent thermal limit adjustments and multipliers that allow for a more reliable administration of the MCPR and LHGR thermal limits. The OLMCPR is determined by the cycle-specific reload analyses in Reference 2. Rated LHGR values are obtained from the bundle-specific thermal-mechanical analysis. Supporting documentation for the ARTS-based limits is provided in Reference 2. The off-rated limits assumed in the ECCS-LOCA analyses bound the cycle-specific limits calculated for MELLLA+ operation. The Allowable Values documented in Reference 5 for feedwater temperature as a function of thermal power for both FWHOOS and FFWTR are specified in the appropriate Peach Bottom procedures. The Peach Bottom Unit 3 Cycle 22 core is comprised entirely of GNF2 fuel.

Also note that the following description of MAPLHGR, LHGR and MCPR limits pertain to NON-AFTO conditions. A separate description of AFTO limits and their associated ARTS tables is in Section 10. Preparation of this report was performed in accordance with Exelon Nuclear procedures. This report is provided to the NRC in accordance with Technical Specification 5.6.5 of Reference 1 and contains all thermal limit parameters related to the implementation of the ARTS Improvement Program and MELLLA+ for Peach Bottom Unit 3 Cycle 22.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 7 of 26 3.0 MAPLHGR LIMITS 3.1 Technical Specification Section 3.2.1, 3.3.4.2, 3.4.1 and 3.7.6 3.2 Description The MAPLHGR limits (kW/ft) obtained from the emergency core cooling system (ECCS) analysis are provided in Table 3-1. The MAPLHGR limits comprise a given fuel type as a function of average planar exposure. All MAPLHGR values for GNF2 as a function of axial location and average planar exposure shall be less than or equal to the applicable MAPLHGR limits for GNF2 fuel and lattice type. These MAPLHGR limits are specified in Reference 2 and the process computer databank. The SLO MAPLHGR multiplier is provided in Table 3-2 per Reference 2 and must be applied to the Table 3-1 limits when operating in SLO. The impact of AFTO on MAPLHGR is addressed in Section 10.0.

TABLE 3-1 MAPLHGR Versus Average Planar Exposure (Reference 2)

Average Planar Exposure MAPLHGR Limit (GWd/ST) (kW/ft) 0.0 13.78 17.52 13.78 60.78 7.50 63.50 6.69 TABLE 3-2 MAPLHGR Single Loop Operation (SLO) Multiplier (Reference 2)

SLO Multiplier 0.73

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 8 of 26 4.0 MCPR LIMITS 4.1 Technical Specification Section 2.1.1.2, 3.2.2, 3.3.4.2, 3.4.1 and 3.7.6 4.2 Description The Operating Limit MCPR (OLMCPR) for GNF2 fuel is provided in Tables 4-1 and 4-2. These values are determined by the cycle-specific fuel reload analyses in Reference 2. Control rod scram time verification is required as per Technical Specification 3.1.4, "Control Rod Scram Times". Tau (), a measure of scram time performance to notch position 36 throughout the cycle, is determined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Linear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).

Separate OLMCPR values are presented in Table 4-1 for the following conditions:

  • TBS In-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90 °F (a.k.a. BASE)
  • TBS Out-of-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90 °F
  • TBS In-Service (per Section 7.0), RPT In-Service (per Section 8.0), PR/PLU Out-of-Service, and maximum FFWTR of 90°F
  • TBS In-Service (per Section 7.0), RPT Out-of-Service (per Section 8.0), PR/PLU In-Service, and maximum FFWTR of 90 °F The ARTS-based power-dependent MCPR limits are provided in Table 4-2. Table 4-2 is valid for a maximum temperature reduction of 90 °F for FFWTR operation (bounding for FWHOOS operation). The flow-dependent MCPR limits are provided in Tables 4-3 and 4-4. Table 4-3 is valid for dual loop operating conditions with symmetric feedwater temperature operation and Table 4-4 is valid for single loop operating conditions with symmetric feedwater temperature operation. The impact of AFTO on MCPR is addressed in Section 10.0. For PR/PLUOOS +

TBSOOS and PR/PLUOOS + RPTOOS conditions, the limits are listed in Section 10.0, these values are bounding for non-AFTO conditions.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 9 of 26 TABLE 4-1 Operating Limit Minimum Critical Power Ratio (Reference 2)

SCRAM Cycle Exposure Time < EOR - 3915 > EOR - 3915 EOOS Combination Option(1) MWd/ST MWd/ST B 1.40 1.42 BASE B*(3) 1.38 1.41 A 1.48 1.50 B 1.43 1.45 BASE SLO(2)

A 1.51 1.53 B 1.43 1.45 RPTOOS A 1.60 1.62 B 1.46 1.48 RPTOOS SLO(2)

A 1.63 1.65 B 1.40 1.42 PR/PLUOOS A 1.48 1.50 B 1.43 1.45 PR/PLUOOS SLO(2)

A 1.51 1.53 B 1.44 1.47 TBSOOS A 1.53 1.56 B 1.47 1.50 TBSOOS SLO (2)

A 1.56 1.59 (1) When Tau does not equal 0 or 1, use linear interpolation.

(2) For single-loop operation, the MCPR operating limit is 0.03 higher than the two loop value (Reference 2).

(3) Limit is only applicable if it is confirmed that a 45ms or greater delay exists between the time of the first TCV movement and the time of first TSV movement following a turbine trip; this may be selected per applicable station procedures.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 10 of 26 TABLE 4-2 Power Dependent MCPR(P) Limit Adjustments and Multipliers (Symmetric Feedwater Heating)

(Reference 2)

Core Core Thermal Power (% of rated)

Flow 0 23 <26.7 26.7 40 55 65 85 100 EOOS Combination

(% of rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp

< 60 2.67 2.67 2.60 Base 1.392 1.288 1.237 1.130 1.067 1.000

> 60 2.99 2.99 2.83

< 60 2.70 2.70 2.63 Base SLO 1.392 1.288 1.237 1.130 1.067 1.000

> 60 3.02 3.02 2.86

< 60 2.67 2.67 2.60 RPTOOS 1.392 1.288 1.237 1.130 1.067 1.000

> 60 2.99 2.99 2.83

< 60 2.70 2.70 2.63 RPTOOS SLO 1.392 1.288 1.237 1.130 1.067 1.000

> 60 3.02 3.02 2.86

< 60 2.67 2.67 2.60 PR/PLUOOS 1.392 1.288 1.237 1.210 1.147 1.000

> 60 2.99 2.99 2.83

< 60 2.70 2.70 2.63 PR/PLUOOS SLO 1.392 1.288 1.237 1.210 1.147 1.000

> 60 3.02 3.02 2.86

< 60 3.64 3.64 3.25 TBSOOS 1.399 1.323 1.237 1.155 1.079 1.000

> 60 4.15 4.15 3.78

< 60 3.67 3.67 3.28 TBSOOS SLO 1.399 1.323 1.237 1.155 1.079 1.000

> 60 4.18 4.18 3.81

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 11 of 26 TABLE 4-3 Flow Dependent MCPR Limits MCPR(F)

(Symmetric Feedwater Heating)

(Reference 2)

Core Flow MCPR(F)

(% rated) Limit 0.0 1.74 30.0 1.57 86.0 1.25 110.0 1.25 TABLE 4-4 SLO Flow Dependent MCPR Limits MCPR(F)

(Symmetric Feedwater Heating)

(Reference 2)

Core Flow MCPR(F)

(% rated) Limit 0.0 1.77 30.0 1.60 86.0 1.28 110.0 1.28

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 12 of 26 5.0 LHGR LIMITS 5.1 Technical Specification Section 3.2.3, 3.3.4.2, 3.4.1 and 3.7.6 5.2 Description The LHGR values for GNF2 fuel type are provided in Tables 5-1 and 5-2. The ARTS-based LHGR power-dependent multipliers are provided in Table 5-3. Table 5-3 is valid for a maximum temperature reduction of 90o F for FFWTR operation (bounding for FWHOOS operation). The flow-dependent multipliers are provided in Table 5-4 as a function of the number of recirculation loops in operation. The SLO LHGR multiplier is provided and accounted for in Table 5-4. The power- and flow-dependent LHGR multipliers were obtained from Reference 2. The impact of AFTO on LHGR is addressed in Section 10. For PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS conditions, the limits are listed in Section 10; these values are bounding for non-AFTO conditions. The power and flow dependent LHGR multipliers are sufficient to provide adequate protection for the off-rated conditions from an ECCS-LOCA analysis perspective.

TABLE 5-1 Linear Heat Generation Rate Limits - UO2 rods (References 4 and 11)

Fuel Type LHGR Limit GNF2 See Appendix B of Reference 4 TABLE 5-2 Linear Heat Generation Rate Limits - Gad rods (References 4 and 11)

Fuel Type LHGR Limit GNF2 See Appendix B of Reference 4

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 13 of 26 TABLE 5-3 Power Dependent LHGR Multiplier LHGRFAC(P)

(Symmetric Feedwater Heating)

(Reference 2)

Core Thermal Power (% of rated)

Core Flow EOOS Combination 0 23 <26.7 26.7 40 55 65 85 100

(% of rated)

LHGRFAC(P) Multiplier 60 0.508 0.508 0.522 Base 0.620 0.696 0.751 0.817 0.930 1.000

> 60 0.508 0.508 0.522 60 0.508 0.508 0.522 Base SLO 0.620 0.696 0.751 0.817 0.930 1.000

> 60 0.508 0.508 0.522 60 0.508 0.508 0.522 RPTOOS 0.620 0.696 0.751 0.817 0.930 1.000

> 60 0.508 0.508 0.522 60 0.508 0.508 0.522 RPTOOS SLO 0.620 0.696 0.751 0.817 0.930 1.000

> 60 0.508 0.508 0.522 60 0.508 0.508 0.522 PR/PLUOOS 0.620 0.696 0.751 0.817 0.930 1.000

> 60 0.508 0.508 0.522 60 0.508 0.508 0.522 PR/PLUOOS SLO 0.620 0.696 0.751 0.817 0.930 1.000

> 60 0.508 0.508 0.522 60 0.397 0.397 0.442 TBSOOS 0.620 0.655 0.714 0.817 0.930 1.000

> 60 0.397 0.397 0.417 60 0.397 0.397 0.442 TBSOOS SLO 0.620 0.655 0.714 0.817 0.930 1.000

> 60 0.397 0.397 0.417 TABLE 5-4 Flow Dependent LHGR Multiplier LHGRFAC(F)

(Symmetric Feedwater Heating)

(Reference 2)

Core Flow (% of rated)

EOOS Combination 0 30 33.6 70 80 110 LHGRFAC(F) Multiplier Dual Loop 0.506 0.706 0.730 0.973 1.000 1.000 Single Loop 0.506 0.706 0.730 0.730 0.730 0.730

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 14 of 26 6.0 ROD BLOCK MONITOR SETPOINTS 6.1 Technical Specification Section 3.3.2.1 6.2 Description The RBM power-biased Allowable Values and MCPR Limits are provided in Table 6-1 with supporting documentation in References 2 and 9. The values correspond to the OLMCPR values provide in Table 4-1.

TABLE 6-1 Rod Block Monitor Setpoints (References 2 and 9)

Power Level Allowable Value(1) MCPR Limit LTSP 118.2% < 1.83 (2)

< 1.50 (3)

ITSP 113.4% < 1.83 (2)

< 1.50 (3)

HTSP 108.4% < 1.83 (2)

< 1.50 (3)

INOP N/A < 1.83 (2)

< 1.50 (3)

(1) These setpoints (with RBM filter time constant between 0.1 seconds and 0.55 seconds) are based on a cycle-specific rated RWE MCPR limit which is less than or equal to the minimum cycle OLMCPR based on other events (see COLR References 2 and 9).

(2) This is the MCPR limit (given THERMAL POWER is > 28.4% and < 90%) below which the RBM is required to be OPERABLE (see COLR Reference 2 and TS Table 3.3.2.1-1).

(3) This is the MCPR limit (given THERMAL POWER is > 90%) below which the RBM is required to be OPERABLE (see COLR Reference 2 and TS Table 3.3.2.1-1).

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 15 of 26 7.0 TURBINE BYPASS VALVE PARAMETERS 7.1 Technical Specification Section 3.7.6 7.2 Description The operability requirements for the steam bypass system are governed by Technical Specification 3.7.6. If the requirements cannot be met, the appropriate power and flow dependent limits for Turbine Bypass System Out-of-Service (TBSOOS) must be used. Additionally, the OLMCPR for TBSOOS must be applied. Table 7-1 includes the Turbine Bypass Valve response time parameters. The minimum number of bypass valves to maintain system operability is provided in Table 7-2.

TABLE 7-1 Turbine Bypass System Response Time (Reference 12)

Maximum delay time before start of bypass valve opening following 0.10 sec initial turbine inlet valve movement(1)

Maximum time after initial turbine inlet valve movement(1) for bypass 0.30 sec valve position to reach 80% of full flow (includes the above delay time)

(1) First movement of any TSV or any TCV (whichever occurs first)

TABLE 7-2 Minimum Required Bypass Valves To Maintain System Operability (Reference 12)

Reactor Power No. of Valves in Service P 23% 7

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 16 of 26 8.0 EOC RECIRCULATION PUMP TRIP (EOC-RPT) OPERABILITY 8.1 Technical Specification Section 3.3.4.2 8.2 Description The operability requirements for the EOC Recirculation Pump Trip are governed by Technical Specification 3.3.4.2. If the requirements cannot be met, the appropriate power and flow dependent limits for EOC Recirculation Pump Trip Out Of Service (RPTOOS) must be used.

Additionally, the OLMCPR for RPTOOS must be applied. Table 8-1 includes the total RPT response time parameter.

TABLE 8-1 Recirculation Pump Trip Response Time (Reference 12)

Total Recirculation Pump Trip Response Time The time from when the turbine valves (turbine control valve or 0.175 sec turbine stop valve) start to close until complete arc suppression of the EOC-RPT circuit breakers as described in Reference 7.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 17 of 26 9.0 STABILITY PROTECTION 9.1 Technical Specification Section 3.3.1.1, Table 3.3.1.1-1 Function 2.f 9.2 Description Per Reference 2, the Cycle 22 DSS-CD SAD Setpoint was confirmed to be 1.10 for DLO and SLO.

The Automatic Backup Stability Protection (BSP) Setpoints are provided in Table 9-1. The Manual BSP Endpoints for Normal Feedwater Temperature and Reduced Feedwater Temperature are provided in Tables 9-2 and 9-3. Reduced FWT as stated in Table 9-3 is intended for feedwater temperatures 10-90°F below nominal.

TABLE 9-1 Automatic BSP Setpoints for the Scram Region (Reference 2)

Parameter Symbol Value Slope of ABSP APRM flow-mTrip 1.37 biased trip linear segment.

ABSP APRM flow-biased trip setpoint power intercept.

Constant Power Line for Trip PBSP-Trip 39.3 %RTP from zero Drive Flow to Flow Breakpoint value.

ABSP APRM flow-biased trip setpoint drive flow intercept. WBSP-Trip 46.5 %RDF Constant Flow Line for Trip.

Flow Breakpoint value WBSP-Break 20.0 %RDF

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 18 of 26 TABLE 9-2(1)

Manual BSP Endpoints for Normal Feedwater Temperature (Reference 2)

Endpoint Power (%) Flow (%) Definition A1 74.3 49.2 Scram Region Boundary, HFCL B1 40.7 31.0 Scram Region Boundary, NCL A2 64.5 50.0 Controlled Entry Region Boundary, HFCL B2 28.1 30.1 Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal and Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 2.

TABLE 9-3(1)

Manual BSP Endpoints for Reduced Feedwater Temperature (Reference 2)

Endpoint Power (%) Flow (%) Definition A1 64.0 49.4 Scram Region Boundary, HFCL B1 34.4 30.6 Scram Region Boundary, NCL A2 66.4 52.4 Controlled Entry Region Boundary, HFCL B2 28.1 30.1 Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal and Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 2.

(1) Station may elect to place additional administrative margin on the endpoints provided in Table 9-2 and Table 9-3.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 19 of 26 10.0 ASYMMETRIC FEEDWATER TEMPERATURE OPERATION (AFTO)

Asymmetric feedwater heating (resulting from removing a heater string, or individual feedwater heaters, from operation) is the result of the specific configuration of the feedwater lines at Peach Bottom. A reduction in heating in either the A or the C heater strings will result in a temperature mismatch between the feedwater flows entering the opposite sides of the reactor vessel. This temperature mismatch may result in errors in the thermal limit values calculated by the core monitoring system. Thermal limit values for all conditions and events are impacted by these errors excluding SLO conditions. The station no longer requires SLO AFTO files or penalties due to a 3D MONICORE upgrade required for EPU operation. Asymmetric feedwater temperature operation (AFTO) is defined as operation in a feedwater heater/string configuration that results in a specified threshold difference as described in Reference 10. To simplify the implementation of the AFTO limits, only the maximum AFTO penalties indicated in Table 10-1 will be implemented when the threshold asymmetry temperature (temperature above which a penalty is required) is exceeded. This will minimize the number of AFTO thermal limit tables in the COLR and core monitoring system.

TABLE 10-1 AFTO Thermal Limit Penalties (Asymmetric Feedwater Heating)

(Reference 10)

MFLCPR MFLPD/MAPRAT 40°F < FWT DELTA 55°F 3% 4%

30°F < FWT DELTA 40°F 2% 3%

20°F < FWT DELTA 30°F 2% 2%

0°F < FWT DELTA 20°F No Penalty No Penalty LHGR LIMITS The ARTS-based LHGR power-dependent multipliers for AFTO operation are provided in Table 10-2. The flow-dependent multipliers for AFTO in DLO are provided in Table 10-3. The power-and flow-dependent LHGR multipliers were obtained from Reference 2 and were adjusted with the appropriate penalties displayed in Table 10-1 as per Reference 10. PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS values were obtained by taking the most limiting values of the two EOOS conditions (Reference 8). The maximum feedwater temperature difference allowed without a thermal limit penalty is 20 °F. Once the temperature difference exceeds 20 °F the maximum penalties from Table 10-1 are applied to the thermal limits.

Additionally, no LHGR penalties are required for AFTO while in SLO as previously discussed.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 20 of 26 TABLE 10-2 AFTO Power Dependent LHGR Multiplier LHGRFAC(P) 20°F < FWT DELTA 55°F (Asymmetric Feedwater Heating)

(References 2, 8, and 10)

Core Core Thermal Power (% of rated)

EOOS Combination Flow 0 23 <26.7 26.7 40 55 65 85 100

(% of rated) LHGRFAC(P) Multiplier 60 0.488 0.488 0.501 Base 0.595 0.668 0.721 0.784 0.893 0.960

> 60 0.488 0.488 0.501 60 0.488 0.488 0.501 RPTOOS 0.595 0.668 0.721 0.784 0.893 0.960

> 60 0.488 0.488 0.501 60 0.488 0.488 0.501 PR/PLUOOS 0.595 0.668 0.721 0.784 0.893 0.960

> 60 0.488 0.488 0.501 60 0.381 0.381 0.424 TBSOOS 0.595 0.629 0.685 0.784 0.893 0.960

> 60 0.381 0.381 0.400 60 0.381 0.381 0.424 PR/PLUOOS + TBSOOS 0.595 0.629 0.685 0.784 0.893 0.960

> 60 0.381 0.381 0.400 60 0.488 0.488 0.501 PR/PLUOOS + RPTOOS 0.595 0.668 0.721 0.784 0.893 0.960

> 60 0.488 0.488 0.501 TABLE 10-3 AFTO Flow Dependent LHGR Multiplier LHGRFAC(F) 20°F < FWT DELTA 55°F (Asymmetric Feedwater Heating)

(References 2 and 10)

Core Flow (% of rated)

EOOS Combination 0 30 33.6 70 80 110 LHGRFAC(F) Multiplier Dual Loop 0.486 0.678 0.701 0.934 0.960 0.960

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 21 of 26 MCPR LIMITS The OLMCPRs during asymmetric feedwater temperature operation with a feedwater temperature difference greater than 20°F are provided in Table 10-4. The ARTS-based power-dependent MCPR limits for use during AFTO conditions are provided in Table 10-5. The flow-dependent MCPR limits for AFTO are provided in Table 10-6. The power and flow-dependent OLMCPR curves were obtained from Reference 2 and were adjusted with a 3% penalty for feedwater temperature difference greater than 20°F as displayed in Table 10-1 as per Reference 10. PR/PLUOOS + TBSOOS and PR/PLUOOS + RPTOOS values were obtained by taking the most limiting OLMCPR values of the two EOOS conditions (Reference 8). No MCPR penalties are required for asymmetric temperature differentials less than or equal to 20°F. Additionally, no MCPR penalties are required for AFTO while in SLO as previously discussed.

TABLE 10-4 AFTO Operating Limit Minimum Critical Power Ratio 20°F < FWT DELTA 55°F (Asymmetric Feedwater Heating)

(References 2, 8, and 10)

SCRAM Cycle Exposure Time < EOR - 3915 > EOR - 3915 EOOS Combination Option(1) MWd/ST MWd/ST B 1.44 1.46 (2)

BASE B* 1.42 1.45 A 1.52 1.55 B 1.47 1.49 RPTOOS A 1.65 1.67 B 1.44 1.46 PR/PLUOOS A 1.52 1.55 B 1.48 1.51 TBSOOS A 1.58 1.61 B 1.48 1.51 PR/PLUOOS + TBSOOS A N/A N/A B 1.47 1.49 PR/PLUOOS + RPTOOS A N/A N/A (1) When Tau does not equal 0 or 1, use linear interpolation.

(2) Limit is only applicable if it is confirmed that a 45ms or greater delay exists between the time of the first TCV movement and the time of first TSV movement following a turbine trip; this may be selected per applicable station procedures.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 22 of 26 TABLE 10-5 AFTO Power Dependent MCPR Limit Adjustments And Multipliers MCPR(P) 20°F < FWT DELTA 55°F (Asymmetric Feedwater Heating)

(References 2, 8, and 10)

Core Core Thermal Power (% of rated)

Flow 0 23 <26.7 26.7 40 55 65 85 100 EOOS Combination

(% of rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp

< 60 2.75 2.75 2.68 Base 1.392 1.288 1.237 1.130 1.067 1.000

> 60 3.08 3.08 2.91

< 60 2.75 2.75 2.68 RPTOOS 1.392 1.288 1.237 1.130 1.067 1.000

> 60 3.08 3.08 2.91

< 60 2.75 2.75 2.68 PR/PLUOOS 1.392 1.288 1.237 1.210 1.147 1.000

> 60 3.08 3.08 2.91

< 60 3.75 3.75 3.35 TBSOOS 1.399 1.323 1.237 1.155 1.079 1.000

> 60 4.27 4.27 3.89

< 60 3.75 3.75 3.35 PR/PLUOOS + TBSOOS 1.399 1.323 1.237 1.210 1.147 1.000

> 60 4.27 4.27 3.89

< 60 2.75 2.75 2.68 PR/PLUOOS + RPTOOS 1.392 1.288 1.237 1.210 1.147 1.000

> 60 3.08 3.08 2.91 TABLE 10-6 AFTO Flow Dependent MCPR Limits MCPR(F) 20°F < FWT DELTA 55°F (Asymmetric Feedwater Heating)

(References 2 and 10)

Flow MCPR(F)

(% rated) Limit 0.0 1.79 30.0 1.62 86.0 1.29 110.0 1.29

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 23 of 26 MAPLHGR LIMITS An appropriate penalty must be applied to MAPLHGR limits under asymmetric feedwater temperature operation (AFTO) for varying temperature differentials as displayed in Table 10-1 as per Reference 10. The reduction factor listed in Table 10-1 is the maximum penalty for the full range of analyzed FWT mismatches, bounding all smaller temperature deltas. No MAPLHGR penalties are required for AFTO while in SLO as previously discussed.

TABLE 10-7 AFTO MAPLHGR Reduction Factor (Asymmetric Feedwater Heating)

(References 2 and 10)

AFTO Reduction Factor 20°F < FWT DELTA 55°F 0.960

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 24 of 26 11.0 MODES OF OPERATION The following conditions are supported by the Peach Bottom 3 Cycle 22 licensing analysis; operation in a condition (or conditions) is controlled by station procedures. If a combination of options is not listed, it is not supported. Table 11-1 provides allowed modes of operation with thermal limit sets in the COLR.

Table 11-2 provides allowed modes of operation that do not contain explicit thermal limit sets in the COLR.

TABLE 11-1 Modes of Operation (Reference 2)

Supported Scram Supported Recirculation Supported EOOS Options Speed Option Loop Operation SFTO/AFTO Base 1,2 A or B DLO or SLO 3 SFTO or AFTO TBSOOS A or B DLO or SLO3 SFTO or AFTO RPTOOS A or B DLO or SLO3 SFTO or AFTO PLUOOS A or B DLO or SLO3 SFTO or AFTO PROOS A or B DLO or SLO3 SFTO or AFTO PR/PLUOOS and TBSOOS B DLO AFTO 4 PR/PLUOOS and RPTOOS B DLO AFTO4 TABLE 11-2 EOOS Options Included in Base Conditions (Reference 2)

EOOS Condition TCV/TSVOOS5 MSIVOOS 5 SRVOOS TBVOOS 12.0 METHODOLOGY The analytical methods used in determining the core operating limits have been previously reviewed and approved by the NRC, specifically those described in the following documents:

1. General Electric Standard Application for Reactor Fuel, Global Nuclear Fuel Document No. NEDE-24011-P-A-25, August 2017 and U.S. Supplement NEDE-24011-P-A-25-US, August 2017.

1 The Base condition includes the options listed in Table 11-2.

2 The Base condition includes operation with FWHOOS/FFWTR. Operation not permitted in the MELLLA+ Region for reduced FWT conditions as controlled by station procedures.

3 Operation in SLO not permitted in the MELLLA+ Region as controlled by station procedures.

4 AFTO limits bound SFTO limits.

5 Permitted at power levels provided in the applicable station procedure.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 25 of 26

13.0 REFERENCES

1. "Technical Specifications for Peach Bottom Atomic Power Station Unit 3, Exelon Document, Docket No. 50-278, Appendix A to License No. DPR-56.
2. "Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21 Cycle 22," Global Nuclear Fuel Document No. 003N1452, Revision 0, September 2017.
3. General Electric Standard Application for Reactor Fuel (GESTAR II), Global Nuclear Fuel Document No. NEDE-24011-P-A-25, August 2017 and U.S. Supplement NEDE-24011-P-A-25-US, August 2017.
4. GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR II), Global Nuclear Fuel Document No. NEDC-33270P, Revision 8, April 2017.
5. Peach Bottom EPU Evaluation of Feedwater Temperature vs. Reactor Power for Feedwater Temperature Conditions of Nominal Rated, FWHOOS (Nominal -55F) and FFWTR (Nominal -90F), General Electric Hitachi Nuclear Energy Document No. 001N2494-R0, Revision 0, July 2014. This document is searchable in Exelon EDMS under document number PEAM-EPU-1 Rev. 0A.
6. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 & 3 Maximum Extended Load Line Limit Analysis Plus, General Electric Hitachi Nuclear Energy Document No. NEDO-33720, Revision 0, September 2014.
7. Determination of Total Time Required to Initiate the Trip Signal to the EOC-RPT Circuit Breakers Trip Coils and to Complete the Recirculation Pump Trip, PECO Calculation No. PE-0173, Revision 1, December 1998.
8. Peach Bottom Units 2 and 3 TRACG Cycle-Independent PROOS & PLUOOS Analysis Report, Global Nuclear Fuel Document No. 002N8351, Revision 2, May 25, 2016.
9. Provide Allowable Values (AV) and Nominal Trip Setpoints (NTSP) for Various Setpoint Functions of the NUMAC PRNM System, PECO Calculation No. PE-0251, Revision 3, October 2016.
10. Final Evaluation Report Exelon Nuclear Generating Company LLC, Peach Bottom Units 2 & 3, MELLLA+, Asymmetric Feedwater Temperature Operation for EPU/MELLLA+, General Electric Hitachi Nuclear Energy Document No. 001N6733-R1, Revision 1, September 2014. This document is searchable in Exelon EDMS under document number PEAM-EPU-68 Rev. 1.
11. "Fuel Bundle Information Report for Peach Bottom Unit 3 Reload 21 Cycle 22," Global Nuclear Fuel Document No. 003N1453, Revision 0, August 2017.
12. Final Resolved OPL-3 Parameters for Peach Bottom Unit 3 Cycle 22, Exelon TODI ENSAF ID#

ES1700007, Revision 1, June 2017.

Exelon Nuclear - Nuclear Fuels COLR PEACH BOTTOM 3 Rev. 12 P3C22 Core Operating Limits Report Page 26 of 26 APPENDIX A Power/Flow Operating Map for MELLLA+

(Reference 6)

BSP Boundary