ML20236H775
ML20236H775 | |
Person / Time | |
---|---|
Site: | North Anna |
Issue date: | 09/30/1987 |
From: | Pierce N, Reitler E, Rogers P VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | |
Shared Package | |
ML20236H771 | List: |
References | |
VP-NOS-35, NUDOCS 8711040339 | |
Download: ML20236H775 (50) | |
Text
e A Igp (ggg a 1 -
L.y. M~y a
s \g
- l r
- 2. * , .
F ?(
~
s
\
f;i l ,, .
North Anna UnitI2, Cycle 5 Iw Core Per ormance
^%
f.
/.t , i i.
Rep 6rt:
t; O :-
- f .
, i, -Nuclear Operations Department "i .\
s w 4 s
I g 4
) . t
)
s_5 t ,%
VIR0lNIA POWER 4
f I-
' 9 i
' . ,4, ; ; i l ' I t. b P
g *.ui 3 , .
- >'s al
- l. .
- t VP-NOS-35 6
NORTH ANNA UNIT 2, CYCLE 5 CORE PERFORMANCE REPORT by '
Eric C. Reitler l
and --
Paul S. Rogers h re n
Reviewed: Approved:
QRA02 N. S. Pierce, Assoc. Engineer x _
C. T. Snow, Supervisor Nuclear Fuel Operation Nuc1 car Fuel Operation Operations and Maintenance Support Subsection Nuclear Operations Department Virginia Electric and Power Company Richmond, Virginia
[ September, 1987
/
L f
):
- CLASS 1FICATION/ DISCLAIMER J. The data, techniques, information, and conclusions in this report have been prepared sololy for use .by the Virginia Electric and Power Company (the Company), 'and they may not be appropriate for use in situations other than The Company therefore those for which they were specifically prepared.
makes no claim or warranty whatsoever, expressed or implied, as to their
( accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES
.NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF iRADE, with respect to this report or any of the data, techniques,
( information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage result.ing from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.
i f
i
> TABLE OF CONTENTS ,
SECTION TITLE PAGE NO.
Classification / Disclaimer . . . . . . . . . . . .1 List of Tables . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . iv 1 Introduction and Summary. . . . . . . . . . . . . 1 2 Burnup Follow . . . . . . . . . . . . . . . . . .7 3 Reactivity Depletion Follow . . . . . . . . . . 15 4 Power Distribution Fellow . . . . . . . . . . . . 17 i 5 Primary Coolant Activity Follow . . . . . . . . . 38 6 Conclusions . .................42 7 References. .. . . . . . . . . . . . . . . . . . 43 I
o s
11 f
s-f LIST OF TABLES
/
' TABLE TITLE PAGE NO.
/
4.1 Summary of Flux Maps for Routine Operation . . . . . . . . . 21 1
l
- s s
6 111 i
p i
I LIST OF FIGURES FIGURE TITLE PAGE NO.
/
1.1 Core Loading Map . . . . . . . . . . . . . . . . . . . . . . .4 1.2 Movable Detector and Thermocouple Locations. . . . . . . . . .5 1.3 Control Rod Locations. . . . . . . . . . . . . . . . . . . . .6 t
2.1 Core Burnup History . ....... . . . . . . . . . . . .9 2.2 Monthly Average Load Factors . . . . . . . . . . . . . . . . . 10 2.3 Assemblywise Accumulated Burnup: Measured and Predicted . . . 11
, 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted . . . . . . . . . . . . . . . . . . . . 12 2.5A Sub-Batch Burnup Sharing . . . . . . . . . . . . . . . . . . . 13 2.5B Sun-Batch Burnup Sharing . . . . . . . . . . . . . . . . . . . 14 3.1 Critical Boron Concentration versus Burnup - HFP-ARO . . . . 16 4.1 Assemblywise Power Distribution - N2-5-08 . . . . . . . . . . 23 4.2 Assemblywise Power Distribution - N2-5-22 . . . . . . . . . . 24 4.3 Assemblywise Power Distribution - N2-5-35 . . . . . . . . . . 25 A
4.4 Hot Channel Factor Normalized Operating Envelope . . . . . . . 26 4.5 Heat Flux Hot Channel Factor, F (Z) - N2-5-08, . . . . . . . . 27 4.6 Heat Flux Hot Channel Factor, F (Z) - N2-5-22 . . .'. . . . . 28 7 4.7 Heat Flux Hot Channel Factor, F (Z) - N2-5-35 . . . . . . . . 29 4.8 Maximum Heat Flux Hot Channel Factor, Fq*P, vs.
Axial Position . .
. s. . . . . . . . . . . . . . . . . . . . . 30 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup . . . 31 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus Burnup . . 32 4.11 Target Delta Flux versus Burnup . . . ...........33 iv e
r
/^
LIST OF FIGURES CONT'D FIGURE TITLE PAGE NO.
t 4.12 Core Average Axial Power Distribution - N2-5-08 . . . . . . . 34 4.13 Core Average Axial Power Distribution - N2-5-22 . . . . . . . 35 1 . . _ _ . .
) 4.14 Core Average Axial Power Distribution - N2-5-35 . . . . . . . 36 4.15 Core Average Axial Peaking Factor, F-Z, versus Burnup . . . 37 i
5.1 Dose Equivalent I-131 versus Time . . . . . . . . . . . . . . 40 5.2 I-131/I-133 Activity Ratio versus Time . . . . . . . . . . . 41 i'
.e s V r
q i.
Section 1 l
INTRODUCTION AND
SUMMARY
t
)
On August 24, 1987, North Anna Unit 2 completed Cycle 5.
Since the l
I initial criticality of Cycle 5 on April 1,1986, the reactor core produced approximately 10.4 x 107 MBTU (17,467 Megawatt days per metric ton of j contained uranium), which has resulted in the generation of approximately 1.0 x 10 ' KVHr gross (9.6 x 10' KWHR net) of electrical energy. The l purpose of this report is to present an analysis of the core performance for routine operation during Cycle S. The physics tests that were performed during the startup of this cycle were covered in the North Anna Unit 2, Cycle 5 Startup Physics Test . Report 1 and, therefore, will not be included here.
.On August 27, 1986 North Anna Unit 2 executed a core uprate to 2893 MWth from 2775 MWth. The core follow data and core peaking factors reflect this uprate.
North Anna Unit 2 was in coastdown from June 20, 1987, at which time the burnup was approximately 15,450 MWD /MTU. The coastdown, therefore, accounted for an additional core burn of 2017 MWD /MTU from the end of full power reactivity.
The fifth cycle core consisted of six batches of fuel: a thrice burned batch from Cycles 2, 3, and 4 (batch 4A3); a twice burned batch from Cycles 1
.i L
I 3'and 4 (batch SA); two once-burned batches, one from Cycle 4 (botch 6A{
r . and 'one from North Anna 1, Cycle 4 (hatch N1/6A6); and two fresh batches (batches 7A and 7D). The North Anna 2, Cycle 5 core loading map specitying the fuel batch identification, fuel assembly locations, burnable poisons l
locations . and source assembly locations is shown in Figure 1.1. tiovable detector locations and thermocouple locations are shown in Figure 1.2.
)
Control rod locations are shown in Figure 1.3.
Routine core follow involves the analysis of four principal performance
- indicators. These are burnup distribution, reactivity depletionc power distribution, and primary coolant activity. The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will ' be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications' limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the North Anna Unit 2 Technical Specifications and to assess the integrity of the fuel.
Each of the four performance indicators is discussed in detail for the l North Anna Unit 2, Cycle 5 cote in the body of this report. The results are aummarized below:
2 F
k
(!V s
)
( ',
f !
li
/ r
- 1. Burnup Follow - The burnup tilt (deviation from quadrant
' h.c r,ymmetry)
\
~
I '
on- the core was no greater than q 0.49% with the burnup i:
.>,')
accumulation in each batch deviating from design prediction by less than ,
1 *w~ -
- 2. Reactivity Depletion Follow -
The critical boron I- concentration, used to meriitor reactivity depletion, was consistently h -
within'10.18'; AK/K of the hdesign prediction which is well within the 11%
AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.
I l - Ir. core flux maps taken each month
- 3. Po[ler Distribution Fol' ow
[ indicated that Une assemblywise radis1' power distributions deviated from thedesig,npredictiono'byanuwefagedifferenceof1.5%. 'Ihe hot .hannel r factors met their respective Techni;al Specifications limits. \
- ' ' t
. 4. Primary Coclant Activity Follow - The average dose equivclent ; g.
I iodine.131 act 61ty level in the primary cocBnt during Cycle 5 was .
~3 approximately 9,.0 x 10 pCi/gm. This corresponds to approximately 1% of the operating limit for the concentration of radiciodine in the primary , j
?:
coolant, s
( , .
f m '
g l I
\
' i 3
t ti i
- l. %
' y
, 6 I
i .
,. s i t.'
3 .
I , i
, , _ q .-
1 i n.
i :. 'i_ \
e p
_n. , , A, ;__x__: a j m,;.1W; ., ?
- ' J; sd : x.
m.. e 1.
Lj m e' ' L , ,l '
'i,,". g -
w.
3o. <
> .j,-
)
'k a
j7 i.
- {. . . Ll
- i. M f l
n t f 3 g y,
,(' 'm s6na.o t'L
, p NOB 1H YNNV ON110 - 3A3131 k I
3OWli 7OV01ND WVd - l, h < s ,?
.y.. ..
W ., J 4 W \- 'N- I" 'W -f^
' H 0- J 3 0 3 8 Y-
, .f - B2C 906' 9fO
-L I' r
,.ig,1. 1l9 621_,, ,,LQ.l.,_ ,,,611,,,,, 1Ct tt6 !
' ssti a
.M!!ti Aa'G .'.ASt! 14I ^4 i' 11!! A!!1 aifl 1!!2 '
L9d L94 .L9d '
t '
'I'
.MII 190._. 633 112 ,615 119 A09 190 691,,,,, _lE.9 MGE
]- '
L9d L9d L9d t94 4
,i 355 6,31 632 .LQtj_, 6Q1.,,, 101 ,,.li% 15.s, ,. A89 131 .A!i 616,._ 3[!.E 19d, L9d. L94 494 G I
19A 621 111._ .aetJ 1EQ.,'_ ^ 1 12i!_. _on 1EI_. .anE .los .a21 11E i 194 L9d - L94 t94 69d~ L94 9
] 312 .ef9, 11.E .aik '1G9 .dil_. 132, ,,091 .~1$1 all' 1GG . des ,_ .,111 , 651 SE(
69d L94 304 49d L94 1 11tI .,13E 6I!1 .IIE 111 .llL! .AII 251._ 6E!! .AILI 131 1EI 05E 1l!1 I1.I L9d- 204 80J L94 9 i' " i 311 . 651 101._ 81.$ 1!!I 812 .lik 831 13Q .dE1 1IE 091 111 dl!.E llI L94 L9d. aod L9d . L94 SSL9 6 16 At9 11E 619 131 611 131 6E1 121 .dE.9 199, AG9 lii 494 L94 L94 69d L9d t9d' LO a .. .,191 .att ,, .,631 1ti .ati lat . 19.E 12.E alA 112 _ 611 49d
.A90 111 LL L9d- L9d L9d l
.U2I 111 019 111' 691 1!!E__ dQ.i 192 012 lII_ .MEE L2 L9J L94 69d L9d p M f # -.. 651 .diA 1tfl 6L!i 1.U 82.E_. 8!!1 .,M11 L94 494 L94 tt
_311,,,, 111_., A9W ,,121,,,. .,,6iQ,,_ 1$Q, .,gti ,,.
sele te sie set .. pEI
- -< VSS3W91A id LG
- -< ON3 OJ 1H3 J0110MINO '~~
SS - 333ON0WWA SOnW33
- S' Y' Wd = gnWNV913 404 SON VSS3W91A
) W.Nnwe3W OJ W00S(
JA31 VSS3H01A 03Sl0N dYWYW311WS SAG-9Y13H Nl/9V9 4VC 5vf 9V LV LG I.
iNtit w 3NW13HN1NI )M/0 A-3tS( t'G6 ' s ' ti t t'G6 t'90 t'90 t'90 V'.rnG1A 'r43 tLXtl LLXtL tLXtL tLXtL LLXLI LLXLA NAW93W 'a V5'3M9113S L 9 30 - 94 C9 39 Jn31 W00S d3W VSS3WelA 394 394 394 394 394 39rt d.
VSS3N91A IG3N11Jt3V1loN JGL W03' WOC s06'SL3l101-194 A01-At9 AtL-A9tt WIL'Wt2 stf' Wt9'W44 SLG-SL6 W49'WG3 SBE S22'S29 SEG' S26'SCO Stt'St6 snE*Sh1 SGC'SGG I
/
Y
- i. $ r , ,,l, 1 1 h.['. ,
p,,
f' l Figure 1.2 NORTH ANNA UNIT 2 - CYCLE 5 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS R P N M L M J H 0 F E D C 8- A M0 TC g
. . . , TC TC MD 2 l-MD T MD TC TC MO TC TC TC 3 f
F TC - MD MO ' Mo TC 4 MD M0 TC MO T T TC TC MO TC TC
' 5 M0 TC TC MO TC MO 6 TC ~ TC M0 M0 MO TC MD M0 7 MD HO MO TC TC - M0 TC TC TC TC MO TC TC MO TC 8 HO . '
. TC MO TC MO TC MO 9 MO 7I k0 TC TC TC MO TC 10 MO ~ MD TC MO TC TC TC MD 11 MO MD MD TC TC TC MD TC 12 MD MO TC TC 13 T
TC HD TC 14 MO - Novsble Detector TC = Thermocouple NO TC TC
'45 l
l
(
5
{
k a* i 4 n.
< j j
f '. l
, Il
\
I s
Figure 1.3 NORTH ANNA UNIT 2 - CYCLE.5 CONTROL' ROD LOCATIONS .
h I R P N M L K J H G F E D C B A .j i
180*
I Loop C Loop B 1 Outlet inlet ]
- f. A D A -.;
I C T B C 4 '\
SP SB SP SB l 5 4 T B D .C D 8 A '6
" Loop'C. Loop B SA i
.i n l e t SB SB SP SA utlet 7-90P - D C C D .27@ 8 SA SP SB SB SA 9
~~
A 3 D C D 8 A 10
']
C B B C 12 SP SA SA 13 N-44 A D A N-42 14.
l l L
Loop A -
Ab so rbe r Outlet inlet Haterial-Ag-in-Cd l
O'
)'
I function Number of Clusters Control Bank D 8 Control Bank C 8 Control Bank B 8 Control Bank A 8 Shutdown Bank SB 8 Shutdown Bank SA 8 SP (Spare Rod Locations) 8 I
\
6 1,
m l
I F I l
i Section 2 i BURNUP FOLLOW v .j
. i The burnup history for the North Anna 2, Cycle 5 core is graphically I depicted in Figure 2.1. The North Anns 2, Cycle 5 core achieved a burnup I
of 17,467 WD/MTU. As shown in Figure 2.2, the average load factor for
)
Cycle 5 was 87.0% when referenced to rated thermal power (2775 MW(t) before being uprated to 2893 MW(t) on August 27, 1986.) ]
I
)
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWT 0TE' computer code is used to calculate
]
these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end
)
of Cycle 5 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution rap in which tha percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle "; operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within i2.5% of the predicted values. In addition, l l
deviation from quadrant symmetry in the core throughout the cycle was no I i
greater than 10.49%.
l The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies. Batch definitions are given in Figure 1.1. As seen in Figures 2.SA and 2.5B, 7
)
i
l i l l
l- l i
i l
the batch burnup sharing for North Anna 2, Cycle 5 followed design l
) predictions closely with each batch deviating less than-1.2% from design. j j- t Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the I Cycle S core did deplete as designed.
F I l h l
)
I i
l' l
1 l
i i
i J
i 1
l
)
8
)
Figure 2.1
)~ NORTH ANNA UNIT 2 - CYCLE 5 j CORE BURNUP HISTORY l 16000 17000 !
16000- - /
?. 15000 I
14000
[p -'
.I l
/
[C
) Y 13000 r L 12000 iE /
8
/
U 10000 1 l
.h 9000
[ i l
? 8000 / i j
M.
W 7000 r
/ l 0
/ 6000 7
/ }
M T' 5000 / l V-4000
[
3000- ,
/
2000 7
/
1000 g
/
0-O O O O O O O O O O O O O O O 0 0 0 0 '
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M A M J J A S 0 N O J F M A M J J A S A P A U U U E C 0 E A E A P A U U U E R R Y N L G P I V C N 8 R R Y N L 0 P 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 TIME (MONTHS)
CYCLE 5 MAXIMUM DESIGN BURNUP -
17800 MN0/MTU
! l
) 9 !
NORTH ANNA UNii 2 - CYCLE 5 MONTHLY AVERAGE LOAD FACTORS PERCENT 90-00-70 -
60-50-40-30-20-10-A U E O A E U V R Y N L G P T V C N B R R Y N L G C i i i i i i i i i S ' l MONTH AUi R RL E R h NkH
t I Figure 2.3 NORTH ANNA UNIT 2 - CYCLE 5 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD /MTU) r-l I R P N. M L K J H 0 F E D C 8 A 1
1 32.42) 29.841 33.061 l MEASURED 1 1 2
..............1 ... 32.3.11
.. . 29. 40.1.32. S.11..............
. 1.. PREDICTED
.......... l l 34.341 31.891 18.031 34.311 18.041 31.93l 34.201 2 I
.......1.33. 86.1.31.551.18.101.34.5.91.18
.. .... .. . .. 10.1.31.SS.I.33.86.1.......
3 1 32.151 19.00) 20.421 35.761 21.801 35.38 20.84l 18.921 31.961 3 4
........I .31. 86.1.18. 72.1 20.. . . .. . ... . .6.3.l I. .3 5 8.31 21. 9.71.3 5 8. 3.l .20. 6.3 7.18. 721 3 i
1 31.981 33.S71 21.0$l 37.04l 22.351 38.941 22.23l 37.141 20.951 33.94l 32.79l, 4 l
.........31 .. 86.l.23 $.31.20. 85.1.37
.4 . ... .411
... 2.2 61l 39.181
.. ...... ... 22.611 ... 37 411.... 20.8.51.33 5.31.31.861........ l 5
1 l 33.941 18.531 20.501 39.621 22.721 38.741 39.771 38.2Si 23.021 39.94l 20.691 18.961 34.531 5 l 6
..33 86.1.18 721 20. 851 40.... 161 .. ..2.3 141... 38.791.39.
.. . ... 801.38 . .. 791 .23 141 . ... 40.
. 161 20. 851.18 721 33 86.1 l I
l 31.451 20.601 37.44l 22.811 40.43l 23.03l 40.391 23.091 41.031 22.881 36.961 20.S01 32.24l 6
........I.31 ..S$.l.20. . .631 ...3 .7 ... 411 .23.141 . .. .40. . 92.1
. . .23 . 22..i.40
.. . . 1.71 .. ... 23 221 ... 40. 92.1. 23 141 3.7 411 20. 6.3.l.31.55.1 7 .\
l 32.891 17.961 35.631 22.381 38.07 23.121 40.94l 23.041 40.631 23.061 38.831 21.791 35.381 17.751 32.631 7 i 8
.I.32.
. .. S.11.18.
. .. 10.1 35 . .8.31. 1 ..22. .. 6.11.. .. . 38.,79.l.23
.. .. . 221.. 40 . ..761 .. . 23 021. 40 76.1 2.3 221.38 791 22 6.11.3 ll 29.S71 34.711 21.75l 38.70) 39.90 40.281 23.07) 37.921 22.761 39.361 39.271 38.661 21.53l 34.89 29.541 8 9 . 29. 40.1.34 591.21
. . . ... .. . ..i9.78.39.
. .. .. .. 181.39 ... .. .. 80.l.40.
. ... 171 23 021.37
. .. . ...I 831 23 021 40. 171.3 l 33.011 17.84) 35.25 22.211 19.001 22.951 40.171 22.891 40.311 22.741 38.4SI 22.1Sf 35.981 18.071 32.531 9
.i.32 311.18.10.1.35
... . . . 1 .. . ..
83.}.22 6.11.38. 79.).2.3 22 8.A0. 761 2.3.02.1 40 76.1 2.3 10 l 31.38l 20.261 37.251 23.161 40.531 22.791 39.821 22.771 40.481 22.681 37.59l 20.931 32.091 10 11 1 3.1.S.S.I.20.
631
... ..... 3.7 411 . . .. 23.141
. . ... 40. 921 23. . 221 40.. 171 ... . 23. .221 40. . 92.1
. 23 141 37 4.11 20. 631.31.S 1 33.67l'19.04l 21.14) 40.661 22.791 37.971 39.081 38.231 22.741 40.061 21.301 19.061 34.251 11 12 1.33 86..i.18 721 20....8.51.40. ... ....16l.2.3
.. 141.38.791.39
.. . ... . .. .80.1.38 79.1 23 14l.40. 161 20. 8.51.18 721.33 86 . .. .
l 32.301 33.971 21.09l 37.47l 21.961 38.711 21.951 36.631 20.641 33.791 32.011 12 13 1.31.86.1.33 .
53.l .20. 851
. ... .. . 37 411 22 6.11.39. .. . . 181 22 6.11.37 . 4.11 . 20....
851.33 531.31.461 l 32,461.19.181 20.611 35.101 21.481 35.06l 20.181 18.531 31.861 13 14 1.31. 86.1.18.721 .... . . 20. 631.35 .. 83.).2.1.971.35
.. . . . 831... 20.. 6.31.18.72.).31 86.1 34.18 34.29 17.67 31.17 33.72 14 31.56l17.92 I'
. 33 . .84...31.55..18.10...34.59...
... ... ..18 10...31
.. . S.$..33. 86..
15 1 32.511 29.51 32.52l 15 1.325112940l32.311
{
1 i
R P M M L K J H 0 F t 'O C 8 A i l
i 11
1 i
I I
' l
)
I i I FIGURE 2.4 !
'l NORTH ANNA UNIT 2 - CYCLE 5 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED
( (1000 MWD /MTU)
{
R P' . II . ' .M l. R J N O F E D C 4 A 1
'lg32.42l .
29.841 33.06l i MEASUACO I 1 3
................ 0. 24..I...l 491..1 .. 711..............
... .i.M/.P
.. . 1..O.t
. .... F F l
-ll 34.34l
..........1.42.1..1 31.891 10.03l 34.31l 18.041 31.931 34.20l 2
. 10.1.+0.
. . 4.11
.. 0. 80.1. ...321..1 22.1..1 021.......
. 0. .
3 1 32.151 19.001 20.421 35.76l 21.001 35.381 20.841 14.92l 31.961 3
.......1. 0. 89..) ..152.1.*.1. 00..) . .. . .. 0. .. 19..r
. . 0. 76..l . 1 25.1..1. 00.1.
. .. .. 1. 08. 5. 0. 311 .....
4 l 31.94l 33.S78 21.091 37.041 4
.......1. .0..341. 0. 10..l. 0. 9.51..=.1.00..).22.3Sl 1
. . . . .. .. 38.941
.. .. 22.231'.37.141
.. 20.951 33.9 S l 33.946 18.531 20.901 3 3.021 39.941 2 5 t l t'
6 l
- 0. 24.1. 1 0.11.=.1 69.1. 9.621 22.721 30.741 39. 771 38.251 2.0. 54.1. 0. 581. 0.691
.. . .1...3... 31. 1. 8.31.*.0. ... 141. 0. 08.1..1. .. 40..). ... . 0...78.1..1.311.
... 2. 00.1 3.031 40.39l 0.501 32.241 6 I
7:
........i.31. 4S l 20. 40 ) 3 7. 44 l 22.811 40. 4 31 2.0. 4.21. 0. 56.1.23.091 41.031 22
- 0. .32.1..+0..171. 0. 0.73... 1.421. . ...1.20.1.. ..0 ..
541..0. 28.1.=.1.15..)..1. . 2.11.. 19.1.......
I 7 f' I 32.89) l
....1.171.
.. ..0.751. .17.961
. . 0. 54.1.=.1 35.6310.11.....1.84.. 22.38l 0 44.r.
.. .. 34.07l 0. 44) .... 0.23.12) 111.
... .0.
40.941.
32l.=0.
... . 70.1. 23.041 0.
.. .. 121. .
40.631 3 631..1.. .251.=.1 23.061 38.43l 93..
. 0. 371 21.791 35.381 17 4 1 29.571 34.71l 21.75l 38.701 39.901 40.28f 23.071 37.921 2 8 9-
- 1. 0. S.a..l. .. . 0. 33.:. 0. 9.73. 1.24.1. 0. 2.31. ..
... . .4 0. 28.1.
1 10.1.
. 2. 0.02.1.2.11.
.. 1 341..1.341.
... 0. ..
.... 251.
. 12.761 96.1. 0.39.36l 8.71. 0. 39.271
. 49.1 34.661 21.53 LL 2.151 35.94 9 l
l' 10
..I..1.54.1..1 l 33.011
.. ... .. 17.44 8 35.251 431..1.60.1..1.771. .. 0. . 551. .. .. 1.. 22.211 163. .. .1 .4S.I. .. 39.001
- 0. 54.1. 1 11] 22.95 04.1. 0. 88.1........
. . l 40.17l 0. 22.491 44..l.18.071 1
- 0. 14.l..0.40.311
.. 0.71 32. S22.741 31 38.45
.Il .31.341 20.261 37.251 23.141 40.531 22.791 39.82l 22.771 40.44l 22.64l 37.591 20.931 32.051 10
.. 0. S.4.1.=.1. . 42.1. ..0. 4 31. 0. 06.1 .
- 0. 95.1.*.1. .. 84.1.
. 0.
.. 86.1. 1 ..95..l .=.1. 0 71..1 . . 99..]
... ... 0. 46.1. 1 4 71. 1.60..l 11 1 11
..l .33.67 19.041 21.14l 40.641 2 l it
- 0. 56..l..1.711..1.381..1.261.
1
.. .... .. .1 5.11. 2. 11. ...12.791
.. .. 37.97l 821. 1.4.51..1 721.
. . .. 39.081
- 0. 241. 2. 131..1 ..38.231 86..I..1
. 22.741
.171 40.061 21.301 19.06l '
1 32.301 33.971 21.091 37.471 21.961 12 1..1 .38..l..1. 30.8..1.13.l. ...
0.1$.1. 2.
1
- 88. 6.34,711 21.951
.. 20.1..2.. 92.). 2. 09.1.
36.631 20.64. l 34.71
.. 1 00.1. 0. 78..). 0. .
3.791 32.01 l 13 l 32.46l 19.14l 2 1.48 .................. 13 14 1..1 86.1. 2.0.90.1. 12.5..l 00.1...
. .. 0.61l..l35.18l .2. 141. 2.
... 2.2 19..35.06l 18.1..1
. 0.1].. 0. 021 .20.181 .
l ARITHME7IC 18.531 AYO l 31.86l 1 34.181 31.56l'17.921 34.29l 17.67l 31.171 .I.PC.7 O.lFF .= .0. 33114
................ 1. 0. 96.1. 0. 0.31.=.1 021. 0. . . . . .. ..86.1. 0. 421 2.
. 39.3. 1 181.33.721 15 l 87A40ARD Dtv i l 32.51l 29.511 32.521 i AVO AS 15
.i ....=. 0. .71....1 l )
- 1. 0. 021. . 0. 381.
.. 0. 0.31 ..D.IFF..S . PC7 1. .. ..1.0.7..l r It P 11 M L M J H 0 F E O C 8 A BATCH SHARING 4 (MWD /MTU) l BATCH CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 TOTALS BURNUP TILT j l
, \
l N1/6A6 -- -- --
22190 37921 4A3 9307 8179 6818 7885 32189 W = R 08
]
SA --
17573 8250 6822 32645 6A -- --
18784 18303 37087 NE = +0.21 7A -- -- --
22291 22291 I 7B -- -- --
19477 19477 SW = +0.05 '
SE = -0.31 CORE AVERAGE = 17467 1 1
12 h
- .i -
7 Figure 2.SA
' NORTH ANNA UNIT 2 - CYCLE 5 SUB-BRTCH BURNUP SHARING SUB-88TCH : N1/6A6 483 SA SYMBOL : OlAMOND SQUARE TRIANGLE 4
40000 1
a
/ k n
- l. ~/
l- 36000
/
/ -
f .y
~ ' a A 32000 .
/ , 242' K4QJ "
S~ ,-gy y 7 A M B 28000 e "
ak a Jr y
- A' B
C-u d
-.m , /
A ,. A /
- I C 24000 "
H B /
k20000 " [ -
g -
P /
I H I6000 7 {
W D
/
M 12000 l T
i U
8000 I
4000 1 l
l I 0- '
- , + !
l 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 i l
l CYCLE BURNUP HWO/HTU r
13
_ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - _ _ _ _ - - - - - - - - - __-J
l.
Figure 2.5B l
'- NORTH ANNA UNIT 2 - CYCLE 5 l
SUB-BATCH BURNUP SHARING
' i
}~
SUB-BATCH : 6A 7A 78 p SYHBOL : DIAMOND SQUARE TRIANGLE ;
}
-40000
)
i
- j. 36000 A
A' / l l
4
^
> / l 32000
/ \
/
\
/
B 28000 #
/
I B f A . / )
C 24000 /
H
/ sf .)
B / / )
U 20000 I l R f f g j h [ ./ !
p / / 1
.g 16000 I I p -
H ,n ,- ;
W -
M 12000 '
I / u #
U f / ' !
/j .
)
8000 x J
- #/'
/E i
-Of I 4000
,g/
d/-
/
0-[
0 2000 4000 6000 8000 '0000
. 12000 14000 16000 18000 CYCLE BURNUP MH0/NTU )
L 14 f t
2 m . a; 4
R , I
~
\
/ Section .3
- REACTIVITY DEPLETION FOLLOW <
.j LThe primary coolant critical boron cc..: entration .is monitored for the l l purposes' of . following core reactivity and to . identify any anomalous reactivity' behavior. The~ FOLLOW" computer code was used to normalize j ~ " actual" critical- boron concentration measurements to design conditions
- taking into consideration. control rod position, xenon and samarium i- - concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the North Anna 2, j
)
Cycle 5 core is shown in Figure 3.1. It can be seen that the measured data
- typically compare to within 26 ppm of the design prediction. This
- corresponds to less than 10.18%- AK/K which is 'well within the 1% AK/K criterion for reactivity anomalies set forth in Section 4.1.1.1.2 of the .j Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 5 core depleted as expected without any reactivity anomalies.
1 15 l
i
l NORTH ANNA UNIT 2 - CYCLE 5
)
C'RITICAL BORON CONCENTRATION VS. BURNUP HFP-9RO X MEASURED -
PRE 0!CTE0 1600 1600 i
l C R
1 1400 T I 1 I C
g L L
1200 5
\%
e g, '
R ' %.m. .
t 1000 '
C h 0 "g 800
~
N Q, R ' "#4-A I 600 g(
0 Y N 'h P 400
'P %
M '
200 '
0-l k
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP tMWO/MTU1 16
Section 4 POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an " uneven" burnup distribution.
Three-dimensional core power distributions are determined from movable f detector flux map measurements using the INCORE 5 computer program. A summary of the full core flux maps taken since the completion of startup
, physics testing for North Anna 2, Cycle 5 is given in Table 4.1. Power i
distribution maps were generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.
Figure 4.3 shows a map that was taken at the end of Cycle 5 life. The measured relative assembly powers were generally within 4.4% and the average percent dif ference was equal to 1.3%. In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.
An important aspect of core power distribution follow is the monitoring of nuclear bot channel f actors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critic 11 heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cledding integrity. The Cycle 5 Technical Specifications limit on the axially dependent heat flux hot
, 17
i.
l
) channel factor, F q(Z), wa- 2.20 x K(2) prior to uprating, where K(Z) is the hot channel factor normalized operating envelope. After the uprating to 2893 MWth on August 27, 1986 the limit was changed to 2.15 x K(Z).
Figure 4.4 is a plot of the K(Z) curve associated with the 2.15 limit.
The axially dependent heat flux hot channel factors, Fq (Z), for a representative set of flux maps are given in Figures 4.5 through 4.7.
Throughout Cycle 5, the measured values of Fq (2) were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 5 is given in Figure
! 4.8. Figure 4.9 shows the maximum values for the heat flux hot channel i
factor measured during Cycle 5. As can be seen from the figure, there was an approximate 16% .aargin to the limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation.
'The value of the enthalpy rise hot channel factor, F-delta H, which is the. ratio of the integral of the power along the rod with the highest integrated power to that of the. average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the
' departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
Prior to the uprating, the enthalpy rise hot channel factor limit was 1.55(1+0.3(1-P)); after the uprating the limit was changed to 1.49(1+0.3(1-P)). The 4% measurement uncertainty is not applied to the measured F-delta-H for flux maps taken at the uprated conditions. A summary of the maximum value . for the enthalpy rise hot channel factor measured during Cycle 5 is given in Figure 4.10. As can be seen from this figure, the smallest tuargin to the limit was near the middle of the cycle and was equal to approximately 4.8%.
18
The Technical Specifications require that target delta flux
- values be determined periodically. The target delta flux is the delta flux which L
would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore,. the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon I redistribution are avoided, i
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.5% at the l
l beginning of Cycle 5. Near the middle of the cycle, delta flux values had shif ted to -4.5% and then moved to -3.9% near the end of the cycle. At the end of Cycle 5 delta flux values rose to +10.0% due to the coastdown.
This axial power shif t can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map N2-5-08 (Figure 4.12), taken at 250 MVD/MTU, the axial power distribution had a sine curve shape with a peaking f actor of 1.22. In Map N2-5-22 (Figure 4.13), taken at approximately 8,370 MWD /MTU, the axial power distribution had a shape peaked toward the bottom of the core with an axial peaking factor of 1.16. Finally, in Map N2-5-35 (Figure 4.14), taken at approximately 15,295 MWD /MTU, the axial peaking factor was 1.16, also peaked slightly towards the bottom of the core. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
Pt-Pb
- Delta Flux = ----- X 100 where Pt = power in top of core (MW(t))
2893 Pb = power in bottom of core (MV(t))
19
In conclusion, the North Anna 2, Cycle S core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the Fq(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.
l l
l 20
lIIlIIlI!111811111
_ MS OFIE 910023931 )
NOHL 444444344 Y.
TB L l1IlIIl!111111111i B L 768224370 M AFT) 692695247 E .
1FE% S )
XOS( 112223445 SS .
M A - - - - - - - - - AD E (
O R H l11lIll!11I ER O D C WWWWEEEEWI l l l l 1 I_
_ NNSNNNNNN _ R C -
3 O OL F R L __
iIli11111l111l_ CE E
_ T P
Q X A
796975554 000000000 000000000 FF O
- U
- F T
F H R O
F M RO O 4 1 111111 11 E N. 0 il1!ll 1I11111111lI TS P O
- 2) 515575876 NW O I 1 .
YX 299011122 EO T T N
_ XA M
533444444 CR E
A F O
(
F R O I 111 11111 1 EN H B T h i ' 111111111I HE Y A
.T l
) 90411 4780 TE l T R N ) Z 11 9876668 T)M A N B
_ O I
T A
Z
(
FX A llII1 F
( 22111 1111 1 11 1 1 11 1 1 11111111I SNRO IEER 8EN VNF C
R T O R C I
A L I
A R EM lT - SAG T E E R AN 077885677 H MN C C E P O I I 333334444 E N R
.E
_ I
_ E illillil11L l1111I G.T A LAR D T X 5 N ) EHIT N E I
M 894285285 (TMS E E /
E T ( 43450001 1 I I R M E
. L U TR H 444454444 SWSS O E R C O OO D
- N T C R O Y R HT - 1111111 11 OEAN X U C
- C C F I T I E S N R )A TANO / A 1
- O F
MF i !t_i
(
N I I t ll llHl NDiil MMHHJJJIJ l l I l I_
ANIP CI E
R E
I
. I M R 4 2 HL P _ ODDL . O O S DN LREA 3366778781111l_ 3 C A F illi11111 .
E T P H Y OTI 0 3 N L I A FC S 1 O0OO0000 YOAX 0 I E N B N M S LLJJKKJHJ LCNA 1 D E A U A B C 1 R U K T X iIIIIliIiiIlill1lI M I 1 X O L A A U )
E "Y S 6 X F C T N L T 381530295 S E 5 N N
A F (
Q 520888980 S" DO 0 5 N I S 888777778 AE T 0 E P E R - HEN 1 K 3 A H R 1TO F 111 11 11 11 GTTI 1 A 1 M T O OT lIii1!1111111I N A F T R C HC lT I YND O F P E O N A AN VBIE O S A R N I )F iI 059006677 I DD Y P MO T XO 332334444 CDRI T Y A C F (L AP EOV N T . M , -
O E YTOI I N O G R QN iNDII l IHHl BOCD A E Y
R
- N FA III.IN I
MMHII JJJI _
i l il llI HI_ N DE S R T
I A
T I
T R A O D R N
I E
T A H P _ . _ E D "X I E R R C U A M C IllI1111l1111l. I{ C E - L U M Y 336660007 F E N C T R C Q U S tOOO01 1 1 0 l NER U N L E N S S LLJGCLLLH : OHO U I T I E A ITC L T R R i1llI1IIilIii!iiiI F'T A L A D E S SADE T A R U N W K P 888888888 CNH O T E Q A NDE 222222222 EOAT T OW 8 A T 222222222 RL T O E , 1 B S A RN A ' R O 1!111111 N O A E T D iiIlll I_8 R)
W%
P(
iIlI1ll_i111111l11l_
0000600001 I_
. 000090000 _
1 1 11 1 1 1 1 SI HI NPGT O UC D S
E S N E
T A 0 O W
R N
A I EOE U D R 1 I ,
N / 004555580 THRR L U D R 7 RPDU 581505793 ATHI C L A D P 1 UUWT 234438015 C TD N C U N B MM 12344677 OY I N Q A S ,
I P 6 illlll1I111111111! L B A "Z ) - 9 A 1 666666666 TDD T ) M E
888888888 O E E" ( Y R S S
- - - - - - - - - PWRE Q X T P L P T 1 1 9869020 SOEH - ( P A L A A 22112 1 1 2 LTT F F Q M A M D - - - - - - - - - TLT 45678901 1 OOEN 1 1 1 HFLI ) ) ) ) ) )
Ill1lii11I1IIIl11i
) ) )
1 2 3 4 5 6 P 4 5 6 : ( ( ( ( ( (
- AO. S MN ( ( ( E 812345901 T 11 1 11 122 O IllIIIIll11111(11I N
, 0*
l 1 1)Illl' lill j ]ll1ll !1 i i ; : !1 lI! ii 4
~
l1{tIilIliII1III!
oFiE NOHL nS TS 9709108500 3454454444
. illlII!1441111111 l 5926575316 _~
AFT) 5685941979
- FE%
I X0S( 4444445350 A - - - - - - - - 1 C WEWWWWWWWE 2 i1l1lI_IIIIIIIIIl1_
R O NSSSkSSSSN L
T lIll11111l11ll N n Q
P X
4125444542 0000000000 O
I m
A M
0000000000 N A
. T .
=.
1111111111 O R -
il!X1I11111111111
)
I B 8055843940 T l YX 2210876566 A l XA 4444333333 R A (M B C f 1111111111 l ilIi]I11111111111 l R
) 1906167677 A O n
)
Z
(
Z f
(
6565657598 1111111112 C T R E C .ess FX A llI1111111111l 1111111111 O T T E a
EM R
lT AN 7888333311 C D E
m.
O 4444555511 T E II C XO E R
- AP D O lIllll1111111111l
)
C E X :
M 3710600656 R E
( 1009765434 O /
_ TR H 4443333333 C E
. OO D X R F- _
HT 1111111111 E O .
_ ) C _ / C
. )A E N ,L T
N O
(M f.
HL i INP l._I I
_lHHiI i l l!il! lliel l l _! l_
IJJJJJJJL R
O C R I
C ON ill1111!11111l N O m'
( - H Y 7788888889 I F FC S 00000000J0 1 S HHJJJJJJJD R N A O E 4 iIlilIIlll1tll1II F K
) A -
E T 8920400744 N T L ( 7665423958 E B Q 7777777678 K S A R - A P T fO f 1111111111 T A oT liI11111111111 M HC lT S A AN P E
)F 8I 7882333311 A R T XO 4445555511 MO (L AP C E E -
QN lIIfi1lllllll1 R R
- N HHHil li iFE O E IN TA H
C P
1lI1111111111l I II JJJJJKL
_ C T R A R
Y 7778888899 E U S 0000000000 T Q S ,
HHHJJJJJD0 R A A E i11I(IiiiI!l1111I U R S Q E K P 88888S8888 W NDE 22222:2222 E A T 2222222222 R 4 8 S E 3 R) 0000000004 W H W%
i1flII_1111111111I_
P(
I1I3Il1111111111l 0000000086 11111111 7
2 U G
O N / 0526410510 D R RPDU 7816976948 N H UUWT 3586767242 A T B MM 8901234567 11111 111 6 1 .
liIIII1111111111I 2 3 6777777777 8888888888 S S E - - - - - - - - - - P P T 2215342576 A A A 111 22111 MM D - - - - - - - - - -
2123445678 1 ) )
liI1II1111lI1l1l1
) )
7 8 P . 7 8 ( (
Ao MN ( (
2345890567 2222223333 -
liiliI11111111111
~
l I:
1 1
n Figure 4.1 NORTH ANNA UNIT 2 - CYCLE 5
. ASSEMBLYWISE POWER DISTRIBUTION N2-5-08 t 4 P N H L M J H 0 f E D C 8 A l
l**hkkbibiib. l'bI$$'l'bl5b"$'bl$k'. $'**PkEbibikb'.
. MCASURED . . 0.34 . 0.40 . 0.34 . . MEASURED . 1
.PC1 DIFFERENCE. .05. 0.5 . 0.9 . .PC7 DIFFERENCE.
.g....
. 0.39 . 0.65 . 1.09 . 0.92 . 1.10 . 0.65 . 0.38 . 2
. 4.8 . 0.3 -0.5 . -0.5 . -0 1 . 1.4 2.7 .
0.40 . 1.09 . 1.15 . 1.17 . 1.25 . 1.17 . 1.15 . 1.09 . 0.40 .
. 0.41 . 1.11 . 1.14 . 1.16 . 1.24 . 1.17 . 1.16 . 1.11 . 0.42 . 3
. 1.8 . 1.5 . -0.7 . 0.5 . -0.7 . -0.3 . 0.5 . 1.8 . 4.1 .
. 0.40 0.78 . 1.13 . 1.20 . 1.26 . 1.19 . 1.26 . 1.20 . 1.13 . 0.78 . 0.40 . 4
. 0.41 . 0.19 . 1.14 . 1.20 1.26 . 1.19 . 1.25 . 1.21 . 1.14 . 0.79 . 0.41 .
. 2.3 . 0.7 . 0.7 . -0.3 . -0.2 . -0.2 . -0.7 0.2 . 0.6 . 1.0 . 1.3 .
l ............................................................................................
. 0.37 1.09 . 1.13 . 1.16 . 1.27 . 1.21 1.16 . 1.21 . 1.27 . 1.16 . 1.13 . 1.09 . 0.37 .
. 0.37 . 1.09 . 1.12 . 1.15 . 1.27 1.23 . 1.17 . 1.22 . 1.27 . 1.15 . 1.12 1.09 . 0.38 . 5
. -0.0 . -0.0 . -0.7 . -0.9 . -0.4 0.9 . 0.9 . 03. 0.0 . 0.4 . -0.7 . -0.0 . 2.0 .
. G.64 . 1.15 . 1.21 . 1.27 1.23 . 1.27 1.19 . 1.27 . 1.23 . 1.27 , 1.21 . 1.15 . 0.64 .
. 0.65 . 1.16 . 1.21 . 1.27 1.23 . 1,29 . 1.20 . 1.28 , 1.23 . 1.26 . 1.19 . 1.14 . 0.64 . 6
. 0. 4 . 0.4 . -0.0 . -0.5 . 0.4 . 1.3 . 1.3 . 0.4 . 0.2 0.8 . -1.0 . -0.9 . 0.1 .
- b'5b'**
. 0.35 . 1.11iib.'ilii'l'ilh5'*i.hh'.5$ki'.*'ihiilhb'.5lhi".*iIhi'.l5l2h'.'$h6
. 1.17 . 1.27 . 1.22 . 1.28 . 1.22 . 1.22 . 1.20 . 1.26 1.20 . 1.24 **I$ii'l*i 1.16 . 1.09ib 'bl5b'.
. 0.34 . 7
. 4.2 . 1.3 . -0.1 . 0.2 . 0.5 . 0.8 . -1.4 . 1.4 . *0.0 . -0.7 . -1.1 . -2.0 . -1.1 . -0.9 . -0.2 .
l'6l4b'l'6l41'l'ilii'l'ili4'l'ili&*
. 0.41 0.94 . 1.25 . 1.20 . 1.17 l'ili6'l'ilib'l'ili4'$
1.21 . 1.22 . 1.25 . 1.19 . 1.18 . 1.14
'ilib'l'ili4'l'ili4'l ilii'$'ilii'l'6l6i' 1.17 . 1.24
- 6l46'l 0.92 . 0.40 . 8
. 4.2 . 1.3 -0.2 . 0.7 . 1.6 . 1.6 . 1.5 . 0.8 . -1.0 . -1.0 . - 1. 7 . -2. 0 . -1.1 . -0.2 . 0.4 .
. 0.34 . 1.10 . 1.17 . 1.26 . 1.22 . 1.27 . 1.21 . 1.20 . 1.21 . 1.27 . 1.22 . 1.26 1.17 . 1.10 . 0.34 .
9
. 0.35 . 1.10 , 1.16 . 1.27 , 1.23 . 1.28 . 1.20 . 1.20 . 1.19 . 1.26 . 1.20 , 1.25 . l.17 . 1.10 . 0.34 .
. 4.2 . 0.7 . *1.1 . 0.2 . 1.6 . 0. 8 . -0. 7 -0.3 . -1.0 . -1.1 . -1.2 -1.2 . 0.1 . 0.6 . 1.4 .
. 0.64 . 1.15 . 1,21 . 1.27 . 1.23 . 1.27 .
1.19 . 1.27 , 1.23 . 1.27 1.21 . 1.15 . 0.64 .
. 0.64 . 1.14 1.21 . 1.29 . 1.24 . 1.27 . 1.19 . 1.26 . 1.21 . 1.25 . 1.20 . 1.16 . 0.65 . 10
. al.2 . 1.2 . 0.4 . 1.3 . 0.6 . -0.4 . -0.2 . -1.2 . -1.5 . -1.5 . 0.4 0.5 . 1.4 .
0.37 . 1.09 . 1.13 . 1.16 . 1.27 , 1.21 . 1.16 . 1.21 . 1.27 . 1.16 . 1.13 . 1.09 . 0.37 .
. 0.38 . 1.10 . 1.14 . 1.17 . 1.27 . 1.21 . 1.15 . 1.20 . 1.25 . 1.15 . 1.15 . 1.11 . 0.39 . 11 1.0 . 1.0 . 1.0 . 1.1 . *0.2 . -0.6 . -0.6 . -1.4 -1.9 . -0.9 . 1.5 . 2.2 4.2 .
- '.'b$b'.'0.80bli8' O.42 1.14 *i 1.20
. 55'l'i$hb . 1.25 .'i$h6'I*i.'.i9'l'iIh6' 1 18 . 1.24 . 1.18 1,3 . -2.1
. *5lhb'.'i'.I$'l'bli5 1 11 . 0.80 . 0.42 . l'b'.bb'$ **'
-2,2 . -1.5 12
. 3.3 . 2.2 . 1.1 . -0.1 . -1.3 . . 2.2 . 4.0 .
. 0.40 . 1.09 . 1.15 . 1.17 . 1.25 . 1.17 . 1.15 . 1.09 . 0.40 .
. 0.41 . l.12 . 1.16 . 1.l5 . 1.23 1.14 . 1.13 . 1.08 . 0.42 13 3.0 . 2.7 . 0.8 . -2.0 . -1.7 . -2.2 . -2.1 . -1.4 . 3.6 .
. 0.37 . 0.64 . 1.10 . 0.93 . 1.10 . 0.64 . 0.37 .
. 0.38 . 0.67 . 1.11 . 0.93 . 1.07 . 0.63 . 0.36 . 14
. 2.7 . 3.6 . l.0 . 0.2 . -2.1 . 1.9 . 2.9 .
....ggygg;gg.... ...............g.gg...g.gg...g.gg................ .. ..;gggggg....
. DEVIA110N . . 0.35 . 0.40 . 0.34 .PC7 OlFFERL.1CE.
. =1.039 . . 4.5 . 1.9 . -1.0 . .
= 1.2 .
SUMMARY
HAP NO: H2-5-08 DATE: 4/21/86 POWER: 100%
CONTROL R00 POSITIONS: F=Q(7) = 1.853 QPTR:
0 BANK AT 228 STEPS F-DH(H) = 1.448 NW 1.007 NE 0.999 F(Z) = 1.219 SW 1.003 SE 0.991 F( XY) = 1.525 BURNUP = 250 MWD /MTU A.O = -1.67(%)
1 23 I
i l-(
Figure 4.2 NORTH ANNA UNIT 2 - CYCLE 5 f
ASSEMBLYWISE POWER DISTRIBUTION N2-5-22 R P N M L ll J H 0 F E D C 0 A
. 'kkkhibikb blhk b.'$bbl$b. . Pikbibikb' [
. MEASUPE0 . 0.35 . 0.41 0.35 . . MEASURE 0 . 1
. PCT OlffEP(NCE. 2.5 2.5 2.4 . . PCT DIFFERENCE.
33.
O 40 .g.0.65
- . . ;. 1.01 g; . .. 634' ' ' i'. 6i' b'.44'6'ir 0.86 . 1 01 0 65 . 0.40 . 2 4.2 . 2.5 . 0.6 , 0.5 . 0.5 . 2.3 2.3 .
"bl41 i:64-l i:i;" ;lib-l i:i; $lib . ;:;e : 5lba . 6:4i .
l . c'?.'4.'!l'i'i: '6?? '6's 'b.'i : 'i"? 'i i : i'.1 l
. b:4rl b$ar.';:ir: ;lir. i$ir. i:ir ilir. ;:ir.'ili6" b:ar. b:4r.
0.45 . 0.83 1.22 1.18 8.30 1.13 t.28 1.18 , 1.19 . 0.81 0.43 . 4 l . 4.0 . 2. I 2.0 0.9 . 0.2 0.1 . 1.2 0.7 . 0.9 . -1.0 . 0.8 .
}
'bl $E l'ilb5'$ 'i[ib' 'i if.
- il5k'. ' k it'. 'ilibilitil5E.* 5 $ $$* 'i ib'l i$b5 l'b$ 5E l
. 0.39 . 1.05 1.18 . 1.13 . 1.33 . 1.88 f.11 1.18 1.35 . 1.14 1.18 , 1.06 . 0.40 . 5
. 0.1 . 0.2 -l.4. -1.4 . -0.8 0.6 . 0.6 . 0.7 . 0.7 . 0.9 . -l.1 . 0.8 . 4.3 .
. 0.63 1.18 . 1.17 1.34 1.20 . l.35 1.17 1.35 . 1.20 . 1.34 . 1.87 . 1.18 . 0.63 .
l 1.21 6 i
. 0.64 1.18 . 1.16 . 1.12 . 1.20 1.35 . 1.18 1.35 . 1.32 . 1.16 . 1.88 . 0.65 .
. 0.7 . 0.7 . 0.8 . -t.6 . 0.6 0.4 . 0. 5 . 0.6 . 0.7 . -0.9 . ~1.0 . 0.2 . 1.7 .
l
. 0.34 . 1.01 l.10 . 1.30 . 1.17 . 1.35 1.22 1.35 f.22 . 1.35 . 1.17 . 1.30 . 1.10 . 1.0% . 0.34
. 0.34 f.00 1.09 . l.28 1.16 1.34 1.22 . 1.30 . 1.22 1.35 . 1.17 1.26 . 1.09 . 1.00 . 0.34 . 7 0.7 . 0.6 . *0.5 . ~0.9 . 1.2 . -0.7 . 0.4 . 0.5 0.3 0.2 . -0.3 +2.9 . -0.2 -0.1 1.2 .
I l
'bIkb' $ 'b556 I *i$iU * ' t[ik'. 'iI$b* $ 'il 5i','il$U I'ili5". '1l 55ilii'l $. ib' 'iI5 E l 5IiE I'b $$' 'b bb
. 0.39 . 0.65 1.24 1.13 . 1.11 . 1.18 . 't.36 . 1.29 1.35 1.16 . 1.09 . 1.10 1.24 . 0.87 0.41 . 8
-2.0 . -0.T 0.7 . -0.1 0.5 . 0.5 . 0.4 . 0.5 -0.6 . 0 6 -1.7 . -2.9 -0.3 . 1.0 . 2.2 .
'b 3k' 'i',bi' 'ilib" 'i$5b'.*il$f'l*il$El'ilik' ll 5E $
- 5[5i'. 'i*.55 .'i ik' 'i$ $b'
- i ib'l'i.bib $E *
, 0.33 . 0.98 . 1.07 1.27 1.18 . 1.34 . 1.20 , 1.35 . 1.21 1.33 1.16 l.28 . 1.10 . 1.02 . 0.35 . 9
- 2.4 . -2.2 . 2,2 -0.6 0.5 . -0.2 . -1,6 0.6 -1.0 . -1.2 . -0.9 . 1.0 0.4 . 1.6 . 3.8 0.63 . 1.18 . 1.17 1.34 . 1.20 1.35 . 1.11 . 1.35 . 1.20 , 1.34 . 1.17 1.18 . 0.63 .
. 0.62 1.15 1.17 1.35 1.20 . 1.33 . 1.16 , 1.33 1.19 . 1.32 . 1.18 1.19 0.66 . 10
. 2.4 . 2.4 0.2 0.9 . 0.1 1.0 . 0.5 1.0 1.5 1.1 . 0.8 0.8 . 4.1 .
. 0.39 1.05 1.20 . t.15 . 1.34 , t.17 . 1.10 1.17 . l.34 . 1.15 . 4.20 1.05 . 0.39 .
. 0.39 1.0T 1.21 . 1.16 1.32 1.15 . 1.09 . 1.17 . 1.33 . 1.16 . 1.24 . 1.09 . 0.42 . 11 1.2 . 1.2 . 1.2 . 1.2 . *0.9 . -f.5 -1.4 . -0.2 . -0.2 1.1 . 3.1 . 3.3 . 7.2 .
'b$h5blbi'.*iIib'*ilki;[$bi'ii'*5$$b'.'$lli'['ilib'.*b[5hl'b$brl''
. 0.45 0.84 1.21 . 1.16 1.27 , 1.11
. 1.27 . 1.14 1.19 0.85 . 0.45 . 12 4.8 . 3.1 . 1.2 -0.7 . -1.9 -1.9 . -1.9 . -2.7 . -0.5 . 4.1 4. 6 .
. b.'d$'
. 0.45 i3 t.10U..'5li8'.
1.19 il5b'l'i.ifi$kb'.'1.16ilib***5lb5b$di'l'***
1.07 1.22 . 1.08 4.05 . 0.45 . 13 4.5 . 4.3 . 0.8 . -2.7 . -1.8 . -1.7 . -1.3 . -0.7 4.3 .
'bl 5E $'bl$U i[bi','b.'bd . ' $ $b5 ' 'bldE' ."bl$E ' ' .
0.40 . 0.66 . 0.98 0.85 . 0.99 . 0.65 0.38 . 14
- 4. 3 . 4.3 . 2.9 -1.3 -1.6 . -1.2 . -2.7
'sti46i46' ' '0l36'l'6l46'l'6l36' l 'iMkiM,
DEVIATION . 0.35 0.40 0.34 . PCT DlTFERENCE.
. *1.301 . 4.3 0.4 0.4 = 1.5 .
SUMMARY
MAP NO: N2-5-22 DATE3 12/12/86 POWER: 100%
CONTROL ROD POSITIONS: F-Q(T) = 1.778 QPTR:
D BANK AT 228 STEPS F-DH(M) r 1.413 NW 1.004 i NE 0.999
...........l..........
F(Z) = 1.161 SW 0.999 i SE 0.998
( f(XY) = 1.428 BURNUP = 8370 MWD /MTU A.0 = 4.55(%)
24 l
l
Figure 4.3 l NORTH ANNA UNIT 2 - CYCLE 5 V
. ASSEMBLYWISE POWER DISTRIBUTION N2-5-35 A P N M L M J H 0 F C E D 8 A
. PREDIC7ED . . 0.39 . 0.46 . 0.39 . . PREDIC7ED .
. MEASURED .
. 0.39 . 0.47 . 0.39 . . MEASURED ,
. PCT OlFFERENCE. . 1.9 , 1.9 . 1.9 . . PCT OlFFERENCE.
1
...g.g.... ... . ... .
... .g .. ................
. 0.45 . 0.69 . 1.04 . 0.90 . 1.03 . 0.68 . 0.45 .
S.S . 1.1 . 0.3 . 2 0.2 . *0.5 . 0.3 . S.1 .
.: 0.%8
'6:4i' .:1.08 ' i :.61.19
) * :. ' l.09 i :i6':, 1.25
' i : 64 * : '. i 1.20
. 1.08 :i6 *, :1.10
' i :64
. 0.50' : ' .i :i6' : ' i :6i' :
- 6 : 4i' :
. 1.9 . 1.3 . -0.3 . -0.2 . 0.4 . *0.8 . 0.3 . 2. 7 . S.1 . 3
. 0.47 . 0.85 . 1.22 . 1.15 . 1.28 . 1.11 1.28 . 1.15 . 1.22 . 0.85 . 0.47 .
- i'!: 6??:'6*!:'6.'!: 26!! !a?! . 26?8 : '6?!:'i!O i!! i!! - -
l 0.43 . 1.07 . 1.22 . 1.12 1.30 . 1.13 . 1.07 . 1.13 . 1.30 . 1.12 . 1.22 . 1.07 . 0.43
. 0.43 . 1.06 . 1.20 . 1.11 . 1 28 . 1.13 . 1.08 , 1.13 . 1.30 . 1.12 1.21 1.08 . 0.45 .
. *0.7 . ~0.7 . *1.2 . -1.3 . -1.4 . 0.2 . 0.2 -0.0 . 0.0 . -0.4 . -0.7 .
1.2 . 4.4 0,48 . 1.20 1.15 . 1.30 1.15 . 1,29 . 1.12 1.29 , 1.15 . 1.30 . 1.15 . 1.20 . 0.68 .
. 0,68 . 1.20 , 1.14 1.29 . 1.14 . 1.30 . 1.12 1.29 . 1.15 . 1.29 . 1.13 . 1.19 . 0.69 6 I . 0.2 . 0.2 . -0.6 . -1.0 . -0.5 . 0.3 . 0.3 . -0.1 . -0.1 . -1.1 . 1.2 . -0.3 . 1.0
. 0.39 . 1,03 . 1.09 1.28 . 1.13 . 1.29 . 1.15 . 1.31 .
1.15 . 1.29 . 1.13 . 1.28 . 1.09 . 1.03 . 0.39 .
. U.40 . 1.04 . 1.09 1.27 . 1.10 1.28 . 3.16 . 1.31 1.15 . 1.29 . 1.11 . 1.25 . 1.08 . 1.02 . 0.39 .
. 3.6 0.6 . *0.8 . -1.2 . -2.0 . =0.8 . 0.3 . 0.3 . -0.2 . =0.4 . -1.3 . 2.3 . -1.4 . -1.1 -0.2 . 7
. 0.46 . 0.90 . 1.26 1.11 . 1.07 1.12 . 1.31 . 1.21 . 1.31 . 1.12 . 1.07 1.11 . 1.26 . 0,90 ......... 0.46
. 0.48 . 0.90 , 1.25 . 1.10 . 1.07 . 1.12 . 1.31 . 1.21
. 3.6 . 0.7 . -0.9 . *0.7 . -0.3 . 0.1 . 0.4 . 0.4 . 0.0 . ?.12 1.3' . . 1.06 . 1.08
-0.0 . -1.$ . 2.6 . -1.4 . 1.24 . 0.90 . 0.47 . 8
. 0.39 . 1.03 . 1.09 .. 1.28 . 1.13 . 1.29 1.15 . 1.31 1.15 . 1,29 . 1.13 . 1.28 . 1.09 . 1.03 . 0.39 .
0.2 1.3 .
. 0.40 . 1.03 . 1.07 3.6 . 0.0 . 1.8 . -1.2 1.26 . 1.12 . 1.29 . 1.14 . 1.31 1.15 . 1,29 . 1.12 1.24 . 1.10 1.05 . 0.40 .
9
. -0.3 -0.6 . =1.0 . -0.1 0.1 . -0.0 . *0.7 . -2.8 . 0.8 1.8 . 3.3 .
, 0.68 . 1.20
. 0.67 , 1.18 1.15 . 1.30 . 1.15 . 1.29 . 1.12 1.29 , 1.15 . 1.30 . 1.15 . 1.20 ................ 0.68 .
1.14 . 1.31 . 1.15 . 1.28 . 1.12 1.29 . 1.15 . 1.30 . 1.16 . 1.24 . 0.70 . 10
. *1.6 .. -1.6 . -0.1 . 0.6 . 0.1 . -0.7 . -0.3 . 0.6 . -0.1 . -0.4 1.2 . 3.6 . 3.8 .
- 6 55* *iI6i**'I.*i2 *i.'iE***i 56* *l.*ii* *I!6t***i.ii'**I'56* *i 52 .* *i!52 *~.'I bi*.*'6 55**
. 0.44 . 1.08 , 1.23 . 1.14 . 1.29 . 1.11 . 1.06 . 1.11 .
1.29 . 1.13 . 1.25 . 1.11 . 0.45 .
. 1.7 . 1.7 , 1.6 . 1.5 . 0.6 . -1.3 . -1.2 . =1.3 . -0.6 .
11 0.3 . 2.9 . 3.8 . 4. 7 .
.................................................................s....................
0.47 . 0.85 . 1.22 1.15 1.28 . 1.11 . 1.28 . 1.15 , 1.22 . 0.85 . 0.47
. 0.50 0.88 . 1.23 . 1.14 . 1.25 . 1.09 , 1.25 . 1.13 . 1.21 . 0.88 . 0.49 . 12
. 4.9 . 3.3 . 1.5 . -0.5 . 2.1* . -2.0 . -2.1 . -1.1 . -0.3 . 2. 9 . 4.0 .
- **"*. *6 0.50di* . 1.11'I 6)* *i 56'.'i
. 1.21 1.0669 ' i .* k6***I
. 1.23 1.07 , 1.18 69 .*$1.06$b*.*i.*6t*
. 0.49 . '6 kf* ******* 13
. 4.5 . 4.1 . 0.9 . -2.8 . -2.2 . -2.2 . -1.7 . =0.4 . 3.8 .
. 0.43 . 0.68 . 1.03 . 0.90 1.03 . 0.68 . 0.43 .
. L 45 . 0.71 . 1.04 . 0.90 1.01 . 0.67 . 0.42 . 14
. 4.1 . 4.5 . 0.9 . 0.1 . -2.1 . -1.6 . -2.4 .
STANDARD DEVIATION
. 0.39 . 0.46 . 0.39 . AVE RA0E
- 1.333 . 0.40 . 0.47 . 0.38 . .
. PCT DIFFERENCE.
. . 4.8 . 2.1 . -0 8 . . = 1.4 ,
SUMMARY
MAP NO: N2-5-35 DATE: 06/15/87 POWER: 100%
CONTROL ROD POSITIONS: F-Q(T) = 1.697 QPTR:
D BANK AT 228 STEPS F-DN(M) = 1. 346 NW 0.997 NE 0.998 F(Z) = 1.156 s' I IIbb5 "sEIIbbb F( XY) = 1.359 BURNUP = 15295 MWD /MTU A.0 = -3.93(%)
25
1 Figure 4.4 NORTH ANNA UNIT 2 - CYCLE 5 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE 1.2 I
l l
( (6.00, 1.00) 1.0 ^ (10.96, 0.93)~ -
l lM a
--g 04 8 1 \
. N 0
R H
A 0.6 L
1 Z
E D )
(12.00, 0.46)
F O c.4 m
Z 0.2 .
0.0 -
0 2 4 6 8 10 12 CORE HEIGHT tFT)
BOTTOM TOP 26
I Figure 4.5 l NORTH ANNA UNIT 2 - CYCLE 5 HEAT FLUX HOT CHANNEL FACTOR, F (Z)
- N 2-5-08 i
2.S .*
2.0 +
m .
m o N .
v . X bO
- XXXXXXX XX XXXX 4
- XXX XXXX V
- XX X XX g
- X X XX X
- X X X 1.S
- X X
)
= XXX X X
- X 4 X 4 *
. X X g a X Gs.1 X
-f
- X
. X
- X X 1.0
- x U - X l .
$ X 33
- X
=X i . e I
- X XX 4 0.S s
- C M :
0.0 +
BOTTOM OF CORE TOP Of CCRE AXIAL POSITION (N0 DES) l I
l 27
l l
l ,
Figure 4.6 NORTH ANNA UNIT 2 - CYCLE 5 l HEAT FLUX HOT CHANNEL FACTOR, F (Z)
N2-5-22 2.5
- 2.0 +
m -
m a b x xx XXX XX eg v
x xx x, x x x
xxxx x x xxxx xx X
xxxxx X XXX x X X XX
, x M x g 1.5 .*
x x b X X XX x
la i.0 j x x x 8 : x
- I* -
m 0.5 .+
e E :
l-l 0.0 +
80fics4 0F COAC
..;,....;,....;,....;,. ..;,....;,....;,....;,....;,....jo....j;,. ;j l
l l
AXIAL POSITION (N0 DES) 28
l~
Figure 4.7 l, NORTH ANNA UNIT 2 - CYCLE 5 HEAT FLUX HOT CHANNEL FACTOR, F[(Z)
N2-5-35 l
i 2.5l m 2.0 +
^ -
N
- v .
4 w . XXX e X XXXX N . X X XX
. X X X XXXXX XXXX XXXXX XXXXX 1, , e X X X XX X X X X
.X x x x x x X 4 . X X XX u : x d : *
@ : X x a i.0 +
b lI
- X s -
I d
x l
1 0.5 .+
b< .
m .
=: .
0.0 +
BOTTOM Of CORE TOP OF CORE AXIAL POSITION (NODES) 1 i
29
, .: t, Figure 4.8 NORTH ANNA UNIT 2 - CYCLE 5 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F0 s P VS AX1AL POSITION r
F0 m P LIMIT
)
e MRXIMUM FC = P '
2.4 2.2 .
l ;.'
~ ", h, '
2.0 I ._..
I8 ..... .
. ..- **.. t l
... 4_ .m .. m 4
( _
1'6 t
\
1.4 * \
F . ** k 0 -
g ,
P i.2
.p .
1.0 }
u M
0.8 ' .
0.6 z) q 0.4 -
> f 0.2
,)
0.0 ..... .....
61 55 50 45 40 35 30 25 20 15 10 5 1 AXIAL POSITION (NODE)
I BOTTOM OF CORE TOP OF CORE 30
3,, '
45,
(
H..
Ji
/
ll f-1 Figure 4.9
/
I r NORTH ANNA UNIT 2 - CYCLE 5 .
1 /, .Y ,
g MAX 1 MUM HEAT FLUX H0I4.HANNEL FACTOR, F-0 VS BURNUP t'
t TECH SPEC LIMIT l X MEASURED VALUE 2.4 l 2.3 I >
t g , is
! A 2.2 - =e '
X l '._. "
M s
.ol.
2.r s ,- 1 1 ' ,%
H/ t
./U w
'<' E A 2 . 0, h
g ,
/
f L ,1 J9 -
s i
.> x <
,' ?: .. ~
U x '
X , . y.
Y I '8 "
x H
0 xx s ,X x X x ,\
' ~
T' ^ -
x C
l '7 ^
H i.
N N 1.6 E
L M' F 1.5 A
C T '
0 I4 ,
"' A f -
R <..
.Is i, i
1.3 -
' 1,j -).v
- 1. 2 - 24 l , -1~ .
r- ..
)3 , 0 2000 4000 6000 6000 10000 12000 14000 16000 18000 s CYCLE B'b8NUP (MWO/NTU) 31 E
s) 1
~
! 'f. ' ._j .;
. Figure 4.10 l .
NORTH.RNNA UNIT 2 - CYCLE 5 - l 4
ENTHALPY' RISE HOT CHANNEL FRCTOR, F-OHlN)'VS. BURNUP 4
);
- TECH SPEC LIMIT X MERSURED'..YALUE 1
-Q l . 6 0.' l
'l
- 3. i 1 55 -
[
.]
j 1
-E N 1.50
\
T ;!
H j A- !
l L v 1
l- P.l.45 ^
x \
Y X
{
R- xx x 3 l'.40
- <
- v
'E x v
H j 1.35 x x x x -1 C
H' N
R 1.30 N 1 E j L !
l'2S
.F ,
A C
T 0 1.20 R-1 15 1:
1 .
I 1.10- I j
L 0 2000 4000 G000 8000 10000 12000 14000 16000 le' CYCLE BURNUP (MHD/MTU) 32 j
_1
t ) ,
a- i L
e l L. - Figure 4.11 L
NORTH RNNA UNIT 2:- CYCLE 5 TARGET DELTA. FLUX VS. BURNUP
- s. 1
^
10 r I
-i 8
L i .
L 6 a
'T A- 3 R:
o- 4- '
E-T 0- {
E.;
2' L
-T: '
R.
F-0 !
L. ,,
V X
^
i q -2 A A A P -
~ 1 i
E R
^ f
^
C -4' i E a a O a a !
N- a -
3
~ a
^ l
-6 i
f
_e .
i i !
0 2000 4000 6000 8000 10000 12000 14000 16000 16000 ,
CYCLE BURNUP (HWD/MTU) 33 !
~
1, j'I'[ ' '
',-l < f . ,4 ..
.l St -
1 r.
Figure 4.12 NORTH ANNA UNIT 2 '-- CYCLE '5.
j CORE' AVERAGE AXIAL' POWER DISTRIBUTION N 2-5-08 r-l i
1 i.5 + Fg = 1.219-
-[. AXIAL OFFSET = -1.67
. t
.- B
= XX XXX 1,2 +- - . XXX X X XXX
- XXX -
X XXX ;
- XX X XX
'= X X XX X
= X X X '
XXX 7 g
x
- XX X X 3
= X X X
-- x- 4 0.9 + X
, ' A' .=' X l
- g. .:
- X- x -j s
s XX a .
-x. ,
, X !
.. .X t O 0.6 + X
~4 ' .
- m .
- 7
- x x s n .
n .
-. N-
.X X X x !
ke .
0.s +
- J
. {
0.0 +
00TTOM 0F CORE TOP OF C0At j AXIAL POSITION (NODES) i i
34
, -s l
1 H
u I
1
. 1
. Figure 4.13 )
.i NORTH ANNA UNIT 4 2 - CYCLE 5 0 CORE AVERAGE ' AXIAL POWER DISTRIBUTION ;
N 2-5-22.. .!
1- y .
- 1. 5 + -
. . Fz.= 1.'161 .
3
. i AXIAL OFFSET = -4.55 :]
. r
- 1 l
1.2 .+'
XXX. ,
. 'X XX' XX 1 XXXX XXX
. XX- X
. x X X -X XXX 'XXXXX i
.. 'x X X X XX ?
4 X X X X X XX .!
. X X X
. x .
. x x <
, m 0.9 + X
- a. .
. :X i
to
~ .
xx
.. x x
- o. . .
.6 0.6 ..+x- ,
, . x ;
a so .
- X N .*
w- : i
. .i 0.3 + .)
\
0.0 +
Boff 0M 0F Corg TOP OF CORC 1
AXIAL POSITION (NODES) 1 35 i
=.,,., , , ,
- ., -q
'l y .
l Figure 4.14 '
NORTH ANNA- UNIT 2 - CYCLE 5-
~
CORE- AVERAGE.' AXI AL' POWER DISTRIBUTION
.l .
N2-5-35
(> i j
1.S .+.
FZ = 1.156 ..:i
- AXIAL OFFSET = -3.93 ~.
. 3
. 1 e
- 1. 2 + :
.. 'x.
- XX X XXX
- X. XX
- X X X 1,
- X X- X. X XXXX X X X 38 XXXX XXXX '
- X X XX X X X XX I
- X X
- X X X i
- X X X X !
n' O.9 +- xx {
- g. :.
X w a g- .;' x
.X
- X X +
o .-
l Z i
- v. 0.6 .+ _j
- g. .
~g ,
X n . +
w . i 0.3 + .
l 0.0 +
80ff0M OF CORE TOP OF CORE !
AXIAL POSITION (N0 DES) i 36 l
Figure 4.15 '
NORTH ANNR UNIT 2 - CYCLE 5
)
CORE-AVERAGE RX1RL PEAKING FRCTOR, F-Z VS. BURNUP i
1,4 f
i i
1.3 i
A X'
I A
L i l
P E a A A K !
l 1. 2 a a !
N O ^ ^ ^
^ s a 0 6 o 4
h a a a a a C '
T 0-R ,
l i.i l l,
}
- \
l 1.0 - i i -
i ;
O 2000 4000 6000 8000 10000 12000 14000 16000 i I CYCLE BURNUP (MWO/MTU) i 37 i
t j
.j
'1 J
j
~ Section' 5 -
1 1
PRIMARY , COOLANT ACTIVITY FOLLOW
- ., 'l
- j. -l V .
i
~
Activity levels of iodine-131 and 133 . in. . the ' primary coolant. are important in- core performance follow analysis because they are used as t
indicators of- defective - fuel. Additionally, they are . Important with respect to the offsjte dose ' calculation values associated with accident 1
analyses. Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding. As indicated' in the North Anna 2
- Technical Specifications, the dose equivalent I-131 concentration in the primary- coolant -was limited to 1.0 pCi/gm for normal steady state l operation. Figure 5.1 shows the dose equivalent I-131 activity level
= history for.the North Anna 2, Cycle 5 core. The demineralized flow rate j averaged 83.9 gpm during power operation. The data shows that during Cycle 5, the core operated substantially below the 1.0 pCi/gm limit during steady state operation. Specifically, the average dose equivalent I-131 '
concentration of 9. 0 x 10 -3 pCi/gm is equal to approximately 1% of the Technical Specifications limit.
The ratio of the specific activities of I-131 to I-133 is used to I
characterize the type of fuel failure which may have occurred in the 1 i
reactor core. Use of the ratio for this determination is feasible because f
.i I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 ..ominant in activity, thereby causing the ratio to be 0.5 or 38 L . . . . ... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l
i more. In the case of large leaks and ' " tramp"* . material, where the diffusion mechanism .is negligible, . the I-131/I-133 ratio will generally be - less than 0.1. Figure 5.2 shows the I-131/I-133 ratio data for the
), North Anna 2, Cycle 5 core at a general average value of 0.00.
l 1
)
i
- " Tramp" consists of fissionable material as an impuriuy in the reactr core materials or fissionable material which has adhered to the su: face of reactor core components.
39
Figure 5.1 l:
o NORTH-ANNA UNIT 2 -
CYCLE 5
. DOSE EQUIVALENT I-131 vs. TIME TECHNICAL SPECIFICATIONS LlHIT
~
f i 7 O
~
l n O
)
O O x .
p O O 1
D U
$0 O
0 O
l
$ jo O O O gb U7
~O(b0 2" ___
0 0 0
- 0
- 0 0 l O l
~
O O
~
- 8 0 6 O
O
- O O I @
O g - 100
f 1 i I I
_ l
. 0x 1 e f f) N.
'O El
~
i i i i i i i i i i i i i l' i i )
MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG i 1986 1987 40 i 1
...ir . . _ _ _ _ _ _ _ _ .__
Figuro 5.2 NORTH ANNA UNIT 2 -
CYCLE ~5 I-131/ I-133 ACT I V I TY R ATI O vs. TIME l?
d 8
5 t l Og Fo T 3 C I o
F- o
-, :r
-, o O F- 0 U
T m
md
- 0 I
-i N
o m" m l
U o a O O O O O . mn%m m n - m m sm mh rew eD U NNn
~ . -- - \
Jhb[MEh YNI(EM o
I 3 o
"' f
'100 1 I V
.5 0 m l
. N 1 0 i i i i i i i i i i i i i i i i MAY JUN JUL RUG SEP OCT NOV DEC JAN FEB MRR APR MA) JUN JUL AUG '
1986 g 1987 l l l -
j
i s
4 7- .Section 6 CONCLUSIONS i.
( .
' Throughout Cycle 5 of-North Anna' Unit 2, ;ho core performance indicators L
" compared favorably . with the- design predictions and the ' core related'
, Technic.al Specifications limits were . met with signifie. ant' margin. No significant abnormalities in reactivity 'or burnup accumulation were
. detected. b addition, the mechanical integrity of the fuel did not change significantly throu8 out h Cycle 5 as indicated by the radioiodine analysis.
l l
i l
I j
l l
1 I
I I
i 1
, )
i l
42 li i
. . . .. _ _ _ _ -- i
. .I 5 '((
%p;. ,
N
.{
x, gf . , . . i e ' <
( l
- \
(\
' .."e
- Section 7 1.
s .
Is' i . ; .,t t
a , . REFERENCES l
l t
- 1) ."J. V.: Iannucci'and E. C. Reitler, " North Anna Unit 2, Cycle 5
((3.
- Startup. Physics Test Report," VEP-NOS-25, May 1986.
~
i
- 2) North Anna Power St '
)
g ,
Sections- 3/4.1 and 3/4.2. 7ation ' Unit 2 Technical Specifications,
' 3)' T. K. Ross , "NEWTOTE Code", VEPC0 NFO-CCR-61, Rev. 8, April, -' 1984.
]<
' . 4)l R. D. Klatt, W. D. Leggett, III; . and L. ' D.. Eisenhart, )
. " FOLLOW Code," WCAP-7482, February,-1970.
- 5) W..D. Leggett,.III and L. D. Eisenhart, "INCORE Code,"
1 WCAP-7149, December, 1967. '
.E . I
- 1. 1 1 L l
d
(
4 3
i f
i l
u i
l n
l l
1
)
]
1 k
1 I
43
_