ML17255A744: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(3 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:'ttachment A Replace page 5.4-1 with attached 5.4-1 through 5.4-5.8404i001Z4 840402 PDR ADOCK 05000244 P PDR II 1'-i i I'V.
{{#Wiki_filter:'ttachment                             A Replace page 5.4-1 with attached 5.4-1 through 5.4-5.
Fuel Stora e S ecification The new and spent fuel pit.structures are designed to withstand the anticipated earthquake loadings as Class I structures.
8404i001Z4 840402 PDR ADOCK 05000244 P               PDR
The spent fuel pit, has a stainless steel liner to ensure against loss of water.The spent fuel storage racks are divided into two regions as depicted on Figure 5.4-1.In Region 1 it is impossible to insert fuel assemblies in other than the.prescribed locations.
The fuel is stored vertically in an array with sufficient center to center distance between assemblies to assure Keff<0.95 for (1)unirradiated fuel assemblies delivered prior to January 1, 1984 (Region 1-15)containing no more than 39.0 gms U-235 per axial cm, and (2)unirradiated fuel assemblies delivered after January 1, 1984 containing no more than 41.9 gms U-235 per axial cm.In Region 2 of the spent fuel storage racks, fuel is stored in a close packed array utilizing fixed neutron poisons in each of the stored locations.
For discharged fuel assemblies to be stored in Region 2, (1)60 days must have elapsed since the core reached hot shutdown prior to discharge and (2)the combination of assembly average burnup and initial U-235 enrichment must be such that the point identified by these two parameters on'igure 5.4-2 is above the line applicable to the particular fuel assembly.design, therefore assuring that Keff<0.95.Amendment No.Proposed 5.4.4~~The spent fuel storage pit is filled with borated water at a concentration to match that used in the reactor Basis cavity and refueling canal during refueling operations whenever there is fuel in the pit.The center to center spacing of Region 1 insures that Keff<.0.95 for the enrichment limitations specified in 5.4.2 , and for a postulated missile impact the resulting dose at the EAB would be within the guidelines of 10CFR100~.
In Region 2, Keff<0.95 is insured by the addition of fixed neutron poison (boraflex) in each of the Region 2 storage locations, and a minimum burnup requirement as a function of initial enrichment for each fuel assembly design.The 60 day cooling time requirement insures that for a postulated missile impact the resulting dose at the EAB would be within the guidelines of 10CFR100.The two curves of Figure 5.4-2 divide the fuel assembly designs into two groups.The first group is all fuel delivered prior to January 1, 1984.This incorporates all Exxon and Westinghouse HIPAR designs used at Ginna4 The second curve is for the Westinghouse Optimized Fuel Assembly design delivered to Ginna beginning in February 19843 The assembly average burnup is calculated using INCORE generated power sharing data and the actual plant operating history.The calculated assembly average burnup should be reduced by 10%to account for uncertainties.
An uncertainty of 4%is associated with the measurement of power sharing.The additional 6%provides additional margin to bound the burnup uncertainty 5.4-2 Proposed associated with the time between measurements and updates of core burnup.The curves of Figure 5.4-2 incorporate the uncertainties of the calculation of assembly reactivity.~
References 1.Letter, J.E.Maier to H.R.Denton, January 18, 1984.2.Letter J.E.Maier to H.R.Denton, January 18, 1984.3.Criticality Analysis of Region 2 of the Ginna MDR Spent Fuel Storage Rack, Pickard, Lowe and Garrick, Inc.March 8, 1984.4.Letter, T.R.Robbins, Pickard, Lowe and Garrick, Inc.to J.D.Cook, RG&E March 15, 1984.5.4-3~Proposed f(5>ER>EQ)35L'RRRRRRRXR SRSiSRRRRRRRRRWiRiSi li3S)iAf~R(~RSIIRSSSISSRSIHSRll5%%5515511 eire~ae~ae~aaraaaaaaraaaaaaaaaraaaaaaaraaa 5)<5135)ii)<5%%i iSS5%%iSSi SRi RRSiRHRSSRSR I<Sf<1)3AIJS RRISRISIRR OIIRIRRRRS RRRIIIIHI QCRKI5353555iiSSi%15SSli%iSiSiSSSRSkiSS e~ac~aeiac~aaaaraaaraaaaaraaarrraaarrrxaaa Rt (RC{RAS>i$%%%%5555%5%5SR%5%iSi%555%5HR eireiavai~arraaaaaaaaaraaaaaxaarrarraaaaa RCiiilQKER>3%5i%55%55%5%55%%5%%%5%%%855%5%
RES)iS)3iCOSRSSSRSSHRSXSEiRiiSRRiSRRRRRR Sf<5)ti>EO(iiiRSH%5Qi%%55%%HRQ%%%)
Si%i)<5)3i>EQ)3SRRRiRRSRSRiRRRiRiRSSSiiiSSRRRR if~5 j)R)<RKi RIIRB1QQRHIRRRQIRQ11SRQI it(RKESf(if(51<SK<if<5)35%<5>(SRiiRRRRRRRRSESRRRRSRRRRRRRRRRR f<R>~IXf<5555i)X<%>~lit~<5]~(L~(5i~<5%iSS55555%55SSSS>%555iRSS55%
if(5>3S)ER)35@4)35)35>3ifiR]
iSSSRiSgRRiRSOQRiiiRRRSRMRiERii
)3RK~S)ESKER)35>(R>350<5>tif<5)~55iSSQS555%5555%5iRSSSSi555i%5 Xi3%f~SK(R>3%35i3A35)3RC<R)3SRRRiSRRRRRRRRRRRRiRiRRRiSRRR55 f~RKERf<if<R>
l5>li>31)35131)3535XISISRRRRSSRRRR>IRSQSSISRSRSI 5)3564fliKER)3E>35 4f(5>3i)3SRRiRESRiRRRRiRiRRRRi SRRRSRRSiR CiOKIQKIRK~SK<53535)3S)
ISfi5)iIi%5'5555iXSiQSiRiSiiiRSSSRiSR RC~RKERC<SC<5)
EQ)35vS)<5>Eifli55iRRNRRi RRiRRESRRR RiiRRRRRRR ae~reii=~ae~auaaaaaaaaaaaaaaraaaraaaaxaaaaaa
)<5><5)35>iR>3555ERSg iRIRRRSRSRiRi555i%%5%5i k)35)35>3A3i 555515 SHSRiRSSSSARiSSSRi5555%
Ki5~35)~<5>~~i~
<155%155 RES IIRRIRRIRS SSRIRRRRl5 A(<1(<S>)l(il(IQSSSSIQWI SILIRSS/SISSQSS51SS 2'20 TCt THE INCH~I ja Iu It Clll&HE C KEUFFEE&ESSEII CO.salas ususA 46 1242 F IGURE.-2 30 f 20 10~*!" ,ar 4 4 I''~1-3"i 4~~f f Il"~~~i'l~a~I 3 I-*f I I'~~'~'I I I te 1st~I 4 I il'I:;-;I-~rr~~~~ite~'l~'~i'f:fi::!-4's
~+'I*-1~4~11 t~~" 4 1'I I~*I 4 sa, 1 I~4 1~4~I~''I at t~it:lli 4, it'I 4 I~~~I 1"'I I 1 e~4 fs i.yea 4+I'.'f!I 4~~I*1 I!li l.'l ei~I I..3 f'~it.tli 11'~4 f~4~1~F-1~~4~Il 4'1~r~ACCEP TABLE FO sits 1~,f)1 1~-1'," N 2~4~'I'IO~)e'ill~I 1141 RE ,i)a ,iei 1 4 t 1 I~1~1 4~~";1'4 I 1 tl~~I T 4 l~1 4 4 4~4 I*~le I~,~~t t~t,~4 i'ij I~'I 1 I t'~~~I ,4 I~*3-1 It 4 4'!'~I I~'~~f I 114 r j.!r'I~1 4 II~f ti~~)1'~(4-lt~i."~3'.~1st 1st 1 4 I f ta 11~rsa I~-,~r~4~~i'FUEL DELIVERED PRIOR~!i'ANUARY I'la'te" 11 1~1 , 19 8 4 Ill''I I~i'L!1st'1'':.)':ii,;It~TQ Lr!is~, 4 tl 4 l''ll: 1~I'i~~I 1'.l I 1st I 4~I~I Il~1\tf'l!I sf I~4~i 1 Z~~lt'.~I~~i I I:'ll 1 4 rj S."3 4 Il, 4 4~II ,~I asa I~It,~fff 3.'il IF~t ifl'f~i)s'Ii'~I I I~~jfa i(i!i~I 11 4 f)T:~...I-,~(it I~1 I I I'~'I~~I I I~~~*f,i~li~ti aI 4'I 1~~~})fl~~~1 ir, ill~~i~l;-1'N 4~~4*-i~1'4~-,~~~-4 t I II 7 fl;-''.I~esa stlt~4'l i ti)i~~I~f~1 re It ei a)i~tla 3~)I.i~l(s file if!i i);it ti~~is 1~I I~f I~i I (3~l i fil l(l i3T If;I)1 REGIONS OF ACCEPTABILITY Al4D UNACCEPTABILITY FOR STORAGE OF SPENT FUEL IN REGION 2 1 I~ail~\1 T I I~~)fl as I, itr lil1 eli~;iif rl I'''~it~I~i~;l)f$!is sl~I\i~I~~)er~t~ae',f 1~~I'I~1 jf~I~~~~t{sf f,i', 14 1 slit It 4~'I~f ls f','it~I It 4 l I~I~1~1't~~)~3:3-', 4~i 4)PI j~11 I~',)i))3 CC i 4~i 11 EPT ABL E I~l\~~f Ifte 1 ir I~4 (:;..':.~~~~I~Ii''i t~~ill fai aft.'}il'fff~fsi'iA i~II~4 iltt ltl41 0 at if 3)T T FUEL DELIVERED 7~TT lT 1 4 I~I i~l'I~'-I~4 i)la l'I~lt~~T,r 16~~lfl;if'I~3.~e-I'fill!3')'s-~I 4 1 g~1 4~~~I I~I-lie I~4'I 4~41;}i-';il e.~ai if<<~'ii t.''f)4'I)~~I Ii')3!if~~l~il')f let~47 1'3'I-'t.i~t I)ia ,i)it~~~~~~i)ll)~~~4~I, I I te)i l~i t 7 ff,a f,ff FOR I~i 4 s~is 11~I 11'tl~~I 11 4TTI EGION t~~~il~ii~,ii", 1~*I ,fa, fi'I~I I'~~~~air 1'"~I-lan 1.it;!..''if),': ')IIt)ls is'T-'~'FTER JANUARY 1, 19 84'4 4 4 at;il')'-'II t I~I~~1 1 it~I~Li~I~If etr~a~r te'I i'1 4 4 t*I I'I'~')!a!i:I:3 a~~4~I+4 4 1'1 1;~i 3'1 4*4'I e aaa I~!3 ii" Iil 3'I 1.50 I 2.00 3.00 INITIAL ENRICHMENT, N/0 4.00.4.25 Back round The original spent fuel storage racks provided capacity for the storage of 210 fuel assemblies.
In 1976 RG&E requested, and the NRC approved, the replacement of the original racks with higher density racks provided by Wachter and Associates.~,~
This expanded the storage capability from 210 to 595 fuel assemblies.
In 1980, RG&E requested3 and the'RC approved4 modifications to the spent fuel cooling system to provide heat removal capacity of 16 x 10 BTU/HR.This modification provides sufficient heat 6 removal capability for all predicted fuel discharges in addition to a full core discharge at least to the year 2010.Recently RGSE has submitted changes to the Technical Specification to establish new limitations on unirradiated fuel enrichmen't (which has been approved)and to delete a restriction on the spacing.of recently discharged fuel General The proposed modification to the spent fuel storage racks will involve only the six west-most rack modules (Figure 1-1).These racks will be removed from pool and modified so that fuel assemblies can be stored in what were the water box locations.
The remaining three rack modules will not be modified.The modifications will provide an additional 420 storage locations resulting in a total capacity of 1016*.The six modified racks will be designated Region 2 and will be used for fuel that satisfies certain burnup criteria and has cooled for at least 60 days.The*A mechanical plug previously installed in a storage cell will be removed.


remaining three racks will be designated Region 1 and will be used for low burnup and/or recently discharged fuel.The enclosed analysis conforms to the NRC guidance of April 14, 1978.This relies on past analyses (References 1 thru 6)for those components which are not modified or are not impacted by the modification.
II 1'
The analysis is separated into 7 sections.1.Description of the Modification 2.Nuclear 3.Thermal-Hydraulic 4.Mechanical, Material and Structural 5.Cost/Benefit Assessment 6.Radiological Evaluation 7.Accident Evaluation Rochester Gas 6 Electric utilized U.S.Tool S Die as a contractor to perform the mechanical, structural and material analyses.U.S.Tool 8 Die previously merged with Wachter and Associates, the suppliers of the current storage racks.The nuclear analysis was performed by Pickard, Lowe and Garrick, Inc.The description of the modification notes an exception to the Technical Specifications (Section 3.11.3)that will be required to remove the west most racks in the pool.While the trolley of the auxiliary building crane or its transported rack will not travel over any spent fuel, the trolley will pass over 2-3 empty rows of a rack containing spent fuel.The distance between the area underneath the transported rack and the stored spent fuel will be maximized to insure the fuel would not be damaged if the load was dropped.
i    i I '
e 1.Descri tion of the Modification A description of the current spent fuel storage racks are contained in reference 1 and subsequent responses to NRC staff questions by RG&E.A general layout of the racks in the pool is at Figure l-l.The racks as currently configured are composed of three major components.
V.
a 0 b.c~The rack modules, which are rectangular arrays of cells of which one out of two are storage cells.The others are water boxes.The support bases, on which the rack modules rest, are a rectangular construction of I beams.Figure 1-2 gives a general layout of the support bases in the pool and Figure 4-2 provides a sketch of the rack and support base.At each corner of the base a jack screw provides a leveling mechanism and lifts the base a minimum of 2 inches off the pool floor.To facilitate cooling water flow, holes are cut into the support base I beams.The jack screws bottom hemispherical.head rests on steel plates which rest on the pool floor.Seismic supports between the bases and the pool walls provide a means to transmit horizontal loads from the racks to the walls (see figure 1-2).Task Descri tion of Modification 1.Shuffle spent fuel to the east most position in the pool to allow access to the two west most racks.
 
z.Divers loosen the four mounting bolts fastening the rack to the base in the two west most racks.Comment: As a result of step 1, at least 8 empty rows of fuel cells will be between the divers and any spent fuel (Figure 1-1).3.Install the lifting rig in the rack and using the auxiliary building crane remove it from the pool.As the racks clear the pool surface decontaminate with high pressure water.Move rack over the decontamination pit directly to the south of the spent.fuel pool and place on J skid.Perform additional decontamination as required.Comment: Both the spent fuel pool and the decontamination pit sit on bed rock, therefore, the safety significance of a rack drop during transfer is minimized (See Figure 1-3).For the modification, a temporary platform will be built over the decontamination pit on which the work will be performed.
Fuel Stora  e S ecification The new and   spent fuel pit. structures are designed to withstand the anticipated earthquake loadings as Class I structures. The spent fuel pit, has a stainless steel liner to ensure against loss of water.
The Ginna Technical Specifications prohibits the trolley of the Auxiliary Building crane from moving over racks containing spent fuel (Section 3.11.3).For the first two west most racks this will be violated.However, the trolley or the transported rack will not pass over any spent fuel, but 2 to 3 empty rows of a rack containing spent fuel.Should a load drop occur the distance between these rows and cells containing spent fuel will prevent fuel damage.During the decontamination process over the pool, the pool boron concentration will be checked frequently.
The spent fuel storage racks are divided into two regions as depicted on Figure 5.4-1. In Region 1      it      is impossible to insert fuel assemblies in other than the
4.Using a special cutting machine remove 70 guide funnels and~~28 guide angles over the water boxes.5.6.7.8.Remove 4 lifter assemblies and install modified bottom'plates with lifting slots.Enlarge the, flow holes in the bottom plates, and install additional 1/2" bottom plates to the former water boxes.Install the right-angled poison assemblies in each cell of the rack.Divers install shims at the corners of the support base and retract jack screws.Base and rack loads will rest on the shims.9.Set racks in pool on support bases without the mounting~~bolts.10.Repeat the above steps until the six west most racks in the pool have been modified.11.Remove all (both Region 2 and Region 1)seismic supports between the rack bases and the walls.In order to remove the two west most racks the spent fuel pool cooling system discharge pipe will have to be removed where it descends the west, wall of the spent fuel pool.The decay heat load during the time'period of the modification will be small (<2MBTU/HR) because the projected start time for the modification of October 1984 will be at least six months after the discharge of the last reload batch.The heat capacity of the pool is such that a heat up rate assuming no heat losses due to evaporation or other mechanisms is less than 1'F per hour.A temporary fitting and hose will be used to return cooling water to the pool.
. prescribed locations. The fuel is stored vertically in an array with sufficient center to center distance between assemblies to assure Keff < 0.95 for (1) unirradiated fuel assemblies delivered prior to January 1, 1984 (Region 1-15) containing no more than 39.0 gms U-235 per axial cm, and (2) unirradiated fuel assemblies delivered after January 1, 1984 containing no more than 41.9 gms U-235 per axial cm.
Should coolant flow be lost, the slow heat up rate and the typically low initial temperature of the pool will ensure adequate time is available for the normal backup (skid mounted pump and heat exchanger) emergency cooling system to be put into operation.
In Region 2 of the spent fuel storage racks, fuel is stored in a close packed array utilizing fixed neutron poisons in each of the stored locations. For discharged fuel assemblies to be stored in Region 2, (1) 60 days must have elapsed since the core reached hot shutdown prior to discharge and (2) the combination of assembly average burnup and  initial U-235  enrichment must be such that the point identified by these two parameters 5.4-2 is above the line applicable to the particular on'igure fuel assembly. design, therefore assuring that Keff < 0.95.
As soon as possible after the two west most racks are re-installed, the normal cooling path will be restored.
Amendment No.
~SEA~C~ESSSSSSSSS~~
Proposed
ESSSESE SSESIK(SEERESS~
 
~ERERSRS~EEEEEEEEEESSI')
5.4.4
5 a><gf<Sftgfi 5I>E%KIRK(RK(kftQKES SEE~~ERR~SRRSRESSSSSSSSSSSSSS ESK%4SK~RRSRWSWASEESEESRSXI PM5$LLLR~E uaae KIESSSESESS N~-){55 5%%6 KERRSS SSSS RRRSSM555 555SSMQ%5 OK(%5%)(%h i%5'5%3RMMK%6WK~%5%%~%
  ~  ~      The spent fuel storage pit is filled with borated water at a concentration to match that used in the reactor cavity and refueling canal during refueling operations whenever there is fuel in the pit.
%45W$355%K(RKiXK(RORti
Basis The center to center spacing of Region 1 insures that Keff <
%RRK%555K(RE<K(ROk~H a5555%8K45RRSSI>INNSR5 i~rrrraxraa 5>SQRRARRK(05 SN 1S-->A(i<5-.55 SR SR)(>(R~SM anrraarri~
. 0.95 for the enrichment limitations specified in 5.4.2 , and for a postulated missile impact the resulting dose at the EAB would be within the guidelines of 10CFR100~.
t4NiNNS 51%NSQSRid N 5958OK~MQM885 K<SRX5555M RQMRWRNSlMRi'%$%2%555$
In Region 2, Keff < 0.95 is insured by the addition of fixed neutron poison (boraflex) in each of the Region 2 storage locations, and a minimum burnup requirement as a    function of initial enrichment for each fuel assembly design. The 60 day cooling time requirement insures that for a postulated missile impact the resulting dose at the EAB would be within the guidelines of 10CFR100.
K~RFiRK%-I II~v~vS I I'L'Pg%.LP I)~(ISO.io)I(1/A I)s'.l/sr)" O.&l)s(a ea')s ((ta4.uO)a 4)',s~!(5 ()T.44" IG.(()(0 em~4)hg (()144 J I'/b (Io.cc')(La.w+4)I (.~/sa (4X4C)(I A.447 s (0 a ca~p td i)0 g.y)+5 0 IIII IIg o~(v%VEAU Ss~~4)s4vWg~v I:c";I s s~~ia-~~l s 11~I~I'I~~A~.s.s')'Z t I~~sv 1 Saon)s4 Vv+++~s 041440 (s l'->P l.I~~v>.&1,/s 0 I (I vz.)I;I I 4 f4'r V$g o fg~I g i I~oar ereyeo io;+(I'I o%4 o oaa 4-I+C g gL svv Is~0 1~(I 2 0 JI~~Ig(v 4L4~v 0~~v 1v 4 I o I 11%.bl)s(r 44)a+4O.Isola 4)(4144 I V)<}''I=~v I)~~'~~~I I)J~~/V hlEW SL'EL 6" EVA7og LIF>ivf Ki~CH.I 2w I~gznv~d/g ga//(NEct Z-~I'5la=Fuaa.%t~wi.tpl..'SSI<ti~v)): D-C)I<t-Oa7)
The two curves of Figure 5.4-2 divide the fuel assembly designs into two groups. The first group is all fuel delivered prior to January 1, 1984. This incorporates all Exxon and Westinghouse HIPAR designs used at Ginna4    The second curve is for the Westinghouse Optimized Fuel Assembly design delivered to Ginna beginning in February 19843 The assembly  average burnup  is calculated using INCORE generated power sharing data and    the actual plant operating history. The calculated assembly average burnup should be reduced by 10% to account for uncertainties.     An uncertainty of 4% is associated with the measurement of power sharing. The additional 6% provides additional margin to bound the burnup uncertainty 5.4-2               Proposed
-'VII''R)IT Ctt)CJPAV)8.i(C,wesT)FVVKL Clh JVV'O)VVI)V))l}
 
4)IL)V,~'i ht EL.l-SO.0 V~C~t.T&~lhl<b),Tl O&.v P)T~Fl.eaR.ELEV 749i~.l I~I il J II I.+&8 t)LtJ P O2-I-<7))l)!c vARC6+O'L+~~~A"'E'l'R7Q'-4F PS'-/o"~6-/O FIGURE 1-3~~AUXILIARY BUILDING SPENT FUEL POOL AREA~4 V V~)g tl)P V'~~~)~~-~4 J Exya~dw A~<;>woe V'I 4i I''~HEOJ.PLKL ORAGK AREA SEE Dl<A4JlN(q,O
associated with the time between measurements and updates of core burnup. The curves of Figure 5.4-2 incorporate the uncertainties of the calculation of assembly reactivity.~
-oA.-00'7.,I))p~~=xnan,:s A x.,~<~"rz 1mcl~~~~$47~8//CII z4'-r'0 2.Nuclear Anal sis Attached is a nuclear analysis of Region 2 rack configuration performed by Pickard, Lowe and Garrick.This analysis establishes the minimum burnups as a function of initial enrichment required in order for a fuel assembly to be stored in Region 2.This analysis was performed for the Westinghouse Optimized Fuel Assembly.Reference 23 added the Exxon zircaloy guide tube design (Regions 13-15).The Exxon Regions 13-15 differ from the earlier Exxon Regions 10-12 only in that the later regions incorporate zircaloy guide tubes while the earlier regions had stainless steel guide tubes.The later Exxon region of fuel will be more reactive than the earlier region at any burnup because of this design change.Therefore, the minimum burnup criteria for Region 2 generated for Exxon Regions 13-15 will be bounding.The other fuel design used at Ginna was the Westinghouse HIPAR design which incorporated inconel grids and stainless steel guide tubes.Table 2-1 shows a comparison of design parameters for those fuel assemblies used at Ginna.Reference 23 documented that the Westinghouse HIPAR design is less reactive than the Exxon Regions 13-15 design at any burnup, therefore the minimum burnup criteria generated for the Exxon design will be bounding for the Westinghouse HIPAR.In order to determine the burnup of an individual assembly following discharge, RGK will use its Nuclear Fuel Accountability Code (NFAC)which was established in the early 1970's to record the isotopic content of the fuel and other specific parameters such as burnup for use in future fuel reprocessing.
References
NFAC uses as input the burnup rate data (Mw-hrs per 1000 core Mw-hrs)generated by INCORE results from flux measurements.
: 1. Letter, J.E. Maier to H.R. Denton, January 18, 1984.
Every assembly irradiated at Ginna is followed with NFAC beginning with insertion and proceeding through core life to discharge.
: 2. Letter J.E. Maier to H.R. Denton, January 18, 1984.
These burnups generated by INCORE-NFAC will be reduced by.a factor of 10%to conservatively bound measurement uncertainties.
: 3. Criticality Analysis of Region 2 of the Ginna MDR Spent Fuel Storage Rack, Pickard, Lowe and Garrick, Inc.
This reduced burnup will be compared to the curve (Figure 5.4-2 of proposed Technical Specification) to determine if a fuel assembly is acceptable for storage in Region 2.As described, in Section 1, every cell of the modified racks will have Boraflex neutron poison inserts installed.
March 8, 1984.
Specific quality control procedures will be used to insure the presence of the Boraflex in every cell.Proper documentation from the manufacturers of Boraflex will be obtained to assure the minimum B density.A discussion of mechanical stability of Boraflex is at Section 5, Mechanical Analysis.Referring to Figure 4-4, Poison Assembly Installation, the length of the poison material in the cell is 132 inches.This.compares to a maximum fuel assembly active fuel length of 142 inches.The ends of the active fuel region will be at a burnup lower than the assembly average.However, this positive reactivity effect will be offset by the increased neutron leakage at the ends of the fuel region.Additional calculations are being performed to quantify the net reactivity effect of the poison configuration.
: 4. Letter, T.R. Robbins, Pickard,  Lowe and Garrick, Inc. to J.D. Cook, RG&E March 15, 1984.
The results of these calculations will be forwarded when available and the poison material region extended if required.
5.4-3 ~              Proposed
Table 2-1 Comparison of Design Parameters Rod Array Rods per Assembly"Westinghouse HIPAR REGIONS 1-9 14 x 14 179 Exxon REGIONS 10-12 14 x 14 179 179 179 Westinghouse OFA 13-15 REGION 16 14 x 14 14 x 14 Rod Pitch, In.Assembly Pitch\Active Fuel Height, In.Clad O.D., In.Clad Thickness, In.Clad Material Pellet Diameter, In.ametral Gap, In.Pellet Density,%Guide Tube O.D., In.I.D., In.GT Material Instrument Tube O.D., In.I.D., In.IT Material I Grids Grid Material.556 7.803 141.4-142.0
 
.422.0243 SS-304.3659.0075 94.5375.5075 SS-304.422.3455 SS-304 INCONEL.556 7.803 142.0.424.030 ZRC.3565.0075 94.540.510 SS-304.424.346 SS-304 ZRC w INCONEL SPRINGS.556 7.803 142.0.424.030 ZRC.3565.0075'94.541.'507 ZRC.424.346 ZRC w INCONEL SPRINGS.556 7.803 141.4.400.243 ZRC.3444.0070 95.5280.4825 ZRC.4015.3499 ZRC ,7-ZRC 2-INCONEL"These are Region 8 parameters.
f(5>ER> EQ)35L'RRRRRRRXR  SRSiSRRRRRRRRRWiRiSi li3S) iAf~R(~RSIIRSSSISSRSIHSRll5%%5515511 eire~ae~ae~aaraaaaaaraaaaaaaaaraaaaaaaraaa
There were minor variations in some of these parameters over the regions.
: 5) <5135) ii)<5%%i iSS5%% iSSi SRi RRSiRHRSSRSR I <Sf<1)3AIJS RRISRISIRR OIIRIRRRRS RRRIIIIHI QCRKI5353555iiSSi%15SSli%iSiSiSSSRSkiSS e~ac~aeiac~aaaaraaaraaaaaraaarrraaarrrxaaa Rt (RC{RAS> i$%%%%5555%5%5SR%5%iSi%555%5HR eireiavai~arraaaaaaaaaraaaaaxaarrarraaaaa RCiiilQKER>3%5i%55%55%5%55%%5%%%5%%%855%5%
3.Thermal H draulic Reference 4 contains the NRC safety evaluation of proposed spent fuel pool cooling system modifications and approval that these would provide sufficient cooling capacity for projected discharges through year 2009 with a full core discharge in year I 2010 (1360 fuel assemblies total).This cooling capacity exceeds the maximum that would be required=under the proposed modifications (1016 fuel assemblies total).The current projected refueling cycles are consistent with the assumptions of this safety analysis.It is anticipated that this modification will be completed during 1986.The current spent fuel pool cooling system capacity is 9.3 x 10 BTU/HR.-This is far in excess of what will be required under normal conditions prior to 1986 (discharge of only one region of fuel at.end of each cycle).If a full core discharge is required prior to the new spent fuel pool cooling system being in operation, the in-reactor decay time will be extended in order to ensure the pool temperature limitations in the Technical Specifications are satsfied.In response to NRC questions concerning the previous storage rack modification, RG6E calculated the maximum cladding temperature for the hottest fuel assembly of a recently discharged ba'tch, discharged in conjunction with a full core.This calculation k showed a margin of over 80'F to the saturation temperature.
RES) iS)3iCOSRSSSRSSHRSXSEiRiiSRRiSRRRRRR Sf<5) ti> EO(iiiRSH%5Qi%%55%%HRQ%%%) Si%i
This assumed a recently discharged batch grouped together at a storage location farthest from the cooling system cold water inlet.This analysis is still valid for Region 1 where, in accordance with the proposed Technical Specification (Section 5.4.4), recently discharged fuel would be stored for a period of at least 60 days after reactor shutdown.After 60 days of cooling time the fuel could be moved to Region 2's higher density storage.As part of the modification, the flow hole at the bottom of the former water boxes would be enlarged to equal that of the other storage locations.
                      ) <5)3i> EQ)3SRRRiRRSRSRiRRRiRiRSSSiiiSSRRRR if~5j)R) <RKiRIIRB1QQRHIRRRQIRQ11SRQI it(RKESf(if(51<SK<if<5)35%<5>(SRiiRRRRRRRRSESRRRRSRRRRRRRRRRR f<R>~IXf<5555i)X<%>~lit~<5]~(L~(5i~<5%iSS55555%55SSSS>%555iRSS55%
if(5>3S) ER)35@4)35)35>3ifiR] iSSSRiSgRRiRSOQRiiiRRRSRMRiERii
)3RK~S) ESKER)35> (R>350<5> tif<5)~55iSSQS555%5555%5iRSSSSi555i%5 Xi3%f~SK(R>3%35i3A35)3RC<R)3SRRRiSRRRRRRRRRRRRiRiRRRiSRRR55 f~RKERf<if<R>l5>li>31)35131)3535XISISRRRRSSRRRR>IRSQSSISRSRSI 5)3564fliKER)3E>35 4f(5>3i)3SRRiRESRiRRRRiRiRRRRi SRRRSRRSiR CiOKIQKIRK~SK<53535)3S) ISfi5) iIi%5'5555iXSiQSiRiSiiiRSSSRiSR RC~RKERC<SC<5) EQ)35vS) <5> Eifli55iRRNRRiRRiRRESRRR RiiRRRRRRR ae~reii=~ae~auaaaaaaaaaaaaaaraaaraaaaxaaaaaa
                  ) <5><5)35>iR>3555ERSg iRIRRRSRSRiRi555i%%5%5i k)35)35>3A3i 555515 SHSRiRSSSSARiSSSRi5555%
Ki5~35)~<5>~~i~ <155%155 RES IIRRIRRIRS SSRIRRRRl5 A(<1(<S>)l(il(IQSSSSIQWI SILIRSS/SISSQSS51SS
 
2'      20 TCt THE INCH ~ I ja Iu It Clll&
HE  C      KEUFFEE & ESSEII CO. salas ususA                                                                                                                          46 1242 F IGURE                        .     -2 REGIONS OF ACCEPTABILITY Al4D UNACCEPTABILITY FOR STORAGE OF SPENT FUEL IN REGION 2                                                                                                                            ei ~ I                                                                    ill                                                                    ~
                                                                                                                                                                                                                                                                                                                                                                                                          'i  t
                                                                                                                                                                                                                                                                                                                                                                                                              ~
fl
                                                                                                                                                                                                        '.'f!                                                                  )
                                              ~ 4                                                                                                                                                                                                                          ~
I.. 3 f
                  ~ *
                                                          ~ 11 t~                'I 4 1 I
I
                                                                                                                                                        'I                e ~                          yea        4+I                                                    as I,                                                                                                                          }
                                                                                                                                                                                                                                                                                                                    'fff fai
                                                              ~"                                                            sa,                at            4 fs 1
t it
                                                                                                                                                                  ~ ~  I              i.                               I                                                      itr
                                                                                                                                            'I:lli
* 4
                                                                                      ~                                                            ~
1"'
4 I
lil1                                                aft.'                                                                   il
              ,ar
                                    ~
                                                                                                                                      ~
                                                                                                                                        ~
I 4
I I 4 ~  ~  I*    1            I!                  '
                                                                                                                                                                                                                                                      ~  it.                                         ',f      1
                                                                                                                                                                                                                                                                                                                    ~
fsi
                                    +'I*
I
                                                                                                                                                          ~
li                                                                      ~ ~
                                                                                                                                                                                                                                                                                                          ~ 1 I  'I 1
                                                                                                                              ~
1 4    ~
4,                                                                            l                        tli                              i      ~
jf    ~ I
                                                                                                                                                                                                                                                                                                                    '              i    ~     II    ~ 4  iltt ltl41              0 at if          3  )T    T 30 it                  1                                                      .'l                          1                                          ~ ~ ~   ~                             FUEL DELIVERED
                                                                                                                                                                                                                                    ~ 'I 1                          1 I~  eli        ~               t{sf            iA      FTER                      JANUARY 1, 19 84 4                                                                                  '4
                                                                                                                                                                                                                                    ~
t' I
ail\    ;iif ;l)                                                                                                        7~
                            '                                        f
                                                                      ~ 4 ~                                                                             I      1 4 ~ 4
                                                                                                                                                                                                                                          ~ ~
rj.! r
                                                                                                                                                                                                                                                                  ~    1 rl 4
f$ !
4 I      ~ 1
                                                                        ~ F-1
                                                                                      ~ ~
4
                                                                                                                                                                                                                                                'I   ~                                                f,i',                                                                          TT    lT 1 '                     1 1 1                              l    ~                                                             I                     1 4        T            I '
                                                ~
                                                                                                                                ~-      '," 1                                                                                ~ t    ,4 I              II                                      is                                                                                                    I sl                                                                                                    i "i                                                                                                                                                                                                                                          I
                                                                                                                                                                                                                                        ~  *
                                                                                    ~
Il    4'1 r                                                  1141 1                  Ile * ~
                                                                                                                                                                                                                    , ~             3-1        ~
I~                      ~  I~ \
I                                                                                                 ~
l
                                                                                                                                                                                                                                                                                                                                                                                                            'I
              -3                                                                      ~    ~
                                                                                                                              'I'IO 4
It    4 4   f ti
                                                                                                                                                                                                                                                                                '          i            14 I~
1 4 ACCEP TABLE FO                                          RE                  N 2                                          I~                                                                                     '                                    1 sits                            ,i)a                                        tl                                                              t    ~  '    !'                              ~  it                                                            i)la        l'                  ~
                                                                                                                  ,iei                ~ 4 ~       1 4
                                                                                                                                                        ~      ~
t,
                                                                                                                                                                                                                              ~          ~
I
                                                                                                                                                                                                                                                ~                        ~    I ~
                                                                                                                                                                                                                                                                                                                                  ~ '-
lt I
1    ~                                           ~               t                                                                                            I~                                                                                           I
                                                                                    ,f)                                      ) e'ill                                                                                                                                                  ~ ~       er 4
i                                                                )                                ~   4 aet I                                                            '                                                                 ~
1                                                                                                                                              ~
T                                                                                                                                                                      T,r 4    ~
                                                                                                                    ~ 1 4 ~
I       ~"        4 4
ij
                                                                                                                                                                                                                                              ~
                                                                                                                                                                                                                                                                                                                        ~ ~
lfl; if                                        'fill 16
                                                                                                                                              ;                                                                                          fI                                                                                            ~ ~
                                                                                                                                          ~ 1    1                                                                                    ~
I                                                                                                                                                           ! 3')'s f 20          :fi::!-4's
              ~ i '          f                                                            f ta 11 rsa
                                                                                                    -, ~
Ir ~
                                                                                                                            ~ I I     4                                                             I II 114
                                                                                                                                                                                                                                          ~
* I 1 ~ ~
                                                                                                                                                                                                                                                          ~ 1 ir,                                                                    lie
                                                                                                                                                                                                                                                                                                                                                'I il
                                                                                                                                                                                                                                                                                                                                                        ~
e.
                                                                                                                                                                                                                                                                                                                                                              ~
e
                                                                                                                                                                                                                                                                                                                                                              ~
3.
                                                                                                                                                                                                                                                                                                                                                                -I ai                    4 i''':.)':ii,
                                                                                          ~               ~ 4                                                                                                               '  ~                                                                                    -  ~  I                                                           'I
                                ~
                                  )1 4
I 1
                                                                                                    ~ ~                                       I' i ~ ~ I
                                                                                                                                                                          ~ i                        ifl'f 4
f)
T:  ~
                                                                                                                                                                                                                          'I                              ill slit 4
                                                                                                                                                                                                                                                                                                                        ~ ~
1
                                                                                                                                                                                                                                                                                                                          ~ 1 g
I if<<t.''f)      ~
                                                                                                                                                                                                                                                                                                                                                                    'ii 3!
if I                              1                                                                                                    4 ~       i               4 4
:'ll
                                                                                                                                                ~     1                                                      ~           ~ ~                                                                                                 ~
                                    -lt                                                                                                                                          Z                                                                                  It'I                                                     '                                                        I i."
                                ~
(4
                                    ~ 3'
                                          ~
                                                                                                                  ;It      ~
                                                                                                                                                                            ~
                                                                                                                                                                              ~ lt
                                                                                                                                                                              ~ I    1 4     4 4
                                                                                                                                                                                                      ~ i)s
                                                                                                                                                                                                        'Ii    '
I I
I
                                                                                                                                                                                                                                                ~
                                                                                                                                                                                                                                                  })
                                                                                                                                                                                                                                                            ~ ~
i~     4
                                                                                                                                                                                                                                                                      ~
                                                                                                                                                                                                                                                                            ,'it I
4
                                                                                                                                                                                                                                                                                            )PI          j  ~
                                                                                                                                                                                                                                                                                                                                ~  41 I 4
                                                                                                                                                                                                                                                                                                                                                                                  )
                                                                                                                                                                                                                                                                                                                                                                                    ~ ~
il')f
                        ~                                                                                                                         1st                          i      rj                                                        fl        l;-            It
                                                                                                                                                                                                                                                                            ~
I I ;}i-';
Ii')
                                                                                                                                                                          ~ ~                                                                                     ~                   4                            ~                                                                           ~ ~
f    . 1st 1st                                                                                                          ~   I                                II                                                              '     f    lI I f      ~                                                                                                          '.
lI                      I                              ~
ls              ~
I-                                                                      l
                                                                                                                                                                                                                                                                                                                                                                                                    ~
FUEL DELIVERED PRIOR TQ Lr!                                                                                    Il                    I S."3 Il, 4
                                                                                                                                                                                                  ~  I
                                                                                                                                                                                                                                ~ ~                ~ ~      1 f
                                                                                                                                                                                                                                                                                    ~
                                                                                                                                                                                                                                                                                    ~ 1 1                            ~
let i'l  ~  a ~
                                                'ANUARY 1 , Ill'                                                                                                                              asa      III~                                                              't  ~ ~
I I  'la                                  19 8 4 i'L! is ,
                                                                                                'I                    ~
I~        ~
jfa
                                                                                                                                                                                                                                        ~
f,ili                                    )
                                                                                                                                                                                                                                                                                    ~                                                          I)ia ,i
                                                                                                                                                                                                                                                                                                                                                                ~ ~
                                                                                                                                                                                                                                                                                                                                                                ~ ~
ll  ~ ~
                                                                                                                                                                                                                                                                                                                                                                                                )i          t I    -*                                                                                                              ll:
3                                                                                                  tl                4 1 ~
                                                                                                                                                          ~  1\
tf' l!                                It, i(i! (it
                                                                                                                                                                                                      ~
                                                                                                                                                                                                                  ...I-,
                                                                                                                                                                                                                  ~                    ~
ti                                                              11        1
                                                                                                                                                                                                                                                                                                                        ~  47      t.i ~        )it i)          ~  ~
                                                                                                                                                                                                                                                                                                                                                                          )
                                                                                                                                                                                                                                                                                                                                                                          ~ 4                  l
                                                                                                                                                                                                                                                                                                                                                                                                    ~
7
                    '                      'te"                                                                    4 4'                              3:3-',
fII 11 I ~
I sf                        fff                                        aI                                                          I    ~      '3'I-'        t                                      I I te
                                                                                                                                                                                                                                                                                                                                                                          ~ I, i
i                                                                                                                                                    is Il"        ~ ~
                                                                                                                                                                  ~
I 4                      3 I    11
                                                                                                                                                                                                                ~
                                                                                                                                                                                                                                                                ',)    i))3                                        ff,a       f,ff I              s
                                                                                                                                                                                                                                                                                                                                                    ~  i
                                                                                                                                                                                                                                                                                                                                                          ~
4
        ~ ~ ~
                                      !i                          1  ~                            1st'                                                                                          il                                                                                                                                                                        ~ ~
I 11 IF t                                                                                      ii                                                                11'tl 4TTI
                                    ~                                                                                                                                                            ~                                                                                            4 ~
1
                                                                                                                          '                                                                                                                                                                    11                                          11    ~ I l'
I ~1                                N CC EPT ABLE FOR                                                                  EGION 10                                                                                                '.I                      stlt
        '    ~
il'I:;-;                      4 4
                                                                                                              ~
                                                                                                                  ~ 4 esa                                                      tla              file if!i f I
                                                                                                                                                                                                        ~ ~
                                                                                                                                                                                                          ~ I is1          l If                                              l I\ ~
                                                                                                                                                                                                                                                                                                                  ~                              fi'      ~  air -lan
    'I I                                                        *-i                        -, ~                                                                            3
                                                                                                                                                                                ~
I.                         I~ ~            i                                                                                            t                                          1 1
                                                                                                                                                                                                                                                                                                                                                                                                          )ls I te                                                          ~ 1
                                                                                ~    ~ -   4
                                                                                                                            'l                                              )        l(s                iI fil
                                                                                                                                                                                                                                                      )1
                                                                                                                                                                                                                                                                                                        ~
f                                    I ~ II                .it; t
i                                        i ~
3
                                                                                                                                                                                                              ~
(                                      ;I                          4                                   ~    ~
                                                                                                                                                                                                                                                                                                                                              '              '" ~
I 1st    ~    I-   ~
ti              )i    ~                                      a)i ~
i);                                                              (:;
                                                                                                                                                                                                                                                                            ~ ~    ~
iiil
                                                                                                                                                                                                                                                                                                                    ~        ~
                                                                                                                                                                                                                                                                                                                                ,fa, I                                          ..''if) is'T-'
                    'l                                                                    I                                                                                                                              l(l                                                ..':.
II 7 I                                                ~ ~
Ifte              ~
4 rr ~ite                                                                                                                                                                                                                                                                                    ir ,ii",
it ti
                                                                        '4 I
                                                                                                                                                                                                                                                                                                                                                                                  !,': ')IIt
                            ~ ~
I              ~
                                                                            ~
fl;-'              ~                ~
It                                                                                                                  ~  I      '    ~                      1                                  ~ ~ ~
                  ~        ~
f~                1 re    ei                                                                        i3T                                      Ii                                    I      ~
1 ~                                                                                  ~
                                                                                                                                                                  ~
it 1 1
                                                                                                                                                                        ~          ~  If                                                            etrr    ~
aaa              'I a ~
                                                                                                    ;il')                              I ~ I~
I
                                                                                                                                                                  ~
                                                                                                                                                                    ~
I Li                                                                                                    4 1
I                                                                                          !3 I ~          3 te                                  I i'
        '4 4
4 t
                                                                                                                  'II                                                                                                                                  'I 4  t
* I'
                                                                                                                                                                                                                                                                                                  ~
e ii " Iil
                                                                                                                                                                                                                                                                                                                            ~ I a
at
                                                                                                                                                                                                                                                                                          ')                            +
4 4    1
                                                                                                                                                                                                                                                                                          !a!i          ~ ~  4                                            '1 4
                                                                                                                                                                                                                                                                                                                                                            'I
                                                                                                                                                                                                                                                                                                                                    '1 1;                  *4
:I:3                                  ~  i      3 I
1.50                              2.00                                                                                              3.00                                                                                            4.00.                                   4.25 INITIAL ENRICHMENT, N/0
 
Back round The original spent fuel storage racks provided capacity for the storage of 210 fuel assemblies.       In 1976 RG&E requested, and the NRC approved, the replacement of the original racks with higher density racks provided by Wachter and Associates.~,~ This expanded the storage capability from 210 to 595 fuel assemblies.
In 1980, RG&E requested3 and the'RC approved4 modifications to the spent fuel cooling system to provide heat removal capacity of 16 x 10 6 BTU/HR. This modification provides sufficient heat removal capability for all predicted fuel discharges in addition to  a  full core  discharge at least to the year 2010.
Recently RGSE has submitted changes to the Technical Specification to establish new limitations on unirradiated fuel enrichmen't (which has been approved) and to delete a restriction on the spacing .of recently discharged fuel General The proposed  modification to the spent fuel storage racks will involve only the six west-most rack modules (Figure 1-1).
These racks will be removed from pool and modified so that fuel assemblies can be stored in what were the water box locations.
The remaining three rack modules will not be modified. The modifications will provide an additional 420 storage locations resulting in a total capacity of 1016*. The six modified racks will be designated Region 2 and will be used for fuel that satisfies certain burnup criteria and has cooled for at least 60 days. The
* A  mechanical plug previously  installed in  a storage cell will be removed.
 
remaining three racks  will be designated Region  1  and will be used for low  burnup and/or recently discharged  fuel.
The enclosed  analysis conforms to the NRC guidance of April 14, 1978. This relies on past analyses (References 1 thru
: 6) for those components which are not modified or are not impacted by the modification. The analysis is separated into 7 sections.
: 1. Description of the Modification
: 2. Nuclear
: 3. Thermal-Hydraulic
: 4. Mechanical, Material and Structural
: 5. Cost/Benefit Assessment
: 6. Radiological Evaluation
: 7. Accident Evaluation Rochester Gas  6 Electric utilized  U.S. Tool  S  Die as a contractor to perform the mechanical, structural and material analyses. U.S. Tool 8 Die previously merged with Wachter and Associates, the suppliers of the current storage racks. The nuclear analysis was performed by Pickard, Lowe and Garrick, Inc.
The description of the modification notes an exception to the Technical Specifications (Section 3.11.3) that will be required to remove the west most racks in the pool. While the trolley of the auxiliary building crane or its transported rack will not travel over any spent fuel, the trolley will pass over 2-3 empty rows of a rack containing spent fuel. The distance between the area underneath the transported rack and the stored spent fuel will be maximized to insure the fuel would not be damaged      if  the load was dropped.
 
e 1. Descri tion of the Modification A  description of the current spent fuel storage racks are contained in reference 1 and subsequent responses to NRC staff questions by RG&E. A general layout of the racks in the pool is at Figure l-l. The racks as currently configured are composed of three major components.
a 0    The rack modules, which are rectangular arrays of cells of which one out of two are storage cells. The others are water boxes.
: b. The support bases, on which the rack modules rest, are a rectangular construction of I beams. Figure 1-2 gives a general layout of the support bases in the pool and Figure 4-2 provides a sketch of the rack and support base. At each corner of the base a jack screw provides a leveling mechanism and lifts the base a minimum of 2 inches off the pool floor. To facilitate cooling water flow, holes are cut into the support base I beams. The jack screws bottom hemispherical .head rests on steel plates which rest on the pool floor.
c ~    Seismic supports between the bases and the pool walls provide a means to transmit horizontal loads from the racks to the walls (see figure 1-2).
Task Descri    tion of Modification
: 1. Shuffle spent fuel to the east most position in the pool to allow access to the two west most racks.
: z. Divers loosen the four mounting bolts fastening the rack to the base in the two west most racks.
Comment: As a  result of step  1, at least 8 empty rows of fuel cells will be  between the divers and any  spent fuel (Figure 1-1).
: 3. Install the lifting rig in the rack and using the auxiliary building crane remove    it from the pool. As the racks clear the pool surface decontaminate with high pressure water.
Move  rack over the decontamination pit directly to the south of the spent. fuel pool and place on J skid. Perform additional decontamination as required.
Comment: Both the spent fuel pool and the decontamination pit sit on bed rock, therefore, the safety significance of a rack drop during transfer is minimized (See Figure 1-3). For the modification, a temporary platform will be built over the decontamination pit on which the work will be performed. The Ginna Technical Specifications prohibits the trolley of the Auxiliary Building crane from moving over racks containing spent fuel (Section 3.11.3). For the first two west most racks this will be violated. However, the trolley or the transported rack will not pass over any spent fuel, but 2 to 3 empty rows of a rack containing spent fuel. Should a load drop occur the distance between these rows and cells containing spent fuel will prevent fuel damage.
During the decontamination process over the pool, the pool boron concentration will be checked frequently.
 
4.~      Using    a  special cutting machine remove    70 guide funnels and 28 guide angles over the water boxes.      ~
: 5.      Remove 4    lifter assemblies    and install modified  bottom
        'plates with      lifting slots.
: 6.      Enlarge the, flow holes      in the bottom plates,  and  install additional 1/2" bottom plates to the former water boxes.
: 7.      Install the right-angled poison assemblies in each cell of the rack.
: 8.      Divers    install  shims  at the corners of the support base and retract jack screws. Base and rack loads will rest on the shims.
: 9.      Set racks      in pool  on support bases  without the mounting bolts. ~
: 10. ~    Repeat the above steps        until the six west most racks in the pool have been modified.
: 11.      Remove    all  (both Region 2 and Region 1) seismic supports between the rack bases and the walls.
In order to remove the two west most racks the spent fuel pool cooling system discharge pipe will have to be removed where it    descends the west, wall of the spent fuel pool. The decay heat load during the time'period of the modification will be small
(<2MBTU/HR) because the projected start time for the modification of October 1984 will be at least six months after the discharge of the last reload batch. The heat capacity of the pool is such that a heat up rate assuming no heat losses due to evaporation or other mechanisms is less than 1'F per hour. A temporary fitting and hose      will be    used  to return cooling water to the pool.
 
Should coolant flow be  lost, the slow heat up rate and the typically low initial temperature of the pool will ensure adequate time is available for the normal backup (skid mounted pump and heat exchanger)  emergency cooling system to be put into operation. As soon as  possible after the two west most racks are re-installed, the normal cooling path will be restored.
 
SEE~~ERR~SRRSRESSSSSSSSSSSSSS ESK%4SK~RRSRWSWASEESEESRSXI PM5$
                                                                ~E LLLR uaae KIESSSESESS N
                                                                ){
                                                                    ~-      55 5%          %6 C~
KERRSS  SSSS RRRSSM555 555SSMQ%5 OK(%5%) (%h i%5
                                    ~ SEA ~            '5%3RMMK%6WK~%5%%~%
ESSSESE    SSESIK(SEERESS~      ESSSSSSSSS~~ %RRK%555K(RE<K(ROk~H
                                                    % 45W$  355%K(RKiXK(RORti
~ ERERSRS                                      a5555%8K45RRSSI>INNSR5 5                      i~rrrraxraa
                ~EEEEEEEEEESSI')
5>SQRRARRK(
a                                                05          SN 1S  -  -    >A(
><gf<Sftgfi 5I>E i<5    - .
55 SR        SR) (
%KIRK(RK(kftQKES                                                >(R~SM anrraarri~
t4NiNNS 51%NSQSRid N      5958OK~MQM885          K<SRX5555M RQMRWRNSlMRi'%$%2%555$ K~RFiRK%-I
 
II~
v~vS I)
I I 'L 'Pg
                                                        ~
                                                              %. LP                                  I( 1  /A                        I)s'. l  /sr)"                  hg      I'/b                (  .~ /sa (ISO. io )                                              (5 O.&l)    s(a ea')s            ( () T. 44"      IG.(( )  (()144 J  (Io.cc ')              (4X4C )        (I A. 447 (ta4. uO)a 4)                        (0 em~ 4)            ( La. w+ 4)
                                                                                          !                                    ',s
                                                                                                                                    ~
I
(                                                                                                                                                                      ~ ~
s 0                                g. y)+                                                              ~ oar 5 0 IIII a                                                                                                                                                                                  ~v I
                                      ~p ca                                  IIg o
                                                                            ~
4 4-td  i)                                                                                                                                                                            Ig(v        0
( I    vz                                                                                          +C g          I          4L4
                                                                                        .) I                                                                                                gL
                                                                                          ;  I 0                                                I svv Is
                                                                                                                                                                                            ~    0 1 ~      (I
                    ~ v I:c";        I 2
s
                        ~
  ~ ia-            s
                  ~    ~
ereyeo l
I~
11
                            ~
s I
I~
            ~  A        ~ .s .s
                                                  ')'Z
                                                            %VEAU f4'r g o V
io;+                                                          0 JI
                                                                                                                                                                                                                                ~  ~
v 1v 4 fg (I'I t      I            ~
sv 1 Saon)s4 Vv++      + ~s      ~
041440                                                    I l'-P l.I> (s (v      Ss
                                                          ~ 4)s4vWg
                                                                      ~                    g
                                                                                            ~
i              I o
                                                                                                                                                                  %4o oaa
                ~~
v  >
        . &1,/s 0                                                                                                                                                                                                              I        oI 11%.bl )                    s(r 44)                  (4144  I a+4O. Isola 4)
 
V)
                                                        /V                                                              ~ 4 2w I
                                                                                                                                                ~ ~
                                                                                                                                                              )
hlEW SL'EL 6" EVA7og
                                                                                                                                                            ~
    }''I
          = ~                                                                                                                                ~ ~
v      I
                          ~
gznv~d/g ga//                    LIF>ivf Ki~CH.
                                                                                                                                                      -~ 4 (NEct Z                                                                                              J
) ~
          ~
                ~
I Exya~ dw A~<;                            >woe V V
                                                                                                                  ~
tl
                                                                                                                    )g
                                                                                                                      )
P V    I 4i        I
                                                                                                            -~
I
                                                                                                                                          '        ~
                                          '5l a      =  Fuaa. %t~          wi.tpl.. '
SSI< ti~v)): D-C)I<t-Oa7)
Ctt) CJPAV)8.
                                                                                      -'VII''R)IT i( C,wesT)
                      ~ ~
FVVKL  Clh JVV 'O)VVI)V))l} 4)IL)V,
                                                ~'i ht      EL. l- SO    .0                                                            HEOJ      .PLKL          ORAGK AREA SEE Dl<A4JlN(q,O -,I) oA. - 00'7          .
                                                                                                                                                                  )
J~
I I)
                    ~
p~
                                                                                                                                                                            ~
                                              ~C~t V
l
                                                          . T&~lhl<b),TlO&.v    P)T~                                            V Fl.eaR.        ELEV    749i ~  .
                              ~
I ilI
                                                .+&8 t)LtJ            P  O2-I-<7))l)!                                                = xnan,:s            A x.,~<~"rz 1mcl
                                                                                                                                                                                      ~~
                                                                                                                                                                                        ~ ~
J
                                                                                                                                  $ 47~8//      CII II I
c vARC6+O'L
                                                    " 'E'l    'R7Q'-4F
                                                                        +~                            ~ ~ A
                                  ~6 -/O                                                        PS  '-/o"                                              z4'-r'0 1-3
                                                                ~  ~        FIGURE AUXILIARY BUILDING SPENT FUEL POOL AREA
: 2. Nuclear Anal sis Attached  is a nuclear analysis of Region 2 rack configuration performed by Pickard, Lowe and Garrick. This analysis establishes the minimum burnups as a function of initial enrichment required in order for  a  fuel assembly to be stored in Region 2. This analysis  was  performed for the Westinghouse Optimized Fuel Assembly.
Reference 23  added the Exxon zircaloy guide tube design (Regions 13-15). The Exxon Regions 13-15    differ from the earlier Exxon Regions 10-12 only    in that the  later regions incorporate zircaloy guide tubes while the earlier regions had stainless steel guide tubes. The later Exxon region of fuel will be more reactive than the earlier region at any burnup because of this design change.
Therefore, the minimum burnup criteria for Region 2 generated for Exxon Regions 13-15 will be bounding. The other fuel design used at Ginna  was  the Westinghouse  HIPAR design which incorporated inconel grids and stainless steel guide tubes. Table 2-1 shows a comparison of design parameters for those fuel assemblies used at Ginna. Reference 23 documented    that the  Westinghouse HIPAR design  is less reactive than the    Exxon Regions 13-15 design    at any burnup,  therefore the  minimum burnup  criteria  generated  for the Exxon design will be bounding for the Westinghouse HIPAR.
In order to determine the burnup of an individual assembly following discharge, RGK will use its Nuclear Fuel Accountability Code (NFAC) which was established in the early 1970's to record the isotopic content of the fuel and other specific parameters such as burnup    for use  in future fuel reprocessing. NFAC  uses as input the burnup rate data (Mw-hrs per      1000 core Mw-hrs) generated
 
by  INCORE results from flux measurements. Every assembly irradiated at Ginna is followed with NFAC beginning with insertion and proceeding through core life to discharge. These burnups generated by INCORE-NFAC will be reduced by.a factor of 10% to conservatively bound measurement uncertainties. This reduced burnup will be compared to the curve (Figure 5.4-2 of proposed Technical Specification) to determine  if a fuel assembly is acceptable for storage in Region 2.
As described, in Section 1, every cell of the modified racks will have Boraflex neutron poison inserts installed. Specific quality control procedures will be used to insure the presence of the Boraflex in every cell. Proper documentation from the manufacturers of Boraflex will be obtained to assure the minimum B density. A discussion of mechanical stability of Boraflex is at Section 5, Mechanical Analysis.
Referring to Figure 4-4, Poison Assembly Installation, the length of the poison material in the cell is 132 inches. This.
compares to a maximum fuel assembly active fuel length of 142 inches. The ends of the active fuel region will be at a burnup lower than the assembly average. However, this positive reactivity effect will be offset by the increased neutron leakage at the ends of the fuel region. Additional calculations are being performed to quantify the net reactivity effect of the poison configuration. The results of these calculations will be forwarded when available and the poison material region extended    if required.
 
Table 2-1 Comparison  of Design Parameters "Westinghouse HIPAR              Exxon            Westinghouse    OFA REGIONS 1-9        REGIONS  10-12    13-15      REGION 16 Rod  Array                      14  x 14            14  x 14        14  x  14      14  x  14 Rods  per Assembly              179                179            179            179 Rod  Pitch, In.                  .556                .556            .556            .556 Assembly Pitch                  7. 803              7. 803          7. 803          7.803
                      \
Active Fuel Height, In.          141.4-142.0        142. 0          142.0          141.4 Clad O.D., In.                    .422              .424            .424            .400 Clad Thickness,  In.            .0243              .030            .030            .243 Clad Material                    SS-304              ZRC            ZRC            ZRC Pellet Diameter, In.              .3659              .3565          .3565          .3444 ametral Gap, In.              .0075              .0075          .0075          .0070 Pellet Density,  %              94                  94            '94              95 Guide Tube O.D.,    In.          .5375              .540            .541            .5280 I.D., In.            .5075              .510            .'507          .4825 GT  Material                    SS-304              SS-304          ZRC            ZRC Instrument Tube O.D., In.        .422              .424            .424            .4015 I.D., In.      .3455              .346            .346            .3499 IT Material                      SS-304              SS-304                          ZRC I Grids Grid Material                    INCONEL            ZRC w          ZRC w          ,7-ZRC INCONEL        INCONEL        2  INCONEL SPRINGS        SPRINGS "These are Region 8 parameters. There were minor variations      in  some  of these parameters over the regions.
: 3. Thermal H draulic Reference 4 contains the   NRC safety evaluation of proposed spent fuel pool cooling system modifications and approval that these would provide sufficient cooling capacity for projected discharges through year 2009 with a full core discharge in year I
2010 (1360 fuel assemblies total). This cooling capacity exceeds the maximum that would be required= under the proposed modifications (1016 fuel assemblies total). The current projected refueling cycles are consistent with the assumptions of this safety analysis.
It is anticipated that this modification will be completed during 1986. The current spent fuel pool cooling system capacity is 9.3 x 10   BTU/HR.- This is far in excess of what will be required under normal   conditions prior to 1986 (discharge of only one region of fuel at. end of each cycle). If a full core discharge is required prior to the new spent fuel pool cooling system being in operation, the in-reactor decay time will be extended in order to ensure the pool temperature limitations in the Technical Specifications are satsfied.
In response to NRC questions concerning the previous storage rack modification, RG6E calculated the maximum cladding temperature for the hottest fuel assembly of a recently discharged ba'tch, discharged in conjunction with a full core. This calculation k
showed a margin of over 80'F to the saturation temperature.       This assumed a recently discharged batch grouped together at a storage location farthest from the cooling system cold water inlet. This analysis is still valid for Region 1 where, in accordance with the proposed Technical Specification (Section 5.4.4), recently
 
discharged fuel would be stored   for a period of at least 60 days after reactor shutdown. After 60 days of cooling time the fuel could be moved to Region 2's higher density storage. As part of the modification, the flow hole at the bottom of the former water boxes would be enlarged to equal that of the other storage locations.
As indicated in the analysis, adequate flow will be available to the hotter than average assemblies and there is no limiting thermal requirement which would prevent the grouping of these assemblies~
As indicated in the analysis, adequate flow will be available to the hotter than average assemblies and there is no limiting thermal requirement which would prevent the grouping of these assemblies~
10 4.Structural Mechanical Material Anal ses A.Seismic Analysis The objectives of this seismic analysis are to determine the following'during OBE and SSE seismic events: 1.The maximum loads imposed on the fuel storage racks.2.The maximum distance the racks will slide and/or lift off.The results of this analysis will be used in the mechanical analysis to evaluate the structural integrity of the racks when subjected to these loads and movements.
10
~Sco e The loadings considered in this report for the modified racks using both standard fuel assemblies and consolidated fuel with a 2:1 compaction ratio are: 1.Deadweight of the fuel storage racks and the fuel assemblies.
: 4. Structural     Mechanical Material Anal ses A. Seismic Analysis The objectives of this seismic analysis are to determine the following'during OBE and SSE seismic events:
2.Submerged weights of the fuel storage racks and the fuel assemblies.
: 1. The maximum loads imposed on the fuel storage racks.
3.Seismic loading, both OBE and SSE, as provided by the acceleration time history at the pool floor.Horizontal responses to the seismic accelerations of the racks are obtained by evaluating the loadings for two different boundary conditions.
: 2. The maximum distance the racks will slide and/or lift off.
1.The horizontal motion is restrained by a horizontal force equal to 0.2 times the normal force.This is the minimum anticipated friction factor between the rack and the support stand, (Ref.13).These results give the maximum distance the racks will move during a seismic event.2.Differential motion between the rack and the support stand is prevented.
The results of this analysis will be used in the mechanical analysis to evaluate the structural integrity of the racks when subjected to these loads and movements.
This is modeled in the finite element representation by placing a horizontal spring, representing the rack flexibility, between the rack and a fixed point.Methods of Anal sis The vertical seismic analysis was performed using the equivalent static response spectra method.This consists of determining the vertical natural frequency to be greater than 33 HZ, then using accelerations of 0.23 g for OBE and SSE taken from the response spectra curves~4.These values were applied to the deadweight to obtain the total vertical forces.The vertical reaction loads were combined with the horizontal seismic loads using the square root sum of the squares method as specified in Ref.8.Horizontal seismic analysis was performed using the time history method of analysis in conjunction with time history data.The OBE time history data was obtained by dividing the SSE time history data by two.This accounts for the non-linearities inherent in the spent fuel storage racks which include: 1.Fuel-to-rack wall impacts 2.Rack sliding 3.Vertical impact due to rack tipping.The time history analysis was performed using a special purpose computer program"RACKOE"*.
    ~Sco e The loadings considered in this report for the modified racks using both standard fuel assemblies and consolidated fuel with a 2:1 compaction ratio are:
This program was developed*RACKOE is an acronym for rack analysis considering kinetics of earthquakes, a non linear finite element program developed by Prof.W.F.Stokey of Carnegie-Mellon University, Pittsburgh.
: 1. Deadweight of the fuel storage racks and the fuel assemblies.
12  
: 2. Submerged weights of the fuel storage racks and the fuel assemblies.
: 3. Seismic loading, both OBE and SSE, as provided by the acceleration time history at the pool floor.
Horizontal responses to the seismic accelerations of the racks are obtained by evaluating the loadings for two different boundary conditions.
: 1. The horizontal motion is restrained by a horizontal force equal to 0.2 times the normal force. This is the minimum anticipated friction factor between the rack
 
and the support stand, (Ref. 13). These results give the maximum distance the racks will move during a seismic event.
: 2. Differential motion between the rack and the support stand is prevented. This is modeled in the finite element representation by placing a horizontal spring, representing the rack flexibility, between the rack and a fixed point.
Methods of Anal sis The vertical seismic analysis was performed using the equivalent static response spectra method. This consists of determining the vertical natural frequency to be greater than 33 HZ, then using accelerations of 0.23 g for OBE and SSE taken from the response spectra curves~4. These values were applied to the deadweight to obtain the total vertical forces. The vertical reaction loads were combined with the horizontal seismic loads using the square root sum of the squares method as specified in Ref. 8.
Horizontal seismic analysis was performed using the time history method of analysis in conjunction with time history data.
The OBE time history data was obtained by dividing the SSE time history data by two. This accounts for the non-linearities inherent in the spent fuel storage racks which include:
: 1. Fuel-to-rack wall impacts
: 2. Rack sliding
: 3. Vertical impact due to rack tipping.
The time history analysis was performed using   a special purpose computer program "RACKOE"*. This program was developed
* RACKOE is an acronym for rack analysis considering kinetics of earthquakes,   a non linear finite element program developed by Prof. W.F. Stokey   of Carnegie-Mellon University, Pittsburgh.
12
 
specifically to analyze fuel storage rack behavior resulting from seismic disturbance. This program solves the equations of motion explicitly using Euler's Extrapolation Formula.
The fuel rests in the cell base.      It is assumed to act as  a pinned beam, centered in the cell, with a gap,between the cell and the  fuel along its length. The gaps between  the fuel and the cell walls  can close causing impact    to the walls. The space between the fuel and the wall is filled with water. As the fuel and the wall move relative to each other, hydrodynamic forces are set up due to the acceleration of the water. These forces are exerted on the fuel and rack structure, tending to mitigate      I impact forces. Hydrodynamic forces are generated between the racks and the pool walls. Methods described by Fritz (Ref. 9),
Dong (Ref. 10) and Stokey (Ref. 11) are used to quantify these hydrodynamic forces.
Damping values used    for this analysis are taken    from Regulatory Guide 1.61,    (Ref. 12). The rack boxes are welded together. When the welds are stressed there will be some localized deformation.
The damping values are between those for welded steel and bolted steel structures. In the interest of conservatism the lower values for welded steel structures are used.
Friction,  between the rack and the pool support stand,    is handled by  a  special  friction element of  the model. The normal force  on  this  element  is the force in the vertical supports which, due  to rack tipping, can be greater than the deadweight of the rack.
13
 
E  i ment  Descri tion and Material Pro erties Equipment Description Section    1 provides a description of the modification. As shown in Figure 4-1, the west six racks will be modified to allow h
storage of spent fuel in what are currently water box locations.
These racks    will be  designated Region    2  and will incorporate neutron absorbing mateiial      in  each  location. Shims are added under the rack bases      in Region  2  to provide  an increased  load transfer area.      Sliding is  accomodated    in the Region  2  racks between the rack and the base. support by removal        of the bolts between the two (Fig.      4-2). The Region 1 racks are unmodified and their storage density and loads remain the same.            In this case sliding would occur between the jack screws at each corner of the support bases and the 11" x 11" plates which rest on the spent fuel pool floor.
In addition, all the seismic supports (both in Region 1 and Region 2) between the support bases and the spent fuel pool walls will be removed, therefore no loads will be transmitted to the walls by either region of racks as indicated by the results below. The amount of sliding is insignificant compared to the
(
rack to wall clearance or the dimensions of the plates on which the Region 1 support base jack screws rest. Also the racks respond in-phase to seismic events, thus there will be no added impact loads at the Region 1 - Region 2 interface.
The analysis is performed for the 140 cell size rack which is common for all six in Region 2. The cell cross-section is shown on Figure 4-3 and the longitudinal section on Figure 4-4.
                                  - 14
 
                  /
Two storage arrangements are analyzed. One is referred to as "standard" wherein one fuel assembly (179 fuel rods) is stored in each cell. The other is referred to as "consolidated" wherein the fuel rods from two assemblies (358 fuel rods) contained in a storage canister are stored in each cell. Figure 4.5 shows the arrangement  of the fuel rods in the canister.
Material Pro erties Applicable from 70 to 200 degrees F. The spent fuel racks are fabricated from type 304 stainless steel. The 304 SS rack material properties used in the seismic analysis are: (Ref. 14)
Density                              501.0  PCF Young's Modulus                      27.8E06 PSI Shear Modulus                      10.7E06 PSI The fuel assemblies contain clad constructed of Zircaloy whose  properties are: (Ref. 15):
Density                              409.0  PCF Young's Modulus                      13.0E06 PSI Shear Modulus                      5.0E06  PSI Other densities used  in the analysis are:
          .Water                                62.4    PCF UO2                                  643.0  PCF
 
Results A  finite element representation    of a rack with fuel assemblies is  shown on  Figure 4-6 where:
Rack  at Base (Horizontal) 2-6    Rack (Horizontal) 7-11    Fuel Assy. (Horizontal) 12      Rotary Inertia 13      Rack 6 Fuel Assy's (Vertical)
Represents    Flexible Elements 1-5    Rack 6-10    Fuel Assy.
11      Horizontal Support 12,13  Vertical Supports Represents    Gap Elements MHrw =  Hydrodynamic Mass (Rack to Wall)
MHrf = Hydrodynamic Mass (Rack to Fuel)
The  results are    summarized  for:
: a. Standard Rack-140 Fuel Assy's-179 Fuel Rods Per Assy.
: b. Consolidated Rack-140 Fuel Canisters-358 Fuel Rods Per Canister.
The tabulated results are grouped and identified by "sets" numbered 1 thru 5. The values in each set are explained below.
SET  gl    Maximum Forces    (KIPS).
SET C2    Loads on  Individual F/A's  (LBS) and Support (KIPS).
The maximum    contact forces are the forces of set 51 divided- by the number of fuel assemblies in the rack. The support forces are the forces of set 1 divided by two. Two supports take the given reaction.
16
 
SET 53  Maximum    Forces (LBS) at the Rack Support.
The  Fvert Values, NS, EW, VT, are the values of set          1 minus the submerged weight. (Ex. 271,700 - 208,190 = 63,510)
The Fhoriz Values, NS and EW, are taken from set 1.
The  Vertical Forces,    VT, are determined by    using:
OBE =  0.23g SSE =  0.23g From  the response spectra curve corresponding to        33 HZ~4.
VT (OBE) =  (1.23  DWT  BUOYANT FORCE)    SUBMERGED WT.
VT (SSE) =  (1.23  DWT  BUOYANT FORCE)    -  SUBMERGED WT.
The  RMS  Values are calculated using:
RMS  = SUBMERGED WEIGHT +        Fns    .+    Few    +  Fvt SET 54  Maximum    Forces (LBS) on Each Support.      These values are the values of Set    83  divided by 2.
SET 05  Horizontal and    Vertical  Movement. of the  Rack (Inches)
ELASTIC  -  The amount  the rack  will deform as    a  result of the  internal flexibility of the    rack  when restrained from horizontal motion.
SLIDING    The amount  the rack  will move when the rack is considered  rigid and a 0.2 friction factor is used to restrain  movement  in the horizontal direction.
LIFTOFF  -  The maximum values  the rack will move vertically off  of the base, or tip, during the seismic event.
The Values DWT,    BWT  and SWT are Deadweight, Buoyant Weight, and Submerged Weight    respectively.
17


specifically to analyze fuel storage rack behavior resulting from seismic disturbance.
The friction forces are the maximum horizontal forces developed at the base of rack using a minimum friction factor of 0.2.
This program solves the equations of motion explicitly using Euler's Extrapolation Formula.The fuel rests in the cell base.It is assumed to act as a pinned beam, centered in the cell, with a gap,between the cell and the fuel along its length.The gaps between the fuel and the cell walls can close causing impact to the walls.The space between the fuel and the wall is filled with water.As the fuel and the wall move relative to each other, hydrodynamic forces are set up due to the acceleration of the water.These forces are exerted on the fuel and rack structure, tending to mitigate I impact forces.Hydrodynamic forces are generated between the racks and the pool walls.Methods described by Fritz (Ref.9), Dong (Ref.10)and Stokey (Ref.11)are used to quantify these hydrodynamic forces.Damping values used for this analysis are taken from Regulatory Guide 1.61, (Ref.12).The rack boxes are welded together.When the welds are stressed there will be some localized deformation.
18
The damping values are between those for welded steel and bolted steel structures.
In the interest of conservatism the lower values for welded steel structures are used.Friction, between the rack and the pool support stand, is handled by a special friction element of the model.The normal force on this element is the force in the vertical supports which, due to rack tipping, can be greater than the deadweight of the rack.13 E i ment Descri tion and Material Pro erties Equipment Description Section 1 provides a description of the modification.
As shown in Figure 4-1, the west six racks will be modified to allow h storage of spent fuel in what are currently water box locations.
These racks will be designated Region 2 and will incorporate neutron absorbing mateiial in each location.Shims are added under the rack bases in Region 2 to provide an increased load transfer area.Sliding is accomodated in the Region 2 racks between the rack and the base.support by removal of the bolts between the two (Fig.4-2).The Region 1 racks are unmodified and their storage density and loads remain the same.In this case sliding would occur between the jack screws at each corner of the support bases and the 11" x 11" plates which rest on the spent fuel pool floor.In addition, all the seismic supports (both in Region 1 and Region 2)between the support bases and the spent fuel pool walls will be removed, therefore no loads will be transmitted to the walls by either region of racks as indicated by the results below.The amount of sliding is insignificant compared to the (rack to wall clearance or the dimensions of the plates on which the Region 1 support base jack screws rest.Also the racks respond in-phase to seismic events, thus there will be no added impact loads at the Region 1-Region 2 interface.
The analysis is performed for the 140 cell size rack which is common for all six in Region 2.The cell cross-section is shown on Figure 4-3 and the longitudinal section on Figure 4-4.-14
/Two storage arrangements are analyzed.One is referred to as"standard" wherein one fuel assembly (179 fuel rods)is stored in each cell.The other is referred to as"consolidated" wherein the fuel rods from two assemblies (358 fuel rods)contained in a storage canister are stored in each cell.Figure 4.5 shows the arrangement of the fuel rods in the canister.Material Pro erties Applicable from 70 to 200 degrees F.The spent fuel racks are fabricated from type 304 stainless steel.The 304 SS rack material properties used in the seismic analysis are: (Ref.14)Density Young's Modulus 501.0 PCF 27.8E06 PSI Shear Modulus 10.7E06 PSI The fuel assemblies contain clad constructed of Zircaloy whose properties are: (Ref.15): Density Young's Modulus Shear Modulus 409.0 PCF 13.0E06 PSI 5.0E06 PSI Other densities used in the analysis are:.Water 62.4 PCF UO2 643.0 PCF


Results A finite element representation of a rack with fuel assemblies is shown on Figure 4-6 where: Rack at Base (Horizontal) 2-6 Rack (Horizontal) 7-11 Fuel Assy.(Horizontal) 12 Rotary Inertia 13 Rack 6 Fuel Assy's (Vertical)
PROJECT   8369
Represents Flexible Elements 1-5 Rack 6-10 Fuel Assy.11 Horizontal Support 12,13 Vertical Supports Represents Gap Elements MHrw=Hydrodynamic Mass (Rack to Wall)MHrf=Hydrodynamic Mass (Rack to Fuel)The results are summarized for: a.Standard Rack-140 Fuel Assy's-179 Fuel Rods Per Assy.b.Consolidated Rack-140 Fuel Canisters-358 Fuel Rods Per Canister.The tabulated results are grouped and identified by"sets" numbered 1 thru 5.The values in each set are explained below.SET gl-Maximum Forces (KIPS).SET C2-Loads on Individual F/A's (LBS)and Support (KIPS).The maximum contact forces are the forces of set 51 divided-by the number of fuel assemblies in the rack.The support forces are the forces of set 1 divided by two.Two supports take the given reaction.16 SET 53-Maximum Forces (LBS)at the Rack Support.The Fvert Values, NS, EW, VT, are the values of set 1 minus the submerged weight.(Ex.271,700-208,190=63,510)The Fhoriz Values, NS and EW, are taken from set 1.The Vertical Forces, VT, are determined by using: OBE=0.23g SSE=0.23g From the response spectra curve corresponding to 33 HZ~4.VT (OBE)=(1.23 DWT-BUOYANT FORCE)-SUBMERGED WT.VT (SSE)=(1.23 DWT-BUOYANT FORCE)-SUBMERGED WT.The RMS Values are calculated using: RMS=SUBMERGED WEIGHT+Fns.+Few+Fvt SET 54-Maximum Forces (LBS)on Each Support.These values are the values of Set 83 divided by 2.SET 05-Horizontal and Vertical Movement.of the Rack (Inches)ELASTIC-The amount the rack will deform as a result of the internal flexibility of the rack when restrained from horizontal motion.SLIDING-The amount the rack will move when the rack is considered rigid and a 0.2 friction factor is used to restrain movement in the horizontal direction.
LIFTOFF-The maximum values the rack will move vertically off of the base, or tip, during the seismic event.The Values DWT, BWT and SWT are Deadweight, Buoyant Weight, and Submerged Weight respectively.
17 The friction forces are the maximum horizontal forces developed at the base of rack using a minimum friction factor of 0.2.18 PROJECT 8369  


==SUMMARY==
==SUMMARY==
Of RESULTS FOR 140 CELL RACK.I SET&#xb9;1-MAX.FORCES AT GAP ELEMENTS D I R, EVT 1 2 3 4 5 STANDARD.F I LE RGSUM.1 (KIPS).SUPPORT Fvt Fhx EW OBE NS SSE 0.0 55.6 72.4 73.2 73.2 8.9 62.0 98.3 77.'7 97.6 NS OBE 31.4 53.2 53.3 64.4 83.5 271.7 170.0 393.3 156.2 404.7 231.5 EW SSE 16.6 66.5 115.8 83.9.103.3 381.6 164.2-----SET&#xb9;2 NS OBE LOADS ON INDIVIDUAL F I A'(LBS)AND SUPPORTS (KI PS)---224.380.381.460.596.135.9 85.0 EW OBE 0.397.517.523.523 NS SSE 64.443.702.555.697.196.7 78.1 202.4 115.8 EW SSE 119.475.827.599.738 190.8 82.1-SET&#xb9;3-MAX.FORCES AT SUPPORT (LBS)Fvert Fhorix NS OBE 63,510.170,000.-SET&#xb9;5-MOVEMENT AT BASE (INS)ELASTIC SLIDING LIFTOFF 0.019 0.080 0.009 EW OBE 185,110.VT OBE 5.3,728.RMS 411,133.NS SSE 196,510.EW SSE 173,410.VT SSE 53,728.RMS 475,723.156,200.00,000.230,865.231,500.164,300.00,000.283,878.0.046 0.088-0.026 0.308'.048 0.513 0.048 0.050 0.067-SET&#xb9;4-MAX.FORCES ON SUPPORT (LBS)--NS OBE.31,755.85,000.VT OBE 26,864 RMS 205,567 NS SSE EW SSE VT SSE 98,255 86,705.26,864.EW OBE 92,555 78,100 00,000 15 432 115,750.82,150."00,000.DWT BWT SWT F,RI CT 8 0.2 NSOBE EWOBE NSSSE EWSSE Z33,600.LBS.25,410.LBS.208,190.LBS.ION FORCES FACTOR (LBS)41,640.'2,210.
Of RESULTS     FOR 140 CELL RACK       STANDARD. F I LE RGSUM.              1
59,760.101,600.RMS 237,86" 141,939 PROJECT 8369  
        .I SET &#xb9;1 MAX. FORCES     (KIPS).
AT GAP   ELEMENTS                             SUPPORT D I R, EVT   1     2     3     4     5                       Fvt              Fhx NS OBE    31.4 53.2      53.3 64.4      83.5                271.7              170.0 EW OBE     0.0 55.6     72.4 73.2     73.2                 393.3              156.2 NS SSE      8.9 62.0     98.3 77.'7     97.6                 404.7               231.5 EW SSE     16.6 66.5 115.8 83.9 .103.3                       381.6               164.2
-----SET &#xb9;2         LOADS ON INDIVIDUAL F I A'       ( LBS) AND SUPPORTS               (KI PS)---
NS OBE      224. 380. 381. 460. 596.                           135.9               85.0 EW OBE       0. 397. 517. 523. 523                       196.7                78.1 NS SSE       64. 443. 702. 555. 697.                           202.4               115.8 EW SSE     119. 475. 827. 599. 738                         190.8               82.1
-SET &#xb9;3       MAX. FORCES     AT SUPPORT   (LBS)       -SET &#xb9;5- MOVEMENT AT BASE                     (INS)
Fvert              Fhorix                  ELASTIC SLIDING                     LIFTOFF NS OBE        63,510.          170,000.                  0.019               0.080           0.009 EW OBE     185,110.           156,200.                  0.046                0.088          0.048 VT OBE       5.3,728.           00,000.
RMS       411,133.           230,865.
NS SSE     196,510.           231,500.                  -0.026                              0.050 0.308'.048 EW SSE       173,410.           164,300.                            0.513                  0.067 VT SSE       53,728.           00,000.
RMS      475,723.           283,878.
-SET &#xb9;4       MAX. FORCES     ON SUPPORT     (LBS)--
NS   OBE . 31,755.           85,000.
EW OBE       92,555             78,100                       DWT               Z33,600. LBS.
BWT                25,410. LBS.
VT OBE        26,864            00,000                      SWT              208,190. LBS.
RMS      205,567              15 432                      F,RI CT ION FORCES 8 0.2 FACTOR (LBS)
NS  SSE      98,255            115,750.                      NSOBE                41,640.'2,210.
EWOBE EW  SSE      86,705.            82,150.                      NSSSE                59,760.
EWSSE                101,600.
VT SSE        26,864.          "00,000.
RMS       237,86"           141,939
 
PROJECT     8369


==SUMMARY==
==SUMMARY==
OF RESULTS FOR 140 CELL RACK-SET&#xb9;1-MAX.FORCES AT GAP ELEMENT&#xb9;DIR EVT 1 2 3 R 5 NS OBE 0.0 0.0 100.0 98.4 159.3 EW OBE 0.0 53.&178.3 176.0 180.1 l~NS SSE 14.8 214.9 225.6 217.5 250.7'A 1 l EW SSE 0.0 118.0 249.3 223.2 235.0---'--SET&#xb9;2-LOADS ON INDIVIDUAL F/A'NS OBE 00.00.714.703.1138.EW OBE 00.383.1270.1257.1286.NS SSE 106.1535.1611.1554.1791.EW SSE 00.1060.1781.1594.1679.CONSOLIDATED.
OF     RESULTS FOR 140           CELL RACK         CONSOLIDATED. F I LE RGSUM. 2
F I LE RGSUM.2 (KIPS)SUPPORT Fvt Fhz 312.4 160.2 405.2 153.0 455.7 239.3 512.1 184.7 (LBS)AND SUPPORTS (KIPS)----
                                -SET &#xb9;1 MAX. FORCES             (KIPS)
156.2 80.1 202.6.76.5 227.9 119.7 256.1 92.4-SET&#xb9;3-MAX.FORCES AT SUPPORT (LBS)Fvert Fhorix NS OBE 00.160,200.-SET&#xb9;5-MOVEMENTS AT BASE (INS ELASTIC SLIDING LIFTOFF-0.018 0.028 0.000 EW.OBE 64, 140.VT OBE 89,470.RMS 451,146.NS SSE 114,640.EW SSE 171,040.VT SSE 89g470.RMS 565,564.153,000.00,000.221,524.239,300.180,700.00,000.302,'289.0.027 0.094 0.054 0.128 0.017 0.072 0.005 0.024 0.015-SET&#xb9;4-MAX.FORCES ON SUPPORT (LBS)--NS OBE 00.80,100.!-e VT OBE RMS NS SSE EW SSE VT SSE 44,735.225,573.57,320.85,520.04,735 Rl iS 282 p 782 EW OBE 32,070 76,500 00,000.110,762.119,650.92,350.00,000.151, 144.DWT BWT Sl/T 389,000.LBS.47,940.LBS.341,060.I.BS.FRICTION FORCES 8 0.2 FACTOR (LBS)NSOBE=49,640.EWOBE=51,630.NSSSE=68,210.EWSSE=68,210.BECAUSE OF HO L I FTOF F.
AT GAP ELEMENT&#xb9;                                         SUPPORT DIR EVT     1       2       3       R       5                         Fvt        Fhz NS OBE     0.0       0.0 100.0       98.4 159.3                   312.4      160.2 EW OBE     0.0     53.& 178.3 176.0 180.1                           405.2      153.0 l ~
B.Mechanical Analysis Introduction The spent fuel storage racks are classified as category 1 per NRC Regulatory Guide 1.29.Their primary function is to maintain stored fuel assemblies in a subcritical array while protecting them from mechanical damage during all credible storage conditions.
NS SSE   14. 8   214. 9   225. 6   217. 5   250. 7                 455.7      239.3
The mechanical analysis presents.analytical proof of structural integrity.
    '                                 A 1
The analysis follows NRC guidance as delineated in the position paper"Review and Acceptance of Spent Fuel Storage and Handling Applications", dated April 14, 1978 and modified January 18, 1979.The design calculations are based on subsection NF of ASME Boiler and Pressure Vessel Code, Section III and Appendix D of the Standard Review Plan (SRP)3.8.4.The permissible weld stresses are taken from Table NF-3324.5(a)-1,1983 edition.This is the same as Table NF-3292-1, 1977 edition, referred to in the position paper and in NF-3321.This table no longer exists in the 1983 edition.The load combinations used in this analysis are only submerged deadweight plus SRSS combinations of OBE and SSE loads.These load combinations are the RMS values taken directly from the seismic analysis (Section 4A).The racks are not subjected to live loads nor to thermal loads.Thus the load combinations, D+L+To(or Ta)+E and D+L+Ta+E'ecome D+E and D+E'.19 Analyses are performed for two storage arrangements, one referred to as"standard" wherein one fuel assembly (179 fuel rods)is stored in each cell in Region 2, the other referred to as"consolidated" wherein the fuel rods from two assemblies (358 fuel rods)in a canister are stored in each'cell in Region 2.The interface between the racks and bases is the cruciform bottom plate at the rack corners which span three boxes in each direction.
l EW SSE     0. 0   118. 0 249. 3   223. 2 235. 0               512.1      184.7
Thus the plane at the third row location, as shown on Figures 4-7 and 4-8, and the three-box corner square are the weld planes analyzed.Floor loads for Region 2 are transferred through the base to the ll" x 11" floor plates.Because of the increased storage in Region 2, shims are installed between the base corner and each floor plate to provide greater load transfer area than the present jackscrews (Fig.4-9).In Region 1, however, since no change in, storage is being made there is no change in base to floor plates, i.e.The jackscrews remain.The region 1 racks are not being moved from their present locations, and with.the jackscrews centered on the 11" x 11" floor plates there is enough distance to the edge to take care of any sliding.There are no calculations for wall loads because, as freestanding racks and bases, due to removal of the wall seismic restraints, there are relatively large dimensions between the racks and walls and consequently small hydrodynamic forces.These approximate dimensions are indicated on Figure 4-1 and are large compared to, the maximum sliding distance of.5 inches.20 References 1 and 2 provided an evaluation of fuel handling accidents and concluded that the rack structure protects stored fuel from the impact of a dropped fuel assembly.A postulated drop accident of a fuel assembly straight down into a storage cell is included in the report because it was not previously addressed.
      ---'--SET &#xb9;2     LOADS ON       INDIVIDUAL F / A '         (LBS)  AND SUPPORTS      (KIPS)----
E i ment Descri tion Six of the nine presently installed racks will be modified for 100%storage density, and designated as Region 2 for storage of depleted fuel.The remaining three racks, unmodified, are C designated Region 1 for storage of unirradiated or freshly discharged fuel at 50%storage density.All six racks in Region 2 are the same size, 140 storage cells.The modification consists of removing the present bolt connections between racks and bases and the wall seismic restraints, resulting in a free-standing array.The wall seismic restraints are also removed from Region 1.Additionally, a full-length right angle poison insert is welded in each Region 2 cell, as shown on Figure 4-3 and Figure 4-4 of the seismic analysis (Section 4A).A sketch of rack, base, shims, and floor plates is represented in Figure 4-9.The shims are added between the base and floor plates in" order to provide more load carrying area than the present jackscrews.
NS OBE     00.       00. 714. 703. 1138.                   156.2      80.1 EW OBE     00.     383. 1270. 1257. 1286.                 202.6    . 76.5 NS SSE     106. 1535. 1611. 1554. 1791.                 227.9      119.7 EW SSE     00. 1060. 1781. 1594. 1679.                 256.1      92.4
Loads from the Seismic Anal sis Tabulation of loads from the seismic analysis are in Section 4A.The load combinations of D+E (OBE)and D+E'SSE)are the RMS 21 values listed at Set 43.Maximum vertical loads are those occuring on 2 of the 4 rack corners at return impact following lift-off.Set 54 is half of set 53 or the load on a single corner.The stresses are summarized in Table 4-1 for: a.Shear in welds no.1, 2, S 3 shown on Figures 4-7 and 4-8.b.Shear out of the corner 9 boxes (shaded area, Fig.4-7).c.Buckling of the box walls d.Floor loads under the ll" x 11" base plate The stresses in welds no.1, 2, 6 3 are determined by calculating the RMS values of the shear load, vertical and horizontal, to get the NS, EW, VT and SWT loads.The force in the weld is calculated by: S2+2 Submer ed Wei F SWT Fn Few Fvt (SWT zs g ght)The shear out of the corner, the buckling load on the plate and the floor load are determined by using the RMS values for the individual supports given in Section 4A.The maximum stresses in welds 1, 2, 8 3 are: STD.Rack, E-W Plane, OBE, 19,970 psi, Weld 52 STD.Rack, N-S Plane, SSE, 21,700 psi, Weld 02 CON.Rack, E-W Plane, OBE, 16,940 psi, Weld 52 CON.Rack, E-W Plane, SSE, 23,340 psi, Weld 01 The maximum shearout stresses in the corners are: STD.Rack, OBE, 11,940 psi STD.Rack, SSE, 13,800 psi CON.Rack, OBE, 13,110 psi CON.Rack, SSE, 16,430 psi 22 The maximum floor loads in the ll" x 11" base plate are: STD.OBE, 1700 psi STD.SSE, 1965 psi CON.OBE, 1860 psi CON.SSE, 2340 psi The allowable weld OBE shear stress is 24,000 psi.(Ref.14), Sect.NF 3000, Table NF-3292 1-1)The allowable weld SSE shear stress is 38,400 psi (1.6 OBE (USNRC, SRP 3.8.4.5(b))
      -SET &#xb9;3 - MAX. FORCES AT SUPPORT (LBS)                         -SET  &#xb9;5-  MOVEMENTS AT BASE        ( INS Fvert                  Fhorix                    ELASTIC SLIDING          LIFTOFF NS OBE              00.           160,200.                     -0.018      0.028          0.000 EW.OBE        64, 140.             153,000.                     0.005      0.024        0.015 VT OBE        89,470.               00,000.
The critical buckling stress is 19,140 psi (Ref.21 pg.2.12)Floor Loads The six modified racks are in Region 02.Using the submerged weight for the rack and contained fuel assemblies the total floor loads are: Standard Rack Consolidated Rack I 1,249,000 LBS.2,046,360 LBS.THE BEARING STRESS ON THE CONCRETE UNDER THE llii X ll>>X 3/4~i SUPPORT PLATES ARE BEARING STRESS (PSI)1700 1965 STANDARD RACK OBE SSE FLOOR LOAD (lbs)205,567 237,862 CONSOLIDATE RACK OBE SSE 225,573 282,782 1864 2337 The allowable concrete bearing stress is 3570 psi (Ref.22).23 TABLE 4-1  
RMS        451,146.               221,524.
NS SSE      114,640.               239,300.                     0.027    0.094        0.017 EW SSE      171,040.             180,700.                      0.054    0.128        0.072 VT SSE        89g470.                00,000.
RMS       565,564.               302,'289.
      -SET &#xb9;4      MAX. FORCES        ON SUPPORT      (LBS)--
NS OBE              00.            80,100.
EW OBE        32,070                76,500                          DWT    389,000. LBS.
BWT        47,940. LBS.
VT OBE        44,735.               00,000.                         Sl/T    341,060. I.BS.
!-e          RMS NS SSE 225,573.
57,320.
110,762.
119,650.
8 FRICTION FORCES 0.2 FACTOR (LBS)
NSOBE =    49,640.
EWOBE  =  51,630.
EW   SSE     85,520.               92,350.                         NSSSE  =  68,210.
EWSSE  =  68,210.
VT SSE        04,735                 00,000.
Rl iS     282 782 p               151, 144.                 BECAUSE OF HO      L I FTOF F.
 
B. Mechanical Analysis Introduction The spent fuel storage racks are classified as category 1 per NRC Regulatory Guide 1.29. Their primary function is to maintain stored fuel assemblies in a subcritical array while protecting them from mechanical damage during all credible storage conditions. The mechanical analysis presents. analytical proof of structural integrity.
The analysis follows NRC guidance as delineated in the position paper "Review and Acceptance of Spent Fuel Storage and Handling Applications", dated April 14, 1978 and modified January 18, 1979. The design calculations are based on subsection NF of ASME Boiler and Pressure Vessel Code, Section III and Appendix D of the Standard Review Plan (SRP) 3.8.4. The permissible weld stresses are taken from Table NF-3324.5(a)-1,1983 edition.
This is the same as Table NF-3292-1, 1977 edition, referred to in the position paper and in NF-3321. This table no longer exists in the 1983 edition.
The load combinations used in this analysis are only submerged deadweight plus SRSS combinations of OBE and SSE loads. These load combinations are the RMS values taken directly from the seismic analysis (Section 4A). The racks are not subjected to live loads nor to thermal loads. Thus the load combinations, D+L+To(or Ta)+E and D+L+Ta+E'ecome D+E and D+E'.
19
 
Analyses are performed    for  two storage arrangements,  one referred to  as  "standard" wherein one fuel assembly (179 fuel rods) is stored in each cell in Region 2, the other referred to as "consolidated" wherein the fuel rods from two assemblies (358 fuel rods) in a canister are stored in each 'cell in Region 2.
The interface between the racks and bases is the cruciform bottom plate at the rack corners which span three boxes in each direction. Thus the plane at the third row location, as shown on Figures 4-7 and 4-8, and the three-box corner square are the weld planes analyzed.
Floor loads for Region    2 are transferred through the base to the  ll" x 11"   floor plates. Because  of the increased storage in Region 2, shims are installed    between the base corner and each floor plate to provide greater load transfer      area than the present jackscrews (Fig. 4-9).      In Region 1, however, since no change in, storage is being made there is no change in base to floor plates, i.e. The jackscrews remain. The region 1 racks are not being moved from their present locations, and with .the jackscrews centered on the 11" x 11" floor plates there is enough distance to the edge to take care of any sliding.
There are no calculations for wall loads because, as freestanding racks and bases, due to removal of the wall seismic restraints, there are relatively large dimensions between the racks and walls and consequently small hydrodynamic forces.
These approximate dimensions are indicated on Figure 4-1 and are large compared to, the maximum sliding distance of .5 inches.
20
 
References  1 and 2  provided an evaluation of fuel handling accidents and concluded that the rack structure protects stored fuel from the impact of a dropped fuel assembly.
A postulated drop accident of a fuel assembly straight down into a storage cell is included in the report because      it was not previously addressed.
E  i ment Descri tion Six of the nine presently installed racks will be modified for 100% storage density, and designated as Region 2 for storage of depleted fuel. The remaining three racks, unmodified, are C
designated Region  1  for storage of unirradiated or freshly discharged fuel at    50% storage density.
All six racks in Region 2 are the    same size, 140 storage cells. The modification consists of removing the present bolt connections between racks and bases and the wall seismic restraints, resulting in a free-standing array. The wall seismic restraints are also removed from Region 1.      Additionally,  a  full-length right  angle poison  insert is  welded  in each Region 2 cell, as shown on  Figure 4-3 and   Figure 4-4 of the seismic analysis (Section 4A).
A sketch of rack, base, shims, and floor plates is represented in Figure 4-9. The shims are added between the base and floor plates in" order to provide more load carrying area than the present jackscrews.
Loads from the Seismic Anal sis Tabulation of loads from the seismic analysis are in Section 4A.
The load combinations of D+E (OBE) and D+E'SSE) are the RMS 21
 
values  listed at    Set 43. Maximum  vertical loads    are those occuring on 2 of the    4  rack corners at return impact following lift-off.
Set 54 is half of set 53 or the load on a single corner.
The stresses    are summarized    in   Table 4-1  for:
: a. Shear  in  welds no. 1, 2,     S  3 shown   on Figures 4-7 and   4-8.
: b. Shear out    of the corner 9    boxes (shaded area,  Fig. 4-7).
: c. Buckling of the box walls
: d. Floor loads under the ll" x 11" base plate The stresses in welds no. 1, 2, 6 3 are determined by calculating the RMS values of the shear load, vertical and horizontal, to get the NS, EW, VT and SWT loads. The force in the weld is calculated by:
F    SWT        Fn S2  +  Few 2    Fvt        (SWT zs Submer g ed Wei ght)
The shear out of the corner, the buckling load on the plate and the floor load are determined by using the RMS values for the individual supports given in Section 4A.
The maximum    stresses    in welds 1, 2,    8 3  are:
STD. Rack,    E-W  Plane,  OBE,  19,970  psi,  Weld 52 STD. Rack,     N-S Plane,   SSE,  21,700 psi,    Weld 02 CON. Rack, E-W Plane,      OBE,  16,940 psi,    Weld 52 CON. Rack, E-W Plane,      SSE,  23,340 psi,    Weld 01 The maximum    shearout stresses     in the corners are:
STD. Rack,     OBE,   11,940 psi STD. Rack,     SSE,   13,800 psi CON. Rack, OBE, 13,110      psi CON. Rack, SSE,    16,430 psi 22
 
The maximum    floor loads in the   ll" x  11" base    plate are:
STD. OBE, 1700    psi STD. SSE,  1965  psi CON. OBE,  1860  psi CON. SSE,  2340  psi The allowable weld    OBE  shear stress  is    24,000 psi.   (Ref. 14),
Sect. NF  3000, Table NF-3292 1-1)
The  allowable weld    SSE  shear stress  is    38,400 psi (1.6  OBE (USNRC,   SRP  3.8.4.5(b))
The  critical  buckling stress is 19,140 psi (Ref.        21 pg. 2.12)
Floor Loads The six modified racks are in Region 02. Using the submerged weight for the rack and contained fuel assemblies the total floor loads are:
I Standard Rack              1,249,000 LBS.
Consolidated Rack         2,046,360 LBS.
THE BEARING STRESS    ON THE CONCRETE UNDER THE llii X ll>>  X 3/4~i SUPPORT PLATES ARE STANDARD RACK              CONSOLIDATE RACK OBE        SSE                OBE     SSE FLOOR LOAD    (lbs) 205,567      237,862          225,573    282,782 BEARING              1700      1965            1864        2337 STRESS   (PSI)
The allowable concrete bearing stress is 3570 psi (Ref. 22).
23
 
TABLE   4-1


==SUMMARY==
==SUMMARY==
OF STRESSES STRESS (PSI)NORTH-SOUTH PLANE STANDARD CONSOLIDATED STRESS (PSI)EAST-WEST PLANE STANDARD CONSOLIDATED OBE SSE OBE SSE OBE SSE OBE SSE WELD//1 WELD//2 WELD g3 CORNER>'c SHEAROUT BOX" BUCKLING STRESS 11680 16200 7980 17330 18480 18660 14260 21260 14800 21700 11280 22100 19970 20270 16940 23340 11350 17700 12170 17200 18880 19320 16720 22430 11,950 13p800 13yll0 16p430.ll)950 13p820 13pl00 16p430 8,800 10,200 9,670 12,120 8,800 10,200 9,670 12,120 MAX.~FLOOR IOADS 1,700 1,965 1,860 2,340 1,700 2,000 1,860 2,340*These values are common to both planes.24 Strai ht Dro of a Fuel Assembl Throu h an Individual Cell An analyses was performed to determine.the affect of a fuel assembly being dropped onto or into a spent fuel rack.The consequences of a drop onto a rack, in which the assembly impacts the top of the fuel boxes, has previously been addressed and found acceptable (Ref.1, 2).It was shown that a fuel assembly is not damaged by this drop.An assessment is provided below of a fuel assembly being dropped directly into a fuel box.Since the clearance between a fuel assembly and a fuel box, even in the maximum box size considering tolerances, is on the order of.2 inches, it is unlikely that this would occur.It is most likely that the fuel bundle will strike the top of the fuel box and be deflected so that the energy is dissipated in deformation of the box or fuel bundle itself.This postulated drop accident would cause the fuel assembly to impact the bottom plate in the cell.The clearance between fuel dimensions and box dimensions are quite close;thus the fuel assembly would act as a leaky piston and the fuel box would act as a leaky cylinder.The hydraulic forces generated when the fuel assembly initially enters the fuel box would be quite large and would serve to retard the fuel assembly during the next 13.25 feet of its descent.The 0.090" welds which attach the bottom plate to the cell would be plastically deformed to failure if loaded high enough.This failure load estimate is based on 25  
OF STRESSES STRESS (PSI)                       STRESS (PSI)
'I 30,000 psi ultimate shear strength and a typical plastic deformation of 20%.The area in shear is0.090" x 4(8.25")=2.97 in.Energy=30,000 psi x (20%x 0.090")x 2.97 in.=1604 in-lbs.Comparing this value to the energy available from.the straight drop on the rack, which is 43,500 in-lb when the fuel assembly is considered as a rigid body for a 30" drop, the bottom plate welds would fail.Since each bottom plate of a fuel location is individually welded to its fuel box, failure of'one bottom plate would not affect any other fuel location of stored fuel.Thus, the postulated fuel drop would only result in one storage location being rendered unuseable.
NORTH-SOUTH PLANE                   EAST-WEST PLANE STANDARD       CONSOLIDATED        STANDARD      CONSOLIDATED OBE     SSE     OBE       SSE     OBE     SSE     OBE     SSE WELD //1   11680   16200   7980     17330   18480   18660   14260   21260 WELD  //2  14800   21700   11280   22100   19970   20270   16940   23340 WELD g3    11350   17700   12170   17200   18880   19320   16720   22430 CORNER>'c SHEAROUT    11,950   13p800   13yll0   16p430 .ll)950   13p820 13pl00 16p430 BOX" BUCKLING    8,800   10,200   9,670   12,120   8,800   10,200   9,670 12,120 STRESS MAX. ~
In addition, the consequences from a radiological standpoint are unchanged since only one assembly would be affected.Also, since the physical.configuration of the spent fuel storage cells will not be changed, the sub-critical array of the rack is maintained';
FLOOR       1,700   1,965   1,860   2,340   1,700   2,000   1,860   2,340 IOADS
Neutron Absorbin Material The neutron material, Boraflex, to be used in the Ginna modified spent fuel rack construction will be manufactured by Brand Industrial Services, Inc., and fabricated to safety related binuclear criteria of lOCFR50, Appendix B.Boraflex is a silicone based polymer containing fine particles of boron carbide in a homogeneous, stable matrix.Boraflex contains a minimum B density of 0.2 gm/cm~.Boraflex has undergone extensive testing to study the effects of gamma irradiation in various environments,*
* These values are   common   to both planes.
and to verify its 26 structural integrity and suitability as a neutron absorbing , material.Tests were performed at the University of Michigan exposing Boraflex to 1.03 x 10" rads gamma radiation with a substantial concurrent neutron flux in borated water.These tests indicate that Boraflex maintains its neutron attenuation capabilities before and after being subjected to an environment of borated water and 1.03 x 10" rads gamma radiation.
24
Long term borated water soak tests at high temperatures werealso conducted.
 
It was shown that,Boraflex withstands a borated water immersion of 240'F for 260 days without visible distortion or softening.
Strai ht Dro   of a Fuel Assembl Throu h an Individual Cell An analyses was performed to determine .the affect of a fuel assembly being dropped onto or into a spent fuel rack. The consequences of a drop onto a rack, in which the assembly impacts the top of the fuel boxes, has previously been addressed and found acceptable (Ref. 1, 2). It was shown that a fuel assembly is not damaged by this drop. An assessment is provided below of a fuel assembly being dropped directly into a fuel box. Since the clearance between a fuel assembly and a fuel box, even in the maximum box size considering tolerances, is on the order of .2 inches, it is unlikely that this would occur. It is most likely that the fuel bundle will strike the top of the fuel box and be deflected so that the energy is dissipated in deformation of the box or fuel bundle itself.
Boraflex maintains its functional performance characteristics and shows no evidence of swelling or loss of ability to maintain a uniform distribution of boron carbide.During irradiation a certain amount of gas may be generated.
This postulated drop accident would cause the fuel assembly to impact the bottom plate in the cell. The clearance between fuel dimensions and box dimensions are quite close; thus the fuel assembly would act as a leaky piston and the fuel box would act as a leaky cylinder. The hydraulic forces generated when the fuel assembly initially enters the fuel box would be quite large and would serve to retard the fuel assembly during the next 13.25 feet of its descent. The 0.090" welds which attach the bottom plate to the cell would be plastically deformed to failure   if loaded high enough. This failure load estimate is based on 25
However, the absorber will not be sealed within the storage cell and vent paths will be available to the pool.This will prevent gas induced swelling of the inserts and interference with the fuel assembly.The actual tests verify that Boraflex maintains long-term material stability and mechanical integrity, and can be safely utilized as a poison material for neutron absorption in spent fuel storage racks.Beyond the extensive testing conducted, Boraflex is broadly used in high density spent fuel storage racks in the United States and in Europe.It was first installed at Point Beach Unit 27 1 in 1979.A partial list of operating power reactor users of Boraflex follows: Point Beach Units 1&2 Nine Mile Point Unit 1 Oconee Units 1&2 Prairie Island Units 1&2 The extensive testing and the broad industry experience with Calvert Cliffs II Quad Cities Units 1&2 H.B.Robinson Unit 2 the use of Boraflex obviates the need for a Ginna specific surveillance program of the neutron absorber.Any potential long term problems will develop at other plants before it would be evident at Ginna.28 UST R D OESIGhl BERVICEG, INC Y DATE SUBJECT KD.BY DATE~4 FC.SECT.SHEET~OF FEOJ.HO.83 69 q 9 cD Q 0.
 
FXGURE 4-2 RACE-BASE SUPPORT WOW~Elch'usts~
      'I 30,000   psi ultimate shear strength       and a typical plastic deformation of 20%. The area in shear is 0.090" x 4(8.25")   =   2.97 in.
.1 C~ss-sacr/oYY'pvw.
Energy = 30,000     psi x (20% x   0.090") x 2.97 in.   = 1604 in-lbs.
s/zs)FIGURE 4-3 U 6 f 5, D D 1:-0 I 0 N 6 L.F4 V t 4: L f), I P4 A e BY/+~rt.DATE ei~/e."I!OJECI CHKD.BY~~~'ATE M4-..-++..
Comparing this value to the energy available from .the straight drop on the rack, which is 43,500 in-lb when the fuel assembly is considered as a rigid body for a 30" drop, the bottom plate welds would   fail.
~t..~.mat a.Dle, tee, Pf!O.l.tt~]..P yr E zo/gg~y g%F2~~z%F.(dAP jAo 1lA.IL T~(OFT w4&//~/=cex)Poiso//
Since each bottom plate     of   a fuel location is individually welded to its fuel box, failure of'one bottom plate would not affect any other fuel location of stored fuel. Thus, the postulated fuel drop would only result in one storage location being rendered unuseable.     In addition, the consequences from a radiological standpoint are unchanged since only one assembly would be affected.
.(062/VyJIJI.)/NSER7 BALL.o/g g, ZC'a Wo6o 8BO~Dd S/C~PE)Vo/MAZE&#xc3;.02 g FIGURE 4-4 POISON ASSEMBLY INSTALLATION I I l J I I CV Fl g 0 lA~Q 0 C4 I~I((I I I)li~~l I I l, 8 V co C4 r 8 UBT G 0 QCUIQN Bf:AVI(t.L', lf.'i.~W, w//, FIGURE 4-5 Dy~~~DA'rc 14',+/3:.uoil ci Gill(D.BY g';D*t E i~/!<g'e>/PIOO C OHSOL I DA77&rv'R'SS-DEC 7 CPA~FULLY-SiZE DJ6, tlat: oF9 6'Bg P Q~DMAILc".{z382llo~~
Also, since the physical. configuration of the spent fuel storage cells will not be changed, the sub-critical array of the rack is maintained';
(@ZZZZe,g~<PWax
Neutron Absorbin   Material binuclearThe neutron material, Boraflex, to be used in the Ginna modified spent fuel rack construction will be manufactured by Brand Industrial Services, Inc., and fabricated to safety related criteria of 10CFR50, Appendix B. Boraflex is a silicone based polymer containing fine particles of boron carbide in a homogeneous, stable matrix. Boraflex contains a minimum               B density of 0.2 gm/cm~.
~'~~+(o7ellorn) f I/X)r~.SF'7P FueL Res, ((Of'ZAa i)Oy~)o.5F:!()'(-(((i ITS'FUEL R os 3.QQ 3.8ffhi'All.
Boraflex has undergone extensive testing to study the effects of gamma irradiation in various environments,* and to verify its 26
)~804 4 U 7.846 (7:8268/dA)
 
PROJECT.8369 Dl R ECT IC N CF.LO A D lo IO 8 3 IMHr f 4 M~Hrn 7//12 I I 12)~-Fhori z 2'/Fvcr t~F hori z Fvtr t FIGURE 4-6 FINITE ELEMENT REPRESENTATION FlGURE 4-7 RACK WELDS EAST-LIEST
structural integrity   and suitability as a neutron absorbing material.     Tests were performed at the University of Michigan exposing Boraflex to 1.03 x 10" rads   gamma radiation with a substantial concurrent neutron flux in borated water. These tests indicate that Boraflex maintains its neutron attenuation capabilities before and after being subjected to an environment of borated water and 1.03 x 10" rads gamma radiation.
: PLANE, UQT L D DCGIGN sERVICEG)INc F IGURE 4-8 RACE NELDS NORTH-SOUTH PLANE p/Pic 4 Du/S red g~c 7rd pr FIGURE 4-9 RACK-BASE SUPPORT 5.Cost Benefit Assessment
Long term borated water soak tests at high temperatures were also conducted.     It was shown that,Boraflex withstands a borated water immersion of 240'F for 260 days without visible distortion or softening. Boraflex maintains its functional performance characteristics and shows no evidence of swelling or loss of ability to maintain a uniform distribution of boron carbide.
~~~The capacity of the spent fuel storage racks in their current configuration is 595 fuel assemblies.
During irradiation a certain amount of gas may be generated.
At the completion of the Spring, 1984 refueling outage 332 fuel assemblies will be stored in the pool.Assuming future average reload sizes of 28 fuel assemblies full core discharge capability would be lost after the Spring 1990 refueling outage.Rochester Gas and Electric also has 81 fuel assemblies stored at what was formerly the Nuclear Fuel Services facility at West Valley, New York.RG&E is required by the state of New York to have this fuel removed from West, Valley by September, 1985.The addition of this fuel to the storage pool would cause a loss of full core discharge capability after refueling in the Spring 1987.With the proposed modification, 420 storage locations would be added.At the projected average of 28 fuel assemblies discharged at the end of an annual cycle in the Spring of each year, the loss of full core discharge capability would occur after the Spring, 2002 refueling outage.It is the intent of RG&E that this modification extend the capability to store spent.fuel at the Ginna site until a final repository is available in accordance with the interim storage provisions of the Nuclear Waste Policy Act of 1982.It is expected that a disposal facility will be available and shipments will begin by.the mid to late 1990's.RG&E's sole contractural arrangement for the storage of spent fuel is with the New York State Energy Research and Development Authority (NYSERDA)covering the 81 fuel assemblies at West 29  
However, the absorber will not be sealed within the storage cell and vent paths will be available to the pool. This will prevent gas induced swelling of the inserts and interference with the fuel assembly.
The actual tests verify that Boraflex maintains long-term material stability and mechanical integrity, and can be safely utilized as a poison material for neutron absorption in spent fuel storage racks.
Beyond the extensive testing conducted, Boraflex is broadly used in high density spent fuel storage racks in the United States and in Europe. It was first installed at Point Beach Unit 27
 
1 in 1979. A partial list of operating power reactor users of Boraflex follows:
Point Beach Units 1 & 2       Calvert Cliffs II Nine Mile Point Unit 1         Quad Cities Units 1 &  2 Oconee Units 1 & 2            H.B. Robinson Unit 2 Prairie Island Units 1 & 2 The extensive testing and the broad industry experience with the use of Boraflex obviates the need for a Ginna specific surveillance program of the neutron absorber. Any potential long term problems will develop at other plants before   it would be evident at Ginna.
28
 
UST R D OESIGhl BERVICEG, INC Y           DATE         SUBJECT         SECT. SHEET    ~OF KD. BY     DATE~                   4 FC.       FEOJ.HO. 83 69 cD q 9 Q
0.
 
FXGURE 4-2 RACE-BASE SUPPORT
 
U6 f 5, D D 1:- 0 I 0 N 6 L. F4 V t 4: L f), I P4 A                                           ~ t..~. mat        a. Dle, tee, e
BY
        /
CHKD. BY
                    +~rt.DATE
              ~~~'ATE M4-..-++..
ei~/e              ."I!OJECI WOW  ~Elch'usts~             .         Pf!O.l. tt~]
yr E
                                                                                                                      ..P zo/gg ~y g 1                                                          C~ss- sacr/oYY'pvw. s/ zs)
FIGURE  4-3
                                                                                        %F2~~ z%F.
(   dAP     jAo   1lA.IL T~
(OFT w4 &//~/=cex)Poiso//
(062 /VyJIJI.) /NSER7 BALL
                                                                                                    .o/g g, ZC'a Wo6o 8BO~Dd             S   /   C ~PE     )
Vo/MAZE&#xc3;                 .02 g
 
FIGURE 4-4 POISON ASSEMBLY INSTALLATION I
I l
J I
I
                                            ~
I I(
(I I
I) li
                                      ~
                                        ~l CV Fl g                                      I 0
lA                                I
    ~
Q 0
C4 l,
8 V
co C4 r
8
 
. ~
W, Dy~ ~~DA'rc w Gill(D. BY ';
g D*t ~/!
E
                        /
i <g'e >
                                /,
UBT G 0 QCUIQN Bf:AVI( t.L', lf.'i 14',+/3:.uoil ci FIGURE  4-5
                                            /PIOO C OHSOL I 7  CPA~
DA77&rv'R'SS-DEC FULLY- SiZE DJ6, tlat:
oF9 6'Bg P Q ~ DMAILc".{z382llo~~
(@ZZZZe,g~<PWax ~ '~                                                    ~+(o7ellorn)
          /
f                   I
(-
r X ~
                                                  )                                       (      (
                .SF'7P FueL       Res,(               ( i                      ITS'FUEL R os (Of'ZAa i)         Oy~                                       3. QQ     3. 8ffhi'All.
              )                       o.5F:      !
(                                                  )
                                                              ~804 4                        U
                                                )'                7.            846       (7:8268/dA)
 
PROJECT     .8369 Dl R ECT IC N CF . LO A D lo IO 4
M~Hrn 3
IMHrf 8
                                                  ~ Fhori 7
I      2    '/         z Fvcr t
                            /
                          /          I 12   12)
                                        ~F       hori z Fvtr t FIGURE 4-6 FINITE ELEMENT REPRESENTATION
 
FlGURE 4-7 RACK WELDS EAST-LIEST PLANE,
 
UQT L D DCGIGN sERVICEG) INc F IGURE 4- 8 RACE NELDS NORTH-SOUTH PLANE p
            /Pic 4 Du/ S red g~c 7rd pr
 
FIGURE 4-9 RACK-BASE SUPPORT
 
Cost Benefit Assessment
                  ~
5.~
The capacity of the spent fuel storage racks in their
                ~
current configuration is 595 fuel assemblies. At the completion of the Spring, 1984 refueling outage 332 fuel assemblies will be stored in the pool. Assuming future average reload sizes of 28 fuel assemblies full core discharge capability would be lost after the Spring 1990 refueling outage. Rochester Gas and Electric also has 81 fuel assemblies stored at what was formerly the Nuclear Fuel Services facility at West Valley, New York. RG&E is required by the state of New York to have this fuel removed from West, Valley by September, 1985. The addition of this fuel to the storage pool would cause a loss of full core discharge capability after refueling in the Spring 1987.
With the proposed modification, 420 storage locations would be added. At the projected average of 28 fuel assemblies discharged at the end of an annual cycle in the Spring of each year, the loss of full core discharge capability would occur after the Spring, 2002 refueling outage. It is the intent of RG&E that this modification extend the capability to store spent
. fuel at the Ginna site until a final repository is available in accordance with the interim storage provisions of the Nuclear Waste Policy Act of 1982. It is expected that a disposal facility will be available and shipments will begin by .the mid to late 1990's.
RG&E's sole contractural arrangement for the storage of spent fuel is with the New York State Energy Research and Development Authority (NYSERDA) covering the 81 fuel assemblies at West 29
 
Valley,  New  York.~  NYSERDA  has demanded the    fuel be removed and in
~
accordance  with the Contract,
                  ~
RG6E  must comply.
The  attached Table 5-1 and 5-2, provides information on schedule of projected fuel discharges and core components stored in the  SFP.
A  discription  o'f the modification    is at Section 1 of this attachment. Preliminary estimates of the costs of the modification are outlined below.
Engineering          125,000 Construction Material          500,000 Installation      825,000 AFDC                  50,000 Contingency          400,000 Total            $ 1,900,000 This is equivalent to about      $ 4500  per storage location (or  $ 13 per kgU). These estimates are preliminary and          will be updated upon request.
The  alternatives to increasing the capacity of the spent fuel pool are few. There is no fuel reprocessing facility available now and no indication that one would be available during this decade. There are no government operated away-from-reactor storage  facilities. Independent spent fuel storage exists only in the General Electric, Morris, Illinois facility. This is not generally available to non-G.E. customers nor is it currently available to new customers. Costs for transport of one fuel assembly alone, assuming      a three day turnaround time and a 600
                                    /
mile  trip  one way, would be on the order of $ 10,500 per fuel 30
 
assembly or  $ 30/KgU. The annual charge  to store th'e fuel  and labor  and material costs for loading and unloading would be additional. Another alternative, that of shipping to another
.reactor site is not available to RG&E because the company operates only the Ginna Nuclear Plant.
Shutting down the reactor as an alternative to increasing spent fuel storage capacity would impose a financial hardship on the customers of RG&E. The Ginna Plant supplies approximately 45 per cent of RG&E's electric generation. The replacement power costs would depend on whether company coal fired generation was available to pick up the load. Estimates range from $ 23 per MWH to $ 45/MWH for incremental costs of replacement power. This is equivalent to about $ 280,000 to $ 540,000 per day.
In terms of the material resources required to complete the modification, the amount needed is low relative to that required to either replace the storage racks entirely with all new high density racks, or use dry storage cask technology. As discussed in Section 1, the modification consists of removing the lead-ins and guide funnels from the water boxes, adding bottom plates to the former water boxes, and right angled boraflex poison inserts with SS-304 filler plates and liners. Table 5-3 lists the material requirement for the modification.
In References 3 and 4, the additional heat loads that would be anticipated assuming normal discharges up to an end of plant life in 2009 were calculated. This analysis (Reference 4) assumed normal annual discharges  of 36  fuel assemblies  100 hours  after 31
 
reactor shutdown. The resulting heat loads for normal discharges 6
were calculated to increase incrementally from 7.07x10 BTU/HR xn 1981 to 9.96x10 BTU/HR in the year 2010. By increasing the cooling time to 14 days in the case of a full core dischage in year 2010 the decay heat load on the spent fuel pool cooling system will remain below 16x10 BTU/HR. At this maximum heat load, the analysis concluded that, assuming 80'F service water with a flow rate of 1600 gpm, the maximum pool temperature would be 150'F and the increase in service water temperature would be within the environmental guidelines of 20'F. The potential for an increase in the heat released to the environment due to the modification is the increment from 7.07x10 6 BTU/HR to 9.96x10 6 6
BTU/HR or about 3xlO BTU/HR. During the assumed normal operation I
of cooling system (80'F service water 1000 gpm) this increment
                                                                'I represents about a 6'F increase in service water temperature through the heat exchanger. As stated above even given the maximum  heat load for a full core dischage the 20'F environmental guideline for total plant discharge would be met.
32


Valley, New York.NYSERDA has demanded the fuel be removed and~~~in accordance with the Contract, RG6E must comply.The attached Table 5-1 and 5-2, provides information on schedule of projected fuel discharges and core components stored in the SFP.A discription o'f the modification is at Section 1 of this attachment.
Table 5-1 Schedule of Anticipated Fuel Discharges Capacity Remaining Month  ear                                  ~Existin    ~Pro osed March 1984      28              332        263          683 March 1985      28              360        235          655
Preliminary estimates of the costs of the modification are outlined below.Engineering Construction Material Installation AFDC Contingency Total 125,000 500,000 825,000 50,000 400,000$1,900,000 This is equivalent to about$4500 per storage location (or$13 per kgU).These estimates are preliminary and will be updated upon request.The alternatives to increasing the capacity of the spent fuel pool are few.There is no fuel reprocessing facility available now and no indication that one would be available during this decade.There are no government operated away-from-reactor storage facilities.
*Sept 1985        81              441        154          574 March 1986      28              469        126          546 March 1987      28              497        **98          518 March 1988      28              525          70          490 March 1989      28              553          42          462 March 1990      28              581          14          434 March 1991      28              609                      406 March 1992      28              637                      378 March 1993      28              665                      350 March 1994      28              693                      322 March 1995      28              721                      294 March 1996      28              749                      266 March 1997      28              777                      238 March 1998      28              805                      210 March 1999      28              833                      182 March 2000      28              861                      154 March 2001      28              889                      126 March 2002      28              917                    **98
Independent spent fuel storage exists only in the General Electric, Morris, Illinois facility.This is not generally available to non-G.E.customers nor is it currently available to new customers.
* 81 fuel assemblies from West Valley
Costs for transport of one fuel assembly alone, assuming a three day turnaround time and a 600/mile trip one way, would be on the order of$10,500 per fuel 30 assembly or$30/KgU.The annual charge to store th'e fuel and labor and material costs for loading and unloading would be additional.
** Loss of full core discharge capability 33
Another alternative, that of shipping to another.reactor site is not available to RG&E because the company operates only the Ginna Nuclear Plant.Shutting down the reactor as an alternative to increasing spent fuel storage capacity would impose a financial hardship on the customers of RG&E.The Ginna Plant supplies approximately 45 per cent of RG&E's electric generation.
 
The replacement power costs would depend on whether company coal fired generation was available to pick up the load.Estimates range from$23 per MWH to$45/MWH for incremental costs of replacement power.This is equivalent to about$280,000 to$540,000 per day.In terms of the material resources required to complete the modification, the amount needed is low relative to that required to either replace the storage racks entirely with all new high density racks, or use dry storage cask technology.
Table 5-2 Non-Fuel Components Stored    in SFP*
As discussed in Section 1, the modification consists of removing the lead-ins and guide funnels from the water boxes, adding bottom plates to the former water boxes, and right angled boraflex poison inserts with SS-304 filler plates and liners.Table 5-3 lists the material requirement for the modification.
Control Rod Assemblies Burnable Poison Rods Thimble Plugging Devices                19 Primary/Secondary Sources
In References 3 and 4, the additional heat loads that would be anticipated assuming normal discharges up to an end of plant life in 2009 were calculated.
* After 1984 refueling Table 5-3 Com onent            Material            Volume        Weiceht Bottom Plates  (420)    SS-304              12,259 in3    3555  lbs Neutron Poison          Boraflex        10126,819  in3
This analysis (Reference 4)assumed normal annual discharges of 36 fuel assemblies 100 hours after 31 reactor shutdown.The resulting heat loads for normal discharges 6 were calculated to increase incrementally from 7.07x10 BTU/HR xn 1981 to 9.96x10 BTU/HR in the year 2010.By increasing the cooling time to 14 days in the case of a full core dischage in year 2010 the decay heat load on the spent fuel pool cooling system will remain below 16x10 BTU/HR.At this maximum heat load, the analysis concluded that, assuming 80'F service water with a flow rate of 1600 gpm, the maximum pool temperature would be 150'F and the increase in service water temperature would be within the environmental guidelines of 20'F.The potential for an increase in the heat released to the environment due to the modification is the increment from 7.07x10 BTU/HR to 9.96x10 6 6 BTU/HR or about 3xlO BTU/HR.During the assumed normal operation 6 of cooling system (80'F service water I 1000 gpm)this increment'I represents about a 6'F increase in service water temperature through the heat exchanger.
                                                  ~
As stated above even given the maximum heat load for a full core dischage the 20'F environmental guideline for total plant discharge would be met.32 Table 5-1 Schedule of Anticipated Fuel Discharges Month ear Capacity Remaining~Existin~Pro osed March 1984 March 1985*Sept 1985 March 1986 March 1987 March 1988 March 1989 March 1990 March 1991 March 1992 March 1993 March 1994 March 1995 March 1996 March 1997 March 1998 March 1999 March 2000 March 2001 March 2002 28 28 81 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 332 360 441 469 497 525 553 581 609 637 665 693 721 749 777 805 833 861 889 917 263 235 154 126**98 70 42 14 683 655 574 546 518 490 462 434 406 378 350 322 294 266 238 210 182 154 126**98*81 fuel assemblies from West Valley**Loss of full core discharge capability 33 Table 5-2 Non-Fuel Components Stored in SFP*Control Rod Assemblies Burnable Poison Rods Thimble Plugging Devices Primary/Secondary Sources 19*After 1984 refueling Com onent Table 5-3 Material Volume Weiceht Bottom Plates (420)Neutron Poison SS-304 Boraflex.020 gm/cc 12,259 in 3 10126,819 in~3 min B 3555 lbs 7990 lbs Liner Plates (840)SS-304 Filler Plates (,3360)SS-304 24,619 in 135,804 in 7140 lbs 39,383 lbs 6.Radiolo ical Evaluation The SFP purification system consists of a demineralizer and filter.A surface skimmer system consisting of a pump and filter is also used to maintain water clarity.Presently the demineralizer generates 28 cubic feet of solid waste annually from two resin bed changes.The SFP filter and skimmer filter are changed annually generating 7 cubic feet of waste.This represents approximately 0.3%of the average solid radioactive waste volume generated, each year.Since the previous SFP rack modification was completed in 1977, the number of spent fuel assemblies stored has increased from 92 to 302 as of 1983 for an average increase of 30 per year.From 1977 through 1983, the waste volume generated by the SFP has remained the same, while the number of stored spent fuel assemblies increased a factor of 3.28.Even if the generated solid radioactive waste increases linearly, which it has not, with the number of spent fuel assemblies in the SFP, the solid waste would increase by a factor of.2.96 with 894 assemblies in the SFP (to maintain full core discharge capability only 1015-121=894 fuel assemblies can be stored in the SFP).The solid waste generated by the SFP would then be less than 1%of the total yearly generated solid radioactive waste.The fuel.storage area ventilation is combined with the auxiliary and intermediate building ventilation.
7990  lbs
The Kr-85 measured in this system was 9.9 curies in 1982 and 15.7 curies in 1983.All of the kr-85 measured could be attributed to the release of decayed waste gas tanks.35 The table below provides the results of a recent gamma isotopic analysis (Nov.22, 1983)of the Ginna SFP water, and identifies principal radionuclides and their respective concen-trations.Values obtained from the analysis are representative both in terms of typical gross radioactivity, and the relative concentrations of major radionuclides present in the pool water.~Isot e Concentration Ci cc Percent Contribution
                        .020 gm/cc min    B Filler Plates  (,3360)  SS-304              24,619 in    7140  lbs Liner Plates (840)      SS-304            135,804  in  39,383 lbs
.To Total Water Activit Cs-137 Cs-134 Co-60 Co-58 7.7 E-5 2.9 E-5 2.1 E-3 5.8 E-5 3 1 93 3 Since the previous SFP rack modification in 1977, dose equivalent rates above and at the sides of the pool have remained the same, between 1 and 2 mrem/hour.
: 6. Radiolo  ical Evaluation The SFP purification system consists of   a demineralizer and filter. A surface skimmer system consisting of a pump and filter is also used to maintain water clarity. Presently the demineralizer generates 28 cubic feet of solid waste annually from two resin bed changes. The SFP  filter and skimmer filter are changed annually generating 7 cubic feet of waste. This represents approximately 0.3% of the average solid radioactive waste volume generated, each year. Since the previous SFP rack modification was completed in 1977, the number of spent fuel assemblies stored has increased from 92 to 302 as of 1983 for an average increase of  30  per year. From 1977 through 1983, the waste volume generated by the SFP has remained the same, while the number of stored spent fuel assemblies increased a factor of 3.28. Even        if the generated solid radioactive waste increases linearly, which      it has  not, with the number of spent fuel assemblies in the SFP, the solid waste would increase by a factor of .2.96 with 894 assemblies in the SFP (to maintain full core discharge capability only 1015-121=894 fuel assemblies can be stored in the SFP). The solid waste generated by the SFP would then be less than 1% of the total yearly    generated solid radioactive waste.
The dose equivalent rate above the SFP can also be determined from the following model.The radiation dose rate from the SFP at a point above the pool surface was calculated from the effective water surface activity, allowing for self-absorption by the water medium in which the isotopes were assumed to be uniformly mixed.Dose models used were those by Cember (1969)*.The basic geometry applied in the calculations consists of a modified plane source cl&as shown below.P(h*Cember, H., Introduction to Health Ph sics, Chapter 10, Pergamon Press (1969).36 The equation for the dose rate D at point Pl from a planar source similar to the above is: R D..I i x Cai x 211r dr=II x I i x Cai x r+h 1n R~+~h where: D.=dose rate (rem/hr)of the i isotope 3.I i=gamma source strength of i isotope.th (rem/hr at 1 m/Ci)C~=effective su@ace activity (Ci/m)of i isotope R=radius of source (m)h=distance above source along central axis (m)In the fuel pool dose calculations, the pool surface was conservatively assumed to have a disc configuration whose radius equaled one half the longest actual pool dimension.
The fuel. storage area ventilation is combined with the auxiliary and intermediate building ventilation. The Kr-85 measured in this system was 9.9 curies in 1982 and 15.7 curies in 1983. All of the kr-85 measured could be attributed to the release of decayed waste gas tanks.
Since the pool containing mixed radioactivity more closely resembles a large slab source, Equation 1 was modified to account for the pool depth (t),-the mixed radionuclide concentration C (Ci/m), and the attenuation coefficient of the pool water-1 p(m).The pool surface activity due to radioactivity in the layer dx at a depth of x is: d(C.)=C'x'" Integrating Equation (2)over the total-thickness t gives the effective surface activity: (2)t Cai Cri x e" dx=Cri (1-e")0 V (3)37 By substituting Equation 3 into Equation 1, the following relationship is obtained for calculating dose rate: D(rem/hr)=ZDi=Znl i Cri (1-e")V R2+h2~h This equation gives the dose rates at the center of the pool where personnel would experience the highest radiation levels from the water.The dose rates calculated for the nuclides listed on the table below are less than 5 mrem/hr.Dose rates at the edge of the pool would be slightly less than the dose rates at.the center of the pool because of the smaller radiation contributions from one side.Routine radiation surveys performed in the spent fuel pool area have confirmed that dose levels at the pool edge are not in excess of those at the center.The table below gives the results of analyses performed in 1983 to determine the principal airborne radionuclides and their respective concentrations in the spent fuel pool area.~jsoto e I-131 I-133 H-3 Cs-134 Cs-137 Co-58 Co-60~ci cc<1E-12<1E-12 5.0 E-07<1E-13<1E-13<1E-13<1E-13 The annual radiation dose to a specified organ from inhalation of radioactive material is calculated using the following relationship:
35
38 Dose=365 (C (Rb (DCF)where: Dose=annual dose (mrem/yr)365=units conversion constant C.=airborne concentration of isotope i (pCi/cc)Rb,=assumed breathing rate (cc/d)DCF.=dose conversion factor relating organ dose to intake of an isotope by inhalation (mrem/pC.).
 
l Values for DCF.are based upon ICRP recommendations 1 (ICRP Publication II, 1959)and are calculated in the following manner: i DCF i where: ref (C f)(2.0 E+7)(365)D f=ICRP recommended maximum permissible dose to a specified organ of an adult occupationally exposed to radiation (mrem/yr)C f=ICRP recommended concentration of an isotope in air which, if breathed by an adult at the rate of 2.0 E+7 cc/day for 50 years, will result in a 50th-year dose of D mrem to the specified organ (pCi/cc)2.0.E+7=adult.breathing rate assumed in ICRP calculations (cc/day)365=units conversion constant (days/yr)Where ICRP II gives no values of C f for certain ref organs, the lowest value of C f listed for other organs is taken ref as the value of C f for the unlisted ones.For added conservatism, ref those isotopes whose concentrations were reported as"less than" values, were assumed to be present at detection limit levels.39 Since individuals will spend only a portion of their time in the spent fuel pool area, doses are expected to be considerably less than if continuous exposure is assumed.If a 100-hour annual occupancy time is assumed for a maximally exposed worker in the spent fuel pool area, the resulting total body and organ doses are less than 10 mrem per year.The spent fuel pool modification will result in longer term storage of well cooled fuel.The present pool temperature limitations will still apply.The operation of the pool purifi-1 cation system and the building ventilation equipment will not, change.Therefore, the present, airborne isotopic concentrations are not expected to change significantly after the modification.
The  table below provides the results of a recent gamma isotopic analysis (Nov. 22, 1983) of the Ginna SFP water, and identifies principal radionuclides and their respective concen-trations. Values obtained from the analysis are representative both in terms of typical gross radioactivity, and the relative concentrations of major radionuclides present in the pool water.
Thus, resulting potential dose increases both in the spent fuel pool area and any offsite locations will be quite small.The potential increase in annual man-rem from more frequent resin and'filter changes was estimated by scaling present personnel exposure values linearly with the number of future added spent fuel assemblies in the pool.Spent fuel pool filter cartridge and demineralizer resin changes associated with the existing 302 stored fuel assemblies contribute less than 0.1 percent of Ginna's total annual man-rem burden.If filter and resin change frequencies are conservatively assumed to increase linearly with increased numbers of assemblies in the pool, resultant personnel exposures could be raised by a factor of 2.96, or to less than 0.3 percent of Ginna's total annual man-rem.Thus, increases in occupational doses from these related operations, when compared to the plant's total yearly exposure burden, will be negligible.
Percent Contribution  .
40 Routine radiation surveys of the Ginna.spent fuel pool have shown dose rates typically less than 5 mR/hr along the pool edges.No trend is apparent in past and current survey data which would reflect dose rate increases from crud buildup.Further, no future increases in radiation levels from crud in the pool are anticipated as a result of additional fuel.Should accumulation along the pool walls begin to produce higher exposures of any significance, these will be indicated by routine radiation surveys.At that time methods will be developed to reduce radiation levels at the pool edge to as low as is reasonably achievable.
Concentration            To  Total
Based upon average personnel occupancy times in the fuel pool area, the annual man-rem resulting from all related operations is estimated to be less than one percent of the total plant man-rem.Future total occupational exposure at Ginna is not expected to be significantly affected by either a)more frequent changing of demineralizer resin and filters, or b)crud buildup along the sides of the pool, as a result of the proposed spent.fuel pool modification.
      ~Isot  e              Ci cc              Water  Activit Cs-137                7.7 E-5                      3 Cs-134                2.9 E-5                      1 Co-60                2.1 E-3                    93 Co-58                5.8 E-5                      3 Since the previous    SFP rack modification in 1977, dose equivalent rates above and at the sides of the pool have remained the same, between 1 and 2 mrem/hour. The dose equivalent rate above the SFP can also be determined from the following model.
Radiation dose rates above the pool resulting from submerged spent fuel assemblies placed in any configuration will be negligible when compared to background.
The radiation dose rate from the SFP at a point above the pool surface was calculated from the effective water surface activity, allowing for self-absorption by the water medium in which the isotopes were assumed to be uniformly mixed. Dose models used were those by Cember (1969)*. The basic geometry applied in the calculations consists of a modified plane source cl&
The contribution from this source to total annual personnel exposure is therefore negligible.
as shown below.
P(
h
*Cember, H., Introduction    to Health  Ph sics, Chapter 10, Pergamon Press (1969).
36
 
The  equation for the dose rate          D  at point Pl from a planar source similar to the above is:
R D..               I i xrCai+ x h
211r  dr  = II  x  I i x Cai  x 1n  R~ +
                                                                      ~h where:  D. = dose 3.
rate (rem/hr) of the       i      isotope I i=    gamma source strength of i
                                                    .th isotope (rem/hr at 1 m/Ci)
                  =  effective su@ace activity (Ci/m ) of i isotope C  ~
R = radius of source (m) h = distance above source along central axis (m)
In the fuel pool dose calculations, the pool surface was conservatively assumed to have a disc configuration whose radius equaled one half the longest actual pool dimension.
Since the pool containing mixed radioactivity more closely resembles        a  large slab source, Equation 1 was modified to account for the pool depth (t), -the mixed radionuclide concentration C  (Ci/m ), and the attenuation coefficient of the pool water
  -1 p(m ). The pool surface activity due to radioactivity in the d(C .) = C          'x layer dx at a depth of x is:
                                '    "                                        (2)
Integrating Equation (2) over the total- thickness t gives the effective surface activity:
Cai t Cri x e    " dx  = Cri (1-e "                    (3)
                                                                )
0 V
37
 
By  substituting Equation 3 into Equation 1, the following relationship is obtained for calculating dose rate:
D(rem/hr)  = ZDi = Znl i Cri    (1-e " )    R2
                                                      ~h
                                                          + h2 V
This equation gives the dose rates at the center of the pool where personnel would experience      the highest radiation levels from the water. The dose rates calculated for the nuclides listed on the table below are less than 5 mrem/hr.
Dose rates at the edge of the pool would be slightly less than the dose rates at. the center of the pool because of the smaller radiation contributions from one side. Routine radiation surveys performed    in the spent fuel pool area have confirmed that dose levels at the pool edge are not in excess of those at the center.
The  table below gives the results of analyses performed in 1983 to determine the principal airborne radionuclides and their respective concentrations in the spent fuel pool area.
~jsoto e        ~ci cc I-131            <1E-12 I-133            <1E-12 H-3              5.0 E-07 Cs-134            <1E-13 Cs-137            <1E-13 Co-58            <1E-13 Co-60            <1E-13 The annual radiation dose to a specified organ from inhalation of radioactive material is calculated using the following relationship:
38
 
Dose = 365 (C    (Rb (DCF  )
where:
Dose = annual dose     (mrem/yr) 365 =  units conversion constant C. =  airborne concentration of isotope i  (pCi/cc)
Rb,= assumed breathing rate (cc/d)
DCF. = dose conversion factor relating organ dose to intake of an isotope by inhalation (mrem/pC.). l Values  for  DCF.
1 are based upon ICRP recommendations (ICRP  Publication    II,  1959) and are  calculated in the following manner:
i DCF i              ref (C    f)(2.0 E+7)(365) where:
ICRP recommended maximum permissible dose to D
f=  a specified organ of an adult occupationally exposed  to radiation (mrem/yr)
ICRP recommended concentration of an isotope C
f=   in air which, if breathed by an adult at the rate of 2.0 E+7 cc/day for 50 years, will result in a 50th-year dose of D      mrem to the specified organ (pCi/cc) 2.0. E+7 = adult. breathing rate assumed in ICRP calculations (cc/day) 365 = units conversion constant (days/yr)
Where ICRP II gives no values of C reff for certain organs, the lowest value of C reff listed for other organs is taken as the value of C reff for the unlisted ones.      For added conservatism, those isotopes whose concentrations were reported as "less than" values, were assumed to be present at detection        limit levels.
39
 
Since  individuals will spend only a portion of their time in the spent fuel pool area, doses are expected to be considerably less than   if continuous  exposure  is assumed. If a 100-hour annual occupancy time is assumed for a maximally exposed worker in the spent fuel pool area, the resulting total body and organ doses are less than 10 mrem per year.
The  spent fuel pool modification    will result in longer term storage of well cooled fuel. The present pool temperature limitations will still apply. The operation of the pool purifi-cation system and the building ventilation equipment will not, 1
change. Therefore, the present, airborne isotopic concentrations are not expected to change      significantly after the modification.
Thus, resulting potential dose increases both in the spent fuel pool area and any offsite locations will be quite small.
The potential increase in annual man-rem from more frequent resin  and  'filter changes  was estimated by scaling present personnel exposure values    linearly  with the number of future added spent fuel assemblies    in the pool. Spent fuel pool filter cartridge and demineralizer resin changes associated with the existing 302 stored fuel assemblies contribute less than 0.1 percent of Ginna's total annual man-rem burden. If filter and resin change frequencies are conservatively assumed to increase linearly with increased numbers of assemblies in the pool, resultant personnel exposures could be raised by a factor of 2.96, or to less than 0.3 percent of Ginna's total annual man-rem. Thus, increases in occupational doses from these related operations, when compared to the plant's total yearly exposure burden, will be negligible.
40
 
Routine radiation surveys of the Ginna.spent fuel pool have shown dose rates typically less than 5 mR/hr along the pool edges. No trend is apparent in past and current survey data which would    reflect dose rate increases from crud buildup.
Further, no future increases in radiation levels from crud in the pool are anticipated as a result of additional fuel. Should accumulation along the pool walls begin to produce higher exposures of any significance, these will be indicated by routine radiation surveys. At that time methods will be developed to reduce radiation levels at the pool edge to as low as is reasonably achievable.
Based upon average personnel   occupancy times in the fuel pool area, the annual man-rem resulting from all related operations is estimated to be less than one percent of the total plant man-rem. Future total occupational exposure at Ginna is not expected to be significantly affected by either a) more frequent changing of demineralizer resin and filters, or b) crud buildup along the sides of the pool, as a result of the proposed spent. fuel pool modification.
Radiation dose rates above the pool resulting from submerged spent fuel assemblies placed in any configuration will be negligible when compared to background.     The contribution from this source to total annual personnel exposure is therefore negligible.
The radiation protection program will utilize routine survey information to determine changes in SFP area radiation levels and airborne radioactive material concentrations to main-tain personnel exposure ALARA.
The radiation protection program will utilize routine survey information to determine changes in SFP area radiation levels and airborne radioactive material concentrations to main-tain personnel exposure ALARA.
As stated in Section 1, the modification of the storage racks will include removal of the lead in guides over the water boxes and the seismic supports between the support bases and the pool walls.These two components are fabricated from SS-304 and represent the waste material that will be produced by the modifi-cation.The total weight of this material is approximately 8000 lbs.This material will be disposed of as either low level radioactive waste or decontaminated and disposed of as normal (non-radioactive) waste.
~~7.Accident Evaluation Currently Ginna Technical Specifications prohibit the movement of a spent fuel cask with the auxiliary building crane.RG&E has submitted an application to delete this restriction based upon a proposed modification to the crane to meet the single-failure-proof requirements of NUREG-0554~~.
Modifying the crane to be single-failure-proof would obviate the need to analyze the cask drop.For those loads that can not be moved in a single failure proof mode, RG&E will continue to satisfy the requirements of NUREG-0612 by some combination of load drop analysis, load height restriction and safe load path.In either case, the Ginna Technical Specification prohibits the trolley of the auxiliary building crane to be stationed above or pass over a spent fuel storage rack containing spent fuel.This requirement along with installed interlocks prevents the movement of loads over spent fuel by the auxiliary building crane.The overhead hoist attached to spent fuel pool bridge is used to transfer spent fuel within the pool area.Use of this hoist is limited to single fuel assemblies and their handling tools.The rack structure protects stored fuel from the impact of a dropped fuel assembly~.
A weight limitation on the hoist (2000 lbs), the physical position of the overhead hoist, and an up-stop limit switch prevents the potential impact energy of a load from substantially exceeding that of a dropped spent fuel assembly.~


References l.Application for Amendment to Operating License, January 30, 1976.2.Letter, A Schwencer to L.D.White, November 15, 1976.3.Zetter, L.D.White to D.L.Ziemann, February 13, 1980.4.Zetter, D.M.Crutchfield to Z.D.White, November 3, 1981.5.Application for Amendment to Operating License, February 23, 1982.6.Application for Amendment to Operating Zicense, January 18, 1984.7.Letter, J.E.Maier to D.M.Crutchfield, June 9, 1981.8.9 U.S.Nuclear Regulatory Commission, Standard Review Plan 3.7.2"Seismic System Analysis," Revision 1, July, 1981.Fritz, R.J.,"The Effects of Liquids on the Dynamic Motions of Immersed Solids,"ASME February, 1972.10.Dong, R.G.;"Effective Mass and Damping of Submerged Structures", UCRL-52342, L.L.L., April, 1978.ll.Stokey, W.J., Scavuzzo, R.J.and Radke, E.E.,"Dynamic Fluid Structure Coupling of Rectangular Modules in Rectangular Pools," ASME Special Publication PVP-39, 1979.12.Regulatory Guide 1.61,"Damping Values for Seismic Design of Nuclear Power Plant", October, 1973.13.Rabinowicz, E.,"Friction Coefficients of Water-Zubricated Stainless Steels for a Spent Fuel Rack Facility", Study performed for Boston Edison, Co.November, 1976.14.ASME Boiler and Pressure Vessels, NUCZEAR VESSELS, Section III, 1980 ed.15.G.E.Technical Paper 22A5866, Rev.Dec.26, 1979.Appendix II, FUEL ASSEMBZY STRUCTURAL CHARACTERISTICS.
As  stated in Section 1, the modification of the storage racks will include removal of the lead in guides over the water boxes and the seismic supports between the support bases  and the pool walls. These two components are fabricated from SS-304 and represent the waste material that will be produced by the modifi-cation. The total weight of this material is approximately 8000 lbs. This material will be disposed of as either low level radioactive waste or decontaminated and disposed of as normal (non-radioactive) waste.
16.R.D.Blevins, Ph.D, FORMULAS, FOR NATURAL FREQUENCY AND MODE SHAPE, Van Nostrand Reinhold Co., N.Y., N.Y., 1979.17.,R.J.Roark, W.C.Young, FORMULAS FOR STRESS AND STRAIN, MCRAW-HILZ BOOK CO., N.Y.5th Ed., 1975.  
 
7.~  Accident Evaluation
        ~
Currently Ginna Technical Specifications prohibit the movement of  a spent fuel cask with the auxiliary building crane. RG&E has submitted an application to delete    this restriction based upon a proposed modification to the crane    to meet the single-failure-proof requirements of NUREG-0554~~. Modifying the crane to be single-failure-proof would obviate the need to analyze the cask drop.
For those loads that can not be moved in a single failure proof mode,  RG&E will continue  to satisfy the requirements of NUREG-0612 by some combination of load drop analysis, load height restriction and safe load path. In either case, the Ginna Technical Specification prohibits the trolley of the auxiliary building crane to be stationed above or pass over a spent fuel storage rack containing spent fuel. This requirement along with installed interlocks prevents the movement of loads over spent fuel by the auxiliary building crane.
The overhead hoist attached to spent fuel pool bridge is used to transfer spent fuel within the pool area. Use of this hoist is limited to single fuel assemblies and their handling tools. The rack structure protects stored fuel from the impact of a dropped fuel assembly~. A weight limitation on the hoist (2000 lbs), the physical position of the overhead hoist, and an up-stop limit switch prevents the potential impact energy of a load from substantially exceeding that of a dropped spent fuel assembly.~
 
References
: l. Application for 1976.
Amendment to Operating License, January 30,
: 2. Letter, A Schwencer to L.D. White, November 15, 1976.
: 3. Zetter, L.D. White to D.L. Ziemann, February 13, 1980.
: 4. Zetter, D.M. Crutchfield to Z.D. White, November 3, 1981.
: 5. Application for Amendment to Operating License, February 23, 1982.
: 6. Application for   Amendment to Operating Zicense, January 18, 1984.
: 7. Letter, J.E. Maier to   D.M. Crutchfield, June 9, 1981.
: 8. U.S. Nuclear Regulatory Commission, Standard Review Plan 3.7.2 "Seismic System Analysis," Revision 1, July, 1981.
9    Fritz, R.J.,   "The Effects of Liquids on the Dynamic Motions of Immersed Solids, "ASME February, 1972.
: 10. Dong, R.G.; "Effective Mass and Damping of Submerged Structures",
UCRL-52342,   L.L.L., April,   1978.
ll. Stokey, W.J., Scavuzzo, R.J. and Radke, E.E., "Dynamic Fluid Structure Coupling of Rectangular Modules in Rectangular Pools," ASME Special Publication PVP-39, 1979.
: 12. Regulatory Guide 1.61, "Damping Values     for Seismic Design of Nuclear Power Plant", October, 1973.
: 13. Rabinowicz, E.,   "Friction Coefficients of Water-Zubricated Stainless Steels for   a Spent Fuel Rack Facility", Study performed   for Boston Edison, Co. November, 1976.
: 14. ASME Boiler and Pressure Vessels,   NUCZEAR VESSELS, Section III, 1980 ed.
: 15. G.E. Technical Paper 22A5866, Rev. Dec. 26, 1979.       Appendix II, FUEL ASSEMBZY STRUCTURAL CHARACTERISTICS.
: 16. R.D. Blevins, Ph.D,   FORMULAS, FOR NATURAL FREQUENCY AND MODE SHAPE, Van   Nostrand Reinhold Co., N.Y., N.Y., 1979.
: 17. ,R.J. Roark, W.C. Young, FORMULAS FOR STRESS       AND STRAIN, MCRAW-HILZ BOOK CO., N.Y. 5th Ed., 1975.
: 18. J.S. Anderson, "Boraflex Neutron Shielding Material Product Performance Data," Brand Industries, Inc., Report 748-30-1, (August, 1979).
: 19. J.S. Anderson, "Irradiation Study of Boraflex Neutron Shielding
    , Material," Brand Industries, Inc., Report 748-10-1, (July, 1979).
: 20. J.R. Anderson, "A Final Report on the Effects of High Temperature Borated Water Exposure on BISCO Boraflex Neutron Absorbing Material," Brand Industries, Inc., Report 748-21-1, (August, 1978) .
: 21. O.W. Blodgett, Design of Welded Structures, J.F. Lincoln Arc Welding Foundation, Cleveland, Ohio, 7th Printing 1975.
: 22. American Concrete Institute, Manual  of Concrete Practice, 329-32, Detroit, Michigan.
: 23. Letter T.R. Robbins to J.D. Cook, March 15, 1984.
: 24. Gilbert Associates, Inc., Ginna Station Seismic Upgrading Program  Auxiliary Structures Seismic Analysis, May 15, 1980.
: 25. Application for Amendment to Operating License, January 18, 1984.
 
For U.S. Tool 4 Die, ?nc.
Criticality Analysis of  Region 2  of the Ginna t<DR Spent Fuel Storage Rack Final Report by Pickar 4, Lowe 4 Garrick, Inc.
Mashi ngton, D.C.
 
TABLE OF CONTENTS
                                                                  ~Pa  e 1.0  THE MAXIMUM DENSITY RACK (MDR) DESIGN CONCEPT 1.1  Introduction 2.0  CRITICALITY ANALYSIS  OF REGION 2 (ASSUMES IRRADIATED FUEL) 2.1  Analytical Technique                                      3
: 2. 2  Calculational Approach                                    8 2.3  Manufacturing and Thermal Considerations                  9 2.4  Design Conservatisms                                    10 2.5  Accident Analysis                                        11 2.6  Required Exposure as a Function of Initial Enrichment for  Region 2 Spent Fuel REFERENCES                                                          13 7047U012784
 
TABLE OF CONTENTS    (continued)
List of  Tables Table                          Title Region  2  Design  Criteria Fuel Assembly Technical Information      for  Ginna Nuclear Plant Summary  of Leopard Results for    Measured  Criticals Westinghouse UO2 Zr-4 Clad      Cylindrical  Core Critical Experiments Battelle Fixed Neutron Poison Criticals Saxton Pu02-U02    Critical Experiments ESADA  Pu02-U02  Critical  Experiments Summary  of Predictions for keff in Criticality Experiments Summary  of Reactivity Biases    and Uncertainties for  Ginna Region  2 MDR 10    Computed Infinite    Multiplication Factors for Ginna MDR 7047U012784
 
TABLE OF CONTENTS  (continued)
List of  Fi ures
    ~Ff  ere                      Title Ginna  MDR Spent Fuel Rack Design Net Destruction  of U-235 Versus Burnup    in, the Yankee Asymptotic t/eutron Spectrum Specific Production of U-236 Versus Burnup in Yankee Asymptotic Neutron Spectrum Net Destruction of U-238 Versus Burnup      in the Yankee Asymptotic Neutron Spectrum Specific Production of Pu-239 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-240 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of    Pu-241 Versus Burnup in Yankee Asymptotic  Neutron  Spectrum Specific Production of Pu-242 Versus Burnup in Yankee Asyhptotic Neutron Spectrum Specific Production of Total Pu and Fissile Pu Versus Burnup in Yankee Asymptotic Neutron Spectrum 10  Atom Percent  of Total  U  Versus Exposure Pu-239/U-238 Atom Ratio Versus Exposure 12  Atom  Percent of Total  Pu  Versus Exposure 13  Fission Product Absorption Cross-Sections        as a Function of Time After Shutdown 14  One-Quarter Rack Cell Model    for  Ginna  MDR 15  Four-Quarter Rack Cell Model      for Ginna  MDR 16  Variation of  k  with Assembly Pitch for Ginna  MDR 17  Variation of  k  with Steel Thickness for Ginna MDR 7047U012784
 
TABLE OF CONTENTS    (continued)
List of  Fi ures
    ~Fi  ure                        Title 18    Variation of  k    with Pellet Diameter for Ginna MDR 19  . Variation of  k    with Pellet Density for Ginna MDR 20    Variation of  k    with Water Density for Ginna MDR 21    Variation of  k    with Temperature for Ginna MDR.
22    Configuration  Used to Determine the Effects of the Region  1  - Region 2  Interface 23    Regions of Acceptability and Unacceptability for Region 2 Spent Fuel 7047U012784
 
1.0  THE MAXIMUM DENSITY RACK (MDR) DESIGN CONCEPT 1.1  Introducti on Historically, spent fuel rack designs  have been based on conservative assumptions  that could be easily accommodated since it was not planned to store large numbers of high exposure spent fuel assemblies on-site.
Previously it was anticipated that only .small. amounts of high exposure fuel assemblies (1/4 to 1/2 of a full core load) would normally be stored in the spent fuel pool at any one time. Additionally, it was anticipated that, occasionally (e.g., for inservice inspection of the reactor vessel internals) the entire core would be unloaded and temporarily stored in the spent fuel pool. Therefore, the spent fuel storage rack design was based on the conservative assumption that all fuel rack storage positions would be occupied by fresh unirradiated fuel assemblies of the highest initial enrichment that was foreseen as being useable in that facility.
The  penalty in achievable. spent fuel storage density associated with this conservative design assumption was relatively small under the circumstances anticipated and easily accommodated by a conservative spent fuel rack design. The potential penalty associated with this conservative design basis is no longer small when long, term on-site storage of spent fuel is a necessity.
It is  not conceivable that more than one full core load of fresh unirradiated fuel assemblies could be stored in the spent fuel storage pool. Therefore,    it is unnecessary and wasteful to base the entire spent fuel storage rack design on the assumption of fresh unirradiated fuel of the highest initial enrichment.
In the MDR design concept, the spent fuel pool is divided into two separate and distinct regions which for the purpose of critically considerations may be considered as separate pools. Suitability of this design assumption regarding pool separatabi lity is assured through appropriate design restrictions at the boundaries between Region 1 and Region 2. The smaller region, Region 1, of the pool is designed on the 7043U012784
 
basis of currently accepted conservative criteria which allow for the safe storage of a number of fresh unirradiated fuel assemblies (including a full core unloading  if  that should prove necessary). The larger region of the pool, Region 2, is'esigned to safely store irradiated fuel .
assemblies which will be discharged from the reactor in large quantities.
The  criteria for  Region 2  of the pool are specifically listed in Table The only change in criteria is the recognition of actual fuel and fission product inventory accompanied by a system for checking fuel prior to moving any fuel assembly from Region    1 to Region 2.
During a normal refueling operation, each fuel assembly is first moved from the core to Region  l. After the refueling operation is complete and the suitability of each spent fuel assembly for movement into Region 2 is verified, this fuel will    be moved  into Region 2.
Region  2 is designed to store fuel which does not exceed pre-established reactivity criteria. Consequently, the limit on acceptable initial enrichment varies with the exposure at the time of storage. For instance, 4.25 w/o fuel is acceptable for storage only after a predetermined minimum exposure has been reached. A somewhat lower minimum exposure would be acceptable for fuel with a lower initial enrichment. This resulting curve of initial fuel assembly enrichment versus minimum acceptable exposure defines a curve of constant spent fuel rack reactivity'. The major purpose of this study is the determination of this curve.
2.0  CRITICALITY ANALYSIS  OF REGIO)$ 2 (ASSUMES IRRADIATED FUEL)
The  fuel assemblies used in this analysis are characterized in Table 2.
The Ginna as built spent fuel rack cell is shown in Figure 1.
The following discussion summarizes the design of the spent fuel racks with respect to the criticality design. The analytical techniques described here are similar to those used to successfully license spent fuel racks for several other plants.
7043U012784
 
2.1  Anal  tical  Techni ue The LEOPARD      computer program was used to generate macroscopic cross sections for  input to four energy group diffusion theory calculations (2) which are performed with the PDg-7        program. LEOPARD calculates the neutron energy spectrum over the entire energy range from thermal up to 10 Mev and determines averaged cross sections over appropriate energy groups. The fundamental methods used in the LEOPARD program are those (3) and SOFOCATE (4) programs which were developed used in the NUFT under the Naval Reactor Program and thus are well founded and extensively tested techniques. In addition, Westinghouse Electric Corporation, the developers of the original LEOPARD program, demonstrated the accuracy of these methods by extensive analysis of measured critical assemblies consisting of slightly enriched    UO  fuel rods. (5)
In addition, Pickard, Lowe and Garrick, Inc. (PLG) has made a number of inprovements to the LEOPARD program to increase its accuracy for the calculation of reactivities in systems which contain significant amounts of. plutonium mixed with U02. PLG has tested the accuracy of these modifications by analyzing a series of UO and Pu02-UO critical experiments. These benchmarking analyses not only demonstrate the improvements obtained for the analysis of Pu02-U02 systems but also demonstrate that these modifications have not 'adversely affected the accuracy of the PLG-modified LEOPARD program for calculations of slightly enriched U02 systems.
The U02  critical  experiments chosen for benchmarking include variations in H20/U02 volume ratios, U-235 enrichments,, pellet diameters and cladding materials. Although the LEOPARD model also accurately calculates'he reactivity effects of soluble boron, these experiments have not been included in the LEOPARD benchmarking criticals since the spent fuel pool calculations do not involve soluble boron.
Neutron leakage was represented    by using measured  buckling input to infinite lattice    LEOPARD calculations to represent the critical assembly. A summary of the results is shown in Table 3 for the 27 measured criticals chosen as being directly applicable for benchmarking 7043U012784
 
the  LEOPARD model  for generating  group average cross sections for spent fuel rack  criticality calculations. The average calculated keff is 0.9979 and the standard deviation from    this  average is 0.0080 hk.
Reference 5 raised questions concerning the accuracy of the measured buckling reported for the experiments number 12 through 19. If these data are excluded, the average calculated keff for the remaining 19 experiments is 1.0006 with a standard deviation from this value of 0.0063 hk. In all of these experiments; there are significant uncertain-ties in the measured bucklings which are necessary inputs to the LEOPARD analysis. These uncertainties are the same order of magnitude as the indicated errors in the LEOPARD results, and therefore a more definitive set of experimental data is used to establish the accuracy of the combined LEOPARD/PDg-7 model used for the criticality analysis of th' spent fuel racks.
The PDg  series of programs have been extensively developed and tested over a period of 20 years and the current version, PDg-7, is an accurate and reliable model for calculating the subcritical margin of the proposed spent fuel rack arrangement. This code or a mathematically equivalent method is used by all the U.S. suppliers of light water reactor cores and reload fuel. In addition, this code has received extensive utilization in the U.S. Naval Reactor Program.
As a  specific demonstration of the accuracy of the'calculational model used for the spent fuel rack calculations, the combined LEOPARD/PDg-7 model has been used to calculate fourteen measured just critical assemblies. The criticals are high neutron leakage systems with a large variation in U/H2 0 volume ratio and include parameters in the same range as those applicable to the proposed fuel rack design. Experiments including soluble boron are included in this demonstration since the ability of PDg-7 to calculate neutron leakage effects is of primary interest. The use of soluble boron allows changes in the neutron leakage of the assembly while maintaining a uniform lattice and thus allows a better test of the accuracy of the model. Furthermore,      it eliminates the error associated with the measured bucklings which is inherent in the LEOPARD benchmarks, thus permitting determinations of the actual calcu-
 
lational uncertainty which must    be accounted for in the spent fuel rack criticality analysis.
These combination LEOPARD/PDg-7    calculations result in a calculated ff of 0.9928 with a standard deviation about this value of average k eff 0.0012 hk. These results, as shown in Table 4 demonstrate that the proposed LEOPARD/PDg-7 calculational model can calculate the reactivity of the proposed spent fuel rack arrangements with an accuracy of better than 0.010 Lk at the 95 percent confidence level.
                              'I The  cross sections for the Boraflex neutron absorbing material which    is an integral part of the design are calculated using fundamental techniques that have been successfully applied in the past to thin heavily absorbing mediums such as control rods.
This procedure is straightforward and is comprised of several well defined steps:
: 1. The  B  from the  thin Boraflex sheets is homogenized in an appropriate amount of water, and LEOPARD is used to obtain unshielded macroscopic  B    cross sections.
: 2. Integral transport theory is applied in slab geometry using They's method for calculating flux depressions and shielding factors to 10 determine an appropriate B number density. This approach is similar to that of Amouyal and Benoist.
: 3. The  B  number  density calculated in Step 2 is homogenized in water, and LEOPARD is used to obtain corrected microscopic B cross sections.
: 4. Blackness theory is applied to obtain macroscopic cross sections which will produce the required boundary conditions at the surface      of the Bor aflex sheets.
7043U012784
 
In addition to the fourteen    critical  assemblies in Table 4, the LEOPARD/PDg model was used to calculate the keff for twelve additional critical assemblies, seven of which incorporated thin, heavily-absorbing materials for which the procedure just described was used to determine the macroscopic cross sections.
These twelve  criticals  were performed by  Battelle Pacific Northwest Laboratories specifically for the purpose of providing benchmark critical experiments in support oF spent fuel criticality analysis. They are described in detail in Reference 18. The results of these critical experiments are summarized in Table 5. The first seven of these twelve experiments include fixed neutron poison absorber plates, and the average k
ff calculated for eff                  these just critical  assemblies was 0.9935, with a standard deviation around    this  value of 0.0007 b,k. The other five critical experiments in this series    do  not include absorber plates and the average k eff calculated for these just critical assemblies was ff 0.9944, with a standard deviation around this value of 0.0007 Lk. The overall average k eff calculated for these twelve just critical ff assemblies was 0.9939, with a standard deviation around this value of 0.0008 ~k.-
This extensive series of V02 critical experiments further supports the applicability of the methods described above for use in calculating the subcritical margin of these fuel storage rack designs, and demonstrates that the accuracy of better than 0.010 hk at the 95 percent confidence level established for the LEOPARD/PDg-7 model applies equally well to designs incorporating fixed neutron absorbers for which blackness theory is used to calculate the macroscopic cross sections and also to assemblies containing plutonium.
As a  result of this approach to separately benchmark both the cross sections and the diffusion theory calculations against applicable critical assemblies, the "transport theory correction factor" is implicitly included in the derived calculational uncertainty factor.
7043U012784
 
The analytical methods used for Region 2 must also account for the depletion of U-235 and buildup of various plutonium isotopes and fission products. The isotopic composition is calculated as a function of irradiation time,      assembly average exposure, and subsequent decay using the LEOPARD(    -  and CINDER (6) compute programs. Once the isotopic compositions of the fuel assemblies are known, the subsequent criticality calculations for the spent fuel racks in Region 2 are performed in the manner given above.
The accuracy  of the exposure dependent isotopic concentrations calculated with the LEOPARD program is demonstrated in Figure 2 through Figure 12.
Figures 2 through 9 show comparisons of LEOPARD calculated data with measured data from a U02 fuel assembly irradiated in the Yankee-Rowe reactor while Figures 10 through 12 show corresponding data for a mixed oxide (Pu02-UO ) fuel assembly irradiated in the SAXTOW reactor.
Except  for the    data labeled PLG calculation, the data and curves on Figures 2 through 9 and Figures 10 through 12 are taken directly from References 7 and 8, respectively.        In all cases, the accuracy of the calculations labeled PLG is within the uncertainty in the measured data.
The accuracy  of reactivity calculations for irradiated fuel can be demonstrated in part by the analysis of critical arrays of mixed oxide fuel rods which contain high concentrations of the plutonium isotopes.
Tables 6 and 7 show results of criticality analyses for the SAXTON (9) and ESADA        sets of experiments which cover a wide range of water-to-oxide volume ratios. A summary of these data is shown in Table 8  For the mixed oxide critical s the calculated mean keff is 0 9969 with a standard deviation about this value of 0.0066 'hk. Using the 95%
probability at 95% confidence level criterion (one-sided) with 11 data points, this implies a possible err or of 2.82 = 0.0186 hk with an offset of +.0031 Lk.
7043U012784
 
The  analytical methods used for Region 2 must also account for the depletion of U-235 and buildup of various plutonium isotopes and fission products. The isotopic composition is calculated as a function of irradiation time,  assembly average exposure, and subsequent decay using (6) computer programs. Once the, isotopic the  LEOPARD    and CINDER composi tions of the fuel assemblies are known, the subsequent criticality calculations for the spent fuel racks in Region 2 are performed in the manner given above.
The accuracy  of the exposure dependent isotopic concentrations calculated with the LEOPARD program is demonstrated in Figure 2 through Figure 12.
Figures 2 through 9 show comparisons of LEOPARD calculated data with measured data from a U02 fuel assembly irradiated in the Yankee-Rowe reactor while Figures 10 through 12 show corresponding data for a mixed-oxide (Pu02-UO ) fuel assembly irradiated in the SAXTON reactor.
Except for the data labeled PLG calculation, the data and curves on Figures 2 thr ough 9 and Figures 10 through 12 are taken directly from References 7 and 8, respectively.      In all cases, the accuracy of the calculations labeled PLG is within the uncertainty in the measured data.
The accuracy  of reactivity calculations for irradiated fuel can be demonstrated in part by the analysis of critical arrays of mixed oxide fuel rods which contain high concentrations of the plutonium isotopes.
Tables 6 and 7 show results of criticality analyses for the SAXTON and ESADA (10) sets of experiments which cover a wide range of water-to-oxide volume ratios. A summary of these data is shown in Table
: 8. For the mixed oxide criticals, the calculated mean k eff  ff is 0.9969 with a standard deviation about this value of 0.0066 Ak. Using the 95%
probability at 95% confidence level criterion (one-sided) with 11 data points, this implies a possible error of 2.82 = 0.0186 Dk with an offset of +.0031 ~k.
7043U012784
 
The  other major uncertainty in the calculations for Region 2 is associated with the calculated reduction in fuel assembly reactivity associated with the depletion of the heavy metals and the accumulation of fission products as a function of fuel assembly exposure. As an example, consider a 4.25 w/o (initial enrichment) Ginna fuel assembly at 30,000 HND/HT. The total reactivity loss from the fresh unirradiated case is 0.225 hk/k, of which approximately 50'X can be attributed to the build-up of fission products. Calculations of reactor reactivity lifetimes using the same analytical methods as used in this analysis demonstrate an accuracy of better than +5%. Therefore, the resulting uncertainty in the calculated fuel assembly k associated with fuel depletion would be conservatively estimated at 0.0112 6 k/k (= .05 x .235 hk/k). The, corresponding uncertainty in the calculated Region 2 multiplication factor is 0.0102 h k on a base case Region 2 k of 0.9072.
In order to provide further assurance of the conservative nature of these calculations, the decay of a>> fission products following discharge of the fuel assembly was taken into account. This was accomplished with the aid of the CIHDER      code which treats a total of 186 nuclides in 84 linear chains. The fission product inventory for each fuel assembly was decayed for thirty years following its removal from the reactor core, and the time point of minimum fission product absorption within that thirty year period was used at the basis for de'termining the fission produce macroscopic absorption cross sections for that particular fuel assembly at that specific exposure. That minimum occurs at approximately 100 days into the decay and from, then on continues to increase as i>>ustrated in ure 13. Reduction in the fission product inventory due to leakage or Fi gure escape to the plenum has been found to be negligible.
(>>)
2.2  Calcul ational  A  roach The POQ-7 program    is used  in the final predictions of the reactivity of the spent fuel stoppage racks. The calculations are performed in four energy groups and take into account a>> the significant geometric details of the fuel assemblies, fuel boxes, and major structural components. The 70430012784
 
geometry used  for most of the calculations is a basic cell representing one-quarter of the area of a repeating array of stainless-steel boxes.
The specific geometry of this basic cell is shown in Figure 14.
The  calculational approach is to use the basic cell to calculate the reactivity of an infinite array of uniform spent fuel racks and to account for any deviations of th'e actual spent fuel rack array from this assumed infinite array as perturbations on the calculated reactivity of the basic cell. The effects of manufacturing tolerances, as well as thermal uncertainties, including fuel and water temperature and density variations, are also treated as perturbations on the calculated reactivity of the basic cell.
The Adequacy  of the calculational  mesh  selected for this type of cel'i calculation has been verified by comparison with the results of an identical geometry which used a finer calculational mesh (two times the number  of mesh intervals in each direction). The finer calculational mesh resulted in little change in the value of k with an observed increase of +0.0002 Dk.
A  further check on the  calculational  model used  divas the use of a more accurate spatial model encompassing the corners of four adjacent rack cells as'hown in Figure 15. The use of this model had the effect of increasing k by 0.0005 ~k.
2.3  Manufacturin  and Thermal  Considerations Several perturbations of the basic    cell  were performed  to determine the effects of changes in the physical    cell  and component dimensions, due to manufacturing tolerances, changes in water density, and changes in temperature. All cases were performed on 4.25 w/o fuel at an exposure of 30,000 MWD/tonne.
7043U012784


18.J.S.Anderson,"Boraflex Neutron Shielding Material-Product Performance Data," Brand Industries, Inc., Report 748-30-1, (August, 1979).19.J.S.Anderson,"Irradiation Study of Boraflex Neutron Shielding , Material," Brand Industries, Inc., Report 748-10-1, (July, 1979).20.J.R.Anderson,"A Final Report on the Effects of High Temperature Borated Water Exposure on BISCO Boraflex Neutron Absorbing Material," Brand Industries, Inc., Report 748-21-1, (August, 1978).21.O.W.Blodgett, Design of Welded Structures, J.F.Lincoln Arc Welding Foundation, Cleveland, Ohio, 7th Printing 1975.22.American Concrete Institute, Manual of Concrete Practice, 329-32, Detroit, Michigan.23.Letter T.R.Robbins to J.D.Cook, March 15, 1984.24.Gilbert Associates, Inc., Ginna Station Seismic Upgrading Program-Auxiliary Structures Seismic Analysis, May 15, 1980.25.Application for Amendment to Operating License, January 18, 1984.  
The  following  changes  in specifications due to manufacturing tolerances were considered:      Reducing assembly pitch by .060" leaving other dimensions constant (water gap reduced); reducing steel wall thickness of both box (by .009") and boraflex retaining- device (by .003") (increased water gap); reducing pellet diameter .0010", and increasing pellet density by 1.5% of the theoretical value. These variations represent the full range of possible variations in the mechanical design of the fuel rack and fuel. The reduction in pitch results in an increase in k of 0.0019 dk. The reduction in steel thickness results in a decrease of k~
of 0.0002 hk. The reduction in pellet diameter results in a decrease in k of 0.0005 hk,'hile the increase in pellet density increases k by 0.0015 Dk. These effects are shown in Figures 16-19.
The  results of decreases in water density and increases in temperature it E
are shown in Figures 20 and 21. In both cases,         is clear that the base case (68'F, water at full density) represents the maximum reactivity.
The  effect of the interface    between Region 1 and Region 2 was evaluated assuming  fresh 4.25 w/o fuel in Region 1 and 4.25 w/o fuel at an exposure of 30,000 NWD/MT in Region 2. This resulted in a computed k of 0.9195, or a change of +0.'0123 Lk over the computed k basis rack. cell used to represent Region 2. The model used is shown in Figure 22.
A summary  of the biases  and uncertainties in the computed valves of k is given in Table 9. The uncertainties have been combined statistically.
These  results  show  that a basic cell computed k of less than 0.9108 will assure an actual k      below 0.95 with 95% probability at the 95% confidence level.
2.4    Desi n Conservatisms Mhile the tlDR concept reduces some of the design conservatisms inherent in the earlier spent fuel storage concepts (e.g., assumption of fresh unirradiated fuel), the design and analyses for the HDR as implemented in Region 2 are still very conservative in nature.
10 7043U012784


For U.S.Tool 4 Die,?nc.Criticality Analysis of Region 2 of the Ginna t<DR Spent Fuel Storage Rack Final Report by Pickar 4, Lowe 4 Garrick, Inc.Mashi ngton, D.C.
The use  of assembly average exposures is one example of this conservative approach; Axially, more than 80% of the fuel assembly will normally have reached exposures    greater than the average and this will occur along the central, higher worth region of the assembly. The lower exposure regions would normally account for less than 20% of the fuel assembly length distributed at the ends of the fuel assembly active length which are lower worth regions. The result is a neutronically higher exposure assembly than represented      by the simple assembly average  exposure. The use  of the simple assembly average exposure can result in      an over-estimate of the fuel assembly k ff by +.015 hk/k.
TABLE OF CONTENTS 1.0 THE MAXIMUM DENSITY RACK (MDR)DESIGN CONCEPT 1.1 Introduction
2.5    Accident Anal sis The Region 2   fuel racks are designed to prevent a dropped fuel bundle from penetrating and occupying a position other than a normal fuel storage location. The only positive reactivity effect of such a bundle on the  multiplication factor of the rack    would be by virtue of a reduction in axial neutron leakage from the rack. Since the calculations reported here take no credit for axial neutron leakage, the effect of a dropped fuel assembly could not be expected to exceed the reported maximum  possible reactivity of the spent fuel storage rack. This is because the reported maximum possible reactivity of the rack is based            on infinite array calculations (both laterally and vertically).
2.6  Re  uired Ex osure as  a  Function of  Initial Enrichment  for Re  ion  2 S  ent Fuel As shown above,   a computed k    of 0.9108 will assure that the actual k is below 0.95 with a probability of 0.95 at the 95% confidence level. These computations were performed for 4.25 w/o fuel with an exposure of 30,000 tlWD/NT. Fot lower enrichments with the same computed value of        k,    the amount of exposure will be reduced, reducing the reactivity uncertainties due to depletion of fuel and buildup of fission products, and thus reducing the total uncertainty. Thus the computed k value of 0.9108 should be conservative    for all enrichments not  exceeding 4.25 w/o.     In 7043U012784


==2.0 CRITICALITY==
order to allow for possible interpolation errors, however, a target value of 0.9050 for k will be used for other enrichments. The results shown in Table- l0 may be interpolated to estimate the required exposure to reach a computed k value of 0.9050. For 4.25 w/o fuel the required exposure is 30,000 HMT/MT, for 3.00 w/o fuel  it is 15,960 HMD/MT. For 1.75 w/o fuel, even fresh fuel has a computed k of less than 0.9050.
ANALYSIS OF REGION 2 (ASSUMES IRRADIATED FUEL)2.1 Analytical Technique 2.2 Calculational Approach 2.3 Manufacturing and Thermal Considerations
The resulting curve, shown in Figure 23, gives the required exposure as a function of enrichment to assure that the value of k in the spent fuel has a probability of 95% of not exceeding 0.95>>at the 95'X confidence level.
r Because  of the well-founded, conservative technique used for determination of the infinite multiplication factor, there is assurance that this spent fuel rack design will *not cause undue risk to the public health and safety resulting from criticality considerations.
12 7043U012784


===2.4 Design===
REFERENCES
Conservatisms
: 1. R.F.: Barry, "LEOPARD  A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," MCAP-3269, September 1963.
: 2. M.R. Caldwell, "PDg-7 Reference Manual,"    WAPO-TM-678, January  1967.
: 3. H. Bohl, E. Gelbard and G. Ryan, "MUFT-4      Fast  Neutron Spectrum Code for the IBM-740," WAOP-TM-72, July 1957.
: 4. H. Amster and R. Suarez, "The Calculation of Thermal Constants Averaged Over a Wigner-Wilkins Flux Spectrum:      Description of the SOFOCATE Code," MAPO-TM-39, January 1957.
: 5. L.E. Strawbridge and R.F. Barry, "Criticality Calculations for Uniform Mater-Moderated Lattices," Nuclear Science and Engineering, 23, 58, 1965.
: 6. Electric  Power Research  Institute, "Fission Product Data for Thermal Reactors, Part 1 and Part 2: Data Set      for EPRI-CINDER and Users Manual for EPRI-CINDER Code and Data,"    EPRI HP-356,  Final Report
    '1976).
: 7. R.J. N dvik, "Evaluation of Mass Spectometric and Radiochemical Analyses of Yankee Core I and Core II Spent Fuel," MCAP-6068 (1965).
: 8. R.J..Nodvik, "Saxton Core II Fuel Performance Evaluation of Mass Spectometric and Radiochemical Analyses of Irradiated Saxton Plutonium Fuel," WCAP-3385-56 Part II {1970).
: 9. M.L. Orr, H. I. Sternberg, P. Oeramaix, R.H. Chastain, L. Binder and A.J. Impink, "Saxton Plutonium Program, Nuclear Design of the Saxton Partial Plutonium Core," MCAP-3385-51, December 1965. (Also EURAEC-1490).
: 10. R.D. Learner, W.L. Orr, R.L. Stover, E.G. Taylor, J.P. Tobin and A. Bukmir, "Pu02-U02 Fueled Critical Experiments," MCAP-3726-1, July 1967.
ll. R.A. Lorenz, Fuel,"
et al., "Fission Product NUREG/CR-0722, February 1980.
Release  from Highly  Irradiated LWR
: 12. P.M. Davison, et al., "Yankee Critical Experiments Measurements on Lattices of Stainless Steel Clad Slightly Enriched Uranium Dioxide Fuel Rods in Light Water," YAEC-94, Mestinghouse Atomic Power Division {1959).
: 13. V.E. Grob and P.W. Oavison, et
              - Results of Critical al., "Multi-Region Reactor Lattice Studies                          Experiments in Loose Lattices of UO Rods 1n M20,0 MCAP-1412, Mest1nghoose Atomic Power 01v141on (1960).
                                  '3 7044U012784


===2.5 Accident===
REFERENCES (continued)
Analysis 2.6 Required Exposure as a Function of Initial Enrichment for Region 2 Spent Fuel~Pa e 3 8 9 10 11 REFERENCES 13 7047U012784 TABLE OF CONTENTS (continued)
: 14. W.J; Eich and W.P. Kovacik, "Reactivity and Neutron Flux Studies in Multiregion Loaded Cores," WCAP-1433, Westinghouse Atomic Power, Division (1961).
List of Tables Table 10 Title Region 2 Design Criteria Fuel Assembly Technical Information for Ginna Nuclear Plant Summary of Leopard Results for Measured Criticals Westinghouse UO2 Zr-4 Clad Cylindrical Core Critical Experiments Battelle Fixed Neutron Poison Criticals Saxton Pu02-U02 Critical Experiments ESADA Pu02-U02 Critical Experiments Summary of Predictions for keff in Criticality Experiments Summary of Reactivity Biases and Uncertainties for Ginna Region 2 MDR Computed Infinite Multiplication Factors for Ginna MDR 7047U012784
15.'.J. Eich, Personal Communication (1963).
: 16. T.C. Engelder, et al., "Measurement and Analysis of Uniform Lattices of Slightly Enriched U02 Moderated by Dp0-H20 Mixtures,"
BAW-1273, the Babcock & Wilcox Company tl963).
: 17. A.L. MacKinney and R.M. Ball, "Reactivity Measurements on Unperturbed, Slightly Enriched Uranium Dioxide Lattices," BAW-1199, the Babcock 4 Wilcox Company (1960).
: 18. Battelle Pacific Northwest Labbratories, "Critical Separative Between Subcritical Clusters of 2.35 Wt X 235-U Enriched U02 Rods in Water With Fixed Neutron Poisons," PNL-2438.
7044U012784


TABLE OF CONTENTS (continued)
TABLE 1 REGION 2 OESIGN CRITERIA
List of Fi ures~Ff ere 10 12 13 Title Ginna MDR Spent Fuel Rack Design Net Destruction of U-235 Versus Burnup in, the Yankee Asymptotic t/eutron Spectrum Specific Production of U-236 Versus Burnup in Yankee Asymptotic Neutron Spectrum Net Destruction of U-238 Versus Burnup in the Yankee Asymptotic Neutron Spectrum Specific Production of Pu-239 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-240 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-241 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-242 Versus Burnup in Yankee Asyhptotic Neutron Spectrum Specific Production of Total Pu and Fissile Pu Versus Burnup in Yankee Asymptotic Neutron Spectrum Atom Percent of Total U Versus Exposure Pu-239/U-238 Atom Ratio Versus Exposure Atom Percent of Total Pu Versus Exposure Fission Product Absorption Cross-Sections as a Function of Time After Shutdown 14 15 16 One-Quarter Rack Cell Model for Ginna MDR Four-Quarter Rack Cell Model for Ginna MDR Variation of k with Assembly Pitch for Ginna MDR 17 Variation of k with Steel Thickness for Ginna MDR 7047U012784 TABLE OF CONTENTS (continued)
: 1. Actual irradiated fuel and fission product inventory is assumed.
List of Fi ures~Fi ure 18 Title Variation of k with Pellet Diameter for Ginna MDR 19.Variation of k with Pellet Density for Ginna MDR 20 21 22 23 Variation of k with Water Density for Ginna MDR Variation of k with Temperature for Ginna MDR.Configuration Used to Determine the Effects of the Region 1-Region 2 Interface Regions of Acceptability and Unacceptability for Region 2 Spent Fuel 7047U012784 1.0 THE MAXIMUM DENSITY RACK (MDR)DESIGN CONCEPT 1.1 Introducti on Historically, spent fuel rack designs have been based on conservative assumptions that could be easily accommodated since it was not planned to store large numbers of high exposure spent fuel assemblies on-site.Previously it was anticipated that only.small.amounts of high exposure fuel assemblies (1/4 to 1/2 of a full core load)would normally be stored in the spent fuel pool at any one time.Additionally, it was anticipated that, occasionally (e.g., for inservice inspection of the reactor vessel internals) the entire core would be unloaded and temporarily stored in the spent fuel pool.Therefore, the spent fuel storage rack design was based on the conservative assumption that all fuel rack storage positions would be occupied by fresh unirradiated fuel assemblies of the highest initial enrichment that was foreseen as being useable in that facility.The penalty in achievable.
: 2. keff (0.95
spent fuel storage density associated with this conservative design assumption was relatively small under the circumstances anticipated and easily accommodated by a conservative spent fuel rack design.The potential penalty associated with this conservative design basis is no longer small when long, term on-site storage of spent fuel is a necessity.
: 3. Credit  may be taken for presence of borated water for abnormal  (accident) conditions.
It is not conceivable that more than one full core load of fresh unirradiated fuel assemblies could be stored in the spent fuel storage pool.Therefore, it is unnecessary and wasteful to base the entire spent fuel storage rack design on the assumption of fresh unirradiated fuel of the highest initial enrichment.
: 4. Multiple checks required for each fuel assembly prior to transfer from Region 1 to Region 2.
In the MDR design concept, the spent fuel pool is divided into two separate and distinct regions which for the purpose of critically considerations may be considered as separate pools.Suitability of this design assumption regarding pool separatabi lity is assured through appropriate design restrictions at the boundaries between Region 1 and Region 2.The smaller region, Region 1, of the pool is designed on the 7043U012784 basis of currently accepted conservative criteria which allow for the safe storage of a number of fresh unirradiated fuel assemblies (including a full core unloading if that should prove necessary).
7044U012784
The larger region of the pool, Region 2, is'esigned to safely store irradiated fuel.assemblies which will be discharged from the reactor in large quantities.
The criteria for Region 2 of the pool are specifically listed in Table The only change in criteria is the recognition of actual fuel and fission product inventory accompanied by a system for checking fuel prior to moving any fuel assembly from Region 1 to Region 2.During a normal refueling operation, each fuel assembly is first moved from the core to Region l.After the refueling operation is complete and the suitability of each spent fuel assembly for movement into Region 2 is verified, this fuel will be moved into Region 2.Region 2 is designed to store fuel which does not exceed pre-established reactivity criteria.Consequently, the limit on acceptable initial enrichment varies with the exposure at the time of storage.For instance, 4.25 w/o fuel is acceptable for storage only after a predetermined minimum exposure has been reached.A somewhat lower minimum exposure would be acceptable for fuel with a lower initial enrichment.
This resulting curve of initial fuel assembly enrichment versus minimum acceptable exposure defines a curve of constant spent fuel rack reactivity'.
The major purpose of this study is the determination of this curve.2.0 CRITICALITY ANALYSIS OF REGIO)$2 (ASSUMES IRRADIATED FUEL)The fuel assemblies used in this analysis are characterized in Table 2.The Ginna as built spent fuel rack cell is shown in Figure 1.The following discussion summarizes the design of the spent fuel racks with respect to the criticality design.The analytical techniques described here are similar to those used to successfully license spent fuel racks for several other plants.7043U012784 2.1 Anal tical Techni ue The LEOPARD computer program was used to generate macroscopic cross sections for input to four energy group diffusion theory calculations which are performed with the PDg-7 program.LEOPARD calculates the (2)neutron energy spectrum over the entire energy range from thermal up to 10 Mev and determines averaged cross sections over appropriate energy groups.The fundamental methods used in the LEOPARD program are those-used in the NUFT and SOFOCATE programs which were developed (3)(4)under the Naval Reactor Program and thus are well founded and extensively tested techniques.
In addition, Westinghouse Electric Corporation, the developers of the original LEOPARD program, demonstrated the accuracy of these methods by extensive analysis of measured critical assemblies consisting of slightly enriched UO fuel rods.(5)In addition, Pickard, Lowe and Garrick, Inc.(PLG)has made a number of inprovements to the LEOPARD program to increase its accuracy for the calculation of reactivities in systems which contain significant amounts of.plutonium mixed with U02.PLG has tested the accuracy of these modifications by analyzing a series of UO and Pu02-UO critical experiments.
These benchmarking analyses not only demonstrate the improvements obtained for the analysis of Pu02-U02 systems but also demonstrate that these modifications have not'adversely affected the accuracy of the PLG-modified LEOPARD program for calculations of slightly enriched U02 systems.The U02 critical experiments chosen for benchmarking include variations in H20/U02 volume ratios, U-235 enrichments,, pellet diameters and cladding materials.
Although the LEOPARD model also accurately calculates'he reactivity effects of soluble boron, these experiments have not been included in the LEOPARD benchmarking criticals since the spent fuel pool calculations do not involve soluble boron.Neutron leakage was represented by using measured buckling input to infinite lattice LEOPARD calculations to represent the critical assembly.A summary of the results is shown in Table 3 for the 27 measured criticals chosen as being directly applicable for benchmarking 7043U012784 the LEOPARD model for generating group average cross sections for spent fuel rack criticality calculations.
The average calculated keff is 0.9979 and the standard deviation from this average is 0.0080 hk.Reference 5 raised questions concerning the accuracy of the measured buckling reported for the experiments number 12 through 19.If these data are excluded, the average calculated keff for the remaining 19 experiments is 1.0006 with a standard deviation from this value of 0.0063 hk.In all of these experiments; there are significant uncertain-ties in the measured bucklings which are necessary inputs to the LEOPARD analysis.These uncertainties are the same order of magnitude as the indicated errors in the LEOPARD results, and therefore a more definitive set of experimental data is used to establish the accuracy of the combined LEOPARD/PDg-7 model used for the criticality analysis of th'spent fuel racks.The PDg series of programs have been extensively developed and tested over a period of 20 years and the current version, PDg-7, is an accurate and reliable model for calculating the subcritical margin of the proposed spent fuel rack arrangement.
This code or a mathematically equivalent method is used by all the U.S.suppliers of light water reactor cores and reload fuel.In addition, this code has received extensive utilization in the U.S.Naval Reactor Program.As a specific demonstration of the accuracy of the'calculational model used for the spent fuel rack calculations, the combined LEOPARD/PDg-7 model has been used to calculate fourteen measured just critical assemblies.
The criticals are high neutron leakage systems with a large variation in U/H 0 volume ratio and include parameters in the same 2 range as those applicable to the proposed fuel rack design.Experiments including soluble boron are included in this demonstration since the ability of PDg-7 to calculate neutron leakage effects is of primary interest.The use of soluble boron allows changes in the neutron leakage of the assembly while maintaining a uniform lattice and thus allows a better test of the accuracy of the model.Furthermore, it eliminates the error associated with the measured bucklings which is inherent in the LEOPARD benchmarks, thus permitting determinations of the actual calcu-


lational uncertainty which must be accounted for in the spent fuel rack criticality analysis.These combination LEOPARD/PDg-7 calculations result in a calculated average k ff of 0.9928 with a standard deviation about this value of eff 0.0012 hk.These results, as shown in Table 4 demonstrate that the proposed LEOPARD/PDg-7 calculational model can calculate the reactivity of the proposed spent fuel rack arrangements with an accuracy of better than 0.010 Lk at the 95 percent confidence level.'I The cross sections for the Boraflex neutron absorbing material which is an integral part of the design are calculated using fundamental techniques that have been successfully applied in the past to thin heavily absorbing mediums such as control rods.This procedure is straightforward and is comprised of several well defined steps: 1.The B from the thin Boraflex sheets is homogenized in an appropriate amount of water, and LEOPARD is used to obtain unshielded macroscopic B cross sections.2.Integral transport theory is applied in slab geometry using They's method for calculating flux depressions and shielding factors to determine an appropriate B number density.This approach is 10 similar to that of Amouyal and Benoist.3.The B number density calculated in Step 2 is homogenized in water, and LEOPARD is used to obtain corrected microscopic B cross sections.4.Blackness theory is applied to obtain macroscopic cross sections which will produce the required boundary conditions at the surface of the Bor aflex sheets.7043U012784 In addition to the fourteen critical assemblies in Table 4, the LEOPARD/PDg model was used to calculate the keff for twelve additional critical assemblies, seven of which incorporated thin, heavily-absorbing materials for which the procedure just described was used to determine the macroscopic cross sections.These twelve criticals were performed by Battelle Pacific Northwest Laboratories specifically for the purpose of providing benchmark critical experiments in support oF spent fuel criticality analysis.They are described in detail in Reference 18.The results of these critical experiments are summarized in Table 5.The first seven of these twelve experiments include fixed neutron poison absorber plates, and the average k ff calculated for these just critical assemblies was 0.9935, with a eff standard deviation around this value of 0.0007 b,k.The other five critical experiments in this series do not include absorber plates and the average k ff calculated for these just critical assemblies was eff 0.9944, with a standard deviation around this value of 0.0007 Lk.The overall average k ff calculated for these twelve just critical eff assemblies was 0.9939, with a standard deviation around this value of 0.0008~k.-This extensive series of V02 critical experiments further supports the applicability of the methods described above for use in calculating the subcritical margin of these fuel storage rack designs, and demonstrates that the accuracy of better than 0.010 hk at the 95 percent confidence level established for the LEOPARD/PDg-7 model applies equally well to designs incorporating fixed neutron absorbers for which blackness theory is used to calculate the macroscopic cross sections and also to assemblies containing plutonium.
TABLE 2 FUEL ASSEMBLY TECHNICAL INFORMATION FOR GINNA NUCLEAR PLANT Rod Array Rods Per Assembly 14x14 gf 179 Rod Pitch, In.
As a result of this approach to separately benchmark both the cross sections and the diffusion theory calculations against applicable critical assemblies, the"transport theory correction factor" is implicitly included in the derived calculational uncertainty factor.7043U012784 The analytical methods used for Region 2 must also account for the depletion of U-235 and buildup of various plutonium isotopes and fission products.The isotopic composition is calculated as a function of irradiation time, assembly average exposure, and subsequent decay using the LEOPARD(-and CINDER compute programs.Once the isotopic (6)compositions of the fuel assemblies are known, the subsequent criticality calculations for the spent fuel racks in Region 2 are performed in the manner given above.The accuracy of the exposure dependent isotopic concentrations calculated with the LEOPARD program is demonstrated in Figure 2 through Figure 12.Figures 2 through 9 show comparisons of LEOPARD calculated data with measured data from a U02 fuel assembly irradiated in the Yankee-Rowe reactor while Figures 10 through 12 show corresponding data for a mixed oxide (Pu02-UO)fuel assembly irradiated in the SAXTOW reactor.Except for the data labeled PLG calculation, the data and curves on Figures 2 through 9 and Figures 10 through 12 are taken directly from References 7 and 8, respectively.
0.556 Overall Dimensions, In.
In all cases, the accuracy of the calculations labeled PLG is within the uncertainty in the measured data.The accuracy of reactivity calculations for irradiated fuel can be demonstrated in part by the analysis of critical arrays of mixed oxide fuel rods which contain high concentrations of the plutonium isotopes.Tables 6 and 7 show results of criticality analyses for the SAXTON (9)and ESADA sets of experiments which cover a wide range of water-to-oxide volume ratios.A summary of these data is shown in Table 8 For the mixed oxide critical s the calculated mean keff is 0 9969 with a standard deviation about this value of 0.0066'hk.Using the 95%probability at 95%confidence level criterion (one-sided) with 11 data points, this implies a possible err or of 2.82=0.0186 hk with an offset of+.0031 Lk.7043U012784 The analytical methods used for Region 2 must also account for the depletion of U-235 and buildup of various plutonium isotopes and fission products.The isotopic composition is calculated as a function of irradiation time, assembly average exposure, and subsequent decay using the LEOPARD and CINDER computer programs.Once the, isotopic (6)composi tions of the fuel assemblies are known, the subsequent criticality calculations for the spent fuel racks in Region 2 are performed in the manner given above.The accuracy of the exposure dependent isotopic concentrations calculated with the LEOPARD program is demonstrated in Figure 2 through Figure 12.Figures 2 through 9 show comparisons of LEOPARD calculated data with measured data from a U02 fuel assembly irradiated in the Yankee-Rowe reactor while Figures 10 through 12 show corresponding data for a mixed-oxide (Pu02-UO)fuel assembly irradiated in the SAXTON reactor.Except for the data labeled PLG calculation, the data and curves on Figures 2 thr ough 9 and Figures 10 through 12 are taken directly from References 7 and 8, respectively.
7.784 Active Fuel Height,'n.
In all cases, the accuracy of the calculations labeled PLG is within the uncertainty in the measured data.The accuracy of reactivity calculations for irradiated fuel can be demonstrated in part by the analysis of critical arrays of mixed oxide fuel rods which contain high concentrations of the plutonium isotopes.Tables 6 and 7 show results of criticality analyses for the SAXTON and ESADA sets of experiments which cover a wide range of (10)water-to-oxide volume ratios.A summary of these data is shown in Table 8.For the mixed oxide criticals, the calculated mean k ff is 0.9969 eff with a standard deviation about this value of 0.0066 Ak.Using the 95%probability at 95%confidence level criterion (one-sided) with 11 data points, this implies a possible error of 2.82=0.0186 Dk with an offset of+.0031~k.7043U012784
141. 4 Clad Thickness, In.
                                                    .0243 Fuel Rod O.D., In.
                                                    .400 Pellet Diameter, In.
                                                    .3444 Diametral Gap, In.
                                                  .0070 Pellet Density (X theoretical) 95 Control Rod Guide Tubes Outer Diameter, In.
0.5280 Znrszcv 4 rP.t'<, lr l <
0.4900 Instrument Tube gn&88    5gaPz    .-.4zZu'.4015 Outer Diameter, In.
0.3499 7044U012784


The other major uncertainty in the calculations for Region 2 is associated with the calculated reduction in fuel assembly reactivity associated with the depletion of the heavy metals and the accumulation of fission products as a function of fuel assembly exposure.As an example, consider a 4.25 w/o (initial enrichment)
TABLE 3
Ginna fuel assembly at 30,000 HND/HT.The total reactivity loss from the fresh unirradiated case is 0.225 hk/k, of which approximately 50'X can be attributed to the build-up of fission products.Calculations of reactor reactivity lifetimes using the same analytical methods as used in this analysis demonstrate an accuracy of better than+5%.Therefore, the resulting uncertainty in the calculated fuel assembly k associated with fuel depletion would be conservatively estimated at 0.0112 6 k/k (=.05 x.235 hk/k).The, corresponding uncertainty in the calculated Region 2 multiplication factor is 0.0102 h k on a base case Region 2 k of 0.9072.In order to provide further assurance of the conservative nature of these calculations, the decay of a>>fission products following discharge of the fuel assembly was taken into account.This was accomplished with the aid of the CIHDER code which treats a total of 186 nuclides in 84 linear chains.The fission product inventory for each fuel assembly was decayed for thirty years following its removal from the reactor core, and the time point of minimum fission product absorption within that thirty year period was used at the basis for de'termining the fission produce macroscopic absorption cross sections for that particular fuel assembly at that specific exposure.That minimum occurs at approximately 100 days into the decay and from, then on continues to increase as i>>ustrated in Fi ure 13.Reduction in the fission product inventory due to leakage or gure (>>)escape to the plenum has been found to be negligible.
                                        'CARY  OF LEOPARD RESULTS, FOR HEASURED              CRlTiCALS Fuel      Pellet        Clad                          Clad  Lattice, Critical Case~      Reference    Enrichment  H20/U    Density    Diameter    Diameter                Thickness      Pitch  Buckling Calculated Numher      Xllmkcc      (atom %)  Vol une                                                              (cm)  (cm(      m 2  ~k l            12        2.734        2.18    10.18        0.7620      0.8594                        0.04085 1.0287    40.75    1.0015 2            12        2 734      2.93    10.18        0.7620      0.8594                        0.04085 1.1049    53.23    1.0052 3            12        2.734        3.80    10.18        0.7620      0.8594                        0.04085 1.1938    63.28    1.0043 4            13        2.734.      7.02    10.18        0.7620      0.8594                        0.04085 1. 4554  65.64    1.0098 5            13        2.734      8.49    10.18        0. 7620    0.8594                        0.04085 1. 5621  60.07    1.0118 6            13        2.734    10.13      10.18        0. 7620    0.8594                        0.04085 1. 6891    52.92    lm0072 7            14        2.734      2.50    10.1&        0.7620      0.8594                        0.040&5 1.0617    47.5    1.0008 8            14        2.734      4.51    I0.18        0.7620      0.8594                        0.04085 1.2522    68.8 . 0.9987 9            14        3. 745      2.50    10.37        0.7544      0.8600                        0.0406  1.0617    68.3    1.0010 10            14        3.745      4.51    10.37        0.7544      0.8600                        0.0406  1. 2522    95.1    1.0025 ll            15,       3.745      4.51    10.37        0.7544      0.8600                        0.0406  1.2522    95.68    1.0009 12            16        4.099      2.55      9.46        1.1278      1. 2090                      0.0406  1. 5113    88.0    0.9889 13            16        4.099        2.14      9. 46      1.1278      1.2090                        0.0406  1.450      79.0    0.9830 14            17        4.099      2.59      9.45        1.1268      1. 2701                      0.07163 1. 555    69.25   0.9999 15            l7        4.069      3.53      9.45        1.1268      1. 2701                      0.07163 1.684      85.52    0.9958 16            17        4.069      8.02      9.45        1.1268      1.2701                        0.07163 2.198      92.84    1.0040 17        4,069      9.90      9.45        1.1268      1.2701                        0.07163 2.3&1      91.79    0.9872 (8            17        3.037      2.64      9.28        1.1268      1. 2701                      0.07163 1. 555    50.75    0.994&
19            17        3.037      8.10      9.28        1 ~ 1268    1.2701                        0.07163 2.198      68.81    0.9809 20            9        0.7'I4*    1. 68    9.52        0.8570      0.9931                        0.0592  l. 3208 108.8      0.9912 21            9        0.714>>      2.17      9.52        0.8570      0.9931                        0.0592  1.4224  121.5       1.0029 22            9        0 714>>      4.70      9.52        0.8570      0.993'I                        0.0592 1.8669  159. 6     0.9944 23            9        0.714*    10.76      9.52        0,8570      0.9931                        0.0592  2.6416  128.4      1.0008 24            10        0.729*      1.11      9.35      1.2827      1.4427                        0.0800  1.7526    89.1      0.9902 25            10        0.729*      3.49      9.35      1. 2827      1.4427                      0.0800  2.4785  104. 72    1.0055 26            10        0.729*      3.49      9.35      1. 2827      1.4427                        0.0&00  2.4785    79. 5    0.9948 27            10        0.729*      1.54      9.35        l. 2827    1.4427                        0.0&00  1.9050    90.0      0.9878
* These are Pu02    in Natural U02.
>>>> Cases 1  through 19 are with stainless steel clad,  Cases  20 through 27  are zfrcaloy.'045U012784


===2.2 Calcul===
0 TABLE 4 WESTINGHOUSE UO    Zr-4 CLAD CYLINDRICAL CORE CRITICAL EXPERIMENTS (6,7) 2 Material Boron            Buckling                          Radius of Pitch      Concentration      (for LEOPARD        Critical    No. Fuel Region        keff Ex eriment          1o            (  m)            -  CH-2                of Pins        (cm)        (LEOPARD/PD -7) 1          0. 600            0                .008793              489. 4      19. 021          0.9912 2          0.690            0                .009725              317. 0      17.605          0.9941 3          0.848            0                . 008637            . 251. 6      19. 276          0.9927 4          0.976            0                .006458              293. 0      23.935          0.9935 5          0.600          306.              .007177              659.9        22.088          0.9927 6          0.600          536.4              .006244              807.2       24.429          0.9937 7          0.600          727. 7            .005572              950. 2       26.504          0.9940 8            0.600          104.              .008165              546. 3      20.097          0.'9919 9          0.600          218.              .007599              607.1        21.186          0.9917 10            0.600          330.              .007106              669.5        22.248          0.9916 ll            0.600          446.              .006661              735.3        23.315          0.9909 12            0.600          657.1              .005809              895.3        25.727          0. 9944 13            0. 848          104.              .007320              321. 0      21. 772          0.9938 14            0.848          218.              .006073              420. 5      24. 91 9        0.9925 0.9928 Mean 0.0012 Std Notes
ational A roach The POQ-7 program is used in the final predictions of the reactivity of the spent fuel stoppage racks.The calculations are performed in four energy groups and take into account a>>the significant geometric details of the fuel assemblies, fuel boxes, and major structural components.
      ~t'    1  1    Il Enrichment            2.719 w/o U-235              (b) Thickness of water reflector is that required to Fuel Density          10.41 g/cm3                        attain total radius of 50 cm for model.
The 70430012784
Pellet    Radius      0.20 in Clad IR                0.2027 in                   (c)  B          =  .000527 cm 2 Clad OR                0.23415 in                          Z


geometry used for most of the calculations is a basic cell representing one-quarter of the area of a repeating array of stainless-steel boxes.The specific geometry of this basic cell is shown in Figure 14.The calculational approach is to use the basic cell to calculate the reactivity of an infinite array of uniform spent fuel racks and to account for any deviations of th'e actual spent fuel rack array from this assumed infinite array as perturbations on the calculated reactivity of the basic cell.The effects of manufacturing tolerances, as well as thermal uncertainties, including fuel and water temperature and density variations, are also treated as perturbations on the calculated reactivity of the basic cell.The Adequacy of the calculational mesh selected for this type of cel'i calculation has been verified by comparison with the results of an identical geometry which used a finer calculational mesh (two times the number of mesh intervals in each direction).
                                                        "TABLE 5 BATTELLE FIXED NEUTRON POISON CRITICALS Length          Ho. of                                     Distance  Critical Times          Assemblies            Absorber              To Fuel    Separation of Clusters k ff Case      Midth>>         In Array         Type,       Thickness   Cluster                LEOPARD/PO0 020        20 x 17             3           Boral        .713  cm      .645  cm  6.34  cm    0.9932 017        22.21 x 16x        3           Boral        . 713        .645      5.22        0.9944 002        20 x 18.88+        1           Boral        .713        2. 732                  0.9925 028 027    '0 20 x 16 x 16 S.S.
The finer calculational mesh resulted in little change in the value of k with an observed increase of+0.0002 Dk.A further check on the calculational model used divas the use of a more accurate spatial model encompassing the corners of four adjacent rack cells as'hown in Figure 15.The use of this model had the effect of increasing k by 0.0005~k.2.3 Manufacturin and Thermal Considerations Several perturbations of the basic cell were performed to determine the effects of changes in the physical cell and component dimensions, due to manufacturing tolerances, changes in water density, and changes in temperature.
S.S.
All cases were performed on 4.25 w/o fuel at an exposure of 30,000 MWD/tonne.
                                                            .485
7043U012784 The following changes in specifications due to manufacturing tolerances were considered:
                                                            . 302 cm     .645
Reducing assembly pitch by.060" leaving other dimensions constant (water gap reduced);reducing steel wall thickness of both box (by.009")and boraflex retaining-device (by.003")(increased water gap);reducing pellet diameter.0010", and increasing pellet density by 1.5%of the theoretical value.These variations represent the full range of possible variations in the mechanical design of the fuel rack and fuel.The reduction in pitch results in an increase in k of 0.0019 dk.The reduction in steel thickness results in a decrease of k~of 0.0002 hk.The reduction in pellet diameter results in a decrease in k of 0.0005 hk,'hile the increase in pellet density increases k by 0.0015 Dk.These effects are shown in Figures 16-19.The results of decreases in water density and increases in temperature E are shown in Figures 20 and 21.In both cases, it is clear that the base case (68'F, water at full density)represents the maximum reactivity.
                                                                          ,645 cm 6.88
The effect of the interface between Region 1 and Region 2 was evaluated assuming fresh 4.25 w/o fuel in Region 1 and 4.25 w/o fuel at an exposure of 30,000 NWD/MT in Region 2.This resulted in a computed k of 0.9195, or a change of+0.'0123 Lk over the computed k basis rack.cell used to represent Region 2.The model used is shown in Figure 22.A summary of the biases and uncertainties in the computed valves of k is given in Table 9.The uncertainties have been combined statistically.
: 7. 43 cm    0.9946 0.9935 032       20 x 17             3   S.S. 1.1 w/o 8     .298 aa     .645  cm  7.56  cm    0.9933 038        20 x 17            3   S.S. 1.6 w/o 8     .298         .645       7.36         0.9931 0028       20 x 18.075                     None                                              0.9956 015        20 x 17                         Hone                                11.92  cm    0.9942 013        20 x 16                       . Hone                                 8.39         0.9945 022        20 x 15                          Hone                                  6.39         0.9933 021        20 x 16                          Hone                                  4. 46         0.9946 Statistical Sugary:
These results show that a basic cell computed k of less than 0.9108 will assure an actual k below 0.95 with 95%probability at the 95%confidence level.2.4 Desi n Conservatisms Mhile the tlDR concept reduces some of the design conservatisms inherent in the earlier spent fuel storage concepts (e.g., assumption of fresh unirradiated fuel), the design and analyses for the HDR as implemented in Region 2 are still very conservative in nature.7043U012784 10 The use of assembly average exposures is one example of this conservative approach;Axially, more than 80%of the fuel assembly will normally have reached exposures greater than the average and this will occur along the central, higher worth region of the assembly.The lower exposure regions would normally account for less than 20%of the fuel assembly length distributed at the ends of the fuel assembly active length which are lower worth regions.The result is a neutronically higher exposure assembly than represented by the simple assembly average exposure.The use of the simple assembly average exposure can result in an over-estimate of the fuel assembly k ff by+.015 hk/k.2.5 Accident Anal sis The Region 2 fuel racks are designed to prevent a dropped fuel bundle from penetrating and occupying a position other than a normal fuel storage location.The only positive reactivity effect of such a bundle on the multiplication factor of the rack would be by virtue of a reduction in axial neutron leakage from the rack.Since the calculations reported here take no credit for axial neutron leakage, the effect of a dropped fuel assembly could not be expected to exceed the reported maximum possible reactivity of the spent fuel storage rack.This is because the reported maximum possible reactivity of the rack is based on infinite array calculations (both laterally and vertically).
Series           member ~mean k.
2.6 Re uired Ex osure as a Function of Initial Enrichment for Re ion 2 S ent Fuel As shown above, a computed k of 0.9108 will assure that the actual k is below 0.95 with a probability of 0.95 at the 95%confidence level.These computations were performed for 4.25 w/o fuel with an exposure of 30,000 tlWD/NT.Fot lower enrichments with the same computed value of k, the amount of exposure will be reduced, reducing the reactivity uncertainties due to depletion of fuel and buildup of fission products, and thus reducing the total uncertainty.
Boral                     0. 9934            0.0008 S.S.                       0.9941              0.0006 S.S.
Thus the computed k value of 0.9108 should be conservative for all enrichments not exceeding 4.25 w/o.In 7043U012784 order to allow for possible interpolation errors, however, a target value of 0.9050 for k will be used for other enrichments.
(Borated)               0.9932              0.0001
The results shown in Table-l0 may be interpolated to estimate the required exposure to reach a computed k value of 0.9050.For 4.25 w/o fuel the required exposure is 30,000 HMT/MT, for 3.00 w/o fuel it is 15,960 HMD/MT.For 1.75 w/o fuel, even fresh fuel has a computed k of less than 0.9050.The resulting curve, shown in Figure 23, gives the required exposure as a function of enrichment to assure that the value of kin the spent fuel has a probability of 95%of not exceeding 0.95>>at the 95'X confidence level.r Because of the well-founded, conservative technique used for determination of the infinite multiplication factor, there is assurance that this spent fuel rack design will*not cause undue risk to the public health and safety resulting from criticality considerations.
~x~oso e         n Total           7    0.9935              0.0007 Non-Poison Total                   0.9944             0.0007
7043U012784 12 REFERENCES 1.R.F.: Barry,"LEOPARD-A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," MCAP-3269, September 1963.2.M.R.Caldwell,"PDg-7 Reference Manual," WAPO-TM-678, January 1967.3.H.Bohl, E.Gelbard and G.Ryan,"MUFT-4-Fast Neutron Spectrum Code for the IBM-740," WAOP-TM-72, July 1957.4.H.Amster and R.Suarez,"The Calculation of Thermal Constants Averaged Over a Wigner-Wilkins Flux Spectrum: Description of the SOFOCATE Code," MAPO-TM-39, January 1957.5.L.E.Strawbridge and R.F.Barry,"Criticality Calculations for Uniform Mater-Moderated Lattices," Nuclear Science and Engineering, 23, 58, 1965.6.Electric Power Research Institute,"Fission Product Data for Thermal Reactors, Part 1 and Part 2: Data Set for EPRI-CINDER and Users Manual for EPRI-CINDER Code and Data," EPRI HP-356, Final Report'1976).7.R.J.N dvik,"Evaluation of Mass Spectometric and Radiochemical Analyses of Yankee Core I and Core II Spent Fuel," MCAP-6068 (1965).8.R.J..Nodvik,"Saxton Core II Fuel Performance Evaluation of Mass Spectometric and Radiochemical Analyses of Irradiated Saxton Plutonium Fuel," WCAP-3385-56 Part II{1970).9.M.L.Orr, H.I.Sternberg, P.Oeramaix, R.H.Chastain, L.Binder and A.J.Impink,"Saxton Plutonium Program, Nuclear Design of the Saxton Partial Plutonium Core," MCAP-3385-51, December 1965.(Also EURAEC-1490).
'UWera                      mm                K3HJUE
10.R.D.Learner, W.L.Orr, R.L.Stover, E.G.Taylor, J.P.Tobin and A.Bukmir,"Pu02-U02 Fueled Critical Experiments," MCAP-3726-1, July 1967.ll.R.A.Lorenz, et al.,"Fission Product Release from Highly Irradiated LWR Fuel," NUREG/CR-0722, February 1980.12.P.M.Davison, et al.,"Yankee Critical Experiments Measurements on Lattices of Stainless Steel Clad Slightly Enriched Uranium Dioxide Fuel Rods in Light Water," YAEC-94, Mestinghouse Atomic Power Division{1959).13.V.E.Grob and P.W.Oavison, et al.,"Multi-Region Reactor Lattice Studies-Results of Critical Experiments in Loose Lattices of UO Rods 1n M20,0 MCAP-1412, Mest1nghoose Atomic Power 01v141on (1960).7044U012784
>> This   is in units of pitch (Pitch   >> 2.032 cm) x Center assembly was 20xl6 and the outer two were elongated         at 22.21x16.
'3 REFERENCES (continued) 14.W.J;Eich and W.P.Kovacik,"Reactivity and Neutron Flux Studies in Multiregion Loaded Cores," WCAP-1433, Westinghouse Atomic Power, Division (1961).15.'.J.Eich, Personal Communication (1963).16.T.C.Engelder, et al.,"Measurement and Analysis of Uniform Lattices of Slightly Enriched U02 Moderated by Dp0-H20 Mixtures," BAW-1273, the Babcock&Wilcox Company tl963).17.A.L.MacKinney and R.M.Ball,"Reactivity Measurements on Unperturbed, Slightly Enriched Uranium Dioxide Lattices," BAW-1199, the Babcock 4 Wilcox Company (1960).18.Battelle Pacific Northwest Labbratories,"Critical Separative Between Subcritical Clusters of 2.35 Wt X 235-U Enriched U02 Rods in Water With Fixed Neutron Poisons," PNL-2438.7044U012784 TABLE 1 REGION 2 OESIGN CRITERIA 1.Actual irradiated fuel and fission product inventory is assumed.2.keff (0.95 3.Credit may be taken for presence of borated water for abnormal (accident) conditions.
+ 20xl8.88 was one assembly with a boral sheet on two sides.
4.Multiple checks required for each fuel assembly prior to transfer from Region 1 to Region 2.7044U012784 TABLE 2 FUEL ASSEMBLY TECHNICAL INFORMATION FOR GINNA NUCLEAR PLANT Rod Array Rods Per Assembly Rod Pitch, In.Overall Dimensions, In.14x14 gf 179 0.556 7.784 Active Fuel Height,'n.
Fuel region data: Enrichment ~ 2.35 w/o, Pellet radius ~ 0.5588 cm, Clad OR ~ .635 cm, Mall thickness >> .0762 cm, Pitch >> 2.032 cm 7045U012784
Clad Thickness, In.141.4.0243 Fuel Rod O.D., In.Pellet Diameter, In.Diametral Gap, In.Pellet Density (X theoretical)
.400.3444.0070 95 Control Rod Guide Tubes Outer Diameter, In.Znrszcv 4 rP.t'<, lr l<0.5280 0.4900 Instrument Tube Outer Diameter, In.gn&88 5gaPz.-.4zZu'.4015 0.3499 7044U012784 TABLE 3'CARY OF LEOPARD RESULTS, FOR HEASURED CRlTiCALS Case~Numher Reference Xllmkcc Enrichment (atom%)H20/U Vol une Fuel Pellet Clad Density Diameter Diameter Clad Thickness (cm)Lattice, Pitch (cm(Critical Buckling m 2 Calculated
~k l 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16(8 19 20 21 22 23 24 25 26 27 12 12 12 13 13 13 14 14 14 14 15, 16 16 17 l7 17 17 17 17 9 9 9 9 10 10 10 10 2.734 2 734 2.734 2.734.2.734 2.734 2.734 2.734 3.745 3.745 3.745 4.099 4.099 4.099 4.069 4.069 4,069 3.037 3.037 0.7'I4*0.714>>0 714>>0.714*0.729*0.729*0.729*0.729*2.18 2.93 3.80 7.02 8.49 10.13 2.50 4.51 2.50 4.51 4.51 2.55 2.14 2.59 3.53 8.02 9.90 2.64 8.10 1.68 2.17 4.70 10.76 1.11 3.49 3.49 1.54 10.18 10.18 10.18 10.18 10.18 10.18 10.1&I0.18 10.37 10.37 10.37 9.46 9.46 9.45 9.45 9.45 9.45 9.28 9.28 9.52 9.52 9.52 9.52 9.35 9.35 9.35 9.35 0.7620 0.7620 0.7620 0.7620 0.7620 0.7620 0.7620 0.7620 0.7544 0.7544 0.7544 1.1278 1.1278 1.1268 1.1268 1.1268 1.1268 1.1268 1~1268 0.8570 0.8570 0.8570 0,8570 1.2827 1.2827 1.2827 l.2827 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594 0.8600 0.8600 0.8600 1.2090 1.2090 1.2701 1.2701 1.2701 1.2701 1.2701 1.2701 0.9931 0.9931 0.993'I 0.9931 1.4427 1.4427 1.4427 1.4427 0.04085 0.04085 0.04085 0.04085 0.04085 0.04085 0.040&5 0.04085 0.0406 0.0406 0.0406 0.0406 0.0406 0.07163 0.07163 0.07163 0.07163 0.07163 0.07163 0.0592 0.0592 0.0592 0.0592 0.0800 0.0800 0.0&00 0.0&00 1.0287 1.1049 1.1938 1.4554 1.5621 1.6891 1.0617 1.2522 1.0617 1.2522 1.2522 1.5113 1.450 1.555 1.684 2.198 2.3&1 1.555 2.198 l.3208 1.4224 1.8669 2.6416 1.7526 2.4785 2.4785 1.9050 40.75 53.23 63.28 65.64 60.07 52.92 47.5 68.8.68.3 95.1 95.68 88.0 79.0 69.25 85.52 92.84 91.79 50.75 68.81 108.8 121.5 159.6 128.4 89.1 104.72 79.5 90.0 1.0015 1.0052 1.0043 1.0098 1.0118 lm0072 1.0008 0.9987 1.0010 1.0025 1.0009 0.9889 0.9830 0.9999 0.9958 1.0040 0.9872 0.994&0.9809 0.9912 1.0029 0.9944 1.0008 0.9902 1.0055 0.9948 0.9878*These are Pu02 in Natural U02.>>>>Cases 1 through 19 are with stainless steel clad, Cases 20 through 27 are zfrcaloy.'045U012784 0
TABLE 4 WESTINGHOUSE UO Zr-4 CLAD CYLINDRICAL CORE CRITICAL EXPERIMENTS (6,7)2 Ex eriment 1 2 3 4 5 6 7 8 9 10 ll 12 13 14 Notes Pitch 1o 0.600 0.690 0.848 0.976 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.848 0.848 Boron Concentration (m)0 0 0 0 306.536.4 727.7 104.218.330.446.657.1 104.218.Material Buckling (for LEOPARD-CH-2.008793.009725.008637.006458.007177.006244.005572.008165.007599.007106.006661.005809.007320.006073 Critical No.of Pins 489.4 317.0.251.6 293.0 659.9 807.2 950.2 546.3 607.1 669.5 735.3 895.3 321.0 420.5 Radius of Fuel Region (cm)19.021 17.605 19.276 23.935 22.088 24.429 26.504 20.097 21.186 22.248 23.315 25.727 21.772 24.91 9 keff (LEOPARD/PD
-7)0.9912 0.9941 0.9927 0.9935 0.9927 0.9937 0.9940 0.'9919 0.9917 0.9916 0.9909 0.9944 0.9938 0.9925 0.9928 Mean 0.0012 Std~t'1 1 Il Enrichment Fuel Density Pellet Radius Clad IR Clad OR 2.719 w/o U-235 10.41 g/cm3 0.20 in 0.2027 in 0.23415 in (b)Thickness of water reflector is that required to attain total radius of 50 cm for model.(c)B=.000527 cm 2 Z "TABLE 5 BATTELLE FIXED NEUTRON POISON CRITICALS Length Times Case Midth>>Ho.of Assemblies In Array Absorber Type, Thickness Distance Critical To Fuel Separation k ff Cluster of Clusters LEOPARD/PO0 020 20 x 17 017 22.21 x 16x 002 20 x 18.88+028 20 x 16 027'0 x 16 3 Boral 3 Boral 1 Boral S.S.S.S..713 cm.713.713.485 cm.302.645 cm.645 2.732.645 cm ,645 6.34 cm 5.22 6.88 cm 7.43 0.9932 0.9944 0.9925 0.9946 0.9935 032 20 x 17 038 20 x 17 3 S.S.1.1 w/o 8.298 aa 3 S.S.1.6 w/o 8.298.645 cm.645 7.56 cm 7.36 0.9933 0.9931 0028 015 013 022 021 20 x 18.075 20 x 17 20 x 16 20 x 15 20 x 16 None Hone.Hone Hone Hone 11.92 cm 8.39 6.39 4.46 0.9956 0.9942 0.9945 0.9933 0.9946 Statistical Sugary: Series member~mean k.Boral S.S.S.S.(Borated)~x~oso e n Total Non-Poison Total'UWera7 0.9934 0.9941 0.9932 0.9935 0.9944 mm 0.0008 0.0006 0.0001 0.0007 0.0007 K3HJUE>>This is in units of pitch (Pitch>>2.032 cm)x Center assembly was 20xl6 and the outer two were elongated at 22.21x16.+20xl8.88 was one assembly with a boral sheet on two sides.Fuel region data: Enrichment
~2.35 w/o, Pellet radius~0.5588 cm, Clad OR~.635 cm, Mall thickness>>.0762 cm, Pitch>>2.032 cm 7045U012784  
'ABLE 6 SAXTON Pu02-U02 CRITICAL EXPERIMENTS (Reference 9)~Ex t.Boron H 0/UO TpPpm'ume)337 1.68 2.17 2.17 4.70 10.76.520.560.560.735 1.040.9912 1.0029 1.0084.9944 1.0008-.0088+.0029+.0084-.0056+.0008 70440012784
'


TABLE 7 ESAOA Pu02-U02 CRITICAL EXPERIMENTS (Reference 10)~Ex t.Boron Pu-240 H 0/U~ppm TET o ume~k~1 0 8 0 8 526 8 24 8'26~8 1.54.750.690 1.11.690 3.49.9758 3.49.9758 3.49'9758.9902 1.0055.9949.9948.9878.9945-.0098+.0055-.0051-.0052-.0122-.0055 7044U012784 TABLE 8  
                              'ABLE  6 SAXTON  Pu02-U02 CRITICAL EXPERIMENTS (Reference 9)
~Ex t. Boron'  H 0/UO TpPpm        ume) 1.68            .520      .9912  -.0088 2.17            .560    1.0029  +. 0029 337      2.17            .560    1.0084  +.0084 4.70            .735      .9944  -.0056 10.76          1.040    1.0008  +.0008 70440012784
 
TABLE 7 ESAOA Pu02-U02 CRITICAL EXPERIMENTS (Reference 10)
~Ex t. Boron   Pu-240     H 0/U                             ~k~1
          ~ppm     TET         o ume 0       8           1.11        .690         . 9902  -.0098 0      8          3.49       .9758       1.0055  +.0055 526      8          3.49         .9758       .9949  -.0051 24          3.49   '9758           .9948  -.0052 8          1.54        .750        .9878 -.0122
          '26  ~    8                          .690      .9945  -.0055 7044U012784
 
TABLE 8


==SUMMARY==
==SUMMARY==
OF PREDICTIONS FOR k ff eff'IN CRITICALITY EXPERIMENTS Ex eriment Saxton Pu02-U02 ESADA Pu02-U02 All Pu02 U 2 Cases'.9995
OF PREDICTIONS FOR k
+.0068 0.9946+.0061 0.9969+.0066 7044U012784 TABLE 9  
                          'IN CRITICALITY EXPERIMENTS ff eff Ex eriment Cases'.9995 Saxton Pu02-U02                                   + .0068 ESADA Pu02-U02                             0.9946 + .0061 All  Pu02 U 2
0.9969 + .0066 7044U012784
 
TABLE 9


==SUMMARY==
==SUMMARY==
OF REACTIYITY BIASES AND UNCERTAINTIES FOR GINNA REGION 2 MDR Descri tion~ft ft Rff Basic rack cell at 20 C, 4.25 H/o U-235 0 30,000 HWD/HT 8.430 inch pitch (see Figure 1)Using one-quarter cell model Calculation Biases Leopard/PDt) model bias Modeling Effect Mesh Spacing Effect Most Reactive Temperature
OF REACTIYITY BIASES AND UNCERTAINTIES FOR GINNA REGION 2 MDR Descri tion                   ~ft ft         Rff Basic rack cell at 20 C, 4.25 H/o U-235 0 30,000 HWD/HT                             0. 9072 8.430 inch pitch (see Figure 1)
~over operating range Most Reactive Water Density Region 1-Region 2 Interface Effect Total Bias Basic cell including Biases Tolerances.
Using one-quarter cell model Calculation Biases Leopard/PDt) model bias                 +0.0031 Modeling Effect                         +0.0005 Mesh Spacing Effect                     +0.0002 Most Reactive Temperature               +0.0000
and Uncertainties (95/95)Depleted fuel assembly reacti vi ty uncertainties Maximum error due to pitch tolerance Maximum error due to SS thickness tolerance Maximum error due to pellet density tolerance (+.015)Maximum error due to pellet diameter tolerance (+.001")Calculational Uncertainty (2.82a)Total Uncertainty (statistical)
    ~
Maximum reactivity change from biases and uncertainties Maximum k, including biases and uncertainties
over operating range Most Reactive Water Density             +0.0000 Region 1 - Region 2                     +0.0123 Interface Effect Total Bias                               +0. 01 61 Basic  cell including Biases                                   0. 9223 Tolerances. and Uncertainties (95/95)
+0.0031+0.0005+0.0002+0.0000+0.0000+0.0123+0.01 61 0.01 31 0.0019 0.0002 0.0015 0.0005 0.0186 0.0229 0.0390 0.9072 0.9223 0.9462 7044U012784 TABLE 10 COMPUTED INFINITE MULTIPLICATION FACTORS FOR GINNA MDR Enrichment w/o 1.75 1.75 1.75 1.75 3.00 3.00 3.00 3.00 4.25 4.25 4.25 4.25 4.25 4.25 Exposure MHD/MT 0 10,000 12,500 15,000 10,000 20,000 25,000 30,000 0 25,000 30,000 35,000 40,000 45,000 Computed km 0.8973 0.7901 0.7649 0.7442 0.9609 0.8655 0.8215 0.7788 1.1701 0.9463 0.9072 0.8680 0.8288 0.7903 7044U012784 p~j+f]II j)jk~%tr r l~r pre r r r r~]))/r r Ir I~.t j j j j), l a Prrr]~(JI jj\l gt))jj f~q'L 0++JgZ~1 I'-~)~
Depleted fuel assembly                   0. 01 31 reacti vi ty uncertainties Maximum error due to                     0.0019 pitch tolerance Maximum error due to SS                   0.0002 thickness tolerance Maximum error due to pellet               0. 0015 density tolerance (+ .015)
FIGURE 2 NET DESTRUCTION OF U-235 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 20 I I<<~~II<<<<4~~~~'I III;I!!I~<<~i II, i~I~<<~~I I~~k<<jil Ii!!.<<~P')'I'tl':.r.ti III..I li I: l I::..l'~'jr:~~~I t.II~lj 1<<l I I I<<I~~<<~I j l~[<<<<1 I~~~i~~I l~gi,'p i)a i~~<<I'I I'12 8 10 rf e 8'7.r q I~i.'.3 I I'1 it)li I j I I~~.~I]1, II<<;~,~I I<<iL"'i<<I K~e~Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc.~N PLG LEOPARD unit cell calc.0 0 12 1620 IIIIrIIIIII (jjirj)/lCV x 10 3)28 K
Maximum error due to pellet               0. 0005 diameter tolerance (+ .001")
FIGURE 3 SPECIFIC PRODUCTION OF U-236 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 4.0 I I 3.5<<t<<'3.0<<(~(.1~~..s..(~0*I'Pt: 'Jf\~+~~~I.(('+'R tt~t 4~<<i,g 4<<i~(l I~~~I i o (,<<l P 2.5 g O 2.0 U 4 0 C4 1.5 R l.0~~i 8(~J'(I.L~~.Ll.~~4.i+~~'(\L'L4.K~e Inferred from isotopic data j, Freehand fit of data Previous LEOPARD unit cell calc., PLQ LEOPARD unit cell calc.0.5 0 0 12 16-20 Sunup (WD/HIM x 10 3)28 FIGURE 4 NET DESTRUCTION OF U-238 VERSUS BURNUP XN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 12 8 V p W s ia es K~e-~Inferred from isotopic data Freehand fit of data-Previous'LEOPARD unit cell calc.~PLG LEOPARD unit cell calc.
Calculational Uncertainty (2.82a)         0. 0186 Total Uncertainty (statistical)             0.0229 Maximum   reactivity change from biases and uncertainties                 0.0390 Maximum k, including biases and   uncertainties                                         0.9462 7044U012784
FIGURE 5 SPECZFZC PRODUCTION OF PU-239 VERSUS BURNUP Eg THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM~g~pig.'L.R~~1~I v-j I tL-',+M:/jib~i0 t~f I~)~~i~!I)I~!.I,~+Is i r!-.-K~e~Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc.~PLG LEOPARD unit cell calc.u'6 ao Buzmup (le/AU x 10 3)28
 
TABLE 10 COMPUTED INFINITE MULTIPLICATION FACTORS FOR GINNA MDR Enrichment                    Exposure                Computed w/o                        MHD/MT                      km 1.75                          0                   0. 8973 1.75                      10,000                  0. 7901 1.75                      12,500                  0.7649 1.75                      15,000                  0.7442 3.00                      10,000                  0.9609 3.00                       20,000                  0.8655 3.00                      25,000                  0.8215 3.00                      30,000                  0.7788 4.25                          0                    1.1701 4.25                       25,000                  0.9463 4.25                       30,000                  0.9072 4.25                       35,000                  0.8680 4.25                       40,000                  0.8288 4.25                       45,000                   0.7903 7044U012784
 
p~j+                                                    ~%tr r f]
jk II j) r l~
pre  r      r r r ~
I ~.
  ])          /r                          r
  )
Ir t
j), a l\
j  l
                                                ]~(
j                                            JI Prrr                                  jj j
gt
  ))jj f~q
                'L 0       ++ JgZ
                                                  ~1 I'-                ~
                                      ) ~
 
FIGURE 2 NET DESTRUCTION OF                                          U-235 VERSUS              BURNUP IN        THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 20                                          <<  ~      ~ ~       ~ ~ 'I                 ~ <<  ~ i II                                ~II<<
                                                  <<4 III; I!!I                        II,
                                                                                                ~ << ~ Ij III ..I li I: l                                  l<<1~
I [<<
i ~ I
                    ~ k
                  <<jil Ii!             !.<<   ~
I::..l '
                                                                      ~ ~
                                                                          ~ 'jr
                                                                            ~
I            I ~
II
              ~
II              lj P') 'I'tl ':.r.ti                                        1<<l I<<
            ~
I I
              ~
                ~
: t.      ~
i     I l ~
gi,'p i)a <<I'
                  ~    ~ ~
                                        ~
            ~ ~
i ~                          I I     '
it) li
                                                      ~ .  ~  I
                                                                  "'iiL I <<
I i.'.
~
3
                                                  ]1, II<<;
I                  ~, ~ I I
                                    '1 12
        .r                            I j I I ~
q 8
10 rf e
8
'7 K~e
                                                              ~       Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc.       ~
N       PLG LEOPARD unit cell calc.
0 0                                                         12             16    20                    28 IIIIrIIIIII(jjirj)/lCVx 10 3)
 
K FIGURE 3 SPECIFIC PRODUCTION OF U-236 VERSUS BURNUP                 IN THE YANKEE ASYMPTOTIC                           NEUTRON SPECTRUM 4.0                                                                 tt ~          <<i ~
(l I                                                      \  ~                        I    ~
                                                                                              ~
I                                                                            ~I t4 ~                            i o
          <<(     ~ (.1 ~   ~               .. s.. (
(,<<l 3.5
                    <<t    <<'              ~0
* I '                           <<i,g  4
                                                      . ( ('+'R
                                                          + ~ ~ ~ I
: 3. 0 Pt: 'Jf
              ~   ~
i J '
i+
P 2.5 8(  ~
                                .Ll.
                                    ~ ~ ~
                                                                                                              ~ ~
                                                                                                            '( \
g                                                                                                            L' O
2.0            (            ~ 4   .
U            I. L 04 C4 1.5 R                                                                            L4
                                                                        .K~e
: l. 0 Inferred from isotopic data Freehand fit of data j,
Previous LEOPARD unit cell calc.,
PLQ LEOPARD unit cell calc.
0.5 0
0                                                     12           16   -         20                     28 Sunup (WD/HIM x 10 3)
 
FIGURE 4 NET DESTRUCTION OF U-238 VERSUS BURNUP XN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 12 8
V p
W s ia es K~e
                -~
                ~
Inferred from isotopic data Freehand fit of data Previous'LEOPARD unit cell calc.
PLG LEOPARD unit cell calc.
 
FIGURE 5 SPECZFZC PRODUCTION OF PU-239 VERSUS BURNUP Eg THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM
            ~  ~
I~!. I, ~
tL-', +M: /jib )
g pig                                                  +Is r!-.-i
            .'L.R
                          ~~ 1 I v-
                                                ~ i0I  t j~
I
                                              ~
f
                                                      ~
                                              ~ ~ i~ ! I
                                                        )
K~e
                                ~    Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc.
                                ~    PLG LEOPARD unit cell calc.
u Buzmup (le/AU x
                                  '6    10 3) ao                28
 
FIGURE 6 SPECIFIC PRODUCTION OF Pu-240 VERSUS BURNUP ZN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 2PO
            ~ ~  ~ ~
                    ', I tX  1:FIJ.
                                                                      ~
                                                                      ~  4I  ~
I I.      s sl        i !.t ).t      Ij!I P                                                                    ~ I
            ~ IL ~ ~
II        P I\
                          ~
                                                                                    .'Isf      I        ~ I              s f
            <<gi      ls  I                  i. ~                    %sf! '
                                                                              <<I I!I Lt:s        t    '
TPl                            s
                                                                      ~  I>    s                  sH    ;I-h    J f~
L8                                                                          I I);                      gI          Is I'si,:          ~ ~      !is      ~ ~
                                                                                        !I          , 's s
i~I'PTPI I,      ~  ~
1.6
                                                                                    '~
                ~ ~
                    !'j's:s  '    '
                                                  !!:i I.
III
                                                      ~ ~              I'i If
                                                                        ~
                                                                        ~
s
                                                                                          .'p I
                    ~  ~      , ~ I s s;          i
                                                        ~  Is'I "'is  I II iI
                                                                                  ~
                                                                        ~  I  ~  s 1.4                                          ~ I I "1      s iss
                                      -:wl  ~
                                                ~
I I
                                                  ~ ~ . I
            'sg      'J.              g J'"s
                                          ~
(I
                                      ~
I~        i!< f s 1.0 jf~      "'s
                          ~r cs
                    'r pp+
Ps  0.8 0,6 K~e
                                                                    ~            Inferred fron1 isotopic data Freehand fit of data Previous LEOPARD unit cell calc.
pLg LEOPARD unit cell calc.
0 0                                                          12                        16  20              24 Bufffup (IBID/ICQ x 10 3)
 
FIGURE 7 SPECIFIC PRODUCTION OF Pu-241 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC'EUTRON SPECTRUM K~e Inferred from isotopic data-LL
            . Freehand fit of data Previous LEOPARD unit cell calc.
PLG LEOPARD unit cell calc.
1.2 1.0 g  o8 C
0 o e6 Pc es  O.4 I
t4 12                  20 28 Burnup (HMD/HEQ x 10 3)
 
FIGURE 8 SPECIFIC PRODUCTION OF PQ-242 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 0.28 I I ~ 'i  '
limni K~e                                        I          ili Inferred from isotopic data Freehand fit of data L24 Previous LEOPARD unit cell calc.          ',
PLG LEOPARD unit cell calc.
H.i      IlIT (aiI
                          )
20 If(''.i;~
l f:.l6 C
O
: 0. 12
'o 0
  '0.08 C4 C4 I
a Pc
            ~ J VI 0
0              4          8                        l6      20  24 BurnIIP (WD/KiiJ x lO 3)
 
FIGURE 9 SPECIFIC PRODUCTION OF TOTAL Pu AND FISSILE Pu VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM Net Production (Kg/MTU)
        ~Ke 2
0  Total Pu (Pu-239  + Pu-240 + Pu-241 +
Pu-242)
Fissile Pu (Pu-239 + Pu-241)
                                                                                            ~
Freehand Fit of Data                                                                  ~
10      Previous LEOPARD unit cell calc.                                                  eWe'"J PLG LEOPARD unit cell calc.
                                                                                                    ~S otal tu rt ~ etio tu              ~ ~
a ~
                                                                                                ~  ~
4      10        10      1\        ~
16            14 10 11              1 0araay (WD/kN a 10 1)
 
ATOM PERCENT OF TOTAL U I  ~
+i I'                      I                                          H 0
W O
f ir-  a I    '
l'',' I.I.
I ~
0 0
                ~ ~ ~ I l:
                                    'I      I  f~
                ~    ~                      I~
i                          II    I~
I
                                        ~
                                          'II          '
                                        >'l f~~-                              td Ir ma Ig ]
I    i ~ ~ ~
1 l.>II
                                              ~ g
  ~  I 1
 
FIGURE          ll Pu-239/U-238                                      ATOM RATIO VERSUS EXPOSURE
                                            '. I ',
                                            ,!!  il
                                            . I)
                                            )J)
                                            !i!
Jjj ill lil) jj Itl:';;r:
Ijj  !Il~I . ilf!I:.!                                            11  ' I' I! '.:
: ~:                                                                    It)i I I I.'.
JI
:jl        ii!    i !
:jjl                  '                                                                                                    Saxton Data            -'I ill! I)J    I "J I~                                  .'Ii                                                                                                                      )~ "):ll I'J'I--I-'- )
li                                iji")
                                            '                ll.  ,      !1                                ;If
.Qv I )I'
        ~                                                                                                                                                            Calculation
                                                                                                                          .I II                                                                                                                )~
                                    'l!
I'l jj'.                                                                                          i!I" .'j.                      "-  I
                                                                                                                  !Li'            i :". !
                                                                                                                                            )
i: i!: ~
F. 1  ~ I.
1'
~ Q6                      I) Ill      ) I; I tli  Itl: I    1
                          !III II    I      g                                                                    1
                                                                                                                      ,' 1 il l
:I'.I
                                                              '1'        I1                              'la I),".                            ::I Ii!i :i!i !:i: i'
.Q5                                                                                                  iiu                                                                              ~ ~
i!I I~                                            },                                                                                I 1)ll
~ pg                                                                                                                                  i.l::i        I  i ".
f)'
I
                                                            ).i. 1)ll ll                    '! 'I I        :lii
                                                          ''      i    Ii j
I I  )i!ill i'!
      ~                                                    ~i!'i  i)jf Ill!
                                                                              'i!)
                                                      .'i.'t i! 1'ii'!ill 1  I    till 11)l
                                                              .I': l. ',jl
                                                                      ~
I&
I
    .~
I
              ~ 1'I 6                    8                      10          12                  14                    16        18,                    20 MND/Kg M
 
ATOM PERCENT OF TOTAL Pu PC CI Cl
                                        ~  ~
                                          )
i Li
  ~ ~
C1 0  0 tJ t3 0  Ol I    P
 
190                                                                                                                                                    ,Iva  il I Ai Ifv If."I lva rg I"                                                Lia ll 1              'I, 4&4,a Jvf                                                                                                                                  ,  I"i Iv'      I      vl4  rf g                                                                      vll                                                        Ia I
                  !" ifl                                                              '+
tlv I:                    l~  )
f.
rI h                                                                                        C vva vl<</l h III f1l  41 a
r 150                lt hf''lv v ~,  III  I          4i Ivv  ilv vll v4 v'>>
                                                                                  'lv                                                                                        I I!                                                aa 4                                                  la                                      l.f    <<ll I    ,
I v
I I
v                                      !)                      vrf  vf'I                                                            yllv g>>
                                                                                                                                                                        $    Jv
                                                                                '7      1 I                                                                                            -v    g I4 I                                                                                                                                        I fI                                                                              I~
Iv,  aa J            I' 4) v  Iv                            ~
I!
r                                                      X vtf I I4I vv Ii                          Iv  v'I 1
100                      av IF  vti Ilvv
                                                                        .f 4"
                                                                                                                              ~,
I  I    I        Iva vv I        g                                                                                                  vvl        I v
gvt Vlt      4 4,
I
                                                                                                      ~ ..'I vfv jul ka fl',
II v>>                                                                                                          aaF    LI I
50 0.001                                                                            0.1                                              1.                                            10            50 Years            after Shutdown Figure 13.                  Fission  Product Absorption                        Cross-Sections              as a Function      of Time After              Shutdown
 
12          16          20  24 Grid Elements MATER IAL  IDENTIFICATION
: 1. Pin Cells                4. Stainless Steel
: 2. Guide Tube Cells          5. Water
: 3. Instrument Tube Cells    6. Boraflex Figure 14. One-(}uarter Rack Cell Model  for Ginna MDR
 
gg
                ~i o I    ~ ~ ~ g
              ~
 
0.910                            ~
                                              ~p ~
                          ~ ~
I 0~  \
tl    ~
0.908  g;                    ~ f
                                                                                ~  4
                                                      ~ ~ ~ SI
                                                          ~ <I ~
                                                          'V' k~  )I          ~ $4 y                                    o      <<o
                                                                                                't
                                                                    ~      ~
4 ~
                                  ~ ~
                                                                ~ ~ 1  ep    ~ <<
              ~  ~ ~    ~ <<t << 4 ~  ~
                                        ~  J    ~
                                                                                        ~
                                                                                        ~
                                                                                          ~
                                                                                          ~ a4 0.906                            ~'
                                              ~    ~              0 ~    ~                t ~
I ~                                                ~ ~ ~
0 ~                            t<<
f
                                                                                ~  t~
tt+
                      ~ <<          et  ~
                                            ~    ~
                                                                    ~ ~ ~
I
                                            ~  ~        <<I
                                                      <<a                            to
                                                    ~
P<<                ~W          <<IQ
: 0. 904 8.300                  8.400                          8 500                      8. 600 Assembly                  Pitch, inches Figure 16. Variation of                  k          with Assembly Pitch for Ginna                  MDR (4.25 w/o            8 30,000 MWD/MT, 20'C)
 
0.910 0.908 i,,l                                          p<<i.
iHE
                                                      '                                          I~)
                                          >fw  rI I~
Kl Lf.I.'if:
                        ~                                                            ~
i pre ~
II I ~      ~  (t I ~                                tsar tt~ ~    ~ 'I I)I                  ~
L'l
                          ~      I    ~ ~      ~
                                    ) yI                                          ~
                                                                                    ~ I
                                                                                          ~
0.906 p V'i $/) Ij4 i)i              ~ + ~
                                                                                ) clif
                            <<~
                            ~  ~
                                ~
                                                                          \~
Ot
                                                                              ~ ~ iE!'
            ) ~g
                                                ~
i  ~
I1 ~ i )li) i It jI)'.            !lj;
                                                ~ Ir 6 I~ ~      ~
                                                                            ~
I~  ~          jg) IjnI 0.904 0.110                                              0.120                                0.130 Normalized Steel Thickness,                        inches (Box thickness + O.S x Boraflex                              retainer thickness)
Figure 17.      Variation of                  k        with Steel Thickness for Ginna                NOR (4.25 w/o              9 30,000 MAD/NT, 20'C)
 
0.910 0.908 tW
                        ~ ~ 4~      j!i.        i  ~ I
                                                          ~ ~
qH
                                                                            ~~'  jt
                  ~  ~      ~ ~
t,        -'..I.    ,~      T    i[~
7
                                                                        ~ 4
                  '    ~ sap
                      >>4
                          ~
                            ~o    4+1 w
                                    ~
                                      ~
                                        ~
l t 4btt
                                          ~
                                              ~
4 4l        ~ ~  ~  Ii 0.906                                                  ~    f
                                                %~              i+i.
                                                                ~ ~
V ~    ~ I  I~ ~
0.905 0 . 1715"                0.1720"                    0.1725"      0 1730" Pellet Diameter, inches Figure 18. Variation of                  k        with Pellet Diameter for Ginna      HDR (4.25 wio              8 30,000 MWD/MT, 20'C)
 
CHILI 0.910        ~ ~ ~
g
                        ~ ~ ~ I                ~ 1 ~
f04/~
                                              ~                    f 4$ jl 4                  i+ I~
                                                                                                ~ ~
                                      ~ IW ~ bO
                        ~
f5 Li                                                                              ~ $ ~~
                    +
                                      ;  i,:II.".'k;                'I
                                                                ~ p  tt~ ~ ~  ~                            ~ '
                                                                                                            ~ ~
0.908                                                                                                    ~ $
iy  ~
ot ~                    ~ It $ sW4
                                                ~
                                                    ~ Lb f                ! ~                      J  ~ 4 f
                                                                                                              ~
IIq.!l        re ~
                                ~ ~ ~
rg.,P ..1      I
                                                                                        ~ f4    ~ ~
                                                                                                        +~ 1 0.906                              ~ ~                                                    ~ ~'
fg    ~ y eo
                                                                                                        ~ i+0
                                                                                                ~a    a. 8 ~f I
                                                                                                  ~\
                                                                                ~ sy i lit'                            Qo
                                                                                            ~ 4 0.904
: 0. 930                    0.940                  0.950              0.960                          0.970 Pellet Density, Fraction of Theoretical Figure 19. Variation of k with Pellet Density for Ginna                                                            MOR (4.25 w/o 9 '30,000 MWD/MT, 20'C, Reference Dimensions)
 
          >>oui c c v. vai b'av <V<> OT sea      waier uenslr.y tor Vienna MOR (4.25 w/o 9 30,000    MWD/MT,    C, Reference Dimensions) 1.0 0.8 l,l
                                                                                        ~~ pl I r~ ~
                                                                                                      ~
                                                                                                    ~ ~
0.6 I
i.'I I~
l I
I 0.4                                                                                                      ~ ~
ifii                  fl1
                                                                                  /,l                  nII
                                                                                                        ~    ~
                                                                                                ~ ~    ~ ~
                                                                                                ~ ~
0.0 0.2                  0.4                        0.6                    0.8 pH20, g/cm3
 
0.910                                      ! ~                                        ~ ~ t
                                                                                                  ~
ft    ~
t!
0.908                                                                                            ~t ~ >>
                                                                                                ~
                                                                                                  .!! t t!tt t!
                                                                                                                ~ ~
                                                                                ~ t~                        ~
ft  ~
t
                                        ~    ~
                                                                              ~ tt                                t
                                                                                      -'0
                                                                                                            ~
          ~
fP                !                                              f!
              ~ t>>
                    'PEf gd      Pf)                  I>>
                                                                              ~ ~
                                                                                    ~
                                                                                                    ~
                                                                                                      ~
t~
0.906
                                                                                    ~ t+
                                                                                    ~ ~ ~ ~
                                      ~                                          ~
                                                                                ! !  >>I~  ~
                                                                                                      ~ t tt hatt~
t                                  >>I>>        >> t~
t~
                                                                                        ~          ~
I
                                                                                                        ~  ~
                                                                                                                ~ ~
          >>I>>
4  'T~                                          ~ I ~
                                                                                    >>>t ~  ltl'
                                                                                                ~
ut~
pt
                                                                                                            ~ ~
                                                                                                                  ~ ~
                                                                                                                  ~ ~
  .904 f      Q t+!    at ![  Q%>>
                                        !4      !pgf IH g) !  j    t  !!! ! ft( f.    ~ L! l    "!      ~ ~ t~
60                  70                      80          90                100                          110 Temperature,  'F Figure 21. Variation of k with Temperature for Ginna MDR (4.25 w/o 8 30,000 MWD/MT, Reference Dimensions)


FIGURE 6 SPECIFIC PRODUCTION OF Pu-240 VERSUS BURNUP ZN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 2PO~~~~~IL~~I I', I tX~P P I\1:FIJ.~I~~4 I I..'Isf s sl I~I i!.t).t~I Ij!I s f L8<<gi ls I i.~TPl I'si,:~~%sf!'s<<I~I>s I!is I);~~!I I!I Lt:s sH ,'s t;I-h J'g I f~Is 1.6~~!'j's:s''s i~I'PTPI!!:i I.~~I,~~~''I'i'~.'p I If s 1.4~~,~I s s;wl~-:~I I I I'!i~Is'I~I I"1 s iss I~~.I~~"'is i I II I~I~s s 1.0'sg'J.g J'"s~~(I I~i!<f jf~"'s cs Ps 0.8~r'r pp+0,6 K~e~Inferred fron1 isotopic data Freehand fit of data Previous LEOPARD unit cell calc.pLg LEOPARD unit cell calc.0 0 12 16 20 Bufffup (IBID/ICQ x 10 3)24 FIGURE 7 SPECIFIC PRODUCTION OF Pu-241 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC'EUTRON SPECTRUM LL K~e Inferred from isotopic data-.Freehand fit of data Previous LEOPARD unit cell calc.PLG LEOPARD unit cell calc.1.2 1.0 g o8 C 0*o e6 Pc es O.4 I t4 12 20 Burnup (HMD/HEQ x 10 3)28 FIGURE 8 SPECIFIC PRODUCTION OF PQ-242 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 0.28 L24 I I~'i'K~e I Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc.', PLG LEOPARD unit cell calc.limni ili 20)H.i If(''.i;~IlIT (aiI l f:.l6 C O 0.12'o 0'0.08 C4 C4 I a Pc 0 0~J VI 4 8 l6 20 BurnIIP (WD/KiiJ x lO 3)24
I   ~     ~ I. ~   ~
I     ~
I   ~
  ~   ~


FIGURE 9 SPECIFIC PRODUCTION OF TOTAL Pu AND FISSILE Pu VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM Net Production (Kg/MTU)10 2 0~Ke Total Pu (Pu-239+Pu-240+Pu-241+Pu-242)Fissile Pu (Pu-239+Pu-241)Freehand Fit of Data Previous LEOPARD unit cell calc.PLG LEOPARD unit cell calc.otal tu~~eWe'"J~S rt~etio tu~~a~~~4 10 10 1\~16 14 10 11 1 0araay (WD/kN a 10 1)
B
ATOM PERCENT OF TOTAL U I~+i I'I i 1~~~~~~I~~i I'I I~I'I>'l f~~-r I g]I ma I f~I~II'l: I~I'l'','f ir-I.I.I~H 0 W O a 0 0 td>II l.~g~I 1 FIGURE ll Pu-239/U-238 ATOM RATIO VERSUS EXPOSURE.Qv I~li~)I I'I I Ijj:~: JI!Il~ilf!I:.!I.'.I', ,!!il.I))J)!i!:jl:jjl.'Ii iji")'ii!i!'ill!I)J I"J ll.,!1 11'I'I!'.: It)i I I I.'.;If Jjj ill lil)jj Itl:';;r:.I)~Saxton Data-'I)~"):ll I'J'I--I-'-
                            ~ I       '. ~ ~
)Calculation
  ~     '         ~   I ~ ~     ~
~Q6.Q5 jj'.'l!I)Ill)I;I 1 tli Itl: I!III II I g:I'.I Ii!i:i!i!:i: i'i!I I~'1'I 1 I),".iiu}, 1)ll'la::I i!I".'j.!Li'i , 1 1'il l"-I:".!)i: i!:~F.1 1'~I.~~I~pg i'!~I'l).i.1)ll ll j''i Ii'i!)~i!'i i)jf Ill!.'i.'t i!1'ii'!ill 1 I till 11)l.I':~l.',jl f)'I I'!'I:lii I I)i!ill i.l::i I i".I&I.~I~1'I 6 8 10 12 14 16 18, 20 MND/Kg M PC CI ATOM PERCENT OF TOTAL Pu Cl~)~i Li~~C1 0 tJ 0 I 0 t3 Ol P
                                  - ~ ~
    ~ ~   ~ ~ ~ ~   ~


190 150 v I v 1 Iv'I!" ifl f.rI h lt v~, III fI I4 I r 4)'I, Jvf 4&4,a g vl4 rf I 4i vll v4 v'>>4!)I lva rg I" I I4I v Iv tlv'+'lv I vrf vf'I'7 1 Iv, aa J X vtf I~I'~Ifv If."I I: C la Lia vll vva I!l~)vl<</l h III Ivv ilv vv ,Iva il I Ai f1l 41 l.f<<ll I yllv g>>-v g I I!Ii ll , I"i Ia I r a hf''lv I aa , I$Jv Iv v'I 1 100 av!!..., IF vti v>>I I vv I Ilvv.f I gvt I g Iva Vlt 4 4,~..'I~, jul vfv fl', II ka aaF LI 4" vvl I v I 50 0.001 Figure 13.0.1 Years after Shutdown Fission Product Absorption Cross-Sections as 1.10 a Function of Time After Shutdown 50 12 Grid Elements MATER IAL IDENTIFICATION 16 20 24 1.Pin Cells 2.Guide Tube Cells 3.Instrument Tube Cells 4.Stainless Steel 5.Water 6.Boraflex Figure 14.One-(}uarter Rack Cell Model for Ginna MDR gg~i o I~~~g~
Attachment  C In accordance with 10CFR 50.91 these changes to the Technical Specifications have been evaluated against three criteria to determine  if the operation of the facility in accordance with the proposed amendment would:
0.910~~p~~~I k~)I 4~0.906~~~I~0.908 g;~$4 y~<<t 0~\tl~~f~~4~~<<~J~~~~'~~~SI~<I~'V'~~o~1 ep 0~~~~~~4~<<o~<<~~~~a4 t~'t~<<et~0~~~~~<<I~<<a P<<~~~~W t<<~t~f I tt+to<<IQ 0.904 8.300 8.400 8 500 Assembly Pitch, inches 8.600 Figure 16.Variation of k with Assembly Pitch for Ginna MDR (4.25 w/o 8 30,000 MWD/MT, 20'C) 0.910 0.908 i,,l iHE>fw'r I p<<i.I~)~i pre~I I~I I~~(t~I~tsar Kl Lf.I.'if: 0.906 p V'i L'l~I)I I)~~yI$/)Ij4 i)i~+~~~~~tt~'I~I~~)clif 0.904)~g i~I1~i~~~<<~)li)i It jI)'.~<<!lj;6~Ir~~I~\~~~Ot~~I~iE!''jg)IjnI 0.130 0.110 0.120 Normalized Steel Thickness, inches (Box thickness+O.S x Boraflex retainer thickness)
: l. involve  a significant increase in the probability or consequences of an accident previously evaluated; or
Figure 17.Variation of k with Steel Thickness for Ginna NOR (4.25 w/o 9 30,000 MAD/NT, 20'C) 0.910 0.908~~t,~~tW 4~~~-'..I.j!i.i~I ,~T i[~~~qH 7~4~~'jt 0.906'~l 4~4+1 4btt~~o~t~>>4 sap w~~4l%~V~~I~~~Ii~f i+i.~~I~~0.905 0.1715" 0.1720" 0.1725" 0 1730" Pellet Diameter, inches Figure 18.Variation of k with Pellet Diameter for Ginna HDR (4.25 wio 8 30,000 MWD/MT, 20'C) 0.910~~~g+'~~~I~f 5 Li~IW~~1~f04/~~bO f 4$jl 4~~I i+~CHILI~$~~0.908 ot~;i,:II.".'k;
: 2. create the possibility of a new or different kind of accident from any accident previously evaluated; or
~It$sW~Lb~4 f~p'I tt~~~~!~J~4~~~'~$~f iy~IIq.!l re~0.906~~~rg.,P..1 I~~i lit''~sy~f4~~~~'fg~a a.~\Qo~4~1+~y eo~i+0 8~f I 0.904 0.930 0.940 0.950 0.960 0.970 Pellet Density, Fraction of Theoretical Figure 19.Variation of k with Pellet Density for Ginna MOR (4.25 w/o 9'30,000 MWD/MT, 20'C, Reference Dimensions) 1.0>>oui c c v.vai b'av<V<>OT sea waier uenslr.y tor Vienna MOR (4.25 w/o 9 30,000 MWD/MT, C, Reference Dimensions) 0.8 l,l~~pl r~I~~~~0.6 0.4 I l ifii/,l~~~~i.'I I~I I~~fl1 n I I~~~~0.0 0.2 0.4 pH20, g/cm3 0.6 0.8 0.910!~~~t~ft~t!0.908~>>~t~t~~t~~tt.!!t~t!tt t!~~~ft~~t 0.906~fP~t>>'PEf gd!Pf)hatt~tt~t I>>>>I>>f!~~!~!~-'0~t+~~~~~~>>I>>~t~t~~~~t~t~~~I~~>>I>>4'T~~I~>>>t~ltl'~ut~pt~~~~~~.904 60 80 90 100 110 Temperature,'F 70 f Q t+!at![Q%>>!4!pgf IH g)!j t!!!!ft(f.~L!l"!~~t~Figure 21.Variation of k with Temperature for Ginna MDR" (4.25 w/o 8 30,000 MWD/MT, Reference Dimensions)
: 3. involve a significant reduction in a margin of safety.
I~~I.~~I~I~~~
The proposed modification would increase the spent fuel storage capacity at Ginna from 595 fuel assemblies    to 1016. The safety analysis has shown that the modified racks    satisfy NRC Staff accepted criteria for nuclear, structural    and thermal hydraulic design. The discussion below examines each of the three criteria stated above and supports the finding that the proposed modification is outside the standards of 10CFR 50.91.
B~I'.~~~~~'~~~~~~I~~~-~~
Therefore,   a no'ignificant  hazards finding is warranted.
: 1. The proposed modification does not involve a significant increase in the probability or the consequences of an accident previously evaluated.
Four potential accident scenarios have been identified: 1) spent fuel cask drop; 2) loss of spent fuel pool forced cooling water; 3) seismic event; 4) spent fuel assembly drop. The probability of these events will not be affected by the amount of fuel stored in the pool.


Attachment C In accordance with 10CFR 50.91 these changes to the Technical Specifications have been evaluated against three criteria to determine if the operation of the facility in accordance with the proposed amendment would: l.involve a significant increase in the probability or consequences of an accident previously evaluated; or 2.create the possibility of a new or different kind of accident from any accident previously evaluated; or 3.involve a significant reduction in a margin of safety.The proposed modification would increase the spent fuel storage capacity at Ginna from 595 fuel assemblies to 1016.The safety analysis has shown that the modified racks satisfy NRC Staff accepted criteria for nuclear, structural and thermal hydraulic design.The discussion below examines each of the three criteria stated above and supports the finding that the proposed modification is outside the standards of 10CFR 50.91.Therefore, a no'ignificant hazards finding is warranted.
The consequences of a spent fuel cask drop accident are unchanged by the modification. The current Technical Specifications prohibit the movement of a cask in the auxiliary building. An Application for Amendment to the Operating License has been submitted to the NRC to delete this restriction by modifying the crane to be single failure proof in accordance with the requirements of NUREG-0554. This would obviate the need to evaluate the consequences of a cask drop accident.
1.The proposed modification does not involve a significant increase in the probability or the consequences of an accident previously evaluated.
The loss of spent fuel pool forced cooling water has been previously evaluated for both the current pool cooling system,~'~
Four potential accident scenarios have been identified:
and the system to be installed in 1986.~'~ The decay heat. loads assumed in these analyses bound those that will be experienced due  to the increased storage capacity. Therefore the consequences of this accident are unchanged from those previously evaluated.
1)spent fuel cask drop;2)loss of spent fuel pool forced cooling water;3)seismic event;4)spent fuel assembly drop.The probability of these events will not be affected by the amount of fuel stored in the pool.  
The structural response of fully loaded storage racks during a seismic event was evaluated in Section 4 of Attachment B to this Appli;cation. The results of this evaluation satisfied NRC Staff accepted design criteria. Therefore. the consequences of a seismic event are unchanged.
The consequences  of a single fuel assembly drop has been evaluated in reference 2 and in Sections 2 and 4 of Attachment, B to this Application. The evaluation indicates that Keff remains below .95. Since the proposed modification only affects storage of well cooled fuel, the maximum radiological releases would occur from the drop of an assembly in Region 1 which is unchanged.
Therefore the consequences of a fuel assembly drop are unchanged.
: 2.   'Create the possibility of   a new or different kind of accident from any-accident previously evaluated.
RG&E has evaluated the proposed rack modification in accordance with the NRC April 14, 1978 letter "NRC Position for Review and Acceptance of Spent Fuel Storage and Handling Application" and appropriate NRC and industry guides, codes and standards.     In its evaluation, RGB'as found no indication that a new or different kind of accident is created.
: 3. , The proposed modification does not involve a significant reduction in the margin of safety.
Under normal operation and accident conditions, the proposed modified storage rack design    must, satisfy certain criteria in three areas:
: 1. Nuclear Criticality
: 2. Thermal Hydraulic
: 3. Structural Mechanical In the area of nuclear criticality, the criteria established is that Keff must, be less than .95. Section 2 of Attachment B of this Application indicates that this criteria is satisfied and the results are not significantly different than previous analyses.5 The criteria itself is unchanged from previous submittals, therefore the margin of safety has not been reduced.
Section 3 of Attachment B of the Application and previous analyses '    'valuate the thermal hydraulic considerations of the modification. This evaluation shows that the decay heat loads of previous analyses bound those that could result from the 1
proposed modification. Therefore the margin of safety has not been reduced.
3


The consequences of a spent fuel cask drop accident are unchanged by the modification.
The structural considerations deal primarily with the response of fully loaded racks during a seismic event. Section 4 of Attachment B to the Application presents the structural mechanical evaluation of the racks and indicates that, the appropriate criteria established by NRC guidance and industry practice has been satisfied.
The current Technical Specifications prohibit the movement of a cask in the auxiliary building.An Application for Amendment to the Operating License has been submitted to the NRC to delete this restriction by modifying the crane to be single failure proof in accordance with the requirements of NUREG-0554.
In addition, these analyses establish the acceptability of pool floor loads under worst case conditions. With the appropriate criteria satisfied, there is no significant reduction in the margin of safety.
This would obviate the need to evaluate the consequences of a cask drop accident.The loss of spent fuel pool forced cooling water has been previously evaluated for both the current pool cooling system,~'~
and the system to be installed in 1986.~'~The decay heat.loads assumed in these analyses bound those that will be experienced due to the increased storage capacity.Therefore the consequences of this accident are unchanged from those previously evaluated.
The structural response of fully loaded storage racks during a seismic event was evaluated in Section 4 of Attachment B to this Appli;cation.
The results of this evaluation satisfied NRC Staff accepted design criteria.Therefore.
the consequences of a seismic event are unchanged.
The consequences of a single fuel assembly drop has been evaluated in reference 2 and in Sections 2 and 4 of Attachment, B to this Application.
The evaluation indicates that Keff remains below.95.Since the proposed modification only affects storage of well cooled fuel, the maximum radiological releases would occur from the drop of an assembly in Region 1 which is unchanged.
Therefore the consequences of a fuel assembly drop are unchanged.  


2.'Create the possibility of a new or different kind of accident from any-accident previously evaluated.
r'4 ~}}
RG&E has evaluated the proposed rack modification in accordance with the NRC April 14, 1978 letter"NRC Position for Review and Acceptance of Spent Fuel Storage and Handling Application" and appropriate NRC and industry guides, codes and standards.
In its evaluation, RGB'as found no indication that a new or different kind of accident is created.3., The proposed modification does not involve a significant reduction in the margin of safety.Under normal operation and accident conditions, the proposed modified storage rack design must, satisfy certain criteria in three areas: 1.Nuclear Criticality 2.Thermal Hydraulic 3.Structural Mechanical In the area of nuclear criticality, the criteria established is that Keff must, be less than.95.Section 2 of Attachment B of this Application indicates that this criteria is satisfied and the results are not significantly different than previous analyses.5 The criteria itself is unchanged from previous submittals, therefore the margin of safety has not been reduced.Section 3 of Attachment B of the Application and previous analyses''valuate the thermal hydraulic considerations of the modification.
This evaluation shows that the decay heat loads of previous analyses bound those that could result from the 1 proposed modification.
Therefore the margin of safety has not been reduced.3 The structural considerations deal primarily with the response of fully loaded racks during a seismic event.Section 4 of Attachment B to the Application presents the structural mechanical evaluation of the racks and indicates that, the appropriate criteria established by NRC guidance and industry practice has been satisfied.
In addition, these analyses establish the acceptability of pool floor loads under worst case conditions.
With the appropriate criteria satisfied, there is no significant reduction in the margin of safety.
r'4~}}

Latest revision as of 11:27, 4 February 2020

Proposed Tech Specs Increasing Storage Capacity of Spent Fuel Pool Storage Racks
ML17255A744
Person / Time
Site: Ginna Constellation icon.png
Issue date: 04/02/1984
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17255A742 List:
References
NUDOCS 8404100124
Download: ML17255A744 (145)


Text

'ttachment A Replace page 5.4-1 with attached 5.4-1 through 5.4-5.

8404i001Z4 840402 PDR ADOCK 05000244 P PDR

II 1'

i i I '

V.

Fuel Stora e S ecification The new and spent fuel pit. structures are designed to withstand the anticipated earthquake loadings as Class I structures. The spent fuel pit, has a stainless steel liner to ensure against loss of water.

The spent fuel storage racks are divided into two regions as depicted on Figure 5.4-1. In Region 1 it is impossible to insert fuel assemblies in other than the

. prescribed locations. The fuel is stored vertically in an array with sufficient center to center distance between assemblies to assure Keff < 0.95 for (1) unirradiated fuel assemblies delivered prior to January 1, 1984 (Region 1-15) containing no more than 39.0 gms U-235 per axial cm, and (2) unirradiated fuel assemblies delivered after January 1, 1984 containing no more than 41.9 gms U-235 per axial cm.

In Region 2 of the spent fuel storage racks, fuel is stored in a close packed array utilizing fixed neutron poisons in each of the stored locations. For discharged fuel assemblies to be stored in Region 2, (1) 60 days must have elapsed since the core reached hot shutdown prior to discharge and (2) the combination of assembly average burnup and initial U-235 enrichment must be such that the point identified by these two parameters 5.4-2 is above the line applicable to the particular on'igure fuel assembly. design, therefore assuring that Keff < 0.95.

Amendment No.

Proposed

5.4.4

~ ~ The spent fuel storage pit is filled with borated water at a concentration to match that used in the reactor cavity and refueling canal during refueling operations whenever there is fuel in the pit.

Basis The center to center spacing of Region 1 insures that Keff <

. 0.95 for the enrichment limitations specified in 5.4.2 , and for a postulated missile impact the resulting dose at the EAB would be within the guidelines of 10CFR100~.

In Region 2, Keff < 0.95 is insured by the addition of fixed neutron poison (boraflex) in each of the Region 2 storage locations, and a minimum burnup requirement as a function of initial enrichment for each fuel assembly design. The 60 day cooling time requirement insures that for a postulated missile impact the resulting dose at the EAB would be within the guidelines of 10CFR100.

The two curves of Figure 5.4-2 divide the fuel assembly designs into two groups. The first group is all fuel delivered prior to January 1, 1984. This incorporates all Exxon and Westinghouse HIPAR designs used at Ginna4 The second curve is for the Westinghouse Optimized Fuel Assembly design delivered to Ginna beginning in February 19843 The assembly average burnup is calculated using INCORE generated power sharing data and the actual plant operating history. The calculated assembly average burnup should be reduced by 10% to account for uncertainties. An uncertainty of 4% is associated with the measurement of power sharing. The additional 6% provides additional margin to bound the burnup uncertainty 5.4-2 Proposed

associated with the time between measurements and updates of core burnup. The curves of Figure 5.4-2 incorporate the uncertainties of the calculation of assembly reactivity.~

References

1. Letter, J.E. Maier to H.R. Denton, January 18, 1984.
2. Letter J.E. Maier to H.R. Denton, January 18, 1984.
3. Criticality Analysis of Region 2 of the Ginna MDR Spent Fuel Storage Rack, Pickard, Lowe and Garrick, Inc.

March 8, 1984.

4. Letter, T.R. Robbins, Pickard, Lowe and Garrick, Inc. to J.D. Cook, RG&E March 15, 1984.

5.4-3 ~ Proposed

f(5>ER> EQ)35L'RRRRRRRXR SRSiSRRRRRRRRRWiRiSi li3S) iAf~R(~RSIIRSSSISSRSIHSRll5%%5515511 eire~ae~ae~aaraaaaaaraaaaaaaaaraaaaaaaraaa

5) <5135) ii)<5%%i iSS5%% iSSi SRi RRSiRHRSSRSR I <Sf<1)3AIJS RRISRISIRR OIIRIRRRRS RRRIIIIHI QCRKI5353555iiSSi%15SSli%iSiSiSSSRSkiSS e~ac~aeiac~aaaaraaaraaaaaraaarrraaarrrxaaa Rt (RC{RAS> i$%%%%5555%5%5SR%5%iSi%555%5HR eireiavai~arraaaaaaaaaraaaaaxaarrarraaaaa RCiiilQKER>3%5i%55%55%5%55%%5%%%5%%%855%5%

RES) iS)3iCOSRSSSRSSHRSXSEiRiiSRRiSRRRRRR Sf<5) ti> EO(iiiRSH%5Qi%%55%%HRQ%%%) Si%i

) <5)3i> EQ)3SRRRiRRSRSRiRRRiRiRSSSiiiSSRRRR if~5j)R) <RKiRIIRB1QQRHIRRRQIRQ11SRQI it(RKESf(if(51<SK<if<5)35%<5>(SRiiRRRRRRRRSESRRRRSRRRRRRRRRRR f<R>~IXf<5555i)X<%>~lit~<5]~(L~(5i~<5%iSS55555%55SSSS>%555iRSS55%

if(5>3S) ER)35@4)35)35>3ifiR] iSSSRiSgRRiRSOQRiiiRRRSRMRiERii

)3RK~S) ESKER)35> (R>350<5> tif<5)~55iSSQS555%5555%5iRSSSSi555i%5 Xi3%f~SK(R>3%35i3A35)3RC<R)3SRRRiSRRRRRRRRRRRRiRiRRRiSRRR55 f~RKERf<if<R>l5>li>31)35131)3535XISISRRRRSSRRRR>IRSQSSISRSRSI 5)3564fliKER)3E>35 4f(5>3i)3SRRiRESRiRRRRiRiRRRRi SRRRSRRSiR CiOKIQKIRK~SK<53535)3S) ISfi5) iIi%5'5555iXSiQSiRiSiiiRSSSRiSR RC~RKERC<SC<5) EQ)35vS) <5> Eifli55iRRNRRiRRiRRESRRR RiiRRRRRRR ae~reii=~ae~auaaaaaaaaaaaaaaraaaraaaaxaaaaaa

) <5><5)35>iR>3555ERSg iRIRRRSRSRiRi555i%%5%5i k)35)35>3A3i 555515 SHSRiRSSSSARiSSSRi5555%

Ki5~35)~<5>~~i~ <155%155 RES IIRRIRRIRS SSRIRRRRl5 A(<1()l(il(IQSSSSIQWI SILIRSS/SISSQSS51SS

2' 20 TCt THE INCH ~ I ja Iu It Clll&

HE C KEUFFEE & ESSEII CO. salas ususA 46 1242 F IGURE . -2 REGIONS OF ACCEPTABILITY Al4D UNACCEPTABILITY FOR STORAGE OF SPENT FUEL IN REGION 2 ei ~ I ill ~

'i t

~

fl

'.'f! )

~ 4 ~

I.. 3 f

~ *

~ 11 t~ 'I 4 1 I

I

'I e ~ yea 4+I as I, }

'fff fai

~" sa, at 4 fs 1

t it

~ ~ I i. I itr

'I:lli

  • 4

~ ~

1"'

4 I

lil1 aft.' il

,ar

~

~

~

I 4

I I 4 ~ ~ I* 1 I! '

~ it. ',f 1

~

fsi

+'I*

I

~

li ~ ~

~ 1 I 'I 1

~

1 4 ~

4, l tli i ~

jf ~ I

' i ~ II ~ 4 iltt ltl41 0 at if 3 )T T 30 it 1 .'l 1 ~ ~ ~ ~ FUEL DELIVERED

~ 'I 1 1 I~ eli ~ t{sf iA FTER JANUARY 1, 19 84 4 '4

~

t' I

ail\ ;iif ;l) 7~

' f

~ 4 ~ I 1 4 ~ 4

~ ~

rj.! r

~ 1 rl 4

f$ !

4 I ~ 1

~ F-1

~ ~

4

'I ~ f,i', TT lT 1 ' 1 1 1 l ~ I 1 4 T I '

~

~- '," 1 ~ t ,4 I II is I sl i "i I

~ *

~

Il 4'1 r 1141 1 Ile * ~

, ~ 3-1 ~

I~ ~ I~ \

I ~

l

'I

-3 ~ ~

'I'IO 4

It 4 4 f ti

' i 14 I~

1 4 ACCEP TABLE FO RE N 2 I~ ' 1 sits ,i)a tl t ~ '  !' ~ it i)la l' ~

,iei ~ 4 ~ 1 4

~ ~

t,

~ ~

I

~ ~ I ~

~ '-

lt I

1 ~ ~ t I~ I

,f) ) e'ill ~ ~ er 4

i ) ~ 4 aet I ' ~

1 ~

T T,r 4 ~

~ 1 4 ~

I ~" 4 4

ij

~

~ ~

lfl; if 'fill 16

fI ~ ~

~ 1 1 ~

I  ! 3')'s f 20 :fi::!-4's

~ i ' f f ta 11 rsa

-, ~

Ir ~

~ I I 4 I II 114

~

  • I 1 ~ ~

~ 1 ir, lie

'I il

~

e.

~

e

~

3.

-I ai 4 i:.)':ii,

~ ~ 4 ' ~ - ~ I 'I

~

)1 4

I 1

~ ~ I' i ~ ~ I

~ i ifl'f 4

f)

T: ~

'I ill slit 4

~ ~

1

~ 1 g

I if<<t.f) ~

'ii 3!

if I 1 4 ~ i 4 4

'll

~ 1 ~ ~ ~ ~

-lt Z It'I ' I i."

~

(4

~ 3'

~

It ~

~

~ lt

~ I 1 4 4 4

~ i)s

'Ii '

I I

I

~

})

~ ~

i~ 4

~

,'it I

4

)PI j ~

~ 41 I 4

)

~ ~

il')f

~ 1st i rj fl l;- It

~

I I ;}i-';

Ii')

~ ~ ~ 4 ~ ~ ~

f . 1st 1st ~ I II ' f lI I f ~ '.

lI I ~

ls ~

I- l

~

FUEL DELIVERED PRIOR TQ Lr! Il I S."3 Il, 4

~ I

~ ~ ~ ~ 1 f

~

~ 1 1 ~

let i'l ~ a ~

'ANUARY 1 , Ill' asa III~ 't ~ ~

I I 'la 19 8 4 i'L! is ,

'I ~

I~ ~

jfa

~

f,ili )

~ I)ia ,i

~ ~

~ ~

ll ~ ~

)i t I -* ll:

3 tl 4 1 ~

~ 1\

tf' l! It, i(i! (it

~

...I-,

~ ~

ti 11 1

~ 47 t.i ~ )it i) ~ ~

)

~ 4 l

~

7

' 'te" 4 4' 3:3-',

fII 11 I ~

I sf fff aI I ~ '3'I-' t I I te

~ I, i

i is Il" ~ ~

~

I 4 3 I 11

~

',) i))3 ff,a f,ff I s

~ i

~

4

~ ~ ~

!i 1 ~ 1st' il ~ ~

I 11 IF t ii 11'tl 4TTI

~ ~ 4 ~

1

' 11 11 ~ I l'

I ~1 N CC EPT ABLE FOR EGION 10 '.I stlt

' ~

il'I:;-; 4 4

~

~ 4 esa tla file if!i f I

~ ~

~ I is1 l If l I\ ~

~ fi' ~ air -lan

'I I *-i -, ~ 3

~

I. I~ ~ i t 1 1

)ls I te ~ 1

~ ~ - 4

'l ) l(s iI fil

)1

~

f I ~ II .it; t

i i ~

3

~

( ;I 4 ~ ~

' '" ~

I 1st ~ I- ~

ti )i ~ a)i ~

i); (:;

~ ~ ~

iiil

~ ~

,fa, I ..if) is'T-'

'l I l(l ..':.

II 7 I ~ ~

Ifte ~

4 rr ~ite ir ,ii",

it ti

'4 I

!,': ')IIt

~ ~

I ~

~

fl;-' ~ ~

It ~ I ' ~ 1 ~ ~ ~

~ ~

f~ 1 re ei i3T Ii I ~

1 ~ ~

~

it 1 1

~ ~ If etrr ~

aaa 'I a ~

il') I ~ I~

I

~

~

I Li 4 1

I !3 I ~ 3 te I i'

'4 4

4 t

'II 'I 4 t

  • I'

~

e ii " Iil

~ I a

at

') +

4 4 1

!a!i ~ ~ 4 '1 4

'I

'1 1; *4

I:3 ~ i 3 I

1.50 2.00 3.00 4.00. 4.25 INITIAL ENRICHMENT, N/0

Back round The original spent fuel storage racks provided capacity for the storage of 210 fuel assemblies. In 1976 RG&E requested, and the NRC approved, the replacement of the original racks with higher density racks provided by Wachter and Associates.~,~ This expanded the storage capability from 210 to 595 fuel assemblies.

In 1980, RG&E requested3 and the'RC approved4 modifications to the spent fuel cooling system to provide heat removal capacity of 16 x 10 6 BTU/HR. This modification provides sufficient heat removal capability for all predicted fuel discharges in addition to a full core discharge at least to the year 2010.

Recently RGSE has submitted changes to the Technical Specification to establish new limitations on unirradiated fuel enrichmen't (which has been approved) and to delete a restriction on the spacing .of recently discharged fuel General The proposed modification to the spent fuel storage racks will involve only the six west-most rack modules (Figure 1-1).

These racks will be removed from pool and modified so that fuel assemblies can be stored in what were the water box locations.

The remaining three rack modules will not be modified. The modifications will provide an additional 420 storage locations resulting in a total capacity of 1016*. The six modified racks will be designated Region 2 and will be used for fuel that satisfies certain burnup criteria and has cooled for at least 60 days. The

  • A mechanical plug previously installed in a storage cell will be removed.

remaining three racks will be designated Region 1 and will be used for low burnup and/or recently discharged fuel.

The enclosed analysis conforms to the NRC guidance of April 14, 1978. This relies on past analyses (References 1 thru

6) for those components which are not modified or are not impacted by the modification. The analysis is separated into 7 sections.
1. Description of the Modification
2. Nuclear
3. Thermal-Hydraulic
4. Mechanical, Material and Structural
5. Cost/Benefit Assessment
6. Radiological Evaluation
7. Accident Evaluation Rochester Gas 6 Electric utilized U.S. Tool S Die as a contractor to perform the mechanical, structural and material analyses. U.S. Tool 8 Die previously merged with Wachter and Associates, the suppliers of the current storage racks. The nuclear analysis was performed by Pickard, Lowe and Garrick, Inc.

The description of the modification notes an exception to the Technical Specifications (Section 3.11.3) that will be required to remove the west most racks in the pool. While the trolley of the auxiliary building crane or its transported rack will not travel over any spent fuel, the trolley will pass over 2-3 empty rows of a rack containing spent fuel. The distance between the area underneath the transported rack and the stored spent fuel will be maximized to insure the fuel would not be damaged if the load was dropped.

e 1. Descri tion of the Modification A description of the current spent fuel storage racks are contained in reference 1 and subsequent responses to NRC staff questions by RG&E. A general layout of the racks in the pool is at Figure l-l. The racks as currently configured are composed of three major components.

a 0 The rack modules, which are rectangular arrays of cells of which one out of two are storage cells. The others are water boxes.

b. The support bases, on which the rack modules rest, are a rectangular construction of I beams. Figure 1-2 gives a general layout of the support bases in the pool and Figure 4-2 provides a sketch of the rack and support base. At each corner of the base a jack screw provides a leveling mechanism and lifts the base a minimum of 2 inches off the pool floor. To facilitate cooling water flow, holes are cut into the support base I beams. The jack screws bottom hemispherical .head rests on steel plates which rest on the pool floor.

c ~ Seismic supports between the bases and the pool walls provide a means to transmit horizontal loads from the racks to the walls (see figure 1-2).

Task Descri tion of Modification

1. Shuffle spent fuel to the east most position in the pool to allow access to the two west most racks.
z. Divers loosen the four mounting bolts fastening the rack to the base in the two west most racks.

Comment: As a result of step 1, at least 8 empty rows of fuel cells will be between the divers and any spent fuel (Figure 1-1).

3. Install the lifting rig in the rack and using the auxiliary building crane remove it from the pool. As the racks clear the pool surface decontaminate with high pressure water.

Move rack over the decontamination pit directly to the south of the spent. fuel pool and place on J skid. Perform additional decontamination as required.

Comment: Both the spent fuel pool and the decontamination pit sit on bed rock, therefore, the safety significance of a rack drop during transfer is minimized (See Figure 1-3). For the modification, a temporary platform will be built over the decontamination pit on which the work will be performed. The Ginna Technical Specifications prohibits the trolley of the Auxiliary Building crane from moving over racks containing spent fuel (Section 3.11.3). For the first two west most racks this will be violated. However, the trolley or the transported rack will not pass over any spent fuel, but 2 to 3 empty rows of a rack containing spent fuel. Should a load drop occur the distance between these rows and cells containing spent fuel will prevent fuel damage.

During the decontamination process over the pool, the pool boron concentration will be checked frequently.

4.~ Using a special cutting machine remove 70 guide funnels and 28 guide angles over the water boxes. ~

5. Remove 4 lifter assemblies and install modified bottom

'plates with lifting slots.

6. Enlarge the, flow holes in the bottom plates, and install additional 1/2" bottom plates to the former water boxes.
7. Install the right-angled poison assemblies in each cell of the rack.
8. Divers install shims at the corners of the support base and retract jack screws. Base and rack loads will rest on the shims.
9. Set racks in pool on support bases without the mounting bolts. ~
10. ~ Repeat the above steps until the six west most racks in the pool have been modified.
11. Remove all (both Region 2 and Region 1) seismic supports between the rack bases and the walls.

In order to remove the two west most racks the spent fuel pool cooling system discharge pipe will have to be removed where it descends the west, wall of the spent fuel pool. The decay heat load during the time'period of the modification will be small

(<2MBTU/HR) because the projected start time for the modification of October 1984 will be at least six months after the discharge of the last reload batch. The heat capacity of the pool is such that a heat up rate assuming no heat losses due to evaporation or other mechanisms is less than 1'F per hour. A temporary fitting and hose will be used to return cooling water to the pool.

Should coolant flow be lost, the slow heat up rate and the typically low initial temperature of the pool will ensure adequate time is available for the normal backup (skid mounted pump and heat exchanger) emergency cooling system to be put into operation. As soon as possible after the two west most racks are re-installed, the normal cooling path will be restored.

SEE~~ERR~SRRSRESSSSSSSSSSSSSS ESK%4SK~RRSRWSWASEESEESRSXI PM5$

~E LLLR uaae KIESSSESESS N

){

~- 55 5% %6 C~

KERRSS SSSS RRRSSM555 555SSMQ%5 OK(%5%) (%h i%5

~ SEA ~ '5%3RMMK%6WK~%5%%~%

ESSSESE SSESIK(SEERESS~ ESSSSSSSSS~~ %RRK%555K(RE<K(ROk~H

% 45W$ 355%K(RKiXK(RORti

~ ERERSRS a5555%8K45RRSSI>INNSR5 5 i~rrrraxraa

~EEEEEEEEEESSI')

5>SQRRARRK(

a 05 SN 1S - - >A(

><gf<Sftgfi 5I>E i<5 - .

55 SR SR) (

%KIRK(RK(kftQKES >(R~SM anrraarri~

t4NiNNS 51%NSQSRid N 5958OK~MQM885 K<SRX5555M RQMRWRNSlMRi'%$%2%555$ K~RFiRK%-I

II~

v~vS I)

I I 'L 'Pg

~

%. LP I( 1 /A I)s'. l /sr)" hg I'/b ( .~ /sa (ISO. io ) (5 O.&l) s(a ea')s ( () T. 44" IG.(( ) (()144 J (Io.cc ') (4X4C ) (I A. 447 (ta4. uO)a 4) (0 em~ 4) ( La. w+ 4)

! ',s

~

I

( ~ ~

s 0 g. y)+ ~ oar 5 0 IIII a ~v I

~p ca IIg o

~

4 4-td i) Ig(v 0

( I vz +C g I 4L4

.) I gL

I 0 I svv Is

~ 0 1 ~ (I

~ v I:c"; I 2

s

~

~ ia- s

~ ~

ereyeo l

I~

11

~

s I

I~

~ A ~ .s .s

')'Z

%VEAU f4'r g o V

io;+ 0 JI

~ ~

v 1v 4 fg (I'I t I ~

sv 1 Saon)s4 Vv++ + ~s ~

041440 I l'-P l.I> (s (v Ss

~ 4)s4vWg

~ g

~

i I o

%4o oaa

~~

v >

. &1,/s 0 I oI 11%.bl ) s(r 44) (4144 I a+4O. Isola 4)

V)

/V ~ 4 2w I

~ ~

)

hlEW SL'EL 6" EVA7og

~

}I

= ~ ~ ~

v I

~

gznv~d/g ga// LIF>ivf Ki~CH.

-~ 4 (NEct Z J

) ~

~

~

I Exya~ dw A~<; >woe V V

~

tl

)g

)

P V I 4i I

-~

I

' ~

'5l a = Fuaa. %t~ wi.tpl.. '

SSI< ti~v)): D-C)I<t-Oa7)

Ctt) CJPAV)8.

-'VIIR)IT i( C,wesT)

~ ~

FVVKL Clh JVV 'O)VVI)V))l} 4)IL)V,

~'i ht EL. l- SO .0 HEOJ .PLKL ORAGK AREA SEE Dl<A4JlN(q,O -,I) oA. - 00'7 .

)

J~

I I)

~

p~

~

~C~t V

l

. T&~lhl<b),TlO&.v P)T~ V Fl.eaR. ELEV 749i ~ .

~

I ilI

.+&8 t)LtJ P O2-I-<7))l)! = xnan,:s A x.,~<~"rz 1mcl

~~

~ ~

J

$ 47~8// CII II I

c vARC6+O'L

" 'E'l 'R7Q'-4F

+~ ~ ~ A

~6 -/O PS '-/o" z4'-r'0 1-3

~ ~ FIGURE AUXILIARY BUILDING SPENT FUEL POOL AREA

2. Nuclear Anal sis Attached is a nuclear analysis of Region 2 rack configuration performed by Pickard, Lowe and Garrick. This analysis establishes the minimum burnups as a function of initial enrichment required in order for a fuel assembly to be stored in Region 2. This analysis was performed for the Westinghouse Optimized Fuel Assembly.

Reference 23 added the Exxon zircaloy guide tube design (Regions 13-15). The Exxon Regions 13-15 differ from the earlier Exxon Regions 10-12 only in that the later regions incorporate zircaloy guide tubes while the earlier regions had stainless steel guide tubes. The later Exxon region of fuel will be more reactive than the earlier region at any burnup because of this design change.

Therefore, the minimum burnup criteria for Region 2 generated for Exxon Regions 13-15 will be bounding. The other fuel design used at Ginna was the Westinghouse HIPAR design which incorporated inconel grids and stainless steel guide tubes. Table 2-1 shows a comparison of design parameters for those fuel assemblies used at Ginna. Reference 23 documented that the Westinghouse HIPAR design is less reactive than the Exxon Regions 13-15 design at any burnup, therefore the minimum burnup criteria generated for the Exxon design will be bounding for the Westinghouse HIPAR.

In order to determine the burnup of an individual assembly following discharge, RGK will use its Nuclear Fuel Accountability Code (NFAC) which was established in the early 1970's to record the isotopic content of the fuel and other specific parameters such as burnup for use in future fuel reprocessing. NFAC uses as input the burnup rate data (Mw-hrs per 1000 core Mw-hrs) generated

by INCORE results from flux measurements. Every assembly irradiated at Ginna is followed with NFAC beginning with insertion and proceeding through core life to discharge. These burnups generated by INCORE-NFAC will be reduced by.a factor of 10% to conservatively bound measurement uncertainties. This reduced burnup will be compared to the curve (Figure 5.4-2 of proposed Technical Specification) to determine if a fuel assembly is acceptable for storage in Region 2.

As described, in Section 1, every cell of the modified racks will have Boraflex neutron poison inserts installed. Specific quality control procedures will be used to insure the presence of the Boraflex in every cell. Proper documentation from the manufacturers of Boraflex will be obtained to assure the minimum B density. A discussion of mechanical stability of Boraflex is at Section 5, Mechanical Analysis.

Referring to Figure 4-4, Poison Assembly Installation, the length of the poison material in the cell is 132 inches. This.

compares to a maximum fuel assembly active fuel length of 142 inches. The ends of the active fuel region will be at a burnup lower than the assembly average. However, this positive reactivity effect will be offset by the increased neutron leakage at the ends of the fuel region. Additional calculations are being performed to quantify the net reactivity effect of the poison configuration. The results of these calculations will be forwarded when available and the poison material region extended if required.

Table 2-1 Comparison of Design Parameters "Westinghouse HIPAR Exxon Westinghouse OFA REGIONS 1-9 REGIONS 10-12 13-15 REGION 16 Rod Array 14 x 14 14 x 14 14 x 14 14 x 14 Rods per Assembly 179 179 179 179 Rod Pitch, In. .556 .556 .556 .556 Assembly Pitch 7. 803 7. 803 7. 803 7.803

\

Active Fuel Height, In. 141.4-142.0 142. 0 142.0 141.4 Clad O.D., In. .422 .424 .424 .400 Clad Thickness, In. .0243 .030 .030 .243 Clad Material SS-304 ZRC ZRC ZRC Pellet Diameter, In. .3659 .3565 .3565 .3444 ametral Gap, In. .0075 .0075 .0075 .0070 Pellet Density,  % 94 94 '94 95 Guide Tube O.D., In. .5375 .540 .541 .5280 I.D., In. .5075 .510 .'507 .4825 GT Material SS-304 SS-304 ZRC ZRC Instrument Tube O.D., In. .422 .424 .424 .4015 I.D., In. .3455 .346 .346 .3499 IT Material SS-304 SS-304 ZRC I Grids Grid Material INCONEL ZRC w ZRC w ,7-ZRC INCONEL INCONEL 2 INCONEL SPRINGS SPRINGS "These are Region 8 parameters. There were minor variations in some of these parameters over the regions.

3. Thermal H draulic Reference 4 contains the NRC safety evaluation of proposed spent fuel pool cooling system modifications and approval that these would provide sufficient cooling capacity for projected discharges through year 2009 with a full core discharge in year I

2010 (1360 fuel assemblies total). This cooling capacity exceeds the maximum that would be required= under the proposed modifications (1016 fuel assemblies total). The current projected refueling cycles are consistent with the assumptions of this safety analysis.

It is anticipated that this modification will be completed during 1986. The current spent fuel pool cooling system capacity is 9.3 x 10 BTU/HR.- This is far in excess of what will be required under normal conditions prior to 1986 (discharge of only one region of fuel at. end of each cycle). If a full core discharge is required prior to the new spent fuel pool cooling system being in operation, the in-reactor decay time will be extended in order to ensure the pool temperature limitations in the Technical Specifications are satsfied.

In response to NRC questions concerning the previous storage rack modification, RG6E calculated the maximum cladding temperature for the hottest fuel assembly of a recently discharged ba'tch, discharged in conjunction with a full core. This calculation k

showed a margin of over 80'F to the saturation temperature. This assumed a recently discharged batch grouped together at a storage location farthest from the cooling system cold water inlet. This analysis is still valid for Region 1 where, in accordance with the proposed Technical Specification (Section 5.4.4), recently

discharged fuel would be stored for a period of at least 60 days after reactor shutdown. After 60 days of cooling time the fuel could be moved to Region 2's higher density storage. As part of the modification, the flow hole at the bottom of the former water boxes would be enlarged to equal that of the other storage locations.

As indicated in the analysis, adequate flow will be available to the hotter than average assemblies and there is no limiting thermal requirement which would prevent the grouping of these assemblies~

10

4. Structural Mechanical Material Anal ses A. Seismic Analysis The objectives of this seismic analysis are to determine the following'during OBE and SSE seismic events:
1. The maximum loads imposed on the fuel storage racks.
2. The maximum distance the racks will slide and/or lift off.

The results of this analysis will be used in the mechanical analysis to evaluate the structural integrity of the racks when subjected to these loads and movements.

~Sco e The loadings considered in this report for the modified racks using both standard fuel assemblies and consolidated fuel with a 2:1 compaction ratio are:

1. Deadweight of the fuel storage racks and the fuel assemblies.
2. Submerged weights of the fuel storage racks and the fuel assemblies.
3. Seismic loading, both OBE and SSE, as provided by the acceleration time history at the pool floor.

Horizontal responses to the seismic accelerations of the racks are obtained by evaluating the loadings for two different boundary conditions.

1. The horizontal motion is restrained by a horizontal force equal to 0.2 times the normal force. This is the minimum anticipated friction factor between the rack

and the support stand, (Ref. 13). These results give the maximum distance the racks will move during a seismic event.

2. Differential motion between the rack and the support stand is prevented. This is modeled in the finite element representation by placing a horizontal spring, representing the rack flexibility, between the rack and a fixed point.

Methods of Anal sis The vertical seismic analysis was performed using the equivalent static response spectra method. This consists of determining the vertical natural frequency to be greater than 33 HZ, then using accelerations of 0.23 g for OBE and SSE taken from the response spectra curves~4. These values were applied to the deadweight to obtain the total vertical forces. The vertical reaction loads were combined with the horizontal seismic loads using the square root sum of the squares method as specified in Ref. 8.

Horizontal seismic analysis was performed using the time history method of analysis in conjunction with time history data.

The OBE time history data was obtained by dividing the SSE time history data by two. This accounts for the non-linearities inherent in the spent fuel storage racks which include:

1. Fuel-to-rack wall impacts
2. Rack sliding
3. Vertical impact due to rack tipping.

The time history analysis was performed using a special purpose computer program "RACKOE"*. This program was developed

  • RACKOE is an acronym for rack analysis considering kinetics of earthquakes, a non linear finite element program developed by Prof. W.F. Stokey of Carnegie-Mellon University, Pittsburgh.

12

specifically to analyze fuel storage rack behavior resulting from seismic disturbance. This program solves the equations of motion explicitly using Euler's Extrapolation Formula.

The fuel rests in the cell base. It is assumed to act as a pinned beam, centered in the cell, with a gap,between the cell and the fuel along its length. The gaps between the fuel and the cell walls can close causing impact to the walls. The space between the fuel and the wall is filled with water. As the fuel and the wall move relative to each other, hydrodynamic forces are set up due to the acceleration of the water. These forces are exerted on the fuel and rack structure, tending to mitigate I impact forces. Hydrodynamic forces are generated between the racks and the pool walls. Methods described by Fritz (Ref. 9),

Dong (Ref. 10) and Stokey (Ref. 11) are used to quantify these hydrodynamic forces.

Damping values used for this analysis are taken from Regulatory Guide 1.61, (Ref. 12). The rack boxes are welded together. When the welds are stressed there will be some localized deformation.

The damping values are between those for welded steel and bolted steel structures. In the interest of conservatism the lower values for welded steel structures are used.

Friction, between the rack and the pool support stand, is handled by a special friction element of the model. The normal force on this element is the force in the vertical supports which, due to rack tipping, can be greater than the deadweight of the rack.

13

E i ment Descri tion and Material Pro erties Equipment Description Section 1 provides a description of the modification. As shown in Figure 4-1, the west six racks will be modified to allow h

storage of spent fuel in what are currently water box locations.

These racks will be designated Region 2 and will incorporate neutron absorbing mateiial in each location. Shims are added under the rack bases in Region 2 to provide an increased load transfer area. Sliding is accomodated in the Region 2 racks between the rack and the base. support by removal of the bolts between the two (Fig. 4-2). The Region 1 racks are unmodified and their storage density and loads remain the same. In this case sliding would occur between the jack screws at each corner of the support bases and the 11" x 11" plates which rest on the spent fuel pool floor.

In addition, all the seismic supports (both in Region 1 and Region 2) between the support bases and the spent fuel pool walls will be removed, therefore no loads will be transmitted to the walls by either region of racks as indicated by the results below. The amount of sliding is insignificant compared to the

(

rack to wall clearance or the dimensions of the plates on which the Region 1 support base jack screws rest. Also the racks respond in-phase to seismic events, thus there will be no added impact loads at the Region 1 - Region 2 interface.

The analysis is performed for the 140 cell size rack which is common for all six in Region 2. The cell cross-section is shown on Figure 4-3 and the longitudinal section on Figure 4-4.

- 14

/

Two storage arrangements are analyzed. One is referred to as "standard" wherein one fuel assembly (179 fuel rods) is stored in each cell. The other is referred to as "consolidated" wherein the fuel rods from two assemblies (358 fuel rods) contained in a storage canister are stored in each cell. Figure 4.5 shows the arrangement of the fuel rods in the canister.

Material Pro erties Applicable from 70 to 200 degrees F. The spent fuel racks are fabricated from type 304 stainless steel. The 304 SS rack material properties used in the seismic analysis are: (Ref. 14)

Density 501.0 PCF Young's Modulus 27.8E06 PSI Shear Modulus 10.7E06 PSI The fuel assemblies contain clad constructed of Zircaloy whose properties are: (Ref. 15):

Density 409.0 PCF Young's Modulus 13.0E06 PSI Shear Modulus 5.0E06 PSI Other densities used in the analysis are:

.Water 62.4 PCF UO2 643.0 PCF

Results A finite element representation of a rack with fuel assemblies is shown on Figure 4-6 where:

Rack at Base (Horizontal) 2-6 Rack (Horizontal) 7-11 Fuel Assy. (Horizontal) 12 Rotary Inertia 13 Rack 6 Fuel Assy's (Vertical)

Represents Flexible Elements 1-5 Rack 6-10 Fuel Assy.

11 Horizontal Support 12,13 Vertical Supports Represents Gap Elements MHrw = Hydrodynamic Mass (Rack to Wall)

MHrf = Hydrodynamic Mass (Rack to Fuel)

The results are summarized for:

a. Standard Rack-140 Fuel Assy's-179 Fuel Rods Per Assy.
b. Consolidated Rack-140 Fuel Canisters-358 Fuel Rods Per Canister.

The tabulated results are grouped and identified by "sets" numbered 1 thru 5. The values in each set are explained below.

SET gl Maximum Forces (KIPS).

SET C2 Loads on Individual F/A's (LBS) and Support (KIPS).

The maximum contact forces are the forces of set 51 divided- by the number of fuel assemblies in the rack. The support forces are the forces of set 1 divided by two. Two supports take the given reaction.

16

SET 53 Maximum Forces (LBS) at the Rack Support.

The Fvert Values, NS, EW, VT, are the values of set 1 minus the submerged weight. (Ex. 271,700 - 208,190 = 63,510)

The Fhoriz Values, NS and EW, are taken from set 1.

The Vertical Forces, VT, are determined by using:

OBE = 0.23g SSE = 0.23g From the response spectra curve corresponding to 33 HZ~4.

VT (OBE) = (1.23 DWT BUOYANT FORCE) SUBMERGED WT.

VT (SSE) = (1.23 DWT BUOYANT FORCE) - SUBMERGED WT.

The RMS Values are calculated using:

RMS = SUBMERGED WEIGHT + Fns .+ Few + Fvt SET 54 Maximum Forces (LBS) on Each Support. These values are the values of Set 83 divided by 2.

SET 05 Horizontal and Vertical Movement. of the Rack (Inches)

ELASTIC - The amount the rack will deform as a result of the internal flexibility of the rack when restrained from horizontal motion.

SLIDING The amount the rack will move when the rack is considered rigid and a 0.2 friction factor is used to restrain movement in the horizontal direction.

LIFTOFF - The maximum values the rack will move vertically off of the base, or tip, during the seismic event.

The Values DWT, BWT and SWT are Deadweight, Buoyant Weight, and Submerged Weight respectively.

17

The friction forces are the maximum horizontal forces developed at the base of rack using a minimum friction factor of 0.2.

18

PROJECT 8369

SUMMARY

Of RESULTS FOR 140 CELL RACK STANDARD. F I LE RGSUM. 1

.I SET ¹1 MAX. FORCES (KIPS).

AT GAP ELEMENTS SUPPORT D I R, EVT 1 2 3 4 5 Fvt Fhx NS OBE 31.4 53.2 53.3 64.4 83.5 271.7 170.0 EW OBE 0.0 55.6 72.4 73.2 73.2 393.3 156.2 NS SSE 8.9 62.0 98.3 77.'7 97.6 404.7 231.5 EW SSE 16.6 66.5 115.8 83.9 .103.3 381.6 164.2


SET ¹2 LOADS ON INDIVIDUAL F I A' ( LBS) AND SUPPORTS (KI PS)---

NS OBE 224. 380. 381. 460. 596. 135.9 85.0 EW OBE 0. 397. 517. 523. 523 196.7 78.1 NS SSE 64. 443. 702. 555. 697. 202.4 115.8 EW SSE 119. 475. 827. 599. 738 190.8 82.1

-SET ¹3 MAX. FORCES AT SUPPORT (LBS) -SET ¹5- MOVEMENT AT BASE (INS)

Fvert Fhorix ELASTIC SLIDING LIFTOFF NS OBE 63,510. 170,000. 0.019 0.080 0.009 EW OBE 185,110. 156,200. 0.046 0.088 0.048 VT OBE 5.3,728. 00,000.

RMS 411,133. 230,865.

NS SSE 196,510. 231,500. -0.026 0.050 0.308'.048 EW SSE 173,410. 164,300. 0.513 0.067 VT SSE 53,728. 00,000.

RMS 475,723. 283,878.

-SET ¹4 MAX. FORCES ON SUPPORT (LBS)--

NS OBE . 31,755. 85,000.

EW OBE 92,555 78,100 DWT Z33,600. LBS.

BWT 25,410. LBS.

VT OBE 26,864 00,000 SWT 208,190. LBS.

RMS 205,567 15 432 F,RI CT ION FORCES 8 0.2 FACTOR (LBS)

NS SSE 98,255 115,750. NSOBE 41,640.'2,210.

EWOBE EW SSE 86,705. 82,150. NSSSE 59,760.

EWSSE 101,600.

VT SSE 26,864. "00,000.

RMS 237,86" 141,939

PROJECT 8369

SUMMARY

OF RESULTS FOR 140 CELL RACK CONSOLIDATED. F I LE RGSUM. 2

-SET ¹1 MAX. FORCES (KIPS)

AT GAP ELEMENT¹ SUPPORT DIR EVT 1 2 3 R 5 Fvt Fhz NS OBE 0.0 0.0 100.0 98.4 159.3 312.4 160.2 EW OBE 0.0 53.& 178.3 176.0 180.1 405.2 153.0 l ~

NS SSE 14. 8 214. 9 225. 6 217. 5 250. 7 455.7 239.3

' A 1

l EW SSE 0. 0 118. 0 249. 3 223. 2 235. 0 512.1 184.7

---'--SET ¹2 LOADS ON INDIVIDUAL F / A ' (LBS) AND SUPPORTS (KIPS)----

NS OBE 00. 00. 714. 703. 1138. 156.2 80.1 EW OBE 00. 383. 1270. 1257. 1286. 202.6 . 76.5 NS SSE 106. 1535. 1611. 1554. 1791. 227.9 119.7 EW SSE 00. 1060. 1781. 1594. 1679. 256.1 92.4

-SET ¹3 - MAX. FORCES AT SUPPORT (LBS) -SET ¹5- MOVEMENTS AT BASE ( INS Fvert Fhorix ELASTIC SLIDING LIFTOFF NS OBE 00. 160,200. -0.018 0.028 0.000 EW.OBE 64, 140. 153,000. 0.005 0.024 0.015 VT OBE 89,470. 00,000.

RMS 451,146. 221,524.

NS SSE 114,640. 239,300. 0.027 0.094 0.017 EW SSE 171,040. 180,700. 0.054 0.128 0.072 VT SSE 89g470. 00,000.

RMS 565,564. 302,'289.

-SET ¹4 MAX. FORCES ON SUPPORT (LBS)--

NS OBE 00. 80,100.

EW OBE 32,070 76,500 DWT 389,000. LBS.

BWT 47,940. LBS.

VT OBE 44,735. 00,000. Sl/T 341,060. I.BS.

!-e RMS NS SSE 225,573.

57,320.

110,762.

119,650.

8 FRICTION FORCES 0.2 FACTOR (LBS)

NSOBE = 49,640.

EWOBE = 51,630.

EW SSE 85,520. 92,350. NSSSE = 68,210.

EWSSE = 68,210.

VT SSE 04,735 00,000.

Rl iS 282 782 p 151, 144. BECAUSE OF HO L I FTOF F.

B. Mechanical Analysis Introduction The spent fuel storage racks are classified as category 1 per NRC Regulatory Guide 1.29. Their primary function is to maintain stored fuel assemblies in a subcritical array while protecting them from mechanical damage during all credible storage conditions. The mechanical analysis presents. analytical proof of structural integrity.

The analysis follows NRC guidance as delineated in the position paper "Review and Acceptance of Spent Fuel Storage and Handling Applications", dated April 14, 1978 and modified January 18, 1979. The design calculations are based on subsection NF of ASME Boiler and Pressure Vessel Code,Section III and Appendix D of the Standard Review Plan (SRP) 3.8.4. The permissible weld stresses are taken from Table NF-3324.5(a)-1,1983 edition.

This is the same as Table NF-3292-1, 1977 edition, referred to in the position paper and in NF-3321. This table no longer exists in the 1983 edition.

The load combinations used in this analysis are only submerged deadweight plus SRSS combinations of OBE and SSE loads. These load combinations are the RMS values taken directly from the seismic analysis (Section 4A). The racks are not subjected to live loads nor to thermal loads. Thus the load combinations, D+L+To(or Ta)+E and D+L+Ta+E'ecome D+E and D+E'.

19

Analyses are performed for two storage arrangements, one referred to as "standard" wherein one fuel assembly (179 fuel rods) is stored in each cell in Region 2, the other referred to as "consolidated" wherein the fuel rods from two assemblies (358 fuel rods) in a canister are stored in each 'cell in Region 2.

The interface between the racks and bases is the cruciform bottom plate at the rack corners which span three boxes in each direction. Thus the plane at the third row location, as shown on Figures 4-7 and 4-8, and the three-box corner square are the weld planes analyzed.

Floor loads for Region 2 are transferred through the base to the ll" x 11" floor plates. Because of the increased storage in Region 2, shims are installed between the base corner and each floor plate to provide greater load transfer area than the present jackscrews (Fig. 4-9). In Region 1, however, since no change in, storage is being made there is no change in base to floor plates, i.e. The jackscrews remain. The region 1 racks are not being moved from their present locations, and with .the jackscrews centered on the 11" x 11" floor plates there is enough distance to the edge to take care of any sliding.

There are no calculations for wall loads because, as freestanding racks and bases, due to removal of the wall seismic restraints, there are relatively large dimensions between the racks and walls and consequently small hydrodynamic forces.

These approximate dimensions are indicated on Figure 4-1 and are large compared to, the maximum sliding distance of .5 inches.

20

References 1 and 2 provided an evaluation of fuel handling accidents and concluded that the rack structure protects stored fuel from the impact of a dropped fuel assembly.

A postulated drop accident of a fuel assembly straight down into a storage cell is included in the report because it was not previously addressed.

E i ment Descri tion Six of the nine presently installed racks will be modified for 100% storage density, and designated as Region 2 for storage of depleted fuel. The remaining three racks, unmodified, are C

designated Region 1 for storage of unirradiated or freshly discharged fuel at 50% storage density.

All six racks in Region 2 are the same size, 140 storage cells. The modification consists of removing the present bolt connections between racks and bases and the wall seismic restraints, resulting in a free-standing array. The wall seismic restraints are also removed from Region 1. Additionally, a full-length right angle poison insert is welded in each Region 2 cell, as shown on Figure 4-3 and Figure 4-4 of the seismic analysis (Section 4A).

A sketch of rack, base, shims, and floor plates is represented in Figure 4-9. The shims are added between the base and floor plates in" order to provide more load carrying area than the present jackscrews.

Loads from the Seismic Anal sis Tabulation of loads from the seismic analysis are in Section 4A.

The load combinations of D+E (OBE) and D+E'SSE) are the RMS 21

values listed at Set 43. Maximum vertical loads are those occuring on 2 of the 4 rack corners at return impact following lift-off.

Set 54 is half of set 53 or the load on a single corner.

The stresses are summarized in Table 4-1 for:

a. Shear in welds no. 1, 2, S 3 shown on Figures 4-7 and 4-8.
b. Shear out of the corner 9 boxes (shaded area, Fig. 4-7).
c. Buckling of the box walls
d. Floor loads under the ll" x 11" base plate The stresses in welds no. 1, 2, 6 3 are determined by calculating the RMS values of the shear load, vertical and horizontal, to get the NS, EW, VT and SWT loads. The force in the weld is calculated by:

F SWT Fn S2 + Few 2 Fvt (SWT zs Submer g ed Wei ght)

The shear out of the corner, the buckling load on the plate and the floor load are determined by using the RMS values for the individual supports given in Section 4A.

The maximum stresses in welds 1, 2, 8 3 are:

STD. Rack, E-W Plane, OBE, 19,970 psi, Weld 52 STD. Rack, N-S Plane, SSE, 21,700 psi, Weld 02 CON. Rack, E-W Plane, OBE, 16,940 psi, Weld 52 CON. Rack, E-W Plane, SSE, 23,340 psi, Weld 01 The maximum shearout stresses in the corners are:

STD. Rack, OBE, 11,940 psi STD. Rack, SSE, 13,800 psi CON. Rack, OBE, 13,110 psi CON. Rack, SSE, 16,430 psi 22

The maximum floor loads in the ll" x 11" base plate are:

STD. OBE, 1700 psi STD. SSE, 1965 psi CON. OBE, 1860 psi CON. SSE, 2340 psi The allowable weld OBE shear stress is 24,000 psi. (Ref. 14),

Sect. NF 3000, Table NF-3292 1-1)

The allowable weld SSE shear stress is 38,400 psi (1.6 OBE (USNRC, SRP 3.8.4.5(b))

The critical buckling stress is 19,140 psi (Ref. 21 pg. 2.12)

Floor Loads The six modified racks are in Region 02. Using the submerged weight for the rack and contained fuel assemblies the total floor loads are:

I Standard Rack 1,249,000 LBS.

Consolidated Rack 2,046,360 LBS.

THE BEARING STRESS ON THE CONCRETE UNDER THE llii X ll>> X 3/4~i SUPPORT PLATES ARE STANDARD RACK CONSOLIDATE RACK OBE SSE OBE SSE FLOOR LOAD (lbs) 205,567 237,862 225,573 282,782 BEARING 1700 1965 1864 2337 STRESS (PSI)

The allowable concrete bearing stress is 3570 psi (Ref. 22).

23

TABLE 4-1

SUMMARY

OF STRESSES STRESS (PSI) STRESS (PSI)

NORTH-SOUTH PLANE EAST-WEST PLANE STANDARD CONSOLIDATED STANDARD CONSOLIDATED OBE SSE OBE SSE OBE SSE OBE SSE WELD //1 11680 16200 7980 17330 18480 18660 14260 21260 WELD //2 14800 21700 11280 22100 19970 20270 16940 23340 WELD g3 11350 17700 12170 17200 18880 19320 16720 22430 CORNER>'c SHEAROUT 11,950 13p800 13yll0 16p430 .ll)950 13p820 13pl00 16p430 BOX" BUCKLING 8,800 10,200 9,670 12,120 8,800 10,200 9,670 12,120 STRESS MAX. ~

FLOOR 1,700 1,965 1,860 2,340 1,700 2,000 1,860 2,340 IOADS

  • These values are common to both planes.

24

Strai ht Dro of a Fuel Assembl Throu h an Individual Cell An analyses was performed to determine .the affect of a fuel assembly being dropped onto or into a spent fuel rack. The consequences of a drop onto a rack, in which the assembly impacts the top of the fuel boxes, has previously been addressed and found acceptable (Ref. 1, 2). It was shown that a fuel assembly is not damaged by this drop. An assessment is provided below of a fuel assembly being dropped directly into a fuel box. Since the clearance between a fuel assembly and a fuel box, even in the maximum box size considering tolerances, is on the order of .2 inches, it is unlikely that this would occur. It is most likely that the fuel bundle will strike the top of the fuel box and be deflected so that the energy is dissipated in deformation of the box or fuel bundle itself.

This postulated drop accident would cause the fuel assembly to impact the bottom plate in the cell. The clearance between fuel dimensions and box dimensions are quite close; thus the fuel assembly would act as a leaky piston and the fuel box would act as a leaky cylinder. The hydraulic forces generated when the fuel assembly initially enters the fuel box would be quite large and would serve to retard the fuel assembly during the next 13.25 feet of its descent. The 0.090" welds which attach the bottom plate to the cell would be plastically deformed to failure if loaded high enough. This failure load estimate is based on 25

'I 30,000 psi ultimate shear strength and a typical plastic deformation of 20%. The area in shear is 0.090" x 4(8.25") = 2.97 in.

Energy = 30,000 psi x (20% x 0.090") x 2.97 in. = 1604 in-lbs.

Comparing this value to the energy available from .the straight drop on the rack, which is 43,500 in-lb when the fuel assembly is considered as a rigid body for a 30" drop, the bottom plate welds would fail.

Since each bottom plate of a fuel location is individually welded to its fuel box, failure of'one bottom plate would not affect any other fuel location of stored fuel. Thus, the postulated fuel drop would only result in one storage location being rendered unuseable. In addition, the consequences from a radiological standpoint are unchanged since only one assembly would be affected.

Also, since the physical. configuration of the spent fuel storage cells will not be changed, the sub-critical array of the rack is maintained';

Neutron Absorbin Material binuclearThe neutron material, Boraflex, to be used in the Ginna modified spent fuel rack construction will be manufactured by Brand Industrial Services, Inc., and fabricated to safety related criteria of 10CFR50, Appendix B. Boraflex is a silicone based polymer containing fine particles of boron carbide in a homogeneous, stable matrix. Boraflex contains a minimum B density of 0.2 gm/cm~.

Boraflex has undergone extensive testing to study the effects of gamma irradiation in various environments,* and to verify its 26

structural integrity and suitability as a neutron absorbing material. Tests were performed at the University of Michigan exposing Boraflex to 1.03 x 10" rads gamma radiation with a substantial concurrent neutron flux in borated water. These tests indicate that Boraflex maintains its neutron attenuation capabilities before and after being subjected to an environment of borated water and 1.03 x 10" rads gamma radiation.

Long term borated water soak tests at high temperatures were also conducted. It was shown that,Boraflex withstands a borated water immersion of 240'F for 260 days without visible distortion or softening. Boraflex maintains its functional performance characteristics and shows no evidence of swelling or loss of ability to maintain a uniform distribution of boron carbide.

During irradiation a certain amount of gas may be generated.

However, the absorber will not be sealed within the storage cell and vent paths will be available to the pool. This will prevent gas induced swelling of the inserts and interference with the fuel assembly.

The actual tests verify that Boraflex maintains long-term material stability and mechanical integrity, and can be safely utilized as a poison material for neutron absorption in spent fuel storage racks.

Beyond the extensive testing conducted, Boraflex is broadly used in high density spent fuel storage racks in the United States and in Europe. It was first installed at Point Beach Unit 27

1 in 1979. A partial list of operating power reactor users of Boraflex follows:

Point Beach Units 1 & 2 Calvert Cliffs II Nine Mile Point Unit 1 Quad Cities Units 1 & 2 Oconee Units 1 & 2 H.B. Robinson Unit 2 Prairie Island Units 1 & 2 The extensive testing and the broad industry experience with the use of Boraflex obviates the need for a Ginna specific surveillance program of the neutron absorber. Any potential long term problems will develop at other plants before it would be evident at Ginna.

28

UST R D OESIGhl BERVICEG, INC Y DATE SUBJECT SECT. SHEET ~OF KD. BY DATE~ 4 FC. FEOJ.HO. 83 69 cD q 9 Q

0.

FXGURE 4-2 RACE-BASE SUPPORT

U6 f 5, D D 1:- 0 I 0 N 6 L. F4 V t 4: L f), I P4 A ~ t..~. mat a. Dle, tee, e

BY

/

CHKD. BY

+~rt.DATE

~~~'ATE M4-..-++..

ei~/e ."I!OJECI WOW ~Elch'usts~ . Pf!O.l. tt~]

yr E

..P zo/gg ~y g 1 C~ss- sacr/oYY'pvw. s/ zs)

FIGURE 4-3

%F2~~ z%F.

( dAP jAo 1lA.IL T~

(OFT w4 &//~/=cex)Poiso//

(062 /VyJIJI.) /NSER7 BALL

.o/g g, ZC'a Wo6o 8BO~Dd S / C ~PE )

Vo/MAZEÃ .02 g

FIGURE 4-4 POISON ASSEMBLY INSTALLATION I

I l

J I

I

~

I I(

(I I

I) li

~

~l CV Fl g I 0

lA I

~

Q 0

C4 l,

8 V

co C4 r

8

. ~

W, Dy~ ~~DA'rc w Gill(D. BY ';

g D*t ~/!

E

/

i <g'e >

/,

UBT G 0 QCUIQN Bf:AVI( t.L', lf.'i 14',+/3:.uoil ci FIGURE 4-5

/PIOO C OHSOL I 7 CPA~

DA77&rv'R'SS-DEC FULLY- SiZE DJ6, tlat:

oF9 6'Bg P Q ~ DMAILc".{z382llo~~

(@ZZZZe,g~<PWax ~ '~ ~+(o7ellorn)

/

f I

(-

r X ~

) ( (

.SF'7P FueL Res,( ( i ITS'FUEL R os (Of'ZAa i) Oy~ 3. QQ 3. 8ffhi'All.

) o.5F:  !

( )

~804 4 U

)' 7. 846 (7:8268/dA)

PROJECT .8369 Dl R ECT IC N CF . LO A D lo IO 4

M~Hrn 3

IMHrf 8

~ Fhori 7

I 2 '/ z Fvcr t

/

/ I 12 12)

~F hori z Fvtr t FIGURE 4-6 FINITE ELEMENT REPRESENTATION

FlGURE 4-7 RACK WELDS EAST-LIEST PLANE,

UQT L D DCGIGN sERVICEG) INc F IGURE 4- 8 RACE NELDS NORTH-SOUTH PLANE p

/Pic 4 Du/ S red g~c 7rd pr

FIGURE 4-9 RACK-BASE SUPPORT

Cost Benefit Assessment

~

5.~

The capacity of the spent fuel storage racks in their

~

current configuration is 595 fuel assemblies. At the completion of the Spring, 1984 refueling outage 332 fuel assemblies will be stored in the pool. Assuming future average reload sizes of 28 fuel assemblies full core discharge capability would be lost after the Spring 1990 refueling outage. Rochester Gas and Electric also has 81 fuel assemblies stored at what was formerly the Nuclear Fuel Services facility at West Valley, New York. RG&E is required by the state of New York to have this fuel removed from West, Valley by September, 1985. The addition of this fuel to the storage pool would cause a loss of full core discharge capability after refueling in the Spring 1987.

With the proposed modification, 420 storage locations would be added. At the projected average of 28 fuel assemblies discharged at the end of an annual cycle in the Spring of each year, the loss of full core discharge capability would occur after the Spring, 2002 refueling outage. It is the intent of RG&E that this modification extend the capability to store spent

. fuel at the Ginna site until a final repository is available in accordance with the interim storage provisions of the Nuclear Waste Policy Act of 1982. It is expected that a disposal facility will be available and shipments will begin by .the mid to late 1990's.

RG&E's sole contractural arrangement for the storage of spent fuel is with the New York State Energy Research and Development Authority (NYSERDA) covering the 81 fuel assemblies at West 29

Valley, New York.~ NYSERDA has demanded the fuel be removed and in

~

accordance with the Contract,

~

RG6E must comply.

The attached Table 5-1 and 5-2, provides information on schedule of projected fuel discharges and core components stored in the SFP.

A discription o'f the modification is at Section 1 of this attachment. Preliminary estimates of the costs of the modification are outlined below.

Engineering 125,000 Construction Material 500,000 Installation 825,000 AFDC 50,000 Contingency 400,000 Total $ 1,900,000 This is equivalent to about $ 4500 per storage location (or $ 13 per kgU). These estimates are preliminary and will be updated upon request.

The alternatives to increasing the capacity of the spent fuel pool are few. There is no fuel reprocessing facility available now and no indication that one would be available during this decade. There are no government operated away-from-reactor storage facilities. Independent spent fuel storage exists only in the General Electric, Morris, Illinois facility. This is not generally available to non-G.E. customers nor is it currently available to new customers. Costs for transport of one fuel assembly alone, assuming a three day turnaround time and a 600

/

mile trip one way, would be on the order of $ 10,500 per fuel 30

assembly or $ 30/KgU. The annual charge to store th'e fuel and labor and material costs for loading and unloading would be additional. Another alternative, that of shipping to another

.reactor site is not available to RG&E because the company operates only the Ginna Nuclear Plant.

Shutting down the reactor as an alternative to increasing spent fuel storage capacity would impose a financial hardship on the customers of RG&E. The Ginna Plant supplies approximately 45 per cent of RG&E's electric generation. The replacement power costs would depend on whether company coal fired generation was available to pick up the load. Estimates range from $ 23 per MWH to $ 45/MWH for incremental costs of replacement power. This is equivalent to about $ 280,000 to $ 540,000 per day.

In terms of the material resources required to complete the modification, the amount needed is low relative to that required to either replace the storage racks entirely with all new high density racks, or use dry storage cask technology. As discussed in Section 1, the modification consists of removing the lead-ins and guide funnels from the water boxes, adding bottom plates to the former water boxes, and right angled boraflex poison inserts with SS-304 filler plates and liners. Table 5-3 lists the material requirement for the modification.

In References 3 and 4, the additional heat loads that would be anticipated assuming normal discharges up to an end of plant life in 2009 were calculated. This analysis (Reference 4) assumed normal annual discharges of 36 fuel assemblies 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> after 31

reactor shutdown. The resulting heat loads for normal discharges 6

were calculated to increase incrementally from 7.07x10 BTU/HR xn 1981 to 9.96x10 BTU/HR in the year 2010. By increasing the cooling time to 14 days in the case of a full core dischage in year 2010 the decay heat load on the spent fuel pool cooling system will remain below 16x10 BTU/HR. At this maximum heat load, the analysis concluded that, assuming 80'F service water with a flow rate of 1600 gpm, the maximum pool temperature would be 150'F and the increase in service water temperature would be within the environmental guidelines of 20'F. The potential for an increase in the heat released to the environment due to the modification is the increment from 7.07x10 6 BTU/HR to 9.96x10 6 6

BTU/HR or about 3xlO BTU/HR. During the assumed normal operation I

of cooling system (80'F service water 1000 gpm) this increment

'I represents about a 6'F increase in service water temperature through the heat exchanger. As stated above even given the maximum heat load for a full core dischage the 20'F environmental guideline for total plant discharge would be met.

32

Table 5-1 Schedule of Anticipated Fuel Discharges Capacity Remaining Month ear ~Existin ~Pro osed March 1984 28 332 263 683 March 1985 28 360 235 655

  • Sept 1985 81 441 154 574 March 1986 28 469 126 546 March 1987 28 497 **98 518 March 1988 28 525 70 490 March 1989 28 553 42 462 March 1990 28 581 14 434 March 1991 28 609 406 March 1992 28 637 378 March 1993 28 665 350 March 1994 28 693 322 March 1995 28 721 294 March 1996 28 749 266 March 1997 28 777 238 March 1998 28 805 210 March 1999 28 833 182 March 2000 28 861 154 March 2001 28 889 126 March 2002 28 917 **98
  • 81 fuel assemblies from West Valley
    • Loss of full core discharge capability 33

Table 5-2 Non-Fuel Components Stored in SFP*

Control Rod Assemblies Burnable Poison Rods Thimble Plugging Devices 19 Primary/Secondary Sources

  • After 1984 refueling Table 5-3 Com onent Material Volume Weiceht Bottom Plates (420) SS-304 12,259 in3 3555 lbs Neutron Poison Boraflex 10126,819 in3

~

7990 lbs

.020 gm/cc min B Filler Plates (,3360) SS-304 24,619 in 7140 lbs Liner Plates (840) SS-304 135,804 in 39,383 lbs

6. Radiolo ical Evaluation The SFP purification system consists of a demineralizer and filter. A surface skimmer system consisting of a pump and filter is also used to maintain water clarity. Presently the demineralizer generates 28 cubic feet of solid waste annually from two resin bed changes. The SFP filter and skimmer filter are changed annually generating 7 cubic feet of waste. This represents approximately 0.3% of the average solid radioactive waste volume generated, each year. Since the previous SFP rack modification was completed in 1977, the number of spent fuel assemblies stored has increased from 92 to 302 as of 1983 for an average increase of 30 per year. From 1977 through 1983, the waste volume generated by the SFP has remained the same, while the number of stored spent fuel assemblies increased a factor of 3.28. Even if the generated solid radioactive waste increases linearly, which it has not, with the number of spent fuel assemblies in the SFP, the solid waste would increase by a factor of .2.96 with 894 assemblies in the SFP (to maintain full core discharge capability only 1015-121=894 fuel assemblies can be stored in the SFP). The solid waste generated by the SFP would then be less than 1% of the total yearly generated solid radioactive waste.

The fuel. storage area ventilation is combined with the auxiliary and intermediate building ventilation. The Kr-85 measured in this system was 9.9 curies in 1982 and 15.7 curies in 1983. All of the kr-85 measured could be attributed to the release of decayed waste gas tanks.

35

The table below provides the results of a recent gamma isotopic analysis (Nov. 22, 1983) of the Ginna SFP water, and identifies principal radionuclides and their respective concen-trations. Values obtained from the analysis are representative both in terms of typical gross radioactivity, and the relative concentrations of major radionuclides present in the pool water.

Percent Contribution .

Concentration To Total

~Isot e Ci cc Water Activit Cs-137 7.7 E-5 3 Cs-134 2.9 E-5 1 Co-60 2.1 E-3 93 Co-58 5.8 E-5 3 Since the previous SFP rack modification in 1977, dose equivalent rates above and at the sides of the pool have remained the same, between 1 and 2 mrem/hour. The dose equivalent rate above the SFP can also be determined from the following model.

The radiation dose rate from the SFP at a point above the pool surface was calculated from the effective water surface activity, allowing for self-absorption by the water medium in which the isotopes were assumed to be uniformly mixed. Dose models used were those by Cember (1969)*. The basic geometry applied in the calculations consists of a modified plane source cl&

as shown below.

P(

h

  • Cember, H., Introduction to Health Ph sics, Chapter 10, Pergamon Press (1969).

36

The equation for the dose rate D at point Pl from a planar source similar to the above is:

R D.. I i xrCai+ x h

211r dr = II x I i x Cai x 1n R~ +

~h where: D. = dose 3.

rate (rem/hr) of the i isotope I i= gamma source strength of i

.th isotope (rem/hr at 1 m/Ci)

= effective su@ace activity (Ci/m ) of i isotope C ~

R = radius of source (m) h = distance above source along central axis (m)

In the fuel pool dose calculations, the pool surface was conservatively assumed to have a disc configuration whose radius equaled one half the longest actual pool dimension.

Since the pool containing mixed radioactivity more closely resembles a large slab source, Equation 1 was modified to account for the pool depth (t), -the mixed radionuclide concentration C (Ci/m ), and the attenuation coefficient of the pool water

-1 p(m ). The pool surface activity due to radioactivity in the d(C .) = C 'x layer dx at a depth of x is:

' " (2)

Integrating Equation (2) over the total- thickness t gives the effective surface activity:

Cai t Cri x e " dx = Cri (1-e " (3)

)

0 V

37

By substituting Equation 3 into Equation 1, the following relationship is obtained for calculating dose rate:

D(rem/hr) = ZDi = Znl i Cri (1-e " ) R2

~h

+ h2 V

This equation gives the dose rates at the center of the pool where personnel would experience the highest radiation levels from the water. The dose rates calculated for the nuclides listed on the table below are less than 5 mrem/hr.

Dose rates at the edge of the pool would be slightly less than the dose rates at. the center of the pool because of the smaller radiation contributions from one side. Routine radiation surveys performed in the spent fuel pool area have confirmed that dose levels at the pool edge are not in excess of those at the center.

The table below gives the results of analyses performed in 1983 to determine the principal airborne radionuclides and their respective concentrations in the spent fuel pool area.

~jsoto e ~ci cc I-131 <1E-12 I-133 <1E-12 H-3 5.0 E-07 Cs-134 <1E-13 Cs-137 <1E-13 Co-58 <1E-13 Co-60 <1E-13 The annual radiation dose to a specified organ from inhalation of radioactive material is calculated using the following relationship:

38

Dose = 365 (C (Rb (DCF )

where:

Dose = annual dose (mrem/yr) 365 = units conversion constant C. = airborne concentration of isotope i (pCi/cc)

Rb,= assumed breathing rate (cc/d)

DCF. = dose conversion factor relating organ dose to intake of an isotope by inhalation (mrem/pC.). l Values for DCF.

1 are based upon ICRP recommendations (ICRP Publication II, 1959) and are calculated in the following manner:

i DCF i ref (C f)(2.0 E+7)(365) where:

ICRP recommended maximum permissible dose to D

f= a specified organ of an adult occupationally exposed to radiation (mrem/yr)

ICRP recommended concentration of an isotope C

f= in air which, if breathed by an adult at the rate of 2.0 E+7 cc/day for 50 years, will result in a 50th-year dose of D mrem to the specified organ (pCi/cc) 2.0. E+7 = adult. breathing rate assumed in ICRP calculations (cc/day) 365 = units conversion constant (days/yr)

Where ICRP II gives no values of C reff for certain organs, the lowest value of C reff listed for other organs is taken as the value of C reff for the unlisted ones. For added conservatism, those isotopes whose concentrations were reported as "less than" values, were assumed to be present at detection limit levels.

39

Since individuals will spend only a portion of their time in the spent fuel pool area, doses are expected to be considerably less than if continuous exposure is assumed. If a 100-hour annual occupancy time is assumed for a maximally exposed worker in the spent fuel pool area, the resulting total body and organ doses are less than 10 mrem per year.

The spent fuel pool modification will result in longer term storage of well cooled fuel. The present pool temperature limitations will still apply. The operation of the pool purifi-cation system and the building ventilation equipment will not, 1

change. Therefore, the present, airborne isotopic concentrations are not expected to change significantly after the modification.

Thus, resulting potential dose increases both in the spent fuel pool area and any offsite locations will be quite small.

The potential increase in annual man-rem from more frequent resin and 'filter changes was estimated by scaling present personnel exposure values linearly with the number of future added spent fuel assemblies in the pool. Spent fuel pool filter cartridge and demineralizer resin changes associated with the existing 302 stored fuel assemblies contribute less than 0.1 percent of Ginna's total annual man-rem burden. If filter and resin change frequencies are conservatively assumed to increase linearly with increased numbers of assemblies in the pool, resultant personnel exposures could be raised by a factor of 2.96, or to less than 0.3 percent of Ginna's total annual man-rem. Thus, increases in occupational doses from these related operations, when compared to the plant's total yearly exposure burden, will be negligible.

40

Routine radiation surveys of the Ginna.spent fuel pool have shown dose rates typically less than 5 mR/hr along the pool edges. No trend is apparent in past and current survey data which would reflect dose rate increases from crud buildup.

Further, no future increases in radiation levels from crud in the pool are anticipated as a result of additional fuel. Should accumulation along the pool walls begin to produce higher exposures of any significance, these will be indicated by routine radiation surveys. At that time methods will be developed to reduce radiation levels at the pool edge to as low as is reasonably achievable.

Based upon average personnel occupancy times in the fuel pool area, the annual man-rem resulting from all related operations is estimated to be less than one percent of the total plant man-rem. Future total occupational exposure at Ginna is not expected to be significantly affected by either a) more frequent changing of demineralizer resin and filters, or b) crud buildup along the sides of the pool, as a result of the proposed spent. fuel pool modification.

Radiation dose rates above the pool resulting from submerged spent fuel assemblies placed in any configuration will be negligible when compared to background. The contribution from this source to total annual personnel exposure is therefore negligible.

The radiation protection program will utilize routine survey information to determine changes in SFP area radiation levels and airborne radioactive material concentrations to main-tain personnel exposure ALARA.

As stated in Section 1, the modification of the storage racks will include removal of the lead in guides over the water boxes and the seismic supports between the support bases and the pool walls. These two components are fabricated from SS-304 and represent the waste material that will be produced by the modifi-cation. The total weight of this material is approximately 8000 lbs. This material will be disposed of as either low level radioactive waste or decontaminated and disposed of as normal (non-radioactive) waste.

7.~ Accident Evaluation

~

Currently Ginna Technical Specifications prohibit the movement of a spent fuel cask with the auxiliary building crane. RG&E has submitted an application to delete this restriction based upon a proposed modification to the crane to meet the single-failure-proof requirements of NUREG-0554~~. Modifying the crane to be single-failure-proof would obviate the need to analyze the cask drop.

For those loads that can not be moved in a single failure proof mode, RG&E will continue to satisfy the requirements of NUREG-0612 by some combination of load drop analysis, load height restriction and safe load path. In either case, the Ginna Technical Specification prohibits the trolley of the auxiliary building crane to be stationed above or pass over a spent fuel storage rack containing spent fuel. This requirement along with installed interlocks prevents the movement of loads over spent fuel by the auxiliary building crane.

The overhead hoist attached to spent fuel pool bridge is used to transfer spent fuel within the pool area. Use of this hoist is limited to single fuel assemblies and their handling tools. The rack structure protects stored fuel from the impact of a dropped fuel assembly~. A weight limitation on the hoist (2000 lbs), the physical position of the overhead hoist, and an up-stop limit switch prevents the potential impact energy of a load from substantially exceeding that of a dropped spent fuel assembly.~

References

l. Application for 1976.

Amendment to Operating License, January 30,

2. Letter, A Schwencer to L.D. White, November 15, 1976.
3. Zetter, L.D. White to D.L. Ziemann, February 13, 1980.
4. Zetter, D.M. Crutchfield to Z.D. White, November 3, 1981.
5. Application for Amendment to Operating License, February 23, 1982.
6. Application for Amendment to Operating Zicense, January 18, 1984.
7. Letter, J.E. Maier to D.M. Crutchfield, June 9, 1981.
8. U.S. Nuclear Regulatory Commission, Standard Review Plan 3.7.2 "Seismic System Analysis," Revision 1, July, 1981.

9 Fritz, R.J., "The Effects of Liquids on the Dynamic Motions of Immersed Solids, "ASME February, 1972.

10. Dong, R.G.; "Effective Mass and Damping of Submerged Structures",

UCRL-52342, L.L.L., April, 1978.

ll. Stokey, W.J., Scavuzzo, R.J. and Radke, E.E., "Dynamic Fluid Structure Coupling of Rectangular Modules in Rectangular Pools," ASME Special Publication PVP-39, 1979.

12. Regulatory Guide 1.61, "Damping Values for Seismic Design of Nuclear Power Plant", October, 1973.
13. Rabinowicz, E., "Friction Coefficients of Water-Zubricated Stainless Steels for a Spent Fuel Rack Facility", Study performed for Boston Edison, Co. November, 1976.
14. ASME Boiler and Pressure Vessels, NUCZEAR VESSELS, Section III, 1980 ed.
15. G.E. Technical Paper 22A5866, Rev. Dec. 26, 1979. Appendix II, FUEL ASSEMBZY STRUCTURAL CHARACTERISTICS.
16. R.D. Blevins, Ph.D, FORMULAS, FOR NATURAL FREQUENCY AND MODE SHAPE, Van Nostrand Reinhold Co., N.Y., N.Y., 1979.
17. ,R.J. Roark, W.C. Young, FORMULAS FOR STRESS AND STRAIN, MCRAW-HILZ BOOK CO., N.Y. 5th Ed., 1975.
18. J.S. Anderson, "Boraflex Neutron Shielding Material Product Performance Data," Brand Industries, Inc., Report 748-30-1, (August, 1979).
19. J.S. Anderson, "Irradiation Study of Boraflex Neutron Shielding

, Material," Brand Industries, Inc., Report 748-10-1, (July, 1979).

20. J.R. Anderson, "A Final Report on the Effects of High Temperature Borated Water Exposure on BISCO Boraflex Neutron Absorbing Material," Brand Industries, Inc., Report 748-21-1, (August, 1978) .
21. O.W. Blodgett, Design of Welded Structures, J.F. Lincoln Arc Welding Foundation, Cleveland, Ohio, 7th Printing 1975.
22. American Concrete Institute, Manual of Concrete Practice, 329-32, Detroit, Michigan.
23. Letter T.R. Robbins to J.D. Cook, March 15, 1984.
24. Gilbert Associates, Inc., Ginna Station Seismic Upgrading Program Auxiliary Structures Seismic Analysis, May 15, 1980.
25. Application for Amendment to Operating License, January 18, 1984.

For U.S. Tool 4 Die, ?nc.

Criticality Analysis of Region 2 of the Ginna t<DR Spent Fuel Storage Rack Final Report by Pickar 4, Lowe 4 Garrick, Inc.

Mashi ngton, D.C.

TABLE OF CONTENTS

~Pa e 1.0 THE MAXIMUM DENSITY RACK (MDR) DESIGN CONCEPT 1.1 Introduction 2.0 CRITICALITY ANALYSIS OF REGION 2 (ASSUMES IRRADIATED FUEL) 2.1 Analytical Technique 3

2. 2 Calculational Approach 8 2.3 Manufacturing and Thermal Considerations 9 2.4 Design Conservatisms 10 2.5 Accident Analysis 11 2.6 Required Exposure as a Function of Initial Enrichment for Region 2 Spent Fuel REFERENCES 13 7047U012784

TABLE OF CONTENTS (continued)

List of Tables Table Title Region 2 Design Criteria Fuel Assembly Technical Information for Ginna Nuclear Plant Summary of Leopard Results for Measured Criticals Westinghouse UO2 Zr-4 Clad Cylindrical Core Critical Experiments Battelle Fixed Neutron Poison Criticals Saxton Pu02-U02 Critical Experiments ESADA Pu02-U02 Critical Experiments Summary of Predictions for keff in Criticality Experiments Summary of Reactivity Biases and Uncertainties for Ginna Region 2 MDR 10 Computed Infinite Multiplication Factors for Ginna MDR 7047U012784

TABLE OF CONTENTS (continued)

List of Fi ures

~Ff ere Title Ginna MDR Spent Fuel Rack Design Net Destruction of U-235 Versus Burnup in, the Yankee Asymptotic t/eutron Spectrum Specific Production of U-236 Versus Burnup in Yankee Asymptotic Neutron Spectrum Net Destruction of U-238 Versus Burnup in the Yankee Asymptotic Neutron Spectrum Specific Production of Pu-239 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-240 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-241 Versus Burnup in Yankee Asymptotic Neutron Spectrum Specific Production of Pu-242 Versus Burnup in Yankee Asyhptotic Neutron Spectrum Specific Production of Total Pu and Fissile Pu Versus Burnup in Yankee Asymptotic Neutron Spectrum 10 Atom Percent of Total U Versus Exposure Pu-239/U-238 Atom Ratio Versus Exposure 12 Atom Percent of Total Pu Versus Exposure 13 Fission Product Absorption Cross-Sections as a Function of Time After Shutdown 14 One-Quarter Rack Cell Model for Ginna MDR 15 Four-Quarter Rack Cell Model for Ginna MDR 16 Variation of k with Assembly Pitch for Ginna MDR 17 Variation of k with Steel Thickness for Ginna MDR 7047U012784

TABLE OF CONTENTS (continued)

List of Fi ures

~Fi ure Title 18 Variation of k with Pellet Diameter for Ginna MDR 19 . Variation of k with Pellet Density for Ginna MDR 20 Variation of k with Water Density for Ginna MDR 21 Variation of k with Temperature for Ginna MDR.

22 Configuration Used to Determine the Effects of the Region 1 - Region 2 Interface 23 Regions of Acceptability and Unacceptability for Region 2 Spent Fuel 7047U012784

1.0 THE MAXIMUM DENSITY RACK (MDR) DESIGN CONCEPT 1.1 Introducti on Historically, spent fuel rack designs have been based on conservative assumptions that could be easily accommodated since it was not planned to store large numbers of high exposure spent fuel assemblies on-site.

Previously it was anticipated that only .small. amounts of high exposure fuel assemblies (1/4 to 1/2 of a full core load) would normally be stored in the spent fuel pool at any one time. Additionally, it was anticipated that, occasionally (e.g., for inservice inspection of the reactor vessel internals) the entire core would be unloaded and temporarily stored in the spent fuel pool. Therefore, the spent fuel storage rack design was based on the conservative assumption that all fuel rack storage positions would be occupied by fresh unirradiated fuel assemblies of the highest initial enrichment that was foreseen as being useable in that facility.

The penalty in achievable. spent fuel storage density associated with this conservative design assumption was relatively small under the circumstances anticipated and easily accommodated by a conservative spent fuel rack design. The potential penalty associated with this conservative design basis is no longer small when long, term on-site storage of spent fuel is a necessity.

It is not conceivable that more than one full core load of fresh unirradiated fuel assemblies could be stored in the spent fuel storage pool. Therefore, it is unnecessary and wasteful to base the entire spent fuel storage rack design on the assumption of fresh unirradiated fuel of the highest initial enrichment.

In the MDR design concept, the spent fuel pool is divided into two separate and distinct regions which for the purpose of critically considerations may be considered as separate pools. Suitability of this design assumption regarding pool separatabi lity is assured through appropriate design restrictions at the boundaries between Region 1 and Region 2. The smaller region, Region 1, of the pool is designed on the 7043U012784

basis of currently accepted conservative criteria which allow for the safe storage of a number of fresh unirradiated fuel assemblies (including a full core unloading if that should prove necessary). The larger region of the pool, Region 2, is'esigned to safely store irradiated fuel .

assemblies which will be discharged from the reactor in large quantities.

The criteria for Region 2 of the pool are specifically listed in Table The only change in criteria is the recognition of actual fuel and fission product inventory accompanied by a system for checking fuel prior to moving any fuel assembly from Region 1 to Region 2.

During a normal refueling operation, each fuel assembly is first moved from the core to Region l. After the refueling operation is complete and the suitability of each spent fuel assembly for movement into Region 2 is verified, this fuel will be moved into Region 2.

Region 2 is designed to store fuel which does not exceed pre-established reactivity criteria. Consequently, the limit on acceptable initial enrichment varies with the exposure at the time of storage. For instance, 4.25 w/o fuel is acceptable for storage only after a predetermined minimum exposure has been reached. A somewhat lower minimum exposure would be acceptable for fuel with a lower initial enrichment. This resulting curve of initial fuel assembly enrichment versus minimum acceptable exposure defines a curve of constant spent fuel rack reactivity'. The major purpose of this study is the determination of this curve.

2.0 CRITICALITY ANALYSIS OF REGIO)$ 2 (ASSUMES IRRADIATED FUEL)

The fuel assemblies used in this analysis are characterized in Table 2.

The Ginna as built spent fuel rack cell is shown in Figure 1.

The following discussion summarizes the design of the spent fuel racks with respect to the criticality design. The analytical techniques described here are similar to those used to successfully license spent fuel racks for several other plants.

7043U012784

2.1 Anal tical Techni ue The LEOPARD computer program was used to generate macroscopic cross sections for input to four energy group diffusion theory calculations (2) which are performed with the PDg-7 program. LEOPARD calculates the neutron energy spectrum over the entire energy range from thermal up to 10 Mev and determines averaged cross sections over appropriate energy groups. The fundamental methods used in the LEOPARD program are those (3) and SOFOCATE (4) programs which were developed used in the NUFT under the Naval Reactor Program and thus are well founded and extensively tested techniques. In addition, Westinghouse Electric Corporation, the developers of the original LEOPARD program, demonstrated the accuracy of these methods by extensive analysis of measured critical assemblies consisting of slightly enriched UO fuel rods. (5)

In addition, Pickard, Lowe and Garrick, Inc. (PLG) has made a number of inprovements to the LEOPARD program to increase its accuracy for the calculation of reactivities in systems which contain significant amounts of. plutonium mixed with U02. PLG has tested the accuracy of these modifications by analyzing a series of UO and Pu02-UO critical experiments. These benchmarking analyses not only demonstrate the improvements obtained for the analysis of Pu02-U02 systems but also demonstrate that these modifications have not 'adversely affected the accuracy of the PLG-modified LEOPARD program for calculations of slightly enriched U02 systems.

The U02 critical experiments chosen for benchmarking include variations in H20/U02 volume ratios, U-235 enrichments,, pellet diameters and cladding materials. Although the LEOPARD model also accurately calculates'he reactivity effects of soluble boron, these experiments have not been included in the LEOPARD benchmarking criticals since the spent fuel pool calculations do not involve soluble boron.

Neutron leakage was represented by using measured buckling input to infinite lattice LEOPARD calculations to represent the critical assembly. A summary of the results is shown in Table 3 for the 27 measured criticals chosen as being directly applicable for benchmarking 7043U012784

the LEOPARD model for generating group average cross sections for spent fuel rack criticality calculations. The average calculated keff is 0.9979 and the standard deviation from this average is 0.0080 hk.

Reference 5 raised questions concerning the accuracy of the measured buckling reported for the experiments number 12 through 19. If these data are excluded, the average calculated keff for the remaining 19 experiments is 1.0006 with a standard deviation from this value of 0.0063 hk. In all of these experiments; there are significant uncertain-ties in the measured bucklings which are necessary inputs to the LEOPARD analysis. These uncertainties are the same order of magnitude as the indicated errors in the LEOPARD results, and therefore a more definitive set of experimental data is used to establish the accuracy of the combined LEOPARD/PDg-7 model used for the criticality analysis of th' spent fuel racks.

The PDg series of programs have been extensively developed and tested over a period of 20 years and the current version, PDg-7, is an accurate and reliable model for calculating the subcritical margin of the proposed spent fuel rack arrangement. This code or a mathematically equivalent method is used by all the U.S. suppliers of light water reactor cores and reload fuel. In addition, this code has received extensive utilization in the U.S. Naval Reactor Program.

As a specific demonstration of the accuracy of the'calculational model used for the spent fuel rack calculations, the combined LEOPARD/PDg-7 model has been used to calculate fourteen measured just critical assemblies. The criticals are high neutron leakage systems with a large variation in U/H2 0 volume ratio and include parameters in the same range as those applicable to the proposed fuel rack design. Experiments including soluble boron are included in this demonstration since the ability of PDg-7 to calculate neutron leakage effects is of primary interest. The use of soluble boron allows changes in the neutron leakage of the assembly while maintaining a uniform lattice and thus allows a better test of the accuracy of the model. Furthermore, it eliminates the error associated with the measured bucklings which is inherent in the LEOPARD benchmarks, thus permitting determinations of the actual calcu-

lational uncertainty which must be accounted for in the spent fuel rack criticality analysis.

These combination LEOPARD/PDg-7 calculations result in a calculated ff of 0.9928 with a standard deviation about this value of average k eff 0.0012 hk. These results, as shown in Table 4 demonstrate that the proposed LEOPARD/PDg-7 calculational model can calculate the reactivity of the proposed spent fuel rack arrangements with an accuracy of better than 0.010 Lk at the 95 percent confidence level.

'I The cross sections for the Boraflex neutron absorbing material which is an integral part of the design are calculated using fundamental techniques that have been successfully applied in the past to thin heavily absorbing mediums such as control rods.

This procedure is straightforward and is comprised of several well defined steps:

1. The B from the thin Boraflex sheets is homogenized in an appropriate amount of water, and LEOPARD is used to obtain unshielded macroscopic B cross sections.
2. Integral transport theory is applied in slab geometry using They's method for calculating flux depressions and shielding factors to 10 determine an appropriate B number density. This approach is similar to that of Amouyal and Benoist.
3. The B number density calculated in Step 2 is homogenized in water, and LEOPARD is used to obtain corrected microscopic B cross sections.
4. Blackness theory is applied to obtain macroscopic cross sections which will produce the required boundary conditions at the surface of the Bor aflex sheets.

7043U012784

In addition to the fourteen critical assemblies in Table 4, the LEOPARD/PDg model was used to calculate the keff for twelve additional critical assemblies, seven of which incorporated thin, heavily-absorbing materials for which the procedure just described was used to determine the macroscopic cross sections.

These twelve criticals were performed by Battelle Pacific Northwest Laboratories specifically for the purpose of providing benchmark critical experiments in support oF spent fuel criticality analysis. They are described in detail in Reference 18. The results of these critical experiments are summarized in Table 5. The first seven of these twelve experiments include fixed neutron poison absorber plates, and the average k

ff calculated for eff these just critical assemblies was 0.9935, with a standard deviation around this value of 0.0007 b,k. The other five critical experiments in this series do not include absorber plates and the average k eff calculated for these just critical assemblies was ff 0.9944, with a standard deviation around this value of 0.0007 Lk. The overall average k eff calculated for these twelve just critical ff assemblies was 0.9939, with a standard deviation around this value of 0.0008 ~k.-

This extensive series of V02 critical experiments further supports the applicability of the methods described above for use in calculating the subcritical margin of these fuel storage rack designs, and demonstrates that the accuracy of better than 0.010 hk at the 95 percent confidence level established for the LEOPARD/PDg-7 model applies equally well to designs incorporating fixed neutron absorbers for which blackness theory is used to calculate the macroscopic cross sections and also to assemblies containing plutonium.

As a result of this approach to separately benchmark both the cross sections and the diffusion theory calculations against applicable critical assemblies, the "transport theory correction factor" is implicitly included in the derived calculational uncertainty factor.

7043U012784

The analytical methods used for Region 2 must also account for the depletion of U-235 and buildup of various plutonium isotopes and fission products. The isotopic composition is calculated as a function of irradiation time, assembly average exposure, and subsequent decay using the LEOPARD( - and CINDER (6) compute programs. Once the isotopic compositions of the fuel assemblies are known, the subsequent criticality calculations for the spent fuel racks in Region 2 are performed in the manner given above.

The accuracy of the exposure dependent isotopic concentrations calculated with the LEOPARD program is demonstrated in Figure 2 through Figure 12.

Figures 2 through 9 show comparisons of LEOPARD calculated data with measured data from a U02 fuel assembly irradiated in the Yankee-Rowe reactor while Figures 10 through 12 show corresponding data for a mixed oxide (Pu02-UO ) fuel assembly irradiated in the SAXTOW reactor.

Except for the data labeled PLG calculation, the data and curves on Figures 2 through 9 and Figures 10 through 12 are taken directly from References 7 and 8, respectively. In all cases, the accuracy of the calculations labeled PLG is within the uncertainty in the measured data.

The accuracy of reactivity calculations for irradiated fuel can be demonstrated in part by the analysis of critical arrays of mixed oxide fuel rods which contain high concentrations of the plutonium isotopes.

Tables 6 and 7 show results of criticality analyses for the SAXTON (9) and ESADA sets of experiments which cover a wide range of water-to-oxide volume ratios. A summary of these data is shown in Table 8 For the mixed oxide critical s the calculated mean keff is 0 9969 with a standard deviation about this value of 0.0066 'hk. Using the 95%

probability at 95% confidence level criterion (one-sided) with 11 data points, this implies a possible err or of 2.82 = 0.0186 hk with an offset of +.0031 Lk.

7043U012784

The analytical methods used for Region 2 must also account for the depletion of U-235 and buildup of various plutonium isotopes and fission products. The isotopic composition is calculated as a function of irradiation time, assembly average exposure, and subsequent decay using (6) computer programs. Once the, isotopic the LEOPARD and CINDER composi tions of the fuel assemblies are known, the subsequent criticality calculations for the spent fuel racks in Region 2 are performed in the manner given above.

The accuracy of the exposure dependent isotopic concentrations calculated with the LEOPARD program is demonstrated in Figure 2 through Figure 12.

Figures 2 through 9 show comparisons of LEOPARD calculated data with measured data from a U02 fuel assembly irradiated in the Yankee-Rowe reactor while Figures 10 through 12 show corresponding data for a mixed-oxide (Pu02-UO ) fuel assembly irradiated in the SAXTON reactor.

Except for the data labeled PLG calculation, the data and curves on Figures 2 thr ough 9 and Figures 10 through 12 are taken directly from References 7 and 8, respectively. In all cases, the accuracy of the calculations labeled PLG is within the uncertainty in the measured data.

The accuracy of reactivity calculations for irradiated fuel can be demonstrated in part by the analysis of critical arrays of mixed oxide fuel rods which contain high concentrations of the plutonium isotopes.

Tables 6 and 7 show results of criticality analyses for the SAXTON and ESADA (10) sets of experiments which cover a wide range of water-to-oxide volume ratios. A summary of these data is shown in Table

8. For the mixed oxide criticals, the calculated mean k eff ff is 0.9969 with a standard deviation about this value of 0.0066 Ak. Using the 95%

probability at 95% confidence level criterion (one-sided) with 11 data points, this implies a possible error of 2.82 = 0.0186 Dk with an offset of +.0031 ~k.

7043U012784

The other major uncertainty in the calculations for Region 2 is associated with the calculated reduction in fuel assembly reactivity associated with the depletion of the heavy metals and the accumulation of fission products as a function of fuel assembly exposure. As an example, consider a 4.25 w/o (initial enrichment) Ginna fuel assembly at 30,000 HND/HT. The total reactivity loss from the fresh unirradiated case is 0.225 hk/k, of which approximately 50'X can be attributed to the build-up of fission products. Calculations of reactor reactivity lifetimes using the same analytical methods as used in this analysis demonstrate an accuracy of better than +5%. Therefore, the resulting uncertainty in the calculated fuel assembly k associated with fuel depletion would be conservatively estimated at 0.0112 6 k/k (= .05 x .235 hk/k). The, corresponding uncertainty in the calculated Region 2 multiplication factor is 0.0102 h k on a base case Region 2 k of 0.9072.

In order to provide further assurance of the conservative nature of these calculations, the decay of a>> fission products following discharge of the fuel assembly was taken into account. This was accomplished with the aid of the CIHDER code which treats a total of 186 nuclides in 84 linear chains. The fission product inventory for each fuel assembly was decayed for thirty years following its removal from the reactor core, and the time point of minimum fission product absorption within that thirty year period was used at the basis for de'termining the fission produce macroscopic absorption cross sections for that particular fuel assembly at that specific exposure. That minimum occurs at approximately 100 days into the decay and from, then on continues to increase as i>>ustrated in ure 13. Reduction in the fission product inventory due to leakage or Fi gure escape to the plenum has been found to be negligible.

(>>)

2.2 Calcul ational A roach The POQ-7 program is used in the final predictions of the reactivity of the spent fuel stoppage racks. The calculations are performed in four energy groups and take into account a>> the significant geometric details of the fuel assemblies, fuel boxes, and major structural components. The 70430012784

geometry used for most of the calculations is a basic cell representing one-quarter of the area of a repeating array of stainless-steel boxes.

The specific geometry of this basic cell is shown in Figure 14.

The calculational approach is to use the basic cell to calculate the reactivity of an infinite array of uniform spent fuel racks and to account for any deviations of th'e actual spent fuel rack array from this assumed infinite array as perturbations on the calculated reactivity of the basic cell. The effects of manufacturing tolerances, as well as thermal uncertainties, including fuel and water temperature and density variations, are also treated as perturbations on the calculated reactivity of the basic cell.

The Adequacy of the calculational mesh selected for this type of cel'i calculation has been verified by comparison with the results of an identical geometry which used a finer calculational mesh (two times the number of mesh intervals in each direction). The finer calculational mesh resulted in little change in the value of k with an observed increase of +0.0002 Dk.

A further check on the calculational model used divas the use of a more accurate spatial model encompassing the corners of four adjacent rack cells as'hown in Figure 15. The use of this model had the effect of increasing k by 0.0005 ~k.

2.3 Manufacturin and Thermal Considerations Several perturbations of the basic cell were performed to determine the effects of changes in the physical cell and component dimensions, due to manufacturing tolerances, changes in water density, and changes in temperature. All cases were performed on 4.25 w/o fuel at an exposure of 30,000 MWD/tonne.

7043U012784

The following changes in specifications due to manufacturing tolerances were considered: Reducing assembly pitch by .060" leaving other dimensions constant (water gap reduced); reducing steel wall thickness of both box (by .009") and boraflex retaining- device (by .003") (increased water gap); reducing pellet diameter .0010", and increasing pellet density by 1.5% of the theoretical value. These variations represent the full range of possible variations in the mechanical design of the fuel rack and fuel. The reduction in pitch results in an increase in k of 0.0019 dk. The reduction in steel thickness results in a decrease of k~

of 0.0002 hk. The reduction in pellet diameter results in a decrease in k of 0.0005 hk,'hile the increase in pellet density increases k by 0.0015 Dk. These effects are shown in Figures 16-19.

The results of decreases in water density and increases in temperature it E

are shown in Figures 20 and 21. In both cases, is clear that the base case (68'F, water at full density) represents the maximum reactivity.

The effect of the interface between Region 1 and Region 2 was evaluated assuming fresh 4.25 w/o fuel in Region 1 and 4.25 w/o fuel at an exposure of 30,000 NWD/MT in Region 2. This resulted in a computed k of 0.9195, or a change of +0.'0123 Lk over the computed k basis rack. cell used to represent Region 2. The model used is shown in Figure 22.

A summary of the biases and uncertainties in the computed valves of k is given in Table 9. The uncertainties have been combined statistically.

These results show that a basic cell computed k of less than 0.9108 will assure an actual k below 0.95 with 95% probability at the 95% confidence level.

2.4 Desi n Conservatisms Mhile the tlDR concept reduces some of the design conservatisms inherent in the earlier spent fuel storage concepts (e.g., assumption of fresh unirradiated fuel), the design and analyses for the HDR as implemented in Region 2 are still very conservative in nature.

10 7043U012784

The use of assembly average exposures is one example of this conservative approach; Axially, more than 80% of the fuel assembly will normally have reached exposures greater than the average and this will occur along the central, higher worth region of the assembly. The lower exposure regions would normally account for less than 20% of the fuel assembly length distributed at the ends of the fuel assembly active length which are lower worth regions. The result is a neutronically higher exposure assembly than represented by the simple assembly average exposure. The use of the simple assembly average exposure can result in an over-estimate of the fuel assembly k ff by +.015 hk/k.

2.5 Accident Anal sis The Region 2 fuel racks are designed to prevent a dropped fuel bundle from penetrating and occupying a position other than a normal fuel storage location. The only positive reactivity effect of such a bundle on the multiplication factor of the rack would be by virtue of a reduction in axial neutron leakage from the rack. Since the calculations reported here take no credit for axial neutron leakage, the effect of a dropped fuel assembly could not be expected to exceed the reported maximum possible reactivity of the spent fuel storage rack. This is because the reported maximum possible reactivity of the rack is based on infinite array calculations (both laterally and vertically).

2.6 Re uired Ex osure as a Function of Initial Enrichment for Re ion 2 S ent Fuel As shown above, a computed k of 0.9108 will assure that the actual k is below 0.95 with a probability of 0.95 at the 95% confidence level. These computations were performed for 4.25 w/o fuel with an exposure of 30,000 tlWD/NT. Fot lower enrichments with the same computed value of k, the amount of exposure will be reduced, reducing the reactivity uncertainties due to depletion of fuel and buildup of fission products, and thus reducing the total uncertainty. Thus the computed k value of 0.9108 should be conservative for all enrichments not exceeding 4.25 w/o. In 7043U012784

order to allow for possible interpolation errors, however, a target value of 0.9050 for k will be used for other enrichments. The results shown in Table- l0 may be interpolated to estimate the required exposure to reach a computed k value of 0.9050. For 4.25 w/o fuel the required exposure is 30,000 HMT/MT, for 3.00 w/o fuel it is 15,960 HMD/MT. For 1.75 w/o fuel, even fresh fuel has a computed k of less than 0.9050.

The resulting curve, shown in Figure 23, gives the required exposure as a function of enrichment to assure that the value of k in the spent fuel has a probability of 95% of not exceeding 0.95>>at the 95'X confidence level.

r Because of the well-founded, conservative technique used for determination of the infinite multiplication factor, there is assurance that this spent fuel rack design will *not cause undue risk to the public health and safety resulting from criticality considerations.

12 7043U012784

REFERENCES

1. R.F.: Barry, "LEOPARD A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," MCAP-3269, September 1963.
2. M.R. Caldwell, "PDg-7 Reference Manual," WAPO-TM-678, January 1967.
3. H. Bohl, E. Gelbard and G. Ryan, "MUFT-4 Fast Neutron Spectrum Code for the IBM-740," WAOP-TM-72, July 1957.
4. H. Amster and R. Suarez, "The Calculation of Thermal Constants Averaged Over a Wigner-Wilkins Flux Spectrum: Description of the SOFOCATE Code," MAPO-TM-39, January 1957.
5. L.E. Strawbridge and R.F. Barry, "Criticality Calculations for Uniform Mater-Moderated Lattices," Nuclear Science and Engineering, 23, 58, 1965.
6. Electric Power Research Institute, "Fission Product Data for Thermal Reactors, Part 1 and Part 2: Data Set for EPRI-CINDER and Users Manual for EPRI-CINDER Code and Data," EPRI HP-356, Final Report

'1976).

7. R.J. N dvik, "Evaluation of Mass Spectometric and Radiochemical Analyses of Yankee Core I and Core II Spent Fuel," MCAP-6068 (1965).
8. R.J..Nodvik, "Saxton Core II Fuel Performance Evaluation of Mass Spectometric and Radiochemical Analyses of Irradiated Saxton Plutonium Fuel," WCAP-3385-56 Part II {1970).
9. M.L. Orr, H. I. Sternberg, P. Oeramaix, R.H. Chastain, L. Binder and A.J. Impink, "Saxton Plutonium Program, Nuclear Design of the Saxton Partial Plutonium Core," MCAP-3385-51, December 1965. (Also EURAEC-1490).
10. R.D. Learner, W.L. Orr, R.L. Stover, E.G. Taylor, J.P. Tobin and A. Bukmir, "Pu02-U02 Fueled Critical Experiments," MCAP-3726-1, July 1967.

ll. R.A. Lorenz, Fuel,"

et al., "Fission Product NUREG/CR-0722, February 1980.

Release from Highly Irradiated LWR

12. P.M. Davison, et al., "Yankee Critical Experiments Measurements on Lattices of Stainless Steel Clad Slightly Enriched Uranium Dioxide Fuel Rods in Light Water," YAEC-94, Mestinghouse Atomic Power Division {1959).
13. V.E. Grob and P.W. Oavison, et

- Results of Critical al., "Multi-Region Reactor Lattice Studies Experiments in Loose Lattices of UO Rods 1n M20,0 MCAP-1412, Mest1nghoose Atomic Power 01v141on (1960).

'3 7044U012784

REFERENCES (continued)

14. W.J; Eich and W.P. Kovacik, "Reactivity and Neutron Flux Studies in Multiregion Loaded Cores," WCAP-1433, Westinghouse Atomic Power, Division (1961).

15.'.J. Eich, Personal Communication (1963).

16. T.C. Engelder, et al., "Measurement and Analysis of Uniform Lattices of Slightly Enriched U02 Moderated by Dp0-H20 Mixtures,"

BAW-1273, the Babcock & Wilcox Company tl963).

17. A.L. MacKinney and R.M. Ball, "Reactivity Measurements on Unperturbed, Slightly Enriched Uranium Dioxide Lattices," BAW-1199, the Babcock 4 Wilcox Company (1960).
18. Battelle Pacific Northwest Labbratories, "Critical Separative Between Subcritical Clusters of 2.35 Wt X 235-U Enriched U02 Rods in Water With Fixed Neutron Poisons," PNL-2438.

7044U012784

TABLE 1 REGION 2 OESIGN CRITERIA

1. Actual irradiated fuel and fission product inventory is assumed.
2. keff (0.95
3. Credit may be taken for presence of borated water for abnormal (accident) conditions.
4. Multiple checks required for each fuel assembly prior to transfer from Region 1 to Region 2.

7044U012784

TABLE 2 FUEL ASSEMBLY TECHNICAL INFORMATION FOR GINNA NUCLEAR PLANT Rod Array Rods Per Assembly 14x14 gf 179 Rod Pitch, In.

0.556 Overall Dimensions, In.

7.784 Active Fuel Height,'n.

141. 4 Clad Thickness, In.

.0243 Fuel Rod O.D., In.

.400 Pellet Diameter, In.

.3444 Diametral Gap, In.

.0070 Pellet Density (X theoretical) 95 Control Rod Guide Tubes Outer Diameter, In.

0.5280 Znrszcv 4 rP.t'<, lr l <

0.4900 Instrument Tube gn&88 5gaPz .-.4zZu'.4015 Outer Diameter, In.

0.3499 7044U012784

TABLE 3

'CARY OF LEOPARD RESULTS, FOR HEASURED CRlTiCALS Fuel Pellet Clad Clad Lattice, Critical Case~ Reference Enrichment H20/U Density Diameter Diameter Thickness Pitch Buckling Calculated Numher Xllmkcc (atom %) Vol une (cm) (cm( m 2 ~k l 12 2.734 2.18 10.18 0.7620 0.8594 0.04085 1.0287 40.75 1.0015 2 12 2 734 2.93 10.18 0.7620 0.8594 0.04085 1.1049 53.23 1.0052 3 12 2.734 3.80 10.18 0.7620 0.8594 0.04085 1.1938 63.28 1.0043 4 13 2.734. 7.02 10.18 0.7620 0.8594 0.04085 1. 4554 65.64 1.0098 5 13 2.734 8.49 10.18 0. 7620 0.8594 0.04085 1. 5621 60.07 1.0118 6 13 2.734 10.13 10.18 0. 7620 0.8594 0.04085 1. 6891 52.92 lm0072 7 14 2.734 2.50 10.1& 0.7620 0.8594 0.040&5 1.0617 47.5 1.0008 8 14 2.734 4.51 I0.18 0.7620 0.8594 0.04085 1.2522 68.8 . 0.9987 9 14 3. 745 2.50 10.37 0.7544 0.8600 0.0406 1.0617 68.3 1.0010 10 14 3.745 4.51 10.37 0.7544 0.8600 0.0406 1. 2522 95.1 1.0025 ll 15, 3.745 4.51 10.37 0.7544 0.8600 0.0406 1.2522 95.68 1.0009 12 16 4.099 2.55 9.46 1.1278 1. 2090 0.0406 1. 5113 88.0 0.9889 13 16 4.099 2.14 9. 46 1.1278 1.2090 0.0406 1.450 79.0 0.9830 14 17 4.099 2.59 9.45 1.1268 1. 2701 0.07163 1. 555 69.25 0.9999 15 l7 4.069 3.53 9.45 1.1268 1. 2701 0.07163 1.684 85.52 0.9958 16 17 4.069 8.02 9.45 1.1268 1.2701 0.07163 2.198 92.84 1.0040 17 4,069 9.90 9.45 1.1268 1.2701 0.07163 2.3&1 91.79 0.9872 (8 17 3.037 2.64 9.28 1.1268 1. 2701 0.07163 1. 555 50.75 0.994&

19 17 3.037 8.10 9.28 1 ~ 1268 1.2701 0.07163 2.198 68.81 0.9809 20 9 0.7'I4* 1. 68 9.52 0.8570 0.9931 0.0592 l. 3208 108.8 0.9912 21 9 0.714>> 2.17 9.52 0.8570 0.9931 0.0592 1.4224 121.5 1.0029 22 9 0 714>> 4.70 9.52 0.8570 0.993'I 0.0592 1.8669 159. 6 0.9944 23 9 0.714* 10.76 9.52 0,8570 0.9931 0.0592 2.6416 128.4 1.0008 24 10 0.729* 1.11 9.35 1.2827 1.4427 0.0800 1.7526 89.1 0.9902 25 10 0.729* 3.49 9.35 1. 2827 1.4427 0.0800 2.4785 104. 72 1.0055 26 10 0.729* 3.49 9.35 1. 2827 1.4427 0.0&00 2.4785 79. 5 0.9948 27 10 0.729* 1.54 9.35 l. 2827 1.4427 0.0&00 1.9050 90.0 0.9878

  • These are Pu02 in Natural U02.

>>>> Cases 1 through 19 are with stainless steel clad, Cases 20 through 27 are zfrcaloy.'045U012784

0 TABLE 4 WESTINGHOUSE UO Zr-4 CLAD CYLINDRICAL CORE CRITICAL EXPERIMENTS (6,7) 2 Material Boron Buckling Radius of Pitch Concentration (for LEOPARD Critical No. Fuel Region keff Ex eriment 1o ( m) - CH-2 of Pins (cm) (LEOPARD/PD -7) 1 0. 600 0 .008793 489. 4 19. 021 0.9912 2 0.690 0 .009725 317. 0 17.605 0.9941 3 0.848 0 . 008637 . 251. 6 19. 276 0.9927 4 0.976 0 .006458 293. 0 23.935 0.9935 5 0.600 306. .007177 659.9 22.088 0.9927 6 0.600 536.4 .006244 807.2 24.429 0.9937 7 0.600 727. 7 .005572 950. 2 26.504 0.9940 8 0.600 104. .008165 546. 3 20.097 0.'9919 9 0.600 218. .007599 607.1 21.186 0.9917 10 0.600 330. .007106 669.5 22.248 0.9916 ll 0.600 446. .006661 735.3 23.315 0.9909 12 0.600 657.1 .005809 895.3 25.727 0. 9944 13 0. 848 104. .007320 321. 0 21. 772 0.9938 14 0.848 218. .006073 420. 5 24. 91 9 0.9925 0.9928 Mean 0.0012 Std Notes

~t' 1 1 Il Enrichment 2.719 w/o U-235 (b) Thickness of water reflector is that required to Fuel Density 10.41 g/cm3 attain total radius of 50 cm for model.

Pellet Radius 0.20 in Clad IR 0.2027 in (c) B = .000527 cm 2 Clad OR 0.23415 in Z

"TABLE 5 BATTELLE FIXED NEUTRON POISON CRITICALS Length Ho. of Distance Critical Times Assemblies Absorber To Fuel Separation of Clusters k ff Case Midth>> In Array Type, Thickness Cluster LEOPARD/PO0 020 20 x 17 3 Boral .713 cm .645 cm 6.34 cm 0.9932 017 22.21 x 16x 3 Boral . 713 .645 5.22 0.9944 002 20 x 18.88+ 1 Boral .713 2. 732 0.9925 028 027 '0 20 x 16 x 16 S.S.

S.S.

.485

. 302 cm .645

,645 cm 6.88

7. 43 cm 0.9946 0.9935 032 20 x 17 3 S.S. 1.1 w/o 8 .298 aa .645 cm 7.56 cm 0.9933 038 20 x 17 3 S.S. 1.6 w/o 8 .298 .645 7.36 0.9931 0028 20 x 18.075 None 0.9956 015 20 x 17 Hone 11.92 cm 0.9942 013 20 x 16 . Hone 8.39 0.9945 022 20 x 15 Hone 6.39 0.9933 021 20 x 16 Hone 4. 46 0.9946 Statistical Sugary:

Series member ~mean k.

Boral 0. 9934 0.0008 S.S. 0.9941 0.0006 S.S.

(Borated) 0.9932 0.0001

~x~oso e n Total 7 0.9935 0.0007 Non-Poison Total 0.9944 0.0007

'UWera mm K3HJUE

>> This is in units of pitch (Pitch >> 2.032 cm) x Center assembly was 20xl6 and the outer two were elongated at 22.21x16.

+ 20xl8.88 was one assembly with a boral sheet on two sides.

Fuel region data: Enrichment ~ 2.35 w/o, Pellet radius ~ 0.5588 cm, Clad OR ~ .635 cm, Mall thickness >> .0762 cm, Pitch >> 2.032 cm 7045U012784

'ABLE 6 SAXTON Pu02-U02 CRITICAL EXPERIMENTS (Reference 9)

~Ex t. Boron' H 0/UO TpPpm ume) 1.68 .520 .9912 -.0088 2.17 .560 1.0029 +. 0029 337 2.17 .560 1.0084 +.0084 4.70 .735 .9944 -.0056 10.76 1.040 1.0008 +.0008 70440012784

TABLE 7 ESAOA Pu02-U02 CRITICAL EXPERIMENTS (Reference 10)

~Ex t. Boron Pu-240 H 0/U ~k~1

~ppm TET o ume 0 8 1.11 .690 . 9902 -.0098 0 8 3.49 .9758 1.0055 +.0055 526 8 3.49 .9758 .9949 -.0051 24 3.49 '9758 .9948 -.0052 8 1.54 .750 .9878 -.0122

'26 ~ 8 .690 .9945 -.0055 7044U012784

TABLE 8

SUMMARY

OF PREDICTIONS FOR k

'IN CRITICALITY EXPERIMENTS ff eff Ex eriment Cases'.9995 Saxton Pu02-U02 + .0068 ESADA Pu02-U02 0.9946 + .0061 All Pu02 U 2

0.9969 + .0066 7044U012784

TABLE 9

SUMMARY

OF REACTIYITY BIASES AND UNCERTAINTIES FOR GINNA REGION 2 MDR Descri tion ~ft ft Rff Basic rack cell at 20 C, 4.25 H/o U-235 0 30,000 HWD/HT 0. 9072 8.430 inch pitch (see Figure 1)

Using one-quarter cell model Calculation Biases Leopard/PDt) model bias +0.0031 Modeling Effect +0.0005 Mesh Spacing Effect +0.0002 Most Reactive Temperature +0.0000

~

over operating range Most Reactive Water Density +0.0000 Region 1 - Region 2 +0.0123 Interface Effect Total Bias +0. 01 61 Basic cell including Biases 0. 9223 Tolerances. and Uncertainties (95/95)

Depleted fuel assembly 0. 01 31 reacti vi ty uncertainties Maximum error due to 0.0019 pitch tolerance Maximum error due to SS 0.0002 thickness tolerance Maximum error due to pellet 0. 0015 density tolerance (+ .015)

Maximum error due to pellet 0. 0005 diameter tolerance (+ .001")

Calculational Uncertainty (2.82a) 0. 0186 Total Uncertainty (statistical) 0.0229 Maximum reactivity change from biases and uncertainties 0.0390 Maximum k, including biases and uncertainties 0.9462 7044U012784

TABLE 10 COMPUTED INFINITE MULTIPLICATION FACTORS FOR GINNA MDR Enrichment Exposure Computed w/o MHD/MT km 1.75 0 0. 8973 1.75 10,000 0. 7901 1.75 12,500 0.7649 1.75 15,000 0.7442 3.00 10,000 0.9609 3.00 20,000 0.8655 3.00 25,000 0.8215 3.00 30,000 0.7788 4.25 0 1.1701 4.25 25,000 0.9463 4.25 30,000 0.9072 4.25 35,000 0.8680 4.25 40,000 0.8288 4.25 45,000 0.7903 7044U012784

p~j+ ~%tr r f]

jk II j) r l~

pre r r r r ~

I ~.

]) /r r

)

Ir t

j), a l\

j l

]~(

j JI Prrr jj j

gt

))jj f~q

'L 0 ++ JgZ

~1 I'- ~

) ~

FIGURE 2 NET DESTRUCTION OF U-235 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 20 << ~ ~ ~ ~ ~ 'I ~ << ~ i II ~II<<

<<4 III; I!!I II,

~ << ~ Ij III ..I li I: l l<<1~

I [<<

i ~ I

~ k

<<jil Ii!  !.<< ~

I::..l '

~ ~

~ 'jr

~

I I ~

II

~

II lj P') 'I'tl ':.r.ti 1<<l I<<

~

I I

~

~

t. ~

i I l ~

gi,'p i)a <<I'

~ ~ ~

~

~ ~

i ~ I I '

it) li

~ . ~ I

"'iiL I <<

I i.'.

I ~

3

]1, II<<;

I ~, ~ I I

'1 12

.r I j I I ~

q 8

10 rf e

8

'7 K~e

~ Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc. ~

N PLG LEOPARD unit cell calc.

0 0 12 16 20 28 IIIIrIIIIII(jjirj)/lCVx 10 3)

K FIGURE 3 SPECIFIC PRODUCTION OF U-236 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 4.0 tt ~ <<i ~

(l I \ ~ I ~

~

I ~I t4 ~ i o

<<( ~ (.1 ~ ~ .. s.. (

(,<<l 3.5

<<t <<' ~0

  • I ' <<i,g 4

. ( ('+'R

+ ~ ~ ~ I

3. 0 Pt: 'Jf

~ ~

i J '

i+

P 2.5 8( ~

.Ll.

~ ~ ~

~ ~

'( \

g L' O

2.0 ( ~ 4 .

U I. L 04 C4 1.5 R L4

.K~e

l. 0 Inferred from isotopic data Freehand fit of data j,

Previous LEOPARD unit cell calc.,

PLQ LEOPARD unit cell calc.

0.5 0

0 12 16 - 20 28 Sunup (WD/HIM x 10 3)

FIGURE 4 NET DESTRUCTION OF U-238 VERSUS BURNUP XN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 12 8

V p

W s ia es K~e

-~

~

Inferred from isotopic data Freehand fit of data Previous'LEOPARD unit cell calc.

PLG LEOPARD unit cell calc.

FIGURE 5 SPECZFZC PRODUCTION OF PU-239 VERSUS BURNUP Eg THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM

~ ~

I~!. I, ~

tL-', +M: /jib )

g pig +Is r!-.-i

.'L.R

~~ 1 I v-

~ i0I t j~

I

~

f

~

~ ~ i~ ! I

)

K~e

~ Inferred from isotopic data Freehand fit of data Previous LEOPARD unit cell calc.

~ PLG LEOPARD unit cell calc.

u Buzmup (le/AU x

'6 10 3) ao 28

FIGURE 6 SPECIFIC PRODUCTION OF Pu-240 VERSUS BURNUP ZN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 2PO

~ ~ ~ ~

', I tX 1:FIJ.

~

~ 4I ~

I I. s sl i !.t ).t Ij!I P ~ I

~ IL ~ ~

II P I\

~

.'Isf I ~ I s f

<<gi ls I i. ~ %sf! '

< s sH ;I-h J f~

L8 I I); gI Is I'si,: ~ ~ !is ~ ~

!I , 's s

i~I'PTPI I, ~ ~

1.6

'~

~ ~

!'j's:s ' '

!!:i I.

III

~ ~ I'i If

~

~

s

.'p I

~ ~ , ~ I s s; i

~ Is'I "'is I II iI

~

~ I ~ s 1.4 ~ I I "1 s iss

-:wl ~

~

I I

~ ~ . I

'sg 'J. g J'"s

~

(I

~

I~ i!< f s 1.0 jf~ "'s

~r cs

'r pp+

Ps 0.8 0,6 K~e

~ Inferred fron1 isotopic data Freehand fit of data Previous LEOPARD unit cell calc.

pLg LEOPARD unit cell calc.

0 0 12 16 20 24 Bufffup (IBID/ICQ x 10 3)

FIGURE 7 SPECIFIC PRODUCTION OF Pu-241 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC'EUTRON SPECTRUM K~e Inferred from isotopic data-LL

. Freehand fit of data Previous LEOPARD unit cell calc.

PLG LEOPARD unit cell calc.

1.2 1.0 g o8 C

0 o e6 Pc es O.4 I

t4 12 20 28 Burnup (HMD/HEQ x 10 3)

FIGURE 8 SPECIFIC PRODUCTION OF PQ-242 VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM 0.28 I I ~ 'i '

limni K~e I ili Inferred from isotopic data Freehand fit of data L24 Previous LEOPARD unit cell calc. ',

PLG LEOPARD unit cell calc.

H.i IlIT (aiI

)

20 If(.i;~

l f:.l6 C

O

0. 12

'o 0

'0.08 C4 C4 I

a Pc

~ J VI 0

0 4 8 l6 20 24 BurnIIP (WD/KiiJ x lO 3)

FIGURE 9 SPECIFIC PRODUCTION OF TOTAL Pu AND FISSILE Pu VERSUS BURNUP IN THE YANKEE ASYMPTOTIC NEUTRON SPECTRUM Net Production (Kg/MTU)

~Ke 2

0 Total Pu (Pu-239 + Pu-240 + Pu-241 +

Pu-242)

Fissile Pu (Pu-239 + Pu-241)

~

Freehand Fit of Data ~

10 Previous LEOPARD unit cell calc. eWe'"J PLG LEOPARD unit cell calc.

~S otal tu rt ~ etio tu ~ ~

a ~

~ ~

4 10 10 1\ ~

16 14 10 11 1 0araay (WD/kN a 10 1)

ATOM PERCENT OF TOTAL U I ~

+i I' I H 0

W O

f ir- a I '

l,' I.I.

I ~

0 0

~ ~ ~ I l:

'I I f~

~ ~ I~

i II I~

I

~

'II '

>'l f~~- td Ir ma Ig ]

I i ~ ~ ~

1 l.>II

~ g

~ I 1

FIGURE ll Pu-239/U-238 ATOM RATIO VERSUS EXPOSURE

'. I ',

,!! il

. I)

)J)

!i!

Jjj ill lil) jj Itl:';;r:

Ijj !Il~I . ilf!I:.! 11 ' I' I! '.:

~: It)i I I I.'.

JI

jl ii! i !
jjl ' Saxton Data -'I ill! I)J I "J I~ .'Ii )~ "):ll I'J'I--I-'- )

li iji")

' ll. , !1 ;If

.Qv I )I'

~ Calculation

.I II )~

'l!

I'l jj'. i!I" .'j. "- I

!Li' i :". !

)

i: i!: ~

F. 1 ~ I.

1'

~ Q6 I) Ill ) I; I tli Itl: I 1

!III II I g 1

,' 1 il l

I'.I

'1' I1 'la I),".  ::I Ii!i :i!i !:i: i'

.Q5 iiu ~ ~

i!I I~ }, I 1)ll

~ pg i.l::i I i ".

f)'

I

).i. 1)ll ll '! 'I I :lii

i Ii j

I I )i!ill i'!

~ ~i!'i i)jf Ill!

'i!)

.'i.'t i! 1'ii'!ill 1 I till 11)l

.I': l. ',jl

~

I&

I

.~

I

~ 1'I 6 8 10 12 14 16 18, 20 MND/Kg M

ATOM PERCENT OF TOTAL Pu PC CI Cl

~ ~

)

i Li

~ ~

C1 0 0 tJ t3 0 Ol I P

190 ,Iva il I Ai Ifv If."I lva rg I" Lia ll 1 'I, 4&4,a Jvf , I"i Iv' I vl4 rf g vll Ia I

!" ifl '+

tlv I: l~ )

f.

rI h C vva vl<</l h III f1l 41 a

r 150 lt hflv v ~, III I 4i Ivv ilv vll v4 v'>>

'lv I I! aa 4 la l.f <<ll I ,

I v

I I

v  !) vrf vf'I yllv g>>

$ Jv

'7 1 I -v g I4 I I fI I~

Iv, aa J I' 4) v Iv ~

I!

r X vtf I I4I vv Ii Iv v'I 1

100 av IF vti Ilvv

.f 4"

~,

I I I Iva vv I g vvl I v

gvt Vlt 4 4,

I

~ ..'I vfv jul ka fl',

II v>> aaF LI I

50 0.001 0.1 1. 10 50 Years after Shutdown Figure 13. Fission Product Absorption Cross-Sections as a Function of Time After Shutdown

12 16 20 24 Grid Elements MATER IAL IDENTIFICATION

1. Pin Cells 4. Stainless Steel
2. Guide Tube Cells 5. Water
3. Instrument Tube Cells 6. Boraflex Figure 14. One-(}uarter Rack Cell Model for Ginna MDR

gg

~i o I ~ ~ ~ g

~

0.910 ~

~p ~

~ ~

I 0~ \

tl ~

0.908 g; ~ f

~ 4

~ ~ ~ SI

~ <I ~

'V' k~ )I ~ $4 y o <<o

't

~ ~

4 ~

~ ~

~ ~ 1 ep ~ <<

~ ~ ~ ~ <<t << 4 ~ ~

~ J ~

~

~

~

~ a4 0.906 ~'

~ ~ 0 ~ ~ t ~

I ~ ~ ~ ~

0 ~ t<<

f

~ t~

tt+

~ << et ~

~ ~

~ ~ ~

I

~ ~ <<I

<<a to

~

P<< ~W <<IQ

0. 904 8.300 8.400 8 500 8. 600 Assembly Pitch, inches Figure 16. Variation of k with Assembly Pitch for Ginna MDR (4.25 w/o 8 30,000 MWD/MT, 20'C)

0.910 0.908 i,,l p<<i.

iHE

' I~)

>fw rI I~

Kl Lf.I.'if:

~ ~

i pre ~

II I ~ ~ (t I ~ tsar tt~ ~ ~ 'I I)I ~

L'l

~ I ~ ~ ~

) yI ~

~ I

~

0.906 p V'i $/) Ij4 i)i ~ + ~

) clif

<<~

~ ~

~

\~

Ot

~ ~ iE!'

) ~g

~

i ~

I1 ~ i )li) i It jI)'. !lj;

~ Ir 6 I~ ~ ~

~

I~ ~ jg) IjnI 0.904 0.110 0.120 0.130 Normalized Steel Thickness, inches (Box thickness + O.S x Boraflex retainer thickness)

Figure 17. Variation of k with Steel Thickness for Ginna NOR (4.25 w/o 9 30,000 MAD/NT, 20'C)

0.910 0.908 tW

~ ~ 4~ j!i. i ~ I

~ ~

qH

~~' jt

~ ~ ~ ~

t, -'..I. ,~ T i[~

7

~ 4

' ~ sap

>>4

~

~o 4+1 w

~

~

~

l t 4btt

~

~

4 4l ~ ~ ~ Ii 0.906 ~ f

%~ i+i.

~ ~

V ~ ~ I I~ ~

0.905 0 . 1715" 0.1720" 0.1725" 0 1730" Pellet Diameter, inches Figure 18. Variation of k with Pellet Diameter for Ginna HDR (4.25 wio 8 30,000 MWD/MT, 20'C)

CHILI 0.910 ~ ~ ~

g

~ ~ ~ I ~ 1 ~

f04/~

~ f 4$ jl 4 i+ I~

~ ~

~ IW ~ bO

~

f5 Li ~ $ ~~

+

i,
II.".'k; 'I

~ p tt~ ~ ~ ~ ~ '

~ ~

0.908 ~ $

iy ~

ot ~ ~ It $ sW4

~

~ Lb f  ! ~ J ~ 4 f

~

IIq.!l re ~

~ ~ ~

rg.,P ..1 I

~ f4 ~ ~

+~ 1 0.906 ~ ~ ~ ~'

fg ~ y eo

~ i+0

~a a. 8 ~f I

~\

~ sy i lit' Qo

~ 4 0.904

0. 930 0.940 0.950 0.960 0.970 Pellet Density, Fraction of Theoretical Figure 19. Variation of k with Pellet Density for Ginna MOR (4.25 w/o 9 '30,000 MWD/MT, 20'C, Reference Dimensions)

>>oui c c v. vai b'av <V<> OT sea waier uenslr.y tor Vienna MOR (4.25 w/o 9 30,000 MWD/MT, C, Reference Dimensions) 1.0 0.8 l,l

~~ pl I r~ ~

~

~ ~

0.6 I

i.'I I~

l I

I 0.4 ~ ~

ifii fl1

/,l nII

~ ~

~ ~ ~ ~

~ ~

0.0 0.2 0.4 0.6 0.8 pH20, g/cm3

0.910  ! ~ ~ ~ t

~

ft ~

t!

0.908 ~t ~ >>

~

.!! t t!tt t!

~ ~

~ t~ ~

ft ~

t

~ ~

~ tt t

-'0

~

~

fP  ! f!

~ t>>

'PEf gd Pf) I>>

~ ~

~

~

~

t~

0.906

~ t+

~ ~ ~ ~

~ ~

! ! >>I~ ~

~ t tt hatt~

t >>I>> >> t~

t~

~ ~

I

~ ~

~ ~

>>I>>

4 'T~ ~ I ~

>>>t ~ ltl'

~

ut~

pt

~ ~

~ ~

~ ~

.904 f Q t+! at ![ Q%>>

!4 !pgf IH g) ! j t  !!! ! ft( f. ~ L! l "! ~ ~ t~

60 70 80 90 100 110 Temperature, 'F Figure 21. Variation of k with Temperature for Ginna MDR (4.25 w/o 8 30,000 MWD/MT, Reference Dimensions)

I ~ ~ I. ~ ~

I ~

I ~

~ ~

B

~ I '. ~ ~

~ ' ~ I ~ ~ ~

- ~ ~

~ ~ ~ ~ ~ ~ ~

Attachment C In accordance with 10CFR 50.91 these changes to the Technical Specifications have been evaluated against three criteria to determine if the operation of the facility in accordance with the proposed amendment would:

l. involve a significant increase in the probability or consequences of an accident previously evaluated; or
2. create the possibility of a new or different kind of accident from any accident previously evaluated; or
3. involve a significant reduction in a margin of safety.

The proposed modification would increase the spent fuel storage capacity at Ginna from 595 fuel assemblies to 1016. The safety analysis has shown that the modified racks satisfy NRC Staff accepted criteria for nuclear, structural and thermal hydraulic design. The discussion below examines each of the three criteria stated above and supports the finding that the proposed modification is outside the standards of 10CFR 50.91.

Therefore, a no'ignificant hazards finding is warranted.

1. The proposed modification does not involve a significant increase in the probability or the consequences of an accident previously evaluated.

Four potential accident scenarios have been identified: 1) spent fuel cask drop; 2) loss of spent fuel pool forced cooling water; 3) seismic event; 4) spent fuel assembly drop. The probability of these events will not be affected by the amount of fuel stored in the pool.

The consequences of a spent fuel cask drop accident are unchanged by the modification. The current Technical Specifications prohibit the movement of a cask in the auxiliary building. An Application for Amendment to the Operating License has been submitted to the NRC to delete this restriction by modifying the crane to be single failure proof in accordance with the requirements of NUREG-0554. This would obviate the need to evaluate the consequences of a cask drop accident.

The loss of spent fuel pool forced cooling water has been previously evaluated for both the current pool cooling system,~'~

and the system to be installed in 1986.~'~ The decay heat. loads assumed in these analyses bound those that will be experienced due to the increased storage capacity. Therefore the consequences of this accident are unchanged from those previously evaluated.

The structural response of fully loaded storage racks during a seismic event was evaluated in Section 4 of Attachment B to this Appli;cation. The results of this evaluation satisfied NRC Staff accepted design criteria. Therefore. the consequences of a seismic event are unchanged.

The consequences of a single fuel assembly drop has been evaluated in reference 2 and in Sections 2 and 4 of Attachment, B to this Application. The evaluation indicates that Keff remains below .95. Since the proposed modification only affects storage of well cooled fuel, the maximum radiological releases would occur from the drop of an assembly in Region 1 which is unchanged.

Therefore the consequences of a fuel assembly drop are unchanged.

2. 'Create the possibility of a new or different kind of accident from any-accident previously evaluated.

RG&E has evaluated the proposed rack modification in accordance with the NRC April 14, 1978 letter "NRC Position for Review and Acceptance of Spent Fuel Storage and Handling Application" and appropriate NRC and industry guides, codes and standards. In its evaluation, RGB'as found no indication that a new or different kind of accident is created.

3. , The proposed modification does not involve a significant reduction in the margin of safety.

Under normal operation and accident conditions, the proposed modified storage rack design must, satisfy certain criteria in three areas:

1. Nuclear Criticality
2. Thermal Hydraulic
3. Structural Mechanical In the area of nuclear criticality, the criteria established is that Keff must, be less than .95. Section 2 of Attachment B of this Application indicates that this criteria is satisfied and the results are not significantly different than previous analyses.5 The criteria itself is unchanged from previous submittals, therefore the margin of safety has not been reduced.

Section 3 of Attachment B of the Application and previous analyses ' 'valuate the thermal hydraulic considerations of the modification. This evaluation shows that the decay heat loads of previous analyses bound those that could result from the 1

proposed modification. Therefore the margin of safety has not been reduced.

3

The structural considerations deal primarily with the response of fully loaded racks during a seismic event. Section 4 of Attachment B to the Application presents the structural mechanical evaluation of the racks and indicates that, the appropriate criteria established by NRC guidance and industry practice has been satisfied.

In addition, these analyses establish the acceptability of pool floor loads under worst case conditions. With the appropriate criteria satisfied, there is no significant reduction in the margin of safety.

r'4 ~