ML20236J370

From kanterella
Jump to navigation Jump to search
Rev 1 to Procedure SAG.CP18, Procedure for Qualification of Cable Trays for Texas Utils Electric Comanche Peak Steam Electric Station Units 1 & 2
ML20236J370
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 07/01/1987
From: Gorozdi L, Maryam Khan, Zee C
EBASCO SERVICES, INC.
To:
Shared Package
ML20236J341 List:
References
SAG.CP18, NUDOCS 8708060155
Download: ML20236J370 (107)


Text

{{#Wiki_filter:-

      - '                                                                                                  SAG.CP1B                     .q DASCO SERVICES INCORPORA1ED O                                                                                                                                     i PROCEDURE FOR                                                                               I q

QUALIFICATION OF CABLE TRAYS j FOR 1 l TU ELECTRIC 1 -. J l COMANCHE PEAK STEAM ELECTRIC STATION , j UNITS 1 & 2 1 i i , I l' I  ! l Revision l Prepared l Reviewed i Approved 'l 'Date l Pages l l O l l No. I l By l I By . I l by l I l Affected, I i 1' I i 1 l- I . I- l RO l M.Z. Khan l F. Hettinger lR.S. Alexandru l'6/17/87I -- l l l L. Gorozdi l l l- I l l l C.H'. Zee l l l l l l l J. Veikos l l l l l _ l l l R1 l M.Z. Khan F. Hettinger R.S. Alazandru l l See Sheet l l C.H Ze C l S'I ANrM* l l l l l J. Veikos I I g46. p i 1 1 I I I I I v b DASCO SERVICES INCORPORATED 2 WORLD IRADE CENTER NDi YORK, NY 10048 . u 1 1824R. l 1 l

[i SAG. CP18 TABLE OF CONTENTS

  .A U                                        SECTIONS                                              PAGE i

TABLE OF CONTENTS i

1.0 INTRODUCTION

1 2.0 TRAY QUALIFICATION METHODOLOGY AND PROCEDURES- 1 2.1 EQUIVALENT STATIC METHOD (ESH) 1 , 2.2 RESPONSE SPECTRUM METHOD (RSM) 4 3.0 SPLICE PLATE QUALIFICATION METHODOLOGY  ! AND PROCEDURES 5 1 4.0 TRAY GEOMETRIES 6

                                                                                                         ]

a) Straight 6 l b) Flat Elbow 6 c) Riser Elbow 6 l d) Tee 6 e) Cross 6 i f) Reducer 6 g) Offset Reducer 6  ; i h) Y Branch 8 j 1 i) Cantilever 8 j) Single Offset (Vertical and Horizontal) 8 k) Double Offset (Vertical and Horizontal) 8

1) Z Offset (Vertical and Horizontal) 9  ;

l 5.0 LOADING CONDITIONS 9 6.0 ULTIMATE CAPACITIES OF TRAY 9 6.1 MOMENT CAPACITY 9 6.2 AXIAL I4AD CAPACITY 10 6.3 TORSIONAL MOMENT CAPACITY 10 6.4 SHEAR LOAD CAPACITY 10 7.0 CABLE TRAYS WITH CONDUIT ATTACHED 11 7.1 SECTION A PROCEDURE 11 l 7.2 SECTION B PROCEDURE 12 l  % l l l 1824R 9a___ _ _ _ _ ______ _______._.._-__ __m

                                           ,.                                                                                                                               SAG. CP18                       j I

TABLE OF~ CONTENTS (Cont'd) I b

         'G                                                                                   SECTIONS                                                                             PAGE
                   -                                                                    8.0   DEVIATIONS                                                                            12 8.1    SHEAR BEAM BEHAVIOR                                                            12                      l 8.2   WELD VARIATIONS                                                                12 8.3    INSTALLATION VARIATIONS                                                        12                      i 8.4   WELDED-PIN AND PIN-PIN CONNECTIONS                                             12                      !

8.5 SPLICE PIATE DEVIATIONS 12 9.0 COMPOUNDING OF DEVIATIONS 12 10.0 CABLE TRAY INACCESSIBLE ATTRIBUTES 14 11.0 APPENDICES DESCRIPTION 15 R1

12.0 REFERENCES

15 LIST OF TABLES TABLE T1 - T J Cope Straight Tray Ultimate Loads and Ultimate Moments

  • TABLE T2 -

T J Cope Straight Tray. Ultimate Longitudinal Loads TABLE T3 - T J Cope Straight Tray Ultimate Torsional Momente l l TABLE T4 - T J Cope 90' Flat Elbows & 90' Riser Elbow Ultimate Homents (Also Applicable to 30', 45' and 60* Elbows) TABLE TS - T J Cope 90' Flat Elbow Ultimate Torsinal Moments I (Also Applicable to 30', 45' and 60' Flat Elbows) I 1 TABLE T6 - T J Cope 90' Riser Elbow Ultimate Torsinal Moments j (Also Applicable to 30', 45' and 60' Riser Elbows) i TABLE T7 - T J Cope Cope Tray Ultimate Shear Loads TABLE T8 - T J Cope Cope Cantilever Tray Ultimate Longitudinal Loads i TABLE T9 - T 'J Cope Reducer and Offset Reducer Ultimate Moments TABLE T10 - T J Cope Ultimate Transverse Capacity Reduction Factors for Shear Beam Behavior TABLE Til - T J Cope Minimum Weld Acceptance Basis l l 1824R l i

SAG. CP1B TABLE OF CONTENTS (Cont'd) O(_/ TABLE T12 - T J Cope Ultimate Capacity Reduction Factor for IR1 Welded-Pin and Pin-Pin Connections l TABLE T13 - -T J Cope Ultimate Capacity Reduction Factors for Splice Plate Deviations TABLE T13A - T J Cope Bolt Loads n, a and 1 for Tested Splice Plates TABLE T13B - T J Cope Bolt Loads n, a and 1 for Tested Splice Plates TABLE Hi - Burndy/ Husky Strsight Tray Ultimate Loads and Ultimate Moments TABLE H2A - Burndy/ Husky Straight Tray Ultimate Longitudinal Loads l Without Thermolag TABLE H2B - Burndy/ Husky Straight Tray Ultimate Longitudinal Loads With Thermolag TABLE H3 - Burndy/ Husky Straight Tray Ultimate Torsional Homents TABLE H4 - Burndy/ Husky 90' Flat Elbows & 90' Riser Elbow Ultimate Moments (Also applicable to 30*, 45' end 60* Elbows) f'i TABLE H5 - Burndy/ Husky 90' Flat Elbow Ultimate Torsional Moments lR1 (/ (Also Applicable to 30', 45' and 60* Flat Elbows) l TABLE H6 - Burndy/ Husky 90' Riser Elbow Ultimate Torsional Moments - R1 (Also Applicable to 30', 45' and 60' Riser Elbows) TABLE H7 - Burndy/ Husky Tray Ultimate Shear Loads TABLE HB - Burndy/ Husky Cantilever Tray Ultimate Longitudinal Loads TABLE H9 - Burndy/ Husky Reducer and Offset Reducer Ultimate Moments TABLE H10 - Burndy/ Husky Ultimate Transverse Capacity Reduction Factors for ', hear Beau Behavior TABLE H11 - Burndy/ Husky Minimum Weld Acceptance Basis TABLE H12 - Burndy/ Husky Ultimate Moment Capacity Reduction Factor for Welded-Pin and Pin-Pin Connections TABLE H13 - Burndy/ Husky Ultimate Capacity Reduction Factors lR1 for Splice Plate Deviations l TABLE H13A - Burndy/ Husky Bolt Loads n, a and 1 for Tested Splice Plates O 1824R -iii-

  ..                                                               SAG. CP18 TABLE OF CONTENTS (Cont'd)

Appendix A -

                    ' Straight Tray Qualification Procedure             Al Appendix B -

Flat Elbow and Riser Elbow Tray' B1 Qualification Procedure Appendix C - Cantilever Tray Qualification Procedure C1

     . Appendix D -

Reducer and Offset Reducer Tray Qualification Di Procedure Appendix E - Single Offset, Double Offset and Z Offset Tray El Qualification Procedure Appendix F - Tee Tray Qualification Procedure F1 Appendix G - Y Branch Tray Qualification Procedure G1 Appendix H - Cross Tray Qualification Procedure El Appendix I - Splice Plate Qualification Procedure 11 l O 1 1 0 -iv-1824R l

                                                -                                                                                     SAG. CP18 (m)                                           

1.0 INTRODUCTION

j U j Cable trays render support and protection to electrical cables. The trays in turn are supported in the normal direction by structural steel hangers. Clamps are used to attach the trays to the supporting hangers. Special heavy duty clamps provide restraint in all three directions. The cable trays must perform adequat;ely during and 'af ter Safe Shutdown Earthquake (SSE). The cable trays are to be verified for specified SSE seismic event in addition to other concurrent loads. If OBE loads are more severe, they shall be used. This document describes the design verification procedures and acceptance criteria for cable trays. The procedures in this document are applicable to cable trays in Comanche Peak SES Units 1 and 2. Following conditions apply to this design verification procedure. l

1. The f ailure loads of trays in normal and transverse directions are obtained from laboratory static tests.
2. The f ailure load in axial direction is calculated on the basis of AISI Code.

1

3. The failure torsion capacity is derived from the failure moment capacity on the assumption that a concentrated load is applied at
                                                           ,             the mid point of the span, where the concentrated load is                    l l                                                                         calculated by dividing the failure torque by the widtn of the tray.           I
4. The shear and bending effects are uncoupled so that these can be checked separately.
5. The general qualification approach presented is f or representative treys. Trays with deviations shall be design varified based on i

the procedures specified in Section 8.0. 1 2.0 'IRAY DESIGN VERIFICATION METHOD 0I4GY AND PROCEDURES l The trays are to be qualified using either of the f ollowing two methods: lR1 l Equivalent Static Method (ESM) Response Spectrum Method (RSM). 2.1 EQUIVALENT STATIC METHOD (ESM) ESM is an approach which considers the cable tray as a separate structural element. The hanger assembly only provides support to the t ray. Each tray span is qualified either as simply supported straight trays or as continuous spans for fittings. A quadratic interaction equation is used. The forces and moments in the tray due to the applied I loads are calculated conservatively using maximum response spectra IR1 acceleration multiplied by MRM of 1.25. Inc failure loads of the trays I are found from test data. O

                                                                                                      ~1 -

1824h

SAG. CP18 The straight allowable spans and allowable loads of the horizontally i oriented trays are based on the following interaction e quation and letl [~ coordinate systems (Reference 1): 'l

              -f'          f           c f 2             f 2       f, 2 91/2        -

SF * * ( }' +( ) )

  • Mdh 1*u (2*1'1}

_F n L i-n t * ([L $ . where: h Normal " Vertical- IR1

                  -                        (n;-

Mt L /

                         *t Trar' averse             /          Hori'zontal 7       r   (t)
                               /           4 Mn  ,an
                       -- /

I, n tn y Horizontal Iongit dinal (1) F,f1 LOCAL IRAY AXES GLOBAL AXES L SF = Safety Factor = 1.6 f 'o

                    =    total weight of tray (including cables and fire protection if                       IR1 present) between two adjacent supports, force units                                 I
                    =    axial force due to thermal load, force units f

7 f*f n t

                    =

SSE seismic loads in normal and transverse directions between two supports respectively, force units fy = SSE seismic load in longitudinal direction between two ) longitudinal supports including the effect of longitudinal connectivity, force units F,F n g

                    =     ultimate tray capacities in normal and transverse directions from tests, force units a

Ft

                    =     ultimate tray capacity in longitudinal direction calculated                                   I using AISI Code (Reference 5), force units                                                    f MRM         =    nultir ode response multiplier as dafined above.

If the ultimate tray capacities are expressed in terms of f ailure IR1 moments (M n

                               'Mt
                                     ) f rom the tests of simply supported trays of 8 f t.

span with total uniform loads of Fn and Ft, then equation (2.1.1)

  • can be written as: .y
                                                                                                                        },

(m i 1824R 1 4

                                                                                                                        )

l

  .                                                                                              SAG. CP18
               - m'           t'      f                    t 2         2               2 1/2

{ y' SF _ [n

                         +

[n + f L+ (([an +-[)a +([a +([fL t

                                                                     )              )-                           .;

i

  • MRM 6,1.0 (2.1.2) 1 where: l s'n =

maximum moment in normal direction due to fn', in ft-lb units l . I I t'n = marinum torsional noment due to f n', in ft-lb units l

                                                                                                                     )

I i tn = narinua torsional moment due to SSE loading, in ft-lb units I an, at - SSE aoments in normal and transverse directions IR1 respectively, in ft-lb units- l I n Mt= ultimate tray moment capacities in normal and transverse Me 1 j directions respectively, in ft-lb units l  ; i fn = ultimate tray torsional moment capacity derived from M enin I ft-lbs units l All other parameters are as defined previously. I If the trays are oriented vertically, the interaction equation for straight tray spans is as follows: l 1

              -f'                     f 2            2     f 2 1/2                                          lR1 0s f                                                          -                               I

([n) +([f +( SF + + (2.1.3)

              ,[L           L                    t
                                                   )

L

                                                              )
  • MRM
                                                                                        $1.0 1

e Normal Horizontal where _ (n)_ l Mt,mg

                               %J                                                            -

{

                                                                                              ~

Transverse Horitontal I

                                      /           r (t)                                                              l P

[ AMn . a n Vertical

                                           ~

Longitudi al (1) FL, fi LOCAL TRAY AXES GLOBAL AXES All parameters are as defined above. l l R1 I O 1824R

SAG. CP16 In terms of ultimate moments (Mn

  • Mt) equation (2.1.3) becomes:
 !   I f'    f          m      t 2     m 2    f              -

SF l + ) +(f)2,1/2 (2.1.4)

                    '[L + Lf +

(g n [) +([t u L -

  • MRM(10 IR1 where the parameters are as defined bef ore.

It is shown in Reference 19 that fT can be disregarded in equations (2.1.1) to (2.1.4). After the evaluation of the interaction equation, a shear check is to be perf ormed on the tray. The tray is qualified when both interaction equation and shear check are satisfied. The shear check involves the comparison of the shear forces obtained f rom ESM and multiplied by a safety factor (1.6) with the ultimate shear l load capacities of the tray, in both normal and transverse directions. For shear load capacities see Section 6.4. Detailed procedures for each tray configuration shown in Section 4.0 are given in the Appendices of this document. IR1 l 2.2 RESPONSE SPECTRUM METHOD (RSM) RSM is a system analysis approach which uses the dynamic response I spectrum method for the qualification of cable tray and hanger assemblies. This system analysis uses a detailed three dimensional model of the tray and hanger assembly. As part of the computer output of RSM analysis, axial f orces, bending moments, torsions and shear p forces are printed out f or the cable tray sections. These forces and xy moments are used in the qualification of the tray. j In RSM approach the following linear interaction equation is used for the qualification of the tray: i t m m SF ((fL + [n + [ + [t] ( l.0 n (2.2.1) 1 i where lR1 SF = Safety Factor = 1.6 fy = axial force due to gravity, thermal, SSE and the effect of longitudinal connectivity loadings ! t n

                        =

torsional moment due to gravity, thermal and SSE loadings a*5t n

                        =

bending moments in normal and transverse directions due to gravity, thermal and SSE loadings l FL

                        =

ultimate longitudinal tray load capacity (calculated using IR1 l AISI Code' l M*Mt n ultimate moment capacity in norsc1 and transverse { directions, respectively, based on testing.

 \

1824R

i SAG. CP18 1 The forces and moments due to SSE loadings are square root of sum of squares (SRSS) from 3-directional earthquake. In this case, the axial

 - b[~}       forces, bending moments, torsional moments and shear forces at the               ,

critical locations in the trays are obtained from RSM. After the evaluation of the interaction equation, shear check is to be performed on the tray. The shear check involves the comparison of the shear forces obtained from RSM and multiplied by a safety factor (1.6) with the ultimate shear load capacities of the tray, in both normal and transverse directions. For shear load capacities see Section 6.4. The tray ic qualified when interaction equation and shear check are l satisfied. Detailed procedures for each tray configuration shown in Section 4.0 are given in the Appendices of this document. l 3.0 SPLICE PLATE QUALIFICATION METHODOLOGY AND PROCEDURES In determining the ultimate tray capacity, 8'-0 straight tray sections with splice at mid-span were tested in the normal and transverse directions. The results from these tests and the analytically computed i longitudinal tray capacities have been adopted as the ultimate strengths of the trays for tray qualification. Since a mixture of tested and other than tested splice plates have been used in the installation of trays, and to justify the accuracy of the analytically computed longitudinal load capacities, one needs to separately qualify the connection. The governing case for either the tray qualification approach (as defined in Section 2.0) or the. connection qualification approach (as defined in this section), defines the acceptance basis of i n the tray / splice plate system for tray qualification.

   \          In order to determine the load capacities for connection qualification,      I three splice plates were tested for an 8'-0" simply supported tray           I section,,for grouped tray sizes, with these splice plates 1ccated at         I mid-span, for normal directional load application. The capacities of         I each tested connection for the normal-direction are obtained directly        l from the tests, and computed for the transverse and longitudinal             IR1 directions (Ref. 24). The obtained connection capacities for each            I tested splice plate is then enveloped for the normal, transverse and        I longitudinal directions. A summary of these enveloped connection capa-      I cities appear in Table T13A. The capacity values in this table can          i conservatively be used to qualify the connections analytically,             I otherwise the computation of connection capacities for connection           l qualification, shall be performed on a case-by-case basis as outlined in    l Appendix 1.                                                                 l A second alternative to connection qualification can be used. This           I approach conservatively uses the lower bound capacity values obtained       I from either the tray test results or the connection test results, therefore requiring a single check only, as opposed to tray and connec-tion check separately. Table T13 summarizes the reduced capccity             I coefficient multiplier factors for the nornel, transverse and longi-        IR1 tudinal directions based on enveloped tray test results capacities and       l  1 lowest splice plate connection test cepacities (Ref. 24). These factors     I are to be applied to the tray capacities and the obtained reduced capa-     l cities used to qualify both the tray and connection using the procedure     l O            outline in Section 2.0.                                                     I V

1824R f

l

         ..                                                                                                                 SAG. CP1b 1
    /-             4.0 -  IRAY GEOMEIRIES The cable trays are qualified or the basis of following layouts in relation to their restraints. The qualification procedures of these layouts are described.in Appendices of this document.                                               ..

a) Straight E T T E

                                                                                                   ,l    ___

LL _t  ; i FIG.'3.1  ! LL i i b) Flat Elbow --- L i l

                                                                                    -~~.'                                              l       .

T , IR1 l l 'l g6 ... I l t T'i,y 6 up to 90*

                                                                               '                                     (Includes 30*,
   ,                                                                                                                 45*, 60*, 90*     l
   '(                                                                                                               -Elbows)           i hLL FIG . 3.2                                                     j l

LL I J c) Vertical Riser

  • L I T '

I iR1 'l i I

                                                                                                      ~

O up to 90* (includes 30*, i l 45*, 60*, 90* i i LL Fittings) l I I FIG. 3.3 ] i I LL - Iongitudinsi Support T - Transverse Support  ! L - Iray Span 1824R i a__-_________-_-_________ . . _ - - _ _ _ _

                                                                                                                  -SAG. CP1B          '
                                               - LL '                       LS-                                LL              l
                -d)       Tee                           ~~~

r

      .                                                          Il           t                          I ~~.-
  • l  !

ss 1 lR1

                                                                                                                             'l T                                    l-1 I                                                       1
                                                                                 - l LL                                       l FIG. 3.4 LL                                          l
                                                                             ~T                                                l
l. I-l-

E--T l LL TO T l e) . Cross - J _ _ _ LL I-L Is s _i 1 1

                                                                                           ~'

i, I - g

1. _ _ T I i I i

O FIG. 3.5-la i l f) Reducer J LL T T LL ( _--- L p L J . FIG. 3.6 l 1 g) Offset Reducer LL T T LL 1 e C -~ ~" L L i FIG. 3.7 LL - Longitudinal Support

   '$            T - Transverse Support J

L - Tray Span ' \ _y. 1824R .i 1 1 _ . _ . __ __ . - _______-_ D

a SAG. CP18 ] 4 1 h) Y Branch - ( 0 f _45*) I LS _l l -l

                                                                     ', 1 LL              I LL       T                        T' l

I g,

                                                       /        e T                                 I Ss                           LL                            l 8            j FIG. 3.8                       \

l ) l i) Cantilever LL T T F- - - ,

                                                                                                          .1 L.              7 w

FIG. 3.9 j) Single Offset (Vertical & Horizontal) LL T l O s- -  ! LL 1 1_ T ) i- g L s _f

                                                                          'I                                      )

FIG. 3.10 1

                                                                                                             -    I k)    Two Offsets (Vertical & horizontal)

I LL T .,/ - T LL . i,

                         ~~                                                      ~~
                                 ,=                       ,

[ -

                                                                              =,

L FIG. 3.11 LL - Icogitudinal Support j T - Transverse Support t L - Tray Span l

                                                   .b-1824R l

I

                                                                                           'I
                                                 .                                                                1 a

SAG. CP18

1) Z Offset (Vertical & Horizontal)

(w LL T l---! f 4- -L o T LL l--H 4 FIG. 3.12 5.0 LOADING CONDITIONS The loads to be considered in tray design are gravity (dead weight) loads, SSE seismic loads and thermal loads. Ihe gravity loads are caused by the weight cf the tray including cables and fire protection.  ! The thermal loads are calculated for a postulated change of temperature with an effective coefficient of thermal expansion. However, thermal

                  /                                                           loads need net be considered explicitly in tray design verification,
     ',                                                                       because they are generically addressed in Reference 19. Seismic loads are based on maximum response spectra accelerations in ESM or obtained       lR1 directly from response spectra analyses in RSM.                                    l l                                                                                                                                                                 i
    -                                                                         In the calculation of seismic load in the longitudinal direction of the      l

( tray, the effect of longitudinal connec'ivity t at the transverse l

   \

l  ; hangers between trays and hangers must be considered. The effect of I longitudinal connectivity is to increase the seismic load of the tray l in the longitudinal direction by a portion of the'tranverse hanger R1 self-weight induced seismic load. The tranverse hanger self-weight induced seismic load due to longitudinal connectivity shall be l considered on the basis of the procedure described in Attachment Z of l General Instructions (Reference 4). In RSM the effect of connectivity ) 1 is taken into account as part of the analysis. I 6.0 ULTIMATE CAPACITIES OF TRAY I 6.1 LOAD AND MOMENT CAPACITY The load carrying capacities of various trays in the normal and transverse directions are determined from static tests. The trays were tested in the unrati and transverse directions as 8 ft. span simply supported beada with loads applied as uniformly distributed. The 90' flat elbews and 90* riser elbows were tested either as 2-span or 3-span continuous hans with each span being 8 f t. Uniform load over the elbow span was applied to flat elbow in normal direction and to riser l albow in transverse direction. In addition, both elbows were tested  ! with tensile and compressive axial loads applied at one end of the elbow. The tee tray fittings were tested in the vertical and transverse directions with uniforin end concentrated loads respectively. v;

                                                                                                               -9_

1624R

SAG. CP16 The ultimate loads and/or moments obtained from straight tray and elbow

 ,         tests are given in Tables II, T4 and H1, H4 for T J Cope and L        Burndy/ Husky trays and elbows respectively. The ultimate moments in Tables T4 and H4 are also applicable to elbows with acute arigles (30*,

45*, 60* and 90*). The ultimate load capacities of tee trays in vertical and transverse directly' are given in Appendix F. < These ultimate load and/or moment capacities are used for various tray geometries shown in Section 4.0. The use of these capacities in the qualification of the tray is fully described in each Appendix. 6.2 AXIAL LOAD CAPACITY The tray capacities in the longitudinal directions are calculated using AISI specification (Raference 5) for varying spans. These are summarized in Tables T2 and H2 for T J Cope and Burndy/ husky trays l respectively. The ultimate longitudinal loads for elbows, reducers / I offset reducers, single offset, two offsets and Z offsets are taken the l same as the straight trays with equal spans. The ultimate longitudinal loads for cantilever trays are given in Tables T8 and H8. The ultimate longitudinal loads for Tee, Cross and Y Branch are derived f rom test data. 6.3 IDRSIONAL M0 MENT CAPACITY The failure torsion capacity is derived from failure moment capacity of the tray in the normal direction by assuming a concentrated load at mid-length of the span, where the concentrated load is the f ailure torque divided by the width of the tray. These capacities are O' summarized in Tables T3, T5, T6 and H3, H5, H6 f or T J Cope and burndy/ Husky trays and elbows. The torsional moment capacities in Tables T5, T6, H5 and H6 are also applicable to e1 bows with acute angles up to 90* (30*, 45*, 60* and 90*). The use of torsional moment capacity in the qualification of the tray is described in each Appendix. 6.4 SHEAR IDAD CAPACITY The ultimate shear load capacity of the tray is calculated on the basis of AISI' specification Section 3.4.1 (Shear stresses in webs, Ref erence 5) lR1 as follows: (a) For H/ 237/K/F r-11of,r y

                    ,                    (o58ry                                  (6.4.12  iR1 (H/t)

(b) For H/ s 5237p/f 26670 K i F = v y (6.4.2) lR1 (gjg)2 1824R

3 p ll

                                                                                                                    ~]

1 d j ' "1 ' t

                ;^                                                    ,                           SAG. CP18' q

where

                            'F y     =    ultimate shear stress, kai                                                 -{

Fy '= malarial yield stress, kai

              .                t     =    thickneEofweborflange l's                     H     = theight of web or flao+e Ky      =    shear buckling coefficient = 5.34 Based on the above value of Fy the shear load capacity . ' the tray is
                            .calculated as given below.

5 S  ?= (Fy ) A (6.4.3) l R1 - S = Ultimate shear load of tray A = A, (web areas of two siderails) for shear in normal direction Af (flange areas of two sidera11s) for shear in transverse i direction 1 In equation (5.4.3) Fy is calculated for web and flange separately or, , the basis of equation (5.4.1) and (5.4.2). The ultimate shear loads. l are summarized in Tttles T7 and H7 for T J Cope and Burndy/ Husky trays l respectively. The shear load capacities in Tables T7 and H7 are applicable to all tray layouts. l ] 7.0 CABLE TRAYS WITH CONDUIT ATTACHED For cable trayszvith conduit attached follow the procedure given in Attachment U of deceral Instruction (Reference 4). Conduit may be attached to an}4 tray geometry identified in Section 4.0. Therefore, the procedures discussed .below in Sections 7.1 and 7,2 apply to all trayC with conduit attaenaeut. '

                                                                  , s 7.1   ~SECTION A PROCEDURE For,the procedure in Section A of Attachment U,;the support means the                     i cabletrs{andhangersystem(hereafterreferredtoasCTHsyste.a),and                              '

the fundamental frequency of the support means the fundamental  ; frequency of CTH system. The minimum frequency criteria of CTH systes  ; isl' described by points 1 to 4 in Section A of Attachment U. l t l In the qErlification of the tray using ESM calculate the forces at the pciet of attachment of conduit to the tray for SSE condition with 3%. damping. These conduit loads (Pn* Pt: P1) are applied to the tray at the point of conduit attachment including sounting eccentricity. The contribution of Pne Pte P1 are added to the values of s'ne t'n, s'n* t n, and f i, obtained from other loads. Using these O 1024R 9

f f

                      .                                                                                                    SAG. CP18 values and ultimate capacities of the tray configurations check the (m)                                     interaction equation (2.1.2) or (2.1.4). If tne interaction equation V                                     is satisfied then check for shear.

added to shear loads calculated fromThe contribution other loads. The Pn,l Pt. of tota shearare loads multiplied by SF (1.6) are compared with ultimate shear loads. If both interaction equation and ahear criteria are satisfied then the tray is qualified. IR1 In RSM the computer model must include conduit mass attached to the tray with proper mounting eccentricity. Equation (2.2.1) shall be used to qualify the tray. In addition, check for shear criteria as described above. If both criteria are satisfied then lR1 the tray is qualified. The ultimate capacities to be used in equations (2.1.2), (2.1.4) and (2.2.1) are given in T J Cope and Burndy/ Husky tray capacity Tables. IRAY s 1 i l 't r l I t t _. _ _ _ _ , ___4 q -

                                                              !                                    l      t k> -

pL _ pn. y eccentricity i

         \
                                                                         /        o                                                       .

CONDUIT ATTACHMENT p g  ! POINT l 7.2 SECTION B PROCEDURE Cable trays with conduit attached and not located in areas described in Section A procedure must follow the Section B criteria. There is no minimum frequency criterion of CTH System for these cases. The trays are then qualified by incorporating the conduit loads (pne pg, pi) as described in Section A procedure. 8.0 DEVIATIONS Due to deviations, the tray ultimate capacities as obtained from static testing shall be reduced to a lower value by reduction factor multipliers (less than 1.0) applied to the affected capacity component (s). Ultimate moment and ultimate force capacity reduction multiplication factors are defined as Beta (B), Gamma (Y) and Delta (8) for the respective normal, transverse and longitudinal directions. The IR1 reduction factors are used to multiply the ultimate capacities to obtain the reduced capacity values for use in the applicable interaction equations for evaluation. This section identifies deviations and the approach to address the deviations. lR1 0 1824R

SAG. CP18 i 8.1 SHEAR BEAM BEHAVIOR t b' Tray span lengths less than the tested span length of 8'-0" in the j transverse direction only shall use ultimate capacity reduction factors 1 as shown in Tables T10 and H10 (Raference 20), for T J Cope and Burndy/ Husky trays respectively. One shall multiply the ultimate transverse forces and moments for tray sizes by the corresponding l .1 ultimate capacity reduction factor to obtain the reduced capacity for IR1 shear behavior. l 8.2 WELD VARIATIONS A limited random. weld sampling of statically tested representative trays was performed to assess possible capacity reduction due to weld i variations (Ref 22). The extent of weld variations in che representa IR1 tive tested specimens showed no effect on capacity reductions for tested I tray specimens (Ref 22). A minimum weld acceptance basis is shown in IR1 Tables Til and Hil. If identification is made of weld deficiencies i less than the minimum basis, then one needs to calculate the new weld  ! strength for all components and apply a reduction factor multiplier to l the ultimate tray capacities equal to the ratio of the actual weld strength to the minimum weld strength. 8.3 INSTALLATION VARIATIONS  ; When installation variations occur, one is to address the situation by performing the qualification procedure for each possible variation and then [_A conservatively using the lower bound. Specifically this applies to the following installation variations ) Splicing of trays supplied by two different manufacturers (T J Cope and Burndy/ Husky). Splicing of trays with 4 inch and 6 inch siderails. Splicing of solid bottom trays with ladder type trays. 8.4 WELDED-PIN AND PIN-PIN CONNECTIONS Welded-Pin and Pin-Pin connection hardware re used when trays change direction or elevation. The ultimate capacity reduction factors for these conditions are shown in Tables T12A, T12B, H12A and H12B. 8.5 SPLICE PLATE DEVIATIONS Splice plate deviations are addressed by qualifying all plate connections separately from the trays by using the method outlined in Section 3.0. 9.0 COMPOUNDING OF DEVIATIONS If more than one type of deviation is present in a tray section, the capacity reduction f actor multipliers J , Y , and cT shall be compounded for each deviation and component direction. If information of tray s 1824R

y I j i a SAG. CP18 j l sections is limited, one shall compound all possible devistions to account for the worst situation. Compounded deviation factors shall be v - coa.puted as follows: (Normal Direction)'= 18

  • 82
  • M 3*~ M n (Transverse Direction) = If 1*T*E (Longitudinal Direction) = g i8 82 *3f3""*I 2 n
                                                                   . .. cf~n where 4 , Y and 6are the utlim*. ate capacity reduction f actor multipliers for the normal direction, transverse direction and longitudinal direction respectively.

10.0 CABLE TRAY INACCESSIBLE ATTRIBb7ES (IA) ) 4 These instructions summarize the method of resolution whenever the tray-is covered with thermolag/thernoblanket or when certain attributes are physically inaccessible due to access difficulties. The extent of fireproofing material shall be as shown on Unit No. 1 Span Length Sketches and Unit No. 2 Span Map Sketches. Resolution method is comprised of'the following two steps: j

                  - First, evaluation by using the worst case assumptions from available as-built data.                                                                      >
                  - Second, making the physical attributes accessible to obtain as-built duca and re-evaluation.

When using the first approach, the evaluation of each tray span will R1 consist of the following assumptions:

                  - Trays, Fittings and Hardware Manufacturers Unit #1 - Common Areas (Aux, Elec, Fuel) - T J Cope or Burndy/ Husky 1

i Unit #1 - Diesel Building - T J Cope l Unit #2 - All Buildings - T J Cope or Burndy/ Husky I

                  - Tray Type Solid Trough or Ladder
                  - Splice Plates Assume to be located on all straight spans
                  - Fittings Uso data shown on span sketches which identifies elbow angles.

Tees, Y , reducers based on thermolag/thernoblanket profile. , 4 1824R

1 SAG. CP18 {

                - Welded Pin or Pin / Pin Connection
 '())
  /                                                                                         ,     ,
    ,                  Review span sketches and identify non-standard elbo< angles          '
                                                                                                  )

(i.e., 30', 45', 60*, 90', + 5' tolerance). These locations l  ; shall be assumed as a Pin-Pin Connection.  ;  ! 1

                -4" and 6" Trey Sizes                                                             )

ff! l Review tray sizes at adjacent cable tray supports and assume 4" tray size to the response evaluation. First use lower bound enveloped capacity values in the Design Verification as ) applicable for different buildings. If the tray fails, adopt the second step i by obtaining as-built information as applicable and-re-evaluate. 11.0 APPENDICES DESCRIPTION The detailed qualification procedures of the tray layouts shown in  ; Section 4 are given in Appendices A to G of this document. These j Appendices are listed below indicating the tray layout to which each  ! appendix applies. Appendix A - Straight Tray Qualification Procedure - (Figure 3.1) I Appendix B - Flat Elbow and Riser Elbow Tray Qualification Procedure - (Figures 3.2 and 3.3) Appendix C - Cantilever Tray Qualification Procedure - (Figure 3.9) Appendix D - Reducer and Offset Reducer Tray Qualification Procedure - ' (Figures 3.6 and 3.7) l Appendix E - Single Offset, Double Offset and Z Offset Tray I Qualification Procedure - (Figures 3.10, 3.11 and 3.12) l Appendix F - Tee Qualification Procedure - (Figures 3.4) Appendiz G - Y Branch Tray Qualification Procedure - (Figure 3.8) Appendix H - Cross Tray Qualification Procedure - (Figure 3.5) Appendix I - Splice Plate Qualification Procedure Each Appendiz presents design verification procedures using ESM and RSM.

12.0 REFERENCES

1. Cable Tray Specification No. 2323-ES-19, Rev. 1, Nov. 22, 1976, Gibbs & Hills, Inc.
2. Seismic. Design Criteria for Cable Tray Hangers for Comanche Peak l SES Station No. 2, SAG.CP3, Rev. R9, 7/1/87, Vol. I, Book 1, IR1 Ebasco Services Inc., TIJE, CPSES. I O

1824R l

1 I SAG.'CP18 1

p. 3. Seismic Design Criteria for Cable Tray Hangers for Comanche Peak- l J SES Station No. 1, SAG.CP4, Rev. R6, 7/1/87, Vol. I, Book 1, Q Ebasco Services Inc., TUE, CPSES.

IR1 I

                                                                                              )

1

4. General Instructions for Cable tray Hanger Analysis for Comanche IR1 Peak SES Nos. 1 and 2. SAG.CP34 Rev. R8, 7/1/87, Vol. I, Book 1, l I

Ebasco Services Inc., TUE, CPSES l

5. AISI - Specification for the Design of Cold-Formed Steel Structural Members, Sept. 1980.
6. AISC - Manual of Steel Construction, Seventh Edition, 1971 and Supplements.
7. Not Used
8. Seismic Calculations and Load Test,' Rev. 1, by Husky Products Inc.

(HPI), 10/25/78, Cable Tray Qualification Data, Comanche Peak SES Unit Nos. 1 & 2, and Subsequent Test Data Transmitted by HPI to Gibbs & Hill Inc. in a series of letters during the period of February to October 1979.

9. Cable Tray Qualification CP-0579, TJ Cope Tray Test Report, Letter from J F Curie (T J Cope) to R Manuelyan (G & H), February 3,1982, ]

TUE, CPSES. l I

10. Test Report for Static Tests of Cable Tray and Pittings for  !

Comanche Peak SES, CCL Rep. A-719-86, Rev. O, July 3, 1986. lR1 1

11. Test Report for Static Teste of Cable Tray and Pittings for ]

Comanche Peak SES, CCL Rep. A-739-87, Rev 1, April, 1987.

12. Qualification of Burndy/ Husky Trays Based on Ebasco's Criteria, Gibbs & Hill Cale LIS-002C Set 1 Rev. 1, 4/22/86. Vol. I, )

Book 1 (Part 1) Section I, Item 4, Ebasco Services Inc., TUE, ' CPSES. j

13. Unit No.1 Allowable Straight Cable Trays Spans and Allowable Loads for Tray Overspans (T J Cope and Burndy/ Husky Trays),

Vol. I, Book 1 (Part 1) Section II, Iten 1, Ebasco Services Inc., TUE, CPSES. l

14. Unit No. 2 Allowable Vertical Cable Tray Spans and Allowable l

Loads for Horizontal and Vertical Tray Overspans (Burndy/ Husky Trays), Vol. I, Book 1 (Part 1) Secton III Ites 3, Ebasco Services, Inc. , TUE, CPSES.

15. T J Cope Expanded Test Data Evaluation of Straight Tray '

Properties, Vol. I, Book 1 (Part 3) Item 5, Ebasco Services Inc. , TUE, CPSES. l O 1824R

SAG. CP18

16. T J Cope Allowable Straight Tray Spans and Allowable Loads for Tray Overspans from Expanded Test Program, Vol. I, Book 1 (Part 1) Item 6, Ebasco Services Inc,,, TUE, CPSES.
17. Evaluation of Ebasco's Expanded Test Data for T J Cope Fittings and Trays Ebasco Services Inc., TUE, CPSES.
18. Evaluation of Impell's Test Data for T J Cope Fittings, Vol. I, IR1 Book-1 (Part 5) Ites 1, Ebasco Services Inc., TUE, CPSES. l
19. Impe11 Calculation M-27 " Thermal Load Evaluation", TUE, CPSES.
20. T J Cope and Burndy Husky Cable Tray Ultimate Shear Capacity, l Vol. I, Book 1 (Part 4), Ites 4, Ebasco Services Inc., TUE, I CPSES. I I
21. T J Cope and Burndy Husky Cable Tray Ultimate Torsional Moments, l
                                                                                                    'Vol. I, Book 1 (Part 4), Item 3, Ebasco Services Inc., TUE, CPSES.              l l
22. Weld Deficiency Evaluation for T J Cope Straight Trays and l Fittings, Vol. 7, Book 1 (Part 5), Item 6,'Ebasco Services Inc., i TUE, CPSES. l l
23. T J Cope and Burndy Husky Reducer and Offset Reducer Moment l Capacity, Rev. O, 6/16/87 Vol. I, Book 1 (Part 4), Item 5, Ebasco lR1 Services Incorporated, TUE, CPSES.
24. T J Cope Splice Plate Reduced Capacity Coefficients for Connection l Qualification, Vol. I, Book 1 (Part 5), Item 5, Ebasco Services l Incorporated, TUE, CPSES. l I
25. T J Cope Cable Tray Splice Plate Test Selection, Vol. I, Book 1 1 (Part 6), Item 1, Ebasco Services Inc., TUE, CPSES. l l ,
26. Corporate Consulting and Development Company, Ltd., Test Report i I for Cable Tray Deviated Splice Test with T J' Cope Trays, Report l l No. A-744-87, dated May 22, 1987. I  !

I

27. T J Cope and Burndy Husky Transverse Strength Qualification l l for Ladder Type Cable Trays, Rev. O, dated'6/11/87. Vol. I, I l Book 1 (Part 4), Section II, Item 2, Ebasco Services Inc. , l TUE, CPSES.  !

i i i V 1824R 4 l

                                                                                                                                                                                          .j

SAG. CP18 T. J.L COPE STRAIGHT TRAYS ULTIMATE LDADS (Fn,Ft) AND ULTIMATE MOMENTS (Mn,Mt)'

     "*s                                 1             I        I ULTIMATE LDAD                      I ULTIMATE ~ MOMENT g                 TRAY SIZE ICAT. NO.lTYPEl------------------- 1 J-----------------

l 1(*1)lFn (*2)lFt (*2) I F1 = 1 Mn(*3) I Mt (*3)

                     .....................................................l...........

4x6 I GF-86 I S. B. I 1467-1 1963 l (*411 1467 1 1963 4 x-12 i GF-12 . l S. B. I 4888 'l- 4688 l(*411 4888-1 4688 Afx 18 I GF-18 I S. B. I ' 4888 1 4485 l (*4) I 4888 1 4485 4'x 24 i GF-24 I S. B. I 7488 I 8862 l (*4) I 7488 I 8862 ____.._____________________ _ ____.g.______.________ 4 x 38 i GF-38 I S. B. I 7488 8 8367 l (*4) I '7488 i 8367 4 x 36 i GF-36 I S. B. I . 7488 1 8888 l(*4)I 7488 1 8888 _......__..____________________________l______________ 4x6 .I GG-86 i L. l 2123,1 2568 l (*4) I .2123 1 2568-4 x 12 i GG-12 i L. I 2123 1 3393 l (*4) I .2123 1 3393 ____. _______________________..___________.__l__ _______.______ 4 x 18 i GG-18 i L. I 5365 1 5353 1(34)l- 5365 1 5353 ______________________________. _____________l______.___ _______ 4 x 24 i GG-24 i L. I 5365 1 5323 l (+4) l- ____.g__'5365 1 5323 4 x 38 i GG-38 i L. . I 7928 I 8898 l (*4) I 7928 I 8898 _____....__...._______________.._______________g..____ ___________ 4 x 36 i GG-36 i L. I 7928 I 8733 l (*4) 1 7928 I 8733 ______......... ________________________... .l______.____ ___.__ 6.25 x 6 I JM-86 I S. B. I 6177 1 4213 l(+4)I 6177-1 4213 j a ________._____._______________________ _____.g_________..___.... 6.25 x 12 1 JM-12 15.9.1 6177 I 4213 f(*4)I 6177 1 4213 6.25 x 18 f JM-18 IS.B.1 6177 1 6742 1(*4)1 6177 l- 6742 l 6.25 x 24 I JM-24 IS.B.I 18288 1 11893 l (*4) I 19288 1 11893 ____...-____________________________..__. __g .____ ___.______ 6.25 x 38 i JM-38 I S. B. I 19288 1 11262 l (*4) I 18288 l 11262

                      ....__..__..____.._______......_____                                  .__....l__________________

6.25 x 36 I JM-36 IS.B. I 18288 1 19958 l (*411 18288-l 18958

                      . .___________________                       ___          ______.            __l_________.              .

6.25 x 12 l GI-12 i L. I 9283 1 8356 I (#4) I 9283.I- 8356 g_________ ________ 6.25 x 18 1 61-18 i L. I 9283 1 8288 f (#4) I 9283 1 8288 ] _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.____l______________.  ; 6.25 x 24 i GI-24 i L. I 9283 1 8317 l (*4) 1 9283 1 8317  ! 6.25 x 38 i GI-38 i L. I 19493 1 11583 l (*4) 1 19493 1 11583 _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . ____________t_______ _ .. __ __ 6.25 x 36 1.GI-36 i L. I 9283 1 8292 l (*4) I 9283 1. 8292-1 NOTES:

1. S.B.= Solid Bottom l'L.= Ladder
2. Fn & Ft . are ultimate normal & transverse loads (1bs) based on 8-ft simply supported test span.
3. Mn & Mt are.the corresponding moments produced by Fn & Ft. unit is Ib-ft.
4. for F1, please refer to Table T2.

TABLE T1 1 1

SAG.CP18 T. J. COPE STRAIGHT TRAYS ULTIMATE LONGITUDINAL LOADS / ,_% ***************************** k-- (FL) CATALOG NO.I GF-06 GF-12 GF-18 GF-24 GF-30 GF-36 GG-06 GG-12 GG-18 GG-24 GG-30 GG-3E TRAY TYPE l(S.B.) (S.B.) (S.B.) (S.B.) (S.B.) (S.B.) LADDER LADDER LADDER LADDER LADDER LADDE TRAY SIZE I 4X6 4X12 4X18 4X24 4X30 4X36 4X6 4X12 4X18 4X24 4X30 4x36

     -___________l____________________________________________________________...________----______

l 4 113824 28638 28638 48323 48323 48323 14528 14528 28344 28344 46117 47314 1 4.25 113436 27946 27946 47163 47163 47163 14100 14100 27465 27465 44796 45881 14.5 113057 27250 27250 46035 46035 46035 13682 13682 26584 26584 43517 44493

         .I 4.75    112690 26554 26554 44942 44942 44942 13277 13277 25704 25704 42281 43151 15        112336 25661 25861 43886 43886 43886 12884 12884 24829 24829 41092 41860 1 5.25 111994 25171 25171 42867 42867 42867 12506 12506 23962 23962 39949 40620 1 5. 5    111665 24489 24489 41885 41885 41885 12143 12143 23166 23106 38853 39421 1 5.75 111349 23815 23815 40940 40940 40940 11794 11794 22263 22263 37805 38292 16        111047 23150 23150 40031 40031 40031              11459 11459 21435 21435 36801 37203 1 6.25    110757 22496 22496 39156 39156 39156 11139 11139 20623 20623 35842 36161 16.5      110481 21854 21854 38313 38313 38313 10833 10833 19829 19829 34926 35167 I 6.75    110217    21224   21224   37500  37500 37500 19541 10541 19053 19053 34049 34216                  '

I 7 109965 20606 20606 36716 36716 36716 18262 19262 18302 18302 33211 33306 l 7.25 109724 20001 20001 35958 35958 35958 09995 09995 17618 17618 32409 32439 I 7. 5 109495 19408 19408 35224 35224 35224 09742 09742 16999 16999 31640 31641 SPANl 7.75 199276 18828 18828 34512 34512 34512 09511 09511 16438 16438 30912 30912 (ft)I 8 109071 18260 18260 33819 33819 33819 09299 09299 15926 15926 30243 30243  ; I 8.25 108883 17705 17705 33144 33144 33144 09106 09106 15459 15459 29626 29626 ] I 8. 5 108711 17184 17184 32483 32483 32483 08928 08928 15030 15030 29055 29055 l [~ ' I 8.75 108553 16702 16702 31835 31835 31835 08765 08765 14635 14635 28525 28525 , \ l 9 108406 16255 16255 31200 31200 31200 08613 08613 14271 14271 28029 20029 I 9.25 108270 15840 15840 30594 30594 30594 08473 08473 13934 13934 27565 27565 i I 9. 5 108144 15452 15452 30017 30017 30017 08342 08342 13621 13621 27129 27129 I 9.75 108026 15088 15088 29465 29465 29465 08219 08219 13330 13330 26717 26717 1 10 107915 14747 14747 28935 28935 28935 08105 08105 13059 13059 26326 2632E 1 10.25 107812 14426 14426 28425 28425 28425 07997 07997 12605 12805 25955 25955 1 10.5 107714 14123 14123 27931 27931 27931 07895 07895 12566 12566 25600 25600 1 10.75 107622 13835 13835 27452 27452 27452 07799 07799 12342 12342 25261 25161 , i 11 107.535 13562 13562 26986 26986 26986 07708 07708 12131 12131 24934 24934 j i 11.25 107452 13302 13302 26531 26531 26531 07621 07621 11932 11932 24619 24619 i 11.5 107373 13054 13054 26085 26085 26085 07538 07538 11743 11743 24314 24314 1 11.75 107298 12816 12816 25648 25648 25648 07459 07459 11564 11564 24018 24018 1 12 197225 12588 12588 25217 25217 25217 07382 07382 11394 11394 23729 23729 NOTES:

1. S. B. = Solid Bott om ;L= Ladder 1Al=6. 25
2. Ultimate long.itudinal loads FL. Unit is 1b.

l I I TABLE T2

                                                                                                                        ]

i (_-) { i l 1 i j

l l t TABLE T2 (CONT.) SAG.CP18 T. J. COPE STRAIGHT TRAYS

                                         .****.**....*..e.......*****.

f- s ULTIMATE LONGITUD.INAL LOADS ( ,) ............................. i (FL) CATALOG NO.lJM-06 JM-12 JM-18 JM-24 JM-30 JM-36 GI-12 GI-18 GI-24 GI-30 GI-36 TRAY TYPE 1(S.B.) (S.B.) (S.B.) (S.B.) (S.B.) (S.B.) (L.) (L.) (L.) (L.) (L.) TRAY SIZE I A1X6 A1X12 AIX18 A1X24 A1X30 AIX36 A1X12 A1X18 A1X24 A1X30 A1X3E

  --_________ g                                     -

l 4 131615 31615 34600 63338 63485 63485 65824 65824 65824 65824 65824 1 4.25 131349 31349 43301 62695 62839 62839 65099 65099 65099 65099 65099 I 4. 5 131074 31074 33991 62041 62181 62181 64363 64363 64363 64363 64362 1 4.75 130790 30790 33671 61376 61513 61513 63620 63620 63620 63620 63620 I l5 130499 30499 33342 60703 68837 69837 62871 62871 62871 62871 62871 i I 5.25 130200 30200 33005 68024 60154 60154 62119 62119 62119 62119 62119 I 5. 5 129895 29895 32661 59338 59464 59464 61365 61365 61365 61365 61365 1 5.75 129583 29583 32310 58647 58770 58770 60610 60610 60610 60610 60610 16 129267 29267 31952 57951 58070 58070 59854 59854 59854 59854 59854 1 6.25 128945 28945 31590 57249 57365 57365 59099 59099 59099 59099 59099 j i 6. 5 128619 28619 31222 56543 56655 56655 58343 58343 58343 58343 58343 I 6.75 128288 28288 30849 55831 55939 55939 57588 57588 57588 57588 57588 l I 7 127954 27954 30472 55112 55217 55217 56832 56832 56832 56832 56832 l l 7.25 127617 27617 30091 54387 54487 54487 56076 56076 56076 56076 56076 17.5 127276 27276 29707 53653 53750 53750 55317 55317 55317 55317 55317 SPANI 7.75 146331 26s31 29316 52911 53004 53004 54555 54555 54555 54556 54555 126584 26584 28927 52158 52248 52248 53790 53790 53790 53790 53790 7 44 *t ) I B () I 8.25 126233 26233 I 8. 5 125880 25880 28532 28133 51395 50619 51480 50700 51480 50700 53019 52242 53019 52242 53019 52242 53019 52242 53019 52242 1 8.75 125524 25524 27731 49830 49907 49907 51457 51457 S1457 51457 51457 I9 125164 25164 27325 49026 49099 49099 50662 50662 50662 50662 50662 l 9.25 124801 24801 26916 48207 48276 48276 49857 49857 49857 49857 49857 l l 9. 5 124435 24435 26503 47371 47435 47435 49039 49039 49039 49039 49039 l 1 9.75 124e65 24065 26086 46571 46578 46578 48208 48208 48208 48208 48208 l 10 123692 23692 25665 45646 45701 45701 47362 47362 47362 47362 47362 1 10.25 123315 23315 25240 44755 44806 44806 46500 46500 46500 46500 46500 1 10.5 122934 22934 24810 43844 43890 43890 45621 45621 45621 45621 45621 1 10.75 122548 22548 24375 42912 42954 42954 44723 44723 44723 44723 44723 1 11 122158 22158 23935 41960 41997 41997 43805 43805 43805 43806 43805 1 11.25 121763 21763 23490 40986 41017 41017 42868 42868 42868 42868 42868 I 11.5 121363 21363 23039 39989 40016 40016 41999 41999 41999 41909 41909 1 11.75 120958 20958 22582 38971 38992 38992 40929 40929 40929 40929 40929 1 12 120547 20547 22119 37929 37945 37945 39926 39926 39926 39926 39926 NOTES: I

1. S.B.= Solid Bottom ; L.= Ladder Al=6.25 1
2. Ultimate longitudinal loads FL. Unit is Ib. {

l 1 TABLE T2 j

                                                                                                         )

()  ! i

SAG.CP18 T J COPE STRAIGHT TRAY ULTIMATE TORSIONAL MOMENTS (Tn} f T TRAY DATA ULTIMATE 10RS18NALMONENT(ib.ft.) LENGTH BETWEEN SUPPORTS (ft.) SIZE CAT. NO. TYPE 4.0 5.0 6.0 7.0 8.0 4x6 GF-06 S.B. 183. 147. 122. 105. 92. 4.x 12 -GF-12 S.B. 1220. 976. 813. 697. 610. 4 x 18 GF-18 S.B. 1830. 1464. 1220. 1046. 915. 4 x 24 GF-24 S.B. 3700. 2960. ,2467. 2114. 1850. 4 x 30 GF-30 S.B. 4625. 3700. 3083. 2643. 2313. S.B. 5550. 4440. 3700. 3171. 2775. 'j 4 x 36 GF-36 I 4x6 GG-06. L. 265. 212. 177. 152. 133. 4 x 12 GG-12 L. 531. 425. 354. 303. 265. 4 4 x 18 GG-18 L. 2012. 1610. 1341. 1150. 1006. l 4 x 24 GG-24 L. 2683. 2146. 1788. 1533. 1341. 4 x 30 GG-30 L. 4950. 3960. 3300. 2829. 2475. 4 x 36 GG-36 L. 5940. 4752. 3960. 3394. 2970. O 6.25 x 6 6.25 x 12 JM-06 JM-12 S.B. S.B. 772. 1544. 618. 1235. 515. 1030. 441. 882. 386. 772. 6.25 x 18 JM-18 S.B. 2316. 1853. 1544. 1324. 1158. 6.25 x 24 JM-24 S.B. 5140. 4112, 3427. 2937. 2570. l 6.25 x 30 JM-30 S.B. 6425. 5140. 4283. 3671. 3213. 4406. 3855.  ! 6.25 x 36 JM-36 S.B. 7710. 6168. 5140. 6.25 x 12 GI-12 L. 2301. 1841. 1534. 1315. 1150. 6.25 x 18 GI-18 L. 3451. 2761. 2301. 1972. 1726. 6.25 x 24 GI-24 L. 4602. 3681. 3068. 2629. 2301. 6.25 x 30 GI-30 L. 6558. 5247. 4372. 3748. 3279. 6.25 x 36 GI-36 L. 6902. 5522. 4602. 3944. 3451.  ; Note: 1. S.B. = Solid Bottos, L. = Ladder i O 0737s

SAG.CP18 l J T J COPE 90* FLAT ELBOW & 90' RISER ELBOW l [3' ULTIMATE MOMENTS U (Mo , a ) t (Also Applicable to 30', 45' and 60* Elbows) 1 ULTIMATE MOMENTS I TRAY DATA FLAT ELBOW RISER ELBOW I (ib. ft.) (ib. ft.) SIZE- CAT. NO. TYPE NORMAL TRANS. NORMAL TRANS. 4x6 GF-06 S.B. 1467. 1473. 1467. 1453. 4 x 12 GF-12 S.B. 4880. 3450. 4880. 3404. 4 x 18 GF-18 S.B. 4197. 3588. 4002. 4485. 4 x 24 GF-24 S.B. 6364. 7090. 6068. 8862. 4 x 30 GF-30 S.B. 6364. 6694. 6068. 8367. 4 x 36 GF-36 S.B. 6364. 6464. 6068. 8080. 4x6 GG-06 L. 2123. 1920. 2123. 1894. l 4 x 12 GG-12 L. 2123. 2545. 2123. 2511. l '4 x 18 GG-18 L. 4614. 4282. 4399. 5253. 4 x 24 GG-24 L. 4614. 4258. 4399. 5253. ! 4 x 30 GG-30 L. 6811. 7118. 6494. 8898. 4 x 36 GG-36 L. 6811. 6986. 6494. 8733. O 6.25 x 6 JM-06 S.B. 6177. 3160. 6177. 3118. I 6.25 x 12 JM-12 S.B. 6177. 3160. 6177. 3118. 6.25 x 18 JM-18 S.B. 5312. 5394. 5065. 6742. 6.25 x 24 JM-24 S.B. 8841. 9514. 8430. 11893. 6.25 x 30 JM-30 S.B. 8841. 9010. 8430. 11262. 6.25 x 36 JM-36 S.B. 8841. 8760. 8430. 10950.  ; l 6.25 x 12 GI-12 L. 9023. 6267. 9203. 6183. 6.25 x 18 GI-18 L. 7915. 6624. 7546. 8280. 6.25 x 24 GI-24 L. 7915. 6654. 7546. 8317. l 6.25 x 30 GI-30 L. 9024. 92.02. 8604. 11503. 6.25 x 36 GI L. 7915. 6634. 7546. 8293. Notes: 1. S.B. = Solid Bottom, L. = Ladder

2. Normal Moment, Ma; Transverse Moment, Mg TABLE T4 D

(V 0737s i

                                                             -                           p SAG.CPIB T J COPE 90' FLAT ELBOW' ULTIMATE TORSIONAL HOMENTS (O,)                                           (In)

(Also Applicable to 30', 45' and 60* Flat Elbows) TRAY DATA ULTIMATETORSI8NALMOMENT(ib.ft.) LENGTH BETWEEN SUPPORTS (ft.) SIZE CAT. NO. TYPE 4.0 5.0 6.0 7.0 8.0 4x6 GF-06 S.B. 183. 146. 122. 104. 91. 4 x 12 GF-12 S.B. 1220. 976. 813. 697. 610. 4 x 18 GF-18 S.B. 1573. 1259. 1049. 899. 786. 4 x 24 GF-24 S.B. 3182. 2545. 2121, 1818. 1591. 4 x 30 GF-30 S.B. 3977. 3182. 2615. 2272. 1988. 4 x 36 GF-36 S.B. 4773. 3818. 3182. 2727. 2386. i j 4x6 GG-06 L. 265. 212. 176. 151. 132. { 4 x 12 GG-12 L. 530. 424. 354. 303. 265. l 4 x 18 GG-18 L. 1730. 1384. 1153. 988. 865.  ! 4 x 24 GG-24 L. 2307. 1845. 1538. 1318. 1153. j 4 x 30 GG-30 L. 4256, 3405, 2837, 2432. 2128. ) 4 x 30 GG-36 L. 5108. 4086. 3406. 2919. 2554. 6 25 x 6 JM-06 S.B. 772. 617. 514. 441. 386. 6.25 x 12 JM-12 S.B. 1544. 1235. 1030. 882. 772. l 6.25 x 18 JM-18 S.B. 1992. 1593. 1328. 1138. 996. 6.25 x 24 JM-24 S.B. 4420. 3536. 2947. 2526. 2210. 6.25 x 30 JM-30 S.B. 5525. 4420. 3683. 3157. 2762. 6.25 x 36 JM-36 S.B. 6630. 5304. 4421. 3789. 3315. 6.25 x 12 GI-12 L. 2301. 1840. 1533. 1315. 1150. 6.25 x 18 GI-18 L. 2968. 2374. 1978. 1696. 1484. l

6.
  • x 24 GI-24 L. 3975. 3166. 2638. 2261. 1978.

6.25 x 30 GI-30 L. 5640. 4512. 3760. 3222. 2820. l 6.25 x 36 GI-36 L. 5963. 4749. 3958. 3392. 2968. I Note 1. 5.B. = Solid Bottom, L. = Ladder TABLE T5 f v 0737s i

1 SAG.CP18 T J COPE 90' RISER ELBOW (] ULTIMATE TORSIONAL MOMENTS () (Inl (Also Applicable to 30', 45' and 60' Riaer Elbows) T i TRAY DATA ULTIMATETORSI8NALMOMINT(ib.ft.) I LENGTH BETWEEN SUPPORTS (ft.) I SIZE CAT. NO. TYPE 4.0 5.0 6.0 7.0 8.0 I 4x6 GF-06 S.B. 183. 146. 122. 104. 91. 4 x 12 GF-12 S.B. 1220. 976. 813. 697. 610. 4 x 18 GF-18 S.B. 1500. 1200. 1000. 857. 750. 4 x 24 GF-24 S.B. 3434. 2427. 2022, 1733. 1517. 4 x 30 GF-30 S.B. 3792. 3034. 2528. 2167. 1896. 4 x 36 GF-36 S.B. 4551. 3604. 3034. 2600. 2275. 4x6 GG-06 L. 265. 212. 176. 151. 132. 4 x 12 GG-12 L. 530. 424. 353. 303. 265. 4 x 18 GG-18 L. 1649. 1319. 1099. 924. 824. 4 x 24 GG-24 L. 2199. 1759. 1466. 1256. 1099. 4 x 30 GG-30 L. 4058. 3274. 2705. 2319. 2029. 4 x 36 GG-36 L. 4870. 3096. 3247. 2783. 2435. ( 6.25 x 6 JM-06 S.B. 772. 617. $14. 441. 386. 6.25 x 12 JM-12 S.B. 1544. 1235. 1029. 882 772. 6.25 x 18 JM-18 S.B. 1899. 1519, 1266. 1085. 949. 1 6.25 x 24 JM-24 S.B. 4215. 3372. 2810. 2408. 2107. l 6.25 x 30 JM-30 S.B. 5268. 4215. 3512. 3010. 2634 { 6.25 x 36 JM-36 S.B. 6322. 5058. 4215. 3612. 3161. 6.25 x 12 CI-12 L. 2301. 1804. 1534. 1315. 1150. 6.25 x 18 GI-13 L. 2829. 2263. 1886. 1617. 1414.  ; 6.25 x 24 GI-24 L. 3773. 3018. 2515. 2156. 1886. 6.25 x 30 GI-30 L. 5377. 4302. 3585. 3072. 2688. 6.25 x 36 GI-36 L. 5659. 4527. 3773. 3234. 2820. Note: 1. S.B. = Solid Bottom, L = Ladder l TABLE T6 J 0737s

SAG.CP18 4 T J COPE TRAY l /~N ULTIMATE SHEAR LOADS \ (Sn

  • St )

4 1 RAY FLANGE SIDERAIL ULTIMATE SHEAR LOAD HT. WIDTH THICK. Y. ST1. (1bs.) ) H B t' Fy NORMAL TRANS. ] SIZE CAT. NO. TYPE (in.) -(in.) (GA NO.) (ksi) Sn St l 4x6' GF-06 S.B. 4.0 13/16 16 33. 9,200. 3,700. 4x12 GF-12 S.B. 4.0 1 1/4 14 50. 17,400. 10,900. 4:18 GT-18 S.B. 4.0 1 1/4 14- 50. 17,400.. 10,900. 4:24 GF-24 S.B. 4.0 1 1/4 12 50, 24,400. 15,200. 4 30 .GF-30 S.B. 4.0 1 1/4 12 50. 24,400. 15,200. 4x36 GF-36 S.B. 4.0 1 1/4 12 50. 24,400. 15,200. 4x6 GG-06 L. 4.0 13/16 16 33. 9,200. 3,700. 4x12 GG-12 L. 4.0 13/16 16 33. 9,200. 3,700. 4:18 GG-18 L. 4.0 1 1/4 14 50. 17,400. 10,900. 4:24 GG-24 L. 4.0 1 1/4 14 50. 17,400. 10,900. 1 4x30 GG-30 L. 4.0 1 1/4 12 50. 24,400. 15,200. 4:36 GG-36 L. 4.0 1 1/4 12 50. 24,400. 15,200. O 6.25x6 JM-06 6.25x12 JM-12 6.25x18 JM-18 S.B. S.B. S.B. 6.25 6.25 6.25 1 1/4 1 1/4 1 1/4 14

                                                       -14 14 50.

50. 50. 19,200. 19,200. 19,200. 10,900. 10,900. 10,900. 6.25x24 JM-24 S.B. 6.25 1 1/4 12 50. 38,000. 15,200. 6.25x30 JM-30 S.B. 6.25 1 1/4 12 50. 38,000. 15,200. 6.25x36 JM-36 S.B. 6.25 1 1/4 12 50. 38,000. 15,200. 6.25x12 GI-12 L. 6.25 1 1/4 12 50. 38,000. 15,200. 6.25x18 GI-18 L. 6.25 1 1/4 12 50. 38,000. 15,200. l 6.25x24 GI-24 L. 6.25 1 1/4 12 50. 38,000. 15,200. 6.25x30 GI-30 L. 6.25 1 1/4 12 50. 38,000. 15,200. 6.25:36 GI-36 L. 6.25 1 1/4 12 50. 38,000. 15,200. Note: 1. Solid Botton, L. = Ladder j 1 TABLE T7 O 0737s

SAG.CP18. T J COPE CANTILEVER TRAY ULTIMATE LONGITUDINAL LOADS O-(F L). FL (1bs.) , TRAY DATA SIZE CAT. NO. TYPE L = 2'-0 L = 3'-0 L = 4'-0 4x6 GF-06 S.B. 12,000. 9,170. 7,710. 4 x 12 GF-12 S.B. 25,170. 18,550. 14,130. 4 x 18 CF-18 S.B. 25,170. 18,550. 14,130. 4 x 24 Gt-24 S.B. 42,860. - 34,160. 27,940. 4 x 30 GF-30 S.B. 42,860. 34,160. 27,940. 4 x 36 GF-36 S.B. 42,860.- 34,160. 27,940. 4x6 GG-06 L. 12,500. 9,400. 7,900. 4 x 12 GG-12 L.- 12,500. 9,400. 7,900. , 4 x 18 GG-18 L. 23,960. 16,170. 12,570. l 4 x 24 GG-24 L. 23,960. 16,170. 12,570. 4 x 30 GG-30 L. 39,950. 30,570. 25,610.

       ~4 x 36      GG-36      L.          39,950.        '30,570. 25,610.

6.25x6 JM-00 3.B. 32,210, 28,540. 24,470. 6.25x12 S.B. 32,210 28,540. 24,470. l I O 6.25x18 6.25x24 JM-12 JM-18 JM-24 S.B. S.B. 33,010. 60,030. 29,120. 52,540. 24,810. 43,840.- l 6.25x30 JM-30 S.B. 60,050. 52,630. 43,890. l 6.25x36 JM-36 S.B. 60,050. 52,630. 43,890. 6.25x12 GI-12 L. 62,120. 54,180. 45,620. 6.25x18 GI-18 1 62,120. 54,180. 45,620. 6.25x24 GI-24 L. 62,120. 54,180. 45,620. i 6.25x30 GI-30 L. 62,120 54,180 45,620. l 6.25x36 GI-36 L. 62,120. 54,100. 45,620. Notes: 1. S.B. = Solid Bottos, L. = Ladder

2. L is cantilever span.

TABLE T8 0 0737s

                                                                                          ~

0 SAG.CP15 T J COPE REDUCER AND OFFSET REDUCER 7- ULTIMATE MOMENTS b) ( (M'Ml n t TRAY DATA ULTIMATE MOMENTS (ib. ft.) NORMAL TRANS. SIZE CAT. NO. TYPE n e 4x6 GF-06 S.B. 1467. 1570. 4 x 12 GF-12 S.B. 4880. 3680. 4 x 18 GF-18 S.B. 4880. 4258. 4 x 24 GF-24 S.B. 7400. 7090. 4 x 30 GF-30 S.B. 7400. 6694. lR1 4x6 GG-06 L. 2123. 2048. ) I 4 x 12 GG-12 L. 2123. 2714. I 4 x 18 GG-18 L. 5365. 4202. 4 x 24 GG-24 L. 5365. 4258. 4 x 30 GG-30 L. 7920. 7118. lR1 6.25 x 6 JM-06 S.B. 6177. 3370. f^ 6.25 x 12 JM-12 S.B 6177. 3370. 6.25 x 18 JM-18 S.B. 6177. 5394. (' S.B. 10280. 9514. 6.25 x 24 JM-24 6.25 x 30 JM-30 S.B. 10280. 9010. 6.25 x 12 GI-12 L. 9203. 6685. 6.25 x 18 GI-18 L. 9203. 6624. 6.25 x 24 GI-24 L. 9203. 6654. 6.25 x 30 GI-30 L. 10493. 9202. Note: 1. S.B. = Solid Bottom; L = Ladder i TABLE T9  : f b Ns 0737s l 2

SAG.CP18 T J COPE ULTIMATE TRANSVERSE CAPACITY

    .--                                        REDUCTION FACTORS FOR SHEAR BEAM BEHAVIOR Tray Span                                           Ultimate Transverse Capacity Length (Ft)                                         Reduction Factor f*

3.0 0.49 3.5 , 0.54 4.0 0.58' 4.5 0.63 . I I 5.0 0.68 ~] 5.5 0.74 l 6.0 0.79 6.5 0.84 3 7.0 0.89 7.5 0.95 1 i 8.0 and greater 1.00 - l O . I

                                                                                                                 \

l l

  • Note: i
1) Capacity Reduction Factors may be computed by the following formula:

2 E=0.1094 g L

                                                           )

where L is in feet and is less than or equal  : l L-1 l to 8'-0. 1 1 l TABLE T10 1 , 0737s l l

SAG.CP18 [ T J COPE MINIMUM WELD ACCEPTANCE BASIS STRAIGHT TRAYS Tray Size Ladder Type Solid Bottom Type a+e (in.) b+d (in.) a (in.) b (in.) e (in.) 4x6 1 1 1/2 1/2 7 4 x 12 1 1 1/2 1/2 7 4 x 18 1 1/4 1 1/4 1/2 1/2 7 4 x 24 1 1/4 1 1/4 1/2 1/2 7 4 x 30 1 1/4 1 1/4 1/2 1/2 7 4 x 36 1 1/4 1 1/4 1/2 1/2 7 Tray Size Plat 90' Elbows and 90' Risers Ladder Type a+c (in.) b+d (in.) 4x6 1 1 4 x 12 1 1 1 4 x 18 1 1/4 1 1/4 4 x 24 1 1/4 1 1/4 A 6 4 x 30 1 1/4 1 1/4 H '* ' 4 x 36 1 1/4 1 1/4 \

                                                                                          /                  c,7"             ,L, l                            ,                                                                             Scud Sor70t1
                                                                                           'IIIII I I '
                        ,4$). pt- thobh      prl1ll[l~ll                       5I~

i ; g

                   .-                                       ' ,I'ISI Yt'W               ilbh N Yo      0 

I Z~...d ! ! l._l_l,d[g, l

                                                                     ! !-'     -           d        ;-   -

l1

                                                          ,F      .-
                                       -rrg,g;*!

1 -

                  ~
                          -{-i-t t               . r, i

g d

                       ._l a .

L-

                                .w4), = ,L s E"d, t; udt Y..g l,,

i1.\p sfoi,l

                                                                                               ,6   .

a .,g. . lj ~, 6- P4/g,1,

                          ; w.
                                                                                                       .y.a .m, ,, ,.se a

y1, -

                                                                                            ,3                                -

lni.. e.sY N r . " 3.y_';_ y 5 .. 84tr 6 (6t.fi ,d- s.tn 5 I;1 ' s !

                    -H.. _,'_.; .'-t T !

o - uoore i !ii,: D TABLE Til l 0737s

l p . SAG. CP18

             - T. J. COPE ULTIMATE CAPACITY REDUCTION FACTOR MULTIPLIERS FOR WELDED PIN' CONNECTIONS-                                                                                 ,

I A I I WELDED PIN CONNECTION ULTIMATE CAPACITY k TRAY SIZE ICAT. NO.ITYPE REDUCTION FACTORS 3 l 91) --------____-___ -__-._____-__ --________ ... 1 I I NORMAL TRANSVER LONGITUDINAL DIRECT 0!N l 1 i i G Y I 6 1 1 8' 6' 4' .

                 ......................... .......                              .........          .........          .........            ........       L          j
                                                                                                                                                          \           .

i 4x6 i GF-96 i S. B. 8.443 1.See 8.816 8.670 9.535 I t_- - --_...--... - -___---- ------ _ ----..--. .--_-__-_ __-----.. ----.._ 1 4 x 12 i GF-12 i S. B. 8.133 1.See 8.485 8.320 8.258  ? ______-__ _ ____ --___ --_ --_-_- - -. _ .. . _ _ _ _ _ _ -_-_-__ l l I 1 4 x 18 i GF-18 l S. B. 9.133 1.See 9.405 8.320 8.258 \ 1 '

                                                                                                                                                         \

4 x 24 i GF-24 i S. B. 8.888 9.835 9.219 9.185 8.153 1 1 _ _ ------__---__------- --- - - - . - -- _-___-_ _ ----- 1 i 4 x 30'l GF-30 1 S. B. 8.888 1.800 8.219 8.185 9.153 1 _____- --..___-.__--... _____-.-_ ___-_-___ --,--_-_. _-_____ _ ----....I t 4 x 36 1 GF-36 i S. B. B.888 1.800 8.219 8.185 8.153 , i

             \.-_.------ .._----------.                      _ - - . . . _ .    -----._--          --....___         :.__-__-             -_--_-_-            1 4x6 i GG-06                    i L.         8.396             9.723              8.796              8.646               9.509 ?
                 . _____________ . _____ _                   .-__-_-__         . __--__.           - - _ _ _ _ _ _    ______--.           ..____.--          l 4 x 12 i GG-12                 i L.         8.306             1.800              8.796              9.646               9.509          I 4 x 18 I GG-18                 i L.         0.121             1.000              0.465              0.345               0.261     ,

1 4 x 24 i GG-24 i L. O.121 1.See 8.465 9.345 0.261 1 ( ___---_----------... _... ...-__... --.. .. --.....-- ._.....-- -_---__. 1 4 x 30 1 GG-30 i L. 0.082 1.000 0.245 0. 201 0.160 ' i 4 x 36 i GG-36 i L. 0.082 1.000 0.245 0.199 0.156 ,

                  .....--------_. _------_                   .--.....-         _ . _ _ . - -      --. ---_           ___. ._._           ---. ...           1 6.25 x 6 I JM-06 I S. B.                          0.105             9.439              0.278              0.253               0.234
                - - -----------_.--....._                    _-_......         . _- ..--         .....__--                . . . . .           .-____        \
           '6.25 x 12 I JM-12 i S. B.                             8.105             8.878              8.278              9.253               0.234 I l

l____--_-----__-...-_.---. .________ ___--____ ________. ...-- ... ,_--_____I 6.25 x 18 I JM-18 I S. B. 9.105 0.823 8.256 0.232 0.214  ! 1

                .....-_.......--.... --._                    .______--         ---------         ---_-.--.                -_.--.         --_      ---_t    \

6.25 x 24 I JM-24 I S. B. 0.063 0.622 0.142 0.128 0.117

                . . . _ _ _ - _ _ _ _ _ _ _ . - _ _ _ _ _ _ _ _ _ _ _ _ _      _.- _ __          --.__ _ _           --.. -___           --.-____g                   )

6.25 x 30 I JM-38 i S., B. 8.863 8.821 8.142 8.127 8.117 l 1

                --.                 _--....-- _ .            ._                . _ - -           __                  ------._            - - _ ...I       1

[6.25 x 36 l JM-36 i S. B. 9.063 1.See 8.142 8.126 9.117 , 1...-_ -- _ _.-____-- _ ___ _--. _ - __. ___ ____ . ----- ___... . 1 6.25 x 12 i GI-12 i L. 0.871 8.443 8.138 0.124 8.112 L

          \     _.--           -_._-_ _ . ...-               __-.. _-.         ----_.            _.                - _ _ _            .  -----            \
       ,       6.25 x 18 i GI-18 i L.                             0.871             8.670              0.138              8.124               0.112       1 6.25 x 24 I GI-24                    i L.          8.971            8.890               8.138              9.124               9.112 '    I
         \-- ---_-..- -                        - - . _ _ _ _ .. .              ._-_.__\. _ - - - .                   __...-__            --_----
         '6.25 x 30 i GI-30 i L.                                  8.062      '

O.804 8.138 0,124 9.112 <

               -.._-___ ---_ .........--                     .--------         --_--_...         --....---           . ..-__.            ------__\
       \

6.25 x 36 i GI-36 i L. 8.071 __ _ __ . 8.112 l __ _ - - - __ 1.90 __ --_ ___ _ __ -_ - ___- __ _ ___ _ ____ _ __ _ ____ __ _O.124 9.138 ' g  ; r g NOTE :

       ,1            1. S.B.= Solid Bottom 1 L.= Ladder TABLE T12A

SAG. CP18 T..J.' COPE ULTIMATE CAPACITY REDUCTION FACTOR MULTIPLIERS FOR PIN-PIN CONNECTIONS: TRAY SIZE ICAT. NO.lTYPE- CAP. RED. FACT. MULT. I l l(ei) --------_-.. -__.....---..... ----. NORMAL ' TRANSVERSE: LONG. DIR.) I I I

1. I 0. 'y' 6- l
    .......................... .......................:........... i 4x6 i GF-86 I S. B.                           8.00                           8.64                      8. 88      l
          . ......--.-- .... -- .                         ... .---- ,.                            ....--       ........\

I 4 x 12 i SF-12 I S. B. 8.08 ' O.55 8. 80 J

                 ..... .....-- ...-- ..                         . . . .                . .-------1.-- ... .

I

                 '4 x 18 i SF-18 I S. B.                        0.00                           8.84                      S. 00      J 4 x 24 I GF-24             15.9.              8. 08                          9.57                      8. 08       b
   /                                                      ----._            _\- _ _ --_.                       . . . - - - _ . . .

l 4 x 38 i GF-38 I S. B. 4. 00 0.75 0. 98 J

                                                                       .                ------.--_.              --_-_-_--- t l

4 x 36 i GF-36 I S. B. 8. 08 . 0.94 8.88

      ...----------...-------...                          - - - . . . . . . . . ....--...... ........ .i
            . 4x6 i GG-95 i L.                               8. 98                         8.49                      8.88-          I
                                                          .....------                   .....--....              --...------             \

4 x 12 i GG-12 i L. 8.98 8.74 8. 08 J 1...........-------... .. 4x 18 I GG-18 i L. 8. 00 8.71 8.88

       \.------ ...............--                         ..--.--....                    ....---....           \.-- -------               ,
                 -4 x 24 i GG-24 i L.                   ;

8.88 8.95- 8.88 1

                                                           --.--------                   -----------             ----... --                \

i 4x 38 i GG-38 i L. 0.88 8.71 8.88 I I 4 x 36 i GG-36 i L. 8. 08 8.66 8. 88 I l 6.25 x 6 l JM-86 I S. B. 0. 88 8.38 8.88 i p....--------- ....... .. .... ..... .. .. .-- .......-- . \ 6.25 x 12 1 JM-12 I S. B. 8.98 8. 68 0. 08 1 1...--- .........--....... 6.25 x 18 I JM-18 I S. B. 8. 08 8. 56 8. 98

          \-------.........--.--....

6.25 x 24 1 JM-24. I S. B. 8. 08 8.42 8. 88 6.25 x 38 I JM-38 ' S. B. 8. 98 . W. 56 8. 08

           .---------------.. . .--                         ---. ...                      ...-- .----             -- . ....                     1
       ,       6.25 x 36 i JM-36 I S. B.                          8.00                          8.69                      0. 00 l

6.25 x 12 i GI-12 l L. 8. 00 9. 38 8. 08 g 6.25 x 18 i GI-18 i L. 8. 98 8.46 0. 98 l 6.25 x 24 i GI-24 i L. 8.00 i S. 68 8. 00 6.25 x 38 1.GI-38 i L. . 0. 98 8.55 , 0. 98 1

                                                     .. - - - .                 .        1- --- .--                ----------                      l g6.25 x 36 1 GI-36 i L.                                8.00                          0.91             1        0. 00 l NOTE :

l .1. S. B. = Solid Bott om i L. = Ladder TABLE T12B 1

                                  .~
       ~

SAG. CP18 T. J. COPE' ULTIMATE CAPACITY REDUCTION g-~y FACTORS FOR SPL1CE PLATE DEVIATIONS i v) i I ULTIMATE CAPACITY REDUCTION FACTORS TRAY l CAT. ITYPE GAGE NORMAL.TRANS. TORS. LONGITUDINAL DIRECT 0!N J SIZE I NO. l(*1) NO. G y I 6

                                                                                                                                                       )l l           1                                                          4 ft       6 ft          8 ft   le ft     12 ft        I i
            'asssssssssssssssesa                    sees  sesses          sammes        sessa   essses     psamos        seassa   masses    masses       '

4 x 6 i GG-06 i L. 16 0.81 0.84 1. 99 8.59 0.75 0.93 1. 00 1.00 [ _ . . . - - . . . _ . . _-- __... --_-_. -- _ --_-_ . ---- ------ ...... \ L4 x 6 I GF-96 IS.B. 16 8.81 0.84 1. 00 0.59 9.75 0.93 1.00 1.00 L

             ... -- ........--                     .. ___                  _.            _ \ -_ _

4x 121 GG-12 l L. 16 9.81 0. 64 1. 99 0.59 1 0.75 0.93 1.00 1.00 I I 1 l 4x 121 GF-12 IS.B. 14 0.46 1. 80 1. 80 0.50 0.63 0.80 0.99 1.00l 4 x 181 GG-18 i L. 14 0.46 1.00 1. 90 0.50 0.63 9.80 0.99 1.00 El 4 x 181 GF-18 IS.B. 14 0.46 1.00 1. 00 0.50 0.63 0.80 0.99 1.00 \ ........--_---...-- --.. ....-- ...... ..... ...__. -__. ___... ---... ....-- i 4 x 241 GG-24 i L. 14 0.46 1. 00 1.00 0.50 0.63 0.80 0.99 1.00 f-%) t .......-...... ... --_. --.... .... .....  :...... .... ,...... ------ i

1
  \_ ,

i l 1 1.-_-----........... .... ...... .. _-- ..... . ___. --.... ....._ __-- . ...--- . 4 x 241 GF-24 I S. B. 12 0.32 1.00 1. 00 0,34 0. 41 0.48 0.57 0.65 'i l i 4 x 301 GG-30 i L. 12 0.32 1. 00 1.00 1 0.34 0.41 0.48 0.57 0.65 Ll 1 4 X 301 GF-30 IS.B. 12 0.32 1. 90 1. 00 0.34 0.41 0.48 ' O.57 0.65 , . 4, 4 x 361 GG-36 i L. 12 0.32 1. 80 1. 00 0.34 8.41 0.48 0.57 0.65 4 x 361 GF-36 IS.B.. 12 0.32 1. 00 1.30 0.34 0.41 0.48 0,57 9.65 1 ... ..-- --- . -_. ___ _____.- _....___.. ____.. ... , NOTE :

1. S.B.= Solid Bottom L.= Ladder ,

TABLE T13 1 i

SAG. CP18

 /~'\                               ULTIMATE LOAD FOR NON-STANDARD SPLICE PLATES (s-)                                                     ( T. J. COPE TRAY )

TRAY I CAT. ITYPE SIZE I NO. 1(+1) FL' Mn' Mt' Tn' l I (1bs)) (1b-ft) (1b-ft) (1b-ft)

                  ...................... .........                           .......... ' .. .. ..........                i 4x6 i GF-06 IS.B.                               8640            1797          2160            2420     1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - __________ ___ _ __ _ _ _ _ _ _ _ l I 4 x 12 i GF-12 IS.B. 14560 2442 7280 7460 l I 4 x 18 i GF-18 IS.B. 14560 2442 19929 11190 i 4 x 24 l GF-24 I S. B. 16400 2537 16400 16400 I i 4 x 30 i GF-30 IS.B. 16400 2537 20500 20500 [ j ______________________ _________ :_____ ________ __________ , RI ; I l i 4 x 36 i GF-36 IS.B. 24600 I l 16400 2537 24600 J t ______________________ _________ l__________ ________ __________ - I  ! i 4x6 i GG-06 i L. 8640 1797 2160 2420

                 !______________________                    _________        __________     ________ __________               t       3
 /'              ! 4 x 12 i GG-12 i L.                             8640            1797 4320 4840
                                                                                                                              \

f

 \                ______________________                    _________

l ' l 4 x 18 I GG-18 i L. 14560 2442 19920 11190 I i  ; 4 x 24 i GG-24 i L. 14560 2442 14560 14920 i l 4 x 30 i GG-30 i L. 16400 2537 20500 20500 ) ______________________ _________ -__________ ________ __________ g ,

             ; 4 x 36 i GG-36 i L.                               16400             2537   l 24600           24600                  l
  • NOTE :
1. S. B. = Solid Bottom i L.= Ladder
 /"'N                                                                TABLE T13A
 \     k
  %/

SAG.CP18 BURNDY/ HUSKY STRA!GHT TRAYS r"' ULTIMATE (Fn, Ft) LOADS AND ULTIMATE MOMENTS (Mn.Mt) ( l I i ULTIMATE LOAD I ULTIMATE MOMENT TRAY SIZE ICAT. NO.lTYPE l-------------------- 1 ------------------ l 1(*1) l Fn (*2)l Ft (*2)I F1 1 Mn(*3) I Mt (*3) I

                                     ========================================================l===========

ISSN-6 I S. B. 1 I I l 1 4X6 l--------------I 3050 1 2700 l(*4)! 3050 1 2700 IS6N-6 i L. I I I I l ________________________________________________g__._______. _______ ISSY-12 I S. B. I I I l l 4 X 12 l--------------I 3000 1 5525 l(*4)l 3000 .1 5525 IS6Y I L. I l i I I

                                     ..          _______________. ___________                            ..___________l..              _____..___                        .

ISSY-18 I S. B. I I I i 1 4 X 18 l--------------I 3912 1 5450 l(*4)! 3912 1 5450 IS6Y-18 i L. I I I i 1

                                     . _________                       -...____________________________t_______                                   ___            ..._

ISSY1-24 I S. B. I I I I I l 4 X 24 l------ ----I 6008 1 7000 l(*4)I 6008 I 7000 IS6Y1-24 i L. I I I l- I ___l______________ .___ ISSY1-30 IS.B. I I I I I 4 X 30 l- ==---------I 6725 I 6345 l(*4)! 6725 l 6345 IS6Y1-30 l L. I I I I I

                                                                               ._______.__________._______l.______.                                 ___        - =_.

ISSYA-36 IS.B. I I I I I ((~' 4 X 36 l -- - IS6YA-36 i L.

                                                                            ------I I

8195 I 1 8600 l(*4)I I I 8195 1 8600 i I ________________________l________ __________ 6X6 ISSM14-6 IS.B. I 3050 1 2700 l(*4)1 3050 1 2700 1 ___..__.___.._-__________.__________.__.____.._-_-____ _......______ 6 X 12 ISSM14-12lS.B. I 3000 1 5525 l(*4)! 3000 1 5525 1 ____.. ___ _ ....._-____.. _.._________-___ _.._____._________-- _= 6 X 18 ISSX-18 I S. B. I 3912 1 5450 l (*4) I 3912 1 5450 ISSX-24 I S. B. I I I I I 6 X 24 l--------------I 6008 1 7000 f(*4)I 6008 1 7000 , IS6XA-24 I L. I I I I I l _____________.-___ ...__-____... ______._____l__......___________ ISSX-30 I S. B. I I I I I 6 X 30 l--------------I 6725 1 6345 1(+4)I 6725 l 6345 IS6XA-30 i L. I I I i 1 ISSX-36 I S. B. I I I I I 6 X 36 l--------------I 8195 1 8600 l(*4)I 8195 1 8600 IS6XB-36 i L. 1 I I I I NOTES:

1. S.B.= Solid Bottom i L.= Ladder i
2. Fn & Ft are ultimate normal & transverse loads (1bs) based on 8-ft simply supported test span.

f- 3. Mn & Mt are corresponding moments produced by Fn & Ft. Unit is 1b-ft j

4. For F1, please refer to Tables H2A & H2B.

TABLE H1 l l l l L - - __ 1

SAG.CP18 l PURNDY/ HUSKY STRAIGHT TRAYS j

                                                *,*,,,,,,,,,,,,,,,,,,,,*,,*,,                                                     4 ULTIMATE LONGITUDINAL LOAD (FL) WITHOUT THERMOLAG                                            j 1
 +   ,h                                                                                                                           i i

CATALOG NO I SSY-12 SSY-18 SSY1-24 SSY1-30 SSYA-36 TRAY TYPE I (S.B.) (S.B.) (S.B.) (S.B.) (S.D.) l TRAY SIZE I 4X12 4X18 4X24 4X30 4X36 l l CATALOG NO I S6Y-12 56Y-18 56Y1-24 56Y1- 30 S6YA-36 TRAY TYPE I (L.) (L.) (L.) (L.) (L.) l TRAY SIZE I 4X12 4X18 4X24 4X30 4X36 I i CATALOG NO I SSM14-12 SSX-18 SSX-24 SSX-30 SSX-36 j TRAY TYPE i (S.B.) (S.B.) (S.B.) (S.B.) (S.B.) 1 TRAY SIZE I 6X12 6X1B 6X24 6X30 6X36' ) I i CATALOG NO.I 36XA-24 S6XA-30 S6XB-36 l TRAY TYPE I (L.) (L. ) (L.) { TRAY SIZE I 6X24 6X30 6X36 3 _____________l___________= ==______________ l 4 1 22798 22699 37903 37439 38537 j 22414 38087 l 4.25 1 22523 37433 36954 I 4. 5 1 22239 22120 36951 36464 37625 1 4.75 1 21947 21818 36457 35972 37152 15 1 21647 21508 35953 35479 36671 1 5.25 1 21341 21192 35441 34986 36183 1 5. 5 1 21030 20871 34919 34495 35688 1 5.75 I 20713 20545 34390 34008 35189 j 20393 20215 33853 33525 34685 t (q) l 6 1 6.25 1 1 20069 19882 33310 33047 34178 U l 6. 5 l 19742 19547 32759 32574 33668 I 6.75 l 19413 19210 32202 32107 33156  ! l 7 l 19082 18873 31639 31647 32643 l 1 7.25 1 18750 18534 31068 31194 32129 l 7. 5 l 18417 18196 30491 30747 31613 l SPAN i 7.75 1 18084' 17858 29907 30307 31097  ! (ft) 18 1 17752 17520 29316 29873 30580 l I 8.25 l 17419 17184 28718 29446 30063  ! l 8. 5 l 17087 16849 28112 29025 29546 l 1 8.75 l 16756 16516 27498 28610 29028 i

                      !9           1   16426         16185              26876                28200                  28509 l 9.25       i   16097          15856             26246                27795                  27990 19.5         1   15770         15529              25606                27396                  27470         !

l 9.75 l 15444 15204 24958 27001 20949 i i 10 1 15119 14882 24300 26610 26427 l 10.25 l 14796 14563 23633 26222 25903 . I 10.5 1 14474 14245 22955 25838 25378  ! I 10.75 1 14154 13931 22268 25456 24850  ! I 11 1 13835 13619 21569 25077 24320 l l 11.25 1 13518 13309 20863 24699 23788 I i 11.5 l 13202 13002 20183 24323 23253 l t 11.75 l 12888 12697 19536 23947 22715 I' i 12 1 12574 12398 1:3920 23573 22173 i A NOTES: l (") 1. S.B.= Solid Bottom I L.= Ladder

2. Ultimate longitudinal loads FL. Unit is ib. I TABLE H2A 1
                                                                                                                                  )

I i

v.(. y: ,. ( "' 1  : 1.

                                                                                       'ft                         .    .

BURNDY/ HUSKY ' STRkIGHT TRAYS ULTIMATE LONGITUDINAL LOAD (FL) WITH YllERMOLAG - CATALOG NO l- SSY-12 SSY-18 SSY1-24 SSY1-30 SSYA-36 TRAY TYPE'l (S.B.) (S. B. ) (S. B. ) - (S.B.) (S.B.) TRAY SIZE I 4X12 4X18- 4X24 4230 4X361 W ') CATALOG NO I S6Y-12 S6Y-18 S6Y1-24 56Y1-30 :36YA-36

          -TRAY TYPE I          (L.)           (L.)                (L.)               (L.)                   (L.)

TRAY SIZE i 4X12 '4X18 4X24 4X30 3h136 i U , CATALDG NO I SSM14-12 SSX-18. SSX-24 SSX-39 .SSX-36 .j TRAY TYPE I (S.B.) (S.B.) L(S.B.)  :(S.B.): ,p (S.B.) TRAY S!ZE I 6X12 6X18 6X24 6X30' >; 6X36 1 l 1

        ' CATALOG NO.!                                          S6XA-24           .S6XA-30"*        ,    S6XB-36                 ]

TRAY TYPE I (L.) (L.) 4 (L.)-  ; TRAY SIZE l- 6X24 6X30 0 6X36 l _____________l _________________________._______________________...___________ l l4 1 22780 22710 .37913 37439 j '38540- j i- "3 . 1 22504 22427 37445 36954 it' '38084 ) 14.0 1 22218- 22134 36965 36464 37615 I 4.75' l 21924 21833 36475 '35972 37134. I I5 1 21623 21524 35974 35479 36642 L) 1 5.25- l 21315 21209 35464 34986 36141 O I 5. 5 1 21002 20889 34947 34495 35633- ' .. j i 5.75 1 20684 20564 34422 34008 35116 16 I 20362 20236 33890 33525 34594 I 6.25 1 20036 19904 33351- 33047 34066~ ' O* - I 6. 5 1 6.75 1 l 19708 19378 19570 19234 32806 32254 32574 32107 33533 32995 17 1 19046 18897 31696 31647 32453 I 7.25 l 18713 18560 31132 31194 31908 i I 7. 5 1 18380 18222 30562 , 30747 31359- ( ') ' SPAN.I 7.75 1 18046 17885 29985 30307: 30807 (ft) I8 1 17713 17548 29421 29873 38251 I 8.25 l 17380 17212 28811 29446 29693 18.5 1 17048 16878 28213 29025 29131 1 8.75 1 16717 16546 27608 28610 28566 I9 1 16387 16215 26995 28200 27998 l I 9.25 i 16059 15886 26374 27795 27426' i I 9. 5 l 15732 15559 25744 27396 26851 l 9.75 1 15406 15234 25106 -27001 26272 I le i 15083 14912 24458 26610 25688 l 10.25 1 14761 14592- 23801 26222 25101 1 10.5 1 14440 14275 23135 25838 24509 1 10.75 1 14122- 13960 22459 25456 23912 l l 11 1 13805 13648 21772 25077 23311 j i 11.25 1 13490 13337- 21075 24699- 22704  ! I 11.5 i 13176 13829 20393 24323- 22092 1 11.75.1 12864 12724 19743 23947 21474 1 1 12 1 12554 12423 19125 23573- 20860 NOTES: . /"' 1. S.B.= Solid Bottom ; L.= Ladder

2. Ultimate longitudinal loads FL. Unit is Ib.

TABLE H2B

                                                                                                                     .e    c    ;
                                                                             ~
                   .j g.

g __ g.4y ', . ls >

                                                                          , , ,                                SAG.CP18 y       s4r f ,x BUP.NDY/ HUSKY STRAIGHT TRAY

' I' ULTIMATE TORSIONAL MOMENTS

f. .

(In)' o; b - _ _ I lib TRAY DATA' ULTIMATETORSI8NALMOMENT.(ib.ft.I LENGTH BETWEEN SUPPORTS (ft.)- SIZE CAT. NO.- TYPE 4.0 5.0 6.0 7.0 8.0 4x6 ' SSN-6 ,S.B.I n381. 305.' 254. 218. :191. S6N-6 ~ L. ,, 4x12 SSY-17, S.B. 750. 600. <<300. 429. 375. , S6Y-lh L. 4x18 SSY-10 S.B. 1467. 1174. 978. 838. 734.

o. S6Y-18 L.

4x243 SSY1-24 S.B. 3004. 2403. 2003. 1717. 1502.

                           ..,           S6Y1-24'     L.

4x30- SSY1-30 , S.B. 4203. 3363. 2802. 2402. 2102. S6Y1-30 L. 4x36 SSYA-36 S.B. 6146. 4917. 4098. 3512. 3073.. S6YA-36 L. 6x6 SSM14-6 S.B. 381. 305. 254. 218. 191. O 6x12 SSM14-12 S.B. 750. 600. 500. 429.. 375. 6118 SSX-18 S.B. 1467. 1174 978. 838. 734. 6x24 SSX-24 S.B. 3004. 2403. 2003.. 1717. 1502. S6XA-24 L. 6x30 SSX-30 S.B. 4203. 3363. 2802. 2402. 2102. S6XA-30 L. , 6:36 SSX-36 S.B. 6146. 4917. 4098. 2402. 3073. S6XB-36 L. Note: 1. S.B. = Solid' Bottom, L. = Ladder i-l s TABLE H3 ( 0737s n j. - G

                                                                                                                    .                                        i SAG.CP18 BURNDY/ HUSKY 90 FLAT ELBOW & 90* RISER ELBOW                                                                                        !
                     ...______________'____..___._____.. ___.________                                                                                       1 ULTIMATE MOMENTS                                                                                         l; (r %                                              __-.......__...___

\- (Mn ,Mt) i (Also Applicable to 30 , 45 ,and 60' Elbows) ULTIMATE MOMENTS TRAY DATA I FLAT ELBOW ll RISER ELBOW l I i ( 1 b. ft.) II ( I b. ft.) i TRAY S{ZE ICAT. NO.lTYPE i NORMALI TRANS.ll NORMALI TRANS. l ISSN-6 I S. E. I l 11 1 j 4X6 l--------------I 3050. I 2025. 11 3050. I 1998. J IS6N-6 i L. I I il I ISSY-12 I S. B. 1 I 11 1 4 X 12 l--------------I 3000. I 4144. 11 3000. I 4089. IS6Y-12 i L. I I il I _________ _ ______________________________________________ 1 ISSY-18 I S. B. I I ll l l 4 X 18 l--------------I 3364 I 4360. Il 3208. I 5450. I IS6Y-18 i L. I i 11 1 l lSSY1-24 I S. B. I I ll l l I 4 X 24 l--------------I 5167. I 5600. Il 4927. I 7000. IS6Y1-24 i L. I I ll l J ISSY1-30 IS.B. I I ll 1 ('~h 4 x 3e I..__________.-l 5784. I 5076. 11 5515. I 6345. \s / IS6Y1-30 i L. I i 11 I ) 1 1 ISSYA-36 IS.B. I I ll l 4 X 36 l--------------I 7048. I 6880. ll 6720. I 8600. IS6YA-36 i L. I I il I i 6X6 ISSM14-6 IS.B. I 3050. I 2025. 11 3050. I 1998. , 6 X 12 ISSM14-121S.B. I 3000. I 4144. 11 3000. I 4089. 6 X 18 ISSX-18 I S. B. I 3364. I 4360, il 3208. I 5450. ISSX-24 I S. B. I I il  ! 6 X 24 l--------------I 5167. I 5600. 11 4927. I 7000. IS6XA-24 i L. 1 ( ll 1 ISSX-30 I S. B. I i 11 1 6 X 30 l--------------I 5784. I 5076. 11 5515. I 6345. IS6XA-30 i L. I I 11 1 ISSX-36 I S. B. I I il I 6 X 36 l--------------I 7048. I 6880. 11 6720. I 8600. IS6XB-36 i L. I i ll 1 NOTES: [' 1. S.B.= Solid Bottom 1 L.= Ladder \ 2. Normal Moment, Mn ; Transverse Moment, Mt TABLE H4

r- $7,--~n g 1

                h '                              ,

a l

                                                                                                                                                                 ' SAG.CP18-
                                 ,                                                            BURNDY/ HUSKY 90* FLAT, ELBOWS h$?                                                       ULTIMATE' TORSIONAL MDMENTS                                                      1
       ,-~                                                                                                                                                                        \

(, (Tn) (Also Applicab1di to 30 , 45*, and 68* Elbows) Tn 44 TRAY DATA J IJLTIMATE TOR $10NAL- MOMENT (Ib. ft. ) i 1. *I LENGTH BETWEEN SUPPORTS (ft)

                                               - TRAY SIZE ICAT. NO.~ ITYPET l 4. 0 1 5. 0 1 6.8 1 7. 9 - I 8. 8 me s esssss ss ssssssssssss seressass s sssssemassess s sss sssss s ss sss ss soas                                               i ISBN-6           19. B. ' l                 i               l              l     .

I l 4X6 l--------------I 381. 8 1 385. 8 1 254. 8 1 218. 8 1 191. 8 IS6N-6 1 L. I I I I I _____________________.._____. .__________.._____________ ___ j i ISSY-12. I S. B. I 1 l l l ] 4 X 12 l------------I 758. 8 1 688. 0 .1 588. 8 1 429. 0 1. 375. 0 ] I SE'12 ( L. l l l 1 I 1 9

  • iSSY-18 I S. B. I I I l i 1 4 X 18 l--------------11262.0 11889.0.I 841.0 1 721.0 1 631.8-  !

IS6Y-18 i L. l l l 1 i i ISSY1-24 IS.B. 1 I I I I j 4 X 24 l--------------12584.0 12967.0 f1?22,4 11476.8 11292.0 i IS6Y1-24 i L. l l I i 1 1 '. t \ \ iSSY1-30 IS.B. I I "l

                                                                                                                                               !...,.,      I 4 X 30       l--------------13615.0                       12892.0 12410.0 12866.0 11808.8-IS6Y1-30 i L.                1               I               I              I            I                    I ISSYA-36 IS.B. I                             I               i            - I-           l 4 X 36       l----      ---------15286. 0 14229. 8 13524. 8 13821. 0 12643. 8 IS6YA-3El i L. I                             I               I     .
                                                                                                                                             ,l'    '

i 6X6 ISSM14-6 IS.B. I 381.0 1 385.0 l'254.0 i 212.0 1 191.0 g 6 X 12 ISSM14-12lS.B. I 750.0 1 600.0 1 500.0 1 429.0 1 375.0 6 X 18 ISSX-18 I S. B. 11262.0 11889.0 I 841.8 1 721.0 1 631.0 ISSX-24 l G. B. 1 I l i I l 6 X 24 l------- 1-----12584.8 12867.8 11722.0 11476.0 11292.8  ; p

        ?

IS6XA-24 i L. I I I i 1

                        ^

l ISSX-38 I S. B. I I I I i 6 X 38 1--------------13615.0 12892.0 12418.8 12866.8 11888.0 IS6XA-30 i L. I I I I I I, > g l

                    .                                               ISSX-36 I S. B.              I              i               i              i            I                    '

6 X 36 l--------------15286.0 14229.4 13524.0 13821.0 12643.9 l IS6XB-36 i L. I I i i I ,

                                                 -   M.___________              ___________.___________________..________________                                                (

NOTES:

1. S. B. s Solid Bottom ; L.= Ladder TABLE H5 k
                                                                                            'b                                                                                 '!

l l t._.___

                                        .L

i t-i

j SAG.CP18 1 x

BURNDY/ HUSKY 90* RISER 'LBOWS ULTIMATE. TORSIONAL MOMENTS I

                                                                                - (Tn)'

(Also Applicable to 30'., 45 ,and 60 Elbows)

                                                                                              -Tn TRAY DATA-                        1 ULTIMATE TORSIONAL MDMENT (Ib.ft.)

i i l- LENGTH BETWEEN SUPPORTS (ft) TRAY SIZE ICAT. NO.lTYPE 1 4.8 I 5. 0 1 6. 0 1 7. 9 I 8. 0 ISSN-6 . l S. B. - 1. I l- l^ l 4 X'6 l--------------I 381.8 1 305.8 1 254.8 1 218.8 I 191.0 IS6N-6 i L. 1. 1. I l- 1 ISSY-12' I S. B. l. I I I i 4 X 12 l--------------I 758.0 1 680.8 1 500.0 1 429.0 1 375.8 IS6Y-12 i L. I I i 1. l. ISSY I S. B. I I l~ l I 4 X 18 l--------------11203.0 1 962.0 1 802.0 l~687.0 l'602.0 l i i ____________.____.___-___________________'.__________._,q IS6Y-18 I lL. 1 I ISSY1-24'lS.B. 1 I i i 1 1 4 X 24 l--------------12464.0 11971.0 11642.0 11498.0 11232.0-IS6Y1-24 i L. I I i -l I f ISSY1-30 IS.B. l l 1 1 I 4 X 30 l--------------13447.0 12758.0 12298.0 11970.0 11723.0 IS6Y1-30 i L. I I I I I ISSYA-36 IS.B. I 'l i I i 4 X.36 l--------------15840.0 14032.0 13360.0 12880.0 12520.0 IS6YA-36 i L. 1 I I I l , 1 6X6 ISSM14-6 IS.B. I 381.0 1 305.0 1 254.0 1 218.0 1 191.0  ; 6 X 12 ISSM14-12tS.B. I 750.0 1 680.0 1 500.0 1 429.0 1 375.0 6 X 18 ISSX-18 I S. B. 11203.0 1 962.0 1 802.0 1 687.0 l 602.0 ISSX-24 I S. B. 1 I I I l 6 X 24 l--------------12464.0 11971.8 11642.8 11488.8 11232.0 IS6XA-24 i L. l l l l l ISSX-30 I S. B. 1 1 1 I i 6 X 30 l--------------13447.0 12758.0 12298.8 11979.8 11723.8 IS6XA-30 i L. I I I I I ISSX-36 IS.B. I I I I I 6 X 36 l--------------15048.0 14032.0 13360.0 12888.0 12520.0 ' IS6XB-36 i L. 1 I I I i

    ' NOTES:
1. S.B.. Solid Bottom t L.= Ladder
                                                           -TABLE H6

g! SAG.CP18

    .                                                               BURNDY/ HUSKY TRAY ULTIMATE SHEAR LOADS

_(Sn* St ) IKAI rLANUL' s urKAIL ULTIMATE 5 HEAR LOAD HT. WIDTH THICK. Y. STR. (1bs.) H B t Fy NORMAL TRANS. SIZE CAT. NO.- TYPE (in.) .(in.) -(GA NO.) (kei) Sn St 4x12 SSY-12 S.B. 4.0 1 3/4 14 30.. 10400. 9100. 4x12 S6Y-12 L. 4x18 SF7-18 S.B. 4.0 1 3/4 14 30. 10400. 9100. 4x18 S6Y-18 L. 4x24 SSY1-24 S.B. 4.0 1 3/4 12 30. 14600.- 12800. 4x24 S6Y1-24 L. 4x30 SSY1-30 S.B. 4.0 1 3/4 12 30. 14600. 12800. i 4x30_. S6Y1-30 L. i 1 4x36 SSYA-36 S.B. 4.0 2 12 30. 14600. 14600. 4x36 S6YA-36 L. 6x12 SSM14-12 S.B. 6.0 3/4 14 30. 15700, 3900. 6x18 SSX-18 S.B. 6. A 1 3/4 14 30. 15700. 9100. . 6x24 SSX-24 S.B. 6.0 1 3/4 14 30. 15700. 9100. 6x24 S6XA-24' L. 6x3^ SSX-30 S.B. 6.0 1 3/4 14 30. 15700. 9100. L O 6x30 S6XA-30 6x36 SSX-36 L. S.B. 6.0 1 3/4 14 30. 15700. 9100. 6x36 S6xB-36 L. Note: 1. S.B. = Solid Bottom, L. = I4dder TABLE H7 ( 0737s

SAG.CP18 BURNDY/ HUSKY CANTILEVER TRAY ULTIMATE LONGITUDINAL LOADS (FL) FL.(1bs.) TRAY DATA WITHOUT THERMOLAG WITH Int.KMOLAG SIZE CAT. NO. TYPE L=2'-0 L=3' L=4'-0 L=2'-0 L-3'-0 L=4'-0 4x6 SSN-6 S.B. - - - - - - S6N-6 L. 4x12 SSY-12 S.B. 21,345. 17,919. '14,472. 21,312. 17,875. 14,439. S6Y-12 L. 4x18 SSY-18 S.B. 21,191. 17,689. 14,252. 21,213. 17,711. 14,274.  ! S6Y-18 L. 4x24 SSY1-24~ S.B. 35,441. 29,016. 22,951. 35,472. 29,692. 23,134. S6Y1-24 L. 4x30 SSY1-30 S.B. 35,000. 30,104. 25,849. 35,000. 30,104. 25,849.

       . S6Y1-30     L.

4x36 SSYA-36 S.B. 36,186. 30,840. 25,379. 36,137. 30,530. 24,515. S6YA-36 L. 6x6 SSM14-6 S.B. - - - - - ' - L. 6x12 SSM14-12 S.B. 21,345. 17,919. 14,472. 21,312. 17,875. 14,439. O 6x18 SSX-18 L. S.B. L. 21,191. 17,689. 14,252._ 21,213. 17,711. 14,274.- i ' 6x24 SSX-24 S.B. 35,441, 29,016. 22,951. 35,472, 29,692. 23,134. S6XA-24 L. 6:30 SSX-30 S.B. 35,000. 30,104. 25,849. 35,000. 30,104. 25,849. l S6XA-30 L. 6x36 SSX-36 S.B. 36,186. 30,840. 25,379. 36,137. 30,530. 24,515. S6XB-36 L. Notes: 1. S.B. = Solid Bottom, L. - Ladder , l

2. L is cantilever span.

I l l TABLE H8 0737s I

                                                                                         .-___-_-_-___A
    ,                                                                        SAG.LP18 BURNDY/ HUSKY REDUCER AND OFFSET REDUCIA ULTIMATE MOMENTS (M*M) n    t 1 RAY DATA                       ULTIMATE MOMENIS (ib. f t.)

NORMAL 3RANS. SIZE CAT. NO. TYPE a t 4x6 SSN-6 S.B. 3050. 2160. S6N-6 L. 4 x 12 SSY-12 S.B. 3000. 4420. l S6Y-12 L. l l 4 x 18 SSY-18 S.B. 3912. 4360. 1 [ S 6Y-18 L. lR1 4 x 24 SSY1-24 S.B. 6008. 5600. I S6H-24 L. l 4 x 30 SSY1-30 S.B 6725 5076 l S6n -30 L. l 6x6 SSM14-6 S.b. 3050. 2160. 6 x 12 SSM14-12 S.B. 3000. 4420. 6 x 18 SSX-Its S.B. - 3912. 4360. 6 x 24 SSX-24 S.B. 6008. 5600. O- 6 x 30 S6XA-24 SSX-30 L. S.B. 6725. 5076. 56xA-30 L. l Note: 1. S.B.

  • Solid Bottom; L = Ladder I TABLE h9 0

0737s

1 SAG.CP18 BURNDY/ HUSKY ULTIMATE TRANSVERSE CAPACITY REDUCTION FACTORS FOR SHEAR BEAM BEHAVIOR Tray Span Length (Ft) Ultimate Transverse Capacity Reduction Fattor (*

                                                                                                      ]

3.0 0.49 .I I 3.5 0.54 4.0 0.58 4.5 0.63 5.0 0.68 l 5.5 0.74 6.0 0.79 l l 6.5 0.84 7.0 0.89 7.5 0.95 8.0 and greater 1.00 i

  • Note:
1) Capacity Reduction Factors may be computed by the following formula: ,

I=0.1094 L2 where L is in feet and is less than or equal g ) L-1 to 8'-0. l I TABLE H10 l 0737s  ! l L---_--________-_-__-___-_-___--_- . _ - . .. _

SAG.CP18 BURNDY/ HUSKY MINIMUM ' WELD ACCEPTANCE BASIS . STRAIGHT TRAYS Tray Size Ladder Type Solid Botton Type a+c (in.) b+d (in.) a (in.) b (in.) e (in.) (LATER) i l J v i l 1 O 0737s

o SAG. CP18 BURNDY/ HUSKY (WITH OR WITHOUT THERMOLAG) ULTIMATE CAPACITY REDUCTION FACTOR MULTIPLIERS FOR WELDED PIN CONNECTIONS G# 1 I WELDED PIN CONNECTION ULTIMATE CAPACITY TRAY SIZE ICAT. NO.lTYPE REDUCTION FACTORS l l(*1) - _ - - - _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .3 l l NORMAL 'TRANSVER LONGITUDINAL DIRECTOIN l i G Y 6 I  ! 8' 6' 4' i ........................ ......... ......... ......... ......... ........ 1 ISSN-6 I S. B. I 1 4X6 l-------------- 8.213 0.685 - - - 1 IS6N-6 i L. 1

              --______ _.--_---__-- __               --- _ _-_               _--___              ____--_-_       .__ ___---           ._______              1 ISSY-12     IS.B.                                            .                                                        1 4 X 12         l--------------          8.217                  9.670               9.417             9.363             0.325         1 IS6Y-12 l L.                                                                                                          e
              -_-___----___-_-_.---_--_              _---___-.              ----____.            . ..--_.         __.--_---           __.____-                      i 1

i ISSY-18 I S. B. i I 4 X 18 l-------------- 0.166 1.000 0.422 0.366 0.326 l I IS6Y-18 i L. ISSY1-24 IS.B. 1 I 4 X 24 l-------------- 0.108 1.000 0.252 0.218 0.195 IS6Y1-24 i L. l ISSY1-30 IS.B. 4 X 30 l-------------- 0.097 1.000 0.248 0.221 ' O.198 ' I IS6Y1-30 i L. Cs) _-...__--___-_________-___ _____.-_ ,_________ _--._____ _______-_ _____-__ , ISSYA-36 IS.B. 4 X 36 l-------------- 0.080 1.000 0.242 0.213 0.192 l IS6YA-36 i L. l

            .-_____._---_-___-________               -_----_..                     .--___        ________.            .._____         -_______            \

l

         \

6X6 ISSM14-6 IS.B. 0.213 0.685 - - - J

            .-_________________ -_____               _---_____              _________            _________        .________           ________            l l

6 X 12 ISSM14-12iS.B. 0.217 0.670 8.417 0.363 0.325

--_________-___ --_ ..... _------__ -_-______ ......___ __. _____ ____ __.1 ,

6 X 18 ISSX-18 I S. B. 0.166 1.000 9.422 0.366 0.326 l

            \_----___ -__-__-_-__---_.               -__----_.              - __ ----           .-_-__.--_        --_--.__.           -____--_            1 ISSX-24     I S. B.

I 1 6 X 24 l-------------- 9.108 1.000 0.252 0.218 0.195 1 IS6XA-24 1 L.

            \__--___--_-.....               -_-___   _ _ _           _ .    ----____             _ . - - - - _ _  .----____                __             \

ISSX-38 I S. B. l 6 X 30 l-------------- 8. 097 1.900 8.248 8.221 , 0.198 , IS6XA-38 i L. ISSX-36 I S. B. 6 X 36 l-------------- 0.880 1.000 8.242 0.213 0.192 J 156XB-36 i L. . 1 NOTES:

1. S.B.= Solid Bottom ; L.= Ladder I

TABLE H12A

l j l SAG. CP18 BURNDY/ HUSKY (WITH OR WITHOUT THERMOLAG) ULTIMATE CAPACITY REDUCTION FACTOR MULTIPLIERS FOR PIN-PIN CONNECTIONS O V

                                                             ' TRAY SIZE ICAT. NO.lTYPE                                                      CAP. RED. FACT. MULT.

1 l<,1) --------------_-------------------- ,

                                                                                                                                                                                                    \                1 1                 I                       NORMAL                 TRANSVERSE           1 LONG. DIR.                            {

l i G g y ' 6 {

                                                            \.........................                                    ...........               ............                ...........!                           ,

I ISSN-6 I S. B. i 0.00 4X6 1-------------- 0.00 O.47 1 IS6N-6 i L. i l....--------------------- ----------- -----------

                                                                                                                                                                               -----------               l             l lSSY-12 I S. B.                                                                                              ?                I 4 X 12              1--------                 --

0.00 0.46 0.00 1 \ IS6Y-12 i L. l ISSY-18 I S. B. l l

                                                         ,         4 X 18              l--------------                           0.00                        0.69                        0.00           l              l 1                             IS6Y-18 I L.

l

                                                                                                                                                                  ~
                                                                                                                                                                                              ----}

ISSY1-24 IS.B. 4 x 24 i-------------- e. e0 e.72 0. ee L ) lS6Y1-24 i L. l --------_ -- _ -- ----- ----- --- ---- . ISSY1-30 IS.B. L , 4 X 30 l--------- 0.00 0.99 0.00  ? l lS6Y1-30 i L. L , 1

                                                              -------.--- .------------                                   -----------                -----------               -----------            \
               , ,)

( ISSYA-36 IS.B. 1 4 X 36 1-------------- 0.00 0.88 0.00 IS6YA-36 I L. L )

                                                              -------------------------                                  -----------                -----------                ----------                              \

6X6 ISSM14-6 IS.B. 0.00 0.47 0.00  !

                                                                        =---------------                            -   ,-------                    -----------                -----------            ,

I 6X 12 ISSM14-121S.B. 0.00 0.99 0.00 J l ----------- ----------- 6 X 18 ISSX-18 I S. B. 0.00 0.69 0.00 1 ISSX-24 I S. B. l 6 x 24 i-------------- e. 0e e.72 ,

e. e0  ; l lS6XA-24 i L.

1 1 ISSX-30 IS.B. L 6 X 30 l-------------- 0.00 0.99 0.00 , IS6XA-30 i L. i

                                                           ,-------------------------                                    -----------                -----------                -----------            I i

ISSX-36 I S. B. ' 1 6 X 36 l-------------- 0.00 0.88 0.00 t IS6XB-36 i L. i

                                                           ! NOTE :

i 1

1. S.B.= Solid Bottom ; L.= Ladder i

() TABLE H12B l i u_.__ _ _ _ _ _ ___.__._._____._______m______________- _ +

SAG.CP18 BURNDY/ HUSKY ULTIMATE CAPACITY REDUCTION FACTORS FOR SPLICE PLATE DEVIATIONS TRAY TRAY- ULTIMATE CAPACITY REDUCTION FACTORS NORMAL TRANSVERSE LONGITUDE B' 4 ft 6 ft 8 ft (LATER) O I i O I 0737s

                                                                                                            )

1

   ,                                                                         SAG.CP18 APPENDIX A APPENDIX A TU ELECTRIC COMANCHE PEAK SES UNITS 1&2 STRAIGHI TRAY QUALIFICATION PROCEDURE

1.0 INTRODUCTION

This appendix describes the qualification procedures for straight trays IR1 using Equivalent Static Method -(ESM) and Response Spectrum Method (RSM). A quadratic interaction equation is used in ESM wnile a linear interaction equation is used in RSM. In' ESM the forcer and moments in the tray due to the applied loads are. calculated using conservative peak { response spectra accelerations. In RSM the forces and moments in the a tray' due to the applied loads are obtained from the system analysis of cable tray and hanger assembly. The failure loads of the trays are j found from test on 8'-0 span straight trays. Tne ultimate moment capacity of the tray is calculated from the failure load obtained from the test. This ultimate moment capacity is applicable to all straight tray spans. The failure load'in axial direction is calculated using AISI Code. - 2.0 EQUIVALENT STATIC METHOD For horizontally oriented trays with no torsional loading the interaction equation (2.1.2) can be expressed as follows: l . SF*

  • b+ 7552A 4

n "t 8 -M n wi FL Mn Mt a il/2 -

                   +

1 F3

                              )2   -
  • MetM 1.0 (A1) lK1 where:

SF = safety factor = 1.6 w = weight / unit length of tray, in ib/f t unita 1 = span of tray between two supports, in feet unit A = area of cross-section of the tray, in square inches units an, ag, & a1 = maximum accelerations from response spectra in  ; normal, transverse and longitudinal directions respectively, in 'g' units i M>Mt n

                       =

failure moments of 8'-0 span tested trays in normal and transverse directions respectively, in ib f t units

                                             - A1 -

3679M i

SAG.CP18 APPENDIX A l] (_/ Ft = failure load of tray in axial direction (calculated using A1S1 Code), in lb unit MRM = multimode response multiplier as defined in Section 2.1 of Id1 main document. The thermal load is calculated for a temperature dif ference of 32'F and for an effective thermal expansion coefficient of 1x10E-6 f t/f t/'F. Axial load includes the longitudinal weight of 40 feet length of tray (including fire protection, if present) and the weight of transverse hangere between two adjacent longitudinal hangers. Values of M n* M and F L are given in Tables T1 and T2 for T J Cope trays and Tables fil and H2 for Burndy/ husky trays. The computed shear load in normal direction of the tray is calculated as follows: l sn" If 'n/2 + (a n* f'n/2)

  • MRM) SF (A2) l where: ,

1

                                                                =

l SF Safety factor = 1.6 sn = computed shear load in tray normal direction IR1 f'n = total weight of tray in tray normal direction = wl Other terms are defined as before. The computed transverse shear load is obtained as follows : l st = [(at

  • f'n/2)
  • MRM] SF (A3) l where:

1 i

                                                                =

st computed shear load in transverse direction. l Other terms are as defined before. l l The shear load capacities of trays are calculated on the basis of equations (5.4.1) to (5.4.3) and given in Tables T7 and H7. For vertically oriented trays with no torsional loading the interaction equation (2.1.4) can be expressed as follows:

                                                                ~

SF* w1 2 8 + 7552A + a n a t 8 .1F 2 F ' "n + (Mt L 08 2 ml/2 -

                                                                       +                                                              (A4)
 ,q                                                                         (1F1)        )     *MRM(l.0 g

V

                                                                                         - A2 -

3679M _ _ _ - _ _ _ _ _ _ = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SAG.CP18 APPENDIX A X Terms in'this equation are as defined before. Each support for vertical h tray being longitudinal support, the axial load is calculated for the actual span of the tray. The shear load capacities n S in normal direction and Se in transverse direction for SSE load are calculated on the basis of equations (5.4.1) to (5.4.3) and these are given in Tables T7 and H7. The applied shear load in normal and transverse directions of vertical oriented tray is calculated as follows: Normal direction: sn = [(a *n f'n/2)

  • MRM) SF (A5)

Transverse direction: og = [(ag

  • f'n/2)
  • MRM] SF (A6)

The shear criteria are satisfied if anSS nand og f S t. l Thermal loads being small can be neglected in equations (A1) and (A4). i loa tL) T (Of* ' '-) S4

                        .===

i l = =s i l. C J l,

                                                             /
                                                                            )~s -(N3
                          ===                                .
                                                                     = -J      i
                                                                                      .2 l                     l E-           E    L Ccccvdvidbj l           Point of Application of Load                    t If other loads are present in a straight tray the interaction equa-tions (2.1.2) or (2.1.4) should be used. The contribution of Pne p,py g      should be added tog a ,ot , ag , to, ng and fi . In addition,            the I

contribution of torsion to computed shear loads must be included in equations (A2), (A3) or (AS), (A6). Conservatively, the value of pu, Pt and (2tn/W) should be added in equations (A2), (A3) or (AS), (A6). . 1 1 3.0 RESPONSE SPECTRUM METHOD In RSM the trays are qualified at the most critical sect' ion (s) using the following linear interaction equation. SF ~ 'l + n + '* n + 't 4 1.0 (A7)

               ~

L n n t-

                                                  - A3 -

3679M

l i l SAG.CP18

                                                                     ' APPENDIX A
 .m where:

an * *t = maximum applied moments due to gravity and SSE loadings in the normal and transverse directions respectively tn = maximum applied torsional moment due to gravity and SSE loadings 1 fi

                          =  axial load due to gravity and SSE loadings Mn, Mg      =  failure moment in normal and transverse directions l                             respectively i              Tn          =

failure torsional moment 1

                          =  failure load in axial direction (calculated using AISI FL                                                                             l Code)                                                          i l

a,m,t n e and fi are obtained from the system analysis of cable l trayandSangerassembly. Values of M3 , Mt and Ft are given in Tables T1 and T2 for T J Cope trays and Tables H1 and H2 for Burndy/ Husky trays. Values of Tn are given in Tables T3 and H3 for T J Cope and Burndy/ Husky trays, respectively. After the interaction equation is satisfied, a shear check is to be made at the most critical section of the' tray for both normal and transverse ( shear. The applied shear loads s ne and at are also obtained from the system analysis computer output. The shear load-in normal direction from computer output sac is modified to account for the shear load due to torsion in the following way: l sn= {sne + 2 tn/W) SF (A8) where: I i sn = total applied shear load in normal direction suc

                          =

shear load obtained from computer output for gravity, I thermal and SSE loadings I tn = total applied torsion soment due to gravity, thermal I l and SSE loadings Failure shear loads are given in Tables T7 and H7. . Shear criteria is satisfied if a n Sn and s e S* t l 40 ALLOWABLE SPANS Equations (A1) and (A6) are used to calculate the allowable span and , load tables for horizontal run and vertical run trays. in thcee tables the weight of tray including fire protection used is 40 feet for l O

                                            - A4 -

3679M i

I I SAG.CP18 i APPENDIX A i / horizontal run trays and span length for vertical run trays. The l allowable opans are calculated using peak response spectra accelerations j vith MRM d 1.25 for Diesel Generator, Electrical, Fuel Handling and Auxiliary buildings. Following allowable spans and load tables were i calculated: I

1. Unit 2 allowable spans of Burndy/ Husky horizontal run trays with i and without thermolag weight. Thermolag weight used is for l Unit 2. Reference 12. I
2. Unit 2 allowable vertical cable tray spans and allowable overspan load tables (for spans between 8'-0 and 12'-0) for Butady/ Husky horizontal and vertical trays with and without thermolag weight.

Thermolag weight used is for Unit 2. Reference 14. j

3. Unit 1 allowable spans and overspan load tables (for spans between 8'-0 and 12'-0) of T J Cope and Burndy/ Husky trays with and without thermolag weight, with various fill loads. Thermolag weight used l is for Unit 1. Reference 13,
4. Unit 1 allowable spans and overspan load tables (for spans between 8'-0 and 12'-0) of 6 1/4" T J Cope trays with and without thermolag weight, with various fill loads. These trays are part of expanded j test program. Thermolag weight used is for Unit 1. Reference 16. 1 5.0 O)

L LONGITUDINAL CONNECTIVITY The allowable span and load tables calculated in Section 4 do not include the effect of longitudinal connectivity between transverse hangers and trays. The longitudinal connectivity will only affect the horizontal run trays. In order to use these tables in the design verification of trays, following method is suggested.

1. Calculate the appropriate portion of self-weight of transverse I hangers per tray between two adjacent longitudinal hangers on IR1 i the basis of Attachment Z of General Instructions (Reference 4). l
2. Calculate the total longitudinal weight of 40 feet of tray as used l in the generation of allowable span and load tables. l 1
3. Compare the weight calculated in (1) to that calculated in (2). If l the weight calculated in (1) is less than the weight calculated in  !

(2), then the tables are applicable. i

4. Otherwise use interaction equations (2.1.2, (2.1.4) in the IR1 l qualification of the tray. l l l

p V , 1

                                         - A5 -

3679M l 1 I l

SAG.CP18 APPENDIX'A.

6. 0 - ACCEPTANCE CR'ITERIA
                                                          .'In ESM,' the allowable tray -(span and load) tables given in Ref erences               l 12,13,14 and 16 are calculated as described in. Section 4.0.        These               l     !

allowable tray tables do not include the shear beam behavior.which would - 1 i reduce the moment capacity of a tray in the transverse direction f or I' i spans less than 8 feet. . Therefore, the allowable tray tables are valid I.

only f or tray spans equal to and greater than 8 feet. 1
                                                                                                                                                  'l If the provisions of Section 5.0 are satisfied and the tray span is                   ~l equal to or greater than '8 feet, then the tray can be qualified using                  1 the applicable tray tables. However,'in the case of tray not qualifying                I on the basis of applicable tray tables, or.when tae- tray span is less than' 8 feet, or'when there are loads other than cable loads (including fire             i protection if present), equations (2.1.2) or (2.1.4) must be used to                    l qualify the tray.                                                                      I 1R1 Af ter evaluation of the tray either on the basis of. allowable tray                     I tables or on the basis of interaction equations (2.1.2) or (2.14) a                     I shear check on the basis of Section 6.4 is to'be performed on the tray.                 l Since it is shown in Ref erence 20-that the shear' criteria are satisfied               I for trays up to 12 feet with or without the weight of fire protection,                  I it is not necessary to check shear for tray spans-less than or equal to                 l 12 feet long. However, for trays with other loads in addition to cable                  I weight which may or may not include fire protection, it is necessary to perform the shear check. A tray is qualified'if both interaction and
                                                                                                      ~
                                                                                                                                                        ')

shear criteria are satisfied. l V -l In RSM, the trays are qualified on the basis of criteria as described 'in l Section 3.0 including the reduction in moment capacity of a tray in the l transverse direction for spans less than 8 feet due to shear beam I behavior. l ) 1 I O 3679M

                                                                                             - A6 -

E SAG.CP16 APPENDIX B

 /"%                                            APPENDIX B

( )

 %/

TU ELECTRIC COMANCHE PEAK SES UNITS 1&2 FLAT ELBOW AND RISER ELBOW TRAY lR1 QUALIFICATION PROCEDURE

1.0 INTRODUCTION

This appendix presents a cable tray qualification procedure for elbows lR1 and risers using the Equivalent Static Method (ESH) and the Response Spectra Method (RSM) analysis approach. Both approaches defined herein build upon the conventional straight tray qualification interaction formulae presented in Section 2 of the main body of the document, to address the elbows and the risers. The conventional straight tray interaction formulae are expressed in terms of moments, torsion and axial forces. Additional equations are used for checking shear. For the ESM method the required moments, torsion, axial f orce and shear are determined and used in a quadratic interaction qualification equation along with conservative maximum response spectra accelerations and lR1 test data. The RSM method differs from the ESM method in thtt a linear interaction qualification equation is used, and the required values for the equation are directly obtained from computer runs and test data. The following assumptions are made in this qualification:

3. The failure load for simply supported 8'-0 straight tray sections of same size is used to compute the failure moments Mn and Mt with 7'~)s

(~ a capacity reduction factor. This capacity reduction f actor is obtained based on 90' tray elbow's and riser's testing results.

2. The capacity reduction factors for 90' elbow and riser can also be conservatively applied to elbow and riser with acute angle (O IR1 defined in Figures 3.2 and 3.3).
3. The failure moment capacity remains the same for elbow and riser up l to 8 f t length between two adjacent supports. For spans greater than lR1 8 f eet see Section 4.0.
4. For flat elbow and riser elbow, the axial f ailure load FL is lR1 obtained from a same size and length straight tray section.
5. Tested trays are a representative sample of trays installed in the plant aad therefore the qualification approach is for representative trays only. Tray with deviations must be qualified separately.

2.0 EQUIVALENT STATIC METHOD APPROACH The interaction equation to be evaluated in the design verification of cable tray flat elbows, laid out horizontally, is as follows: lR1

 /^s t   )

Q/

                                               - B1 -

1847v J

SAG.CP18 APPENDIX B I. i R ill i i il ii iiil'l gll' l" I

                                               \tlllljil s\rii                         I;       _J r

_r T SF < + + +

                                        + [(3n    +             +(           )    +(   )] Mim
  • 4 1.0 n n L t n t- L
                 '                                                                           s (B1) where SF      =  safety factor, 1.6 is used MRM     =  multimode response multiplier f'o     =  total normal weight of tray between two supports 9

m 'n

                   =  moment at support resulting from the application of f'n to the fitting geometry L

n

                   =

tor ional moment due to the application of f'n t the fitting geometry f = axial' force due to temperature load T g = transverse moment due to temperature load j mn = applied normal SSE seismic moment equal to na

  • m'n, where lR1 a is the maximum vertical response spectra acceleration in l "n"

g units at = applied transverse SSE seismic moment.

                   =  applied axial SSE seismic load fl
                   =  factor defining effective longitudinal length causing axial force f1 including the effect of longitudinal connectivity tn      =   torsional moment due to the a n*fn ', which is equal-to                        IR1 a n'tn '                                                                        I 1

1 1 O

                                                 - B2 -

l l '1847v

SAG.CP18 APPENDIX B

 \        FL
                                           = failure load in tray axial direction as shown in Tables H2 and T2 (same as straight tray), analytically computed from AISI code Mn                                = failure moment in tray normal direction as shown in Tables H4                                                                         lR1 and T4                                                                                                                                l Mg                                = failure moment in tray transverse direction as shown in Tables H4 and T4, and                                                                                                                         lR1

( Tn = failure torque in tray transverse direction, which is a function of tray length between supports as defined in Tables H5 and T5. lR1 4. MRM is defined in Section 2.1 of main document The applied moments and torsionn (a * "t andot ) at the support for the applied seismic loads (f',* an or f',* a g ), and the arlal IR1  ; force (f ) and moment (mT) due to temperature load should be obtainedT for the tray system. The axial force (f )yand moment (at ) are not to be considered as shown in Reference 19. Tables H2 and T2 lR1 tabulates FL values for different span lengths. Ta'bles H5 and T5 lR1 tabulate T values for various trays under different span lengths. u After this interaction equation is satisfied, a shear check is to be l made in accordance with Section 6.4 of the main document. lR1 l For normal shear load: l sn" I'n/2 + 2t,'/W + (a f'n/2 y + 2tn/W)

  • MP
  • SF (B2) where an is computed shear load in the normal direction and W is lR1 tray width.

For transverse shear load: s = a f'

  • MRM + s
  • SF (B3) t t n T where sT is the shear due to temperature.

suand at are then compared with the ultimate shear load capacities S,and Sg in Tables H7 and T7. If s n4 S nand s t 'S St

  • Ch' shear criteria are satisfied.

When the interaction equation and the shear equations are satisfied, the elbow tray fitting is considered qualified. When the cable tray riser elbows are laid out vertically as follows: lR1 0

                                                                                   - B3 -

1847v

SAG.CP16 APPENDIX B

                                                     !     l,             -
__4 [ I t

t_ I f 'r l i

                                        .A, the interactive equation is SF e           +      +        + [( " +        )  +(   ) +(        ))      *MRM * $ 1.0        lR1 n       L       n             a   n       t           L            ~

(B4) and t,he shear equations'are . s = f' /2 + (a *f' /2 + 2t /W) *MRM + s

  • SF, and (BS) lR1 a n n n t T l s =

(a *f')/2 *MRM

  • SF, (B6)

I t , t n , where t is the torsional moment due to the application of a t *f', t in the transverse (t) direction and f'yo is axial force due to weight (in n-directien) of tray between two supports. Tu is given in Tables lR1 f--- H6 and T6 3.0 RESPONSE SPECTRUM METHOD When the RSM analysis method is used in the design verification of cable tray hangers, the trays in this system should be qualified by using the following' linear interaction formula at the most critical tray section(s): f a t a SF [ + ) 1.0, (B7) L +[n+T n t where F L ,M n *Mt , Tn are as defined in ESM, and f18 *ne Et* tu are obtained from computer run at critical tray section including the effect of longitudinal connectivity. l Af ter this interaction equation is satisfied, a shear load check is to l be made for the most critical tray section for both transverse and normal shears. These shear load values should be directly obtain from the computer output and they are computed- as the suas of shear and the associated value of (2 x t n/W). lR1 Allowable normal shear load and allowable transverse shear load are presented in Tables H7 and T7. If the computed shear loads are less than the allowable values, and the interaction equation is satisfied, then the tray fitting is considered qualified. l -M-1847v

l SAG.CP18 APPENDIX B 4.0 ACCEPTANCE CRITERIA The tests were performed on 8-feet elbow span, which means that the l 1 elbow span has straight tray on both ends of elbow. The test'shows that i 1 elbow span failed near the support in the' straight part. On the basis of l l failure of the elbow near the support, the ultimate moment capacities of l elbow are obtained. For elbow span (L).less than 8 feet the shear beam behavior would reduce the moment capacity in the transverse direction. Therefore, the moment capacity in transverse direction of elbow with lR1 span less than.8 feet must be modified on the basis of ultimate transverse capacity reduction factors given Tables T10 and H10 for T J Cope and Burndy/ Husky trays respectively. This modification if required will also affect Tables T4 and H4. For elbow span (L) greater than 8 feet the following procedure should be l followed to modify the ultimate moment capacities in both normal and I transverse directions. I j l  :

1. For flat elbow (moment in normal direction) and rise elbow (moment l I in transverse direction) apply 1 lb/f t. load in the out-of plane l direction of tested elbow for 8'-0 and L ft. elbow spans. Calculate l Shear forces location.- S8 andthe Calculate SL ratio and bending

[S6/SL $moments 1.0 andM8'] ML at lM8/ML y the 1.0 support ]. Use Min (S8/SL, MS/ML) as reduction factor to obtain ultimate l l moments in normal and transverse directions for flat elbow and riser l l b) elbow respectively. l l l

2. For flat elbow (moment in transverse direction) and ri er elbow l-(moment in normal direction) apply 1 lb load in the longitudinal l direction similar to tested elbow. Repeat the procedure in (1) l except load application and find minimum reduction factor to obtain  !

ultimate moments is transverse and normal directions for flat elbow , and riser elbow respectively. l The reduction factors obtained in 1. and 2. above will affect Tables T4, TS, T6 and H4, HS, H6. The elbows must be qualified on the basis of procedures outlined in Sections 2.0 and 3.0 and incorporating the reduced moment capacities as 'R1 described above. O

                                            - B5 -                                                 :

I 1847v 1

                                                                                                                                                                                                  }l l

SAG. CP18 'j APPENDIX C APPENDIX C

      '                                                                                                                                                                                             i TU ELECTRIC                                                            j COMANCHE PEAK SES UNITS 1 & 2                                                           >

CANTILEVliR TRAY QUALIFICATION PROCEDURE 1.0 IN110 DUCTION This appendix describes the qualification procedure for cantilover tray IR1 using equivalent static method (ESM) and response spectrum method (RSM). The straight tray interaction equation are modified for j cantilever spans. The assumptions used in the qualification of 1 cantilever tray. span are as follows: I l_ I

1. The moment capacity of the cantilever is taken the same as the ,

moment capacity of the 8'-0" span straight tray. The moment I capacity of 8'-0" simply supported straight tray is obtained from )' test data.

2. The axial failure load is calculated for a cantilever with buckling coef ficient of 2.1.
3. The torsional moment capacity of the cantilever tray is derived IR1 f rom the normal moment capacity of straight tray.

2.0 EQUIVALENT STATIC METHOD For a cantilever span with no torsion load the interaction equation (2.1.2) and 2.1.4) can be expressed as follows: For horizontal run trays l i i 2 , e a, 2 a 2 2a y 2 M ~ Sp a g - 1 , t , , ggg 1.0 2 M i, M M 1F J - (C1) i For vertical run trays:

                                                                                                 ~

2a y 2 1/2 SF

  • wil 2 + n + (8 t ,
  • MRh 1.0 2 - 1FL 1, ("M, ) M }2 ^ ~

t L (C2) where: SF = saf ety f actor = 1. 6 w = weight of tray in ib/ft - 1 = span of cantilever tray, in feet units a,n = maximum accelerations from response spectra in normal, i O a, at t transverse and longitudinal directions respectively, in g units I 1829R - C1 -

          - - _ _ _ _ _ _ _ _ _ _ _ _ _           _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                   . - - -     - - .                                         -                    -J

SAG. CP18 APPE.ND1X C O M,n

                      =

failure moments of. 8'-0" spans tested tray in normal and Mg transverse directions, in ib f t unit FL

                      =

failure load of tray in axial direction (calculated using A1SI Code), in ib unit MRM = multimode response multiplier MRM is defined in Section 2.1 of O main document. l There is no thermal lead on a cantilever span. Values of M ns Mt and. Ft are given in Tables T1, T8 and H1, H8 for TJ Cope and Burndy/ Husky trays respectively. t I After the evaluation of interaction equations (C1) or (C2) shear check is performed on the tray in the following way. The computed shear load in normal direction is calculated as follows: e e s, = f, + (a nn 8 _ (C3) where: SF = safety factor = 1.6 i

                      =

e n computed shear load in the normal direction. f'n = total normal weight of cantilever tray. The computed transverse shear load is obtained as follower 1 sg =I a g

  • f
  • MRn SF (C4) where:
                          =

st computed shear load in the transverse direction Other parameters are as defined before. The shear load capacities of trays (same for cantilever) are calculated on the basis of equations (5.4.1) to (5.4.3) and are given in Tables T7 and H7 for.T J Cope and Burndy/ Husky trays respectively. If a n Sn and at St , then shear criteria are satisfied. L 5 PAN C LT m

                                                                                           '              u T (or LL)                                    _

( - - -a E

  • a (TR Ay \ 3 pC p1  ; pn I
                                                                                                              \JJ

[N 9 pt V Peint of Application of Loa l 1829R - C2 - 1 L-___-__-___-____. - _ _ _ _ _ _ _

o SAG. CP18 APPENDIX C O If other loads are present in a cantilever tray the interaction equation t (2.1.2) and (2.1.4) should be used. The values of m'ns t'n, en, IR1 ( tn,m,f1e in equations (2.1.2) and (2.1.4) must be modified to include the contribution of p p In addition,shearequations(C3$,ankandp1tothesevalues. (C4) should include the contribution of Pas Pt and (2 tn/W). Conservatively, p pt and (2 t n/W) can be added to shear equations (C3) and (C4). Cantilever trays are not affected by longitudinal connectivity. 3.0 RESPONSE SPECTRUM METHOD (RSM) In RSM the trays are qualified at the most critical section(s) using the following linear interaction equation.

              -f         a             t-SF         +         +

L [n [m +['61.0 t n (CS) where: SF = Safety factor = 1.6 i m,me n

                       =

maximum applied moments due to gravity and SSE loadings I in the normal and transverse directions respectively fl

                       =

axial load due to gravity and SSE loadings O t n

                       =

torsion due to gravity and SSE loadings V j M'M n t

                       =

failure moments in normal and transverse directions l respectively J FL

                       =

Failure load in longitudinal direction (calculated using AISI Code) Tn = Failure torsion calculated from Mn After interaction equation (CS) is satisfied, shear check is performed in the  ! tray. The values of a and at obtained from computer output are multiplied by SF(1.6).n The shear load in normal direction from computer output is modified to account for the shear load due to torsion in the following way l

                       =

l an [sne + 2 Cn /W) SF (,C6) where.: l sn = total applied shear load in normal direction s ac = shear load obtained from computer output for gravity, thermal and SSE loadings. 10 V IR1 1829R - C3 -

SAG. CP18 APPENDIX C.. t n. total applied torsion.soment due to gravity, thermal and. SSE' ') loadings . These valuso, suand sg.. are compared against the shear ' load ) capacities of tray given in Tables T7 and H7 for 'l J Cope and - ' Burndy/ Husky trays respectively. y 4.0 ACCEPTAhCE CRI,TERIA i

  • 1 The moment capacity of cantilever tray in transverse direction must be- I modified to include the shear beam behavior for cantilever spans less than 4 feet. For finding the transverse noment reduction factors for .

j cantilevers from Tables T10 and H10 the cantilever span must be multiplied by 2 before using the Tables. Similarly, the cantilever span  ! must be multiplied by 2 before using Tables T4 and H4 for obtaining torsion soment capacity of a cantilever. In ESM, if cantilever trays have only cable loads wit'h or without. fire l 4 protection then use equations (C1) or (C2) to qualify the tray. In the presence of other loads, use equations (2.1.2) or (2.1.4) 'to qualify the -l tray. 1 RI l Af ter evaluation of cantilever tray either on the basis of' equations i (C1) or (C2) or equations (2.1.2) or (2.1.4), a shear check on the basis -{ of Section 6.4 is to be performed on the tray.- Since it.is shown'in { Reference 20 that the shear ' criteria are satisfied for cantilever. trays up to 6. feet span with or without the weight of fire protection, it is {

 '                                                                                                       t not necessary to check for shear for cantilever spans less than or equal                 I to 6 feet. However, for cantilever trays with other loads in addition to cable weight which may or may.not include fire protection, it is                   .i necessary to perform the shear check. A' tray is qualified if both                   )

interaction and shear criteria are satisfied. In RSM, the cantilever trays are qualified on the basis of criteria as described in Section 3.0 including the reduction in soment capacity of a cantilever tray in the transverse direction f or spans less than 4 feet due to shear beam behaviour. i i O 1829R - C4 - i

                                                                                                       .i

b SAG.CP18

                                                                       /              APPENDIX D s

APPENDIX D i TU ELECTRIC

 /L ~}                               COMANCHE PEAK SES UNITS 1 & 2 REDUCER AND OFFSET REDUCER TRM QUALIFICATION PROCEDURE    ,                       -

f

1.0 INTRODUCTION

s i This appendix describes the qualification procedure for reducers and i offset reducers using equivalent static method (ESM) and response spectrum method (RSM). The straight tray ultimate moments and interaction equations are modified to reflect the effect of reducer / offset reducer. The assumptions used in the qualification of reducers / offset reducers are as_follows:

1. The moment capacity of reducer / offset reducer is taken as the moment capacity of the smaller size of the straight tray multiplied by a reductica factor. This reduction factor accounts for the effect of the reducer / offset reducer. The moment capacity of straight tray is obtained from the test of 8'-0 span simply supported tray.

{

2. The ultimate longitudinal load capacity is calculated on the basis lR1 of smaller size of the tray.
3. The ultimate torsional moment capacity of the reducer / offset reducer is  ;

p taken as the ultimate torsional moment capactly of the smaller size of )j t i the tray.

   %)

f

4. The reducer / offset reducer with deviation must be qualified lR1 I separately.
2. EQUIVALENT STATIC METHOD (ESM LL $ l
                      @ut                                       T        l.                                    !       l u        i   ,             ,
                                             .En.g_

j- __ ___. o q 3 .c g / j {t.',*- f p u.a. "~ ~

                                                                                                             ! o^
           -    3        ft._         ,

_e v . w x).,

                                                                            '                                I (S u nts u.T                                                               ,

NN' t. I i i I . J i The interaction Equation (2.1.4) for the qualification of offset reducer with horizontal orientation is written as follows: l l h,/

                                                   -D1-3752M
   ;                                                                     y
                                                                                                                                                        SAG.CP18 APPENDIX D m'               t'      f                                    a        m       t         a        f.2 1/2 SF    [g"+T                  +                           +               + ((       +     } + (     }+( )]
       .                                          n                n           L                                 i         n      n         t       L
                                                                                                                      *MRM]~        :6    1.0              (D1).

where:- SF = safety factor = 1.6 MRM = multimode response multiplier f'n = totti normal weight of smaller tray between two adjacent supports (i.e. supports 1 and 2) p'n a total normal weight difference between larger and smaller tray between two adjacent supports (i.e. supports 1 and.2)

s,, , .

l ta' n

                                                  =

maximum span moment from the application of f'n and p'n t'n = torsional moment from the application of p'n at eccentricity e2 = p'n

  • e2 e2 =

l W1/2 lR1 W1 = width of larger tray l l W2 , = , width of smaller tray f,T

                                                  =

axial force due to temperature load q, transverse moment due to temperature load

                                                  =

l mn maximum normal SSE span moment equal tona

  • m'n, where anis the maximum normal response spectra acceleration in IR1 1 'g' units l

t n

                                                  =

torsional moment equal to na

  • C'n
                                                   =

mg maximum transverse SSE span moment equal ton a

  • m't, where at is maximum transverse response spectra acceleration IR1 in 'g' units; and e.' is the sum of maximum span moment due i.o the application f'e and p't (= P'9) +in the transverse direction and (f1 el) = an*m e fi
  • el lR1 e1 =

1/2 (W1 - W2) p, g y' i

                                                                                                                      -D2-                                               l 3752M R__.__._._____._._      _ _ _ _ _ _ _ _             ________.__             _ _ _ . _ _ . _ . . . . . _ _ _ . _

SAG.CP18 APPENDIX D-fi

                                    =   maximum axial SSE load                                                  l Mn
                                    =    ultimate moment capacity of reducer / offset reducer (smaller tray) in normal direction                                              1
                                                                                                               -l Me
                                    =   ultimate moment capacity of reducer / offset reducer (smaller           l' tray) in transverse direction.                                         lR1' j l

Tn

                                    =   ultimate torsional moment of reducer / offset reducer (smaller tray).           I FL
                                    =   ultimate longitudinal load of' reducer / offset reducer (smaller tray)  1       i The contribution of thermal load being small fT and sT can be
                           ' neglected (Reference 19).

MRM is defined in Section 2.1 of main document. MeMt n are given in Tables T14 and H14 for T J Cope and l Burndy/Jusky reducer / offset reducer trays incorporating the effect of reducer / offset reducer. T nand FL are given in Tables T2 and H2'  ! for T J Cope and Burndy/ Husky trays which are the same as for the straight trays. For the reducer the eccentricity is e1 = 0 . In addition Pne Pt (i.e., p'n'and p'g) are multiplied by 2 for the reducer. The shear loads in normal and transverse directions are conservatively j calculated as follows in normal direction: s,= [f,/2 + 2 t /W2 o + p,+ (a,* f,/2 + a,

  • p, IR1 i i
                                             + 2 t,/W2) MRM] SF                                      (D2)

In transverse directiont l sg = [(a g* f /2 + a g* p ) MRM ] SF (D3) sn = computed shear load in normal direction og = computed shear load in transverse directions i Others terms are as defined befort. Ultimate shear load capacities j are given in Tables T7 and H7.  ! For the vertical layout of offset reducer the interaction equation  ; (2.1.4) is written as follows: 1 2 SF { "+ + + + (( + ) L t L t n n  : 2 2 1/2

                                        +(t+flw
  • el) ,(flw F
                                                                        ))         ) MRM 6 1.0 (D4)                       ,

Mg g i

                                                                  -D3-                                                    i 3752M                                                                                                i i

y SAG.CP18- ' APPEND 1% D 4 where:

           )                        f'1w
                                               -    total longitudinal weight of tray span under consideration .

(for vertical tray orientation each support is longitudinal suppdrt) i

                                  . fly , l (= axial SSE load = a1
  • f'1,. '

0, ( 12 lN ' L I N t { gtrier teres are as defined before. r w?' , J i j ~^ "s The shear' loads are conservatively calculated as shown below: ' e In normal direction {. sn " I*n

  • f'n/2 + a *np'n + 2 t /W2)n MRM] SF (D5) lR1 i v.

In transverse direction: s g = [(at

  • f't/2 + at
  • p't) HRM] SF (D6) .

I R1-Terms in Equations (DS) and (D6) are as defined before. The values of

                                ' p's,and p'e must be sultiplied by 2 for the case of reducers.
                                            't The ahear criteria are satisfied if sn d$ So and st =f S ta fr and mT are neglected on the basis of Reference 19.

e., c w - 3.0 RESPONSE SPECTRUM METHOD (RSM) Os 1, For RSM the reducers / offset reducers are qualified at the most s, critf 6hl section(5) using the following interaction equation: aEit a k SF [ 11- "+E+f1 * *1 + f1 ] d. 1.0 (D9)

                                           'n       a          t             L 5

where: s m*8t n

                                                       =

maximum applied moments due to gravity, temperature and SSE loadings in the normal and transverse directions

       .                                                 respectively.

t n

                                                       =

maximum applied torsional moment due to gravity, temperature and SSE loadings e fi, = maximum applied axial load due to gravity, temperature and SSE loadings w O .-

                                                                    ~
                                                                            -D4-3751M

SAG.CP18

    .                                                                                      APPENDIX'D ma , me , and fi are-obtained from computer output at critical' Q(~%.

sections. , Mn and M'.are g defined in. Tables T14 and H14 for T J Cope and Burndy/ Husky respectively. 'F L for reducers / offset-reducers'are the same as for smaller straight trays and are given in Tables T2 and.H2- I' for T J Cope and Burndy/ Husky trays respectively. In RSM the shear load obtained from the computer output is multiplied

by SF (1.6) before' checking against the ultimate shear load. The shear load in normal direction from computer output is modified to );

account for the shear load due to torsion in the following way:.

                                                                                                          'f an = [snc + 2 e /W2]

n SF (10) lR1 where: sn = total applied shear load in normal direction l-i s ne = shear load obtained from computer output for gravity, thermal and SSE loadings tn = total applied torsion moment due-to gravity, thermal and SSE loadings. In transverse direction the shear load is multiplied by SF(1.6) before checking against the ultimate shear load. 4.0 ACCEPTANCE CRITERIA The moment capacities of reducers / offsets reducers are given in IR1 Tables T9 abd H9 which include the effect of reducer / offset reducer I on the moments in the t.ransverse direction. In addition', for reducer / l offset reducer trays with spans less than 8 feet the moment' capacities l in transverse direction must be modified to include :he moment reduction factors given in Tables T10 and H10 due to shear beam behaviour. l I In ESM, the reducer / offset reducer trays are qualified on the basis lR1 of criteria described in Sectica 2.0 and incorporating any I reduction in moment capacity given above. l I In RSM, the trays are qualified on the basis of criteria described lR1 in Section 3.0 incorporating any reduction in moment capacity given I aboVe. O

                                                            -DS-                                                 .

3752M

I SAG.CP18 l APPENDIX E s APPENDIX E TU ELECTRIC COMANCHE PEAK SES SINGLE OFFSETS, DOUBLE OFFSETS AND ZEE OFFSETS TRAY QUALIFICATION PRODCEURE , 1

1.0 INTRODUCTION

This appendix presents cable tray qualification procedures for single, lR1 double and Zee offsets by using the Equivalent Static Method (ESH) and the Response Spectra Method (RSM) analysis approach. Both approaches defined herein build upon the conventional straight tray qualification { interaction formulae to address the single, double and Zee offsets. The conventional straight tray interaction formulae are expressed in terms of moments, torsion and axial forces. Additional equations are used for i checking shear. For the ESM method the required moments, torsion, axial force and shear are determined and used in a quadratic interaction qualification equation along with conservative maximum response spectra IR1 accelerations and test data. The RSM method differs from the ESM method in that a linear interaction qualification equation is used, and the required values for the equation are directly obtained from computer , runs and test data. 1 The following assumptions are made in this qualification: h(m 1. Moments in the single offset tray are induced by vertical load as well as the action of longitudinal load resulting from offset. j I

2. Moments in the double offset tray are induced by vertical load as well as the action of longitudinal load resulting f rom off set. In addition, torsion is produced due to the load on the offset portion l l of the tray. )
3. Because of the smallness of the torsional stiffness in comparison with the bending moment stiffness of the tray, torsional moments in I the single and Zee offsets can be neglected. Consequently the joints of the offset portion and the straight trays approach " simply supported" condition.
4. The axial failure load Ft is obtained f rom a same size and length straight tray section.
5. Zee offset is considered as a special case of the single offset; therefore all equations applicable to single offset is also i applicabic to Zee offset.
6. Tested trays are a representative sample'of trays installed in the plant and therefore the qualification approach is for representative trays only. Tray with deviations must be qualified separately.

r

                                               - E1 -

1878v

1 SAG.CP18 APPENDIX E 2.0 EQUIVALENT STATIC METHOD APPROACH The interaction equations to be evaluated. in the design verification of single, double and Zee offsets are as follows:- j 1

1. Horizontal Single and Zee Offsets
                               $~
                                    ~                     ~
                                                                         $               s.)

s , N _ _ ,, m' f xe m 2 m +f x.e 2 f'2 1/2 - SF=[n+[f I L

                             +    g t   +[([a)
                                                 +(*      3t 1
                                                                      )+( )]

L

                                                                                              *MRM]*f1.0        ,

(E1) where SF = safety factor, 1.6 is used MRM = multimode response multiplier as defined in Section 2.1 of main lR1 l document

                   =

f' total normal weight of tray between two supports m' = maximum moment between two supports lR1 w = unit weight of tray, in ib/ft. fT

                   =   axial force due to temperature load e    =

offset distance mn = applied normal SSE seismic moment equal to na

  • m'n, where  : R1 an is the vertical response spectra acceleration in "g" units
                   =

at m' where applied a is the transverse transverse SSE seismic respons6. moment spectra equal to ag *in ,g" units acceleration t

                   =   applied axial SSE seismic load fl O                                                                                                            1
                                                - E2 -                                                            ,

3.878v l

SAG.CP18 APPENDIX E [ _'N >

          )                        FL
                                           =        failure load in tray axial direction as shown in Tables H2 and Y2 (same as straight tray), analytically computed from AISI                            ,

code, for different span length  ! Mn = failure moment in tray normal direction as shown in Tables H1 and T1, and Mt = failure moment in tray transverse direction as shown in Tables H1 and T1. l IR1 After this interaction equation is satisfied, a shear check is to be made in accordance with the AISC code as follows: For normal shear loads a = f'/2 + (a f'/2)

  • MRM
  • SF, (E2) lR1 n n nn where s, is computed shear load in the normal direction.

For transverse shear load: s =a f'

  • MRM/2
  • SF, (E3) where st is computed shear load in the transverse direction.

s and s are then compared with the ultimate shear load capacities, j Sno and S et, in Tables H7 and T7. If sn6 S nand st5 S t, the i shear criteria are satisfied. When the interaction equation (E1), n s n6S and g s 6Sg are satisfied, the horizontal single offset tray is considered qualified.

2. Vertical Single and Zee Offseta ,

(-

                                                       ---x                     _

_b l- - n

                                                         ~

IR1 l I le

                                                                                                                    ~

__1 . J-

                                                                                                                          ,                 l f      f                  "   *f      xe2      a 2       f 2 1/2 T      T**                       1 SF f{m'
                                         ,   n + {L
                                                           +    g n
                                                                            + [( n   g n
                                                                                                 ) + (f) +(

t L

                                                                                                                  )]     eMRM f1.0,
                                             ~

(E4) s, = f;/2+(a,f;/2)*MRM

  • SF , and (E5) lR1 s = (a f'/2,
  • MRM
  • SF (E5) t tn
                                                                                      - E3 -

1878v l E.______._______________________________________________ _ _ _ _ _

SAG.CP18' APPEND 1X E. where all. parameters have been defined previously. t-When equation (E4), ns n nS and sg nS are t satisfied, the vertical single offset tray is considered qualified.

3. Horizontal Double Offset __ .
                                                                                             - T [- - h -

cm - L-/ -

                                                                                   .._-y_.        '
                                                                                                                        ;      -- u)
                   . .         ..              N. h,        .

_ 7 . . . .

                                                                                             ,,                       __ g          .
I *e '/ u
                                              'in ,

6 _ _k . 7,d. 3 ' lR1

                                        ~

i h # $t i i C aQ l , I m' t

                                        '     f xe             f            a          t 2 m +f ze 2                 f 2 1/2
                                            +7M        +               + I(        +      )+(                    )+(

L )]*MRM)51.0, M SF*([+T n n t L n n t (E7) s = f'/2 + (a f'/2 + 2 t /W)

  • MRM
  • SF, and (E8) lR1 st = (a f'/2) tn
  • MRM
  • SF (E9) 1 where I T = failure torque in transverse direction, which is a function of tray
    -                    length between supports as defined in Tables H3 and T3 t' = torsional moment due to the application of a portion of f' on                                                          IR1 b, e and d to the double offset as a result of offset (e)"

t, = torsional moment due tona *f'n, which is equal to an *t'n IR1 W = width of tray and all other parameters have been defined previously. l When equation (E9), an6S n ande s s S g are satisfied, the lR1 horizontal double offset is considered satisfied.  !

4. Vertical Double Offset h ] b '

m n

           - , ..a                   ,                                                       .,        b _,.

{ j] _____.)__. [- o y' t .. .. El i f p w lR1

                                                                                          ~{

_u i A{ i O - E4 - 1878v

SAC.CP18 APPENDIX E j fm'+f xe m +f xe 2 m 2 2 1/2

                                                         + h) + (g-) +([f )) *MRM]

,, t

                               +[F   + [(                                                     51     IR1 f(E10)
  \                                                                                              .0,

( 3 g L SF =[ n L n n t s, = f'/2 + (a f'/2 + 2t t

  • SF, and (Ell) lR1 s g = (ag f,/2)
  • m
  • SF, (E12) where t in the torsional moment due to a sf' applied to the double offset, t

and all other parameters have been defined previously. when equation (E10),o s sS o and s g 5S tare satisfied, the vertical  ! double offset tray is considered qualified. 3.0 RESPONSE SPECTRUM METHOD When the RSM analysis method is used in the design of cable tray hangers, the trays in this system should be qualified by using the following linear interaction formulae at the most critical tray section(s). f a a t t SF [

                                   +[(or          ))41.0                                    (E13)

L +[n+ t n n

                                                                                                         )

where F , Mn> Mt and Tn are as defined in ESM and fy , m3 , mg and tn (or tLt) are obtained from computer run at critical tray section. Af ter this interaction equation is satisfied, a shear check is to be i made for the most critical tray section for both transverse and normal )' shears.. These shear load values should be directly obtained from the computer output, and they are computed as the sums of shear and the associated value of (2 x t /W). n Allowable normal shear and allowable lR1 transverse shear loads are shown in Tables H7 and T7. If the computed shear loads are less than the allowable values, and the interaction equation is satisfied, then the single offset or double offset is considered qualified. 4.0 ACCEPTANCE CRITERIA For span less than 8 feet, the transverse moment capacity of offsets lR1 must be reduced due to shear beam behavior given in Tables H10 and T10. l The offsets are qualified on the basis of criteria given Sections 2.0 and 3.0. U>O.

                                                  - E5 -

1878v

SAG.CP18

    ,                                                                                                   APPENDIX F

( APPENDIX F 1 TU ELECTRIC COMANCHE PEAK SES UNITS 1&2 TEE-TRAY QUALIFICATION PROCEDURE

1.0 INTRODUCTION

l This appendix describes the design verification procedures for tee-fittings using Equivalent Static Method (ESM) and Response Spectrum Method (RSM), analysis approach. In ESM the forces and moments in the . . tee-fittings due to the applied loads are calculated using conservative l' peak response spectra calculations. In RSM the forces and moments in '- the tray due to the applied loads are obtained from the system analysis j of cable tray and hanger assembly. The failure loads of the tee-fittings are obtained from tests performed on tee-fitting , assemblies. The failure load in axial direction has also been obtained i from tests performed on tee-fittings. l 2.0 EQUIVALENT STATIC METHOD - For horizontally oriented tee-fittings with no torsional loading, the l interaction equation (2.1.1) presented in the main document-can be lR1 expressed as follows: l O - - f 2 1/2 S F t. f' f

                           "+ 1F + *           [2       +

f

  • 12 I

l f 1 Fy 2

  • MRM 1 (F1) n 1 w

n t/

                                                                                                                          \

l The following nomenclature shall be used in connection with the tee-fittings and design evaluation procedure: l

l. _ _
                                                                         .LD HG Pt/H                                               _a
  • i LS
  • L. T.^ '- T T T T
                                                  ,       N          '

fW lR1 l

                                                          .          2SS                                                                                                               l T       5             '

l N '

                                                              . TG-F/ TTING                                                                                                            l g              ,
                                                         <. g                                                                                                                          l D'

d T I l kl ' EWD of RUW W/THour 7 [LONrr/70f)/NAL RES7/Mp/f O CONFIGURATION A F-1 3690M

                                                                            '                            @                                                      "   APPbNIXF' i                     c5
                                                                                                         +T                 T                         T           7 L

7[ 4 N TEE -F/ TT/NG j 5 (( i T l W i S j

                                                                                                     . EWD of RuW wtrH L        l f LONCr/TUDINAL RUTRMT CONFIGURATION B L     =

Longitudinal cable tray restrain structure

                                                =

T Transverse cable tray restrain structure

                                                =

LS Tee-Fitting long span

                                                =

SS Tee-Fitting short span

                                                =   Safety Factor = 1.6 SF r\

V f'n = Total weight of tee-fitting (including cables and fire protection insulation) contained within the three (3) supports of the tee-fitting, force units fT

                                                =

Axial force due to thermal load acting along the long span (LS) direction. (see Configuration A), force units. fT = 944 A in 1bs. A = Area of side rails in in 2, fn = SSE seismic load in normal direction contained within the three (3) supports of the tee-fitting, force units, ft

                                                =

SSE seismic transverse load, acting along the short span (SS) direction of the tee-fitting. This seismic load is based on the weight of trays and tee-fitting (including cable and fire protection) and the weight of the transverse hangers (due to I connectivity) between the tee-fitting and the end of the cable IR1 tray short run, force units. (see Configuration A). For i Configuration B, this seismic load is restrained by the longitudinal support at the end of the cable tray short run and therefore does not affect , structurally the tee-fitting. fi = SSE seismic longitudinal load acting along the long span (LS) direction of the tee-fitting, including the effect of longitudinal e connectivity, force units. This load shall include the fire ( protection weight and the weight of all the transverse hangers between two adjacent longitudinal hangers (see Paragraph 4.0). F-2 3690M

SAG.CP18 APPENDIX F-
                                                                                                           .l l h                    Fn =     Ultimate tee-fitting capacity in-normal direction from tests, force units. These values shall be.obtained for all tee-fitting sizes and spans using equation (F2) below:.
                                     'K * (LS + SS-w)                                         g       R1 7"                                                                            :i LS2 + (ss.w) [(2Ls-w))

Fn = Ultimate normal. Lee-fitting capacity in kips. l. I LS = Long span of tee-fitting in inches (see configuration A) SS = .Short span of tee-fitting in inches  ! I w= Width of tee-fitting tray in inches. l-K= 414 for 18"'through 36" wide & K = 366 for 6" and 12" wide tee-fittings. Ft= Ultimate tee-fitting capacity in transverse direction from tests, force units. These values shall be obtained for all tee-fitting sizes and spans using the lower of the two values obtained from equation (F3) and (F4) below: Ft= " kips (F3) R1

                                                                                                             ]

O r-e 5 o xie- cr4) , 1 Transverse capacity reduction factors shown on Table M10 of the l J main document do not apply for tee-fittings. This reduction is I.R1 accounted for by using the lower of the two values obtained from I equations (F3) and (F4). I F1= Ultimate tee-fitting capacity in the longitudinal direction (along the long span) from tests, force units. These values shall be obtained for all tee-fitting sizes and spans using equation (F5) below: 87

  • 10 6 F1= lbs (F5)

LS2 MRM = Multimode response multiplier Accelerations used for computing seismic forces and MRM are defined in Section 2.1 of main document. Thermal loads do not need to be explicitly included in any design verification I calculations, since they are generically considered elsewhere (See CTH General IR1 Instructions Section II.F). Thun any instructions in this document regarding i thermal loads may be ignored. I i After evaluation of interaction equation (F1), shear check is performed on the t O tee-fitting for both vertical and lateral directions as follows:  ! Shear check is performed on the basis of AISI Specification, Section 3.4.1: F-3 3690M

SAG.CP18 APPENDIX F For normal shear S n Fy *A w (F6) where: Sn = shear load capacity for SSL load in normal direction of tee-fitting Fy =- ultimate shear stress Av = shear area (web area of two side rails) The Sn values for T J Cope and Burely/ Husky trays are given in. Table T7 and l H7_of the main document. lR1 The computed shear load in normal direccion of the tray is calculated as follows: I' un" f'n/2 + [a n f'n/2]

  • MRM
  • SF (F7) lR1

_ _ l where:

                             =

sn computed shear load in tray normal direction f'n = same definition as on page F-2 an = acceleration in normal direction in "g" units, as defined in Section 2.1 of main d cument. For transverse shear load: St =F y *Af (F8) where: St

                             =

shear load capacity for SSE load in transverse direction of tray l 1 Fy = ultimate shear stress Af

                             =       appropriate shear area (flange areas of two side rails)

The St values for T J Cope and Burndy/ Husky trays are given in Table T7 and l H7 of the main document. The computed transverse shear load is obtained as IR1 follows: i at = [f t/2)

  • MRM
  • SF (F9) l where:

l

                             =       computed shear load in transverse direction.

at ft = same definition as on page H-2' O F-4 3690M 6

1 SAG.CP18 APPENDIX F l b Other terms are as defined before. Shear criteria is satisfied if l sn S n and sg S. t If significa.it torsion load is present in a tee-fitting the following I procedure shall apply: 1 2.01 Torsion applied at the end of the short span of a Tee-Fitting. The effect of torsion shall be added to the effect of f shown n in the interaction equation (F1) as follows: i n\ should read : 'n + n where: (F10)

                  \F )                      F vxEg                                               l Fe n f =n Same definition as shown under Paragraph 2.0.

tn = Tortional moment at the end of the short span due to SSE loads, w = Width of tray lR1 I l 2.02 Torsion applied at the ends of the long span of a Tee-Fitting I The effect of torsion acting at the ends of the long span of a l Q b tee-fitting has already been accounted for due to the moment induced via the short span action. l 3.0 RESPONSE SPECTRUM METHOD (RSM) l Response Spectrum Method is a system analysis approach which uses tne dynamic response spectrum method for the qualification of cable tray and I hanger assemblies. The system uses a detailed three dimensional method of the tray and hanger assembly. As part of the computer output of RSM analysis, axial forces, bending moments, torsions and shear forces are printed out for the cable tray sections (i.e. Node 6,7...) and l respective tee-fittings. These forces and moments are used in the IR1 qualification of the tray and tray tee-fittings. I In the RSM approach, the following interaction equation is used for the qualification of the tee-fittings: SF * ! 1

                               +

n

                                       +

E n

  • LS +
                                                         "t '[ 1 p                               (Fil)

(y1 7n g,3 n t % R1 SF = Safety Factor = 1.6 fi= Arial force due to thermal, SSE and the effect of longitudinal connectivity. (see paragraph 4.0) q V F-5 3690M l

SAG.CP18

                                        %                                          APPENDIX F SS
  • r l
                                      ~           e
                                                          , /.

on j l

                                             .           7                                                        l
                                            )e          h~o m" 8 I

IR1 (no D E PT. l

                                                                                                                  \

I I mn = Bending moment at center line of the long span acting around tha. transverse direction, due to gravity and SSE loading. I mt = Bending moment at the center of the'long span acting around the normal direction, due to transverse SSE loading. 4 tn = Torsional moment at the center of the long span acting along the IR1 longitudinal direction, due to SSE loading. I F1= Ultimate tee-fitting capacity in longitudinal direction (parallel with LS), shall be obtained from equation (F5) Q Mn = Ultimate tee-fitting moment capacity at center line of the long span due to normal gravity test load, shall be obtained from l equation (F12) below: ' F, n" 8 (LS + SS - w) (LS + LS

  • SS) (F12) R1 where:

l Fn = Value obtained using equation (F2) on the basis of given LS, SS I { and w. I i l l LS,SS,w = Same definition as given for equation (F2) l Mg = Ultimate transverse bending moment at the center of the long span, due to transverse test load, shall be obtained from the lower of the two values given by equations (F13) and (F14) below: F Mt= (LS - w) in kip

  • inches (F13) 1 Mg = 1.25 (LS - w) in kip
  • inches (F14) .R1 Ft= Value obtained using equation (F3) l I

After evaluation of interaction equation (Fil), a shear check shall also l O de verzor ed e= the tee-ritti=S rer doth vertice1 e=d 1etere1 directio e as indicated under Paragraph 2.0 above. i I F-6 3690M

l SAG.CP18 APPEND 1X F 4.0 LONGITUDINAL CONNECTIVITY The longitudinal connectivity between the transverse hangers and trays will also aff ect tee-fittings in both the long span and the short span . directions. 1 in the calculation of seismic loads the effect of connectivity must be- l considered as described in Paragraph 5.0 of the main document. IRl I

5. 0 ACCEPTANCE CRITERIA i

The acceptance of cable tray tee-fittings shall be based 'on the design H l evaluation procedures presented under paragraph 2.0 or 3.0. v e O < l l 0 F-7 l 3690M

SAG. CP18 APPENDIX G f') v APPENDIX G TU ELECTRIC' , COMANCHE PEAK SES UNITS 1 & 2 Y BRANCH TRAY QUALIFICATION PROCEDURE

1.0 INTRODUCTION

This appendix describes the design verification procedures for Y Branch using Equivalent Static Method (ESM) and Response Spectrum Method (RSM), i analysis approach. In ESM the forces and moments in the Y Branch due to I the applied loads are calculated using conservative peak response ,{ spectra calculations. In RSM the forces and moments in the tray due to the applied loads are obtained from the system analysis of cable tray l and hanger assembly. The failure loads of the Y Branch are obtained from . tests performed on tee-fitting assemblies. The failure load in  ; art.a1 direction has also been obtained from tests performed on i tee-fittings. l J 2.0 EQUIVALENI STATIC METh0D { l i For horizontally oriented Y Branch with no torsional loading, the interaction ecuation (2.1.1) presented in Section 2 of the main document IR1 can be expresssed as follows*

                                             'f           f      'f                          f                   ]

1 Srj + f + + (?)2 ((f )2 + (f)2- , 12 x MRM;41(W 1he following nomenclature shall be used in connection with the Y Branch and design evaluation procedure: l L T' O '

                                                                                  -     T          T          r
                                                                                                                         ,7 ,   I
                                                        ,               . . .       lx        - I T    l l

1

  • 7 , "" I i 'g' l l
                                                                          ,          Y muut                                     I IM T [ /.                                                             l h         y,      ;) CF kUN VdTMot1T
                                                      , '$~       Lemico@t. M$TRANT                                              l 1

l CONFIGURATION A O 3775M G-1

SAG. CP18 APPENDIX G ] j L5 l L .T.i_ T 7 7 7 g i I I L.  !

                                                  'A gW        . g.

j '~ l l t> 9! ' b

                                                    /        MY EbRM4LH                                        lR1 T                                                                         l
                                        /
                                            /

[/ l" l L / ['

                                 /

_[

                                                                                                             ~

c E420 cf RuiJ \MT)l' l l i f v Lour.gioogm L M!,TiL04T l ) g  ! l CONFIGURATION B L = Longitudinal cable tray restrain structure 1 = Transverse cable tray restraint structure LS = Y Branch long span 55 - 1 Branch,short span SF = ' Safety Factor = 1.6 fn' = Total weight of Y Branch (including cables and fire IR1 protection insulation) contained within the three (3) supports of the Y Branch, force units

                                   =

fT Axial force due to thermal load acting along the long i span (LS) directions. (see Configuration A), force units, fn = SSE seismic load in normal direction contained within the three (3) supports of the Y Branch, force units. fg = Normal component (perpendicular to LS) of the: total SSE I seismic transverse load acting along the short span (SS) direction of the Y Branch. This total seismic load is based on the weight of trays and Y Branch (including cable and fire protection) and the weight of.the transverse hangers (due to connectivity) between the Y l Branch and the end of the cable tray short run, force IR1 . units. (see Configuration A). For Configuration B, I this seismic load is restrained by the longitudinal support at the end of the cable tray short run and therefore does not affect structurally the Y Branch. O 3775M G-2 t

Of A EG fi

                                      =  SSE seismic longitudinal load acting along the long span (LS) direction of the Y Branch , including the longitudinal component (along.the LS direction) of the total SSE seismic transverse load acting along'the short                ,

span (SS) direction of the Y. Branch, and'the effect of longitudinal connectivity, force units. This load shall include the fire protection weight and the weight of all  ! the transverse hangers between two adjacent longitudinal hangers (see-Paragraph 4.0). .) Fn = Ultimate Y Branch capacity in. normal direction from tee-fitting tests, force units. These values shall be obtained for all tee-fitting sizes'and spans using equation (F2) in Appendix F Ft = Ultimate Y Branch capacity in.tranverse direction from -[ tee-fitting tests, force units. 'These values shall be 4 obtained for all tee-fitting sizes and spans using the  ! lower of the two values-obtained froa equation (F3) and-

                                                                                        ~

(F4) in Appendix F. Note that the transverse moment l capacity reduction factors-shown in Table H10 do not lR1 apply for tee-fittings. I

                                      =

F1 Ultimate.Y Branch capacity in the longitudinal' direction (along the long span) from tee-fitting tests, force units. These values shall be obtained for 211 Y Pranch sizes and spans using equation (FS) in Appendix F MRM = Multimode response multiplier Thermal loads do not need to be explicitly included in any design lR1 i verification calculations, since they are generically considered elsewhere (See CTH General Instructions Section II.F). Thus any instructions in this document regarding thermal loads may be ignored. After evaluation of interaction equation (G1), shear' check is performed on the Y Branch for both transverse and lateral directions as follows: The computed shear load in normal direction of the tray is ca1& lated as follows: sn f'n/2 + (an" I'n/2)

  • SF (G2) where:

sn = computed shear load in tray normal direction f'n = same definition as on page G-2 a, n

                                       =

maximum accelerations from response spectra in normal O- a,t transverse and longitudinal directions respectively, in "g"

                        & al              units.

MRM is defined in Section (2.1) of main document. 3775M G ____

l l l SAG. CP18  ! APPENDIX G O ' 1 The computed transverse shear load is obtained as follows: st " (f /2) t

  • MRM
  • SF (G3) where: ]

1 st

                                                             =   computed shear load in transverse direction.                        I l

Other terms are as defined before. Shear criteria is satisfied if s n5 Sn and og g Se, where ultimate shear load capacities S nand at are shown in Tables H7 and T7. t If significant torsion load is present in a Y Branch the following procedure shall apply: 2.1 10RSION APPLIED AT THE END OF THE SHORT SPAN OF A Y BRANCH , l The effect of torsion shall be added to the effect of f ushown in the interaction equation (G1) as follows:

                                                                                        *n should read :              ,             where:

n n n i fsu fn = Same definition as shown under Paragraph 2.0. tn = Torsional moment at the end of the short span due to SSE loads i W = Width of tray i 2.2 TORSION APPLIED AT THE ENDS OF THE LONG SPAN OF A Y BRANCH The effect of torsion acting at the end of the long span of a Y branch has already been accounted for due to the moment induced via the short span action. 3.0 RESPONSE SPECTRUM METHOD (RSM) Response Spectrum Method is a system analysis approach which uses the dynamic response spectrum method for the qualification of cable tray and hanger assemblies. The system uses a detailed three dimensional method of the tray and hanger assembly. As part of the computer output of RSM analysis, axial forces, bending moments, torsions and shear forces are printed out for the esble tray sections (e.g., nodes 6,7,...) and lR1 respective Y Branch. These forces and moments are used in the qualification of the tray and tray.Y Branch. In the RSM approach, the following interaction equation is used for the ( qualification of the Y Branch f *

  • LS l
                                                               +
                                                                   'n  +

n + *t SF (F y 4W.

  • M M
                                                                                           )t 1                          (G1)

M, t 3775M G-4

2 SAG.-CP18 APPENDIX G SF = Safety Factor = 1.6 . i

                                                         =     Arial force due to thermal, SSE and the effect of fi longitudinal connectivity. (see paragraph 4.0)

I ' l l

                                                                                         .Mt          ,                    l l=
                                                                          -@               N ., 4,5                       l b         ; ).    '

t 9 / . %  % . R1 l f 0- Wo0E PT. 7 h

                                                                  */                     ,

l

                                                             , /4                                                          l         )

mn

                                                         =     Bending soment at center line of the long span acting in the normal direction, due to gravity and SSE loading mt
                                                         =     Bending moment at the center of the long span acting in the transverse direction, due to transverse SSE loading.

ta = Torsional moment in the long span. .

                                                         =     Ultimate tee-fitting capacity in longitudinal direction F1 (parallel with LS).

Mn = Ultimate tee-fitting moment capacity at center of the long span due to normal gravity test load, see equation (F12) of Appendix F. Mt = Ultimate transverse bending moment at the center of the long span, due to transverse test load, shall be obtained from the lower of the two values given by equations (F13) and (F14) of Appendix F. After evaluation of interaction equation (G4), a sh' ear check shall'also l be performed on the Y Branch for both vertical and transverse directions IR1 as indicated in Section 2.0 above. l 4.0 LONGITUDINAL CONNECTIVITY The longitudinal connectivity between the transverse hangers and trays will also effect Y Branch in both the long span and the short span oirections. In the calculation of seismic loads the effect of connectivity must be .I considered as described in Section 5.0 of main document. l R1-317bH G-5

( SAG. CP18 APPEND 1X G 5.0 ACCEPTANCE CRITERIA The acceptance of cable tray Y Branch shall be based on the design evaluation procedures presented in Paragraph 2.0 or 3.0. l l l a 0 I l O

         '775M 3                                      G-6

SAG.CP18 APPENDIX H APPENDIX H TU ELECTRIC COMANCHE PEAK SES UNITS 1&2 CROSS-TRAY QUALIFICATION PROCEDURE

1.0 INTRODUCTION

This appendix describes the design verification procedures for cross-trays using Equivalent Static Method (ESM) and Response Spectrum Method (RSM), analysis approach. In ESM the forces and moments in the. tee-fittings due to the applied loads are calculated using conservative peak response spectra calculations. In RSM the forces and moments in the tray due to the applied loads are obtained from the system analysis of cable tray and hanger assembly. The failure loads of the cross-trays are obtained from tests performed on tee-fitting assemblies. The failure load in axial direction has also been obtained from tests performed on tee-fittings. 2.0 EQUIVALENT STATIC METHOD For horizontally oriented cross-trays with no torsional loading. the . l interaction equation (2.1.1) presented in the main document can be lR1 expressed as follows: I 1 f' f f 2 / f 2 f 2 SF S y n

                    +

f+- 1 n/

                                            +ff
                                             \t f1 x MRM N

1 (H1) The following nomenclature shall be used in connection with the cross-tray and design evaluation procedure:

                                            /'SF -
                                       ~                                                  l L       7,     ,, \ ' 7    3 Y        7     T.                l lM         M                              EW lR1
                                         'y
                            ~

fLS cross TRAY l w .W k T l evo ce sun wiracur

                              <    T         T c oncrirucinu gestemr CONFIGURATION A H-1 3723M

4 q I SAG.C.P18 APPENDIX H

                                                                                          $5 O                                                                       +      r
                                                                                        *           '      7       r                          ;

g5  ! CAos$ TRAY. 1 g 1 It

k. T l

d [.stvo or Run wirHf.QNotTUD//YAL RESTRAINT CONFIGURATION B L = Longitudinal cable tray restrain structure T = Transverse cable tray restrain structure LS = Cross-tray long span SS = Cross-tray short span SF = Safety Factor = 1.6 . 4 f'n a Total weight of cross-tray (including cables and fire protection  ;

        )                                                      insulation) contained within the'four (4) supports of the C                                                             cross-tray, force units                                                        I fT
                                                           =   Axial force due to thermal load acting along the short span-(SS) direction. (see Configuration A), force units.

fT = 944 A in 1bs. A = Area of side rails in in 2, fn = SSE seismic load in normal direction contained within the four (4) supports of the cross-tray, force units. fg = SSE seismic transverse load, acting along the long span (LS) direction of the cross-tray. This seismic load is based on the , weight of trays and cross-tray (including cable and fire protection) and the weight of the transverse hangers (due to I connectivity) between the cross-tray and the end.of the cable R1 tray short run, force. units. (see Configuration A).- For Configuration B, this seismic load is restrained by the-longitudinal support at the end of the cable tray short run and.  ; therefore does not affect structurally the-cross-tray. , fi

                                                           =

SSE seismic longitudinal load acting along the short span (SS) direction of the cross-tray, including the effect of longitudinal connectivity,. force units.- This load shall include the fire protection weight and the weight of all the transverse hangers between two adjacent longitudinal hangers (see Paragraph 4.0). H-2 3723M .

                                                                                                                                    ^

SAG.CP18 APPENDIX H-Fn = Ultimate cross-tray. capacity in normal direction from tests, force p units. These values shall be obtained for all cross-tray sizes and spans using Table I below: TABLE ~I ULTIMATE NORMAL CROSS-TRAY CAPACITY F ,(1bs) LS SS w=6 w = 12 w = 18 w = 24 w = 301 w = 36 lR1 l 96 60 2800 3280 .3600 3740 4000- 4020

                '96     72    2800      3200        3400      3700          3700        3900 96     84    2800      3100        3200      3400          3500        3630 96     96    2800      3000        3000      3000          3000~       3000 Fn =   Ultimate normal cross-tray capacity.

LS = Long span of cross-tray in inches (see configuration A) SS = Short span of cross-tray in inches - w= Width of cross-tray tray in inches. IR1 i Fg= Ultimate cross-tray capacity in transverse direction from tests, force units. These values.shall be.obtained for all cross-trays sizes and spans using the lower of the two values obtained from equation (H2) and (H3) below: 0 w Fg= kips (H2) R1 Fe = 5.0 kips (H3) Transverse capacity reduction factors shown on Table H10 of the l main document, do not apply for_ cross trays. This reduction is accounted for by using the lower of the two values obtained from R1 from equation (H2) and (H3). I F1= Ultimate cross-tray capacity in the longitudinal direction (along the short span) from tests, force units. These values shall be obtained for all cross-tray sizes and spans using equation (H4) below: F1= lbs (H4)  ! SS2 MRM = Multimode response multiplier Accelerations used for computing seismic forces and MRM are defined in Section- i 2.1 of main document..  ! l Thermal loads do not need to be explicitly included in any design verification l O I calculations, since. they are generically considered elsewhere (See CTH General lR1

         ~ Instructions Section II.F). Thus any instructions in this document regarding                    l thermal loads may be ignored.

H-3

                                                                                          ^

m-_________________________________ -- __ - . _ _ _ _ _ _ - - - - -_ _z J

SAG.CP18 APPENDIX.H' After evaluation of interaction equation (H1), shear check is performed on the 08 cross-tray for both vertical and lateral-directions as follows: Shear _ check is performed on the basis of AISI. Specification,'Section 3.4.1:

       -For normal shear:                                                                     -
                =

S, Fy

  • A, (H5) where:

S n

                =   shear load capacity for SSE. load in normal direction of cross-tray Fy  =

ultimate shear stress A, = shear ares-(web area of two side rails) The Sn values for T J Cope and Burndy/ Husky trays are given in Table T7 and l H7 of the main document. IR1-The computed shear load in normal direction of the tray is calculated as follows:

                "                                                                      (H6) sn        If'n/2 + (a *n f'n/2)
  • MRM)
  • SF where:

f sn = computed shear load in tray normal direction f'n = same definition as on page H-2 a,= n acceleration in normal, direction in "g" units, as defined in Section 2.1 of main document. For transverse shear load: S,= e Fy *Af (H7) where: S e

                =     shear load capacity for SSE load in transverse direction of tray Fy  =

ultimate shear stress Ag = appropriate shear area (flange areas of two side rails) The Se values for T J Cope and Burndy/ Husky trays are given in Table T7 and l H7 of the main document. The computed transverse shear load is obtained as IR1 follows: I sg = [(f /2) g

  • MRM) *'SF (H8) fe = Same definition as on page H-2 H-4 3723M l

3723M i SAG.CP18 APPENDIX H where:

            =

sg computed shear load in transverse direction. , Other terms are as defined before. Shear criteria is satisfied if a n and se S. n(S t I If significant torsion losd !s present in a cross-tray the following procedure shall apply: 2.01 Torsion applied at the ends of the long span of a Cross-Tray. The effect of torsion shall be added to the effect of f shown n in the interaction equation (H1) as follows: n should read : n + *n where: R1 F a F wxF n n F*f o = nSame definition as shown under Paragraph 2.0. 1 en = Torsional moment at the ends of the long span due to SSE loads. w = Width of tray IR1 2.02 Torsion applied at the ends of the short span of a Cross-Tray The effect of torsion acting at the ends of the short span of a cross-tray shall be accounted for as indicated under 2.01 above. 3.0 RESPONSE SPECTRUM METHOD (RSM) Response Spectrum Method is a system analysis approach which uses the dynamic response spectrum method for the qualification of cable tray and hanger assemblies. The system uses a detailed three dimensional method of the tray and hanger assembly. As part of the computer output of RSM analysis, axial forces, bending moments, torsions and shear forces are printed out for the cable tray sections (i.e. Node 6, 7...) and I respective cross-trays. These forces and moments are used in the IR1 qualification of the tray and cross-trays. l In the RSM approach, the following interaction equation is used for the qualification of the cross-trays: SF f + + + 1 (H9) R1 1 n a t \ SF = Safety Factor = 1.6 p y ft= Axial force due to thermal, SSE and the effect of longitudinal connectivity. (see paragraph 4.0) H-5 3723M

I j

-                                                                                )     SAG.CP18
                                    .                                                  APPENDIX H 6~

Ss ids \

                                                                  /,'                                                           <

g e (60 7  ! B -

                                                        ,{ o.'
                                                           .      N.                                             l l

9

                                                             =
                                                             ' o.      {,                          t
                                                                                                              .l I                                                                            4       lal
                                               .(~ n' ODE PT l              j
                                                                                                              .l                ;
                      /                                                                                                         .

9 b r (, ', an

              =   Bending moment at center line of the short span acting arouvi the transverse direction, due to gravity and SSE loading.                      3[
                                                                                                                              .\

at = Bending moment at,the center of the short span acting around the normal direction, du'e to transverse SSE loading. tn = Torsional moment at the center.of the'long span, acting along the . I longitudinal direction, due to SSE loading. I F1= Ultimate cross-tray capacity-in longitudinal direction (parallel with SS), shall be-obtained from equation (H5) O M.= n Ultimate cross-tray moment capacity at center line of the short span due to normal gravity test load, shall be obtained from equation (H10) below: l l Mn =

  • SF /,910) where: -(,

Fy = Material yield stress I = Channels moment of inertia = .193 in.4

              =                                                                                                '

h height of channel = 1.02 inches 'l s l SF = 1.6 safety factor Me = Ultimate transverse Jending soment at the center of the short span, due to transverse test load, shall be obtained from the lower of the two values stven by equations (Hil) and (H12) below: F Mg= (SS - w) in kip

  • inches (Hil) '

Me = 1.25 (SS - w) in kip

  • inches (H12) l
  .                                                                                                             I R1 Fg =    Value obtained using equation (H3)                                                            l After evaluation of interaction equation (H9), a shear check shall                                   l            .,

also be performed on the cross-tray for both vertical and transverse lR1 l directions as indicated under Paragraph 2.0 above. l H-6 3723M

                       -m.m.u,..      -

l I SAG.CP18 APPENDIX H 4

                                              /

p .- 4.0 LONGITUDINAL CONNECTIVITY The longitudinal connectivity between the transverse hangers and trays

              ,"            will also affect dross-trays in both the long span and the short span directions.

t In the calculation of seismic loads, the effect of connectivity must 1. be considered as described under Paragraph 5.0 of the main document. lR1 O l 5.0 ACCEPTANCE CRITERIA 1

                           / Tace accaptance of cable tray cross-trays shall be based on the design evaluation procedures presented under paragraph 2.0 or 3.0.

I

                                                      ?                                                  ;

~ i i Ov " ( l I e i

                             )

1 v

                               'I

( (

                                                          '   ,- e
                                                              !!-7 3723M r

SAG. CP18 APPENDIX I' APPENDIX I TU ELECTRIC COMANCHE PEAK SES' UNITS 1 & 2 SPLICE PLATE QUALIFICATION PROCEDURE

1.0 INTRODUCTION

In determining.the ultimate tray capacity, 8'~0 straight tray sections with splices at mid-length were tested in normal and transverse directions. Examinations of the test results show:

                                                                                                       . Under normal loading test, the tray fails at the mid-length either due to the failure of the channels or due to the collapse of the splice joint.

j . Under transverse loading test, shear near the supports governs the 'lR1 l failure mode. l The results of the above tests with standard splice at the mid-length of the specimen and the analytically computed longitudinal tray capacities have been adopted as the ultimate strength of the trays for tray qualification. In order to qualify trays with splices and to justify the analytically I computed longitudinal capacities, the lower bound connection capacities l l Q V should be established. Accordingly, a selection process was performed to identify the weakest field installed splices (Ref 25). These splices l l l were tested in a similar manner to the 8'-0 straight tray tests for l l normal direction loa. ding (Ref 26) with the standard splice being lR1 l replaced by the selected weakest field installed splices, and the l connection capacities were then determined. The results of these l connection tests have been adopted as the lower bound ultimate strengths I of the connection for connection qualification which are listed in Table l T13A. l 2.0 CRITICAL BOLT LOAD COMPUTATION l To determine the strength of a splice other than those tested, start by i computing the critical bolt loads en each side of the splice using a linear variation stress pattern - zero at top of tray and maximum at l bottom of tray - for the applied ultimate moment M'n given in Table

T13A, corresponding to tested splice analysis procedures (Ref 24)

l

                                                                                                       . Bolt load "nL" on the left side of the splice.
                                                                                                       . Bolt load "nR" on the right side of the splice.

1 . l 1829R - II -

                                                                                                                                   )                                                     i N.                  %.                                                                                     .

j 4k ,T

                                                                                                                                        -*                            SAG. CP18         )

APPENDIX I. I 4 i e , , . ( 2.1 EXAMINE yllLURE HCDE x DQ Knowing the splice plate layout and thickness, size of bolt hole and l

                                                                                                                                                                                        ]
                        '                              '*        bolt diametei, tde fonowing failure modes are examined for the whole
                                                                                                                            ~

IRl j 4 plate: l j s j

                                                    -                                                                       4     1          2                                          )'
1. Single shear of bolt: f* y y 7( d where fy = vitimato shearing strength of bolt materiel in
                                                                                                           . >lb/in2                           .

d ' g.J,tameter'oi' bolt in sches s b

                                                                           %g 2-          Msg in splic's plath' 2* Lot,f va

(, ,

                                                                            ,., whereyf , = u0tfisate ftearing strength of splice plate:

mite ri414 lin ib/in2 L, + crit /, cal edge distance, center of bolt hole to edge IR1 s .of the splice plats, in inche1.

                                                                                                                                                                              -     l
                                      ,                                                         ts = thickness of splice plate,'do inches.           '

' ,? ,

3. She>,x 0 tray side channel web: 2 L yy t fy,
    .t
                                                          .,                    where fyw = ultimate shearing strength of channel web i

material, in ib/in2

                                       ,                                                        Lw = critical edge distance, center of bolt hole,to edge                            IR1 of the the channel web, in inches
        'v!j ty     = thickness of the channel web, in inches.

l

4. Bearing of bolt, splice plate and tray sides channel web:  !

L, i

             \(                               ,

Be[ ring on bolt: d tw fp g or dts fpB { ',t 'p re fp3 = bearing strength of bolt material, in lb/in 2 3dekr;g on splice plate s, , d t, f

                                                                           ' W.ere f ps = bearing 9trength of, splice picte matgrial 1,                        in 1b/in ,

t Baring' on channel web: dt,f py wnere fy = bearing strength of tray material s

5. IAaring ud buckling of splice plate: '

s I

                                                             '              For splice plates without flanges or cut out notches in the                                             IR1 flanges, the stresses in the plate should be computed by                                                l
                                                                    <                 \                                                                                                  -

t I

                                                                                                                                                              ;t                         l N    ~!< \.

s V. . , s. t I 1829R tt ( ' s l j < = i

SAG.'CP18 ' APPENDIX I ( Normal Bending Moment: lR1' 6M I

g. ns -1 t, h 2 where )

h = height of the splice plate. '1 f = ultimate bending moment strength (tension on lR1 j compression - following AISI Code) Mns = ultimate normal bending moment capacity of splice- . lR1 ( plate j 1 Tension in Axial Direction: lR1 (1.0 - r + 2.5rd/s) fus

  • Anet where:

f , = ultimate tensile strength of selice plate material in. Ib/in 2 r = the force transmitted by the bolt or bolts at the l' section considered, divided-by the tension forca in the i member at that sectic.n. If r is less than 0.2; it may I be taken equal to zero. I s = spacing of bolts perpendicular to line of stress in lR1 inches. In the case of a single bolt, s = width of I splice plate. l A = net cross sectional area of splice plate as l

                            "**       computed based on the method in AISC (7th Edition) i i

l page 4-87, including unused bolt holes. l  ; Compression in Axial Direction: fth e I where: fe = ultimate buckling strength computed per AISI lR1 4 code with unbraced length being the distance between adjacent bolt holes on each side of the splice. O 1829R - I3 - 4

SAG. CP18 APPENDIX I 2.2 ULTIMATE CAPACITY OF SPLICE Based on the failure mode computed in Section 2.1, the smallest values l (nim and nrm) on each side of the splice is obtained, and the l ultimate capacities of the splice are: l l Normal Bending Moment (M"n): R1 M[xMin ("Is "Rm)

                                     %       h                                       l Transverie Bending Moment (Me"):

1 transverse moment capacity on the MtL "NL DLa W left side of the splice l MtR = NR' nrm W transverse moment capacity on the right side of the splice where W = width of the tray l NL = number of bolts on the left side of the splice NR = number of bolts on the right side of the splice R1 j and l g Me = Min (Me n; MtR) Axial Load Capacity (FL ") F"LL =NL nLm axial load capacity on the left side of the splice l F"LR =NR DRm axial load capacity on the right side l of the splice and l FL = Min (FLL; FLR) Torsional Moment Capacity (Tn) I l T =NL*fy * (d 2Tf/4)* W 2 TR =NR

  • fv * (d 7f/4)* W R1 l

l where l l W = Width of tray l and , l l Tn = Min (TL "; Tg") l O 1829R - I4 -

SAG. CP18 APPENDIX I l

 /                                                                                     2.3   ULTIMATE STRENGTH OF SPLICE MATERIAL.

fy = ultimate shearing strength of bolt material I

                                                                                                      = 60 x 0.62 = 37.2 KSI                                                 I fy,      = ultimate shearing strength of splice plate i

l = 1/2 x 53 = 26.5 KSI J l f,y = ultimate shearing strength of channel web

                                                                                                      = 24 KSI #16 gage
                                                                                                      = 32.5 KSI #14 gage                                              l I
                                                                                                      = 35.0 KSI #12 gage                                              l
                                                                                                                                                                             ]

I i fpB = bearing strength of bolt material lR1 I I

                                                                                                      = 133 KSI                                                              )i fsp      = bearing strength of splice material                            l I    l
                                                                                                      = 119 KSI                                                        l    j f pv     = bearing strength channel web material
= 108 KSI #16 gage  !
                                                                                                      = 146 KSI #14 gage                                                    !
                                                                                                      = 158 KSI #12 gage

, fus = tensile strength of splice plate

                                                                                                      = 53 KSI l                                                                                       2.4   QUALIFICATION ACCEPTANCE BY EQUIVALENT STATIC METHOD (ESM)                       l l                                                                                                                                                                              l l                                                                                             Based upon the ultimate capacities of the splice (Mn" Me", Ft ", Tn~)            I calculated in Section 2.2, the aplice in a horizontally oriented tray is l                                                                                             qualified if the following intersection equation is nacisfied:

SP + + + [( + )2 + ( )2 + ( )2] MRM 61.0 R1

                                                                                                  '                                                 F l                                                                                                    n      n     L        n       n        t          L                g O

1829R .

SAG. CP18

                                                                                           -APPENDIX I O                Normal                                          Vertical o                                               o Transvers                                                                 Ho rizontal .

Longitudinal Horizontal l TRAY AXES GLOBAL AXES 1 SF = Safety Factor = 1.88 MRM = Multiple Response Multiplier as defined in Section 2.1 of main document. f n' = total normal weight of tray between two supports an' = maximum normal moment resulting from the application of f a' between two m w orts tn' = torsional moment due to gravity and thermal loads lR1 fT = axial force due to temperature load O an = applied normal SSE seismic moment equal to ann a 's I where an is the maximum vertical response spectra acceleration IR1 ) in 'g' unit. I j i

                  =

mg applied transverse SSE seismic moment equal to ag*st' where at is the maximum transverse response spectra acceleration in "g" units and a 'g is the maximum moment between two supports resulting from application of f n' in the transverse direction to the tray system. l fi = applied axial SSE seismic load equal to at * (f1 ') I where ag is the maximum transverse response spectrum l acceleration in "g" units and fy' the axial force computed per IR1 a ~.achment Z in Reference 4. I I en = tc:sional moment due to S3E loadings l If the trays are oriented vertically, the interaction equation becomes: Normal Horizontal - J. , _ Transvers Horizontal.

              /[

3 ,

                         ;                                              -i                '

Longitudinal Vertical TRAY AXES GLOBAL AXE 5 1829R .

SAG. CP18 APPENDIX I-  ! SF ( )+ + + + [( + "ir)2 + ( )2 ,( )2]

                                                .F g                     M,   T,   M,        M,   T,        Mg        Fg        MRM)=lR1 l

4 1.0 l where f'in is the axial force'due to weight (in n-direction) of tray. between two supports, my is normal bending moment due to temperature load and all other parameters have been defined previously. l 2.5 QUALIFICATION ACCEPTANCE OF RESPONSE SPECTRUM METHOD (RSM) If the field fabricated splice is to be-qualified by Response Spectrum Method, then the axial force and bending soments at the field fabricated splice locations-in the trays are obtained by RSM. Based on the following interaction equation, the adequacy of the field fabricated splice can be checked: a f l 3F [ O+ a! + tS+h]41.0 lR1 a "t n L l where SF = Safety Factor = 1.88.. \ fl = axial force due to gravity, thermal and SSE mn , og = bending moment in normal and transverse directions due to gravity, thermal and SSE. 1 tn = torsional moment due to gravity, ternal and SSE. lR1 2.6 SHEAR FORCE AND TORSIONAL MOMENT-For splice subject to the action of moments (m'n, m't), shear (s'n, s't) and torson (T), then: an = m'n + (T/W) I L1x2 mg = m't l en = s'n + (T/W) x 2 sg = s'g j where T = torsion in ib-ft W = width of tray in ft O 1829R '

SAG. CP18 APPENDIX I and Li = span length between two supports in ft. In the normal loading direction, all bolts in the splice are subject to shear, the combined bolt load due to moment (a n ) and shear (s n ) is l [n,2 + (a )2)1/2 l where en is the critical bolt load due to an in shear, and p is the total number of bolts on the side of the splice plate, where the i l critical bolt (n )e is located. It is noted that the bolt loads on both sides of the splice plate should be considered. ) In the transverse loading direction, the bolts are subject to shear due I to moment (m e

                         ) and tension due to ahear (se ), then me = mc /q =                                              -

i critical bolt load due to me in shear and s t/q = critical bolt load in tension, where q is the smaller tof.a1 number of bolts on one side of the splice. 2.7 ADDITIONAL QUALIFICATION ACCEPTANCE EQUATION DUE TO TENSION IN BOLT According to AISC, the allowable tension in A307 bolt (used ttre in j splice) is: ) 28 - 1.6f'y 4 20 in KSI, lR1 where f'y is the bolt shearing stress. Under ultimate load, the above expression is modified as: 60 - 1.61 fy 460 kai lR1 j For a 3/8 in, bolt, which has an effective cross-sectional area of 0.078 in.2, the ultimate bolt load in kips is: 4.68 - 1.61 m eg_4.68. lR1 As a result of above derivation, the qualifying equation for bolt under tension in the transverse loading direction is 1.88 x st /q 4 4.68 - 1.61 m e .c. 4.68 Kips where 1.88 is the factor of safety. 1829R .

a *) N ^ ; f. R e' kkk' . ' ktW A&.. -~{ kfM h *

                                                                                                                                                                                                                                                           ' Cat sq,              *     '>                                              }.                                                                                                                                                                                                                                             ATTACHMENT 3 e } t
 .y-
v. .
                          +a
                                                              *-ni
                                                              * ; x . , ?. -

n ?},. o wu q' .e , f

                                                                                                                                          .,f y 'g,';?,.),, a &*, y . . . . w ,.a
                                                                                                                                                                                                       ..%                                                           6
                                                                                            # . h MWAWiM,. o,%'r(L ; g,yN                                                                                                                                               ?' yf p y

l - 5 ss *

                                                                                            ~4 m%

u wpmmm%% dfwum

                                                                                                         . y b.

s m, mm U p.w n.w .... , p .4 b ey4k . . , , . h ,,f) . # *

f  %

s(QAp w y- %d 1

                                  +p                     o                                                                                                e                                              7 .                                                                                                                  *1

[ m*j*, . s ,(

                                                                        . ., j                                                                                                                . ,?                                                                                                                                                           ,           s t g
                 . .                    c         1 . n z.m*,t nn.o.$ m%gN                                                                               s      A
1. -,a i.y .g $ p ,.A 44 4,

f.w .- a 4, 4 Je p 5 4tt ; ,' .f

                                                            'y,y ,; Q" % ;,a MlgW-S l.

n .g g g. CQ;'(q. W. =. .y'% .* g : M n L ^s w. n',y/ W* l*,A f

                                                                                                                                              .R       .v > v . . ? .{                                                                                                                                     '*4       a          p.% b4/>/8 sk ;*$
      , .,                                                                                                                                        +                                                                                          .
                                                                                                                                                                                                                                                                      ~L                      a
                                                                    *,>                                                                                                                                                                                                                                                                                                                                     n^
                                                                                       >>s                   / ? *                                 . . py e+ v y, %.W]*,*Q' g@s > n,L-          &r                                                                                   ' k.                            ? '                               L 2 4 ' c* t - .

c M Q:f4V s .jp wm~. y y N h yq *qf;g . d M JQ A ,,v;,.sl%. y[ h.Le,y" k ?_,

                                                                                                                                                                                                                                                                                                                                                                                                 *e ay
                          , .                 .D                                      ,.

n r' Q:* j,S h " h .W hy*MpQy,. g'

                                                                                                                                                  ,i!                                                                 y
  • Q 4).. t t , } 'q w e_ , ) \ ' ., gj A [. . 'c. sr  ; i* -

NRjgg';Q lp' f.}Ye;MQ gg: p Md!'. T; ,

                                                                     ., ,                                                                                                                                                                                                                                                                                        r v y "V.fQ @:g @hN Q

[NN 1 m M a a n~ g '

                                                                                                                                                                                                                                                                                                                                              ~
                                                - p.a. ..,L.                                                  .       m mG' m.,[
w. r., mA Jn evy + .

cYh.)e c

  • m- s w.(Ca.h' , g '

S*" p3." IN 'g . P g+ , # ]T, ,7". ,f',L,d ~.t s t ~ h ' L g [ , %,~ a oo '*'f;i%

                                                                                                                                                                                                                                               . Q@                   4@            [ , / , W,"]pp h.f yg.p If [. [W, h ..:

t ,.

                                                                                                                                                                                                                                                                                                                                                                                                                        .k*   %.yy M
                                                                                                   , 6                        ,5a          2                  'afr                  -u
                                                                                                                                                                                                           '.*                   ' > w- t
  • 2 t

4

                                                                                                                                                                                                                                                                                         ?
  • M, r i

f

                                                                                                                                                                                                                          'g+ . Y i, 'S
                                                                                                                >        3 ' , y f * ,N*
  • w' {A(,' 7* .\ '
                                                                                                                                                                                                                                                                                                                                                                                                                    ,,,, . N[5((
                                                                                                                        , ' (, r .p' N.y
                                                                                                                        - y y-3,-*ep. .'p,. y3 i, v                   .                      '(           fs .4 ,,%.        4,                    , 3. ..        ',f , .                                                                                                                                *p' &

A . * - i,

                                                                                                             * . g. 9'i<b4,                                                                   ra                                                                                                                                             ,                                                                    ,f,.,,
                                                                                                                                                                                                               ' e u1 %*              , ,f s.,     j . / 6 4. . 4i >

s %. .4 ,, i'N

                                                                                                 , ' ;), ..
  • k ' . f , ** , , Y '

s+ ^ s

                                                                                                                                                                                                                                 , t ,         t-         iw             4               'j                                                                                                  '
                                                                                                                                                                                                                                                                                                                                                                                                                           * % ,E
                                                                    .                                   .                        .,                                                                                                                f
  • h , ,h, ,( r ?
                                                                                                     ,- ~ . : t ( f o Y .,
  • L *,
                                                                                                                                                                                                                                                                                                                                                                                                                            $r
                                                                                                               % L .f4 4 n~                                                     %F                                                                        "J        -

I? k

                                                               ,                                              A. -                      nv '                              , -

i$l'*A ,

                                                                          ~
                                                                           \
                                                                                          . - %'           e
                                                                                                                                , ,, h. . Y' r;ls 4 ) G*
                                                                                                                                                                          ,37*                      .,f., ,             ':,G{W.'t*' .. 
                                                                                                                                                                                                                                       %Q           ,

[,

                                                                                                                              =..A                     -f                    . j, f . j/                                f n ;~ -
                                               #                                                                    *       >                                j                    p.. /4g*
  • k. '~I g a ' aA ..'y .,. 9,a 44 '*
  • f . . \ ' s . t . '

f

                                                                                                                                                                                                                                                                              ~

g! *'

                                                                                                                                                                                                                  'A                                                                                                                                                                                                               ,

s hV . . , , , . , ,

                                                                                                                                                                                                                           .. > . ;' S
                                                         =t'.                                                         *a>                              a ., sn,.,p c ; ; x Jy                                                              {' ,,
                                                                                                                                                                              ' Y ' 5 l{ l*, Y;-
                                                                                                                                                                                                                                                                            \

cy; f' S j' kk.-p*d' i y

                                                                                                                                                                             .l'Yw, 'ftse k. 4 .,r       *                          ,1..
                                                                                                                                                                                                                                                '(,j'                  '%      '

s rn e' l - ey 3 p* j s,

                                                                                          ,r       '.F._,          0                               gi                             &. .*' s    ; p ' c, Q',6     *
                                                                                                                                                                                                                                               .%.4                     3
                                                                                                                                                                              ' L. * ' #, s U ,y,                                      l~ fJ & 4
              /* N '                                                                                       ,
                                                                                                             , . e  ,
                                                                                                                    ,k,s.                    .s        v .v..ri%p W                     ss               3 5
                                                                                                                                                                                                                  , \ g y...f..&        i, -              1
                                                                                                                                                                                                                                                              \            ,                                                                                                                                            ,
                                                                             ,                                                      .; &^

t  %: .

                                                                                                                                                                                                                                                                                                                                                                                                                                    ~
                                                                                                                                                                                             .%g MJ 1, k ,.MT , TM:. H % A',

yp 7 ,

                                                                    ; .p pr&f                                                                                            %                                                  %*d hy                                   s 4D,v *. ' *7l~hdW."$yp$p, 3' >                                 ,
                                                                                                                                                                                                                                                                                                                                                                                                            .mA v .y
                                                              ' c;Wh%                     %WQMyM                                                       .k  Qf??qq?$pgpyp&g&                         rg        pp         kyW                                       n M>     y y_ n.
                                                                                                                                                                                                                                                                                                                                 >                                                                                          .n 2

['q,$v 2.W. .M i@dy@MQWAW$h$th@N iffs @@. % 'MW ~ ;. ; , - jj

                                                                    ~
                                                                      +e,v. -$M%~a.M.

u ( f. . . .. eet ? tim s A ' '...s,p_N ' A.

                                                                                                                                                                                                                      % d*

a..s c , p,n. h *w ew f t f '. Y:hjA

4. -

c ..+~*' glQtf. fmgW E m eN ' .%.

                                                              ".,                          w ~.                                                       f* f,']y* <~. Y~}}.y'q.                                                       }r                                                                                                                                                                                      , ..
                                                                            , x ; 9 ff 9,. - yW Q]'fA:sf, Q y.
                                                                             ,:                                       .t f                                                          y        ,

yy

                                                                                                                                                                                                                      . 4*                     .m..

w... , ,,

                                                                                                                                                                        ?                               h                  . d a p.h? O l ** N 3 '.;                                                                                                                                                                                                                           e                                                                                                                   > +
  • m . 4' s

y .s y. >

                                                                                   ,      's h }y.e                                                        %

Jl}a .;,b Q *, G j Y ,7 jp & ' gw J. '

                                                                                                                                                                                                                                                                                                                                                                                                                        . g&
                                                                        , %. ' re-                  &W O-rM+y.L , > ', 3 ,5 & ,;y_.)'p,                              ne               U                                              4 . .i                  / QUW , sq~o ,                                                                                                                                         M!
                                                                                                                                                                                                                                                                                                                                                                                                          -.r                 W e ,,y                                                                                                      ,
                                                                                                                                                                                                                                                    ,,_gu,,                                                               ,
                         +1                                                  1                                   .L                          Ab$                                                                                  %                                                           - '

hf; j agd@&

a. 4 .i .
                                ," ' - p- r,                                    [Q.Q                 .mw%. MM%pMg.,                                                                      MQ                                      M,gW                      jN'y 4e v, (m                3,,

An gfri

A y '

m

                                              ' B ( +, sp 9 n yrpp;g&x.un;d                                                                                                                                          . .p&)%w,fy,'w ~%                                                                                                                                                                   >

h;W a +

                                                             ,1 ,
                                                                                         ]p.n mSQff.yyk
                                                                                                      .                                                                                      v
u. mm.

6,ygg ,ge ;y3:- n s

                                                                                                                                                                                                                                                                                                                                                                                                         ..m
  • g?.4 s . u,m
                                                                                                      ,,ip,y "w     A. m g D h, ~..:                               ; . ,AI..UN]Np/cf        w --.W
                                                                                                                                                                                                                                                                                                  *                                                                                                      '*2 s               i '

p ' ..wgp , $

                                                                                            + gr  .
                                                                                                                      +.,t  .v, '.; w -. r .                               . w               .vy ,.+ 5c.< m.py
                                                                                                                                                                                                                                                                                                                                                                                                         'gsy@[k,
s. . , .> 4 i
                                                                                           ,                          ,q d 4Y                                      yip;,                               e}. . p '( ' ['I 4        g
                                                                                                                                                                                                                                                                                                                                                                                                                ;d
                                                                                                                                                                                                                                                                                                                                                                                                                           .~7 Q
                                                                                                                                *' b'. L w . ;:
                                                              ,,                                                                                                                    n                                                                  . . >.
                                                                                                                                                                                                           $'*>y* ,
  • y'
                                                                                 ~

s > > .h'c  : f % ya ,'lfE, ,yf - ;,' '- sy

  • v4 i ",,a,% g ~. ,2
                                                                                                                                                                                            .s.                                                                               ,

4y m, + 'a S 4 j/ 4* .,3, r ,h4[ 'N g _.

                                                                                                                                                                                                                                                      +
                                                                                                                                                                                                                                                                     ) b                                                                                                                                 y,. *'w.

g -,

                                                                                                                   , )" ,. ' , g .33 .. *.y.

i; , '.e, - q y g, y -)s

                                                                                                                                                                                                                                               *t-f sg'
e.  ?. ,*-g.
                                                                                                                                                                                                                               ,.)'

1

                          , e
                                  %             >e         e
                                                               -g, \, s
s. .,.,'y,- ,
                                                                                                                                                  ' y y;      e, , (r[c}            < . . .              ,. , ;i s            , '

4 w" < s

                                                                                                                                                                                                                                                                                                                                                                                                            ., y.1
p. , <* f,' *
                                                                                                                                                                                                                      *Lq,..,,

y g- y

                                           .p               ,
                                                                                ,                   . p                       ',"[ 7 .                e.-
                                                                                                                                                                             ,)a                                  .

n ' -

                                                                                                                                                                                                                                                                                                                                                                                                          ~ p' yt'
                                                 .'+
                                                                                                                                                                ' .\                                                                             "'
                                                                                                                                                                                                                                                                                                                                                                                                  .%,,%,                            t, '
                                                                                                                                                                                                                                                                                                                                                                                                              -., $,.s
                                                                                                                                                                                .,J g x] , , . , y .            s a

) i .' 4 < .,o {\

                                                                                                                                                                                                                                                                                                                                                                                                           ,*y y$4?                     t                                                                                                                                                 J m.T            3
 ./                     ' j'f                                                                                                                                                                                       .
                                                                                                                                                                                                                                                                                                                                                                                                                     ;pf d j                          y*                                                                                                                                                                                                                                                                                                                                                                                       .     +;'.'

51 g , S .1 T. s

     ,,                    b                                                                                                                                                                                                                          '

m.J p n.NW,k , ,1 < 4 o6' % # u. M . L. /, w md C ' V.h '

                                                                                                                                                                                                                                                                       . e                    * #                                                                            -
                                                                                                                                                                                                                                                                                                                                                                                                    ' M*T.fM        . r.w          r, i,                                                                                                                                                                                                                                                                                                                          .                                                                                  M9 h$

A v f w

                                                                                                                                                                                                           ,- i .,

v

                                                                                                                                                                                                                                                                                                                                                                                                        ,g'p.e'g/
           .      '. J, Y                ~~.. e                                  bE                    'm.

b2$?$-

                                                                                                                                                                                                                  ' *~*~ ' -- . Y MA
                                                                                                                                                                                                                                                                                 .A L - .                                                                                                       OA:       4}}