ML20246B622
ML20246B622 | |
Person / Time | |
---|---|
Site: | Oyster Creek |
Issue date: | 03/25/1989 |
From: | Farrell R GENERAL PUBLIC UTILITIES CORP. |
To: | |
Shared Package | |
ML20246B401 | List: |
References | |
9300-ADM-4010.0, NUDOCS 8905090122 | |
Download: ML20246B622 (98) | |
Text
_ _ _ _ _ _ _ _ _ - _ _.
1 l
l OYSTER CREEK RADIOLOGICAL CONTROLS Number l
P LICY AN PROCEDURE MANUAL 9300-ADM-4010.03 l
Ir LilNuclear r'
T1 tie Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
Applicability / Scope Responsible Office All GPUN Employees Rad Con 9300 This document is within'QA Plan scope X Yes No Effective Date Safety Reviews required X Yes No (03/15/89) 03/25/89 l
Prior Revision 1-incorporated the This Revision 2
incorporates the following Temporary Changes:
following Temporary Changes:
N/A N/A List of Effective Pages
)
l Page Revision Page Revision Page Revision Page Revision 1.0 2
17.0 2
33.0 2
49.0 2
2.0 0
18.0 2
34.0 2
50.0 2
3.0 2
19.0 2
35.0 2
51.0 2
4.0 2
20.0 2
36.0 2
52.0 2
5.0 2
~21.0 2
37.0 2
53.0 2
6.0 2
22.0 -
~'2
~ 38 70 2
54.0-2 7.0 2
23.0 2
39.0 2
55.0 2
8.0 2
24.0 2
40.0 2
56.0 2
7i 9.0 2
25.0 2
41.0 2
57.0 2
10.0 2
26.0 2
42.0 2
11.0 2
27.0 2
43.0 2
12.0 2
28.0 2
44.0 2
}3.
g;0 0,:
b!ON-CONTRod L 2
2 15.0 2
31.0 2
47.0 2
This Docun eat VVm N, ;
16.0 2
32.0 2
48.0 2
f4 091 U
? hv@p Tc Data
- rCntk en Signature Concurring Organizational Element Date Oriainator
/ A% s
/.,. C A,. c ir Radiological Encineerina
- c J9 Concurred M-4 By K/M# Z4~
Emergency Preparedness S-g -Fer nV a.
.o
%f>MRW f(hu1N2O Environmental Controls 3 //3/99 (I,
i 11,,1 IMarAff'ht, BMAm0M4 Consulting Engineer, R & EC 3-N-g'?
i9.,%
s
-M/M44didVfd //22'F1 Radiological 1 Engineering Manager 3//S/Af yw s
s
(
Approved M. J. h Radiological Controls Director 3-/5-7/
By 0
MJ. SLOBonirn (2720P) h50oj22890420 1.0 DOCK 05000219 F
PNU
r- -
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 g-'-
Title Revision No.
I Oyster Creek Emergency Dose Calculation Manual
~
o a
s List of Effective Pages l
Page Revision Page Revision i
El-1 0
El-22 0
1 El-2 0
El-23 0
L El-3 0
El-24 0
El-4 0
El-25 0
El-5 0
El-26 0
El-6 0
El-27 0
El-7 0
El-28 0
El-8 0
El-29 0
El-9 0
El-30 0
El-10 0
El-31 0
El-11 0
El-32 0
El-12 0
El-33 0
El-13 0
El-34 0
El-14 0
El-35 0
El-15 0
El-36 0-El-16 0
El-37 0
(--
El-17 0
El-38 0
El-18 0
El-39 0
El-19 0
El-40 0
El-20 0
El-41 0
El-21 0
El-42 0
e I
\\
<stroe) 2.0 l
i OYSTER CREEK RADIOLOGICAL CONTROLS Number 1
(UClear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 I
)
Title Revision No.
f Oyster Creek Emergency Dose Calculation Manual 2
Oyster Creek Emergency Dose Calculation Manual (EDCM) 4 Table of Contents Section Page 1.0 Purpose............................................................
4 2.0 Applicability / Scope................................................
4 3.0 Definitions........................................................
4 4.0 Policy............................................................14 5.0 P r e r e q u i s i t e s..................................................... 14 6.0 Precautions.......................................................
15 7.0 P ro c e d u r e......................................................... 1 5
'l 7.1
-Source Term Calculations..........,.........................
15 7.2 Isotopic Data Ava11able...............
.................... 17
/
7.3 RAGEMS Main Stack Monitor..................................
18 7.4 RAGEMS Turbine Building Stack Monitor......................
19 7.5 Determination of Isotopic Concentrations................... 20 7.6 Ground Level Release Data..................................
23 7.7 Con ti n g e n cy Sou r c e Te rms................................... 2 4 7.8 Release Point and Di scharge Flow Rate...................... 26 7.9 Meteorological Data........................................
28 7.10 Dose Calculations..........................................
37 7.11 Distenfeld Calculation.....................................
43 7.12 Protective Action Recommendation (PAR) Logic............... 54 8.0 Respons1bilities.................................................. 56 l
9.0 References........................................................ 56 Exhibits f
A.
Shine Computation-Factors.........................
.A-1 j
~
cav2p>
3.0
--_-.,_-__---_._-_____-_.a---.
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
I Oyster Creek Emergency Dose Calculation Manual 2
l l
1.0 PURPOSE i
The purpose of this manual is to provide a document that describes the I
assumptions and methodology used in the current Oyster Creek i
Radiological Assessment Computer Program (RACP). This includes calculating projected offsite doses from releases of radioactive material to the environment in accident conditions upon implementation of the Emergency Plan. As such, this document describes methods of projecting offsite doses during emergencies or for training purposes.
Indications of these releases may result from Radiation Monitoring System (RMS) readings, onsite or offsite sample results, or contingency l
calculatiorr it-RMS anbs'aniple rssults 4are.not sva11able.. These dose-projections are performed utilizing an IBM personal computer and the
(
current version of the RACP. The Radiological Assessment Coordinator, (RAC), is responsible.for implementing the dose projection process.
2.0 APPLICABILITY / SCOPE The Emergency Dose Calculation Manual. EDCM, is applicable to all qualified Radiological Controls personnel involved in the projection of offsite doses during an emergency. This manual.provides the. methods used in performance of dose projections during emergency situations where radioactive material has been or is predicted to be released to the environment.
ca7zoe>
4.0
_________________________a
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
(
Oyster Creek Emergency Dose Calculation Manual 2
3.0 DEFINITIONS 3.1 BUILGING HAKE EFFECTS Effects on the dispersion of an atmospheric release occurring at, near, or below the top of a building (or any structure). Air flow over and around the structure from the prevailing wind tends to drive the release down to the ground on the downwind side of the structure.
This has two effects:
it increases onsite concentrations dramatically, while glightly reducing concentrations downwind for a short distance.
Far downwind
~
concentrations are affected very little by building wake.
Building wake effects'are most' noticeable for. gicend leveleer lok flow stack releases such as the condenser off-gas exhaust. Stack releases are high enough above the building so that building so that building wake does not affect the plume significantly.
3.2
' CONTINGENCY CALCULATION A source term calculation performed in the absence of effluent radiation monitoring system or post accident sample data.
It is a mathematical calculation based upon a conservative model of acrident plant conditions.
3.3 DOSE CONVERSION FACTOR - DCF A parameter calculated by the methods and models of internal dosimetry, which indicates the committed dose equivalent (to the whole body or an organ) per unit activity inhaled or ingested.
This parameter is specific to the isotope and the dose pathway.
5.0
j OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
Dose conversion factors are commonly tabulated in units of mR/hr i
per curie inhaled or ingested or mR/hr per Ci/m' in air or water.
3.4 DISTENFELD AIR SAMPLING SYSTEM I
An air sampling and analysis system specifically designed for iodine air sampling and thyroid dose assessment. The system consists of an air pump unit which draws air through a canister containing a material with high retention for iodine and low retention for noble gases, and a specially designed Geiger-Muller probe for canister evaluation.
3.5 EMERGENCY ACTION LEVEL - EAL Predetermined conditions or values, including radiation dose.
.. _ )
rates; specific levels of airborne, waterborne, or
(
surface-deposited contamination; events such as natural disasters or fires; or specific instrument indicators which, when reached or exceeded, require implementation of the Emergency Plan.
3.6 EMERGENCY DIRECTOR - ED Designated onsite individual having the responsibility and authority to implement the Emergency Plan, and who will coordinate efforts to limit consequences of, and bring under control, the emergency.
3.7 EMERGENCY DOSE CALCULATION MANUAL - EDCM A controlled document describing the content and calculational methods of the Radiological Assessment Computer Program (RACP).
9 mi cavap >
6.0
s OYSTER CREEK RADIOLOGICAL CONTROLS Number' l
Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
(
Oyster Creek Einergency Dose Calculation Manual 2,
1 3.8 ELEV4TED RELEASE An airborne effluent plume which is well above any building wake effects so as to be essentially unentrained. The source of the plume may be elevated either by virtue of the physical height of the source above the ground elevation and buildings or by a combination of the physical height and the jet plume rise.
Elevated releases generally will not produce,any significant ground level concentrations within the first few hundred yards of the source. Elevated releases generally have less dose consequence to the public due to the greater downwind' distance to
- I'
~
'the ground concentration maximum compared to ground releases. All main stack releases at Oyster Creek are elevated releases.
3.9 EMERGENCY RESPONSE FACILITIES - ERF The primary locations for management of the Corporation's overall emergency response. These facilities are equipped for and staffed by the Emergency Support and Response Organizations to coordinate emergency response with offsite support agencies and assessment of the environmental impact of the emergency. The ERF participate in accident assessment and transmit appropriate data and recommended protective actions to Federal, State and Local agencies.
3.10 EMERGENCY PLANNING ZONE - EPZ A zone defined by a radial distance from the plant in which emergency planning considerations are given.
There are two EPZs.
The first is the Plume Exposure Pathway EPZ and is located
(..
c a tio >
7.0
)
{
i
0YSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
~(
Title Revision No.
t Oyster Creek Emergency Dose Calculation Manual 2
approximately at ten miles in radius around the site.
In this EPZ, emergency planning consideration is given in order to ensure that prompt and effective actions can be taken to protect the i
public and property in the-event of an accident. The second EPZ
(
~
.is called the Ingestion Exposure Pathway EPZ and is located approximately 50 miles in radius around the site. Emergency' l
planning consideration: are given for the ingestion exposure j
i pathway in this EPZ.
1 3.11 FINITE PLUME MODEL Atmospheric dispersion and dose assessment model which is based.on the ' assumption that' the-horizontW andivert4 cal =-dime.ns~ ions of, an.
effluent plume are not necessarily large compared to the distance that gamma rays can travel in air.
It is more realistic than the-semi-infinite plume model because it considers the finite dimensions of the plume, the radiation build-up factor, and the air attenuation of the gamma rays coming from the cloud. This model can estimate the dose to a receptor who is not submerged in the radio' active cloud.
It is particularly useful in evaluating doses from an elevated plume or when the receptor is near the effluent source.
3.12 GROUND LEVEL RELEASE An airborne effluent plume which contacts the ground essentially at the point of release either from a source actually located at the ground elevation or from a source well above the ground
(
I* ' * " "
8.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADH-4010.03 7
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
)
elevation which has significant building wake effects to cause the 1
plume to be entrained in the wake and driven to the ground elevation. Ground level releases are treated differently than elevated releases in that the X/Q calculation results in significantly higher concentrations at the ground elevation near the release point. Ground level X/Q values become essentially the l
same as elevated for. larger distance downwind. All releases at Oyster Creek', other than main stack, are ground level releases.
3.13 LOW POPULATION ZONE - LPZ As defined in 10CFR100.3, "The area immediately surrounding the exclusion area which contains residentr; the tota'1: number >and %
density of which are such that there is a reasonable probability
(
that appropriate protective measures could be taken in their behalf in the event of a serious accident." The LPZ for Oyster Creek is located at a 10 mile radius.
3.14 PROTECTIVE ACTION GUIDELINES - PAG Projected radiological dose or dose commitment values to individuals of the general population and to emergency workers that warrant protective action before or after a release of radioactive material. Protective actions would be warranted provided the reduction in individual dose expected to be achieved by carrying out the protective action is not offset by excessive j
t risks to individual safety in taking the protective action.
The PAG at OCNGS is based on the Environmental Protection Agency i
\\
(*"")
9.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear e0LICY AND PROCEDURE MANUAL 9300-ADM-4010.03
,e Title Revision No.
t Oyster Creek Emergency Dose Calculation Manual 2
low-level guidelinis of 1000 mR whole body or 5000 mR child thyroid. The PAG does not include the dose that has unavoidably occurred prior to the evacuation.
3.15 PROTECTIVE ACTION RECOMMENDATION - PAR Those actions recommended to the state of New Jersey to be taken l
during or after an emergency situation that minimize or eliminate l
1 the radiological hazard to the health and safety of the general public.
l 3.16 RADIOLOGICAL ASSESSMENT COORDINATOR - RAC A member of the initial response team of the emergency response 1
organization. Specific responsibilities assigned to-the RAC f
r k-include directing offsite and onsite survey teams. The RAC is relieved of offsite radiological monitoring teams' responsibilities by the Environmental Assessment Coordinator (EAC). The RAC performs dose projections, supplies source term estimates to the EAC and ensures a timely, accurate dose projection up to a point where the dose projection main l
responsibility is turned over to the EACC. The RAC's main responsibility is advising the ED of any radiological concerns.
Initially the Group Radiological Controls Supervisor assumes the role of the RAC until relieved.by the Initial Response Emergency Organization RAC.
(
l 1
< strop) 10.0 l
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
.(
~ Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
3.17 RADIOLOGICAL ASSESSMENT SUPPORT ENGINEER - RASE Individuals assigned to assist the RAC in performing dose calculations, source term calculations, and overall assessment and control of radiological hazards.
l 3.18 RAGEMS, RAGEMS II The RAGEMS, RAGEMS II Systems monitor gaseous effluent releases from the main stack and the turbine building stack, respectively.
They monitor particulate, lodines, and noble gases.
3.19 REACTOR COOLANT SYSTEM - RCS This system contains the necessary piping and components to.
~
provide suffic.ient* water-flow.to cool the. reactor.
This. system provides for the transfer of energy from the reactor core to the
(
turbine in the form of a pressurized steam, acts as a moderator for thermal fission, and provides a boundary to separate fission products from the atmosphere.
3.20 RELEASE DURATION Release duration refers to the time interval during which i
radionuclides are released from.the nuclear facility. Releases may be monitored, unmonitored, actual, or projected.
The time interval used to estimate a release of unknown duration should reflect best estimates of the plant technical staff.
In the i
absence of other information, seven hours is used as the expected release duration.
l c atto >
11.0
!L
OiSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03-Title Revision No.
("
Oyster Creek Emergency Dose Calculation Manual 2
3.21 RELEASE RATE This term refers to the rate at which radionuclides are released to the environment. Normally, it will be expressed in uC1/sec.
3.22 RADIATION MONITORING SYSTEM.- RMS The. system designed to detect, indicate, annunciate, and record the radiation level of effluent releases'and radiation levels at selected locations inside the plant to verify compliance with applicable Code of Federal Regulations (CFR) limits. The RMS consists of the following subsystems: area monitoring, atmospheric monitoring, and liquid monitoring.
3.23 SEMI-INFINITE PLUME MODEL" Dose' assessment model which is based on the assumption that the dimensions of an effluent plume are large compared to the distance that gamma rays can travel in air. The ground is considered to I
be an infinitely large flat plate and the receptor is located at i
t f
the origin of a hemispherical cloud of infinite radius. The radioactive cloud is limited to the space above the ground plane.
I 3.24 SOURCE TERM The activity release rate, or concentration of an actual release or potential release. The common units for the source term are C1, C1/sec, and C1/cc, or multiples thereof (e.g., UC1).
3.25 STABILITY CLASS A measure of the amount of mixing occurring between the plume and k.
4 (2720#)
12.0 i
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-A0M-4010.03
(.
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
the atmosphere around the plume. Conditions which create good mixing are unstable and conditions which create poor mixing are stable. Pasquill stability classification is a breakdown of the relative atmospheric stability into eight groups, denoted as A through G, from most unstable to most stable.
In the Pasquill stability classification system, stability is related to the change in temperature with height and the standard deviation of wind direction measurements. The more negative the change in temperature with increasing height, the more unstable the atmosphere is.
~
3.26 STACK CONVERSION FACTOR
)
Converts the counts per second (cps), monitored from stack gas to
(
microcuries per second (uC1/s) for calculation of gross noble gas source term. The stack conversion factor is provided on panel 10F and is input to the RACP by the user.
3.27 TERRAIN FACTOR - TF The terrain height above plant grade at distances from the release point. The terrain factor accounts for increases in local ground level concentrations due to terrain effects. The terrain factor is the terrain height in meters at a given distance for each sector.
3.28 X/Q - (" CHI over Q")
The dispersion factor of a gaseous release in the environment calculated by a point source gaussian dispersion model. Normal cation >
13.0 m.~_.._---._
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICv ANo PROCEouRE MANUAL 9300-ADM-4010.03 Title Revision No.
/
Oyster Creek Emergency Dose Calculation Manual 2
units of X/Q are sec/m'. The X/Q is used to determine environmental atmospheric concentrations by multiplying the source term, represented by Q (in units of uC1/sec or C1/sec). Thus, the plume dispersion, X/Q (sec/ cubic meter) multiplied by the source term, Q (uC1/sec) yields an environmental concentration, X (uC1/m'). X/Q is a function of many parameters including wind speed, stability class, release point height, building size, and release velocity.
~
4.0 P'OLICY This procedure is to serve as documentation and verification of the Oystera Creek = Radiological-Assdssment Computer Program.(RACP).
Any change to the program shall first be voted on by the source k
term committee. Changes agreed upon by the source term committee shall be followed by a revision to this procedure incorporating the change.
NOTE:
Non-substantive changes to the computer program which have been voted on by the source term committee and documented in the minutes of the committee meeting, may be i
implemented without a revision to this procedure.
r 4.1
-Three (3) non-controlled copies of this procedure will be sent to i
the Licensing Manager, Oyster Creek.
5.0 PREREQUISITES i
5.1 The following are prerequisites for projecting doses using the methods in the EDCM, and current version of the RACP.
1
(
1 c 7 op>
14.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
(
Oyster Creek Emergency Dose Calculatiori Manual 2
~
5.1.1 The Emergency Plan is,being implemented.
5.1.2 The RAC and/or EACC station are manned and functional.
6.0 PRECAUTIONS - None 7.0 PROCEDURE l
Thissectionofthe5DCMdescribesthesubroutinesthatarecontainedin the RACP. Listed below is a table of conterits for the procedure section of the EDCM.
7.1 Source Term Calculations 7.2 Isotopic Data Available 7.3 RAGEMS Main Stack Monitor 7.4
- RAGEMS Turbine Building Stack-Honitor.
7.5 Determination of Isotopic Concentrations
(
7.6 Ground Level Release Data 7.7 Contingency Source Terms 7.7.1 FDSAR 7.7.2 Rad Engineering Calculations 7.8 Release Point and Discharge Flow Rate 7.9 Meteorological Data 1
7.10 Dose Calculations
~
7.11 Distenfeld Calculation 7.12 Protective Action Re. commendation (PAR) Logic 7.1 Source Term Calculations The source term portion of the Oyster Creek RACP is used to generate the quantity and radionuclides composition of the
(
c 21: o )
15.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number p gjgggy POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
/
Oyster Creek Emergency Dose Calculation Manual 2
radioactive material released (or available for release) to the J
environment. Once the source term is measured or estimated, meteorological and dosimetry models are applied to the assessment. Several specific accident scenarios can be used to calculate radionuclides release factors and assess the accident consequences.
There are five methods by which this program generates source term values. Each of the five methods requires a varying degr,ee of input data. These five input methods are listed below:
Isotopic D'ta Available (7.2) a RAGEMS Main -Stack Monitor (7.3) -
RAGEMS Turbine Building Monitor (7.4) k' Ground Level Release Data (7.6)
Contingency Source Terms (7.7)
For cases 7.3, 7.4, 7'.5 and 7.6 theoretical source term' spectrums based upon one of 3 possible accident scenarios are used to convert gross source terms to isotopic data. The spectrums are derived from:
1).
Normal coolant activity concentrations (Nureg-0016),
2).
gap activity that would be released in the event of cladding perforation (NUREG-0737), and 3).
Isotopic activity that would be released in the event of a large break LOCA. The methodology for the development of these source term spectrums is outlined in reference 15.
(*' "'
16.0
)
i OYSTER CREEK RADIOLOGICAL CONTROLS Number j
Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
("
Title Revision No.
I Oyster Creek Emergency Dose Calculation Manual 2
i
~
7.2 Isotopic Data Available In this subroutine, measured isotopic concentrations of radioactive noble gases and iodines obtained from stack samples 1
are input to the computer program.
i The isotopic concentrations in microcuries per cubic centimeter (uC1/cc) of each one of the thirteen isotopes chosen for the program library are entered into the computer program. The isotopic library is comprised of thirteen isotopes found in the
)
core inventory which are readily available for gaseous release to the environment and known to contribute significantly to the population dose. The following -is a' list of the -isotopes of ~
~
concern:
Isotope Noble gases:
Kr-85 Kr-85m Kr-87 Kr-88 i
Xe-133 i
Xe-133m Xe-135 Xe-135m l
Radioiodines:
I-131 I-132 I-133 I-134 t~
I-135 1
i
<naoa>
17.0
______________-_____J
j OYSTER CREEK RADIOLOGICAL CONTROLS Number Ir LAINuclear P LICY AN PR CEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
7.3 RAGEMS Main Stack Monitor, 7.3.1 Low Range Monitor This subroutine generates isotopic source term data given l
1 panel 10F stack gas monitor readings from the lo-range
]
stack monitor. The lo-range system consists of two l
i scintillation detectors which are preceded by both
{
particulate and lodine cartridge filters and consequently, detect only noble gas activity. The scintillation detectors are monitored by logarithmic count rate meters,
{
(LCRMs), which are located on Panel 1R in the Control Room. These rate;metersyrovide an-output to dual m
pen strip chart recorders on Panel 10F. Panel 10F also a
provides a stack conversion factor which converts counts per second to microcuries per second. Both of these values are entered into the RACP.
The RACP calculates a gross noble gas source term based on the following equation:
S.(pC1/cc) = E (Counts /sec)) x StackCF(pC1/sec per counts /sec) x 60(sec/ min)/(28320[cc/ft'] x ft '/ min)
Where:
E count rate from Panel 10F in counts per second, (cps).
=
StackCF stack conversion factor; converts counts per second
=
tomicrocuries per second.
ix
( ""
18.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 p
jg Tit e
Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
7.3.2 RAGEMS Hi-Range Monitor This subroutine generates isotopic source term data given
. ion chamber readings from the RAGEMS hi-range stack monitor. The ion chamber is preceded by both particulate and iodine filtering units and consequently detects only noble gas activity. The detector provides a gross noble gas source term as:
1.
Sn. (pC1/cc) - from RAGEMS computer 2.
amps
- from panel 1R The RACP uses one of the above source terms in order of hi erachy ' as. shown:.aboved + 1he: RACP ; converts ;the sgros s -.
i noble gas (NG) source term using the appropriate conversion factors (CF) below:
1.
Sn. (pC1/cc) - used as gross NG' source term 2.
Sn. (pC1/cc) - amps /CF where CF - 4.06 E- amps /pCi/cc 7.4 Turbine Building Stack Monitor Turbine building stack release is a monitored ground release.
The stack release is monitored by RAGEMS and the data is available on the RAGEMS computer.
7.4.1 Turbine Building Low Range Monitor The low range monitor is given in cpm. This value can be entered into the RACP.
The conversion for the low range monitor is Sus (pC1/cc) - CPM /5.032E6 CPM /pC1/cc t
19.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number P LAINuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
g Oyster Creek Emergency Dose Calculation Manual 2
I 7.4.2 Turbine Building Hi Range Monitor l
This monitor reads out directly in pC1/cc NG Turbine building concentration will be determined using l
the following hierachy:
1.
Low range monitor if the concentration is >0 and d
1 1
<.5 pC1/cc NG l
2.
High range monitors if concentrations are
< 0.5 pC1/cc NG.
7.5 Determination of Isotopic Concentrations Th'e isotopic spectrum used to determine isotopic concentrations is T
obtained by selecting-one of the scenarlos:below:
. ;;7 ' '.^ 7 LJ - '
7.5.1 Small Line Break; No cladding perforat' ion. For this source term, 100% of the noble gases in the coolant are available for release, while 10% of the iodines are. Consequently, this is known as a 100/10 source term.
7.5.2 Small Line Break with Claddina Perforation.
For this source term, 10% of noble gases and 10% of the todines are available for release into the coolant from the gap (except for 30% for Kr-85 and Kr-85m), and are available for release, based upon Nureg-0737.
7.5.3 Large Break LOCA. 100% of the noble gases and 25% of the iodines in the core are available for release, based upon Nureg-0737.
For scenario 7.5.1, the tech spec limit for iodines of 0.2 pC1/gm I-131 dose equivalent is assumed.
The fraction of each isotope available for release is listed below:
<21:ae>
20.0
{
l lL______.
4 OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
I f'
Oyster Creek Emergency Dose Calculation Manual 2
Fraction Total Concentration, fi (1)
(2)
(3)
Isotope Accident Type:
7.5.1 7.5.2 7.5.3 Kr-85 1.20 E-4 2.47 E-3 1.68 E-3 Kr-85m 3.48 E-2 5.35 E-2 3.65 E-2 Kr-87 9.03 E-2 3.17 E-2 6.49 E-2 Kr-88 1.09 E-1 4.67 E-2 9.49 E-2
'Xe-133 4.87 E-2 1.55 E-1 3.17 E-1 Xe-133m 1.69 E-3 5.36 E-3 1.10 E-1 Xe-135 1.32 E-1 2.68 E-2 5.49 E-2
- ( ;
Xe-135m o
~
-4.17 E-2 4.66 E 9.54 E -
(
I-131 1.16 E-2 8.06 E-2 4.13 E-2 s.
I-132 1.10 E-1 1.14 E-1 5.84 E-2 I-133 7.76 E-2 1.32 E-1 6.75 E-2 I-134 2.26 E-1 1.71 E-1 8.73 E-2 I-135 1.16 E-1 1.35 E-1 6.91 E-2 1.00 E0 1.00 E0 1.00 EO The isotopic concentrations, Si, are, calculated using the following methodology:
1.
F(1) - Fraction of total release of isotopes i
F(1) = 1 I
2.
These fractions are then decayed for time after
- shutdown, DF(1) - F(i) e-
21.0
i l
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
/
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
Where:
3 1
DF(1) - decayed fraction of isotope i A1
- decay constant for isotope i t
- time since shutdown I
3.
These decayed fractions are then renormalized NFci>
DFe,3
=
DFci>
2 i.:
These normalized fractions represent the fraction of
' each isotope-beingersleasedu'-
w-4.
Because the calculated source term is a noble gas term
~
only, an assumed lodine to noble gas ratio is Q,
calculated.
NFc,3 I
I:NG ratio Ratio NFci3 I
5.
Next, the noble gases and iodines are each renormalized to one.
NGc,3 = fraction of noble gas release of isotope 1:
Where i = 1 to 8 l
c27:or>
22.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
(
Oyster Creek Emergency Dose Calculation Manual 2
I c,3 = fraction of iodine release of isotope 1:
Where 1 =,9 to 13 6.
The concentration being released of each isotope is then calculated:
d 51 - NG (1) x Sus for i = 1 to 8 Si - I (1) x Ratio x S..
for i = 9 to 13 All Iodine values are reduced.by a factor of 10 when standby gas treatment syste,m (SGTS) is operable.
7.6 Ground Level Release This subroutine uses a finite cloud model, measured dose rate data and simplifying assumptions-to computeuan.isotopica ource term.-
The calculation of source terms in the ground level release k
scenario are based upon the same r61 ease scenario as described in 7.5.
The computer code makes the simplifying assumption that the flow rate equals 1000 ft' / min. in determining the release concentrations. The program first contacts the Meteorological Tower and obtains the appropriate meteorological parameters (see Meteorological data 7.9).
Based on these parameters, the program calculates the direction of the plume and directs Radiological Controls to dispatch a technician in that direction to obtain dose rate data.
The measured dose rate data in units of mR/hr is input j
to the computer code and the source term is then calculated using l
the above equation. Alternatively, a gross source term in pCi/sec may be input.
3 After the source term, Sn (pC1/cc) is determined, the RACP uses the finite plume model to calculate projected doses downwind.
23.0
.-- - - J
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
/
Oyster Creek Emergency Dose Calculation Manual 2
7.7 Contingency Source Terms 7.7.1 FDSAR This subroutine generates source terms based on FDSAR design basis accident scenarios. For each of the five accident types, the RAC computer program assumes isotopic ratios based on one of the 3 accident scenarios in section 7.5.1.
The five accident types along with release types, gross source terms (Sv), and discharge flow rates are listed below:
Sr Discharge f, values Accident Type Release Type (uC1/cm' ) Flow Rate (ft / min)
Column Control Rod Drop Elevated 1.11 E-1 131865 2*
.(
Refueling Elevated 8.35 E-4 131865 1
LOCA in Drywell Elevated 4.50 E-5 131865 3
LOCA in Drywell Ground 4.94 E-3 1250 3
Steam 11ne Break Ground 1.70 E-4 2.35E+7 2
The gross source term data for these accident scenarios are obtained from specific accident calculations.
The discharge flow rate for elevated releases is 131,865 cfm, which represents the total designed exhaust capacity under emergency operation.
The LOCA in the Drywell with a ground level release is assigned a discharge flow rate of 1250 cfm, which l
<avioe>
24.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number i
Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
(,
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2,
q l
rep, resents the secon'dary containment in leakage rate. The steamline break accident has a flow rate of 2.35 E7 cfm which represents the maximum steamline flow rate during operation. The release duration for this accident is 10 seconds, which is the maximum time it takes for the MSIV's to automatically close and isolate the break.
Isotopic source terms are calculated from the gross source term, as was done in section 7.5.
Given the gross source term, Sr, for the accident type and the fraction, f., of total concentration for each isotope, the isotopic source' term, Si, are calculated ~a!I f61T6ws: -
(.
Si(pC1/cc) = Sr(pC1/cc) f.
The program then uses the values for Si and discharge flow rates
{
to calculate values for isotopic release rates which are used with the X/Q value to perform dose rate calculations in the dose projection subroutine.
- Refer to appropriate column in table of Fraction Total Concentration f.
7.7.2 Rad Engineering Calculations.
4 This subroutine generates source terms based upon scenarios designed by Oyster Creek Rad Engineering in conjunction with Emergency Preparedness. The four scenarios listed are:
l l
4 I
onom>
25.0
~
OVSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Nuclear j Title Revision No.
~ (
0yster Creek Emergency Dose Calculation Manual 2
a.) Coolant Leak Inside Reactor Building b.) Augmented Off-Gas (A0G) Line Break c.) Source Term Based Upon Containment High Radiation Remote Monitoring System (CHRRMS) Readin't d.) Source Term Based U'pon 119-foot Monitoi ;-10 s
Reading All of these scenarios, release via the main stack.
Additionally, scenario (b) may release via the ground pathway. For a detailed review of these scenarios and assumptions made, refer to the appropriate document (s) tr section 9s0.;..,=
7.8 Re.. case Points and Discharge Flow Rates
(
In the five source term calculation scenarios, the program allows for the specification of a release point and discharge flow rate.
For the " Ground Level Relena" and " Contingency Source Term" subroutines, there are specific release points and discharged flow rate which are explained in the corresponding source term sections of this manual (7.6 and 7.7 respectively).
For the " Isotopic Data Available" and "RAGEMS Hi-Range Monitor" scenarios, the release point and discharge flow rate options are described in the following paragraphs.
ELEVATED RELEASE For elevated releases, (main stack release), there are two discharge flow rate calculation options available.
These are:
(
c:troe>
26.0 L__..
d OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
~
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
' 1 - Know Release Flow Rate in cfm 2 - Know which Fans are on In option number 1, the flow rate is input directly in units of cfm.
For option number 2, the user selects which fans are on with a "Y" t
or "N" response. Each of the following building flow rates are added to compute a total flow rate based on user-selected "Y" responses.
Building CFM Reactor Building 65000 Turbine Building 82000.
Old Rad Waste 14600
(
New Rad Waste 38000 SGTS 2600 Ground Level Release For the source term scenario with isotopic date available there are three possible release points for a ground level release. One is the turbine building stack. This discharge flow rate can be taken directly from the RAGEMS computer or a default discharge flow rate of 47,000 SCFM. Secondly, the feedpump room duct which has a default discharge flow rate of 50,000 SCFM. Third, a non-specific release point which requires the actual discharge flow rate to be input to the computer code in units of cfm.
(*'2*
27.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Title Revision No.
(
Oyster Creek Emergency Cose Calculation Manual 2
7.9 METEOROLOGICAL DATA 7.9.1 Introduction The meteorological data section of the RACP provides X/Q values at~the appropriate dose receptor locations to be used with source term data in the calculation of off-site doses. For the three possible release types described in Section 7.8 of this manual, the computer program contacts the meteorological tower and retrieves the appropriate meteorological data. The meteorological data needed to calculate X/Q for each of the release types, are tabulated
(
'below:
Release Type Required Data
(
Elevated Release 380 ft. Wind Speed 380 ft. Wind Direction 380 ft. - 33 ft. Temperature Differential, AT g
Ground Level Release 33 ft. Wind Speed 33 ft. Hind Direction 150 ft. - 33 ft. Temperature Differential, AT If for any reason, the data are not available from the meteorological tower, the user can input appropriate values. The units for wind speed is MPH, temperature is degrees fahrenheit, and wind direction is degrees from 0-360 with O' indicating wind from the north direction blowing to the south, caran>
28.0
_ _ - _ _ _ _ _ _ _ _ _ _ _ _ ~ _ - _ - _ _
OYSTER CREEK RADIOLOGICAL CONTROLS Number p ggggy POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
(~
Tit'e Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
The program breaks the radial directions away from the-stack into sixteen sectors of 22.5' each. Based on wind i
direction input data, the program identifies which sector the plume centerline will be in. Sectors are designated by letters A through R (excluding I and 0), beginning with O' and proceeding clockwise. Also based on temperature differential, the program assigns a stability class A through G.
As indicated in the definitions above, the subroutine has the ability to calculate X/Q values for each of the seven stability classes at each of the ten distances out in each.of.the sixteen d.irection sectors.
For elevated and ground level release, the X/Q values are calculated directly as shown in Section 7.9.2.
P
(*
29.0
______-__D
l
~
l OYSTER CREEK RADIOLOGICAL CONTROLS Number p pj ggggy POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 l
{
r Title Revision No.
l 1
Oyster Creek Emergency Dose Calculation Manual 2
)
{
7.9.2 X/Q Calculation J
A X/Q value represents the dispersion of a gaseous release in the atmosphere. The calculation of X/Q in this computer program is based upon equation 3.116 on page 99 of Reference 1.
That is, 1
exp 8
v
+
h2 X/Q = oyo.p(.45)w 2o 2e:
2 l
\\
Where:
3.1416 w
horizontal ~ dispersion coefficient:in. uni.ts,of.m o,
+.,. -
meters
(
vertical dispersion coefficient in units of o.
meters wind speed corrected for stability class and p
release height in units of meters /sec the horizontal distance from the plume y
centerline. The RAC computer code always assumes y = 0 h
the effective height of the plume in units of meters 0.45 -
conversion from miles / hour to meters /sec Detailed explanations of the above parameters are provided
<vio" 30.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number-p gj jgggy POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Tit'e
~
Revision No.
1 Oyster Creek Emergency Dose Calculation Manual 2
in the following sections.
7.9.2.1 Calculation of o, and o, The horizontal and vertical dispersion coefficients represent the standard deviation of the plume dimensions in the horizontal and vertical directions for a simple Gaussian model.
The computer code contains an array of values for both o, and o, for stability classes, A through G and for distances from the release' point of 0, 0.2, 0.5, 1.0, 2.0, 3.0, 6.0, 10.0,
(-
30.0, 50 and 80 km. The code.uses'a~11nearx t
~
{
interpolation subroutine to obtain values of o, and e, at distances from the source -
point other than those given above.
For distances greater than 80 km, the values for oy and a, are assumed to be t' hat at 80 km.
7.9.2.2 Calculation of p The adjusted wind-speed, p, is the wind-speed at the point of release.
It is calculated by adjusting the wind-speed obtained from the meteorological tower at a given elevation for differences in elevation and meteorological stability class. The value of p is obtained using the following equation.
31.0
I'.'
}
l OYSTER CREEK RADIOLOGICAL CONTROLS Number le 1 4 Nuclear.
P W AN PR CEDURE M UAL 9300-ADM4010.03
/~
Tit e
Revision No.
]
Oyster Creek Emergency Dose Calculation Manual 2
i l
a p x (HIN*/HMEAS)'
(Ref. 8) l p
=
l Where:
measured wind speed at the p
=
I meteorological tower 9 height HMEAS HIN discharge height of the release point
=
(HIN = 368' for the main stack)
HMEAS=
Height of the wind speed measurement at the meteorological tower P
.=
Based on the stability class as follows:
P = 0.25 Stability Class A,B,C
'P = 0.33-Stability Class D P = 0.50 Stability Class E,F,G
[
NOTE:
The minimum wind-speed is given as 0.5 m/s.
- HIN must be assigned a minimum value else p. 0 when HIN = 0, If p < 0.5. then p = 0.5.
7.9.2.3 Determination of h The effective height of the plume, h, is calculated by accounting for the rise of the plume above the actual release point as well as l
the surrounding terrain. The value for h is calculated using the following equation:
h - HIN + PR - TF' Where:
l HIN = The discharge height of the release point I
(HIN = 368' for the main stack) cavaa,>
32.0
. _ - ~ _ _ _ _ - _. _ _ _. - _ - _ _. - _ _
OYSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 p gggg f'
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
i PR -
The rise of the plume in reference to HIN of the detector location TF -
The relative terrain height at the i
detector location with respect to the-base of the stack For a ground level' release, h = 0.
Detailed explanations of the above parameters are provided in the following sections.
7.9.2.3.1 Determination of Plume Rise Plume rise, PR, refers to the increase in plume
' height above the: release. point height. There-(.
are two components to PR. One is a result of the physical force due to temperature differences between the temperature of the effluent releases and the ambient temperature.
For purposes of the RACP, it is assumed that there is no heating of the effluent releases and thus, the physical forces of PR are zero. The other component to PR is due to jet (momentum) forces. Reference 12 provides detailed discussions ccncerning the PR due to jet forces. The following equations are used to calculate PR as shown in Reference 12; For neutral to extremely unstable conditions (stability classes A-D),
33.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Ir r. ilNuclear P LICY AN PR N RE MANUAL 9300-ADH-4010.03 Tit' e Revision No.
i, Oyster Creek Emergency Dose Calculation Manual 2
PR = l~.44 (V/p)* '"" (L/D)' " D (eq. 4.33 of Ref.
12)
Up to the point where; PR =
(V/p)D (eg. 5.2 of Ref. 12)
- Where, V
stack discharge flow rate in units of m/sec adjusted wind speed in units of m/sec p
L downwind distance in units of meters D
stack diameter in units of meters
=
For stable condi tiorrs- ~(stabil.ity xiasses.E.F, and Gk,,..- ~.,.
u -
i PR -
1.5 (F./p) S-
Eq.
(-
4.28 of Ref. 12)
{
i
- Where, F. - (p./p) x V2 x R*
I l
Where:
(p./p) = 1, based on ambient temperature equal to effluent temperature' V
stack effluent exit velocity in units of m/sec
=
R stack radius in units of meters, R - 2.5 m adjusted wind speed in units of m/sec l
p g/T4 (60/6z)
(Eq. 4.16 of Ref.12)
S
- Where, S
the atmospheric stability parameter
=
gravitational acceleration = 9.8 m/sec l
2 g
i.
(*"
34.0
4 i
OYSTER CREEK RADIOLOGICAL CONTROLS Number
[g. g jgggy POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 Tit'e Revision No.
(
Oyster Creek Emergen~cy Dose Calculation Manual 2
^
T.
ambient temperature assumed to be constant at
=
15'C.
60/6z = 6T/6z + r (Eq. 2.1 of Ref. 12)
Where.
60/6z = the potential temperature gradient 6T/6z = atmospheric vertical temperature gradient i
For Stability Class E:
6T/6z - 15 *C/KM l
Class F: 6T/6z - 40 *C/KM I
Class G: 6T/6z - 65 *C/KM r - atmospheric adiabatic lapse rate
- ^
(9.8
- C/KMF -- --
I For stable atmospheric conditi~ons, PR is calculated using each of the three equations provided. A comparison is then. performed and the lesser value is chosen. For unstable atmospheric conditions, two PR values are calculated using equations 4.33 and 5.2 of Ref. 12. The lesser of these two values is chosen for PR. The classification of atmospheric stability is determined as shown in Table 1 at the end of the Met Data Section.
7.9.2.3.2 Determination of Terrain Factor The terrain fa'ctor represents the elevation of the surrounding terrain with respect to the grade elevation at the release point.
The computer code (2720P)
H.0
l OYSTER CREEK RADIOLOGICAL CONTROLS Number l
Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 j
r-Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
j contains terrain factor values for all 16 sectors for each of the following distances from the release point: 0.25, 0.5, 2, 3, 4, 5, 10, 20, 30, 40 and 50 miles. For distances less than 0.5 miles, a value for the terrain factor is extrapolated from the data; for distances greater than 50 miles, the terrain factor is assumed to be that at 50 miles; for distances between 0.5 miles,and 50-miles for which terrain factors are not explicit.y given, a linear interpolation is performed to obtain TF.
MET DATA TABLE 1 Classification of Atmospheric Stability Stability Pasquill Temperature Change T(*F)
T("F)
Classification Categories With Height (*F/100')
(380'-33' (150" - 33')
Ext'remely Unstable A
<-1.04
<-3.61
<-1.22 I
Moderately Unstable B
-1.04 to -0.93
-3.61 to -3.23
-1.22 to -1.09 Slightly Unstable C
-0.93 to -0.82
-3.23 to -2.85
-1.09 to -0.96 Neutral D
-0.82 to -0.27
-2.85 to -0.95
-0.96 to -0.32 i
Slightly Stable E
-0.27 to +0.82
-0.95 to +2.85
-0.32 to +0.96 j Moderately Stable F
+0.82 to +2.19
+2.85 to
+7.6
+0.96 to +2.56 l
Extremely Stable G
>+2.19
>+7.6
>+2.56 l
(*'*"'
36.0 i
l 1
l
{
OYSTER CREEK RADIOLOGICAL CONTROLS Number j
t Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 i
'r Title Revision No.
l Oyster Creek Emergency Dose Calculation Manual 2
7.10 Dose Calculations 7.10.1 Introduction This section of the Oyster Creek RACP is designed to calculate whole body and child thyroid doses at various distances downwind.
It also provides information about emergency action levels based on the projected doses and hours to protective action guideline. The subroutines contained in this section utilize data provided by the meteorological data and source term section (Section 7.1 to 7.8) to perform the dose projections. The user input for this section is limited to enteringsthe relcase
(-
duration. In order for this section to function, tha calculations contained in the previous sections must be complete.
e 1
<22:"'
37.0
7 OYSTER CREEK RADIOLOGICAL CONTROLS Number Nuclear POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
(~
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
~
7.10.2. Whole Body Dose Calculation The RACP model calculates external whole body gamma dose rate using a finite model for both ground and elevated releases. The finite gamma dose algorithm is licensed from Dr. John Hamawl of Entech Engineering through Pickard, Lowe, & Garrick, Inc. (Dr. Hamawi was the author of the dose integral routine listed in Appendix F of Reg.
Guide 1.109). The dose is computed by multiplying the l
dose rate by the expected duration of release.
The finite gama dose algorithm in the Oyster Creek RACP has the same structure as-Pickard,- Lowe,- & Garrickts-MIDAS. JGG a finite gama dose algorithm. The basis for the algorithm is a three dimensional array'of finite gamma factors computed in the " Compute Gamma Fac" subroutine. These finite gamma factors are pre-computed three dimensional numerical integrations which appear in the theory of the finite cloud model and represent the plume.
These factors depend upon the plume dimensions at the downwind distance of interest, the plume elevation and the average gamma energy of the nuclide mix in the cloud. They are sometimes referred to as " gamma X/Q" in the literature although they are not derived from typical X/Q 38.0
r----
OYSTER CREEK RADIOLOGICAL CONTROLS Number p gjgg POLICY AND PROCEDURE. MANUAL 9300-ADM-4010.03
. Title-Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
calculations. The finite gamma factors in the array correspond to 28 downwind distances, 6 heights above the ground and 6 energy groups. Specifically, the downwind distances are: 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 9000, 10000, 15000, and 20000 meters. The six heights above the ground are: 0, 30, 60, 100, 150 and 300 meters. The 6 energy O
groups are:
.032,.081,.15,.25,.53, and 1.0 Mev. The actual shine computation values are stored in an external
' file and are retrieved by the RACP as needed. These
- ~- - --
values are"provided in Appendix A.
The spectrum of noble gases for the six energy groups were taken from MIDAS.
For effective release heights other than the 6 fixed heights, the finite gamma factors are extrapolated to that height by the " Interpolate" subroutine. For downwind distances other than the 28 fixed downwind distances, the finite gamma factor of the nearest fixed distance is assigned to tha't distance, i.e., no hc,rizontal interpolation is done, as is consisten't with MIDAS.
The RACP explicitly includes the contribution of I-131, I-132, I-133, I-134, and I-135 to the external whole body gamma dose. This method of handling the contribution from the radioiodines is more accurate than the method used in MIDAS. The abundances of the radiolodines were taken from Kocher, 1977. All radionuclides are decayed during plume i
travel.
carro,>
39.0
e I
OYSTER CREEK RADIOLOGICAL CONTROLS Number P LIO AN PRCEDUREMANyAL 9300;ADM-4010.03 Ir LAINuclear l
Tit'e Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
7.10.3 Child Thyroid Dose Commitment Calculation The RACP calculates the thyroid dose rate due to inhalation of I-131, I-132 I-133, I-134, and I-135 using a semi-infinite cloud model. In this model, the thyroid dose rate is proportional to.X/Q. The constant of proportionality is the product of the child breathing rate and the child inhalation dose factors. The " Compute DCF" subroutine uses the child breathing rate of 0.42 m*/hr 4
(from Table E-5, Ref. 6), and the child inhalation dose factors (from Table E-9 of Ref. 6) to compute the dose rate conversion" factors. -The--dose-is computed by -
multiplying the dose rate by the expected duration of release.
The radiciodines are decayed during plume travel time.
The decay constants for I-131 through I-135 are from s
Reference 7.
7.10.4 Emergency Action Levels The program assigns emergency classification based upon the maximum limiting dose (either whole body or child thyroid). The emergency action levels are given on the following table Emergency Action Level Projected Dose Emergency Classification Whole Body Child Thyroid
<10 mrem
<50 mrem None
>10 mrem
>50 mrem Alert
>50 mrem
>250 mrem Site Area Emergency
>1000 mrem
>5000 mrem General Emergency 4
cavro" 40.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 p g jgg p
(
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
The emergency classification is always based upon the higher of the two calculated doses which produces the highest emergency action level.
The program will calculate the time in hours to protective action guideline (as defined in definition Section 3.17) using the following equations:
10'00/HB Do'se Rate PAG..,
=
PAGo,y 5000/ Thyroid Dose Rate
=
The final step which the program performs is the printout of a hard copy of the dose information as determined in this section. A sample-hardcopr4s shown-below.m.r -
SAMPLE PROJECTED DOSE PRINTOUT Ver 88.10 Source Term of: 10:38 09-29-1988 Oyster Creek Test Version Time of Printing 10:41 09-29-1988 HHOLE BODY CHLID THYROID i
Dis.
Dose Dose Rate Hours Dis.
Chi /Q Dose Dose Rate Hours i
Miles mrem mrem /Hr to PAG Miles Sec/M 3 mrem mrem /Hr to PAG
]
SB 6.49E-02 9.27E-03
>99 58 5.65E-07 5.47E+00 7.82E-01
>99 2.0 1.68E-02 2.40E-03
>99 2.0 1.19E-07 1.15E+00 1.64E-01
>99 5.0 5.55E-03 7.92E-04
>99 5.0 4.41E-08 1.15E+00 6.02E-02
>99 10.0 2.85E-03 4.07E-04
>99 10.0 2.50E-08 3.37E-02 3.37E-02
>99 Max.
Max.
I s
Dose Dose SB 6.49E-02 9.27E-03
>99 SB 5.65E-07 5.47E+00 7.82E-01
>99' Source 245 cps Hind Direction to 242 Degrees Noble Gas 2.42E+03 pCi/sec Sector M
Radio Iodine 1.08E+04 pC1/sec Compass Direction HSH Source Flowrate 2.00E+05 CfM Percent Ground Release 0.0 Release Duration 7.0 Hours 1
Wind Speed 16.5 mph Emergency Action Level l
Delta T -3.4 F Degrees None Wind Direction (from) 62 Degrees Based on Maximum Dose location l
Stability Class Unstable-8
<27 or>
41,0
OYSTER CREEK RADIOLOGICAL CONTROLS Number Ir U 1 Nuclear P LICY AN PR CEDURE MANUAL 9300-ADM-4010.03 Tit'e Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
7.11 Distenfeld Calculation 7.11.1 Introduction This portion of the Oyster Creek RACP is used to calculate thyroid dose commitment due to inhaled radiolodines resulting from a release of radioactivity.
It is designed to be used in conjunction with the Distenfeld Air Sampling System. The computer' calculations and the air sampling system are based upon the research work done by C.
Distenfeld and J. Klemish at Brookhaven National Laboratory. The air sampling system consists of an air f
sampling unit, an absorber canister, and-a specially shielded GM counter and is designed to estimate the amount of airborne radiolodine. The collection medium is a cylindrical canister containing silver impregnated silica gel surrounded by 4 high efficiency particulate filter.
This material is chosen because of its poor noble gas retention capabilities along with its excellent iodine absorption capabilities. The silica gel absorbs radiolodine in its various chemical for,5s - 12, CH I, 3
HOI, etc. - with greater than 907. efficiency. The particulate filter enables the user to account for the radiciodine which has become attached to airborne particulate. A 5 cubic foot air sample is obtained by
/
cavan) 42.0
r
~
OYSTER CREEK RADIOLOGICAL CONTROLS Number
~
Nuclear P W AN PR CEDURE MANUAL 9300-ADH-4010.03 I.
Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
drawing air through the canister for five minutes at a rate of 5 cubic feet per minute. The dose consequences of the radiolodine in the air are then evaluated by counting the canister with the special GM probe. The outer shield of the probe has been designed to attenuate the principle xenon gamma rays more than the lodine gamma rays.
7.11.2 Assumptions The response of the GM probe is dependent on the total amount of iodine deposited on the absorber as well as the relative amounts of each isotope. The same is true of the
"~
dose delivered by the release. Both-the-tottl activi ty -
released and the relative isotopic mixture are a function
(
of the type of accident and the type of reactor (PWR or BWR) as described in the reactor safety study NASH-1400.
i In order to calculate the ratio of particulate iodine to total particulate released, a certain isotopic distribution of fission products is assumed. Adopting the HASH-1400 probabilities for the various accident sequences considered, a weighted average isotopic distribution was developed. This may be thought of as the most probable Isotopic mixture for a BWR accident.
This mix was used to l
calculate the ratio of meter CPM to thyroid dose l
l commitment and the ratio of iodine to total particulate fission products released.
catene) 43.0
OYSTEF. CREEK MDIOLOGICAL CONTROLS Number l
P LICY AN PR CEDURE MANUAL 9300-ADM-4010.03 Ir s91 Nuclear Tit'e Revision No.
e Oyster Creek Emergency Dose Calculation Manual 2
Both of these quantities are functions of time.
For example, the count rate to dose commitment ratio is 1875 not CPM per Rem for a two hour immersion starting one hour after reactor trip. If a two hour exposure started twelve hours after the trip, this' ratio would have a value of'585
~
net CPM per Rem. The derivation of these values
- is discussed more fully in Reference 3 by Distenfeld and Klemish.
The computer program calculates the thyroid dose commitment for a five year old child. This age group was chosen because the-tatio-ef-breathing: rate to. thyroid. mass..
is largest, and thus receives the largest dose per gram of
( '
thyroid tissue.
7.11.3 Computer Calculations Thyroid dose commitment calculations for a reactor accident must account for the following The decay of the five radiolodine isotopes The fraction of the particulate fission products that are likely to be lodine
- Iodine uptake by the thyroid and the resultant dose commitment for various inhalation starting times after reactor trip
- Dose commitment for different durations of inhalation In order to shorten the program which performs the dose calculations, equations generated by curve fitting are c 7:en) 44.0
l OYSTER CREEK RADIOLOGICAL CONTROLS Number P LICY AN PR CEDURE MANUAL 9300-ADM-4010.03
~
Nuclear Title Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
used instead of the exact equations. For example, the decay of the five iodine isotopes relative to a one hour decay is represented by the solid curve in Figure 1.
Rather than programming an equation involving five exponential functions, this smooth curve is represented by two simple functions:
x=1.09T-
1 1 T 1 10 hrs Equation 5.8-1 x=2.24T-* ***
T > 10 hrs Equation 5.8-2 Where: T = time between trip and sample counting in units of hours x = iodine decay' relative,to a,one-hour. decay. e,r W u -
The solid line'in Figure 2 shows the exact solution to the equations representing the expected WASH-1400 ratio of particulate lodines to total particulate released, Y.
In the computer program the time variation of this ratio is represented by the equation:
Y=
0.71T '
Equation 5.8-3 Listed below are the sequence of steps executed by the computer to calculate a thyroid dose commitment based on air sampling data.
1.
As a means of identifying individual air samples, the computer operator is prompted to input:
Sample Time Sample Location Field Team Designation (2720P) 45.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number P LICY AN PR CEDURE MANUAL 9300-ADM-4010.03 le rJ1 Nuclear
('
Tit'e Revision No.
I Oyster Creek Emergency Dose Calculation Manual 2
2.
The computer operator is then prompted for the field counting data.
l Absorber and HEPA Filter combined j
Absorber activity with HEPA Filter stripped off CPM (ADS)
Background activity CPM (BKG) 3.
Next the user is asked-to input three time intervals which are required for decay corrections dose assessment.
('
' The number of hours between scrant and measurement
{
Number of hours travel time (Plant to receptor)
The duration of inhalation NOTE: If a time less than one hour is entered, the computer defaults to one hour.
4.
The net count rate due solely to the filter, FLT, is computed:
FLT FA ADS Equation 5.8-4 The filter count rate is multiplied by the decay l
corrected ratio of iodine to total fission product particulate released, as explained in equation 5.8-3 to obtain the count rate of the particulate radiolodines, PI.
PI - FLT X 0.71 X T '
Equation 5.8-5
(.
catro" 46.0
OYSTER CREEK RADIOLOGICAL-CONTROLS Number Nuclear P LICY AND PROCEDURE MANUAL 9300-ADM-4010.03 j'~
Title Revision No.
\\
Oyster Creek Emergency Dose Calculation Manual 2
5.
The net count rate for the bare absorber, NC, is also computed.
NC = FA BKG Equation 5.8-6 6.
The total iodine. count rate.from the filter and the absorber is computed by adding PI and NC. It is then corrected to the starting time of inhalation by determining a ratio of the relative decay at start of inhalation to the relative decay at sample measurement. This is accomplished by applying equation 5.8-1 for times less than 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> or
~
equation 5.8-2 for t-imes greater than 10 hour1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />,s.
7.
The total iodine count rate is converted to a dose for
{
a two hour inhalation starting one hour after trip.
This is accomplished by dividing the total iodine count rate by 1875 cpm per Rem.
l 8.
This dose is multiplied by a correction factor for inhalation start times other than one hour after scram. Figure 3.shows the vari ~ation of this correction factor with time and also the' functions used to approximate this factor.
9.
The dose is then multiplied by another correction factor to adjust it for inhalation durations other than two hours.
Figure 4 shows the variation of this correction factor with time and also the functions I
used to approximate it. GENERALLY THE COMPUTER
(*
47.0 f
1
----- a
f
~
OYSTER CREEK RADIOLOGICAL CONTROLS Number
~
P r.AlNuclear P LICY AN PR CEDURE MANUAL 9300-ADM-4010.03
("
Tit'e Revision No.
Oyster Creek Emergency Dose Calculation Manual 2
OPERATOR HILL SELECT A ONE HOUR INHALATION DURATION IN ORDER TO CALCULATE A DOSE RATE.
- 10. The final dose commitment is converted to millirem and printed out by the computer.
Figure 5 shows typical input parameters which provide the basis for the Distenfeld thyroid dose projection.
g as-
- =or+
y e
('
i cation) 48.0
l 9300-ADM-4010.'03, Rev 2
.' COUNTER CORRECTION TINE NORMALIZED TO 1 HOUR j
f.
l ss t
1 j
E
.A ;
v.).: -
.s 3
A S
m N
t t
t
'k l
i i
I g
A i
I%(
l l
1' g*
g 1.097.545-q l
g 5
N l
,4 I-2.24T.849
\\.
\\
1 g_;>;-
i w
i i
i w
. ma 3
i
.31 1
5 13 50 10D TIME CHQURS AFTER SCRAM) l Fig. 1
,s 49,0...
O 9300-ADM-4010.03,. Rev. 2
+
,s.
l I
g t
no e
e
($
ge g
i M
]
9 i
)
P s
f
...g
. ~.
r
/
I I
I
\\
M I
.l
~
c I
f l
y I
C
.1 w
.., i M
l t
t * *<
w
.t I
l.'
B tse i
T
., '. ~
5-
.e se 3
g i a.
M l
~
m m
2 1
n G
l l
[
/
i i i
m O
w I
I
! I t w
- ,3
' t
- i.
sg
=
G T>M i
n i
at llC v
W5U s
b..--.._.
m I
m____.________.__._____
4 +
' 9300-ADM-4010.03. Rev. 2
_ CORRECTION;FOR INHALATION START TIMES OTHER.THAN 1 HOUR I
185
^
I 58 l
r y,.....
_w.
.l.-
a...
3 o'
/
18 t,dt a
- 1 i
g I
t l / i i
i i 8
I
.571T.71 l l i
g
. f-l g-
/
T.44 W
pa
(
J i
~
f Y
/
1 1
i i
i I
! i 8
Ii!
Ii;
{
l l
.1 1
5 is 52 122 TIME C HCURS AFTEM SCMAM >
1
- Fig. 4 6
I
,, 3
r OYSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADH-4010.03 p ggg p
(~
Title P.evision No.
Oyster Creek Emergency Dose Calculation Manual 2
Figure 5 Airborne Iodine Measurement Sample Time 14:45 Sample Location ENE-11 Field Team Designation ALPHA Enter Absorber and HEPA Filter Combined Activity 20000 Enter Absorber Activity with HEPA Filter stripped off 19500 Enter the Background Activity 2500 Enter the Number of Hours between Scram and Measurement 6.75 Enter the Number of Hours Travel Time (Plant to Receptor) 6.75 Enter the Duration of the Inhalation 1
Thyrold-Dose 1.06E+04 mrem 7.12 Protective Action Recommendation (PAR) Logic This section of the RACP, is designed to assist the user in developing protective actions based on plant conditions, release duration and dose assessment.
The logic is diagrammed on attachment E2-4 of Ref. 4.
Listed below are the specific and general notes associated with the Protective Action Recommendations.
L
< s 7:o" 53 0
i
~
OYSTER CREEK RADIOLOGICAL CONTROLS Number i
~
p ggg 7
POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03
(~
Tit'e Revision No.
Oyster Creek Emergenc'y Dose Calculation Manual 2
NOTE 1: Consideration should be given to the projected exposure to be received to a person if he shelters versus evacuates.
1 In so doing, you must factor release duration, release magnitude and assume a protection factor of 2 for up to the first 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> of rslease duration and a PF of I for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> release duration. The pathway of least exposure should be chosen.
~
NOTE 2:
OYSTER CREEK EVACUATION TIME ESTIMATES (HRS)
Permanent Population Summer Population
. Normal Adverse Normal Adverse
~
2 Mile Ririg 1.5 1.75 1.5 1.75 Plus Sector to 5 Miles 1.75 2.0 2.0 5.0 Plus Sector to 10 Miles 2.5 4.5 4.5 5.0 Ten Mile EPZ 2.5 4.75 4.75 5.5 NOTE 3: In exercising the judgment as the need for protective action recommendations, any uncertainty concerning the status of plant functions needed for protection of the public, the length of time the uncertainty exists, the prospects for early resolution of ambiguities, and the potential degradation of the plant functions needed for protection of public should be considered; i.e.,
significant uncertainty as the reliability of plant functions to protect the public extending beyond a
(*'**"
54.0
i OYSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 p gjgg Title Revision No.
(
[.
Oyster Creek Emergency Dose Calculation Manual 2
L reasonable time period is a sufficient basis for making a protective action recommendation to shelter within a 2 l
mile radius of the plant and 5 miles downwind. Continue plant assessment.
NOTE.4: Containment air samples indicate noble gas concentrations on the order of 100 pC1/cc and radiolodine concentrations on the order of 0.1,pC1/cc.
~
NOTE S: As indicated by evaluation of operational thermal limits, such as minimum critical power ratio, linear heat generation rate, and maximum average planar linear heat generation rate or: radiological parameters;such' as. area,
4 gamma radiation levels or airborne radionuclides
(
concentrations.
NOTE 6: Primary containment pressuro reading of 38 psig at 281 degrees as indicated on Panel 16R.
8.0 RESPONSIBILITIES None
- 9. 0 REFERENCES 1.
Meteorology and Atomic Energy by H.S. Atomic Energy Commission.
USAEC Technical Information Center, Oak Ridge, Tenn.. 1972.
2.
Final Design Safety Analysis Report 3.
An Air Sampling System for Evaluating The Thyroid Dose Co,mmitment Due to Fission Products Released from Reactor Containment, NUREG/CR-0314, BNL-NUREG-50881 by C. Distenfeld and J. Klemish, National Technical Information Service, Springfield, Virginia 22161, I
l 1978.
(2' '"
55.0 i
i 1
OYSTER CREEK RADIOLOGICAL CONTROLS Humber i
POLICY AND PROCEDURE MANUAL 9300-ADM-4010.03 p gjg Title Revision No.
I Oyster Creek Emergency Dose Calculation Manual 2
4.
Direction of Emergency Response. Oyster Creek Procedure 6430-IMP-1300.02, Rev. 5 5.
Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors, Regulatory Guide 1.111,'Revi.sion 1. July 1977 6.
Calculation of Annual Doses to Man from Routine Release of Reactor Effluents for the Purposes of Evaluating Compliance with 10 CFR Part 50, Regulatory Guida 1.109, Appendix I.
7.
Radiological Health Handbook, Nuclear Lectern Associates, Inc., 1984.
8.
Handbook Of Atmospheric Diffusion, Hanna, Steven R., G. Briggs and R. Hosker, United States Department:of Energy (DQE/TIQ-31223h, :1 Published by the Technical Information Center, USDOE, 1982.
(
9.
Turbulent Diffusion-Typing Schemes: A Review, Gifford, F.A.,
Nuclear Safety, Volume 17, Number 1. January-February '1976.
10.
Atmospheric Dispersion Models For Potential Accident Consequence Assessments At Nuclear Power Plants, United States Nuclear Regulatory Commission Regulatory Guide 1.145, Revision 1, November 1982.
11.
Users Guide For RAM: Volume 1. Algorithm Description and Use, EPA, Environmental Sciences Research Laboratory, Research triangle Part, NC 27711, November 1978.
~
12.
Plume Rise, Briggs, G.
A., (TID-25075), United States Atomic Energy Commission, Office of Information Services, 1969, 1974.
l 13.
Post Accident Sampling and Operation: RAGEMS, Oyster Creek Procedure 831.4, Rev. 7.
t c non >
56.0
OYSTER CREEK RADIOLOGICAL CONTROLS Number POLICY AND PROCEDURE MANUAL 9300-ADH-4010.03 p gj jgg Title Revision No.
(-
'i Oyster Creek Emergency Dose Calculation Manual 2
i4.
Meteorological Information and Dose Assessment System, MIDAS, Pickard, Lowe and Garrick, Inc. 1200 18th Street, N.W., Suite 612 Washington, D.C.
15.
Coolant Leak Inside Reactor Building Source Term Spectrum, l
Radiological Engineering Calculation No. 9340-88-006, Rev. 0 I
16 Source Term Spectrum Due To AOG Line Break, Radiological Engineering Calculation No. 9340-88-007. Rev. O.
~
Calculation of Contingency Source Terms Using Fuel Pool High-Range 17.
Mcnttor (C-10), Calculation C-6430-IMP-1300.09-2, Rev. O.
- 18. ' Calculation of Contingency Source Terms Using CHRRMS Readings.
Calculation 4-6430-dMP-1300.09-017Rev. 0.:
. r 19.
Source Term Spectra (Small Line Break. Gap Activity and Large Break LOCA) for RAC Program, Calculation No. 9340-87-025, Rev. 2.
t a
1, 57.0
____-_____________s
5 6
L,:.. :,.:: *... %.9
- a .
G 9300-ADN-40io.03 Rev. 0 EIIIIBIT &
(
~
mine Computation Festers r
stasilley etanse A ~
' tete et peinefM :12 15 1986'
~
Dergy trenes t Bfsteres4 totesse sofgM essere Beweeded \\.
esters, \\
0 30 48 100
'150 3M est L988 W 2.5 er LedE W 1.eds W 8.05548 1.5E 0p 500.
1.448-W., t.MgaeF 1,4E-W., t.m W. 3.198 et. T.318 09 400 9.454 p.NE4 8.884 7.Seg es 4.tM es 1. 5 08 NB 5.MS 4B 5.75 4 5.545 4 *5.13 4 4.415 4 1.958 4 888 3 me 3.Me a 3.m 48 3.418 m 3.2554 1. m 08 988 2.54 LME4 L7FE4. Lee Leds eB 1.444 4 1855 2.1184 LieE4 LtW et LM-et 1.5 45 1.405 4 1258 1.3E5-48 f.355 4 f. M es 1.348 4B 1.255 48 1.885 4 ISBB 9.405 09 9.7Def 9.448-99 9.de-W 9.3N 99 Ages W 1MB 7.218 99 7.134 7.110-er 4.Seg W 7.00E 09 '4.15 0p 3 BIB 5.485 W 5. W 4 5. m -ep 5.48E-er' 5.345 09 4.9H W 250 4.95 0p 4.995 0p 5.11E-09 4.7N 0p 4.90E 9p 4.54 0p 2500 4.40E 0p 4.3M4 4.48E 4 4.4d8 09 4.4M Op 4.15*09 3000 3.90E*0p 3.72 05 3. 5 09 3.79E*09 3.ME 09 3.58E 09 5 00 3.348 0p 3.3EE-er 3.20s W 3.IM*ep 3.33 09 3.15E.00 ease 3;p18 4 3.148-99 2.90s.09, 3.085-0p 2.gu op LadEee.
4500 L7M er L7 Der"2.3dE W ' E75EM 2.'4184 ' 2.3M op ' -
3000 2.3454 LW 49 L W -op L3u Op 2. W 09 L348 Op 5908 L255 ep 2.2 3 89 L1 Der L3M er L3eEop LtM4
(
405B L2EE-Of L118-er L1dE4 2.148 W LOIE # 2.048 0p 4005 1.918 09 1.955 09 f.e48 ep 1.a44-W 1.918 49 1.585 09 MOB 1.? D er 1.795 09 1.5 0p 1.75 09 1. 5 09 1.7 D 0F N 1.77beP 1.4M 49 1.40E 4F f.715-ep 1. Afb er 1.418609 ages 1.59E.0p 1.40E 09 1. Ads.ep
- 1. m.0p 1.33 sp 1.55 Op 9000
- 1. W -09
- 1. W.49 1. W ep 1.40E 09 tJ18 89
- 1. W.00 10000 1.33E.0p
- f. W 4 1.345 op 1.2M.op 1.2E 09 1.294 09 15000
- p. m 10 1.10E 09 9.35 10 9.084*10 9.715 10 p.40E 10 20000 7.2M 10 8.30s.te 7.3310 6.7W 10 7.344 10 7.305 10 poses 1*A 1
q
\\
El-1 i
w
.r.
~;.:. ~...>:
+
l
,.. z.
(_
9300-ADN-4010.o3 Rev. 0 EEHIBIT A (con'.t)
O stino Compusetten Festers
,. ~
8taldLf ty staess A 8ete of Printins 312 15*1906 Enerw trengu 2 pfstenes% Beteese sofght metere Sewedeuf \\
asece \\
8' 30 de tes -
- 150,
- 300 448 Lits W.3. art-et.. 5.135 W 3.755 W 7. des.W t.195-08
- ' ~
Ses 4.WW-er 3.9es W 3 m W L95tM 1.995 W LSee ce 480 L2N W L218 W Li1E-W 1.au W t.535 Wre.NE es 700 1.445 W 1.43E-W ' t.355-W 1.255 W 1.1M-W 5.315 05 800, 1.918 W t.018-tr 9.488 4B 9.34E4 Leme f.ett'es 900 T.4EE es T.448-03 T.EE=eB T.015 5 LSM4 4.4EE-48 1800 5.7584 5.NE4 5. des es 5.3M4 5.234 3.anE4 1250 3.375-05 3.aFE4 3.8604 3.TFE4 3.43E4 Legge 1500 L7EE-es 2.74 48 2.750 4B L73 es LefE4' L2EEN 1758. Lade 4 2.8754' LSFE es' Late-ce' Leu 08 f.805 4 2008 1.4M4 1.415-0B 1. M 4 1.405 4 1.575 08 f.448 4 2358 1.4d5 4 1.44E 48 f.4M 4B 1.44E 08 1.448 03 ' t.3at es 2500 1.345 4 1.348 es 1.33 4 1.348 4 fJ15 es 1.234 200F t.14E 4 1.145 68;,t.ses eg._ j.ta-en ~ tita.es' t. gee os... ~~ -- - 1
.e...
3 08 9.95 0p 1.M4 9.9PE ep 9.95 W 9.855 0p 9.24 4088 8.M ep 9.M*er S.9R W S.988 e9 5.488= # L 48E Of
[
4800 4.tM-er 8.am ep 8.08E 4 8.40E 0p 7.985 4 T.edE 09
\\
5000 T.448 4 T.355 er T.3454 7.318 09 T.255 09 7.etE4 5500 L 795 er L 75E op L TTE-N 4.898 49 L748-ep 4.440 09 4800 4.234 4.24 49 6.3AE ep 4.24 0p 4.2M 0p 4.M4 4005 5.M er 5.55 # 5.a48 0p 5.75-0p 5.195 0p 5.485 09 7see SJIE*ep 5.44-0p 5.485 09 5.4et of 3.4M er SM 7500 5.28E4 5.195 09 5.148 # 5.178 89 5.145 4 4.98E 09 ages 4.795 0p 4.85E 09 4.9B op 4.91E 09 4.55 4 4.75E op 9000 4.44E 09 4.40E 09 4.405 09 4.35 09 4.42E 09 4.305 4 10000
- 3. pee 0P 4.005 0p 4.0N-09 3.pft 0F 3.90E 09 3.paE 09 1S000 2.3sE.09 3.03E 00 2.NE Of 2.915 4 2.NEop LafE4 20000 L2dE4 2.348 09 L31E er L275 op 2.31E 0p 2.298 09 pasos 2-4 e
El-Z
i..,
.u: e
.7.,.-
a...
s
~
gn. A (con't).
1 03 Rev. 0
...:... a. -
,1.,
Eline.Computetten Pastore SteWtity Ctenes 4 Sete of printing 3121S*1986 EnerEr Gre ge 3 steemeeg heteneo neigne metere-towadasg
' asters %
8 as
- de
' tes 19e age.
~*
est.1.05-006 9R.er"; 8.4W.5 4.4M eP 3.75 er 3.05 e8 s
900 4.944*W 6.?W W 4.34E W S.148 W 3.5BE W. S.418 es 400 3.M-W. 3. ass er 3.75 W L368-W L?tt W 9.005-08 798 LSM W 2.3ds W L40E # 2.3M W Lou # 9.m.es att f.am W 1.m-cr 1.Fu-W.,1. FEE.W t.345 w 9 3s44
$30 1.3dE*er J.3ds W f.345 W t.2fE-er 1.m-W 8.218 40
~
1500
- 1. ass W 1.m.ar 1.035.W 1.m W 9.4s5 es 7.13B.4s 1350 7.tMe 7.148 00 7.13-e e.gese 4.73 0B 5.485 00
.tses. s.14s4 s.tas es s.ta es s.su os 4.hs.S.4. ass as 1750 3.M es 3.ame 3.m4 - 3.m ee 3.7EE4 3.3M.e5 3008 3.850 4 3.0M4 3.048 48' 3.00E4 L9ese LFig es 2200 2.ME4 L75E4 L7ase 2.7134 L7EE 4B 2.60E 08 2500 2.33E 4 L33E4 2.3184 Lau es 2.475 00 2.30E es 3805 L154 Liege LtSE4 2.1454 2.13 48 12.00E 43* : -* '
4
-- s --
E00 1.Me8 f.934 1.ause 1.455 48 t.375 4 1.775 es 4000 1.795 4B 1.718-4B 1.485 48 1.7W 4 1.40B 4 1.40E4
[
4005 1.348 0B 1.3M4 1.334 f.354 1JtE4 1.48E 4
\\
(
5000 1.418 4 1.355 4 1.355 5 1.3854 1.M 1.3M4 5500 1.30-0B t. m -4B 1.2?E 4 1.215 48 f.JN e 1.2H4 48 5 f.itb 2 1.19E+5 f.hes 1.195 4B 1.18 4 1.155 48
'9 00 1.13 4 1.tts.es 1.1M4 1.134 f.sa.es 1.s75 4 7088 1.05 43' t.045 43 f.ang.eg 1.eas.es ' f.ges.es f.ete.es 7500 1.0W4 9.30E 0p 9.7954 p.m ep 9.75 09 9.485 09 8000 9.145 09 9Jts op 9.345 4p 9,.355 09 9.348 09 9.015 09 90e8 8.3M Op 8.398 09 8.35 09 4.3N op 4.43 09 4.195 09 10000 7.5M Op 7.778 09 T.45 09 7.415 09 7.405 09 7. W 09 13000 3.348 09 5.7as op 5.43E 09 5.34e 09 5.das op 3.335 09 30000 4.345 0p 4J15 Op 4.418 4 4.35E 4 4.435 09 4.39E 09 poses 3-4 e
l El-3
+ :. y.l.,i;. ;.
. v.i % r n.,, *i.'..
y.
v..
...a..
EIBIBIT A (cwt:)
9300-ADM-4010.03 Rev. 0
'e c,...
v,,, p
..Stae camputetfem Festers StatfLiey Stones A Sete of printine 412 15 1906 i
Smery em 4
, ~ ~
Sfssed estesse neigne estere Bewertad \\
essere t.
e 33 48 148 13 4 300
. ass,,i.sm ee, s.m.e6..,t1sE-en...t.au os L aE 4 Life 4 SID 1.885 4 '.1.0d84 9.m-W LIM W 5.715 W 9.7954 400 e.IN W L218 W 5.9BB W 5.3M W 4.3W W t.33 W 7ES 4.tM W 4.tM F 4.am W 3.75EW 3.255W t.m W Sos L968W L988 W L9eEW LFFEW 2.3asW t.33E W 985 LIN W LM W LageW L13 W 1.m W 1.3esW
- test 1.FM W 1.73E W 1.FB er 1.m er t.Seg W 1.14E W 1250 1.15-W f.tas er.t.15-W t.1954 1.115 W 9. tee 4 1500 8.31E 40 L35 es 8.3184 LW e L30E4
- 7.85 0B 1758 Leeset L4 Sees L448-es 4.3ds-es e.am es 5.deset 2005 5.m 4B 5.8444 5.eN4 5.0eg 4B 4.fase 4.334 2330 4.37E 4 4.5M 4IB 4.418 40 4.3M 48 4.910 08 4.198 4 250s 4.23E 4 4.2184 4.195 08 4.2M4 4.13E4 3.85E 40 3000 3.e454 3.354 3.3N4 3.3N4 3.33E4 3.33s4 g-300. 3.1484 3.2154 -3.155 48-S.1SE es"3.tM60BEmq i LM =
~e--
4000 2.m-es 2.888 40 lam 4 LME-40 LaOE4 LeeE4 esas L35 e5 LSee 40 L33 es L3dse L334 2.me Seet 2.345 4 2.335es L3N 4 L3M 48 L33I4 2.23E 08 k~
3500 L148 es L155 48 2.1M es,LIN4 Lies et LON 00 4000 Leste 1.905 es 2.888 48 LeeE-48 1.95 4 1.9EE 4 4088 1.5 E 4B 1.adE 4 t.adE 4 1.4444 1.5E4 1.30E 08 7Est t.F18 48 1.Ms-8B 1.7W-45 1.MEret 1.35 0B 1.485 08 750B
- 1. e 4 1.448 4 1.e48 ee 1.4854 1.ees 08 f.395 08 8000 1.3N 08 1.545 08 1.3N4 1.3N 4B 1.3N ee. 1.33E 0s 9000 1.418 45 1.410 4 1.418 es 1.485 0B 1.43E 4e 1.37E 08 10000 1.27E 4 TJ18 08 1.2N-es
- 1. m -0B 1.2N et 1.2SE 08 15000 9.J2E 09 9.75E 4 9. m ce 9.3N 0p 9. m ep 9.2m 09 20000 7.295 0p F.395 09 F.415 09 F.295 0p F.448 et 7.3N 09 i
esee. 4 e
e u-4 i
e S
- '.
- : s.. v -
- s-
.',s'... q,;.,
?. <, -
EIEIBIT A (con't) 9300-ADti-4010.03 Rev. 0
.,. s -.-
t,
....,s.
- s..*
.sidetaugutetfee7eetere StatB4Lity Ctaset A Date of Printing 312 15 1986 Snerer trees 5 1
I Sittense4 gesamme Itef$t meters Bewus4M \\
aseers
\\-
0 30 de 100
'15e' 300
. 488. 2.9004 Laum 2.846 e6
- t.9554-S.1984 t.eds W *.
~
ISB 2.8N4 law 4 f. age 4 1.3N4 1.13E4 2.3es W 400 1.3M4 1.2154.1..tM4 1.5E4 4.73 W 3.23 cr.
Me 8.355 W 8.2tE-W 8. ORE er T.40E W 6.413 W 3.3pE er age 5.908 W 5.9FE-er 5.as W. 5.Sgt W 3.11s 0r 3.tes W 988 4.544-er 4.5M W 4.M er 4.3M W 4.aIE er 2.sts w tett 3.3de er 3.555-W 3.555 W 3.m4 3.25E # 2.448 w
-s 135e 2.485 W Lass-er L448 W 3.355 W 2.30E W t. Set er 1500 1.775 er 1.7W-er 1.775 er 1.Me W t.713 er 1.48E W 1758 1.EE-W t.355-er 1.EE-er 1.3M F f.33 W t.1st er ages 1.Geg W 1.00E.W 1.00E*er 1.Wu er 1.8M W 9.5184 2358 9.4154 9.M4 9.454 9.4054 9.454 a.745 4s 2500 4.875 4 L ass e 8.313 4 4.3 8 00 3.4 3 4s 4.tm.as l
3003 7.440 4B T.5N4 7.3de-4B. T.33 et T.448 es,,,7.oH4...,...
- 3900* 6.e3B=e5 6. M 6.448 W "&.5 5 e8' 4.595 08' 6.2es 48
~ ~ ~ " - ~ ~ " ~
4000 5.9W es 4.045-48 5.988 e '5.988-es 5.9W 4 5.48E 4 4800 3.485 48 5.4184 5.315-48 5.4M4 5.35E m 5.148 08
(-
5500 4.3de ee 4.5454 4.30E 45. 4.5954 4.54s4 4.34e 0s
'SAAB 5.8EE 4 4.95 4 4.95 4 4.95548 4.98E 4 4 Fttet 4000 4.3654 4.23 m 4.2484 4.2M-4B 4.198 m 4.0454 4088 3.95E4 3.95E 0B 3.9484 3.45E4 3.9184 3.4184 7800 3JN-et 3.esE-es 3.785 45 3.d54 3.esE et L5eE et 7500 3.55E4 3.45 es 3.47E4 3.488 e8 3.47E4 3.37E4 ages 3.30s 05 3.30E 4 3.3 N 4 3.3M -48 3.2N 0B 3.218 08 9000 2.95 4 2.95 5 2.905 00 2.908 48 3.005 0s 2.915 4 10000 2.715 06 2.77E.00 2.734 L7DE4 2.7tg.cs 2.4ds.ca 15000 1.95 00 2.068 4 2.005 0B 1.95 00 2.00E 08 1.FFE.08 20000 1.55E 08 1.418 5 1.5M 4 1.558 4 1.SaE 4 1JM os 9enee 5 e
El-5 6
l
- y'
,ef,
.T'
/*
Y s.*
, 93'00-ADN-4010.03 Rev.' 0
,r..
EIHIBrr A (con't)
(
4 mfne Camputetfen PeeteNs StatiLity Stases 4 Sete of Printing st2*t3 1986 Ener W Gre ws 6 efstanseg geteese eefshe asters sewestad \\,
asters \\
38 -
de 100 198 300
. 4e0.,4.8754 6.7584.t.ase. 3.20sM.32.ee84 :3.dAEM 7,
See 3.4884 3.354 Lt484 Lads 4 1.ME4 4.m W des LOUE4 2.0754 1.95E4 1.4154 1.53 4 4.05 07 Me 1.448 4 1. W 4 1.355 4 tJ144 f.14E4 6.19EM age 1.09E 4 1.01E 4 1.m 4 9.ap5 W 9.see W 5.NE W 988 a.8BE W 4.aIE W T.95-er T.73 W F.2H M 5.118 W 1000 Lees W A Ess W L345 W 6.175 er S.M W 4.448M 130 4.4dE M 4.4dE M 4. W M 4.35. W 4.a m w 3.40E M 1900 3.25E W 3.2M er,3.55 W 3.M-W 3.148 W '2.73E W 1750 LeeE er Lese-w 2;4eE er Lads er 2.W er 2.15 W 2008 1.9FE M 1.9eEM 1.9 FEM 1.95E W 1. m M 1.TMM 2250 1.75 W t.795 W 1.40E W t. N E W 1.7ee F 1.43E M 2500 - 1.40E W f.40E M 1.d4E M 1.d48er 1.M W 1.915 or 3003 1.W W t.40E M 1.4ts-W 1.4aEM j.3MM,.l.318 er
~3300 1.248-W 1. ass er T.865 4F"1.3EE W 1.2R-W t.175 W
^
4000 f.tM-er 1.13 W t.1184 1.13M 1.118 W 1.0deM 4000 f.mM f.Ste W t.0M W 1,8tE W 9.9P5 40 9.418 4B
(
SEES 9.348 4 9.M4 9.218 4B 9.1754 9.1454 LM4 Stes
- 8. M 4 L48E 4B L W 4 LSe e A485 et L 148 85 I
4ABB T.NE4 T.94 48 7.9854 7.24 T.8444 T.6184 4300 T.3554 7.38500 7.33E4B T.3H 4 7.35 4 T.148-4B 7400
- 4. m 4 4. 2 4 k m et A fte-es 4. 2 4 6.715 48 7500 4.40E-0B LSIE 4 6.3154 6.SIE-48 6.3104 6.354 8088
- 4. tad 08 e.20E4 6.2484 4.344 08 6.1484 4. M 4 toes $.40E 03 S.50E 0B S.3M 08 S.375 08 5. m 4 S.4M as 10000 S.105 4 S.20E 08 5.13 0B 5.on e 5.075 0s 5.00E 08 15000 3.73E 08 3.375 08 3.74E 08 3.73E4 3.7M 0B '3.718 08 2000s 2.93E4 3.06E.05 2.948 00 2.91E 00 2.975 0B 2.95E 08 El-6
a
~
,. ;,. '.n..
v
~-
..'.s
.. 1
(
IIRIBIT A (con'g) 9300-ADM-4010.03 Rev. O
\\
mine tengutetten Pastare Steedtity Stase S Sete of prfnetne 312 15 1986 Ener # ere ge 1 steemiseg estesse seiche meeers' Dowadad \\
astere \\
8 3
de ~
tes -
150 300 i
400 ' P.35-er '4Ju er 4JDer' f.75 er i3.2 Der 5.M 11 300 5.000 W 4.35 W 3J184 f.m-GF 5.488 0B Ltde te ese 3.348 er 3.345 GF LME GF f.FFE W T.300 00 9.26814 MB 2.e er LSIB-er LigE er 't.5M W 8Jes es 2Jeg ee est LM er 1.905-er 1.Megr* 1.300 er 4J18-es 5.M W 900 f.etE M t.SM W 1.448 er 1.17E M T.aIE 4 9.300 49 toes tJeg er t.m er 1.198.er f.ets er F.215 08 1.3084 150 T.3M 5 T.3N 4 T.85 4 4.3d5-4B 5.m 4.f.95548 i
150B 4.485 40 4.795 e8 4.3M-es 4.3es-es 3.MI es 1.93E4 1750 3 5 48 3.2F5 4B 3.19E+0B 3.835 4B 2.488 4 1.75E4 2000 L3dE4 L3psce L35540 L2M 48 Litt es 1.30E 08 2330 1.3ds 4B fJM4 1J55-45 fJts es 1.405 48 1.15E 48 6
BW-1.118 4.,1.13 4.1.13 40 1.00E 4 1.000 4 0 918 05 MBB - 4 JII ep ~e.ets Sp AM Lem er 4.4M e 5.74-05 3 80 5.305 49 5.385 W 5.355 ep 5.448-69 SJ18 er 4.988 W q
esse 4.413 49 4Jes ep. 4J16 ep 4.ede W 4.345-W 4.15-0p
[
4889 4.8184 3.pFE W 4.8F54 4.8F5 49 3.Me er 3.78s W s
\\_
Seat 3JN ee 3.315 0p 3JIs4 3.3M 40 LeM w 3Jae W 3088 L95 W lpm W Lfg5 W 3.2 ep 3JN W L9tt W 4000 2JR er LF38 er Lase # Lais er L7118 er Ladf op 4308 2 JOE # LSM ee Lau W L3N-er 2Jese Lass op -
70gs 2.M.ep 2Jeg ep 2Jeg-sp L43.W L43 # 2.3E 09 7500 L20E # Lans Op 2.23-# 2.255 W 2Jeg ep Lie Op ages 2.13 09 2.085 0p 2.195. W 2.250 07 2.0E # 1.99E 05 90ee 1.913 0p 2.1M Op 2.0g3-09 1.935 4 f.33 09 1.30s.09 10000 f.75E 49 1.748.W 1.35 09 1.73.ep 1.80E 09 1.718 4 15000 1J45 op 1.375 09 1.1M4 1.245 W tJ1E op
- 1. m Op 20000 9.705 10 1.015 09 1.8 3 -0p 9.900 te 1.015 0p DJ55 te e
El-7
\\
,- V. -
- 4...,.s,. s :.
t
'. yl., m.
y.
9300-ADti-4010.03 Rev. 0
. h, EXEIIIT'A'(con'C).
v.~
.s..
.mineCamsetfen.Iesters stamitley Steens 8 esse of peineing 312 15 1986 Enery erege 2 efoe m setense eefebe assere ' -
Sowerinal \\
assere g a
3e as see tes 3ee
" " 400 ' t.308 06 t'1FE egv 3.5N W 4.3M W.1.3peacP 3.39t op 500 9.305 W 8.m W 7.13 4 4.3M W t.755 W 5.3 Met des T.tM-er 4.7EE W 5.7se W 4. ass-er 2.005-W 8.7F5 09 7Es 5.SIE er S.34sM 4.735-er 3.5de W LON W 1.44E4 800 4.41SacP 4.2fs-er 3. fee er. 3.134 kmM 2.23 00 90s 3.See W 3.53 er 3. ass-W L73 er 1.fts W 3.me s 1000 L9et-er LM4 L755 SP L3N W t.7FE W 3.41E4 1
"1898.t.aII.W t.75-er 1.73-er 1.5M4 1.3M er. 5.13 0s j
1900 f.EE GF t.195-GF t.124 1.1eE er 9.755-08 5.2M4
{
1750'. 8.348 et 8.3454 8.3854 8.W4 T.3854 4.72 08 3e00 6.395 4 6.400 00 6.334 6.11E4 5.754 4.10E 00 2350 ' 4.3N4 4.35E4 4.255 05 4.ame 4.64 3.aDE es 3500 3.tM4-3.15E et-3.14s en-3.me2,teEves%L33W'. o_._,7.. ~ "7
- f 3 BIS 1.am 08 1.985-05 1.afE4 f.W ee 1.554 1.dds-es 3500 1.40E 4B 1. des es 1.399 4B 1.3854 1.3dE4 1.M4
(-
480B 1.3N.48 1.3FB et 1.300 4B 1.385-4B.1.345 4B f.ana.es 4800 1.195-4B 1.198 4 1.195 40 1.195 4 1.fM 45 1.10E 0s f
5000 1.e45 4
- 1. ass es 1.048-08 1.04s 4 1.e4 9.7FE no 9500 9.0W-W 9.1M 49 9.1M W 9.34 9.12 wl Le75 ep does L 2pe-ep 8.255- # 8.318 4 8. ass e 4.148-0p 7.775 W
- dses 7.7as.W 7 daE ep 7.473.W r.eds ee 7.44s.W f.3es.ep 7800 7.368 49 T.1W et T.meer 7.m W T.195- # 4. M ep 7500 e.m ep 4.818 0p 4.aese e.am M eJ95-09 4.35E 09 8000 4.475+0p 6.43E 4 4.47E4 6.4054 6.375 09 4.15E 09 9000 5.445 09 5.96s-4p 5. ass.ep 5. m.09 5.73E 4 5.418 0p 1e000 5.275 09 5.295 4 5.345 09 5.300 09 5.295 09 5.13 -09 15ees 3.818 00 3.9e5 0p 3.795 09 3. m 4 3. m se 3.7m er 30000 3.095 4 3. 5 # 3. m se 5.01E.W 3. m 4 LpH ep pe.=
8 l
)
J
\\.
1 El-&
,j y'
.s*
[
~
93'0-ADM-4010.03 Rev. 0 EIHIBIT A (con't)'
0 O.
, mine Camputetten Feetors, Stabilfty Clases 8 Sete of Printing 312 15 1986 Enerw Grows 3 etw sweses n.4sne sneer.
Sewerind \\
meter. \\
e 30 es 100 -
15e 30s 408. -2.005 48 tageM 1.41E4 7.558 W La0E W
- 1.44E4 -
500 1.35E 4 1.4R4 1.1854 7.47E W 3.3MM 1.a084 l
est 1.15 4 1.13E4 9.725 W 6.90E W 3.45EM 2.49E 05
,j 700 fJ1EM 9.00E*W 8.NEM 6.14EM 3.73EM 3.3354 aos 7.3MM 7.33EM 4.NE 07' S.4MM 3.42E 07 4.a55 05 fee 4.195 w 4.aFEM S.468-W 4.755 W' 3.41EM 4.23E4 1000 9.15 W S.10EM 4.aeg W 4.148 W 3.14EM 7.4aE 08 1298 3.19EM 3.1MM 3.00E W 2.seE-W L3de W,9.44E4
-1980 L1SS 47 L1SGM 2.10E W t.9eE W 1.7MM f.44E4 1758 1.55EM 1.35E W 1.53EM 1.448 W 1.35E W 8.71E 4 2000 1.1M*07 1.1M 47 1.14EM 1.13 W 1.NEM 7.585 08 2250 8.005 00 8.000 08 7.95E.08 7.7M 4 7.455 00 S.ME4 2500 3.4584 S.alEM S.8484 S.7M4 S.SM*08 4 715 04 _
3050 3.33E 4 3.548-00a 3.358 48* L325-Ot" 3.47te # ','13.es~T~
~~T-4 '
~
3 3500 3.8184 3.8154 LfeE*00 2.9eE+es LfSE-48 2.7054
(,
4400 LSM4 2.SM es 2.5d5 48 LSdE4 LS35 es 2.34E4 4908 2.265 4 2.26E 4 2.25E 08 2.3654 L20E-es 2.8M 40 s
Sees 1.fM-48 1.94 08 1.fM 08 1.9M*08 1.MS-40 1.5E4 5908 1.73 4 1.768-08 1.7at.08 1.755 4 1.735 4B 1.645-08 4000 1.5M4 1.545 08 1.35 00 1.3 M es 1.3 N-es 1.47E.00 4808 1.43 08 1.448 4 1.455 0B 1.458 08 1.485-08 1.38E 4 7000 1.3MM 1.3es 00' 1JM4 1.37E4 1.3M os 1J18 os 7500 tJ1E 0B 1.295 4 1.29E 08 1.29E 08 1.29E 08 1.245 08 0000 1.23E 4 1.23E.05 1.23E 4 1.235 08 1.215 4 1.1M4 9000 1.115 4 1.135 00 1.12E 08 1.10E 4 1.10E 08 1.0M 08 10000 1.00E 40 1.01E 08 1.03E 08 1.015 00 1.015 48 9.75E.09 19005 7.29E 09 7.43E 09 7.23E.00 7.29E 09 7.39E 09 7.20s.00 20000 S.398 Op S.7EE 09 S.73E.09 5.785-09 5.7MM S.d48-09 Puest 9 l
4 El-9 O
s l
~
,.: r.
..... fr,; ; -*,,,'.. c..:; g,:.s,.
\\
i ExgI31T A (con't)' 9300-ADM-4010.03 Rev. 0 s.
.s mine cagmtesten resten StantLity Ctese $
Date of PPfnting 812*1S*1986 enecer ere ws 4
.is - este.no w e es.e,e Deunwind \\
essen \\
e' as a
tee tse aos m i des : 3.155-48. 't.am es-Lide4: 141954 4.755-er.3.489 e SeB-L3Nen 2.254
- 1. e 4 1.f M 4 5. eau W 4.148 es 400 1.35E4 1.Ms4 1Jts4 1.0854 5.Ms w 5.ast es -
700 1.453 4 f.44E 4 1.2SE 4 9.FM M 4.m W 4.93 0s See 1.1m e t.135 4 1.8054, 8.5es.W 3.m w s.Ms4
}
90B 9.NE W 9.5ds-er 8.fts W F.54s-W S.40E W f.ie er l
1800 8.14-er ESPE-W T.els-EP ' 4.448-W S.00E W t.2fE-W I
5.118-er 5.m W 4.9ts-er 4.51s W 3.5 W.1.etE er '
12BB
~
190s 3.405 er 3.45 er 3.485-W.3.23M 2.ame 1.395 W 1750 LIN W L535 W L485 W L355 er L21sM.1.445 4r 2000 1.9W 4 1.9 5 + W 1.9EE W t.44s W 1.7N.W t.255 0r 2390 1.35.W 1.3RE.W 1.218 W 1.m.W t. m.W 9.348 0s 2500 300s~ 9.edE*e8 9.4884 9.485+es 9.548 00 9.2!E es 7.aEE>cs j
5.aFEO S.the : 5.fts es 4 Caise"5.775.es 31984 r
~
f 3 80 5.m4 S.m4 4.954 4.9F5 00 4.am 48 4.30s.es 488B 4.255 45. 4.255 es 4.275-4B 4.M4 4.215-es 3.9184
(
4500 3.788 48 3.73E4 3.755.es 3.73E.es 3.4g54 3.4dge Seet 3.34 3.3H4 3.2054 3.25E4 3.205-es Lase.de 558B LaE4 L985 es L9eE 4 L e e 2.a85 4 L75E4 4888 L a 4 2.495 4 Lease 2.45 4 2.39540 Lade es 4550 L4AI-es 2.4484 Ame Lme Em4 L33.es 7000 L2BEM L254 L2BE4 LaIE-ee 2.25E4 L2EE4 7580 L154 '2.14s.48 Lids 4 L134 Ltda.m 2. ass es ages 2.088 4 2.04s de 2.0a84 2.075 4 2. m es 1.9es.es 9000
- 1. ass ee 1.905 4 1.475 4 f.355 4 1.34s 4 1.795 es 1000s 1.d5 4B 1.49E4 f.715 4 1.405 4 1.40E es 1.34 13e00 1.23E 4 1.255 08 1.218-05 1.23E 4 f.23E 48 1.21E es 20000 9.448 49 9.705-W 9.715 09 9.475 09 9.4M 09 9.44s 49 Sesos is e
((-
El-LO 9
a 5.;
- 7 4.-
...,y..d.
. -/. '
7 9300-Atai-4010.03
~ Rev,0
(
EIRIBIT A (contt) y,-
..s.
=
abine Coupstetten, Festers..
statitity Ctenes B Dete of Pefating s12 15 1986 Inerer arouge 5 siseenseg seteese se(she aseere Souneind \\
assers \\
t 30 de ies 15e 30s 40s: 5.7584 F.3N es '3.454 2.2184 9. ass er 1.148 W See 4.3084 4.8884 3.35E4 km ei 1.1184 12ft W me 3.3mW 3.3484 2.me Lme 1.154 f.See W Me L7184 L4 IBM 2.3754 1. adde 1.1984 1.aeg W see L25E4 L1M4 Lesse 1.4534 1.1554 LISE W 900 1.4004.1.e4 1.F15-06 f.4d84 1.00I4 LSM W 1000 1.38E 4 1.340 4 1.475 4 1.255 4 1.018 4 2.5E M tatt 1.013 4 1.00E 4 9. des e S.Me W T.eds W.3.3 m W 1905 L9EE-er LM W Lau W 47tM 5.418 W 3.30E W 1750 3.13E W 3.12 W 5.005 4 4.aee M 4.SeE W L 95 W ages 3.m W 3.m-er 3.m;W 3.7FR w 3.SIE er LSet W
{
3350 2.FM*W L755 W L7m W Legg F 3.35E W LM er 3500
('-
3.ets M L81s M 2.018er 1.fm.ar 1.m.W 1.m er 1
'3B00 1.m W t.344# 1.aedW~1Mer ~1.21s'+4r't.085 er 3500 f.agg er 1.m er t.m W t.ses-er 1.m.W' 9.475.es 40st 9.me 9.0t84 8.m-40 9.80E 48 8. ass-4B 4.2R4
(,
4000 s
7.aIB es 7.ade 48 F.9054 T. APE.es 7.75E.4s 7.3es es -
24 54 m
54 m..
m e 5508 075 m L118 es 135-4B 148-5 Lies *es 5.aes es eget 5.55E et 5.585 48 5.5M4 5.345 48 5.4754 5.3eE4 I
4000 5.15 4B 5.145 5 5.13 m 5.144-48 5.13 88 4.88E 08 feet 4.3454 4.218 W 4 M 4 M 4. m 48 4. m 48 75m 4.415 4 4.3M.03 4.3754 4.334 4.348 0B 4.39E 05 ages 4.355 48 ' 4.318 08 4.348 0B 4.3M 05 4.254 4.148 08 fees 3.9EE4 4.03E 4 3.975 0s 3.918 4 3. sos os 3.785 0s 10000 3.3m 08 3.375 08 3.41E 4 3.3m de 3.35 08 3.44s 0s 15000 2.415 08 2.dSE 08 2.37E 08 LSOE4 2.24 L375 00 20000 LORE 4 2.088 05 2.0004 LM4 2.00Er08 2.01E4 Pesos 11 c'
s El-1L I
~
l l
i.,".
+ '..,
s-9300-ADM-4010.03 Rev. O (a--
EIBIBIT A (con'C) -
'mine Compuestien Festere
~
u StattiIty Ctases a pote of Printing 313 15 1986 EnerW trogs a stesenen notesse nefebe assere,
Dehensind \\
astere \\
0 as es tes -
tse 3eg det ~ 9.39 46 L475.e6
- edese 3.7554 s1.758.e6 Laag.# -
SSB 7.m4 Lade 4 S.5454 3.7154 1.e4 3.sFE.W -
des 5.3484 5.3184 4.esE4 3.4sse La6se 3.3st W
'j 750 4.24 4.34s4 3.9W4 3.1M4 Law 3.m.W 808 3.7184 3.34 3.345 46-L7384 1.95 4 4.4eB M 90s 3.13 4 3.8FE4 IJsse E m e 1.s754 4.ges.W tese IJFE4 Eme Leste LSE4 1.7584 5.48E.#,
I 1350 1.744 4 1.72 4 f.me 1.35E4 1.3454.4.2M.#
1900,t. M 4 1.334 1.3BE4 f.1454 1.e4 4.8tg.er 1758 9.105.W 9.118.W L9FE.er 8Jes.er 8.m.W S.415.W 2 00 T.m.er 7.048.er 4.9FE.W e.7FE*W 4.395.# 4.7M.or IISO 4.948.or 4.935.W 4.9ts*W 4.au.or 4. m M 3.7M.cr 3500 3.dEE er 3 Jet W 3.45*W 3.m*W 3.SMM 3.018 tr 3000 L2 FEM 2.3es W L35EM L2FE.W 3.368.W LM.W.
3500 1.955.# 1.fBE.W 1.94 ster
- 1.9W=er-1:w1;7 Esser====="
4888 1.eW.er 1.dAE.Gr 1.475M 1.4FE.er 1. DIE.er 1.m.er 4808 1.475.Gr 1.4ds er 1.4FE M t.4ds.W 1.445.ar -1,3es.W
(
SeeB 1.255.# 1.3st.er 1.3st.cr 1.355 0F 1. m.W t.2EM WBB 1.148.W t.14E.er 1.14a.W 1.tsB.W t. tag.er t.m.W 4808 1.048.# 1.WM t.0as.W t. ass.er t.m-cr 9.75E4 4808 9.485.e5 9. m.48 9.4A8 4 9.4184 9.35 4B 9.1484 7580' 9.005 4 9.05.e5 9.075 48 9.m.et 9.04 0B 8.715 48 7500 8.34 8.Sese SJgs.es 8.354 8.345 48 8.3N4 3000 3.143 4 s. m.es 3.13.e3 3.195 4 4. m.cs 7.73E.08
)
9005 7.344 08 7.3M.05 T.4M4 7.3M4 7.30E.08 7.10E.08 10000
- 6. 2 4 6.405 08 4.775 4 4.718.e5 4.7W 4 4.490 4 19000 4.935 0B 4.95 03 4. m.08 4. m 4 4.918 08
- 4. m.08 I
20000 3.395 4 3.375 08 3. m.0B 3.A88 0B 3.448 08 3.75 05 l
5 I
e El-12
- ' ' - - - ^ - - - - - - - ' - - - ^ - - - - ^ - - ^ ' - - ~ ~~
^
t 1..
~-
,.,.3., -
,,1,.
.,j.
9J00-ADM-40.).03 Rev. 0
(~
EIKIBIT A (con't)
.eine.CasusselegForters.
stability Class C sete of FM ating 312 15 1986 Inerep Grows 1 SteeM totesse neight assare Deweeind \\
metere \\
8 30:
M 100 190 300
~
' ' eser?
'.35-es 't.a' fE4tr 4.945 er" CasPW 1.ees et J.7tt 11
t f
500 9.m W 8.JOR W 4.7M er 1.mM t.m4 L94811 400 7.535 W 4.SN-er 4.3N W t.? tam 3.aste 5.45811 Ne 3.945 W 3.15E-er 3.ast-w t.mM 4.34s4 1.135 10 aOS 4.80E W 4.m cr La er 1.8mM 5.9154 2.35510 900 3.955-W 3.NE-# L9eE4 1. m W 7.085 08 5.815 10 teBB 3.315 W L135 # LAWM t.7NM F.75E4 1.218 0p
. IIIe,L2 FEM L2ts er f.fst-W t.m W 8.3N es.4.25Erop 190EL 1.85-8F 1.m W.f.485M f.EE-GF Edu es LM er 1750 1.2NM 1.2HM ~1.1ds er 9.854 T.25 48 1.348 00 2000 9.8534 9.7M es 9.345 40 L13 48 4.35E 4 1.aaE 4 2350 4.09E 4 T.955 08 T.Smles 4.anaq 3.3sE m 1.agge 2000 6.39E*e8 4.35E.08 6.3484 5.7954 4.4884 1.9N es 3000 4.m es-4.4854-4.355 40 -4. ass esA 3.NE451.spe es;5.Mh 4
.o.-
3 Bet 3.5954 3.41E4 L3H4 3.3N4 3.08E4 1.m m 4ste LW4 Lade es LM 4B L715 es LSee es 1.48E-40
'(m \\-
L318 4B 2.30E 48 Lasse L2154 Leme 1.M4 4800 3000 1.918 8B 1.918648 1.98E 4 1.aN4 1.75E 4 1.305 40 5905
- f. dele 1.m.et f.Seg.es 1.NE.es 1.4ag.es 1.14s.es 4083 1.3N4 1.3N4 1.315 4B f.3 3-es
- 1. m es 1.04s 4 4800 1.15 4B 1.198 S 1 35-48 1.145-48 1.148-0B 9.448 #
7500 1.85 4 f.55 W 1.55 4B 1.08s-6s 1.m g 3.334 7500 9.318 49 9.44E 0p 9.35E 0p 9.2es-ee v.04s 4 7.73 09 5 08 8.2N 09 8.50E 0p L3N 4 8.30E 09 8.05 4 T.0N 09 9000 6.75E.09 4.75 09 6.75 4 6.785 09 4.35E 09 5.30E 09 10000 5.445 09 $.673 09 5.40E 09 5.415 09 5.50E 09 4.95E op 15000 3.098 09 2. W 09 2.985 0p 2.93E 09 L9FE 09 2.305 09 B000 1.795 09 1.915 4 1.30E-0p 1.75 09 1.41E Op 1.55 09 e
El-13
j
~.
.,. ~. s,.. : '.,.... :, : x..<..
.s-9300-gat-4010.03 Rev. O g-22itIBIT A (con'C)
.g mine coepuetten Peeters.,.
Stettlity Clases C sete of Peineing 12 15 1986 hearer ereups 2
.ie 4.e.e.ee es.
.ece,e aseers \\
8-30 de tes 150
- 30s 408. - LiW4
- h234 1.ses4 3.m-w 9;4e54 L48E et~
See
- 1. e 4 t.me. 9.4dEM 4.osEM 1.tMM 2.95E 09 40A 1.354 1.1954 4.464M 4J18 W t.3FE W 3.33 09 Ne 1.085 4 1.8184 7.795-er 4.3EE.# 1.Seg W 4.m 09 88 9.195-W LS9EM e.tes W 4.3BE W 1.795 W S.405 09 988 ' F.m W 7.488 W 4.21sM 4 tM W t.945 W T.345 W 1880 4.MM 4.m er S.345 W 3.MEM 2.m w 9.80E 09 1250 4.9tE W 4.NEM 4.NEM 3.3N W LeeEM.1.e4 1908.
^ 3.73.W 3.48E4 3.3ds-W L795 W l'.94EM L9es es 2.fEEM 'LaFEM L7EE er 2.3NM 1.7es W 3.9eE 08 1790 2000 2.34EM L318 W 3.20s.# 1.SeEM 1.54E4 4.24 2350
.1.NE W 1. FEE M 1.84s M 1. m M 1.395 W S. m 08 250B
- 1. m W t. m W t.37E M 1.444 W 1.235 8F S.2N 05 3000 1.19E-W-1.19EM -1.1dEM < t.00EM-9.7N-et-f.2H-08 w : = T w '- -
- 200 9.'4eE e 9.355 40 9.234 4.7954 a.8154 4.90E4 4000 T.995 48 T.395 5 7.475 48 T.195 4R 4.47E4 4.45 08 i
i 4500 4.255 4B e.245 4 4.15 4B 5.95 4 S.m 08 4.0554 k
5000 S.24 S.2N4 S.15-48 S.045 48 4.79508 3.2 4 SMS 4.4484 4.45E4 4.405 40 '4J15 08 4.13 48 3.25E4 4858 3.24 3.5 48 3.795-48 3.715-08 3.5854 L934 4000 3.3d54 3.345 4B 3.3454 3.2954 3195-88 LedE4 7Ese 2.NE4 L9sE4 2.9PE 4B L9N 45 2.554' LM et 7500
- 2. m 00 2.485 4 2.dds e 2. m 5 LSes 0B 2.215 08 i
ages 2.40s.08 2.415 4 2.40E 05 2.375 4 2.315 00 2.035 08 9000 1.NE 05 1.F75 08 1.975 00 1.95E 00 1.f18 08 1.75 08 1eese 1.445 00 1.488-08 1.d4E 4
- 1. M 05 1.415 08 1.4d8 08 1S000 9.03E 09 8.9EE 09 8.975 09 8.918 09 8. 2 4 8.445 09 20000 S.488 4 S. m 4 S.d4E 09 S.S9E*ep. S.SN 09 S.475 09 j
Peges 14 e
4 El-14
1
-t
.'.r r
.c -. r.
3..,....... :. g 7
.s.
9300-ADN-4010.03 Rev. 0
. ['
EXII3IT A (con'C) mine Co mstati m Festers
.s
-Staellity Stases C Dete of Peleting s12 15 1986 Ener W Gru es 3 Lemme.e.,,,,.e,e,,
Sommend \\
setere \\
3 de jeg,
150 '
300 403-v3 4M4.it.73E+46/ 1.4484 6.4W W 3.198 er. f.ft" 4 8
SSB LSN4 Lae84 1.35E 4 7.235 W 3.4SE W 1.23E 4 me L13 4 1.9184 1.4354 7.SeeM 2.778 W 1.388 08 700 1.7FE4 1.e4 t.3E4 7.398 # 3.see-er 1.595 08 888 f.305 4 1.418 4 1.146 06. F.43E W 3.37EM 1.asse 988 f.3E4 f.23E4 f.84s4 7.tNM 3.575 W L218 e 1000 1.134 1.0FE4 9.m W 6.755 W 3.488M Lease 1898 8.3M W 8.est W 7.315 W 5.7EEM 3.40EM.4.154 1980 Lade GF 6.25 W 5,au W 4.st,er 3.4de W 5.90E 4 1758 5.0FR W 5.005-er 4.7 TEM 4.te w 3.tNM T.415 0e Iges 4.115 W 4.Ges W 3. ass W 3.adE w L79EM 8.a054 2350 3.m er 3.4eE er 3.275 W 3.98E-W L4eEM 9.48E e 3500 L90E er LamM L79EM 2.3aI+W L21EM 9.7984 ages 3.145 W 24148 4P 2.0 GEM 1.77EM' f.7as er 9.43E4 -
3 00 1;7EE M 1.7EE W f.6?I M 1. des er 1,440 W 9. m es 4483 1.35 W f.3EEM f.3ds W 1.318 er 1.2BM 8.278 40
('
4000 1.15BM 1.14EM 1.13E*er 1. tem 1.m W T.478 08 Seat 9.m es 9.4184 9.3N.es 9.34 8.m es 4.754 5900 8.195 4 8.23 4 8.13 8B 7.9884 T.4104 6.0454 eens 7.05 4 7.075 08 7.01E 4 6. m 4 6. 2 4 5.435 es 4000 6.365 4 4.2M4 6.2M.es 6.154 5.954 4.fue p
7805 5.378 4 5.3ds.e5 f.m es 5.Me4 5.3544.24 7500 4.9FE4 4.995 08 4.9es es 4.905 08 4.788 00 4.145 00 8000 4.45 4 4.55 4 4.408 08 4.435 00 4.33E 08 3.80E 08 9000 3.44E 4 3.4054 3.4dE4 3.4ds.es 3.38E4 3.2M4 i
tesee 3.11E*cs 3.1m e 3.cas e 3.g78 4 3.03E4 2.75E4 15000 1.715 08 1.45E 4 f.7W4 1.408 00 1.dK 08 f.40E 08 i
j 30000 f.875 05 1.05 4 1.054 1.065 0B 1.00E 45. 1.064 08 I
9eems 15 El-15
I e
e
,e e
,a
.- ;r 1
9300-ADM-4010.03 Rev. 0
('
EHIBIT A (con't)
.g.
mine desputatim,fastere Stew Lity Clases C Sete of Priming 313 15 1986 EMPW or*4M 4
)
,, _ m e e.e semusfnd \\
tere \\
0 30 de ice 19e 300
~
ett 4.9484 4.1884 L3054 f.dese 3. ape-eFC 2.965 03
.- ~ ~
.~
508 3.9054 3.434 L3sse 1.148 06 4.2FE w 3.1M 08 des 3.2184 L9EE4 LlaE4 1.1954 4. FEE M 3.435 08 708 Ld8E4 L4884 1.98E4 1.1954 5.1dEM 3.a0E 08 800 2.30E4 LidE4 1.7954 1.1M4 5.35E W 4.388 08 l
988
- 1. M 4 1.e4 1.4184 1.125 06 5.aIB M 4.40E 08 1000 1.73E 4 1.4884 1.45E4 1.0084 5. fee W 3.59E 08 1250 1.385 4 1.2004 1.1484 ' 9.1M er 5.pgEM.7.m4 1980 1.0154 9.MM 9.18E-er T.7M*W 5.3de W 1.875 4r 1750 L a*W 7.M W 7.488M L34EM 5.04E M.1J1EM 3 DOS 4.355 W. 4.48E*W 4.195 W 3.35EM 4.305 W 1.40E M IIIe 5.305 W 5.4EE*W 5.24EM 4.79EM 4.mM 1.59E M 2500 4.448M 4.mM 4.SeEM 4.1dEM 3.398.W 1.mM.
3003. 3.4aEM 3.M*W 3.3se W-3.aeg cr LaFEM 't.3gE-er
- ~ - - - - '
"3500 L7FB er L7FE*W L73E er 2. des # 2AM 1.40s W
~
edes 3.200M 2.2es.gr La.or LigE.er Legg.W 1.375.W 4000 1.aBEM 1.m*er 1. ass-W 1.aeBM 1.7EE.W 1.26E M 5000 1.385 W 1.3EE W 1.SFEM 1.5-er 1.48E4 1.118M 5908 1.3EM 1.385M 1.344-0F 1.31E*er 1.2es W 1.0H er 4888 1.1M er 1.1M W 1.1dE GF 1.148 W 1.105.# 9.00E4 4005 1.aE M 1.m.W 1.m M 1.818.er 9.31505 8.2N4 7988 9.34 9.215 4 9.1M4 9.WE es 8.34 7.318 05 7500 8.268 4 a. m 4 some 8.1484 7.948 0E 6.ast 05 asse 7.448 4 7.475 4 7.448 03 7.35E 4 7.15*48 6.33E 08 9000 4.13 4 6.14E 08 4.13d 08 4.0E 08 5.95t 08 5.348 08 10000 5.1M 08 5.148 08 5.148-M 5.118 4 5.83E 4 4.395 08 15000 2.868 4 2.m.cs 2.L. ) 2. m.as 2.a18 03 2.675 4 20000 1.40E.00 1.815 00 1.805 4 1.7W4 1.75 08 1.75E 08 Peso 14 e
a El-16
.~
I e
. :r.
1
,?
.,,..,~.>.,n.,.
.,..u 9300-ADif-4010.03 Rev. 0
(.
EIRI3IT.A (con'c)
.s
- ,eine Computation Feeters.
St M ity Elases C sete of Printine 313 13 19e6
~
Enerw armes 5 efetag seteese eefgu setere
'Somasine \\
esters \\
8 5
de tog igg 3gg
- 40s ' L9W4 P.eds # 4.548-# LEIE4 ' 4.4dEM ' t.ges W See 7.0884 L2554 4.3454 L184 9.ses W 1.00EM 400 5.584 5.3184 4.85E4 1.2584 9.7EE w 1.198 W 7Es 4.945 4 4.5m W 3.edE 4 Lasse 1.504 1.2EE M age 4.2384 3.9054 3.354 2.2M4 1.134 1J1EM 90s - 3.47E4 3.4084 3.8054 LW4 1.1M4 1.W W 1450 3.23E4 3.08E4 L73E4 Lee 1.1954 1.SeEM 130 Lasse 2.3854 2.1M4 1.758-48 1.1M4.1.m W 1500 1.95 4 1.85 4 1.7584 1.3854 1.1054 L4ds W 1750 1.35E 4 1.33E4 1.45E4* 1.2EE4 9. fee-W LM W Nee 1.M4 1.2884 1.2154 1.09E4 8.ME M 3.1MM 2I00 1.03 4 1.8754 1.e 4 9.W W 8.m M 3.3BEM 2388 9.M*W 9.17EM 8.M W 8.MM 7.195 07 3.4eE W:- -' ~~.
3880 e.90EM ~4.95EM LaeEM a.445 W 5.MM 3.3NM Bee 5.as M S.deE W S.315.W S.2M w 4.m M Lee W
~*
esse 4.405 W 4.4054 4.54E M 4.355 W 4. age.W 3EIE W
(
4800 3.anEM 3.aNM 3.seEM 3.4884 3.485.W 2.3dEM Sees 3.2N W 3.2EE*W 3.2NM 3.155 W 3.005M L318 W 5980 L79EM LaeEM L77E+W L715-W Lees W 2.IIs.W 4000 2.W W 2.W-W Lee.W 2.3de+W 2.2E W 1.aes W 4000 L14SM 2.148.# L13.W Lie W Lees-W 1.73E #
7Ete 1.9EEM 1~.9BM 1.915 W 1.am er 1.a484 1.37EM 7500 1.7BM 1.73EM 1.7aE M 1.7EE W 1.adE M 1.448 M asse 1.355 4 1.3dE M 1.3484 1.344 W 1.30EM 1.3EE M 90E0 1.2EM 1.2fE M 1.JEM 1.2FE M 1.255 67 1.1MM 1080s 1.efE M 1.0mM 1.0EM 1.0FE M 1.006 W 9.444 Os 1500s
- 6. m 08 5.95E 4 5.98E4 5.ME4 5. m 03 f.448 4 2000s. 3.4054 3.m4 3.ame 3.75E4 3.77E4 3.7054 9enet 17 es El-17 A
.-l'
'~
e, 6, a.1 ' !,,' -
- u..;.c -..... u,..... ;.. *.. %,
..t
.i.
9300-ADM-4010.03 Rev. O EIRI3IT A (con't)
[
.. i,,
s.
+
\\
S fas Cagutetten festers.
Stew ilty Cteses E sete of peineing 313 13 1986
~'
InerW arees 6 elesaw.nefense neight estare 8ewerine \\
assere \\
e 30 de les 150 30s "400 ' 1.455 48 '1.2eE* W ' 7.3sE 4 3.3 M 4 f.3354 Lase.W See 1.148 5 1.015 4 7.05E4 3 24 1.e 4 L7EE.W ese 9.488 4 4.408 4 6.345 4 ' 3.795 4 1.7N4 2.mEM 758 7.99E4 P.43B4 S.98E4 3.7ese 1.a5E4 L9eEM 800 4.W4 4.4984 S.43E4' 3.4884 1.9554 3.105M 900 - S.9884 3.7154 4.9554 3.3554 LOW 4 3.2MM 1880 9.2EE 4 S.m4 4.asE4 3.3eE4 LeIE4 3.'4es W 1898 4.05E4 3.ME4 3.4184 L955 06 Lee '4.ta tr 1500 3.234 hide 4 2.955 46 L3N4 f.aste 4.aes W.
175e km4 2.58E4 ~ L4SE4 LtM4 1.754 SJ1EM 2000 - L154 L1354 LeM4 1.FE 4 1.35E 4 S.958. W
'2350 1.008 4 1.448 4 1.7H e 1.448 4 1.485 4 6.1MM 2500 1.40E 4 1.395 4 1.355 46 1.448 4 12884 6.248.W 300s 1.2EE N 1.23 06 1.198 46 t.134-1.24-6.eteM
. ~ ~ ~
300. 9.fetW 9.94W '9.73E'M f.3ds.W 8.mM S.ett.W 4ees
- a. age W 8. age.W 8.18E.W 7aIE-W 7.3M.W S.14E M 4000 4.488M 6.MM 4.m.W 4.aEEM 4.EEM 4. des.W
(
Some S.artM Ssses.W S.W.W 3.4e5.W S.4NM 4.2154 9980 9.m M S.ON W S.m 0 4.9E4 4.1EM 3.41E4 4000 4.41EM 4.40s.W 4.3M.W 4.305.# 4.tSEM 3.448M 4000 3.918.W. 3.998.# 3.aBerW 3.44EM 3.735.W 3.tSEM 70ee 3Jts.W 3.3154 3.495M 3.450.# 3.3M.W-2.35E.#
i 7900 3.14eM 3.t?EM 3.1SEM. 3.13M 3.0BEM 2.4sEM ages 2.adE M LaFEM 2.875 4r 2.mM 2.FM.or L4SE.07 i
9008-2.3MM L3MM 2.JMM L3BEM 1.318 07 LenM 10000 2.018 07 2.01EM 2.eet W 1.99EM 1.peEM 't.79EM 13000 - 1.195M 1.11E M 1.13 07 1.11E M 1.11E.or 1.045 47 20003 7.118 08, 7.154 T.195 08 T.080 00 7.048 00 d.93E4 e
O e
B El-18
~..
s
..4
~..
. i..
.v 9300-ADM-4610.03 Rev. 0
(.
. EIHIBIT A. (con't)
, Seine.Cmqostetten Feetore,
staW itty Staeas D Sete of Printins 312 15*1986 Ener w Grown 1
)
i tietense\\ Seteese W ew mesere Dewesind \\
estere \\
t 38 -
de 100 190 300
- t 4 ele 3.71tM. t.Sase 3;75 er l' tete 5J35 #P 8.ME 12 -
500 3.075 4 1.3dE4 4.35EM L3pI4 4.535 09 1.00E 11 400 1.475 4 1.2054' 4.NW 4.0684 L11E*09 1.3 E 11 700 1Jue 1.04E4 4.ME er 1.018 W 1.045 08 1.est.11 age 1.1454 9.3eE*f' 4.53 er-1.23E W 1.39E 08 L19E 11 900 9.m W SJREM 4. N W 1.4M -GF 1.aFE es 2.945 11 1000 4.475+or 7.28E W 4.54E # 1. deem 2.48E4 4.00E 11 1250 4.33E er 5.adEM 4.0N # 1.EEM 4.1354.9.07511 1905 4.918 W 4J1EM 1.4FE W 1.aFE-er 5.7754 2.35E 10
'1750 3.91EM 3.4de-er L9N W 1.5 W T.005 48 6.10E*10 2000 3.1SM 3.03E W 2J55 er 1.718 0F T.m 48 1.418 09 2350 2.71EM 2.39E # 2.24E4 1.40E M 8.25E 4 2.54E 09 2508 L33E+W 3.2444 1.9eEM 1.485 # SJN 00 4.075 09 3000 1.7 FEM 1.TJEM_tJN or;f.2ps W'E1348*. TWy*Wi
C EOS 1.4 N M 1.355 W 1.2pt W 1. m M 7.3W-e8' 1.158 4
~i 4GIS 1.1dS-GF 1.12 W 1.05 W 9.258 08 4.95 40 1.4d5 08 4000 9.44E4 9.34E4. 9.8754 4.0054 6.275 48 1.FUE 4 5000 S.15 00 8.13 4 F.73 4 6.Mee 5.4dE4
- 1. ads 00 5900 4.900 00 6.NE 4 4.edg e 6.0d8 4B 5. m 4. 1.95E 05 4000 5.95E 4 4.085 48 5.775 05 5.3 2 -08 4.5d5 0B 1.95E 4 4003 5.3N et 5.345 08 5.354 4. ass es. 4.3BE4 1.98E 4 7Ee8 4.5E4 '4.4084B 4. FEE e 4.4184 3;9EE-48 1.9FE 4 2
i 7900 4.41s.00 4JeE4 4.20E4 4.818 48 3.5M4 1.fue 8000 3.975 00 3.99E 08 3.90E 00 3.79E 00 3J18 08
- 1. m 08 9000 3.335 08 3.338 4 3.20E4 3.13 00 2.85E4 1.775 08 10000 2.448 05 2.ade.08 2.N05 2.675 4 2.44E.00 1.45E.08 15000 1.edE 08 1.485 08 1.adE 4 1.40E 05 1.33t 4 1.19E 08 20000 1.0N 05 1.ON es 1.0N.es 1.05E4 1.e4 8.7M4 passe 19 i
(
{
U -19 I
a 5.. r*
n.
.j
',9300-ADM-4010.03 Rev. 0 IIIIBIT A (con't)
('
, mine Cassutettendesters - 3 StablLity Ctenes 9 Sete of PHattag 312 15 1986
~~
Inerw Grass 2 Olet'noeg noteese metsht asters e
Dowerind \\
essere \\
0 35 es les 150 300 3.'5M4' 2.3EE 06 '9.4MM LME er P.905 08
- 2.065 09 480'
- ~~
500 LaIB4 2.1184 9.918M 3.14EM E.3954 2.14E 09 400 2.455 4 1.985 4 1.018 4 3.3N W 8.958 00 2.30E 99 700 LtM4 1.ME4 1.0054 3.415 0F 9.4054 2.4M Op EBB - 1.e4 1.3M4 9.StE W" LMM 1.N E W 2.40E 09 900
- 1. e 4 1.e4 9.445 W 4.eds-er 1.15EM 2.915 09 fees 1.45E 4 f.2fE 4 9<04E M 4.2EE M 1.285 W 3.255 09 1250 1.155 4 1.554 8.m er 4.3N W t.555 4F 4.115 09 1508 9.3d5 W 4.735 W T.NEM 4.318M 1.7FE W 5.45E 09 1758 T.NEM T.2N M e.148 # 4.13 4 1.NE 0T 7.40E*00 2000 6.315 W 4.2N 4F 5.3OE er 3.aes W LO6EM 1.05E 05 2250 5.4FE M 5.448 W 4.a m W 3.41E W 2.0N M 1.39E 4 2500 4.9eE W 4.aMM 4.23E er 3.385 0F 2.068 4F t.NE 08 2000 3.9W*W 3.5 67 3.33EM LaIEM 1.9 FEM:_2.40E 08 1
--.u-
.3500 3.2EEM'3.tM Gr L5dEM 2.5MM 1.468 W 3.48E 08
~
4000 L7EEW 2.eNM LSNM LacEW t.eps.or 4.1M4 4800 L2 FEM L2FE-Gr LtdEM 1.95E W 1.34EM 4.4884
.(-
5000 1.9mM 1.95E er 1.aFE er 1.NE W t.40E er 5.0684 5908 1.F18 # 1.7EE-W t.deser 1.30E M 1.2FE W 5.25 4 4000 1.405-er 1.485 # 1.44EM 1.34EM 1.145 W 5.31E.08 4000 1.EE W 1.3EE W tJ18 W t.25-er 1.0FE er 5.30E4 l
7500 1.255 W 1.25E # 1.25 er 1.tMM 9.954 5.25E 4 7500
- 1. ta-6F 1.13.W 1.1mM 1.065 # 9.2N4 5.148 08 8000
- 1. M M 1.M.W t.01E M 9.5W 00 8.448 4 5.0N 08 9000 E.77E 0B 8.755 4 8.415 40 8.2 M 08 7.358 48 4.785 08 10000 T.548 08 7.345 08 7. m 0B T.148 08 6.24 4.4M 08 15000 4.548 08 4.35E 4 4.33E 4 4.4aE4 4.23 08 3.32E 08 30000 3.048 08 3.065 00 LM 00 L95-06 2.90E4 L4M 05 Fenee N e,.
El-20
3
.o,,.
9300-ADM-4010'.03 Rev. O IntirrBIT A (con'c)
)
mine Cameutation Feeters stability Cteest 8 Bote of Printing s12 15 1986
~-
Anerw grows 3 Blow se4 ease metent setere 8ewerind \\
metere \\
8
- A "
et -
, 100 150,
30s 400,5.385 86 3.ette.1.3FE et-S.?ns W 1.9tsM. 9. ass op.
500 4.m4 3.3084 1.e4 5.955 W t.99EM 1.0ER es 400 3.3 W 4 3.818 4 1.4884 4.m W 2.075 W 1.06s 08 70s 3.3154 L724 1.44s4 Lets W Liter 1.118 os j
see L9tE4 Leas 4 1.4134. LMcM L30s W 1.tds os 900 L3R 4 LaeE4 1.2E4 7.25 W L4SE M 1.25g 08 1000 2.3184 LeeE4 1.4834 7.435 W Laag er.1.310 0s 1250 1.88E4 1.7154 1.3M4 7. deem 3.cosM. t.33 os tage 9,33g g 9,43, g,97gg 7,4gg.gr 3,3ag.g 9, g.cs 1750 1.2M4.1.2184 1.W 06 7.10EM 3.5aEM 2.24E4 MOS 1.09E 4 1.04s4 9. teem 6. ads W 3.70E.0F 2.80s 00 225e 9.53EM 9.30s or 4.198 0F La4EM 3.73E w 3.40E 0s 2500 8.43EM 8. tag W T.395 er 5.aat er 3.74EM-4.10s os -
3000 e.73 er 6.3EEM 'e.875 0r 3.mM 3.51E W' 5.me 3500 5.50E W 5.508 # 5.t h w 4.41s M 3.2EE M 6.95E.00 4000 4.7BM 4. des W 4.410M 3.NEM 3.mM 8.088 0s
(-
Sets 3.485M 3.4de er 3.33s W 3.sgeM 2.318.W 9.44s.08 4900 4.W W 3.9EEM 3.ats er 3.41sM 2.7asM s.315 00 s
550s ' 3.448 # 3.aMM L9EE.W 2. des M 2.2fE W 9.748 05 4000 2.475 W 2.4d8M L30s # 2.4deM LassM 9.m es 4000 LeMM 2.418-8r 2.2EEM L3eE+# 1.94EM 9.79E es 7905 2.2per L218 W LISE W 2.mM 1.318 # 9.45 08-7500 2.M # 2.mM 1.985 W 1.3 FEM 1.dMM 9.318 40 ages
- 1. des W 1.assM 1.m-er 1.74s4 1.575 W 9.3054 fees 1.39EM 1.59E M 1.34s 4 1.seE M t.3as 07 s.aee os 10000 1.30E M 1.30t # 1.358 07 f.30E M 1.21E 07 8.258 08 15000 8.415 4 4.403 4 3.3es as 3.14s4 7.795 4 6.15s 4 20000 5.4d8 4 5. des e 5.448 08 5.55E 05 5.39E 08 4.405 4 s
e El-11
g x...
- ',,,t,'
.7..
t, *
,,,t...~,
- t..
9300-ADM-4010.03 34v. 0 EIIIBIT A (con'C)
(
1
.'pineCagutettenfesters stehtLity Ctenes 9 Date of Printitic 312 15 1986 Oper5F Gr* *e 4 Statenes% hetenes neight assere-8ewestad \\
asters \\
t' 3B m
100 150 '
300
. 449.5 SJa&eir< S.4134 1Urben.:.9.2BEM 3J3E W 2Jeg.00
~*
Set 4.47E 4 4.96s 4 L4M4 9.d43 # 3.mM L7M4 400 5.7154 4.35s4 L3 tee 1.0184 3.MsM 2.ms os 700 4.9F84 4.13 4 LSese 1.0884 3.agle # LME 00 888 4.3Ne 3.7584 Leste.1.10s4 4.0es W 3.05e4 900 3.9454 3.43E4 2.3M4 1.1454 4.2 FEM 3.1M4 test '3.30g4 3.134 L2FE4 1.1754 4.305 er 3Jts os 1350
- 2. m 4 2.4054 -L44E4 1.1954 $.04EM,3.743 08 1988 2J484 L1954 1.4184 1.175 06 5J18 M 4.218 4 1758 ' 't.9M4 1.aFE 4 't. des e 1.13 4 5 M M 4.38E 4 ages
- 1. des 4 1.413 4 1.413 4 1.agg e 4.41g M S.794 4 3350 1.4a8 4 1.e4 1.m4 9.aseM 4.mM e.73s.es 3500 1Jtse 1.2sg4 1.1484 9.195 0r S.peeM 7.ses e 3000 1.0gE 4 1.e 4 9.3dE*W 7.90sM 5meM 1.ett M 3500 8.mWa.dmM ' 8.m W 7.6 -5JFE.erW.21s*W = = ~
2 4800 7.400M 7.40s.# 7.sgs.gr 4.195.or 4.4esM 1.3EEM 4500
- 4. m M 4Jes M 4.085 M S.473 W 4.4sg M 1.3 + er (s
Sees S.5esM S.34EM 5.3EEM 4.Aes # 4.GesM 1.3aE M 5500 4 m M 4.agM 4.4sEM 4.3N M 3.7154 1.m W 4000 4 Jet.# 4Jee.# 4.14s.# 3.Agg.er 3.3sg.or 1.mM 4000 3.98s.M 3.9es.# 3.418M 3.3MM 3.tSE.er f.mM inner 3J9E*W 3.388 7 1.4084 3.2954 2.9e84 1.ent M 7500 3.2fE er 3.2sgM 3.5 er 3.04sM 2.74s4 1.37E M ages
- 3. m M 3. m M 2.9FE M 2. m M 2.3dg M 1.34a.or 9000 2.40E 07 2.39EM 2.356M 2.458 6r 2.2554 1.454 67 10000 2.25EM 2.2584 LMM 2.14EM 1.99t M 1.348 07 15000 f.398 0F 1.3as M 1.3se# 1.35EM 1.2fE M 1.03E 07 20000 9.3M 06 9.3M 08 9.3444 9.20E 05 4.955 08 7.444 08 Pag'es 3R
}
i i
El-22 e
___ _, _ _ _ _ _. _ _ _. - _ _ - - - - ~ - -
l 1-i
'. ;., ~'.~ y.;> ;y.,.. ; %.,,
~.
9300-ADM-4010.03 Ray. 0
/'
.EIBIBIT A (con't)
{
M ae Caseutetten Festers.
l Rteettity Cteses 9 Bote of Printine 12*t51986 Inst w Grows S Bfetaise% esteese $rfaht'essers'
Sewerind \\
astere \\
0 N
de -
100-198 300 i
" 400 'ta30Hf #Me6 442EE 4,t. mis t,r.3$.W 9.9tE.es:
e See
- 1. M 4 9.915 4 4.488 4 1.M4 Lees W t.018 07, ese 1.04E4 L3484 4.5M 06 f.ME4 8.2EE W t.035 07 Me 9.0084 7.3084 4.5M4 LGIE4 8.455 07 1.065 07 80$> r.9784 km-06 4.4aE4 L108 e6 8.73E w 1.0FE-W 980 r.0084 Latte 4.34E4 L184 9.ede W t.895 er tese 4.3M4 5.7184 4.1M4 2.254 9.445 er 1.ta W tape 5.1M4 4.m4 3.ME4 2.2N4 1.es54 4.30E 07 1988 L3eE4 4.4684 3.3554 2.2EE4 1.1184.1.308M.
150 3.e45 06 3,4Ne L9eE4 L134 1.1M4
- f. W M ages 3.138 4 3.o184 2.4484 Lese 4 1.195 4 1.39EM 2350
- 2. m 4 2.40E4 2.4184 1.805 4 1.198 4 1.745 07 2500 L40E4 Late 4 Lt954 1.rFE4 1.154 1.99E M 3000 2.9154-1.9FE4=tJBE.06+4.846-eF44edes ee Lads-OF + *-r e-e - - -- '
Wes
- 1. yen-e6 1.478 4 f.3M4 1.3754 1.e4E4 LF1EM 4005 1.485 4 1.W4 1.3d5 4 1.215 4 9. m M 3.see er
('
Sees 1.195 4 1.So8 4 1.WE4 f. des-er Li1EM 3.34EM N
4800 1.2N4 1.365 4 1.198 4 1.0 5-06 8.56EM 3.21EM 9908 9.6884 9.5n4 9.3E*w 8.4084 7.MM 3.48E 9 dess A3 M M s.Sts. W s.2M M r.7ss M A79E M 3.4aE M dest F.ase.W r.?sEM r.3ge.W r.148.er 6.345 er 3.3FE er 7000 F.15M r.145 W 4.9en-W LeWM S.9eEM 3.33EM F500 Left W 6.3OE M e.eds W e.tM 0F $.35E-07 3.2dEM 8000 4.00E M 6.00E M 5.9eE M 5.71E M 5.20E 87 3.18E 07 9000 5.2SEM 5.24EM 5.1M M 4.9PE M 4.39E M 3.s18.ar 10000 4.35 07 4.5MM 4.315 M 4.J5E M 4.06E.07 2.aIE 07 1S000 2.AeEM 2.asEM 2.m5 87 2.78EM 2.445 4r 2.13 07 20000 f.75E M 1.99E M 1.9aE M t.ptEM 1.asEM 1.408.gr O
i El-13 AF
. ~..
\\ '_,
,.p.
. e ;T-
. -.... :..,; 4
/"
EZEIBIT A (con't) 9300-ADM-4010.03 Rev. O t
s Rfne Camquestien~Pastore Stasitity Clases O Sete of Printing 312 15 1986
~ ~~
GaerW Gre@c &
Ofotenoeg te(emme sofghe seeers' Sewarind \\
asters \\
8 30 de 100 134 30s
..L448 W 1.5W-5 kmE4 ' 3.me 1.48E4 2.395 #
~~-
..w..,...
,g.,
' ' ' ~
480 300 1.90E*W 1.455-5 T.2154 3.134 1.4M4 2. m Or
,i m e - 1. m -et 1.3N 5 T.354 3.7154 1.3854 2.455 07 MO 1.448 4 1.2154 T.3954 3.3M4 1.53E 4 LM W 800 1.255-5 1.10E 85 T.MS-06' 3,5054 1.5M4 LF15 W 900 1.148 4 1.018 5 T.85E4 3.4104 1. m e ' 2. rat sr 1000
- 1. e 4 9.255 06 L7M-06 3.7me 1.me 2.805 W 130 8.3d84 T.7M4 L1454 3.7M4 1.e4 *2.95 07 1980 A9ere ASAE4 5.40E4 3.7584 1.9aE4 3.005.or 1750 5.9444 5.m4 4.9054 3.5484 L OM 4 3.2s5 07 2000 5.1484 4.9444 4.38E4 3.345 4 2.060 4 3.33E 07 2390 4.5M4 4.4354 3.95E4 3.1N4 Lc054 3.40E-07 3500 4.105 4 3.95E4,3.4484,,23mg LGIE44. Gen.st m
3000 3.3d54 3.2054 3.m4 Le154 1.pue 4.725 #
NOS 2.5E 4 La18e6 Lese 4 2.33 4 1. ass-06 5.250 W 4800 2.4484 Lee 2.318 est Em4 1. m 06 5. m Gr 4800 2.1454 L134 LO484 1.3354 1.5454 5.90E 4r 5000 1.35 4 1. m 4 1.a05 4 1.adE 4 1.4184 6.tes er 5500
- f. edge 1.4d84 1.4184 1.405 4 1.3084 L23 er 4000 1.45 06 1.454 1.4484 1.3554 1.1954 L 218 0F 4000 1.3dE-416 1.3d54 1.354 1.2554 1.134 6 tM-Or 7000 1.200 4 1.2N4 1.23 4 1.fmW 1.554 6.00E er 7500 1.145 4 1.145 06' 1.145 06 1.0W-06 9.85 W 3.93 0F 0000 1.07E 4 1.0M 4 1.0a0 4 1.018 4 9.238 0F 5.7EE 07 9000 9.3N er 9.295-er 9.10E 4r 8.83E 0F 8.15 97 5.43 07 10000 8.1M-Or 8.140 07 8.058 07 T.7EE 0F r.2M.WF 5.135 0r I
15000 l
5.15 4F 5.1M er 5.148 er 5.048 0F 4.535 Or 3.s75 07 20000' 3.5M er 3.3M er 3.5dd er 3J18.er 3.415 07 2.968 0F s
L El-24
s
~.
... ~,..
..-c.
..a_.
.n.
9300-ALM-40LO.03 Ra. O
{
)
....e
,,,ee.u
,.et.ce stablLity Ctamos,E Bete of Printing 8f2*15 1986 i
Ener w are ge 1 j
Bfetenso% Aetense Nefekt asters f
. Bessasind \\
asters \\
8 30 M
10s 15e age
, meg 4.3g.as 1.3 egg' 2;,SIEM 4~.04 es'4Jpt 0P T.25012*'
See 3.38 4 1.3854 3.345 4F 4.38E 08 4.755 0p 8.00E*t2 68B L7N4 1.33I4 3.475 W 5.m es 5.285 W B.aIE*12 75B L3444 f.44E4 4~.fmM 5.718 00* 5.90s.0p 9.aes.12 age Lese 4 1.234 4.4es-eF. 6.41R1 es 4.5 0p 1.1M* t t SeB 1.73i2 4 f. M 4 4.75 W T.73E 4 7.795 0p 1.2N 11 1000 1JtE4 1.134,4.est W 9. ass es 9.148 49 1.485 11 1m 1.14E4 7.355-0F 4.m W f.235-W t.3N4 L17E*11 1980 9.2NM *T.DE-F 4.Fle=W SJ1sM 2.1184 Imti 1750 7.4eEM L355.W 4.345.W 1.715.W 3.134 5.33 11 Nes 6.NEM 5.35E*W 3.9EM 1.M er 4.2N 0B 9.74811 2350 5.3 N M 4.aeE M 3.40E W 1.8 N W 5.348 0B 1.48E 10 200B ~ 4.m W 4.2EE er 3.345 4F 1.NE GF d.134 2.90510 3sse l *.
3.SeEM 3.3mM 2.79E*W 1.7EE er T.44E4 L73810 3500 LSEE W L775 W - 2.32-GF 1.eEE-er 8.tM*e5 f.955 00 4800 2.35EM 2.318M 2.m-er 1.30E W 8.34E4 5.785 09 4908 L81E er 1.9N.W t.75E w 1.3eEM 8.3054 6.085 0p
(
5005 1.7EEM 1. des 0F 1.53 W f. M W 8. m e 8.515 4 550B 1.4eEM 1.W.W 1.331 W 1. tee *e( F.dese 1.1054 4000 1.2N W 1.2N W t.140 W 9.8 5-4B F.2N eB 1.3N4 4000 1.les GF 1.155.# 1.895.W 9.M*e8 6.55-4B 1.4484 7900 1.8N # 1.NE F 9.9854 8.45-4B Lease 1.554 7500 9.98 5 9.795 4B 9.2eE 4 L I M es 6.348 0B 1. 5 08 8000 9.2W 5 9.105 4 8. M 4 7.48E-4B 6.0M4 ~.7BE 4 1
9000 7.95E 4 7.5E4 7.548 0B 6.7N e5 5.34E.08
- 1. m 08 10000 e.95E 08. 6.95B 05 6.445 0B 4.004 08 5.078 08 1.958 08 15008
- 4. W es 4. 4 4 4.30E 08 4.05E 08 3.398 08 1.9N 0B 20005
- 3. cat 08. 3.0854 3.8184 2.9eE4 2.488-08 1.71E4 O
21-25
__________-__.-_.__m_
3
)
k
- a
. s,.
,., ;..,,4
- 1.
?..
M*n l
r~
9300.gnt-4010.03 l
EIBIBIT A (con'C)
{
J y
)
mine Cameutetten Peeters,
I
)
stasility Steens E tete of neins 312 15 1986 OperW Grewe 2
)
Sfessisek Rotenee hofekt n'oenre J
hM 4 eeure \\
8 30 de les 190 age 8
- ' 400 ' 4.99Fe6 -2.488-edr LFB w' LMa ar' 7".4ee es. 't.m ep SES 4.1184 L4484 9.0 FEM 2.5 4r T.M4 1.FFB W ese 3.554 2.3484 9.m w 2.m W T. ass es Em op Me 3.195 4 2.23E 4 f.7N W 3.044 W 8.148 m LIM op i
800 L8184 L8884 f.95Per 3.175 W 8.4484 L15 op get LW4 1.9054 1.0t84 3.III W 4.44s es L2EE op test. L e e 1. e 4 f.8184 3.495 W 9.2es m L3es op IIIe 1.4e54 f.3754 9.mM 3.844 W 1.mEM.2.4M op 1988.1.3d84 13484 9.2ps-er 4.13 W 1.mE W 3.04s 09 1790 1.33 4 f.18E4 8.848.# 4.315-W f.3M W 3.544 09 30B 1.tN 4 1.045 4 T.9EE w 4.30E ci 1.39E 67 4.195 00 2350 1.08E4 9.255 W T.3 FEM 4.35EM 1.48E M 4.95E 0p 5 00 8.95 W 8.3dE*W 4.W W 4.2EE W 1.m W S.87E 09 3Est T.21E M Lade 4er. 3. ass.W
- N f.00sesF. 8.5 Mack -~ ma e
-~m See LaEE er 9.795+W S.875 W 3.73.W Lees.W t.M4 asas 3.te.# 4.985.W 4.43.er 3.418.er 2. art.W 1.NE4
[
4000 4.3N-er 4.2dE*W 3.afEM 3.15 W Lau W 2. ass ce
\\.
SOIS 3.NE er LF1EM 3.WM lam 1.955.W Lee
$383 3.310 er 3.255 W 3.5 W 2.3ds W 1.488 4 3.355 4 4AIB L9W-W LafEM L7EE W 2.3kM 1.NEM 3.45E 05 4000 L75BM Ld7EM L35-er LEE er 1.48EM 4.1754 7553-2.31E M L a -er' 2.EE M L8FE W 1. m W 4. 2 4 7988 L348 er 2.3MM 2.35 87 1.98E 4 1.Ses M 4. m 4 8000 2.19E M 2.1 M er 2.3FE M 1. m 4F 1.30E M 4.818-05 l
9000 1.pMM 1.918 0F f.mM t.eds W 1.385 M S.085 05 10000 1.7tE W 1.48EM 1.m Or 1.505 4r 1.2MM S.244 05 19000 1.ta W 1.fMM 1.15M 1.065 er 9J1E 05 S.17E 05 j
23005 L118 08 8.095 4 T.95E4 7.44E 4 7.058 08 424 i
T' El-26 w
~
A i *.
a
,,.;v....<. '..,;
,. g
. 3;,, G _., * } ' '.
.u
[,
9300-ADM-4010.03 m.0 EIRIBIT A (con'.t) 1
. y,.
v h
eine.Ceugutatfem f ers stability Ctanes 8 Sete of Printins 412 15 1986 energy ere es 3 I
l efetmuse% se6eese esteet assers eew wdad \\
senere \\
0 as de 100 150 3ge ese T,m-e6 3Jtee.154d0 06i 5.44E-W'-f.es er 9.445*e '
See
- e. m e 3.TN 4 IJ1E4 5.3de W t.m w 9.41E ee m 5.mW 3.m4 1.3dE4 5.de-W 1.9tE w 9.795 se MS 4.848 4 3.49E 4 1.405 4 5.ans W 1. m W t.see as Get 4.354 3.3054 1.e4 AGM W LeEE W 1.035 M 988 3.954 3.88E4 f.45 4 kau f Less W 1.mE 4 1000 3.5484 3.24 1.4054 L4SE er 2.13 W t.m-es 1250 Lee L4884 't.41E4 AWM 3.3eE W.1.1484 15e0 L43-06 L154 1.5M4 7.33-er 3.535 er 1.20E 08 175B 2;115 4 f.918 4 1.e4 T.548.W t W 1.39E 4 ages
- 1. W 4 1. e 4 1 J15 4 T.595 W. d er 1.548 0s 2330
- 1. e 4 1.53 4 1.234 f.m w 3.3N er 1.71E 5 2508 1.44s 4 1.3 N 4 1.148 4 -7.3 m M 3.4 5 07 t.9ta os._ n _
3000 1.3034 ~ 't.145 e6 ^9.41E er Agu ef '3.348W-'4SE as 2
~ " " " "
'~
N00 f.8184 9.FM-W SJN er 6.mM 3.73 W 3.13 m 4000
(
a.m er SJN er 7.544-er 5.see W 3.FIE er 3.see es 4000 T.4dE*W TJEE-er 4. DIE-er 5.4eE-w 3. eta W 4. set es Seet AseESP 4JN M 5.905-8r 4.fm M 3.m M 5. ass a 550B 5.75 W 5.m W 5.200 W 4.4egaer 3J1E er A?u4 este 5.eep w 5.eu er 4.73.W 4.13-er 3.1M W T.det es 4000 4.?M-Gr 4.eds er 4.415 er 3.sFB-er 3.stE W s. ease 75B 4.4mM 4J45 er" 4.1M W" 3.4ds.W 3.985.# 4.448 43 75e8 4.11a.W 4.375.# 3 mW 3.44E.W 2.795.# g.seE.es sees 3.aIEM 3.835M 3. DEEM 3.2mM 2.a85.or 9.095 0a 9000 3.48E-er 3.375.# 3.25EM 2.9eBM 2.47EM 9.518 05 10000 3.m-or 3.015 07 2.915 W 2.4mM 2.2NM 9.748 08 15008 2.048 07 2. m W 1.995 # t.aIB M 1.485er 9.53 05 20008 1.485 or 1.m W 1.458-GF 1.3OE M 1.295 W E.515.m Paese W
/
El-27
j J
i
..,.. ~.,
1
- ~ ' '
'?.
a.
(.
gg g geg) 9300- sti 4010.03 w.0
+
,,, Rine Campistetten Fosters,
f
{
Stability Clases E Sete of Printing' 312 15 190s AnarW Groles 4 steeee notesse gesent aseere townsind \\
essers %
0 N
de 100 150 3ee 406-t'.14E 5 ' 5S73E*e0 2.2'154 8.9EE-eP* Latt-er.2;am et-50B 9.5444 3.45E4 2.3554 9.085 W 3.4ddM Lees es est 8.24 5.4854 L3dE4 9.3es W 3.518 8r 2.405 0s
,i 78B F.3054 5.1854 L4354 9.4 FEM 3.375 er tr3E et
' age 4.318 4 4.a5E 4 LeaE4 9.rts w 3. des.W 3.7854
)
as 5.asse 4. ass es 2.ste-en t.asse r.ra or omE as j
tese 5.35 4 4.3N4 L51s4 1.e 4 3.41sM Laps-as 1290 4.4as4 3.7754 2.4884 1.1854 4.es W.3.04a4 1500 3.73E4,3.3N4. L3E4 1.1484,4.3de W 3.3M4 1758 3.35 4 2.9e84 L18 4 1.195 4 4. rte W 3.45E es 3 00 L75 4 2.3dE 4 2.W 4 1.1954 5.aIE w 3.735 es 3350 2.495 4 L33 4 1.ame 1.154 5.375 W 4 m.es j
i 3500 2.36E4 L1dE4 1.7N4 1.1454 - 5.413 or 4.3ms.es ~
~
i 3ees 1.ange 1.M34,'.1.334-f.3p5.e6-5.95 W-5.23 es --
3I0B 1.585 4 1.518 4 1.348 4 1.8tE-es 4. W M 6.3fE 4 4888 f.3484 1.3D54 1.184 9.33 W 5.9EE W r.SEE es C
450B 1.1M4 1.148 4 1.aage 8.545 W 5.m-cr f.24 50Ee f.me 1.0eE4 9.31s.# r.sts.# 5.5984 1.005 W 3
5508 9.W W 8.mM 8.3EM r.tM W 5.33 # t.195 W 4000 4.04EM r.m W r.485 W e.345-W 5.ans-er 1.315.or 4800 T 4eEM r.3BE-er F.stE-W 6.195 W 4. ass W t.3mM 7800 4.99EM 4.918 # LSW-GF 5. ads W '4.m-W t.448-W 75e8 6.555 er 4.45 er 4.305 er 5.35E 47 4.30E 37 f.4ew-or 4000 6.158 or 4.1W or 5.ansM 5.27E er 4.33E 4r 1.33E 07 9000 5.455 er 5.40E 0F 5.21E er 4.7asM 4.00E e7 1.395 07 to000 4.875 87 4.44EM 4.4EM 4.33 07 3.7W or 1.mM 1
1500s 3Jts.or 3.305M 3.m ar 3.edsM 2.75EM 1.375 0F 20000 2.4 TEM LetE W 2.3 FEM L3N dr 2.11gM 1.41E #
puess 3B 8
s st-zs
)
1
_ _ _ _ _ _ _. - _ _ _. _ _ _ _ _ _ _ - _ _ _ _ - - _ - - _ - - - - ~ -
3 s
c s,
Rev. 0 s.
'9300.ADM-4010.03 EZEIBIT A (con't)
I
.,.mijne casusetien,peeters:
Stability cleans s Date of *einting 313 15 1986 I
Inergy arenes !
Sfstanes% neiease leefght asence Senseedad \\
anere g g
33
'g 188 190 300 t
Ltag.es.t alg.W 3.' gene f.73se r.7eg.gr 9.ygg.gg-4 GEL
~
r.
588 - 1.775 4 1.03 4 4.tM4 f.FFE.06 r.7u. w 9.agg.as 406 1.34 9.agg e 4,33g 4 t,3gg.06 f.888 07 9.pos.es 788 f.348 4 9.433 4 4.483 4 1. e 4 r.ges.or 9.gge.00 800 1.193 5 3.ges.e6 4.30s.06 1.au e 4.ess.w 1.ets.gr 888 f.873 4 8.373 4 4.3dE 4 1.95 4 4.tgg.g 1.gg y 1888 9.48g4 r.4884 4.554 f.93 4 3.33.g 3.m.gr 1250 ¸ 4.468 44 4.4ege LigE4 8.r18 87,1.8FE.W 1888 4.rFe 4 4.818 4 4.2M,4 2.2834 9.218 W t. tog w 1754 5.m4 5.3ese 4.a134 'I.2sse 9.aeg-er 1.tsg.or 2000 S.05s.e6 4.703 4 3.733 4 L m e 1.044 4 1.2tg.gr 2358 4.375 4 4.275 4 3.483 4 2.255 4 1.05g 4 1.2es.or 2500 4.1334 3. age.46 3. ass.M 2.30s.06 1.135 4 1.33.gr 3888 3.43E4 km4. 2.554: 2.054 1.13 06 1.493.Gr '
~~
5 00
'2 L984 '2.me-L334' rigg.gf f,9,g.06im.gr~"'
"~' ' ' ' '
4888 L3E4 Lade 4 km4 f.795 4 f.134 1.913 07
(
4888 L2184 2.1454 1.9g3 4 1.485.e6 1.13g.06 L175 fr
\\
5000 1.935 4 1.tige 1.734 1,313 4 1,tg e g g.g7 1988 1.73 4 1.r18 4 1.eeI 4 1.333 06 1.55 06 2.47s.47
- 4888 1.353 4 f.3M4 1.405 4 1. 3 46' 9.95.er 2.au.gr j
4000 - 1.483 4 1. 3 4 f.3eE 4 f.2154 9.m.ar 3.0m.ar FOOD 1.348.es f.34s4
- 1. ass e 1.195 4 p.m.W Lies.or 7500 1.25 4 1.285 4 1.213 4 f.ggs.06 8.Ms.W 3 tg.or 8000 1.20g 4 1.19g4 1.143 4 1.04s 4 L ata.Gr 3.25s.07 MOS 1.073 4 1.0eg e
- f. m 4 9.433.gr F. ppg.or 3.355 0r 10000
- 9. m.07 9.375 07 9.275 07 8 $.y F.4tg.0T 3.40s.07 t$000 4.448 07 4.433.or 4.45 07 6.148 Or 5.348 01 3.244 07
)
)
aoeae 4.m.Or 4.ng Gr 4.m.ar 4.ses.or 4.3a.a 2.m.or 1
Peeen B i
i 1
~
El-29
+
T
O o
'v.,
~
~, <
y 9300-ADes-4010.03 Rev. 0 gg
,g Wine Cameutetten Pasters.
Statility Clases E Dese et hinefas s12151986
' ~~
aner y aceues 6 Bi - Setenes w
.e.or.
eemsfas s asemes - \\
a 3e de les 15e aos
~
5 U
'488 '3.905 W ~1.dN'W 6.NE4 2.9@e6 1.m 4 2.5EE-W.
500 L9eE4 1.d58 45 4.3954 2.9054 1.4444 LSee W
, des Lees 5 1.555 5 6.m4 3.e34 1.4954 LSOE W MB L185 5 1.33E 5 7.0484 3.8F54 1.44E 4 Lade OF Ese 1m4 1.448 5 7.25E 4 ' 3.14e 4 1.48E4 2.m #
980 1.72 4 1.ME4 7.3dge 3.21s4 1.48E4 Lees er q
1888 1.5M4 1.275 5 7.48E4 3.3eE4 1.53E4 Lees er
(
1890 1.255 4 1.118 4 7.275 4 3.405 4 1.5M4 2.F15 W 1
1500 1.08E4 9.7184 4.Me4 3.48E4.1.45E4 LME W.
175e 9.24 8.5 5 4 6.53E 4 3.75E 4 1.734 2. m cr 3000 8.348 4 7.24 4.00E4 3.7F54 1.e4 2.NE 0F IIIe 7.415 4 4.Ms 4 5.715 4 3.73E4 1.9084 3.0E8 07 3500 4.715 4 6.345 4 5.3484 3.m 4 1.90E 4 3.1M 8F
_3ees 5.38E4 5.3484 4.esE4 '.3 ads 4 -2.045 64.35 WZard w.
' C 5 00 4.mE4 4.4E5 4 4.143 4 3.348 4 Lode 4 3. M OF 48 5 4.184 4.8F54 3.7154 3.aIE4 Law 4.m 8F
(-.
Seet 3.asse 3.mE4 L9ese 2.5454 1.98E 4 4.415 er 48es 3.m4 3.4884 3.33e L7754 1.9854 4.43E W IIe8 Lee LaFE4 2.744 2.3dE4 1.me 5.15 W 4000 Lee 2.554 2.44E4 LIM 4 1.724 5.5es er 4000 LedE4 Lee 1.3104 2.8754 1.M.E 5.m-W 7580 2.318 4 2.m4 2.195 4 1.9F54 1.etE4 5.m er 75eB L15 4 2.1M4 2.875 4 1.3FE4 1.55E 4 5. m 47 ages 2.0dE4 2.04s 4 1.903 4 1.795 4 1.500 4 4.055 07 90e8 1.a48 4 1. e 4 1.FM4 1.e4 1.39E4 4.09E 07 100e8 1.edE 4 1.eSE4 f.dese 1.49E4 1.30E 06 6.235 07 15000 1.1M4 1.145 4 1.545 4 1.gete f.eIE or 5.93E 07 asset 8.400 OF 8.est OF 4.35E 0F 8.275 0F 7.4.Wer 5.295 07 El-30
w
~
.....(
...p,.......,. ;s.
7 e,
9300-ADhi-4010.03 Rev. 0 IIRIBIT A (con't)-
s Mine e atten Festers r
g-e stahltiEyC1eensF Bete of Printine 13 15 1986 Enerw armos 1 stesanseg seteese seien sneers Dewusind \\
meters \\
0
' 38 48 100 150 300 488, -T.8dE4,t.3EIW. 2. DOE.er.3.segret J.848.W 6.3es.13.
500 5.385 4 f.Ses e 3.50s-W 3.Ns 4 4.418 09 4.7M.12 480 4.NE4 1.5M 4 E rm M 3.Ms.es 4.195 0p 7.3g5 13.
MS
'4.85 4 f.454 L95.er 4.1554 4.40s.0p' T.4313 aos 3Jtse t.dese 3.13 M 4.4g 4 4.dag.op 7.84a.13 988 3.854 1.5M4 3.auif 4.7eE.es 4.955 0p a.335 13 1888 LME4 f.edE4 (4.345.# 4.e4 6.195 091.5M 4 *.NE.er 5. m.es 5.3 188 2.3E4
- 1. m.11 1988 1.4184 1.asse 4.435.W F.35.es 7.45 0p 't.2N.11 1750 1.5184 1.134 4. m M 9.and es 9.143.e9 1.4et.11 3000 1.295 4 1.01E4 4.78EM 1.ON.F 1.145 08 1.35E.11 238 1.1M4 f.15EM 4.Mg W t.2es.W t.44g=0S 2.2M 11 2500 1.005 4 8.3NM 4.a18.# 1.418.W tans.es 2.m.11 3888 8.m*er 4.94EM 4.485.W 1.dSE.er 'L755.es-4.42517; -, t Net e.m.ar "4.m.W' 413.W 1,73.w ;3.dds.or 7;1dg.tT'~ "
~""""~ " "
~ ~ "
4800
- 5. aft W SJts-er 3.m.er 1,m.W 4.deE4 1.14a.1e 4808 5.135 4 4.400 0r 3.3de.er f. m M 5.48E 4 1.955 10
('
g' 5900 3.95E M 3.755. W 3.sts.er 1. m M e.955 5 5.39E'18 Sees 4.318.W 4.1M-er 3.3.W t. ass.W 4.235 00 3.33E.10 488B 3.3de.W 3.348M L7M er f.7W.W T.454 9.one te 4888 3.m.W 3.sM M 2. Sag.W t.73.W 7.m4 1Jts.es 79 5 3.9FFW 2.M 2.4NM t.eds.er e.sM.es f.m.op
,7500 2 75.# L415.W 2.248.W 1.408.# 8.2484 2.4M.09 8000 2.33.W 2.45M L11tM 1.343.W 3J3 00' 3.23E 09 9000
- 2. idem 2.095 07 1.aes.W t.435 0r 3.343 0g 4.998 09 10000 f.8Fr.W 1.m.W t.mM 1.3m q 3.2gE.08 7.015 09 15000 1.24EM 1.2N.R bl5EM 9.7tE4 T.1M.00 1.3ds.08 20000
- 8. m.08. 3. m.05 8.41E 4 7.45 08 5.95 08 1.NE.08 l
g 1
e El-31
1,
.s...,
EERIBIT A,(con't).
9300-ADM-4010.03 Rev. O I
a.
.i.
..#I,noEawtetten.fasters j,
staWitty ttansa p Dete of Prfatik s12151986 Snerer armes 2 81stanseg metenee nelebt essere townsend \\.
assere \\
t 38.
de les 13 0 3ge
-488.T. tee *ede 2.4184 LNE er. Lest W-F.19E m l.ms.ep-See 5.95E4 2.m4 8.485 W LM tr F.25E4
- 1. ass cr ese 5.2754 Leese 8.a44 W LTJS w 7.348 es 1.9eE 09 7ES 4.7184 L4084 8.81EM L788 W T.24 1. 5 09 888 4.25g4 2.45E4 9.018rw. Lats F 7.38E4 1. pes op 908. 3.5E4 Leese 9.255 W LsE+er F.?M es 2.00E 09 1800 3.3484 2.m4 9.mM LMEM T. ass a 2.048 0p 1250 3.8184 L17E4 9.m-W 3.055 W s.3ds es,L138 op 1988 L4184 1.95E4 1.9154 3.2EE W 8.754 2.25E 0p.
1750 Lee 1.m4 ' 1.9154 3.48E F 9.m4 2.30E 09
^
2000 2.015 4 1.47E4 9.mM 3.718 gr 9.ME 00 2.545 09 2350 1.8E8 4 1.355 4 9.FFE er 3. N W 1.aeE M 2.718 09 2500 1.46E 4 1.4484 9.315.# 4.La.# 1.145 er 2.355 09 3000 1.3554 1.2454 8.m W 4.20s er 1J1E W;,3.358 ep '
. 2000 1.25 86 1.144 SJ1EM 4.3es.er ' t.edE-er 3 m or- - --
{
~
480B 1.00E*# 9.95EM f.75E+er 4.33.W 1.deE*W 4.m.09 l
4800 9.7W er 9.05 W T.m*er 4.34EM 1.FN.W 5.1484 5000 8.754r Lim W e.71EM 4.2es F 1.448M 6.0550p SBOB T.m W T.4SE-er 6.248 W 4.148 W 1.m-er 7.285 0p I
ese 7.14E W e.81EM 5.81E*er. 4.81E*W 3.m tr 8. des op 4805 6.m-er 4.m W 5.440 W 3.m W 2.2 W 1.01E 0B 7E80 E148-er' F. ass er 5.12 er 3.7EE-w 2.005 W f.154 75E8 5.F15 # 5.SeE M 4.aIE-W 3.45.W 3.078cr 1.3es se 8000 S.3MM 5.15EM 4.3EE W 3.40EM 2.07EM 1.375 08 9000 4.deser 4.2 0F 4.10EM 3.mM 2.m or 2.01E 08 i
10000 4.13M 4.035 cr 3.mM Lfe or 2.0WM 2.400 08
)
l 15000 2.m M 2.m er 2.eds.47 2.30EM 1.7ss 0F 3.9M 08 20000 2.13EM 2.11EM 2.aIEer 1.41E M 1.485 07 4.875 08 l
j 1
I
)
i I
I
.(
)
1 I
El-32
'l-~;
j. Y*.
,3
,-Q' l5
'p.
a
(
IIIIIIT A (con't) 9300-ADM-4010.03' Rev. 0 4
i.
Shine Compassion Festers Steb(Lily Ctenes 9 Bote of printing. 412 15 1986
~
Ener W troups 3 eletmeeg metense nefshe' esters Demwind i essere S 9
30 de 100 150 300
'400 1.1M 4B' '3.daP06' 1.4tE4"S'.Sts GF 1.795 W' h;268 09 '
Set 9.1404 3.7954 1.e4 5.3ds W t.ats W 9.33E 4 400 8.08E4 3.mW 1.4554 1.415 W t'.m W 9.3N 09 700 7.200 4 1. N E 4 1.434 5.445 0F 1.NE w 9.40E 09 aos 4.30E4 3.7954 1.3e8 4 5.53E M 1.aes W f.3at 09 90B 5.954 3.7384 1.3384 5.ets W t.seEM f.asE 09 fees 5.43E4 3.24,1.34E4 5.est fr 1.ME W 9.a14 09 1250 4.m4 3.3eE4 1.e4 1.pos W t.frB W. 1.01E Os 1508 4.5E 06 3.134 f.dete 4.14s W Lus W t.NE os 1750 3.3454 2.8M4 1.45E4 6.44EM 2.125 0F 1.00E 08 2000 3.154 4 2.44E 4 1.e4 6.NEM 2.22E 87 1.135 00 2300 Lame 2.45E4 1.405 4 4.9eEM 2.33E 07 1.1M.08 2500
- 2. 2 4 2.295 4 f.Ses e 7.19E M 2. W 07 1.22E 08
-3000 2.23E4 1.99E47-taedEMT.485 0P-2.m W <!.34Eeot--"
~~
^"
~~ ^
- 350s 1.9M4 1.aeE 4 1.3M4 7.395-W 2.905 #F 1.44E4.
4000 1.7EE4 1. e 4 f.m4 T.35M 3.15 W t.40E 4B
(
s
- 4500 1.35 4 1.44E 4 1.2854 7.49E F 3.2pEM 1.78E4 s
5000
- f. W 4 1.35E4 1.1254 T.345 W 3.448 W 1.9eE 08 5900 1.385 4
- 1. 2 4 1.8054 T.144-W 3.See W L190 08 east' tit 954 1.134 9.70s # 6.fts W 3.455 W L4M4 400s 1.14 4 1.088-06 9.2 TEM 6.75E W 3.7eE W 2.7EE4 7900 1.24 9.apsM 8.7 TEM e.40E W 3.73E W 3.045 08 7500 9.40E 0F 9.2M 0F 8.244 0F 6.2e8 # 3.735 07 3.3M4 ages 8.99EM 8.7eEM 7.aoe 07 4.045 07 3.72E-OF 3.72E 08 feet F.9EEM 7.7154 '7.01EM 1.415 0F 3.448 07 4.495-08 10000 7.06507 4.aeE M e.3M M 5.20EM 5. Set 07 5.295 08 15000 5.00EM 4.93BM 4. deem 4.05E 07 3.115 07 f.695 05 28000 3.7EE 0F 3.73EM 3.5MM 3.23EM L448 0F 9.1m 05 e
1 El-33
}
- * '.[*
+-
., :.,.,j.. ;. ;.
I 9300-ADti-4010.03 Rev. O
{j.
EERI3rr A (con't) n, a-s
..i.
.i Sine.Caputetten Festers stability Cteses F Bete of Printing s12 15 1986 EnerEr ero es 4 Sfeeenoeg toteese nefeht enters Sewadas \\
soeere 5 0
3B 40 tes 130 30s esb 1.7154. 5 W4. L'1454. 8.38M. 3.35>W. LSEE,es,
500,.f.m m 5.4184 LtM4 s.m-w 3.3M W, t.eas.es 400 f.aes a 5.Ftse,Lasse s.aIE W 3.3pgM 2.415 0s MB 1.1m m 5.F3E 4 L23E 4 s. m W 3.43 W 3. m.cs 500. 9.aM4 5.48E4 L2M4. 9.008M 3.455 W Lese 05 900 8.9854 S.5M4 L3me 9.1de W 3.4m-cr 2.4FE m test LaIE4 5.424 L3Me 9.2M W 3.51sM LagE c5 1200 4.90E4 $.034 Lese 4 9.345 W 3.3st W 2.755 05 1908. L8H4 4.ME4 L5eE4 9.MS W 3MM 2.att e 1750 5.3H4 4.3M4 ' Lite 4 1.M4 3.ats W LSIE c3 3000 4.NE4 3.9054 2.48E4 1.8754 3.99EM 2.985 00 258 4.3354 3.7tE4 2.44s4 1.115 4 4.au W 3.nes.es 2500 3.958 4 3.448 4 2.385 4 1.1454 4.2esM 3.1554 3088 3.3M4 3.53E4 2.224 _f.1m4 4.59EM 3.3M ce 3500 2.9sse-L73.eFAtm.es 't. ige 4~4.ast.W T.3 asses "'
- " ' ' ~ *
' * " ~ "
48e3 Lese 4 2.4H4
- 1. m 4 1.195 4 3.13. W 3.a m. m 4888 Late 4 2.3N4 f.5 5 4 1.1m e 5.448 M 4. tee m
(
5000 2.134 Lease 1.724 1.1554 5.485 W 4.448-m 5988 Lame 1.9054 1.e 4 1.134 5.m W 4.m et 4880
- 1. 2 4 f.755 4 1.218 4 1.885 4 5. pes W 3.2es ce 4000 1.ME4
- 1. M 4 1.435 4 1.00s 4 6.aeB M 5.485 4 7EEB 1.98E4 1.e4 f.3ds4 1.W 4 4.m M e.148e3 7508 1.488 4 1.448 4 1.20E #, 9. m M e. m W 6.475 05 8088 1.405 4 1.355 4 1.23P d6 9. m W 6.00E M T.2EE m feet 1.248 4 1.213 4 1.105 4 3.a75 07 5. fee M s. ace.es 1c000 f.ter e 1.dm e 9.988 W' 3.2EE M 5.72 er 9.4a5 0e 3500s 7.9354 7.m.cf 7.39EM e.4M.cf 5.01EM 1.32E 07 20000 6.00E07 5.90807 5.72E M 5.1M M 4.2M 07 1.34s M e
M El-34
~
.i
.s
- ~
/
EMIBF A (ca't) c 9300-AD.M-4010.03 Rev. O
.,. S ino Sameutaeiem Festere,
Stability 31ases F Sete of Prfattas 12 15 1
- ~ ~
enerW erews 5
-.i.- L.eee.o.
.e.e,s.
Downsind \\
metere \\
e M
de 100 150 300 est" 3.2N+es ' fate;W '3452 e8 1.754 'T.dW6F* 9.44E 40 '
5ee Ldfe-5 f.005 5 ' 3.88E4 1.7M4 T.40E W 9.NE ee des - 2.3M*e5 f.W 5 3.Me4 1.74s4 T.det W 9.TJa os Me LedE G 1.m 5 4.0184 1.7584 7.7M W 9.m 08 800 f.44E 4
- f. W 4 4.805 4 1. m 4 T. m GF 9.318 08 900 1.dese ' t.0184 4.154 1.75E4 T.m cr 9.aes en test tJ184 9.554 4.2M4 1.88E4 7.475 4r 9.91s es 1250 1.254 9.m4 4.445-e6 1.554 T.995 W.1.00E er 1988, 1.1154 L5454 4.3554' t.9134 8.145 W 1.dEE W 1758 9.744 7.4784 4.354 1.gue 8.32.W t. m.ar Met 4.435 4 T.2454 4.3454 LNE4 8.355 0T 1.m or
- 250 7.554 6.7554 4.4M4 2.1154 4.m W t.0FE er 2500' T.1984 e.3184 4.3484 L1M4 9.08E W 1.09E.07 - - - - -
3ese 4.134 5.24. 4.11s-# - 2.2484* ' 9M.W' t.15.W'
^ - -
- " ' ~
~ ' " - " "'
Wet 5.44e4 5.08E4 3.m4 L2M4 f.0184 1.1a W 4880 4.9154 4.3554 3.40E4 '2.200-dit 1.00s 4 f.m-w
(
408B 4.448 e6 4.14E4 3.34 2.24a4
- f. lee f.2eg w s
Sees 4.048-ear 3.5 4 3.2184 2.1984 1.14s 4 1.345 W 5500 3.7EE4 3.334 3.24 2.1484 1.14s 4 1.418 W este 3.485-06 3.2N4 2.4W4 Lap 54 1.13 4 1.30E #
4800 3.15 -46 3.554 2.48E4 2.8184 1.195 4 1.3M W 7EIS Em4 2.aFE4 2.3N4 f.9N4 1.195 4 1.445 W 7500 2.798 4 2.7eE 4 2. 3 4 1.305 4 1.195 4 1.758 #
enge 2.34 2.35E4 2.305 4
- 1. m 4 1.195 4 1.355 07 9000 2.344 4 2.254 2.00E 4 1.71E4 1.1484 2.0e8 07 1800s
- 2.10E 4 2.055 4 1.985 4 1.39E 4 1.13E4 2.275 07 1S000 1.5M4 1.515 4 1.43E 4 1.24E 4 9.915 07 2.90E 07 20000,1.1M4 1.1M4 1.13E 4 1.me 8.30E.# 3.m.07 O
e El-35 e
9
1
. n.;'.. z. *.;.
g
,EIH'.3IT A (ton't),9300.ADM-4010.03 Rev. O
\\
-~ r mine camputatten pasters.<
+<
StabtLler state: F sete of peinetng sig.151986 Ener5F Grews e sistanseg. notesse nefene essere Gewedad \\
esters \\
8 30 40' 100-130 300 i
488.; 5.4484 1.33EreB E1444.* 2.9ts.06 1.4aE.ek. L3pB.or SSB 4.4EE*e8 1.405 4 A 2tt.04 2.9EE 4 ' 1.4aE. g 2.sg.or 488 3.58 4 1.445 4 A3eE 4 2.Ma g 1. e 4 2.3as.or 3
Me 3.35 5 1.4e3 3 6.40E4 Lf584 1.W4 L375.or 888 3.818 4 1.agg.e5 Asafe, 2.9784 1.44a 4 2.375.ar 988 L?tE4 f. M 4 6.48E 4 3.005 46 f.445 46 2.5m.ar 188B L448.e5 1.995 68 Am4 3 mq 1.4gE 4 2.3gE.er 1258 2.885 5 1.485.e5 7.1484 3.085 06 1,47E.06 2.413.w 150s 1.795 4 1.33 3 rJag e 3.1,E 4 1,4st.g 2.et.or 3
'1798 1.575 40' t.M.5 r.4054 3.30E4 1.3 5 46 2. des.w ages 1.308 5 1.178.og r.3354 3.W 4 1.355 4 2.408.w 250 1.2FE.e5 1.09E.e5 r.24s4 3.334 1.38E 4 2.72E.07 2500 1.148 4 1.m.g r.054 3.4054 1.42E.06 2.75E.Or 3088 f.354 8.NE4 6.4M4 3.73E4 1.7EE 4 2.8E.0r.
h
- mee a.am.m answ6mmw3 ate 4=i.yEE4 s 2.am.ar-4888 F.M64 r.3854 5.pese 3.70s4 1.mE.e6 2. pes.or 4808 7.3E4 A7754 $.4054 3.73E4 1.934 3.0gE.w
(
S005 A37E4 A254 3.2FE4 3.40E4 1.p75 06 3.15E.er SBBB AM4 3.7584 4.9eE4 3.3404 2'854 3.20s.or eens 3.3ds4 3.3354 4.4d04 3.4484 2.0ase 3.3se.ar d000 5.215 4 5.0184 4.e4 3.3dge 2.m4 3J13.or 7888 4.8884 4.754 4.234 3.asse Lasse 3. des.w 7500 4.40E4 4.4EE4 4.0184 3.1484 2.g354 3.73.or 3888 4.348 4 4.2154 3'.W4 3.0784 2.04E.06 3.73 87 9000 3JEE4 3.795 4 3.454 2.3754 2.0054 4.35.or 100m 3.3054 3.aage 3.134 2.45 06 f.955 06 4.3a.or 1$000 2.3M4 2.35E4 2. m 4 L1M 4 1.713 4 5.345 0r 20000 2.018 4 1.9984,1. GEE 4 1.78s4 1.45 4 6.085 0r paese u l
1 f
El-36 c
k
4,
E t
l
.~ o
}
,.*',~.3 9
,..,-,f
[
mTRIT A (con't) 9300-ADtf-4010.03 Rev. 0 c..
- Slae temputesten,7,estere,,,
c,,
i l
Ste>4tity Ctessa S Dete of Prfatfew 12151986
~
Iww Grece i siew notesse.setent asseres Bewusind \\
,e 38 48 100 150 30s
~
emeere \\
40t v 1.eBSP W.t.295 4 23 M M "3. M -05 3. M -es 4.218 12 50s 3.4e8 4 1.38E4 ' 2.3N W 3.48E 08 3.ME ee A33512 ese 7.385 4 tJese LW W 3.3754 3.418 89 A458 12 Me 4.444 4 144 Lees W 3.40E 08 3.905 0p 4.39512 ese 5.48E 4 1.4884 L5M W. 3.Ms4 '4.00E 09 A75E ta 900 *S.edE4 1.3404 LddE-er 3.ag.es 4.115 0p 4.96E 12 test 4.355 4 1. Sue L775.W 3.90E te 4.M ep 7.14E 12 tale 3.edE4 1.4084 3.eWM 4.3M ee 4JM W. T.NE 12 1
1988
- 3. M 4 1.Ses e 3.4de-W 4.700 48. 5.ses W 8.418 12 1750 2.35E 4 1.48E4 3.aWM 5.3N es 5JEE op 9.25E 12 ages 2.175 4 1.3eE 4.4.2M-W 6.05 08 4.258 89 1.06E 11 2330 1.fm 4 1.3N 4 4.40E M. A 7EEa0B 4.21E.09 1.13E.11 2508 - 1.110E4-1.2644' 4.ees-W ' 7.415 48 - 7.4M et 1.25E.11 -
3858 ' "1Jf44 t'.W4s%M'-er4.'eN'WT.15 iip"E5eE t1'" ~
t I
~
Elst 1.M es 1.8854 4.95EM f.11E*er 1.1M4 1JEE.11 488B 1.1!934 4.fu W 4JEEM 1.30E M 1.5 N es 2.415 11 s.
40 5 9.40E-GF 7.fm W 4.755-W 1.475 er Lasse 3.14E 11 50m 4.3N*W 7.148 W 4J5E er 1.M GF 2.5M ee 4.25E.11 5000 7.3de W A44eM 4.3N W 1.72M 3.M-et 5.ase 11 4088 N S.M er 4.083 W 1.M GF 3.9W 0B 8.14E 11 4000 e.14EM SJ18 er 3.9ee-W 1.M W ' 4.3M 48 1.00E 18 7588 5.7M er 5.23-er 3.au-W. 1.m E M 4.73E 48 1.255 19 7500 5.4 W 4.95EM 3. des-er 1.MM 5.118 08 1.355 10 ages 5.13 W 4.desq 3.340 W t.sFE.er 5.4es.es 1.955 10 9000 4J9E.er 4.243 W 3.33EM 1.37EM 6.13.es 3.08510 1ense 4.13E M 3.NE M 3.epe W 1.aas M 6.75 48 4.83E 10 15000 2.86EM 2.71EM 2.3NM 1.43EM s.13 4g 2.175 0, 20008 2.eW M 2JEE W 1.aes.W 1Jge.or 8.33E48 5.45 09 e
9 El-37
l
.. I "' %. l *.* ', *.h*
- ,,,,,';yv.;,*.
i..
- a~.
,./
.,,,,u IINTBIT I.(coe'c)
H00- 6 010.03 w.0
(
1
. al=.,.c===f = r=are.
)
t 8teh[Ilty Stees a pote of prfnetne 313 13 19e6 EnerW armes 2
~
' ofeeem seteese w ehe essere f
Bewurind \\.
adeere t
-0 3e es tes-13e 3g3 j
- 488 9.5M4 2.3Me"4 210.er'"2.(te+4P.F.aOE4 9.m 09 a.
Set 4.3 4 L348 4 4.2N M Leg w 7.0884 1.848 er des T.38 4 L3eE 4.a.335 W 3.Ma W T.135 4
- 1. m 09
,I NO Ld484 2.24 8.40E*W 3.NE W T.154
- f. add op MS 4.5E4 Lade 4 8.4M*W. 2.m F T.384 1.aOE609 9ee 3.3dE4 2.4e4 4.5M W L7EE er T.3sse 1.ase.ep fees 3.13E4 LeeE4 8.dFE er L738 W T.3dE es 1.918 09 1250 4.3554 lam 4 8.95EM LaeE W T.345 40.t.99E 09 1988 - 3.4184 2.3554 9. ass W La or T.73E4 LeeE op 1798 3.3d54 2.3 4 9.35 W L95-W F.958 es LOM Of 2000- L99E4 2.1484 9.NE W 3.1mM SJue. L148 Op 2390 2.75 4 Leme 9.fm.W 3.19EM s.30E 00 2.14E 0p 2500 L3954 1.988 4 1.0134 3.2EM 8.7N4 L25E 09 3000 L2N4 1.e4 1.8184 3.4eE*er 9.295 es; 2JEE 08
' Bee 2.005 4 f.edE 4 '9. pet M 3.YIE-W : 9. pee 4 12.355 ep - -
~.
s 4eeB 1.754 ' f.354 9.718 er 3.m-er 1.Geg er L75E 05 48e8 1JUE4 1.3954 9.3M w 4.105.W t.1MM L9eE op
(,
5000
- 1. e 4 154 4.98E-er 4.2H W 1.JEE W 3.2N 00 350s 1.305 4 1.tM e 4.3M M 4.33 W t.3OEM 3 JOE op dest 1.15 4 1.03-46 S.fde-W 4.3NM 1.385M L95 ee 4808 1.15 4 1.e4 7.95 W 4.35-er 1.3dgM 4.m 09 7Est 1.e44 9.m W T. des er 4.3M er 1.m-cr 4J18 49 7500 1.m;e6 9.m-tr T.485 W 4.3de W f.de-W 4.am 09 asse 9.74 W 9.m W T.23 er 4.34EM 1.75 Or 3.145 09 9000 8.85EM 8.30EM 6.7H or 4.2mM 1.mM 3.9454 18e0B 8.118.er T. DIE M 4.3MM 4.1EM 1.9NM 6.90E 09 15000 5.90E 07 5.475 0F 4.94 0F 3.40E M 2.0 M cr 1.2AE GE I
20 2 ) 4.33 07 4.40E W 3.95 Or 3.1M Or Lees Or 2413E4
'~
paese 3B e
(
F.1-38 e-ee.
I
.. ~;- '.-
,'d
. ~., _. _.
E3HIBIT A (con't) 9300-ADtt-4010.03 Rev. 0
- eine weefen resters,,
stem tity Ctense e sete of Printine 312 15 1986
~ --
Ener W arm es 3 elo w estemme neigns assere temusins \\
s assere \\
g 3
m 103
,13e 30s 400
- h5eE4'*36MG4 1'.400 06/ 5.2es We f.75 W 9.17EM
\\
500 1.2E54 3.4184 1.4084 5.2m W 1.?tBM f.aog op 400 1.145 5 3.ME4 1.4184 5.3eE er 1.79E.# 9.23E 0p
,l 7E0 1.ERI es 3.7234 1.e4 5.3EE W 1 Joe W 9.m op age f.2954 3.75E4 1.e4 5.355 er 1.415 W fJ18.ef 988 LSM 4 3.2 4 1.448 4 5.388 # 1.815 # f.34509 1888 T.mW 3.4444 1.448 4 5.425 W 1. 5 W f.415 09 1385 LF184 3.415 4 1.495 4 SJ18 W 1. m M. f.35E 09 1988. 5.24 3.7EE4 1.5484 5.m er 1. ape-W 9.718 0p 1750 5.155 4 3.545 4 1.354 5.755 W 1.955 W 9. ass ce 2000 4.40E 4 3.348 4 1.m!06 5.918 W 1.9FE M 1.018 08 250 4.285 4 3.248 4 1.ME 4 6 eIE M Legg gr f.eE os 2500 4.018 4 3.113 4 1.4884 e.145 er 2.04EM.1.045 00.
- '^
3000 3.3484 LarE4 1.4884 L4EE*er L12EM 1.0eE4 -
~
BGB 3.134 2.m 4 1.e4 6.7Es+F LIM-er 1.134 4880 2Jese L418.e6 1 JOE 4 F.ansM LEEM 1.195 es
-(..
Sese Lan e Lang e 1.434 7.4EE.W 2.ms.# 1.33 03 488B IJB4 L2154 1.5454 T.m+er Less # 1.25E*cs 5800 Le4 1.85 4 1.418 4 T.5EE M 2.a m. W 1.4eg.08 4000.
- 1. 915 4 1.75E4 TJege 7.385-W Lfge.& 1.4eges 4000 1.e4 1.m4 1.313 4 T.595 er 3.04EM 1.358 08 7Ee8 1.72 4 1.45 4 1.m4 f.554 3.13-er 1.e4 7500 1.405 4 1.348 4 1.2454 7.548 W 3.215 W 1.ase os 8000 1JeE4 1.48E 4 1.20E 4 TJcEM 3.2m or 1.7a8 0s 9000 1.45E 4 1.345 4 1.13E4 7.375 er 3.4aEM 1.935 os 10000 1.348 4 1.245 4 1.e7E4 7.2es OF 3.53E 07 2.12E os 15000 9.90E 47 9.548 07 s.45E-er 6.3eEM 3.73E 07 3.22E 0s 20008 T.eet SP 7.40E M 6. m M 5.SeE M 3.448.or 4.AsE 4 e
t El-39
___________._m_
j
.,,.,3 i
('
- 9300-ADH-4010.03 Rev. 0 EKRIBIT A,(cob't) mine ceguesefen Festore l
Stability Claess 4 Sete of Printing s12151906 Aner W ere gt 4 elesense bd enne setehe sneere eeuwine \\ '
~
metere \\
t
'3s de tes 13e 3os est 2.35E4 5.3054 Lime 8. des W 3.335 W 3.3M4 SSB " 3.W es 5.2554 Lee '8.75 W 3J45 W L3M4 400 1.NE 45 5.38E4 L14s4 8.755-W 3.35EM 2.3sE4 M8 1.3954 5.30E e6 Lt984 8.7EE-W 3.348 W L39E4 388 1.44s 4 5.4e54 L1784 LaIE w 3.3M gr Lacee 900 1.3154 5.eM4 LlaI4 Laes W 3.3EE W LedE4 feet 1.2154 5.754 3.2184 8.9154 3.4sE W 3.415 48 TISS 1.e4 5,7E54 L30s4 9.m W 3.445 W Lasse 1980 8.m4 5.554 LIE 4 9.1M W 3.4at W 2.4M4 1758 F.775 M 5.3K4 Leste 9.35EM 3.548 W L7134 3000 A. FEE 4 S.8084 2.4904 9.SM*W 3.405 W 2.7554 2350 6.4s84 4.4784 2.m4 9.NE M 3.448 M 3.7EE 4 3Se8 6.m 4 4.5 4 2.5eE4 9.9EM LesEM La os s
3000 5.3M4. 4.3M4 L3te4.1.me 3.41s.or-2. aft.0s.
~
6 3988 4.7te'46* 3.teFan"%4hr4 t.mE4 T9esM'2.fue '
4858 4.2154 3. ease Lee 1.134 4.13 Gr 3.054 4000 3.4EE4 3.3E4 3.3484 1.15E4 4.33 W 3. ass se
(-
S088 3.4854 3.05E4 2.38s4 1.tM4 4.3N M 3.3N 00 55m 3.14 s 4 3.aes e L14s 4 1.1984 4.75EM 3.4a.es 408B 2.905 4 2.448 4 2.488 4 1.195 4 4.9FE.W 3.448 00 ~
4000 LNE4. LSIS.46 L8tte t.1954 S.18E. W 3.758 08 7Est Lease 2.44s-46 1.95E4 1.1984 L21E.M 3. ads 4 7550 LSIE4 2.35 4 1.98E 4 1.195 4 S.33E* W 3.fes 05
)
8000 2.45 4 2.3854 1. e 4 1.1554 5.44EM 4.te 08 fees L2M4 2.00E 4 1.N54 1.14s 4 S.425 6F 4.38E 08 10000 Le e 1.94s4 f.ene 1.134 3.73 07 4.7u.0s 150st 1.53E 4 1.45 4 1.33E 4 f.oss e e. m 07 4.44E 4 20000 1.30E 4 1.175 4 1.8M4 8.7154 S.aes# 8.75s.08 e
t El-40 e
1
~.
_...t.....
s c.
.c..
3..
.:...,...<..,.,,...,..r
,r EIIIBIT A.(con',t) 9300-ADM-4010.03 Kev. D
- t a
s..
y*..
t mine assumaten resters
.... <.* y...
samtter menee e eeee et Printine #121519e6 h erer arm es 5
,-I els'tenseg seteese.sefsM emers Demeind \\
l 8'eere t e
38 48 tot 13e 30s l
400 4.78E4 9.13E4 3.4184 1.7184 T.SOEM 9.m eB
~ ' '
See ' F.M47.3Me"3.m4 *Y.73E es ' T. deem'ti.444 es' des
- 3. 2 4 '9.3 M 4 3.M S 06 1.75 4 T.etE*er 9.aes es 700 3.NE el 9.FFE4 *3.4004 1.7354 F.mM 9.47 Pet 800 2.73E*G 9.9954 3.aste f.F354 T. deem 9.488 W 988 3.4eE 4 1.e4 3.98E 08 1.7454 T.mM 9.718 e8 fees 2.275 5 1.55 4.3.900 4 f.75E4 T. des er 9.7684 tape-1.98E 4 f.m es,4.0004 1.7584 T.75EM 9.798 08 190s
- f. e 4 1.318 4 4.195 4 f.795 4 T. m M '9. ass e 1758
- 1. e 4 F.4784 4.3N4 t'.M T.918 W F.955+es 2000 1.275 4 9.1954 4.48E4 1.5 5 4 4.geg M 1.gec M 250 1.1854 4 3 4 4.3154 1.a5E4 km er 1.018 er 2500 1.15 4 Late 4 4.35E 4 1.91E*e6 L1SE*er 1. m M 3000 9.5 4 T.48E4 4.354 1.954 LIMM id'3EM 3500 8.SeE4 -T 2184 f 34E4 2.44d4 'L5ds er 't.,JEM-
'esos T.4054 ' 4.e4'44484 ' L'134 M er
- 1054 ' ~ ' '
40E0
- 4. m 4 4.1184 4.3154 L1954 9.145M 1.fRM
(-
5088 Lasse 5.40E4 4.1584 2.24 9.40EM 1.135 er S5ee 5.7584 5.34e4 3.9eE4 Lasse 9.assM 1.fas.er dose 5.25E4 4.m-46 3.4184 2.2754 1.e34 f.19E 4F 4088. 5.0004 4.454 3.7154 L2N4 1.04s 4 1.215M 70se 4.254 4.4884 3.m-e6 2.aese 1.ee54 1.255 4F 7500 4.e4 4.3354 3.334 2.2554 1.em 4.1.25E M mes 4.4484 4.14E4 3.24 2.2454 1.1W e6 t.25 er 9000 4.1054 3.asse 3.2554 2.20E4 1.135 4 1.33E 4F 10000 3.795 46 3.4484 3.m4 2.15E 46 f.148 4 1.39E er 15000
- 2. m 4 2.775 4 2.54 1. e 4 1.198 4 1.718 0F 20000 2.2eE 4 2.22E 4 2.e454 1.485 4 1.148 4 Lits er Paese 41
'~
El-41
_w
l o
,o 3...
y
(
93oo ADg.4010.03 R*v. O g
EIHIBIT 4 (con't) 8.Ine Qfen 7,eems, stability Cteses e Sete of Printine 312 15 1986 EnerW eroge 6 efetm oo% te(esee eefekt meters Dawesind \\
aseere \\
e M
46 tot 156 300
~40F
- T. fee.et t.4444 6.47te 2.5E4 1.*4184 L34s.er Set 6.345 5 1. e 4 4.1e84 2.9054 1.415 4 2.358 07 488 5.715 4 1.33E 4 4.133 4 LgeE 4 1.41 4 2.355.or 700 5.45E 4 1.3ds.45 4.1754 L9154 1.e4 L355 07 000 4.33E 4 1.dse.g 6.218-06. L9EE4 1.4M4 2.348 0F 900 4.1W4
- f. m.es 4.200 4 LfW e 1.428 4 3.348.or 1000 3.7Es.m 1.4384 4.334 Lesse 1.4334 L348.or itse 3.15 4 1.adC.00 4.4854 2.97E4 1.618 46. 2.375 0F 130s L M.e
- 1. m.e5 4.718 06 3.805 4 bede 06 2.385 07 1758 L3N4 1.348.e5 4.75E4 3.4484 1.44E 4 Lees.cf 2000 LOGE 4 1.45 4 T.14E4 3.144 1.47E 4 2.41E.07 2350 1.918 00
- 1. 2.e5 T.308 4 3.14s 4 1.438 4 2. m.07 2508
.1. M *eg 1.375 08..T.3434 3.1954-1.4sE.e6 2.4ag:.er: U_.'..-
3500 1.3dS*eu 4.275 5 T.4084' 3.38E4' 1JB4 2.dR.or Weg 1.35.e5 1.ide.es T.3E8 4 3.43 06 1JM4 2.488 0F
('
4000 1.M54 1.e4 TJRE4 3.348.edr 1.ME 4 2.735.or 4800 1.13 5 9.875 46 6.98E4 3.e4s4 1. Fig.e6 LFFE.er Seat
- f. e 4 9.1484 6.FN4 3.7154 f.me Late.er 5900 9.3DE4 8.454 6.4854 3.75E4 1.7hE4 2Jea.#
4808 SJde.edt T.aIE4 6.234 3.77Fres 1.mE.edr. 2. pts.or 4800 8.1984 T.3954 4.4054 3.7754 1'.me Lpas.or 7988 T.854 7.3DE4 5.91E4 3.788646 1. ass e 2.ges.or 7500 T.31E 4 F. M 4 5.755 46 3.758 4 1.s54 3.ets.or 8008 T.215 4 4.7754 5.41E4 3.725 06 1.95 4 3.05E.er j
j 9000 6.44E4 4.3084 5.334 3.d4s4 f. m 4 3.13E.er 1000$
6.15 4 5.aEE.e4 5.0684 3.39E4 2.00E 4 3.23E.07 15000 4.73E4 4.3754 4.10E4 3.2154 2. case 3.71t-er
' 2GdB 3.738 4 3.4854 3.4484 2.334 1.99E 4 4.338 07 e
El-42
- - - - - - - -