ML053570273: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 12/13/2005
| issue date = 12/13/2005
| title = Startup Test Report for Cycle 11
| title = Startup Test Report for Cycle 11
| author name = Scace S E
| author name = Scace S
| author affiliation = Dominion Nuclear Connecticut, Inc
| author affiliation = Dominion Nuclear Connecticut, Inc
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Dominion Nuclear Connecticut, Inc.Millstone Power Station Rope Ferry Road Waterford, CT 06385 U.S. Nuclear Regulatory Commission Attention:
{{#Wiki_filter:Dominion Nuclear Connecticut, Inc.
Document Control Desk Washington, DC 20555 DOMINION NUCLEAR CONNECTICUT, INC.MILLSTONE POWER STATION UNIT 3 Dominion-DEC 13 2 Serial No.MPS Lic/MAE Docket No.License No.05-804 RO 50-423 NPF-49 STARTUP TEST REPORT FOR CYCLE 11 Pursuant to Section 6.9.1.1 of the Millstone Unit 3 Technical Specifications, Dominion Nuclear Connecticut, Inc. hereby submits the enclosed Startup Test Report for Cycle 11.There are no regulatory commitments contained within this letter.If you have any questions or require additional information, please contact Mr. David W.Dodson at (860) 447-1791, extension 2346.Very truly yours, Ste u nc Sc ce, Director Nuclear Station Safety and Licensing J- 6a (1.51 Serial No. 05-804 Startup Test Report For Cycle 11 Page 2 of 2  
Millstone Power Station                                             Dominion-Rope Ferry Road Waterford, CT 06385 DEC 13 2 U.S. Nuclear Regulatory Commission                             Serial No.      05-804 Attention: Document Control Desk                               MPS Lic/MAE    RO Washington, DC 20555                                           Docket No.      50-423 License No. NPF-49 DOMINION NUCLEAR CONNECTICUT, INC.
MILLSTONE POWER STATION UNIT 3 STARTUP TEST REPORT FOR CYCLE 11 Pursuant to Section 6.9.1.1 of the Millstone Unit 3 Technical Specifications, Dominion Nuclear Connecticut, Inc. hereby submits the enclosed Startup Test Report for Cycle 11.
There are no regulatory commitments contained within this letter.
If you have any questions or require additional information, please contact Mr. David W.
Dodson at (860) 447-1791, extension 2346.
Very truly yours, Ste u       nc Sc ce, Director Nuclear Station Safety and Licensing J-6a (1.5
 
Serial No. 05-804 Startup Test Report For Cycle 11 Page 2 of 2


==Enclosures:==
==Enclosures:==
(1)
Commitments made in this letter: None.
cc:  U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415 Mr. V. Nerses Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8C2 Rockville, MD 20852-2738 Mr. S. M. Schneider NRC Senior Resident Inspector Millstone Power Station
Serial No. 05-804 Docket No. 50-423 Enclosure I Startup Test Report Cycle 11 Millstone Power Station 3 Dominion Nuclear Connecticut, Inc. (DNC)


(1)Commitments made in this letter: None.cc: U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415 Mr. V. Nerses Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8C2 Rockville, MD 20852-2738 Mr. S. M. Schneider NRC Senior Resident Inspector Millstone Power Station Serial No. 05-804 Docket No. 50-423 Enclosure I Startup Test Report Cycle 11 Millstone Power Station 3 Dominion Nuclear Connecticut, Inc. (DNC)
Serial No. 05-804 Enclosure 1 Page 1 Table of Contents Page 1.0  
Serial No. 05-804 Enclosure 1 Page 1 Table of Contents Page 1.0  


==SUMMARY==
==SUMMARY==
  ...................................................
  ...................................................                               2
2  


==2.0 INTRODUCTION==
==2.0 INTRODUCTION==
 
...................................................                           2 3.0 FUEL DESIGN ...................................................                           3 4.0 LOW POWER PHYSICS TESTING .................................................               3 4.1 Critical Boron Concentration .................................................       3 4.2 Moderator Temperature Coefficient ......................................             4 4.3 Control Rod Reactivity Worth Measurements .......................                     4 5.0 POWER ASCENSION TESTING ...................................................               5 5.1 Power Distribution, Power Peaking and Tilt Measurements ...5 5.2 Boron Measurements ...................................................               7 5.3 Reactor Coolant System               Flow     Measurement   ........................ 7
...................................................
2 3.0 FUEL DESIGN ...................................................
3 4.0 LOW POWER PHYSICS TESTING .................................................
3 4.1 Critical Boron Concentration  
.................................................
3 4.2 Moderator Temperature Coefficient  
......................................
4 4.3 Control Rod Reactivity Worth Measurements  
.......................
4 5.0 POWER ASCENSION TESTING ...................................................
5 5.1 Power Distribution, Power Peaking and Tilt Measurements  
... 5 5.2 Boron Measurements  
...................................................
7 5.3 Reactor Coolant System Flow Measurement  
........................
7  


==6.0 REFERENCES==
==6.0 REFERENCES==
...................................................                            8 7.0 FIGURES ...................................................                                8


...................................................
Serial No. 05-804 Enclosure 1 Page 2 1.0
8 7.0 FIGURES ...................................................
8 Serial No. 05-804 Enclosure 1 Page 2 1.0  


==SUMMARY==
==SUMMARY==
Low Power Physics Testing and Power Ascension Testing for Millstone Unit 3 Cycle 11 identified no unusual core response or reactivity anomalies.
All measured core parameters were determined to be within their acceptance criteria.
All Technical Specification surveillance requirements were met.


==2.0 INTRODUCTION==
Low Power Physics Testing and Power Ascension Testing for Millstone Unit 3 Cycle 11 identified no unusual core response or reactivity anomalies. All measured core parameters were determined to be within their acceptance criteria. All Technical Specification surveillance requirements were met.
 
==2.0 INTRODUCTION==
 
The Millstone Unit 3 Cycle 11 fuel reload was completed on October 14, 2005.
The attached core map (Figure 1) shows the final core configuration.
Reference 6.3 documents that Cycle 11 uses a low leakage loading pattern (L3P) consisting of 73 new Region 13 fuel assemblies, 72 Region 12 once-burned fuel assemblies, and 48 Region 11 twice- burned fuel assemblies. The 73 feed fuel assemblies, 64 of the 72 once-burned fuel assemblies and all 48 twice-burned assemblies are the Westinghouse 17x17 Robust Fuel Assembly (RFA) design. Eight of the once-burned fuel assemblies are Westinghouse 17x1 7 Next Generation Fuel (NGF) Lead Test Assemblies (LTAs).
The 73 Region 11 assemblies are comprised of 37 assemblies enriched to 4.00 weight percent Uranium-235 (w/o U235 ) and 36 assemblies enriched to 4.95 w/o U23 . The top and bottom regions of all fuel assemblies in the Cycle 11 core are comprised of a 6-inch annular blanket region enriched to 2.6 w/o U235. The fuel assembly locations for the fresh fuel were randomly assigned to prevent power tilts across the core due to systematic deviations in the fresh fuel composition.
Every fuel assembly in Cycle 11 contains an insert from the following list of items:
2 secondary sources, 61 RCCAs, and 130 thimble plugs.
Subsequent operational and testing milestones were completed as follows:
Initial Criticality                              October 27, 2005 Low Power Physics Testing completed              October 27, 2005 Main Turbine Online                              October 27, 2005 30% Power Testing completed on                    October 28, 2005 75% Power Testing completed on                    October 30, 2005 100% Power Testing completed on                  November 07, 2005
 
Serial No. 05-804 Enclosure 1 Page 3 3.0  FUEL DESIGN The Robust Fuel Assembly (RFA) design comprises 185 out of the 193 assemblies in the Cycle 11 core. This fuel design differs from the previous fuel design in that it incorporates the Westinghouse protective bottom grid (P-Grid),
thicker walled control rod guide tubes and instrument tube, and modifications to the mixing vane grids and Intermediate Flow Mixer (IFM) grids. The P-Grid improves the fuel assembly's resistance to debris and thus debris related failures. The thicker walled guide and instrument tubes make the fuel assembly more resistant to bowing and twisting, thereby further reducing the possibility of an incomplete rod insertion event. The modifications to the mixing vanes grids and IFM's improve the fuel assembly thermal performance and increase the margin to fuel-related design limits.
The final 8 assemblies in the Cycle 11 core are Next Generation Fuel (NGF)
Lead Test Assemblies (LTA's). These LTAs, designated Region 12C, have several mechanical differences from the RFA assemblies. The LTAs have an Integral Top Nozzle, enhanced structural and IFM grids, two additional IFM grids per assembly, and utilize a tube-in-tube design for the guide tubes. The LTAs also have reduced pressure drop Debris Filter Bottom Nozzles (DFBNs),
optimized ZITLOTM cladding, and have had the plenum spring used on an RFA replaced by a spring clip.
4.0 LOW POWER PHYSICS TESTING The low power physics testing program for Cycle 11 was completed using the procedure in reference 6.1 based on the Westinghouse Dynamic Rod Worth Measurement (DRWM) Technique described in reference 6.4. This program consisted of the following: Control and Shutdown Bank Worth measurements, Critical Boron Endpoint measurements for All Rods Out (ARO), and ARO Moderator/Isothermal Temperature Coefficient measurements. Low power physics testing was performed at a power level below the point of nuclear heat to avoid nuclear heating reactivity feedback effects.
4.1    Critical Boron Concentration The critical boron concentration was measured for the All Rods Out configuration. The measured values include corrections to account for differences between the measured critical rod configuration and the ARO configuration. The review and acceptance criteria of +500 and +1000 percent milliRho (pcm) respectively were met for the ARO configuration.


The Millstone Unit 3 Cycle 11 fuel reload was completed on October 14, 2005.The attached core map (Figure 1) shows the final core configuration.
Serial No. 05-804 Enclosure I Page 4 Summary of Boron Endpoint Results Measured    Predicted        M-P    Acceptance (ppm)      (ppm)        (ppm)      Criteria All Rods Out              2160        2156    4 (23 pcm)      +/-1000 (ARO)                                          ____
Reference
4.2      Moderator Temperature Coefficient Isothermal Temperature Coefficient (ITC) data was measured at the All Rods Out configuration. Controlled heat-ups and cool-downs were performed and the reactivity change was measured. These measurements were corrected for ARO conditions and the averages of the corrected results are presented below. They were then compared to the design predictions and review criteria.
The review criteria of +2 pcm/ OF of the predictions were met.
The ARO Moderator Temperature Coefficient (MTC) of -0.01 pcmPF was calculated by subtracting the design Doppler Temperature Coefficient (-1.78 pcmPF) from the measured ARO Isothermal Temperature Coefficient of -1.79 pcm/0F. The Technical Specification Limit of MTC < +5.0 pcmP&deg;F at ARO Hot Zero Power (HZP) was met.
Isothermal/Moderator Temperature Coefficient Results Measured      Corrected        M-P  Acceptance (pcmPF)      Predicted    (pcmPF)      Criteria
                                          /O(pcmF)            (pcmPF)
ARO ITC            -1.79        -2.18        +0.39        NA ARO MTC            -0.01          NA            NA  MTC < +5.0 4.3     Control Rod Reactivity Worth Measurements The integral reactivity worths of all RCCA Control and Shutdown Banks were measured using the Dynamic Rod Worth Measurement Technique (DRWM).
The review criteria is that the measured worth is +15% or 100 pcm of the individual predicted worth, whichever is greater and sum of the measured worths is +8% of the predicted worths. The DRWM rod worth acceptance criteria is defined as: the sum of the measured worths (M)of all banks shall be greater than or equal to 90% of the sum of their predicted worths (P).


===6.3 documents===
Serial No. 05-804 Enclosure I Page 5 Control Bank Integral Worth Results Measured    Predicted M-P      % Difference (pcm)(pcm)        (pcm)        (M-P) / P Control Bank A      828.0        836.3      -8.3      -1.0 Control Bank B      606.5        584.8      21.7        3.7 Control Bank C      860.2        870.2      -10.0      -1.1 Control Bank D      505.2        481.7      23.5        4.9 Shutdown            342.9        341.2        1.7      0.5 Bank A Shutdown          1071.0      1047.4      23.6        2.3 Bank B Shutdown            322.4        309.0      13.4        4.3 Bank C Shutdown            330.0        313.9      16.1      5.1 Bank D Shutdown            59.0        56.4        2.6       4.6 Bank E Totals.            4925.2      4840.9      84.3       1.7 The measured results of the individual bank worths and the total control bank worth showed excellent agreement with the predicted values. All individual and total worth review criteria were met. The acceptance criteria for sum of the measured rod worths (greater than or equal to 90% of the sum of the predicted worths) was met.
5.0 POWER ASCENSION TESTING 5.1    Power Distribution, Power Peaking and Tilt Measurements The core power distribution was measured through the performance of a series of flux maps during the power ascension as specified in reference 6.2.
The results from the flux maps were used to verify compliance with the power distribution Technical Specifications.
A low power flux map, at approximately 29% rated thermal power (RTP), was performed to determine if any gross neutron flux abnormalities existed. At the 30% power plateau flux map, data necessary to perform an INCORE to EXCORE calibration via the single point methodology was obtained. Per Technical Specification Surveillance 4.3.1.1, Table 4.3-1 Functional Unit 2 Note 6, a flux map at approximately 98% power was performed for INCORE to


that Cycle 11 uses a low leakage loading pattern (L3P) consisting of 73 new Region 13 fuel assemblies, 72 Region 12 once-burned fuel assemblies, and 48 Region 11 twice- burned fuel assemblies.
Serial No. 05-804 Enclosure 1 Page 6 EXCORE calibration. Once hot full power equilibrium conditions were reached, another flux map was performed to verify core power distributions were within the design limits.
The 73 feed fuel assemblies, 64 of the 72 once-burned fuel assemblies and all 48 twice-burned assemblies are the Westinghouse 17x17 Robust Fuel Assembly (RFA) design. Eight of the once-burned fuel assemblies are Westinghouse 17x1 7 Next Generation Fuel (NGF) Lead Test Assemblies (LTAs).The 73 Region 11 assemblies are comprised of 37 assemblies enriched to 4.00 weight percent Uranium-235 (w/o U 2 3 5 ) and 36 assemblies enriched to 4.95 w/o U 2 3 .The top and bottom regions of all fuel assemblies in the Cycle 11 core are comprised of a 6-inch annular blanket region enriched to 2.6 w/o U 2 3 5.The fuel assembly locations for the fresh fuel were randomly assigned to prevent power tilts across the core due to systematic deviations in the fresh fuel composition.
A summary of the Measured Axial Flux Difference (AFD) and INCORE Tilt for the flux maps performed during the power ascension is provided below.
Every fuel assembly in Cycle 11 contains an insert from the following list of items: 2 secondary sources, 61 RCCAs, and 130 thimble plugs.Subsequent operational and testing milestones were completed as follows: Initial Criticality October 27, 2005 Low Power Physics Testing completed October 27, 2005 Main Turbine Online October 27, 2005 30% Power Testing completed on October 28, 2005 75% Power Testing completed on October 30, 2005 100% Power Testing completed on November 07, 2005 Serial No. 05-804 Enclosure 1 Page 3 3.0 FUEL DESIGN The Robust Fuel Assembly (RFA) design comprises 185 out of the 193 assemblies in the Cycle 11 core. This fuel design differs from the previous fuel design in that it incorporates the Westinghouse protective bottom grid (P-Grid), thicker walled control rod guide tubes and instrument tube, and modifications to the mixing vane grids and Intermediate Flow Mixer (IFM) grids. The P-Grid improves the fuel assembly's resistance to debris and thus debris related failures.
Additional tables provide comparisons of the most limiting measured Heat Flux Hot Channel Factor (FQ) and Nuclear Enthalpy Rise Hot Channel Factor (FAh),
The thicker walled guide and instrument tubes make the fuel assembly more resistant to bowing and twisting, thereby further reducing the possibility of an incomplete rod insertion event. The modifications to the mixing vanes grids and IFM's improve the fuel assembly thermal performance and increase the margin to fuel-related design limits.The final 8 assemblies in the Cycle 11 core are Next Generation Fuel (NGF)Lead Test Assemblies (LTA's). These LTAs, designated Region 12C, have several mechanical differences from the RFA assemblies.
including uncertainties, to their respective limits from each of the flux maps performed during the power ascension. The most limiting FQ is based on margin to the limit which varies as a function of core height.
The LTAs have an Integral Top Nozzle, enhanced structural and IFM grids, two additional IFM grids per assembly, and utilize a tube-in-tube design for the guide tubes. The LTAs also have reduced pressure drop Debris Filter Bottom Nozzles (DFBNs), optimized ZITLOTM cladding, and have had the plenum spring used on an RFA replaced by a spring clip.4.0 LOW POWER PHYSICS TESTING The low power physics testing program for Cycle 11 was completed using the procedure in reference
As can be seen from the data presented, all Technical Specification limits were met and no abnormalities in core power distribution were observed during power ascension.
Summary of Measured Axial Flux Difference and INCORE Tilt Power       Burnup        Rod      AFD INCORE
(%RTP) (MWD/MTU)         Position (%)         Tilt (steps) 29.2        9.0      .
216    5.027 . 1.0022 72.0        34.0          216    4.568    1.0021 100.0        343.0        216    1.027    1.0029 Comparison of Measured FQ to FQRTP limit Power        Bumup      Measured F0 FQRIP steady          Margin to
(%RTP)(MWD/MTU)                             state limit Transient Limit 29.2          9.0          2.156          4.973            N/A 72.0        34.0          1.890      1  3.491          32.2 %
100.0        343.0        1.860          2.600          14.1 %


===6.1 based===
Serial No. 05-804 Enclosure 1 Page 7 Comparison of Measured FAh to FAh limit for each Fuel Type Power     Burnup     Type 1 Type 1   Type 2 Type 2
on the Westinghouse Dynamic Rod Worth Measurement (DRWM) Technique described in reference 6.4. This program consisted of the following:
(%RTP) (MWD/MTU) (NGF)           Limit (RFA)   Limit 29.2         9.0       1.413 1.827   1.492 1.912 72.0       34.0       1.391 1.637   1.474 1.713 100.0       343.0       1.362 1.510   1.447 1.580 Presented in Figures 2, 3 and 4 are measured Power Distribution Maps showing percent difference from the predicted power for the 30%, 75% and 100% power plateaus. From these data it can be seen that there is good agreement between the measured and predicted assembly powers.
Control and Shutdown Bank Worth measurements, Critical Boron Endpoint measurements for All Rods Out (ARO), and ARO Moderator/Isothermal Temperature Coefficient measurements.
5.2     Boron Measurements Hot full power all rods out boron concentration measurements were performed after reaching equilibrium conditions. The measured All Rods Out, Hot Full Power, equilibrium xenon, boron concentration was 1496 ppm with a predicted value of 1478 ppm. The predicted to measured difference was +106 pcm which met the acceptance criteria of + 1000 pcm.
Low power physics testing was performed at a power level below the point of nuclear heat to avoid nuclear heating reactivity feedback effects.4.1 Critical Boron Concentration The critical boron concentration was measured for the All Rods Out configuration.
5.3     Reactor Coolant System Flow Measurement The Reactor Coolant Flow rate was determined using a secondary calorimetric heat balance for each loop using the steam generators as the control volumes.
The measured values include corrections to account for differences between the measured critical rod configuration and the ARO configuration.
The following parameters were measured:
The review and acceptance criteria of +500 and +1000 percent milliRho (pcm) respectively were met for the ARO configuration.
* Reactor Coolant System Pressure
Serial No. 05-804 Enclosure I Page 4 Summary of Boron Endpoint Results Measured Predicted M-P Acceptance (ppm) (ppm) (ppm) Criteria All Rods Out 2160 2156 4 (23 pcm) +/-1000 (ARO) ____4.2 Moderator Temperature Coefficient Isothermal Temperature Coefficient (ITC) data was measured at the All Rods Out configuration.
* Hot Leg Temperatures
Controlled heat-ups and cool-downs were performed and the reactivity change was measured.
These measurements were corrected for ARO conditions and the averages of the corrected results are presented below. They were then compared to the design predictions and review criteria.The review criteria of +2 pcm/ OF of the predictions were met.The ARO Moderator Temperature Coefficient (MTC) of -0.01 pcmPF was calculated by subtracting the design Doppler Temperature Coefficient
(-1.78 pcmPF) from the measured ARO Isothermal Temperature Coefficient of -1.79 pcm/0 F. The Technical Specification Limit of MTC < +5.0 pcmP&deg;F at ARO Hot Zero Power (HZP) was met.Isothermal/Moderator Temperature Coefficient Results Measured Corrected M-P Acceptance (pcmPF) Predicted (pcmPF) Criteria/O(pcmF) (pcmPF)ARO ITC -1.79 -2.18 +0.39 NA ARO MTC -0.01 NA NA MTC < +5.0 4.3 Control Rod Reactivity Worth Measurements The integral reactivity worths of all RCCA Control and Shutdown Banks were measured using the Dynamic Rod Worth Measurement Technique (DRWM).The review criteria is that the measured worth is +15% or 100 pcm of the individual predicted worth, whichever is greater and sum of the measured worths is +8% of the predicted worths. The DRWM rod worth acceptance criteria is defined as: the sum of the measured worths (M) of all banks shall be greater than or equal to 90% of the sum of their predicted worths (P).
Serial No. 05-804 Enclosure I Page 5 Control Bank Integral Worth Results Measured Predicted M-P % Difference (pcm)(pcm) (pcm) (M-P) / P Control Bank A 828.0 836.3 -8.3 -1.0 Control Bank B 606.5 584.8 21.7 3.7 Control Bank C 860.2 870.2 -10.0 -1.1 Control Bank D 505.2 481.7 23.5 4.9 Shutdown 342.9 341.2 1.7 0.5 Bank A Shutdown 1071.0 1047.4 23.6 2.3 Bank B Shutdown 322.4 309.0 13.4 4.3 Bank C Shutdown 330.0 313.9 16.1 5.1 Bank D Shutdown 59.0 56.4 2.6 4.6 Bank E Totals. 4925.2 4840.9 84.3 1.7 The measured results of the individual bank worths and the total control bank worth showed excellent agreement with the predicted values. All individual and total worth review criteria were met. The acceptance criteria for sum of the measured rod worths (greater than or equal to 90% of the sum of the predicted worths) was met.5.0 POWER ASCENSION TESTING 5.1 Power Distribution, Power Peaking and Tilt Measurements The core power distribution was measured through the performance of a series of flux maps during the power ascension as specified in reference 6.2.The results from the flux maps were used to verify compliance with the power distribution Technical Specifications.
A low power flux map, at approximately 29% rated thermal power (RTP), was performed to determine if any gross neutron flux abnormalities existed. At the 30% power plateau flux map, data necessary to perform an INCORE to EXCORE calibration via the single point methodology was obtained.
Per Technical Specification Surveillance 4.3.1.1, Table 4.3-1 Functional Unit 2 Note 6, a flux map at approximately 98% power was performed for INCORE to Serial No. 05-804 Enclosure 1 Page 6 Once hot full power equilibrium conditions were map was performed to verify core power distributions limits.EXCORE calibration.
reached, another flux were within the design A summary of the Measured Axial Flux Difference (AFD) and INCORE Tilt for the flux maps performed during the power ascension is provided below.Additional tables provide comparisons of the most limiting measured Heat Flux Hot Channel Factor (FQ) and Nuclear Enthalpy Rise Hot Channel Factor (FAh), including uncertainties, to their respective limits from each of the flux maps performed during the power ascension.
The most limiting FQ is based on margin to the limit which varies as a function of core height.As can be seen from the data presented, all Technical Specification limits were met and no abnormalities in core power distribution were observed during power ascension.
Summary of Measured Axial Flux Difference and INCORE Tilt Power Burnup Rod AFD INCORE (%RTP) (MWD/MTU)
Position (%) Tilt (steps)29.2 9.0 216 5.027 1.0022..72.0 34.0 216 4.568 1.0021 100.0 343.0 216 1.027 1.0029 Comparison of Measured FQ to FQRTP limit Power Bumup Measured F 0 FQRIP steady Margin to (%RTP)(MWD/MTU) state limit Transient Limit 29.2 9.0 2.156 4.973 N/A 72.0 34.0 1.890 1 3.491 32.2 %100.0 343.0 1.860 2.600 14.1 %
Serial No. 05-804 Enclosure 1 Page 7 Comparison of Measured FAh to FAh limit for each Fuel Type Power Burnup Type 1 Type 1 Type 2 Type 2 (%RTP) (MWD/MTU) (NGF) Limit (RFA) Limit 29.2 9.0 1.413 1.827 1.492 1.912 72.0 34.0 1.391 1.637 1.474 1.713 100.0 343.0 1.362 1.510 1.447 1.580 Presented in Figures 2, 3 and 4 are measured Power Distribution Maps showing percent difference from the predicted power for the 30%, 75% and 100% power plateaus.
From these data it can be seen that there is good agreement between the measured and predicted assembly powers.5.2 Boron Measurements Hot full power all rods out boron concentration measurements were performed after reaching equilibrium conditions.
The measured All Rods Out, Hot Full Power, equilibrium xenon, boron concentration was 1496 ppm with a predicted value of 1478 ppm. The predicted to measured difference was +106 pcm which met the acceptance criteria of + 1000 pcm.5.3 Reactor Coolant System Flow Measurement The Reactor Coolant Flow rate was determined using a secondary calorimetric heat balance for each loop using the steam generators as the control volumes.The following parameters were measured:* Reactor Coolant System Pressure* Hot Leg Temperatures
* Cold Leg Temperatures
* Cold Leg Temperatures
* Feedwater Temperatures
* Feedwater Temperatures
* Feedwater Flow Rates* Feedwater Pressure* Steam Generator Pressure Steam generator blowdown was not isolated during the data acquisition period.Per Technical Specification Surveillance 4.2.3.1.2, the Reactor Coolant System Flow was measured prior to operation above 75% rated thermal power. The measured flow at approximately 72% rated thermal power was 400,244 gallons per minute (gpm) with a minimum required flow of 372,292 gpm. The reactor coolant system flow measurement was re-performed after reaching 100% rated thermal power. The measured flow at 100% power was Serial No. 05-804 Enclosure 1 Page 8 398,401 gpm with a minimum required flow of 372,292 gpm. All Technical Specification limits were met.
* Feedwater Flow Rates
* Feedwater Pressure
* Steam Generator Pressure Steam generator blowdown was not isolated during the data acquisition period.
Per Technical Specification Surveillance 4.2.3.1.2, the Reactor Coolant System Flow was measured prior to operation above 75% rated thermal power. The measured flow at approximately 72% rated thermal power was 400,244 gallons per minute (gpm) with a minimum required flow of 372,292 gpm. The reactor coolant system flow measurement was re-performed after reaching 100% rated thermal power. The measured flow at 100% power was
 
Serial No. 05-804 Enclosure 1 Page 8 398,401 gpm with a minimum required flow of 372,292 gpm. All Technical Specification limits were met.


==6.0 REFERENCES==
==6.0 REFERENCES==


6.1 SP 31008, Rev. 002-06, "Low Power Physics Testing (IPTE)" 6.2 EN 31015, Rev. 001-00, "Power Ascension Testing of Millstone Unit 3" 6.3 Nuclear Design and Core Physics Characteristics of the Millstone Generating Station Unit 3, Cycle 11 6.4 WCAP-13360-P-A, Revision 1, "Westinghouse Dynamic Rod Worth Measurement Technique" 6.5 NEU-05-36, Letter from W. F. Staley (Westinghouse) to Robert Borchert, "Dominion Nuclear Connecticut Millstone Unit 3 Low Power Physics Tests (LPPT)," dated November 11, 2005.7.0 FIGURES Page 1 Cycle 11 Loading Plan 9 2 INCORE Power Distribution  
6.1   SP 31008, Rev. 002-06, "Low Power Physics Testing (IPTE)"
-29% 10 3 INCORE Power Distribution  
6.2   EN 31015, Rev. 001-00, "Power Ascension Testing of Millstone Unit 3" 6.3   Nuclear Design and Core Physics Characteristics of the Millstone Generating Station Unit 3, Cycle 11 6.4   WCAP-13360-P-A, Revision 1, "Westinghouse Dynamic Rod Worth Measurement Technique" 6.5   NEU-05-36, Letter from W. F. Staley (Westinghouse) to Robert Borchert, "Dominion Nuclear Connecticut Millstone Unit 3 Low Power Physics Tests (LPPT)," dated November 11, 2005.
-72% 11 4 INCORE Power Distribution  
7.0 FIGURES Page 1     Cycle 11 Loading Plan                               9 2     INCORE Power Distribution - 29%                     10 3     INCORE Power Distribution - 72%                     11 4     INCORE Power Distribution - 100%                   12
-100% 12 Serial No. 05-804 Enclosure 1 Page 9 FIGURE 1 CORE LOADING PATTERN MILLSTONE UNIT 3 -CYCLE 11 R P N M L x J H G F E D I I I I I I I 11B I 11B I 11B 11B llB 1. 1A 1B 1 I L66 L55 L76 L58 L81 L40 L45 C B A 1 I 139 139 119 119 11B L52 11B L69 13B N39 13B N47 13B N56 13B N61 13B N63 13B N49 13B N41 11B L47 11B L71-2 11B 11A 13B 13A 12B 12B 12B 12B 12B 13A 113B 11A 11B L62 L22 N69 N11 M18 1429 M36 M37 M20 N18 N70 L17 L63 3 11B L61 13B N55 12B M21 12B M35 13A N21 12B M60 13A N30 12B M57 13A N31 12C M65 12B M426 13B N73 11B L73_ -4 9oo 11B 13B 13A 12C 13A 12A 13A 12A 13A 12A 13A 12B 13A 13B 11B L70 N42 N10 M68 N36 M01 N02 M16 N04 M13 N13 M31 N25 N43 L48 11A 13B 12B 13A 12A 12B 12C 13A 12B 12B 12A 13A 12B 13B 11B L10 N50 M27 N26 M02 M56 M67 N22 M33 -M63 M08 N23 M17 N51 L68 119 139 12B 12B 13A 12B 12B 12A 12B 12C 13A 12B 12B 13B 119 L74 N57 M34 M54 N05 M40 M59 M10 M53 M71 N06 M51 M43 N66 L80 11B 13B 12B 13A 12A 13A 12A 13A 12A 13A 12A 13A 12B 13B 11B L67 N67 M42 N17 M11 N20 M05 N09 M14 N29 M04 N16 M39 N64 L46 11B 13B 12B 12B 13A 12C 12B 12A 12B 12B 13A 12B 12B 13B 11B L79 N65 M45 M61 N07 M70 M62 M15 M52 M41 N01 M49 M44 N60 L78 11B 13B 12B 13A 12A 12B 12B 13A 12C 12B 12A 13A 12B 13B 11A L50 N52 M28 N15 M07 M58 M38 N34 M66 M55 M09 N33 M19 N46 L23 11B 13B 13A 12B 13A 12A 13A 12A 13A 12A 13A 12C 13A 13B 11B L42 N44 N28 M46 N37 M03 NOS M12 N03 M06 127 M72 N24 N38 LS3-5-6-7-8-9-10-11 11B 13B 12B I 12C 13A I 12B9 13A 12B M64 13A N35 12B 1432 12B M25 13B N54 11B L60 L56 1N4621 M24I M69 I N32 1M50 N14 11B 11A 113B j 13A 12B112B 12B 12B 12B9 13A 113B 11A 11B L49 L07 N68 12 14221M48 1M47 M30 1423 N19 N59 L31 L57 12 13 11B L43 11B L72'13B N45 13B N53 13B N58 13B N72 13B 1N71 13B N48 13B N40 119 L44 11B L64 14 11B L65 11k LO8 11B L77 11B L59 11B L75 11B L51 11B L54 15 00 LEGEND REGION ASSEMBLIES ENRICHMENT l R Region Identifier D Fuel Assembly Identifier 11A 11B 12A 12B 12C 13A 13B 8 40 16 48 8 37 36 4.20 4.70 4.70 4.95 4.95 4.00 4.95 Serial No. 05-804 Enclosure 1 Page 10 FIGURE 2 INCORE Power Distribution  
 
-29%MILLSTONE UNIT 3 -CYCLE 11 R P N M[4IA4 k-4.li -4.1 L K J H G F E I I I I I I I I D C I I B A.......0.277 1.1 0.362 0.8 0.381-0.3 0.358-0.6.32)0.268 0.4 I I -I -1 I I 00 1.030-3.9 1.234 1.0 1.18E-0.1 1.1 1.1 80 0.3 1.216 1.2 1 1.059 0.1 0.406-2.2 0.167-3.5 1 2 0.17C 0.439 0.976 1.132 1.32411.277 1.29 1.281 1.33 1.138 0.9 0.432 0.16'.-1.7 -2.0 -2.7 -1.4 0.5 1-0.9 2:8 -0.2 k .6 -0.4 _2. -3.6 .75 i 3 0.41 ,<-0.7,.'0.99s w-0.9w 1.188-1.2 1.241-1.4 1.217-1.5 1.273-0.5 1.276-0.2 1.234 0.2 1.251-0.1 1.194-0.7 0.97E-2.5 0.40E-2.9-I-- 4 0.269 1.067 1.146 1.254 1.20 1.209 1.266 1.234/1.26 1.217 1.21 1.257 1.4 i 1.073 0.275 0.7 0.9 0.4 0.2 -1.2 -1.1 -1.6 ; -1.8 -1.7 -0.5 0.1 -0.1 -0.1 0.1 0.4 03 1.23214 1.248 1.224 124 1 .28213 1.291 1.247 1.218 1.244 1.330 1.2 0.360 1.5 2.5 2.8 1.3 0.1 -1.1 -1.5 -1.8.5 .5 -0.6 -0.3 0.7 0.9 0.9 0.3 0.368 1.207 1.319 '1.30 1.300 1.30 23 1.277 1.304 1/.30 1.206 0.368 2.2 2.5 2.7 \ 2.3 0.9 -0.5 -1. -1.6 -1.4 -1.1 -0.8 1.9 1.3 1.4 0.3 0 1.208 1.33 1.286 /1.27 1.248 1.201 1.200 1.206 1 1.249 1 1.32 "1.20 0.385 1.8/ 2.0 1.9, 1.9 1.62 -0.9 -0.8 -0.8 -0.6 1.2 1.5 1.8 0.8 0.373 1 1.30' 1.302 1.303 1.306 1.246 1.209 1 1.301 1.28 1.292 1.300 1.195 0 1.6 1.9 1.6 1.7 1.2 0.3 -0.6 -0.6 .-0.7 -0.2 1.0 1.2 1.5 0.8 0.360 1.22 1.32 1.250 .23 1.264 1.29 1.244 1.288 1.257 1.233 1 1.327 1.210 0.327 0.3 0.6 0.7 1.2 1.3 0.8 -1.0 -0.9 -1.1 0.2 0.8 0.7 1.4 0.7 0.3.2 1.077 1.158 1.274 122 1.231 1.279 1.24 1.279 1.234 1.231 1.268 1.156 1.055 .2 0. 0.5 0.9 1.3 0. 0.7 -0.8 -0.6 -0.6 1.0 1.2 1.3 1.2 -0.3 -0.4-5-6-7-8-9-10-11 0.42C 0.7 1.012 0.9 1.207 0.3 1.253 0.1 i.23'\, 0.01 1.273 1.257-0.4 1 .27)1.246-0.9 1.272 1.1 1.217 1.2 0.964-3.8 0.406-2.2 12-~ 13 0.169 0.44 0.989 1.13 1.30.0 1.2801.30 1.291 1.322 1.1541 1.018 0.442. .16-1.2 1 .-1.3 0-o5Ai -0.7 1 0.3 .02 -. 0.3* 0.5 1.5 -1.3 ..0.409-1.4 1.043-1.4 1.185-1.4 1 .1 6'1.17211.181 14.21 '<,-0.2~, 1.079 0.7 0.42y ,1 .4,, 0.169-1.2 14-1.0 -0.7 I -I -.1. -4 I -I -I 4. 4 a -0.32C-1.8 0.354k0.37t 0.363 0.3581 0.276-1.7 k-1.6,A -1.1 -0.3 0.7 15I I -I -A. -D Measured Power% Difference (M-P)/P D Measured Location Serial No. 05-804 Enclosure 1 Page 11 FIGURE 3 INCORE Power Distribution  
Serial No. 05-804 Enclosure 1 FIGURE 1                                          Page 9 CORE LOADING PATTERN MILLSTONE UNIT 3 -         CYCLE 11 R     P     N     M       L     x     J   H     G       F     E       D   C      B      A I     I       I   I     I I           I 11B I 11B I 11B   11B   llB
-729o MILLSTONE UNIT 3 -CYCLE 11 R P N M L K J H G F E D C Ie I IIer7 & --I--- I -__111 ---- -__V ___D ---- I B A 0.272 0.7 U.36id 0.8' .312<,-O.5,>-.35-0.5 U.;Jb-0.3 1.33/<'1.5v 1.Z5t 1.5_ I 1 I I i-4-4-I -I -t -.t -I -I -0.409 1.017 1.208 1.161 1.163 1.201 1.053 0.416 0.175 0.17\,-3.9,., 0.409-4.0 1 .017-4.1 1.208 0.9 1.161-0.5 41.1 56<1-0.6,2 1.163 0.5 1.201 1.8 1.0532 0.5 0.416-2.1 0.'175-3.8--2 0.179 0.452 0.9691.112 1.277 1.25111.270 1.264l.32 1.132 9 0.443 0.17i-1.6 -2.0 -3.1 -2.4 -1.8 -1.6 -1.6 -0.3 22 -0.1 -. 3.9-I-- 3'0.99A\.-0.5j 1.162-2.2 1.225-2.2 1.224-0.9 1.264-1.3/4.24a 1.279-0.2 1.237 0.2 1.248 0.0 1.182-0.5 0.978-2.2 0.416-2.3-4 0.277 1.058 1.143 1.257 1.211 1.223 1.276 1.250 1.27 1.228 1.22 1.257 1.14 1.063 0.280 1.5 1.0 0.9 0.7 -0.9 -0.8 -1.6 -1.6 -1.6 -0.6 -0.2 0.3 \0.3 0.3 0.0 0.342 1.223 1.33 1.270 1.244 1.2 1.294 1.24 1.300 1.260 1.232 1.254 1.31 1.21 0.364 3.0 3.6 \3.1_ 2.9 0.7 <-0.8 -1.6 -1.9 -1.7 -0.5 -0.1 1.5 1.5 \ 1.5, -0.3 0.378 1.195 1.307 1.31 1.309 1.317 1.253 1.214 1.244 1.292 1.287 1.310 .2 1.191 0.373 3.0 3.3 3.1 .2.3 0.8 -0.5 -1.4 -1.8 -2.1 -1.7 -0.8 2.3 1.8 2.1 -0.3 70.39 1.181 1.306 1.283 1.812912 .1 .2 .51.261 71.28/1'.31) 1.195 0.395 1.5y 1.5 1.2 1.5 1.5 -0.2 -1.1 -0.8 -1.3 -1.3 -0.7 <\2.0, \2.2> 2.8 1.5 0.379 1. 1 .272 1.298 1.31 3 1.319 1.261 1.227 1.25 1.306 1.297 1.296 1.284 1.1 0.3 1.3 \1.4y 0.1 1.3 1.2 0.3 -0.8 -0.7 -1.2 -1.3 -0.2 1.2 1.3 2.0 1.6 0.367 1.205 1.300 1.247 1.24 1.273 1.31 1.259 1.300 1.265 1.244 1.24 1.306 1.191 0.335 0.5 0.7 0.0 1.0 1.1 0.6 -1.0 -1.0 -1.1 -0.1 0.7 0.7 1.1 0.9 0.9 0'O.28 1.07 1.139 1.265 1. .238 1.288 1.26 1.291 1.241 1.23 1.258 1.145 1.049.27 11 1.2 0.0 1.0 ,0.5 02 -.8 0.5 0.6 0.7- 0.8 1.1 I0.1 0.0J-5-6-7-8-9-10-11 0.434 1.9 1.028 2.8 1.196 0.7 1.244-0.3 1i.22p\~-O.5, 1.272-0.7 1.259-0.4 1.242 0.6 1.259 0.5 1.194 0.5 0.967-3.3 0.417-1.9 12 13 0.179 .45 0.993 .1 1.2831 1.262 1.28 1.272 1.302 1.149 1.025 0.458r01 7-0.6 071 -0.7 <0., -0.7 -0.5 0 -0.1 0.2 0.9 2.5 -0.7 -.3?0.420-1.2 1.036-1.1 1.167-1.1 i-0.8.1.155-0.7 1.161-0.5 1.19\<-0.4_, 1.071 1.0 20.43\<2.6,.0.180 0.0 14-S I -I -I 1-4 & -0.326--1.2 0.363-1.1-1 .02 0.371-0.8 0.363-0.5.0.280 1.1 15\ ,__ _ A_ _ _D Measured Power% Difference (M-P)/P D Measured Location Serial No. 05-804 Enclosure 1 Page 12 FIGURE 4 INCORE Power Distribution  
: 1.     1A 1 1B 1
-100%MILLSTONE UNIT 3 -CYCLE 11 T P N M 01 0.41 k-3.81 -3.9 L K J H G F E D C.I I I I I-. ---I ----V; ----I onn ___v_- ----I I I B A U.Z17 1.1 U.87t 0.8-1.3 U.8b-0.8 1.4_ 4-4-1 I 7 1.021-3.7 1.202.0.9 1.151-0.9 1.146-0.3 1.18918 1.2 1.047-0.2 0.420-2.8 0.1 8-3.7 i -2 0.184 0.459 0.9771 1.137 1.2851 1.239 1.25 1.244 129 1.127 9 0.452 0.17-1.6 -2.3 -3.2 -0.8 -0.4 -1.5 -1.4 -0.9 07 -1.1 -3.8 4.8 1- 3 p0.42),,-1.2>~0/ .99~1.167-1.6 1.243-0.7 1.233-0.8 1.267-0.8 1.25',-0.7 J 1.270-0.2 1.244 0.2 1.240-0.6 1.175-0.9 0.982-2.7 0.422-2.8--4 0.278 1.049 1.140 1.245 1.227 1.22 1.29316 .29 1.234 1.23 1.252 " 1.13 051 0.281 0.0 0.0 0.0 -0.2 -0.5 -0.4 -0.7 -0.8 0. 0.0 0.3 0.0 -1.0 -0.8 -1.1 0.347 1.207 1 1.258 1.239 1 1.300 .26 1.306 1.260 1.238 1.251 1.29 1 0.365 3.0 2.7 <2.5 1.4 0.4 -0.4 -0.5 -0.7 -0.6 0.1 0.5 0.6 0.2 <\0.1, -1.4 0.383 1.180 1.283 1.30i 1.319 1.321 1.257 1.225 1.254 1.304 1.303 1.295 1.26 1.171 0.373 3.0 2.4 2.2 \2.0 1.2 0.5 -0.3 -0.3 -0.6 -0.2 0.1 1.4 0.8, 0.9 -1.6 0.39 1.171 1.28 1.290 .29 1.286 71.231 1.232 1.233 1.28 1.273 1.28 1.29 1.180 0.400 0.8 1.1 0.9 1.7 1.8 ~ 0.8 0.2 0.4 0.3 0.3 0.2 1.1 1.4 1.9 1.5 0.381 1. 1.260 1.299 1.324 1.320 1.264 1.235 1.26 1.318 .30 1.287 1.267 1.171 0.37 0.5 .0.9 0.2 1.7 1.7 1.1 0.2 0.5 0.3 0.3 0.4\ 0.9 1.0 1.6 1.6 0.370 1.191 1.272 1.254 1.24 1.269 /1.31 1.277 1.307 1.269 1.244 41.25) 1.293 1.180 0.339 0.0 0.0 -1.4 0.9 \ 1.1A 0.8 -0.1 0.1 0.1 0.8 0.8 \_0.7 0.8 0.4 0.6 0 11.075 1.144 1.2631. 1.240 1.301 .2 1.300 1.2421 1.262 1.154 1.040 0.27 1.4 1.4 -0.2 0.9 0.5 0.5 -0.2 0.0 -0.2 0.8 1.1 1.1 1.2 -0.9 -1.1-5-6-7-8-9-10-11 0.440 1.4 1.024 1.5 1.188-0.2 1.242-0.5 1.23i\-0.5*1.267-0.7 1.261-0.6'1.271\-0.51 1.251 0.6 1.270 1.4 1.20~1 .62 1.004-0.5 0.424-1.9-~ 12 13 0.18 0.46 0.998 1.13 1.2651 1.236 0.26 1.2481 1.282 1.150 1.0241 0.469r0.18
I L66     L55     L76 L58 L81     L40   L45             I 119 119 11B   11B     13B   13B     13B 13B   13B   139 13B 139 13B     11B 11B
-1.1 4\1.1 -1 .1 \17-7A~ -1.4 1-1.5 -1. -0.8 1-0.6 0.3 1.5 1-0.2 k2: 0.1 ,,-l.lj 0.427-1.2 1.036-1.2 1.154-1.8/1.13\<-1.7~, 1.139-1.6 1.14E-1.1 1.17@1-l.6y 1.058rK0.43M 0.184-0.2 K 0.9,j -1.1 14 0. 272 0.330-2.1 0.365-1.9'0.38)0.374-1.3 0.364-1.6 0.284 0.0 15-I. -A. -------I -D 0 Measured Power% Difference (M-P)/P Measured Location}}
                                                                                                  -       2 L52  L69    N39    N47    N56  N61  N63    N49  N41      L47  L71 11B  11A    13B    13A   12B     12B 12B   12B   12B   13A   113B   11A     11B 3
L62   L22   N69   N11   M18   1429 M36 M37     M20   N18     N70   L17     L63 11B   13B   12B     12B   13A     12B 13A 12B     13A 12C     12B 13B     11B
_      - 4 L61  N55  M21    M35    N21    M60  N30  M57    N31  M65    M426  N73    L73 11B   13B   13A   12C     13A   12A     13A 12A 13A     12A 13A     12B 13A     13B   11B
                                                                                                      -    5 L70   N42   N10   M68   N36   M01   N02   M16 N04     M13   N13     M31   N25   N43   L48 11A   13B   12B   13A     12A   12B     12C 13A   12B   12B   12A     13A 12B     13B   11B
                                                                                                      -    6 L10  N50   M27   N26   M02   M56   M67   N22 M33   -M63   M08     N23   M17   N51   L68 119   139   12B   12B   13A   12B   12B   12A 12B     12C   13A     12B 12B     13B   119
                                                                                                      -    7 L74   N57   M34   M54   N05   M40   M59   M10 M53     M71   N06     M51   M43   N66   L80 11B   13B   12B   13A   12A   13A     12A 13A 12A     13A   12A     13A   12B   13B   11B 9oo                                                                                                    -    8 L67   N67   M42   N17   M11   N20   M05   N09 M14     N29   M04     N16   M39   N64   L46 11B   13B   12B   12B   13A   12C   12B   12A 12B     12B   13A     12B   12B   13B   11B
                                                                                                      -  9 L79   N65   M45   M61   N07   M70   M62   M15 M52     M41   N01     M49   M44   N60   L78 11B   13B   12B   13A   12A   12B   12B   13A 12C     12B   12A     13A   12B   13B   11A
                                                                                                      -    10 L50   N52   M28   N15   M07   M58   M38   N34 M66     M55   M09     N33   M19   N46   L23 11B   13B   13A   12B   13A   12A   13A   12A 13A     12A   13A     12C   13A   13B   11B
                                                                                                      -    11 L42   N44   N28   M46   N37   M03   NOS   M12 N03     M06   127     M72   N24   N38   LS3 11B   13B   12B I 12C     13A I 12B9   13A 12B     13A   12B     12B   13B   11B 12 L56 1N4621 M24I M69     I N32   1M50 N14 M64    N35  1432    M25  N54    L60 11B 11A 113B j 13A     12B112B     12B 12B     12B9 13A 113B     11A     11B 13 L49   L07   N68     12   14221M48 1M47     M30 1423     N19     N59   L31   L57 11B   11B   '13B   13B    13B  13B  13B    13B  13B    119  11B 14 L43  L72    N45   N53   N58   N72 1N71   N48   N40     L44   L64 11B    11k    11B  11B 11B    11B  11B 15 L65   LO8   L77   L59 L75     L51   L54 00 LEGEND                                               REGION     ASSEMBLIES     ENRICHMENT 11A            8            4.20 l R     Region Identifier D   Fuel Assembly Identifier                       11B           40           4.70 12A            16            4.70 12B            48            4.95 12C            8            4.95 13A            37            4.00 13B            36            4.95
 
Serial No. 05-804 Enclosure 1 FIGURE 2                                                                Page 10 INCORE Power Distribution - 29%
MILLSTONE UNIT 3 -                     CYCLE 11 R       P       N         M       L         K       J         H         G           F           E       D        C        B        A I I       I       I         I         I         I           I 0.277 0.362 0.381 0.358
                                                                                        .32) 0.268           I  I I         I -   I -   1 1.1        0.8              -0.3 -0.6                        0.4      I        I
[4IA4          00 1.030 1.234 1.18E 1.1                   1.1 80 1.216 11.059 0.406 0.167                             1       2 k-4.li      -4.1 -3.9          1.0    -0.1 ,70.2          0.3        1.2 0.1 -2.2 -3.5 0.17C 0.439 0.976 1.132 1.32411.277 1.29                           1.281 1.33             1.138 0.9         0.432 0.16'.       i      3
        -1.7 -2.0 -2.7 -1.4                   0.5 1-0.9 2:8               -0.2 k .6             -0.4 _2.         -3.6       .75 0.41 '0.99s 1.188 1.241 1.217 1.273                               1.276 1.234 1.251 1.194 0.97E 0.40E -I--                             4
      ,<-0.7,. w-0.9w -1.2 -1.4 -1.5 -0.5                                -0.2        0.2 -0.1 -0.7 -2.5 -2.9 0.269 1.067 1.146 1.254 1.20                  1.209 1.266 1.234/1.26                 1.217 1.21         1.257 1.4i        1.073 0.275 - 5 0.7     0.9     0.4       0.2 -1.2         -1.1     -1.6 ; -1.8 -1.7               -0.5         0.1   -0.1 -0.1         0.1     0.4 03     1.23214           1.248 1.224 124           1.28213 1.291 1.247 1.218 1.244 1.330 1.2                                       0.360 - 6 1.5     2.5 2.8           1.3     0.1 -1.1           -1.5 -1.8.5 .5 -0.6 -0.3                           0.7       0.9     0.9     0.3 0.368 1.207 1.319 '1.30             1.300 1.30           23                                       1.277 1.304 1/.30         1.206 0.368 - 7 2.2     2.5     2.7 \ 2.3         0.9 -0.5           -1.     -1.6     -1.4       -1.1       -0.8     1.9       1.3     1.4     0.3 0       1.208 1.33 1.286 /1.27 1.248 1.201 1.200 1.206 1                                         1.249 1           1.32 "1.20       0.385 - 8 1.8/   2.0     1.9, 1.9           1.62                         -0.9 -0.8 -0.8                 -0.6     1.2       1.5     1.8     0.8 0.373 1         1.30'     1.302 1.303 1.306 1.246 1.209 1                           1.301 1.28         1.292 1.300 1.195 0               -9 1.6     1.9     1.6       1.7     1.2       0.3 -0.6 -0.6                 .     -0.7 -0.2             1.0       1.2     1.5     0.8 0.360 1.22       1.32     1.250     .23     1.264 1.29         1.244 1.288 1.257 1.233 1                         1.327 1.210 0.327 - 10 0.3     0.6     0.7       1.2     1.3       0.8 -1.0         -0.9 -1.1             0.2         0.8     0.7       1.4     0.7     0.3
.2     1.077 1.158 1.274122                  1.231 1.279 1.24             1.279 1.234 1.231 1.268 1.156 1.055 .2 - 11
: 0.       0.5     0.9       1.3     0.         0.7 -0.8 -0.6             -0.6         1.0         1.2     1.3       1.2 -0.3 -0.4 0.42C 1.012 1.207 1.253 i.23' 1.273 1.257 1 .27) 1.246 1.272 1.217 0.964 0.406                                                         12 0.7    0.9      0.3      0.1 \, 0.01                -0.4                -0.9          1.1    1.2 -3.8 -2.2 0.169 0.44        0.989 1.13          1.30.0 1.2801.30             1.291 1.322 1.1541 1.018 0.442. .16 -~                            13
        -1.2     1.       -1.3     0-o5Ai   -0.7 1 0.3       .02       -. 0       .3*       0.5     1.5     -1.3     ..
0.409 1.043 1.185 1.1 6' 1.17211.181 14.21 ' 1.079 0.42y 0.169                                                       14
                          -1.4 I - -1.4 .1. 1.4          I -
                                                                -1.0 -0.7 <,-0.2~, 0.7 ,1 .4,,a -1.2 I -       I           4.       4         -
I -
0.32C 0.354k0.37t 0.363 0.3581 0.276                                                             15 1.
                                              -1.8 -1.7 k-1.6,A -1.1 I        I -        I -
                                                                                      -0.3   A.-
0.7 D     Measured Power
                    % Difference (M-P)/P D     Measured Location
 
Serial No. 05-804 Enclosure 1 FIGURE 3                                                                Page 11 INCORE Power Distribution - 729o MILLSTONE UNIT 3 -                 CYCLE 11 R       P       N           M       L         K       J         H       G         F           E       D         C       B      A Ie   - -__111
                                                  -- I               I &IIer7-
                                                                  - ---   -   __V     ___D - --- -I        I 0.272 U.36id ' .312 -.35          U.;Jb        1.33/        1.Z5t _              I                    1 0.7       0.8 <,-O.5,> -0.5       -0.3 <'1.5v t -        .t 1.5      I 1.053 I 0.416 0.175 I
1.163 1.201 i-4-4-I                       -       I         -                       -         -     I -
0.17 0.409 11.017      .017 1.208       1.161 (i.is 1.208 1.161      41.1 56  1.163 1.201             1.0532 0.416 0.'175             -      -    2
                \,-3.9,., -4.0 -4.1               0.9   -0.5 <1-0.6,2       0.5       1.8         0.5 -2.1 -3.8 0.179 0.452 0.9691.112 1.277 1.25111.270 1.264l.32                                         1.132     9     0.443 0.17i -I--          3
        -1.6 -2.0 -3.1               -2.4 -1.8 -1.6 -1.6 -0.3 22                                 -0.1               -.3.9
              '0.99A 1.162 1.225 1.224 1.264 /4.24a 1.279 1.237 1.248 1.182 0.978 0.416                                                  -    4
                \.-0.5j -2.2 -2.2 -0.9 -1.3                               -0.2        0.2          0.0 -0.5 -2.2 -2.3 0.277 1.058 1.143 1.257 1.211 1.223 1.276 1.250 1.27                                 1.228 1.22 1.257 1.14                     1.063 0.280 - 5 1.5     1.0     0.9         0.7 -0.9 -0.8 -1.6 -1.6 -1.6                           -0.6 -0.2 0.3 \0.3                         0.3   0.0 0.342 1.223 1.33             1.270 1.244 1.2             1.294 1.24     1.300 1.260 1.232 1.254 1.31 1.21 0.364 - 6 3.0     3.6 \3.1_           2.9     0.7 <-0.8       -1.6 -1.9         -1.7 -0.5 -0.1                   1.5       1.5 \ 1.5, -0.3 0.378 1.195 1.307 1.31               1.309 1.317 1.253 1.214 1.244 1.292 1.287 1.310                                 .2     1.191 0.373 - 7 3.0     3.3     3.1 .2.3             0.8 -0.5 -1.4 -1.8 -2.1 -1.7 -0.8                                   2.3       1.8     2.1 -0.3 70.39 1.181 1.306 1.283 1.812912                                   .1       .2       .51.261 71.28/1'.31) 1.195 0.395 - 8 1.5y 1.5         1.2         1.5     1.5 -0.2 -1.1             -0.8   -1.3       -1.3 -0.7 <\2.0, \2.2> 2.8                       1.5 0.379 1.       1.272 1.298 1.31 3 1.319 1.261 1.227 1.25                           1.306 1.297 1.296 1.284 1.1                       0.3   -9 1.3 \1.4y 0.1               1.3     1.2     0.3 -0.8 -0.7 -1.2                   -1.3 -0.2             1.2       1.3     2.0     1.6 0.367 1.205 1.300 1.247 1.24                   1.273 1.31       1.259 1.300 1.265 1.244 1.24 1.306 1.191 0.335 -10 0.5     0.7     0.0         1.0     1.1     0.6 -1.0         -1.0 -1.1         -0.1         0.7     0.7       1.1     0.9     0.9 0'O.28 1.07   1.139 1.265               1.     .238 1.288 1.26 1.291 1.241 1.23 1.258 1.145 1.049.27 - 11 11 1.2     0.0         1.0 ,0.5           02 -. 8 0.5 0.6                               0.7- 0.8           1.1 I0.1         0.0J 0.434 1.028 1.196 1.244 1i.22p 1.272 1.259                                   1.242 1.259 1.194 0.967 0.417                            12 1.9      2.8        0.7 -0.3 \~-O.5, -0.7 -0.4                              0.6          0.5      0.5 -3.3 -1.9 0.179      .45 0.993 .1                1.2831 1.262 1.28       1.272 1.302 1.149 1.025 0.458r01 7                                   13
          -0.6     071 -0.7 <0.,                 -0.7 -0.5         0       0.1
                                                                              -        0.2         0.9     2.5 -0.7 -. 3?
0.420 1.036 1.167                    1.155 1.161 1.19 1.071 20.43 0.180                                          14
                '            -1.2 -1.1 --1.1 Si-0.8. I - -0.7 I - -0.5 I\<-0.4_, 1-41.0 \<2.6,. &- 0.0 0.326 0.363              0.371 0.363 0.280                                                    15
                                              --1.2 -1.1 -1 .02 -0.8 -0.5. 1.1
_\     ,     _         A__                          _
D      Measured Power
                      % Difference (M-P)/P D       Measured Location
 
Serial No. 05-804 Enclosure 1 FIGURE 4                                                            Page 12 INCORE Power Distribution - 100%
MILLSTONE UNIT 3 -                       CYCLE 11 P       N     M       L           K         J       H           G       F           E       D       C       B        A T                          -. ---
U.Z17 1.1
                                            .I I - ---
U.87t 0.8 V;
I
                                                                --- I
                                                            - onn
                                                            -1.3 I
U.8b
___v_-
                                                                        -0.8 I          I 1.4 I   I I
I 4            1 01    0.41 7 1.021 1.202 1.151                         1.146 1.18918       1.047 0.420 0.1 8                    i  - 2 k-3.81 -3.9 -3.7 . 0.9 -0.9                                -0.3      1.2 -0.2 -2.8 -3.7 0.184 0.459 0.9771 1.137 1.2851 1.239 1.25                       1.244 129           1.127     9   0.452 0.17           1-    3
        -1.6 -2.3 -3.2 -0.8 -0.4 -1.5 -1.4                               -0.9     07         -1.1           -3.8     4.8 p0.42) ~0/.99~ 1.167 1.243 1.233 1.267 1.25' 1.270 1.244 1.240 1.175 0.982 0.422                                             - -   4
      ,,-1.2>          -1.6 -0.7 -0.8 -0.8 ,- 0 .7 J -0.2                          0.2 -0.6 -0.9 -2.7 -2.8 0.278 1.049 1.140 1.245 1.227 1.22                  1.29316              .29    1.234 1.23         1.252 "1.13       051 0.281 - 5 0.0   0.0     0.0 -0.2 -0.5 -0.4                 -0.7 -0.8           0.       0.0 0.3             0.0 -1.0       -0.8 -1.1 0.347 1.207 1         1.258 1.239 1                 1.300 .26         1.306 1.260 1.238 1.251 1.29 1                         0.365 - 6 3.0   2.7 <2.5       1.4     0.4 -0.4           -0.5 -0.7           -0.6     0.1         0.5     0.6     0.2 <\0.1,       -1.4 0.383 1.180 1.283 1.30i 1.319 1.321 1.257 1.225 1.254 1.304 1.303 1.295 1.26 1.171 0.373 - 7 3.0   2.4     2.2 \2.0       1.2       0.5 -0.3 -0.3 -0.6 -0.2                           0.1     1.4     0.8, 0.9 -1.6 0.39   1.171 1.28     1.290     .29 1.286 71.231 1.232 1.233 1.28                           1.273 1.28     1.29     1.180 0.400 - 8 0.8   1.1     0.9   1.7     1.8 ~ 0.8           0.2     0.4         0.3     0.3         0.2 1.1       1.4       1.9       1.5 0.381 1.       1.260 1.299 1.324 1.320 1.264 1.235 1.26                           1.318       .30 1.287 1.267 1.171 0.37 - 9 0.5 .0.9       0.2   1.7     1.7       1.1       0.2     0.5         0.3     0.3         0.4\ 0.9       1.0     1.6       1.6 0.370 1.191 1.272 1.254 1.24 1.269 /1.31                   1.277 1.307 1.269 1.244 41.25) 1.293 1.180 0.339 -10 0.0   0.0 -1.4       0.9 \ 1.1A 0.8 -0.1                   0.1         0.1     0.8         0.8 \_0.7       0.8     0.4     0.6 0     11.075 1.144 1.2631.               1.240 1.301       .2       1.300 1.2421                 1.262 1.154 1.040 0.27 -11 1.4   1.4 -0.2       0.9     0.5         0.5 -0.2         0.0       -0.2       0.8         1.1     1.1     1.2 -0.9 -1.1 0.440 1.024 1.188 1.242 1.23i 1.267 1.261 '1.271 1.251 1.270 1.20~ 1.004 0.424 -~                                                12 1.4    1.5 - 0.2 -0.5 \-0.5* -0.7 -0.6 \-0.51 0.6                                    1.4    1.62 -0.5 -1.9 0.18 0.46      0.998 1.13 1.2651 1.236 0.26                     1.2481 1.282 1.150 1.0241 0.469r0.18                             13
        -1.1 4\1.1     -1.1 \17-7A~ -1.4 1-1.5 -1.                     -0.8 1-0.6             0.3     1.5 1-0.2 k2:
0.1 8 0.427 1.036 1.154 /1.13 1.139 1.14E 1.17@ 1.058rK0.43M 0.184                                                       14
              ,,-l.lj -1.2 -1.2 -1.8 \<-1.7~, -1.6 -1.1                            1-l.6y -0.2 K 0.9,j -1.1 0.272 0.330 0.365 '0.38) 0.374 0.364 0.284                                                              15
                                          -2.1 -1.9 - -                -1.3 - -1.6 0.0
                            -       I. -     A. -               - -         -       I -
D         Measured Power
                    % Difference (M-P)/P 0        Measured Location}}

Latest revision as of 11:25, 14 March 2020

Startup Test Report for Cycle 11
ML053570273
Person / Time
Site: Millstone Dominion icon.png
Issue date: 12/13/2005
From: Scace S
Dominion Nuclear Connecticut
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
05-804
Download: ML053570273 (15)


Text

Dominion Nuclear Connecticut, Inc.

Millstone Power Station Dominion-Rope Ferry Road Waterford, CT 06385 DEC 13 2 U.S. Nuclear Regulatory Commission Serial No.05-804 Attention: Document Control Desk MPS Lic/MAE RO Washington, DC 20555 Docket No. 50-423 License No. NPF-49 DOMINION NUCLEAR CONNECTICUT, INC.

MILLSTONE POWER STATION UNIT 3 STARTUP TEST REPORT FOR CYCLE 11 Pursuant to Section 6.9.1.1 of the Millstone Unit 3 Technical Specifications, Dominion Nuclear Connecticut, Inc. hereby submits the enclosed Startup Test Report for Cycle 11.

There are no regulatory commitments contained within this letter.

If you have any questions or require additional information, please contact Mr. David W.

Dodson at (860) 447-1791, extension 2346.

Very truly yours, Ste u nc Sc ce, Director Nuclear Station Safety and Licensing J-6a (1.5

Serial No.05-804 Startup Test Report For Cycle 11 Page 2 of 2

Enclosures:

(1)

Commitments made in this letter: None.

cc: U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415 Mr. V. Nerses Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8C2 Rockville, MD 20852-2738 Mr. S. M. Schneider NRC Senior Resident Inspector Millstone Power Station

Serial No.05-804 Docket No. 50-423 Enclosure I Startup Test Report Cycle 11 Millstone Power Station 3 Dominion Nuclear Connecticut, Inc. (DNC)

Serial No.05-804 Enclosure 1 Page 1 Table of Contents Page 1.0

SUMMARY

................................................... 2

2.0 INTRODUCTION

................................................... 2 3.0 FUEL DESIGN ................................................... 3 4.0 LOW POWER PHYSICS TESTING ................................................. 3 4.1 Critical Boron Concentration ................................................. 3 4.2 Moderator Temperature Coefficient ...................................... 4 4.3 Control Rod Reactivity Worth Measurements ....................... 4 5.0 POWER ASCENSION TESTING ................................................... 5 5.1 Power Distribution, Power Peaking and Tilt Measurements ...5 5.2 Boron Measurements ................................................... 7 5.3 Reactor Coolant System Flow Measurement ........................ 7

6.0 REFERENCES

................................................... 8 7.0 FIGURES ................................................... 8

Serial No.05-804 Enclosure 1 Page 2 1.0

SUMMARY

Low Power Physics Testing and Power Ascension Testing for Millstone Unit 3 Cycle 11 identified no unusual core response or reactivity anomalies. All measured core parameters were determined to be within their acceptance criteria. All Technical Specification surveillance requirements were met.

2.0 INTRODUCTION

The Millstone Unit 3 Cycle 11 fuel reload was completed on October 14, 2005.

The attached core map (Figure 1) shows the final core configuration.

Reference 6.3 documents that Cycle 11 uses a low leakage loading pattern (L3P) consisting of 73 new Region 13 fuel assemblies, 72 Region 12 once-burned fuel assemblies, and 48 Region 11 twice- burned fuel assemblies. The 73 feed fuel assemblies, 64 of the 72 once-burned fuel assemblies and all 48 twice-burned assemblies are the Westinghouse 17x17 Robust Fuel Assembly (RFA) design. Eight of the once-burned fuel assemblies are Westinghouse 17x1 7 Next Generation Fuel (NGF) Lead Test Assemblies (LTAs).

The 73 Region 11 assemblies are comprised of 37 assemblies enriched to 4.00 weight percent Uranium-235 (w/o U235 ) and 36 assemblies enriched to 4.95 w/o U23 . The top and bottom regions of all fuel assemblies in the Cycle 11 core are comprised of a 6-inch annular blanket region enriched to 2.6 w/o U235. The fuel assembly locations for the fresh fuel were randomly assigned to prevent power tilts across the core due to systematic deviations in the fresh fuel composition.

Every fuel assembly in Cycle 11 contains an insert from the following list of items:

2 secondary sources, 61 RCCAs, and 130 thimble plugs.

Subsequent operational and testing milestones were completed as follows:

Initial Criticality October 27, 2005 Low Power Physics Testing completed October 27, 2005 Main Turbine Online October 27, 2005 30% Power Testing completed on October 28, 2005 75% Power Testing completed on October 30, 2005 100% Power Testing completed on November 07, 2005

Serial No.05-804 Enclosure 1 Page 3 3.0 FUEL DESIGN The Robust Fuel Assembly (RFA) design comprises 185 out of the 193 assemblies in the Cycle 11 core. This fuel design differs from the previous fuel design in that it incorporates the Westinghouse protective bottom grid (P-Grid),

thicker walled control rod guide tubes and instrument tube, and modifications to the mixing vane grids and Intermediate Flow Mixer (IFM) grids. The P-Grid improves the fuel assembly's resistance to debris and thus debris related failures. The thicker walled guide and instrument tubes make the fuel assembly more resistant to bowing and twisting, thereby further reducing the possibility of an incomplete rod insertion event. The modifications to the mixing vanes grids and IFM's improve the fuel assembly thermal performance and increase the margin to fuel-related design limits.

The final 8 assemblies in the Cycle 11 core are Next Generation Fuel (NGF)

Lead Test Assemblies (LTA's). These LTAs, designated Region 12C, have several mechanical differences from the RFA assemblies. The LTAs have an Integral Top Nozzle, enhanced structural and IFM grids, two additional IFM grids per assembly, and utilize a tube-in-tube design for the guide tubes. The LTAs also have reduced pressure drop Debris Filter Bottom Nozzles (DFBNs),

optimized ZITLOTM cladding, and have had the plenum spring used on an RFA replaced by a spring clip.

4.0 LOW POWER PHYSICS TESTING The low power physics testing program for Cycle 11 was completed using the procedure in reference 6.1 based on the Westinghouse Dynamic Rod Worth Measurement (DRWM) Technique described in reference 6.4. This program consisted of the following: Control and Shutdown Bank Worth measurements, Critical Boron Endpoint measurements for All Rods Out (ARO), and ARO Moderator/Isothermal Temperature Coefficient measurements. Low power physics testing was performed at a power level below the point of nuclear heat to avoid nuclear heating reactivity feedback effects.

4.1 Critical Boron Concentration The critical boron concentration was measured for the All Rods Out configuration. The measured values include corrections to account for differences between the measured critical rod configuration and the ARO configuration. The review and acceptance criteria of +500 and +1000 percent milliRho (pcm) respectively were met for the ARO configuration.

Serial No.05-804 Enclosure I Page 4 Summary of Boron Endpoint Results Measured Predicted M-P Acceptance (ppm) (ppm) (ppm) Criteria All Rods Out 2160 2156 4 (23 pcm) +/-1000 (ARO) ____

4.2 Moderator Temperature Coefficient Isothermal Temperature Coefficient (ITC) data was measured at the All Rods Out configuration. Controlled heat-ups and cool-downs were performed and the reactivity change was measured. These measurements were corrected for ARO conditions and the averages of the corrected results are presented below. They were then compared to the design predictions and review criteria.

The review criteria of +2 pcm/ OF of the predictions were met.

The ARO Moderator Temperature Coefficient (MTC) of -0.01 pcmPF was calculated by subtracting the design Doppler Temperature Coefficient (-1.78 pcmPF) from the measured ARO Isothermal Temperature Coefficient of -1.79 pcm/0F. The Technical Specification Limit of MTC < +5.0 pcmP°F at ARO Hot Zero Power (HZP) was met.

Isothermal/Moderator Temperature Coefficient Results Measured Corrected M-P Acceptance (pcmPF) Predicted (pcmPF) Criteria

/O(pcmF) (pcmPF)

ARO ITC -1.79 -2.18 +0.39 NA ARO MTC -0.01 NA NA MTC < +5.0 4.3 Control Rod Reactivity Worth Measurements The integral reactivity worths of all RCCA Control and Shutdown Banks were measured using the Dynamic Rod Worth Measurement Technique (DRWM).

The review criteria is that the measured worth is +15% or 100 pcm of the individual predicted worth, whichever is greater and sum of the measured worths is +8% of the predicted worths. The DRWM rod worth acceptance criteria is defined as: the sum of the measured worths (M)of all banks shall be greater than or equal to 90% of the sum of their predicted worths (P).

Serial No.05-804 Enclosure I Page 5 Control Bank Integral Worth Results Measured Predicted M-P  % Difference (pcm)(pcm) (pcm) (M-P) / P Control Bank A 828.0 836.3 -8.3 -1.0 Control Bank B 606.5 584.8 21.7 3.7 Control Bank C 860.2 870.2 -10.0 -1.1 Control Bank D 505.2 481.7 23.5 4.9 Shutdown 342.9 341.2 1.7 0.5 Bank A Shutdown 1071.0 1047.4 23.6 2.3 Bank B Shutdown 322.4 309.0 13.4 4.3 Bank C Shutdown 330.0 313.9 16.1 5.1 Bank D Shutdown 59.0 56.4 2.6 4.6 Bank E Totals. 4925.2 4840.9 84.3 1.7 The measured results of the individual bank worths and the total control bank worth showed excellent agreement with the predicted values. All individual and total worth review criteria were met. The acceptance criteria for sum of the measured rod worths (greater than or equal to 90% of the sum of the predicted worths) was met.

5.0 POWER ASCENSION TESTING 5.1 Power Distribution, Power Peaking and Tilt Measurements The core power distribution was measured through the performance of a series of flux maps during the power ascension as specified in reference 6.2.

The results from the flux maps were used to verify compliance with the power distribution Technical Specifications.

A low power flux map, at approximately 29% rated thermal power (RTP), was performed to determine if any gross neutron flux abnormalities existed. At the 30% power plateau flux map, data necessary to perform an INCORE to EXCORE calibration via the single point methodology was obtained. Per Technical Specification Surveillance 4.3.1.1, Table 4.3-1 Functional Unit 2 Note 6, a flux map at approximately 98% power was performed for INCORE to

Serial No.05-804 Enclosure 1 Page 6 EXCORE calibration. Once hot full power equilibrium conditions were reached, another flux map was performed to verify core power distributions were within the design limits.

A summary of the Measured Axial Flux Difference (AFD) and INCORE Tilt for the flux maps performed during the power ascension is provided below.

Additional tables provide comparisons of the most limiting measured Heat Flux Hot Channel Factor (FQ) and Nuclear Enthalpy Rise Hot Channel Factor (FAh),

including uncertainties, to their respective limits from each of the flux maps performed during the power ascension. The most limiting FQ is based on margin to the limit which varies as a function of core height.

As can be seen from the data presented, all Technical Specification limits were met and no abnormalities in core power distribution were observed during power ascension.

Summary of Measured Axial Flux Difference and INCORE Tilt Power Burnup Rod AFD INCORE

(%RTP) (MWD/MTU) Position (%) Tilt (steps) 29.2 9.0 .

216 5.027 . 1.0022 72.0 34.0 216 4.568 1.0021 100.0 343.0 216 1.027 1.0029 Comparison of Measured FQ to FQRTP limit Power Bumup Measured F0 FQRIP steady Margin to

(%RTP)(MWD/MTU) state limit Transient Limit 29.2 9.0 2.156 4.973 N/A 72.0 34.0 1.890 1 3.491 32.2 %

100.0 343.0 1.860 2.600 14.1 %

Serial No.05-804 Enclosure 1 Page 7 Comparison of Measured FAh to FAh limit for each Fuel Type Power Burnup Type 1 Type 1 Type 2 Type 2

(%RTP) (MWD/MTU) (NGF) Limit (RFA) Limit 29.2 9.0 1.413 1.827 1.492 1.912 72.0 34.0 1.391 1.637 1.474 1.713 100.0 343.0 1.362 1.510 1.447 1.580 Presented in Figures 2, 3 and 4 are measured Power Distribution Maps showing percent difference from the predicted power for the 30%, 75% and 100% power plateaus. From these data it can be seen that there is good agreement between the measured and predicted assembly powers.

5.2 Boron Measurements Hot full power all rods out boron concentration measurements were performed after reaching equilibrium conditions. The measured All Rods Out, Hot Full Power, equilibrium xenon, boron concentration was 1496 ppm with a predicted value of 1478 ppm. The predicted to measured difference was +106 pcm which met the acceptance criteria of + 1000 pcm.

5.3 Reactor Coolant System Flow Measurement The Reactor Coolant Flow rate was determined using a secondary calorimetric heat balance for each loop using the steam generators as the control volumes.

The following parameters were measured:

  • Hot Leg Temperatures
  • Cold Leg Temperatures

Per Technical Specification Surveillance 4.2.3.1.2, the Reactor Coolant System Flow was measured prior to operation above 75% rated thermal power. The measured flow at approximately 72% rated thermal power was 400,244 gallons per minute (gpm) with a minimum required flow of 372,292 gpm. The reactor coolant system flow measurement was re-performed after reaching 100% rated thermal power. The measured flow at 100% power was

Serial No.05-804 Enclosure 1 Page 8 398,401 gpm with a minimum required flow of 372,292 gpm. All Technical Specification limits were met.

6.0 REFERENCES

6.1 SP 31008, Rev. 002-06, "Low Power Physics Testing (IPTE)"

6.2 EN 31015, Rev. 001-00, "Power Ascension Testing of Millstone Unit 3" 6.3 Nuclear Design and Core Physics Characteristics of the Millstone Generating Station Unit 3, Cycle 11 6.4 WCAP-13360-P-A, Revision 1, "Westinghouse Dynamic Rod Worth Measurement Technique" 6.5 NEU-05-36, Letter from W. F. Staley (Westinghouse) to Robert Borchert, "Dominion Nuclear Connecticut Millstone Unit 3 Low Power Physics Tests (LPPT)," dated November 11, 2005.

7.0 FIGURES Page 1 Cycle 11 Loading Plan 9 2 INCORE Power Distribution - 29% 10 3 INCORE Power Distribution - 72% 11 4 INCORE Power Distribution - 100% 12

Serial No.05-804 Enclosure 1 FIGURE 1 Page 9 CORE LOADING PATTERN MILLSTONE UNIT 3 - CYCLE 11 R P N M L x J H G F E D C B A I I I I I I I 11B I 11B I 11B 11B llB

1. 1A 1 1B 1

I L66 L55 L76 L58 L81 L40 L45 I 119 119 11B 11B 13B 13B 13B 13B 13B 139 13B 139 13B 11B 11B

- 2 L52 L69 N39 N47 N56 N61 N63 N49 N41 L47 L71 11B 11A 13B 13A 12B 12B 12B 12B 12B 13A 113B 11A 11B 3

L62 L22 N69 N11 M18 1429 M36 M37 M20 N18 N70 L17 L63 11B 13B 12B 12B 13A 12B 13A 12B 13A 12C 12B 13B 11B

_ - 4 L61 N55 M21 M35 N21 M60 N30 M57 N31 M65 M426 N73 L73 11B 13B 13A 12C 13A 12A 13A 12A 13A 12A 13A 12B 13A 13B 11B

- 5 L70 N42 N10 M68 N36 M01 N02 M16 N04 M13 N13 M31 N25 N43 L48 11A 13B 12B 13A 12A 12B 12C 13A 12B 12B 12A 13A 12B 13B 11B

- 6 L10 N50 M27 N26 M02 M56 M67 N22 M33 -M63 M08 N23 M17 N51 L68 119 139 12B 12B 13A 12B 12B 12A 12B 12C 13A 12B 12B 13B 119

- 7 L74 N57 M34 M54 N05 M40 M59 M10 M53 M71 N06 M51 M43 N66 L80 11B 13B 12B 13A 12A 13A 12A 13A 12A 13A 12A 13A 12B 13B 11B 9oo - 8 L67 N67 M42 N17 M11 N20 M05 N09 M14 N29 M04 N16 M39 N64 L46 11B 13B 12B 12B 13A 12C 12B 12A 12B 12B 13A 12B 12B 13B 11B

- 9 L79 N65 M45 M61 N07 M70 M62 M15 M52 M41 N01 M49 M44 N60 L78 11B 13B 12B 13A 12A 12B 12B 13A 12C 12B 12A 13A 12B 13B 11A

- 10 L50 N52 M28 N15 M07 M58 M38 N34 M66 M55 M09 N33 M19 N46 L23 11B 13B 13A 12B 13A 12A 13A 12A 13A 12A 13A 12C 13A 13B 11B

- 11 L42 N44 N28 M46 N37 M03 NOS M12 N03 M06 127 M72 N24 N38 LS3 11B 13B 12B I 12C 13A I 12B9 13A 12B 13A 12B 12B 13B 11B 12 L56 1N4621 M24I M69 I N32 1M50 N14 M64 N35 1432 M25 N54 L60 11B 11A 113B j 13A 12B112B 12B 12B 12B9 13A 113B 11A 11B 13 L49 L07 N68 12 14221M48 1M47 M30 1423 N19 N59 L31 L57 11B 11B '13B 13B 13B 13B 13B 13B 13B 119 11B 14 L43 L72 N45 N53 N58 N72 1N71 N48 N40 L44 L64 11B 11k 11B 11B 11B 11B 11B 15 L65 LO8 L77 L59 L75 L51 L54 00 LEGEND REGION ASSEMBLIES ENRICHMENT 11A 8 4.20 l R Region Identifier D Fuel Assembly Identifier 11B 40 4.70 12A 16 4.70 12B 48 4.95 12C 8 4.95 13A 37 4.00 13B 36 4.95

Serial No.05-804 Enclosure 1 FIGURE 2 Page 10 INCORE Power Distribution - 29%

MILLSTONE UNIT 3 - CYCLE 11 R P N M L K J H G F E D C B A I I I I I I I I 0.277 0.362 0.381 0.358

.32) 0.268 I I I I - I - 1 1.1 0.8 -0.3 -0.6 0.4 I I

[4IA4 00 1.030 1.234 1.18E 1.1 1.1 80 1.216 11.059 0.406 0.167 1 2 k-4.li -4.1 -3.9 1.0 -0.1 ,70.2 0.3 1.2 0.1 -2.2 -3.5 0.17C 0.439 0.976 1.132 1.32411.277 1.29 1.281 1.33 1.138 0.9 0.432 0.16'. i 3

-1.7 -2.0 -2.7 -1.4 0.5 1-0.9 2:8 -0.2 k .6 -0.4 _2. -3.6 .75 0.41 '0.99s 1.188 1.241 1.217 1.273 1.276 1.234 1.251 1.194 0.97E 0.40E -I-- 4

,<-0.7,. w-0.9w -1.2 -1.4 -1.5 -0.5 -0.2 0.2 -0.1 -0.7 -2.5 -2.9 0.269 1.067 1.146 1.254 1.20 1.209 1.266 1.234/1.26 1.217 1.21 1.257 1.4i 1.073 0.275 - 5 0.7 0.9 0.4 0.2 -1.2 -1.1 -1.6 ; -1.8 -1.7 -0.5 0.1 -0.1 -0.1 0.1 0.4 03 1.23214 1.248 1.224 124 1.28213 1.291 1.247 1.218 1.244 1.330 1.2 0.360 - 6 1.5 2.5 2.8 1.3 0.1 -1.1 -1.5 -1.8.5 .5 -0.6 -0.3 0.7 0.9 0.9 0.3 0.368 1.207 1.319 '1.30 1.300 1.30 23 1.277 1.304 1/.30 1.206 0.368 - 7 2.2 2.5 2.7 \ 2.3 0.9 -0.5 -1. -1.6 -1.4 -1.1 -0.8 1.9 1.3 1.4 0.3 0 1.208 1.33 1.286 /1.27 1.248 1.201 1.200 1.206 1 1.249 1 1.32 "1.20 0.385 - 8 1.8/ 2.0 1.9, 1.9 1.62 -0.9 -0.8 -0.8 -0.6 1.2 1.5 1.8 0.8 0.373 1 1.30' 1.302 1.303 1.306 1.246 1.209 1 1.301 1.28 1.292 1.300 1.195 0 -9 1.6 1.9 1.6 1.7 1.2 0.3 -0.6 -0.6 . -0.7 -0.2 1.0 1.2 1.5 0.8 0.360 1.22 1.32 1.250 .23 1.264 1.29 1.244 1.288 1.257 1.233 1 1.327 1.210 0.327 - 10 0.3 0.6 0.7 1.2 1.3 0.8 -1.0 -0.9 -1.1 0.2 0.8 0.7 1.4 0.7 0.3

.2 1.077 1.158 1.274122 1.231 1.279 1.24 1.279 1.234 1.231 1.268 1.156 1.055 .2 - 11

0. 0.5 0.9 1.3 0. 0.7 -0.8 -0.6 -0.6 1.0 1.2 1.3 1.2 -0.3 -0.4 0.42C 1.012 1.207 1.253 i.23' 1.273 1.257 1 .27) 1.246 1.272 1.217 0.964 0.406 12 0.7 0.9 0.3 0.1 \, 0.01 -0.4 -0.9 1.1 1.2 -3.8 -2.2 0.169 0.44 0.989 1.13 1.30.0 1.2801.30 1.291 1.322 1.1541 1.018 0.442. .16 -~ 13

-1.2 1. -1.3 0-o5Ai -0.7 1 0.3 .02 -. 0 .3* 0.5 1.5 -1.3 ..

0.409 1.043 1.185 1.1 6' 1.17211.181 14.21 ' 1.079 0.42y 0.169 14

-1.4 I - -1.4 .1. 1.4 I -

-1.0 -0.7 <,-0.2~, 0.7 ,1 .4,,a -1.2 I - I 4. 4 -

I -

0.32C 0.354k0.37t 0.363 0.3581 0.276 15 1.

-1.8 -1.7 k-1.6,A -1.1 I I - I -

-0.3 A.-

0.7 D Measured Power

% Difference (M-P)/P D Measured Location

Serial No.05-804 Enclosure 1 FIGURE 3 Page 11 INCORE Power Distribution - 729o MILLSTONE UNIT 3 - CYCLE 11 R P N M L K J H G F E D C B A Ie - -__111

-- I I &IIer7-

- --- - __V ___D - --- -I I 0.272 U.36id ' .312 -.35 U.;Jb 1.33/ 1.Z5t _ I 1 0.7 0.8 <,-O.5,> -0.5 -0.3 <'1.5v t - .t 1.5 I 1.053 I 0.416 0.175 I

1.163 1.201 i-4-4-I - I - - - I -

0.17 0.409 11.017 .017 1.208 1.161 (i.is 1.208 1.161 41.1 56 1.163 1.201 1.0532 0.416 0.'175 - - 2

\,-3.9,., -4.0 -4.1 0.9 -0.5 <1-0.6,2 0.5 1.8 0.5 -2.1 -3.8 0.179 0.452 0.9691.112 1.277 1.25111.270 1.264l.32 1.132 9 0.443 0.17i -I-- 3

-1.6 -2.0 -3.1 -2.4 -1.8 -1.6 -1.6 -0.3 22 -0.1 -.3.9

'0.99A 1.162 1.225 1.224 1.264 /4.24a 1.279 1.237 1.248 1.182 0.978 0.416 - 4

\.-0.5j -2.2 -2.2 -0.9 -1.3 -0.2 0.2 0.0 -0.5 -2.2 -2.3 0.277 1.058 1.143 1.257 1.211 1.223 1.276 1.250 1.27 1.228 1.22 1.257 1.14 1.063 0.280 - 5 1.5 1.0 0.9 0.7 -0.9 -0.8 -1.6 -1.6 -1.6 -0.6 -0.2 0.3 \0.3 0.3 0.0 0.342 1.223 1.33 1.270 1.244 1.2 1.294 1.24 1.300 1.260 1.232 1.254 1.31 1.21 0.364 - 6 3.0 3.6 \3.1_ 2.9 0.7 <-0.8 -1.6 -1.9 -1.7 -0.5 -0.1 1.5 1.5 \ 1.5, -0.3 0.378 1.195 1.307 1.31 1.309 1.317 1.253 1.214 1.244 1.292 1.287 1.310 .2 1.191 0.373 - 7 3.0 3.3 3.1 .2.3 0.8 -0.5 -1.4 -1.8 -2.1 -1.7 -0.8 2.3 1.8 2.1 -0.3 70.39 1.181 1.306 1.283 1.812912 .1 .2 .51.261 71.28/1'.31) 1.195 0.395 - 8 1.5y 1.5 1.2 1.5 1.5 -0.2 -1.1 -0.8 -1.3 -1.3 -0.7 <\2.0, \2.2> 2.8 1.5 0.379 1. 1.272 1.298 1.31 3 1.319 1.261 1.227 1.25 1.306 1.297 1.296 1.284 1.1 0.3 -9 1.3 \1.4y 0.1 1.3 1.2 0.3 -0.8 -0.7 -1.2 -1.3 -0.2 1.2 1.3 2.0 1.6 0.367 1.205 1.300 1.247 1.24 1.273 1.31 1.259 1.300 1.265 1.244 1.24 1.306 1.191 0.335 -10 0.5 0.7 0.0 1.0 1.1 0.6 -1.0 -1.0 -1.1 -0.1 0.7 0.7 1.1 0.9 0.9 0'O.28 1.07 1.139 1.265 1. .238 1.288 1.26 1.291 1.241 1.23 1.258 1.145 1.049.27 - 11 11 1.2 0.0 1.0 ,0.5 02 -. 8 0.5 0.6 0.7- 0.8 1.1 I0.1 0.0J 0.434 1.028 1.196 1.244 1i.22p 1.272 1.259 1.242 1.259 1.194 0.967 0.417 12 1.9 2.8 0.7 -0.3 \~-O.5, -0.7 -0.4 0.6 0.5 0.5 -3.3 -1.9 0.179 .45 0.993 .1 1.2831 1.262 1.28 1.272 1.302 1.149 1.025 0.458r01 7 13

-0.6 071 -0.7 <0., -0.7 -0.5 0 0.1

- 0.2 0.9 2.5 -0.7 -. 3?

0.420 1.036 1.167 1.155 1.161 1.19 1.071 20.43 0.180 14

' -1.2 -1.1 --1.1 Si-0.8. I - -0.7 I - -0.5 I\<-0.4_, 1-41.0 \<2.6,. &- 0.0 0.326 0.363 0.371 0.363 0.280 15

--1.2 -1.1 -1 .02 -0.8 -0.5. 1.1

_\ , _ A__ _

D Measured Power

% Difference (M-P)/P D Measured Location

Serial No.05-804 Enclosure 1 FIGURE 4 Page 12 INCORE Power Distribution - 100%

MILLSTONE UNIT 3 - CYCLE 11 P N M L K J H G F E D C B A T -. ---

U.Z17 1.1

.I I - ---

U.87t 0.8 V;

I

--- I

- onn

-1.3 I

U.8b

___v_-

-0.8 I I 1.4 I I I

I 4 1 01 0.41 7 1.021 1.202 1.151 1.146 1.18918 1.047 0.420 0.1 8 i - 2 k-3.81 -3.9 -3.7 . 0.9 -0.9 -0.3 1.2 -0.2 -2.8 -3.7 0.184 0.459 0.9771 1.137 1.2851 1.239 1.25 1.244 129 1.127 9 0.452 0.17 1- 3

-1.6 -2.3 -3.2 -0.8 -0.4 -1.5 -1.4 -0.9 07 -1.1 -3.8 4.8 p0.42) ~0/.99~ 1.167 1.243 1.233 1.267 1.25' 1.270 1.244 1.240 1.175 0.982 0.422 - - 4

,,-1.2> -1.6 -0.7 -0.8 -0.8 ,- 0 .7 J -0.2 0.2 -0.6 -0.9 -2.7 -2.8 0.278 1.049 1.140 1.245 1.227 1.22 1.29316 .29 1.234 1.23 1.252 "1.13 051 0.281 - 5 0.0 0.0 0.0 -0.2 -0.5 -0.4 -0.7 -0.8 0. 0.0 0.3 0.0 -1.0 -0.8 -1.1 0.347 1.207 1 1.258 1.239 1 1.300 .26 1.306 1.260 1.238 1.251 1.29 1 0.365 - 6 3.0 2.7 <2.5 1.4 0.4 -0.4 -0.5 -0.7 -0.6 0.1 0.5 0.6 0.2 <\0.1, -1.4 0.383 1.180 1.283 1.30i 1.319 1.321 1.257 1.225 1.254 1.304 1.303 1.295 1.26 1.171 0.373 - 7 3.0 2.4 2.2 \2.0 1.2 0.5 -0.3 -0.3 -0.6 -0.2 0.1 1.4 0.8, 0.9 -1.6 0.39 1.171 1.28 1.290 .29 1.286 71.231 1.232 1.233 1.28 1.273 1.28 1.29 1.180 0.400 - 8 0.8 1.1 0.9 1.7 1.8 ~ 0.8 0.2 0.4 0.3 0.3 0.2 1.1 1.4 1.9 1.5 0.381 1. 1.260 1.299 1.324 1.320 1.264 1.235 1.26 1.318 .30 1.287 1.267 1.171 0.37 - 9 0.5 .0.9 0.2 1.7 1.7 1.1 0.2 0.5 0.3 0.3 0.4\ 0.9 1.0 1.6 1.6 0.370 1.191 1.272 1.254 1.24 1.269 /1.31 1.277 1.307 1.269 1.244 41.25) 1.293 1.180 0.339 -10 0.0 0.0 -1.4 0.9 \ 1.1A 0.8 -0.1 0.1 0.1 0.8 0.8 \_0.7 0.8 0.4 0.6 0 11.075 1.144 1.2631. 1.240 1.301 .2 1.300 1.2421 1.262 1.154 1.040 0.27 -11 1.4 1.4 -0.2 0.9 0.5 0.5 -0.2 0.0 -0.2 0.8 1.1 1.1 1.2 -0.9 -1.1 0.440 1.024 1.188 1.242 1.23i 1.267 1.261 '1.271 1.251 1.270 1.20~ 1.004 0.424 -~ 12 1.4 1.5 - 0.2 -0.5 \-0.5* -0.7 -0.6 \-0.51 0.6 1.4 1.62 -0.5 -1.9 0.18 0.46 0.998 1.13 1.2651 1.236 0.26 1.2481 1.282 1.150 1.0241 0.469r0.18 13

-1.1 4\1.1 -1.1 \17-7A~ -1.4 1-1.5 -1. -0.8 1-0.6 0.3 1.5 1-0.2 k2:

0.1 8 0.427 1.036 1.154 /1.13 1.139 1.14E 1.17@ 1.058rK0.43M 0.184 14

,,-l.lj -1.2 -1.2 -1.8 \<-1.7~, -1.6 -1.1 1-l.6y -0.2 K 0.9,j -1.1 0.272 0.330 0.365 '0.38) 0.374 0.364 0.284 15

-2.1 -1.9 - - -1.3 - -1.6 0.0

- I. - A. - - - - I -

D Measured Power

% Difference (M-P)/P 0 Measured Location