ML20097D066

From kanterella
Jump to navigation Jump to search
Cycle 3 Core Performance Rept
ML20097D066
Person / Time
Site: North Anna Dominion icon.png
Issue date: 08/31/1984
From: Mann B
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML20097D063 List:
References
VEP-NOS-11, NUDOCS 8409170364
Download: ML20097D066 (50)


Text

-. ._.

VEP-NOS-11 NORTH ANNA UNIT 2, CYCLE 3 CORE PERFORMANCE REPORT by B. D. MANN Reviewed: Approved:

AL -

C. T. Snow, Supervisor J. WT 0greb, Director Nuclear Fuel Operation Nuclear Operation and Maintenance Support Nuclear Operation and Maintenance Support Nuclear Operations Department

,_ Virginia Electric & Power Company Richmond, Virginia August, 1984 i

h PE*,

CLASSIFICATION / DISCLAIMER 1

-1

l l

The data, techniques, information, and conclusions in this report have l

. been prepared solely for use by the Virginia Electric and Power Company (the- Company), and they may, not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied,as i to^ their - accuracy, usefulness, or applicability. In particular, .THE COMPANY MAKES NO WARRANTY OF MERCHANTAB;LITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. B,y making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company.~ - Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, .

mental or physical injury or death, loss of use of property, or other damase resulting from or arising , out of the ,use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

i 4

. - .,.-e . . - - - , . 4 . . . , -------.-.m ,,,,..w-. _ , ,-.~,y_,_~.-w ..~,-.,,~..,,,...-.,,,,,nt, .,m. .,-....my...--,,-n--

ACKNOWLEDGEMENTS The author would like to acknowledge the cooperation of the North Anna Power Station personnel in supplying the basic data for this report.

Also, the author would like to express his gratitude to Mr. C. T. Snow for his aid and guidance in preparing this report.

i l

l l

i I

l l

ii

- . - . . , , . . - - - , . - . . . . _ , . . _ _ , . . . , - - - . . . . , . . . _ - , , , _ , - - _ - - , . . _ _ . , _ . . . , . , _ . . ~ . - - .

TABLE OF CONTENTS SECTION TITLE PAGE NO.

Classification / Disclaimer . . . .. . .. . .. 1 Acknowledgements ... . . . . . . . . . . . . 11 List of Tables . ... ..... . . .. . . . . iv List _of Figures . ... .............v 1 Introduction and Summary. .. . . . ... . . . 1-2 Burnup Follow . . ... . ... . . . . . ... 7 3- Reactivity Depletion Follow . . .. . .. . .. . 14 4 Power Distribution Follow . . . . . . .. . . . 16

.5 Primary Coolant Activity Follow . . . ... . . . 37 6 Conclusions . .. ... ......... . . . 41 7 References. ..................42 iii 1 . - _ _ _ _ _ . . _ _ , . _ . _ . - . _ _ - , , . _ _ . . _ , , . _ _ _ _ . _ _ . . _ _ _ . . . _ . _ .. . _ , _ . _

1 LIST OF TABLES TABLE TITLE PAGE NO.

4.1 Summary of Incore Flux Maps for Routine Operation. . .. . . . 20 iv

I l

l l

LIST OF FIGURES FIGURE TITLE PAGE NO.

1.1 Core Loading Map . . . ...... ...... . . .. . . . .4

' 1. 2 Movable Detector and Thermocouple Locations. . . ... ... .5 1.3 Control Rod Locations. .. .... ... . ... .. . . .. .6 2.1 Core Burnup History . .. ... . .. . .. . . ... . . .9

'2.2 Monthly Average Load Factor. . . . .. . . . . . . . . . . . 10

-2.3 Assemblywise Accumulated Burnup: Measured and Predicted . . . 11 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted . . .... ....... . .. ... . 12 2.5 Sub-Batch Burnup Sharing . ........... ... ... . 13 L 3.1 Critical Eoren Concentration versus Burnup - HFP-ARO . . .. . 15

-4.1 Assemblywise Power Distribution - N2-3-13 .. . . .. .. . . 22 4.2 Assemblywise Power Distribution - N2-3-25 .. . . .. . .. . 23 4.3 Assemblywise Power Distribution - N2-3-38 .. . . .. .. . . 24 4.4 Hot Channel Factor Normalized Operating Envelope . .. . .. . 25 4.5 Heat Flux Hot Channel Factor, F (Z) - N2-3-13. . . . . . .. . 26 4.6 Heat Flux Hot Channel Factor, F (Z) - N2-3-25. . ... ... . 27 4.7 Heat Flux Hot Channel Factor, F (Z) - N2-3-38. . ... ... . 28

. 4.8 Maximum Heat Flux Hot Channel Factor, Fq*P, vs.

Axial Position . . .. . . . . . . . . . . . . . . . . . . . 29 4.9.. Maximum Heat Flux Hot Channel Factor versus Burnup . . .. . . 30 4.10 Enthalpy Rise Hot Channel Factor versus Burnup . . .. . . . . 31 4.11 Target Delta Flux versus Burnup . ....... .. . .. . . 32 V

- , , . . . - - - . . , - . _ , - , - - . . - , _ _ ~ , . . . . , _ ~ , . . . , . . -

LIST OF FIGURES CONT *D FIGURE TITLE PAGE NO.

4.12 Core Average Axial Power Distribution - N2-3-13 . . . . . . 33 4.13 Core Average Axial Power Distribution - N2-3-25 . . . . . . . 34 4.14 Core Average Axial Power Distribution - N2-3-3C . . . . . . . 35-4.15 Core Average Axial Peaking Factor versus Burnup . . . . . . . 36

'5.1 Dose Equivalent I-131 versus Time . . . . . . . . . . . . . . 39 5.2 I-131/I-133 Activity Ratio versus Time . . . . . . . . . . 40 4

vi

Section 1 INTRODUCTION AND

SUMMARY

On August 2,1984, North Anna Unit 2 completed Cycle 3. Since the initial criticality of. Cycla 3 on May 27,1983, the reactor core produced approximately 87 x 108 MBTU (14717.3 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 8.4 x 10' KWHR gross (7.9 x 10' KWHR net) of electrical energy. The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 3. The physics tests that were performed during,the startup of this cycle were covered in the North Anna' Unit 2, Cycle 3 Startup Physics Test Report 1 and, therefore, will not be included here.

The second cycle core consisted of three batches of fuel: a twice burned sub-batch from cycles 1 and 2 (3A2), a once-burned batch from cycle 2 (Batch 4A), and one fresh batch (Batch SA). The North Anna 2, Cycle 3. core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations and source assembly locations is shown in Figure 1.1. Movable detector locations and I

thermocouple locations are identified in Figure 1.2. Control rod Iccations are shown in Figure 1.3. l l

l Routine core follow involves the analysis of four principal performance I indicators. These are burnup distribution, reactivity depletion, power

)

distribution, and primary coolant activity. The core burnup distribution )

.is followed to verify both burnup symmetry and proper batch burnup 1

l

1 I

sharing, thereby ensuring that the fuel held over for the next cycle will '

be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to

- determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the North Anna Unit 2 Technical Specifications, and to assess the integrity of the fuel.

Each of the four performance indicators is discussed in detail for the North .nna 2, Cycle 3 core in the body of this report. The results are

, summarized below:

1. Burnup Follow - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than 20.33% with the burnup accumulation in each batch deviating from design prediction by less than 0.5%.
2. Reactivity Depletion Follow -

The critical boron concentration, used to monitor reactivity depletion, was consistently within 20.33% AK/K of the design prediction which is well within the 1%

AK/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications.

3. Power Distribution Follow -

Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of less than 2%. All hot channel factors met their respective Technical Specifications limits.

4 f

\

2

-4. Primary Coolant Activity Follow - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 3 was approximately 4.05 x 10-2 uCi/gm. This corresponds to 4% of the

operating limit for the concentration of radioiodine in the primary coclant.

. In addition, the effects of fuci densification were monitored throughout the cycle. No densification effects were observed.

l

)

3

Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 3 CORE LOADING MAP R P N 'M L K J H 0 F c 0 C B A P16 MOT P34 1

NO2 522 W F3 7 507 no3 NT5- W ~55 r W 73ir- MT- 53iK- 1TF mat 20P 5811 20P 3 IIT-~ 77F If r lilli-- W PE P ' IT F lff-- W 775- ~l155-20P 20P 20P 20P 4 W NE F W W W P5T- NE7"- W W FIT- s0s ' W nse 20P 20P SP 20P 20P 5 W W Nii3-~ ITE-- W W 7 55"- W P10 s23 n39 W W 20P 20P 20P 20P 20P 20P 6 Nir Ti r 755 - ITf- W EE F W WSP 7Er 20P ET r F57- 31sT- FT F 5TT- W 4P 20P 20P 20P 4P 7 NFE- 7 37 - 15T- W 1TF 71i3- liiU-~ W Tf6-- Flir- NIT- Fir- Il53i-- P3s llTii-eP sP er er e W IliT"- PTK~~ W 4P W 20P Elis- Tir- 7t3r - W W Pts sto '-' ~757- 7tPE~ W 20P SP 20P 20P 4P 9 ET F Ilir itTF TT- FiiT- lisr Mri- W PFf-- ~5T F lE55-- 35 r W 20P a)P 20P 20P 20P 20P 10 W lii r W 20P W 7TF W ata Plit- s26 W s0s W Niili-20P SP 20P 20P 11 7II W W WWW W W W W W -

20P 20r 20P 20P N5r- m- m-l,5rlNrrlm- ,15- ur 12 m,

20P SS12 20P 13 W W I5T"- 4P W ~555- 4P TTT-~ m32 14

--> ASsEIGLY 10 15

--> Onc or int rott0weno

  • ~
s. xxP - eun cMety FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH 3A2 4A 5A Initial Enrichment-W/0 U235 3.10 3.41 3.59 Assembly Type 17X17 17X17 17X17 Number of Assemblies 49 52 56 Fuel Rods per Assembly 264 264 264 Assembly Ider'ification P01-P03 R01-R52 S01-S56 P05-P38 P40-P45 P47-PS2 4

Figure 1.2 NORTH ANNA UNIT 2 - CYCLE 3 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS R P N M L K J H G F E D C 8 A MO TC 1 TC TC MO 2 T MO MO TC TC MO TC TC TC 3 TC MO MO MO TC 4

~~

MD MD MD MO TC MO TC TC MO TC TC 5 T

TC TC MO TC MO 6 TC TC M0 MD MO TC MD MD 7 T MD MD MO TC TC TC TC TC TC MO TC TC MO TC 8 MO TC MO TC MO TC MO 9 MD MO MO TC TC TC MO TC 10 m M l TC MO TC TC TC MO 11 l

MO HO MO TC TC TC MO TC 12 MD MO TC TC 13 TC MO TC 14 MO = Movable Detector TC - Thermocouple MO TC TC 15 5

l l

l l

1 Figure 1.3  :

NORTH ANNA UNIT 2 - CYCLE 3 CONTROL ROD LOCATIONS R P N M L K J H G F E D C B A 180' l

Loop C '

  • Loop B 1 Outlet inlet A D A 2 N-41 SA SA SP N-43 3 I

C B B C 4 SB SP SB $

  1. B D C D B A 6 Loop C 'i Loop B Inlet SA SB SB SP SA l utlet 7

'90 - D C C D - 270 8 SA SB SB SA 9 SP ,l A B ID C , D B A '

10 i

SB SP SB SP 11 i

C B B C 12 l

SP SA SA 13 N-44 N-42 A D A  ! 14 1

Loop A / I I

RLoop A 15 Abso rbe r Outlet inlet

. Material 1 Ag-in-Cd O, Function Number of Clusters Control Bank D 8 Cont ro l Bank C 8 Control Bank B 8

, Control Bank A 8 4= Shutdown Bank SB 8

-Shutdown Bank SA 8 SP (Spare Rod Locations) 8 6

Section 2 BURNUP FOLLOW The burnup history for the North Anna Unit 2, Cycle 3 core is graphically depicted in Figure 2.1. The North Anna 2, Cycle 3 core achieved a burr.up of 14,717.3 MWD /MTU. As shown in Figure 2.2, the aver age load factor for Cycle. 3 .was 88.5% when referenced to rated thermal power (2775 MW(t)).

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE8 computer code is used to calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 3 operation is given. For comparison purposes, the design values are _also given'. Figure 2.4 is a radial burnup

. distribution map in which the percentage difference comparison of measured and predicted assemblywise_ burnup accumulation at the end of

~ Cycle 3. operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within 24% of the predicted values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt factors, was no greater than 20.33%.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch

_burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1. As seen in Figure 2.5, the batch burnup sharing for North Anna Unit 2, Cycle 3 followed design predictions closely with each batch deviating less than 0.5% from design.

7

_ . . _ _ _ _ . _ _ .- _ _ .. _ . --- .~ a

Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 3 core did deplete as designed.

I s

I L

i l-8

i Figuro 2.1 NORTH ANNA 2 - CYCLE 3 CORE BURNUP HISTORY 17000 16000~ _ __ _

15000 ,

14000 C 13000 ~ #

Y C 12000 j 7

E 11000.~ /

8 10000 R 9000 -

N U 8000, 7

/

7000'. g 6000

~ 7

/ 5000~ #

M T 4000'

' /

U 3000: [

/

2000' 1000 ,

/

0: - /

n . .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M J J R S 0 N O J F M A M J J R S A U U U E C 0 E R E A P R U U U E Y N L G P T v C N 8 R R Y N L G P 8 8 8 8 8 &- 8 8 8 8 8 8 8 8 8 8 8 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 TIME (MONTHS)

CYCLE 3 MAXIMUM DESIGN SURNUP -

16300 MWO/NTU


BURNUP WINDOW FOR CYCLE 4 DESIGN - 13000 TO 15500 MWO/MTU 9 .

Figuro 2.2 NORTH ANNA 2 - CYCLE 3 MONTHLY AVERAGE LOAD FACTOR PERCENT 100 -

90 -

80 -

70 -

60 -

50 -

30 -

20 -

l L ,e 0

c I  !!!!!!!!*!' i l MONTH l

~ ~

AUh E P LE H kN j (EXCLUDES REFUELING OUTRGES1 10

a e

~ .1_ .g Figure 2.3 r .

NORTH ANNA 2 - CYCLE 3 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD /MTU) s

~.

a P N M L E J N e F E D C S A 1

1 ta.sti 13.541 to.691 i NEAsunto 1 1 z

i ts. sol 13.541 ts. sol l PatorcTro I -

1 '2 i l 17.401 13.451 14.741 29.891 14.751 13.601 17.371 e i 17.301 13.461 15.031 30.311 15.o31 13.461 17.301 3

I15.75123.29117.34135.sel23.aol35$71117.40123.tal16.24l 3

-~

l 15.741 23.311 17.348 35.991 24.351 35.991 17.3al 23.311 15.741 o

1 15.all 21.a91 19.431 as.168 le.391 33.?ti la.zal 2a.471 18.391 21.971 16.051 4 -

l 15.691 21.ul 14.ted 2a.278 1a.731 34.151 18.731 te.t?I 1a.201 21.641 15.691 -

5 1 17.o91 23.241 la.121 34.401 1a.atl 34.531 23.a61 34.221 19.181 3a.491 1a.221 23.4a1 17.641 s  :. ,

i 17.151 23.201 1a.171 3a.441 19.o11 34. sol 24.311 34.5o1 19.011 3a.441 la.171 23.2o1 17.151 -

6 1 13.651 17.6al ts.241 18.901 35.461 1a.181 33.361 1a.381 34.161 18.911 27.791 17.47I 13.5 6 1 13.461 17.361 ts.271 19.o21 35.241 14.591 33.651 to.ssi 35.241 19.021 as.271 17.361 13.4al 7 ,

1 28.s51 14.971 36.261 la.441 34.e41 1a.038 32.511 E3.571 32.481 1a.691 35.a91 17.9a1 35.711 14.all 2a.431 7 -

l to.4al 15.031 35.941 la.731 34.881 1a.621 32.701 23.691 32.701 la.6tl 34. sal 1a.731 35.941 is.est es.4al a i 13.711 3a.201 24.24; 33.791 23.661 33.251 23.211 37.891 23.231 33.311 23.541 33.521 23.a71 30.301 13.721 a l 13.591 30.301 24.3al 33.991 24 131 33.sti 23.631 3a.e41 23.631 33.528 24.131 33.991 24.3al 30.301 13.595 9

I as.571 14.901 35.641 la.418 34.311 1a.221 32.291 23.s61 32.471 la.191 34.14[1a.261 35.a31 15.101 to.a71 9 --

I ta.4al 15.e31 35.941 14.731 34. sal 1a.621 32.701 23.691 32.701 1a.621 34. sal 1a.731 35.9,1 1s.o31 to.4el ._

to 1 13.451 17.tal to.tsi 1951 35.311 17.941 33.391 la. col 35.tal la.691 2a.411 17.411 13.921 to i 13.441 17.361 ts.271 19.o21 35.241 la.stl 33.651 la. sal 3s.241 19.o21 to.271 17.341 13.461 11

  • 1 17.451 23.54 8 la.6tl 3a.e31 la.691 34.1a1 23. sal 33.9a1 la.911 38.691 1a.491 23.571 17.471 11 1 17.151 13.201 la.171 3a.441 19.011 34.50! 24.311 34. sol 19.o11 3a.441 1a.171 23.201 17.151 It i 16.241 22.881 18.551 27.921 18.141 33.681 1a.231 te.sel 1a.311 21.991 16.osi le 1 15.691

~

21.641 1a.201 te.271 la.731 34.151 la.731 24.271 la.tel 21.641 15.691 13 l 16.351 24.631 17.631 35.741 23.711 35.741 17.371 23.441 15.961 13 1 15.741 23.318 17.3al 3s.991 24.351 35.991 17. sal 23.311 1s.741 10 1 1a.171 14.351 1s.321 30.441 14.691 13.4ol 17.3o1 14 l 17.381 13.461 1s.031 3a.311 15.031 13.441 17.3o1 15

-]

I as. sal 13.811 2a.761 15 I 2a.501 13.s61 ts. sol l a P N M L K J N e P E D C 5 A I

L _

i L

>e 11 d"

i Figure 2.4 NORTH ANNA 2 - CYCLE 3 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (1000 MWD /MTU)

R P N M L K J M S F 2 D C B A 1 I te.sti 13.sel 2s.691 1 MEASURED 1 1 I e.le! -e.e31 e.691 1 M/P X DIFF l t i 17.4el 13.451 14.741 29.695 14.7sl 13.6el 17.371 2 I e.6el -e.131 -1.921 -1.Mi -1.991 e.993 e.441 3 1 1s.7s1 23.291 17.sel 3s.e61 23.6e1 3s.711 17.4e1 23.241 16.241 3 I e.e71 -e.e71 e.esi -e.351 -2.241 -e.7el e.1ti -e.111 3.181 4 1 15.a11 21.s91 1s.431 ts.161 1a.391 33.9 1 la.tel :s.478 1s.391 21.971 16.est I e.741 1.sel 1.291 -e.ast -1.all -e.6el -2.371 e.711 1.e91 1.4s1 a.291 s i 17.e9123.241 1s.121 so.4el la. sal 34.531 23.ast 34.221 19.lel 3s.491 1s.tti as.4al 17.641 5 I -e.361 e.171 -e.271 -e.111 -e.991 e.esi -1.a71 -e.all s.471 e.131 e.291 1.tel 2.e61 6 l 13.6sl 17.681 24.241 18.901 3s.441 14.181 33.361 18.541 34.161 18.911 27.791 17.471 13.741 6 l 1.431 1.791 -e.1ti -e.u l s.611 -2.211 -e.aol -e.e71 -3.sel -e.s71 -1.711 e.591 2.131 7 l te.sst 14.971 36.tel 18.44l 34.e41 14.e31 34.s11 23.s78 32.441 18.691 35.891 17.988 3s.711 14.811 28.431 7 I e.241 -e.371 e.9el -1.548 -t.4el -3.211 -e.s61 -e.ssi -e.u l e.sel 2.901 -3.9el o.6tl -1.441 -e.171 4 l 13.711 30.tel 24.241 33.791 23.u l 33.251 23.271 37.891 23.231 33.31l 23.sel 33.stl 23.878 3 3el 13.721 4 I a.9tl -e.341 -e.s71 -e. sal -1.921 -e. ell -1.sel -e.4el -1.6sl -e.631 -t.361 -1.391 -1.ssi -e. ell s.991 9

l 28.s71 14.9el 33.641 14.411 34.311 18.221 32.291 23.e61 32.471 18.191 34.141 18.261 35.431 1s.lel 28.871 9 I e.321 -e.ssi -e.all -1.671 -1.621 -t.tal -1.251 -2.ul -e.6al -a.331 -2.lel -2.471 -e.291 e.491 1.371 le l 13.4sl 17.281 28.151 19.161 35.311 17.941 33.391 14.sel 3s.281 14.691 28.411 17.411 13.921 le I -e.est -e. sol -e.e91 e.7sl e.tel -3.441 -e.761 -3.191 e.111 -1.771 e. sol s.261 3.431 11 l 17.451 13.sel 13.62 8 38.431 14.691 34.141 23.881 33.981 18.911 34.691 18.491 23.571 17.471 11 1 1.741 1.561 t.471 1.e11 -1.691 -e.941 -1.sel -1.511 -e.sel s.641 1.771 1.s78 1.aol la i 16.241 22.s81 1s.ssi 27.921 1a.141 33.641 1a.231 ts.06l 14.311 21.991 16.e51 12 1 3.s18 1.961 1.931 -1.251 -3.141 -1.341 -2.6sl -e.768 e.651 1.ssl 2.341 13 l 16.3sl 24.631 17.631 3s.741 23.711 3s.741 17.375 23.461 1s.961 13 1 3.911 5.671 1.431 -e.711 -2.621 -e.711 -e.est e.ul 1.451 i Am1THME71C AVG 1 14 IPC7 DIFF a -e.e81 1 18.171 14.331 15.321 30.461 14.691 13.4el 17.3el -

14 1 5.e61 6.6el 1.921 e.sel -2.241 -e.4st s. eel 15 1 37ApeAmo Dev I I as.ssi 13.s11 2s.768

= 1.13 I AVs Ass sc7 1 15 1 1 I s.311 1.sel e.931 1 DIFF = 1.3e !

R

  • N M L E J M S F 2 O C B A BURNUP SHARING (MWD /MTU) BURNUP TILT Batch Cycle 1 Cycle 2 Cycle 3 Total NW = -0.18 3A2 10869 9450 13194 33513 NE = -0.01 4A --- 7763 13555 21318 5A --- ---

17121 17121 SW = 0.32 Core Average 14717 SE = -0.12 12

Figure 2.5 NORTH ANNA 2 - CYCLE 3 SUB-BATCH BURNUP SHARING SUS-BATCH . 3A2 4A SA SYMBOL O!AMOND SQUARE TRIANGLE 36000

/

32000 ,

/

/*

28000 ,

1 S. l f f

24000 8 /

~

A f ,

T f' , f H 20000 6 '

8 / /

E /

N 16000 - E /'

U _ f /

P _ f f 7 /

w 12000-- 7 #

0 Y /

/

H

/ /

3r /

U 8000 w #

p 3 _. #

-- . . . /

4000 /

/

/

/

0-a i-f 0 2000 4000 6000 0000 10000 12000 14000 16000 CYCLE SURNUP MWD /NTU 13

F

=

r Section 3 r

REACTIVITY DEPLETION FOLLOW F
The primary coolant critical boron concentration is monitored for the Purposes of following core reactivity and to identi,fy any anomalous I

reactivity behavior. The FOLLOW' computer code was used to normalize a

{ " actual" critical boron concentration measurements to design conditions

_ taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized

[ critical boron concentration versus burnup curve for the North Anna 2, ..

? Cycle 3 core is shown in Figure 3.1. It can be seen that the measured r . ..

I data typically compare to within 42 ppm of the design prediction. This - -

E corresponds to less than z0.34% AK/K which is well within the s1% AK/K criterion for reactivity anomalies set forth in Section 4.1.1.1.2 of the E Technical Specifications. In conclu sion, the trend indicated by the g.

critical boron concentration verifies that the Cycle 3 core depleted as -d f

a expected without any reactivity anomalies.

N .; 6 E

5 h

E .

E r

h 14 I

g

t l

l Figura 3.1 NORTH ANNA 2 - CYCLE 3 CRITICAL BORON CONCENTRATION vs. BURNUP HFP,ARO X MEASURED -

PREDICTED 1600 1400 C

'R I

T 1200 1

C l R l L

8 1000 k 0 k R

%L f & <.

z: x m g

C 60G-0

.N C Afsc g

i T 600  %

M(

E T W N 400 ~ Nw p

\% _

e D

M N%

200' \w.

31 0-s-

0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP tNWO/NTUl 15

, 1-.- ,,,,,,-,--,,e..-- ,---,-,-----,,ws,,a ,. ----,--,,,,--,,----m,+~-,- ,,,,m-c---.-mew,---, , - ~ , - - - , , - - .,

Section 4 :

l POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is necessary to-verify that the hot channel factors are within the Technical 1

Specifications limits and to ensure that the reactor is operating without l

4.ny . abnormal conditions which could cause an " uneven" burnup distribution. Three-dimensional core power distributions are determined l l

. from movable detector flux map measurements using the INCORE' l computer- program. . A summary of all full core flux maps taken since the completion of startup physics testing for North Anna -2, Cycle 3 is given in Table 4.1. Power distribution riaps were generally taken at monthly intervals with additional maps taksn as needed.

Radial-(X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken 'early in cycie life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.

Figure 4.3 =shows a -map,that was taken at.the end of . Cycle 3 life. The radial power - disaibutions were taken under equilibrium operating I conditions' with the unit at approximately full power. In each case,' the measured relative assembly powers were generally within 6.3% of the predicted values with an average percent difference of approximately 2.0%

which is considered good agreement. In addition, as indicated by the

. INCORE tilt factors, the power distributions were essentially symmetric for all cases.

An important aspect of core power distribution follow is the monitoring 16 s -. . . , _ . _ . . - . _ , . . . _ , - . . . , . - . . _ . . _ . . _ _ . , _ . _ . _ . _ . . . . - . _ . _ . _ _ _ _

l l

l of nuclear hot channel factors. Verification thit these factors are within 1

Technical Specifications limits ensu res that linear power density and critical heat flux limits will not be violated, thereby providing adequate i thermal margins and maintaining fuel cladding integrity. The Technical Specifications limit on the axially dependent heat flux hot channel factor  ;

Fg(Z) was 2.20 x K(Z), where K(Z) is the hot channel factor normalized operating envelope. Figure 4.4 is a plot of the K(Z) curve associated with the 2.20 F q(Z) limit. The axially dependent heat flux hot channel factors, F g(Z), for a representative set of flux maps are given in Figures 4.5 through 4.7. Throughout Cycle 3, the measured values of Fq (Z) were within the Technical Specificatans limit. A summary of the maximum values of axially-dependent heat flux hot char.nel factors measured during Cycle 3 is given in Figure 4.8. Figure 4.9 shows the maximum values for the Heat Flux Hot Channel Factor measured during Cycle 3. As can be seen from the figure, there was a 13% margin to the limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation.

The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integra! of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated. Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. The Cycle 3 limit on the enthalpy rise hot channel factor was set at 1.55 x (1+0.3(1-P)) x (1-RBP(BU)), where P is the fractional power level, and RBP(BU) is the rod bow penalty. A summary of the maximum values for the Enthalpy Rise Hot Channel Factor measured during Cycle 3 is given in Figure 4.10. '

17 l

The Technical Specifications require that target delta flux

  • values be determined periodically. The target delta flux is the delta flux which

- would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -2.0% at the beginning of Cycle 3. After approximately one-half of the cycle, delta flux values had shifted to -4.0%

and then moved to -3.5% by the end of Cycle 3.

The power shift indicated by the delta flux values and the axial peaking factor can be observed in the corresponding core average axial 4

power distribution for a represontative series of maps given in Figures 4.12 through 4.14. In Map N2-3-13 (Figure 4.12), taken at approximately 670 MWD /MTU, the axial power . distribution had a cosine shape with a peaking factor of 1.24. In Map N2-3-25 (Figure 4.13), taken at approximately 7,650 MWD /MTU, the axial power distribution was a flattened cosine with an axial peaking factor of 1.16. Finally, in Map N2-3-38 (Figure 4.14), taken at approximately 13,300 MWD /MTU, the axial power distribution was double-peaked with an axial peaking factor of 1.14. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

Pt-Pb

  • Delta Flux = X 100 where Pt = power in top of core (MW(t))

2775 Pb = power in bottom of core (MW(t))

18

- . . - . - . - ~ _ _ ._ _ .. _ . _ _ _ -, _ . . _ _ _ _ _ _ _ _ _ .- _ - _ . _ . .

1 In conclusion, the North Anna 2, Cycle 3 core performed satisfactorily wiUs power distribution analyses verifying that design predictions were accurate and that the values of the F n(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.

l 19

. - . . . - _ _ . _ . - - - . . . . _ . . _ , . _ _ _ _ . ~ . . . - _ . . . _ _ , _ . _ , _ . , . , - _ _ . _ . _ . . _ _ . .

TABLE 4.1 NORTH ANNA UNIT 2 - CYCLE 3 ,

SUMMARY

OF INCORE FLUX MAPS FOR ROUTINE OPERATION I i 1 2 l l 1 BURN F-Q (T) HOT F-DH(N) HOT l CORE F(Z) 4 l UP BANK CHANNEL FACTOR CHNL. FACTOR MAX 3 QPTR AXIAL NO.

MAP DATE MWD / PWR D F(XY) 0FF OF No. MTU (%) STEPS AX1ALI l . AX1AL l MAX l SET ITHIM ASSY PIN PolNTIF-Q(T) ASSY PIN F-DH(N) PolHT F(Z) MAX LOC (%) B *~ E S I i I I i 1 1 _ I._ I 1.229 1.558 1.009 SW -2.10 49 i

110 1 6-10-83 215 100 228 K14 MNI 29 1.906 l K14 MN 1.473 37 113( 5) 6-30-831 671810U 228 K14 MN 38 1.893 M14 MN 1.458 31 1.242 1.538 1.014 SW -4.791 42 14 7-22-831 1566 1001 212 M10 NE 38 1.847 K14 MN 1.429 37 11.23711.505 1.0101 SW -4.63 48 15 8- 4-831 1998 Iran 219 M10 NE 37 1.826 K14 MN! 1.413 31 11.22411.493 1.009 SW -4.13 50 18( 6) 9- 7-838 3315 1001 210 M10 NE 37 1.804 l M10 NEl 1.407 38 1.21611.484 1.008 SW -5.1% 48 19 10- 6-831 4430 100 212 L101 HI 37 1.779 L10 Hal 1.402 38 1.19411.49211.008 SW -4.92 49 bJ 20 11- 2-831 5471 100 217 L101 HI 38 1.771 L10 Hil 1.419 38 1.17311.51011.006 SWI -4.21 50 1 l_ l_ l ____1 1 1 ___ I I NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY CIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),

FOLLOWED BY THE PIN LOCATION DENOTED BY THE "Y" COORDikATE WITH THE SEVENTEEN ROWS OF FUrt RODS LETTERED A THROUGH R AND THE [X" COORDINATE DESIGNATED IN A SIMILAR MANNER).

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL PolNTS STARTING FROM THE TOP OF THE CORE.

( 1). F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.05 X 1.03.

( 2). F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04.

( 3). F( XY) INCLUDES A TOTAL UNCERTAINTY OF 1.05 x 1.03.

( 4). QPTR - QUADRANT POWER TILT RATIO.

( 5). MAPS 11 AND 12 WERE TAKEN FOR INCORE/EXCORE CALIBRATION.

( 6). MAPS 16 AND 17 WERE TAKEN FOR INCORE/EXCORE CALIBRATION.

]

]

r,u TABLE 4.1'(CONT.).

bOHN F-Q (T) HOT F-DH(N) HOT CORE F(Z) 4 UP BANK CHANNEL FACTOR CHNL. FACTOR MAX . 3 QPTR AXIAL NO.

MAP DATE MWD / PWR D _ F(XY) OFF OF NO. MTU (%) STEPS , AX1AL , .

LAX 1AL MAX l SET THIM l ASSY PIN POINT F-Q(T) ASSY PIN F-OH(N) POINT F(Z) MAX LOCl (%) BLES 24( 7) 12- 1-83 65i7 100 215- F051 IJ 46 1.779 L10 HI l.433 46 1.177 1.525 1.007 SW -5.15 50 25 12-30-83 7647 100 217 LO61 HI 47 1.754 L10 HI 1.434 46 1.161 1.528 1.008 SW -3.95 43 26 1- 6-84 7668 1001 218 F05 IJ 46 11.773 F05 IJ 1.443 46 11.164 1.540 1.007 SW -4.s7 47 27 1- 9-841 7938 100 218. F05 IJ 47 1.762 F05 IJ 1.446 46 1.158 1.540 1.005 SW -4.04 50 1 30( 8) 2-17-841 9173 100 218 D09 FE 47 1.765 D09 FE 1.445 1 47 1.154 1.535 1.007 SW -3.79 39 1 32( 9) 3-21-84 10379 100 218 FOSI IJi 48 1.765 F05 IJ 1.456 1 47 1.152 1.551 1.0071 SW -4.10 49 33 4-27-84 11335 100 217 L10 Hl: 53 1.784 LIO Hal 1.485 1 48 1.145 1.577 1.014 SW -3.91 40 34 5-16-84 11913 100 214 L10 HI 53 1.767 L10 Hil 1.450 1 53 1.156 1.542 1.003 SW -4.35 50 37(10) 6-14-84 13040 100 221 L10 H1' 53 1.740 L10 Hil 1.443 1 53 1.14411.536 1.005 SE -2.71 46 38 6-21-84 13299 1001 221 L10 HI 53 1.760 L10 HI 1.453 1 53 1.144 1.546 1.006 SW -2.60 46 39 1 7-18-84114267 751 180 L10 HI 53 1.715 L10 HI 1.433 1 53 1.125 1.528 1.003 SW -3.37 46 40 7-23-84 14445 761 180 L10 HI 53 1.716 F05 IJ 1.422 1 53 1.136 1.517 1.002 SW -3.98 50 41 7-24-84 14465 75) 184 F05 IJ 19 1.698 L10 HI 1.434 l 20 1.139 1.526 1.002 NW -0.48 45 1 43(11) 8- 1-84 14660 99l 228 i L10 HI 12 1.686 F05 IJ 1.435 l 12 l 1.118 1.52M 1.005 SW 0.031 46 l N.,

. I I _I l _ ._ I _ l l

( 7). MAPS 21, 22, AND 23 WERE TAKEN FOR INCORt/EXCORE CAllBRATION.

( 8). MAPS 28 AND 29 WERE TAKEN FOR INCORE/EXCORE CALIBRATION.

( 9). MAP 31 WAS NOT ANALYZED DUE TO A LACK OF DETECTOR CALIBRATION DATA.

(10). MAPS 35 AND 36 WERE TAKEN FOR INCORE/EXCORE CALIBRATION.

(11). MAP 42 WAS TAMFN FOR INCORE/EXCORE CALIBRATION.

l 1

I 1

1 1

l 1

1 1

1 Figure 4.1 NORTH ANNA UNIT 2 - CYCLE 3 ASSEMBLYWISE POWER DISTRIBUTION N2-3-13 A P II 80 L K J 10 0 F E O C S A

. Paf0scito . . 0.34 . 0.S2 . 0.34 . PetosCT[0 .

. BetAsafato . . C.3S . 0.$0 . 0.35 . . fetasunto . 1

.PC7 ORFFEREIIC". 2.S . *4.8 . 3.3 . . .PC7 OIFFEAtleCE.

. 0.S$ . 0.97 1.09 . 0.8S . 1.09 . 0.97 . 0.SS .

. 0.54 . 1.00 . 1.00 . 0.04 1.00 . 1.00 . 0.Se . 2

. S.e . 2. S . -l . 0 . = 1. 3 . =0. 6 . 3.3 . 4.7 .

0.63 . 1.02 . 1.17 . 0.99 1.23 . 0.99 . 1.17 . 1.02 . 0.63 .

. 0.6S . 1.06 1.19 . 0.99 . 1.21 . 0.90 . 1.14 . 1.0S . 0.66 . 3

. 3.7 . 3.S . 1.0 . -0.9 . -1.4 . al.1 . 0.8 . 2.7 . 6.1 0.69 . 1.08 1.19 . 1.28 . 1.23 . l.04 . 1.23 . 1.24 . 1.19 . 1.08 . 0.63 .

. 0.6S . 1.11 1.22 . 1.30 1.22 . 1.07 1.21 . 1.11 . 0.65 . 4

. 4. 3 . 2.8 . 2.6 . 1.7 . -I.0 . *1.3 . 1.19 3.2 ..1.28

-0.4 1.6 . 2.7 . 4.4 0.5% . 1.02 1.19 . 0.99 . 1.21 . 1.06 . 1.21 . 1.06 . 1.29 . 0.99 . 3.19 1.02 . 0.95 .

. O.S7 . 8.09 . 1.20 . 1.00 . 1.21 1.02 1.16 . 1.04 1.21 . 1.00 . 1.20 1.06 . 0.59 . S

. 2.9 . 2.9 . 0.9 . 0.2 . 0.2 . -3.8 . +3.8 . *1.S . 0.1 0.4 1.0 . 3.5 . 6.2 .

. 0.97 . 1.16 . 1.20 . 1.2% . 1.00 . 1.17 1.03 . 1.17 . 1.00 1.21 8.28 9.14 . 0.97 .

. 1.00 . 1.20 . l.29 . 5.20 . 0.98 . 1.12 . 0.99 . 1.15 . 1.00 1.20 7.27 . 1.18 . 1.01 . 6

. 2.9 . 2.9 . 0.7 . *0.S . -l.8 . ~4.3 . -3.8 . *1.9 . =0.2 . =0.2 . -0.6 . 1.0 . 3.4 *

. 0.34 8.09 . 0.99 1.23 . 1.06 . 1.17 . 1.09 . 1.16 . 1.09 . l.17 . 1.06 . l.23 . 0.99 , 1.09 . 0.34

. 0.34 1.11 . 0.97 . 1.20 . 1.03 . 1.02 . 1.19 . 1.04 1.18 . 0.97 . 1.00 . 0.3% . 7

. 4.8 . 1.4 . *2.0 . -2.9 . -3.3 . 1.13 . 1.003.44.3. . 1.11 3.4 . -2.2 . al.a . -2.0 . *S.S . *2.3 . -l.3 . 0.7 .

. 0.S2 . 0.05 . 1.23 . 8.00 . 1.21 . 1.03 . l.16 . 0.97 . 1.16 . 1.03 . 1.21 1.04 . 1.23 . 0.8S 0.52 .

. 0.SS . 0.06 . 1.20 . 1.06 . 1.17 . 1.00 1.80 . 0.93 . . 0.53 . S

. 4.8 1.4 . -2.0 . -2.6 . -3.1 . *l.6 . -4. 7 . 3. 7 . 1.12 . 1.00 .3.4 . -3.S . I.14 . 1.043.72.4 . .l.S -3.6. . 1.20 0.7 . 0 04

. 0.34 1.09 . 0.99 1.25 . 1.06 . 1.17 . 1.09 . l.16 . 1.09 . I.17 . 1.06 . 1.23 . 0.99 , 1.09 . 0.34

. 6.36 . 1.11 . 0.99 . I.21 1.03 . 1.54 1.09 . 1.13 . 1.02 1.18 . 0.99 . 1.09 . 0.35 . 9

. 4.8 . 1.7 . 0.8 . -1.4 . -2. 8 . =3.0 -3.2 . 1.12 . 1.013.4 . *3.7 . -3.7 . -3.8 . -3.s . -0.S . =0.3 . 2.9 .

. 0.97 . 1.16 . 1.28 . 1.21 . 1.00 1.17 . 4.03 . 1.17 . 1.00 1.21 1.&S . 1.94 . 0.97

. 0.99 1.19 . 1.29 . 9.21 . 0.99 . 1.13 . 1.00 . 1.20 1.00 10

. 2.2 . 2.2 . 0.9 . 0.2 . *1.0 . -3.2 . -3.4 . 1.13 3.4 ..0.97

-2.8 ..1.97

-2.9 .. 1.280. 3 .. 2.9 . 2.9 .

0.95 . 1.02 . 1.19 . 0.99 . 1.21 1.06 1.21 1.06 . t.21 0.99 1.19 8.02 . 0.SS .

. 0.54 . 1.07 . 1.23 . 1.01 1.89 . 1.03 . 1.18 . 1.02 1.18 . 0.99 . 1.21 1.09 . 0.57 . 11

. 4.6 . 4.6 . 3.6 . 1. 7 .

  • 1.0 .
  • 2. 3 . -2. 3 . *S . S . *1. 7 . =0. 7 . 1.7 . 2.6 . 3.4

. 0.63 . f.00 . 1.19 . 1.28 . 1.23 . 1.00 . 1.25 . 1.28 . 1.19 . 8.00 . 0.43 .

. 0.67 1.13 . 1.21 1.28 . 1.20 3.0S . 1.20 1.27 . 1.19 . 1.10 . 0.64 12

. 6.9 . 4.4 . l.7 . 0.1 . *2.7 . *2.8 . -2.4 . =0.9 . *0.4 1. 7 . 2.5 .

0.63 . 1.02 . 3.17 . 0.99 . 1.23 . 0.99 . 1.17 . 1.02 . 0.63 .

. 0.67 1.10 1.21 . 0.97 l.20 . 0.90 . 1.17 , 1.03 . 0.64 . 13

. 7.6 . 8.2 . 3.4 . *2.8 . *1.8 . al.0 0.6 . 0.7 . 2.4

. 0.SS . 0.97 . 1.09 . 0.8% . 1.09 . 0.97 . 0.S$ .

. 0.40 1.06 . 1.13 . 0.87 . 1.00 . 0.90 . 0.55 . 14

. 4.2 . 9.2 . 3.2 . 2.1 . *0.4 . 0.6 . 0.S .

. eTameant . . 0.34 . 0.S2 . 0.34 . AvtRACE .

. . 0.36 . 0.55 . 0.39 . .PC7 OIFFERE1 ICE. 15

. O.EVla i.swt eesi. 10.2 . S.6 . 0.e . .

  • 2.6 .

S'UMMARY MAP NO: N2-3-13 DATE: 6/30/83 POWER: 100%

CONTROL ROD POSITIONS: F-Q(T) = 1.893 QPTR:

D BANK AT 228 STEPS F-DH(N) = 1.458 NW 1.000 NE 0.998 F(Z) = 1.242 SW 1.014 SE 0.988 F(XY) = 1.538 BURNUP = 671 MWD /MTU A.O = -4.79(%)

22

, a

~t Figure 4.2 NORTH ANNA UNIT 2 - CYCLE 3 ASSEMBLYWISE POWER DISTRIBUTION N2-3-25 R P II II L M J 90 0 F E O C e A

. PittosC7t0 . . 0.33 . 0.50 . 0.33 . PfitosC7te

. setasuRtc . . 0.33 . 0.90 . 0.34 . setasunto . 1

. PCT DIFFEREIICE. . 0.0 . -0.8 . 2.4 . .PC7 OIFFEREleCE.

. 0.S3 . 0.89 . 0.99 . 0.78 . 0.99 . 0.89 . 0.S3 .

. 0.Sl . 0.85 . 0.97 . 0.76 . 0.99 . 0.94 . 0.56 . 2-

. -4. 3 . ~4. 6 . ~2. 3 . *2. 4 0.2 . 4.9 . 4.6 .

0.61 . 0.94 . 1.18 . 0.9% . 3.19 . 0.95 . tote . 0.9e . 0.61 .

. 0.60 . 0.96 . 1.17 . 0.90 1.06 . 0.99 . 1.21 1.01 . 0.64 3

. *2. 7 . *2. 5 . =0. 4 . -4.6 . *4. 6 . 0.1 . 2.S . 3.1 . 4.2 .

. 0.61 . 1.0= . 1.2S . 1.2* . 1.2h . 1.09 . 1.28 . 1.2S . 1.25 . 1.04 . 0.61 0.49 . 1.03 1.23 . 1.25 . l.25 . 1.03 . 1.2S . l.26 . 1.27 . 1.06 . 0.63 .

. *4.3 . =1.1 . *0.9 . 0.4 . +2.3 . -2.4 . *2.1 . 1.0 4

l.6 . 2.1 . 3.3 .

0.53 . 0.98 . 1.24 1.04 1.31 . 1.09 . 1.23 . 1.09 . 1.31 . 1.04 1.24 . 0.98 . 0.93 .

. 0.54 9.00 1.24 1.03 . 1.31 . 1.00 , 1.22 . 1.00 . 1.32 . 1.04 1.26 . 1.01 . 0.S6 . $

. 2.4 2.1 . =0. 3 . =0. 2 . =0. 3 . *0. 5 . *0. 6 . ~0. 6 . 0.S . 0.5 . 1.0 . 2.8 . S.S .

0.89 . 1.18 . 1.2S . 1.31

. 0.91 . 1.21 l.06 . 1.29 . 1.07 . 1.29 . 1.06 . 1.31 . l.29 . 1.18 . 0.49 1.26 . 1.31 . 1.06 . 1.27 1.06 . 1.28 . 1.07 . 1.3% . 1.24 3.14 . 0.92 6

. 2.4 2.4 0. 6 . -0. 3 . =0. 6 .

  • 1. 0 . =0. 5 . -0. 3 . 0.S . =0.5 . -0.S . 0.S . 2.7 .

. 0.33 . 0.99 . 0.94 1.28 . 1.09 . l.29 . 1.00 . 1.19 . 1.00 . 1.29 1.09 . 1.26 . 0.94 0.99 . 0.33 .

. 0.33 . 0.99 . 0.94 l.26 . 1.06 . 1.26 . 1.07

=0. 3 .

  • 1. 4 . *2. 4 . *2.2 . *1. 4 .

1.19 . 1.08 . 1.29 . 1.06 . 1.24 . 0.93 . 0.9e . 0. 3 3 7

. 0. 7 . -0.0 . -0. 6 . *0.2 . 0.0 . -2.3 . -3.0 . *2.0 . -I.0 . =0.0 .

. 0.50 . 0.78 . 1.19 . 1.05 . 1.23 . 1.07 . 1.19 . 0.98

. 0.$0 . 0.77 . 1.10 . 1.05 . 1.22 . 1.06 . 1.17 . 0.98 1.19 . 1.07 . 1.23 . 1.09 . 1.11 . 0.78 . 0.50 1.19 . 1.06 . 1.19 . 1.02

0. 6 . =0. 3 . =0. 7 . -0. 7 . *0. 9 . - 1.1 . - t . 7 . =0. 4 . =0. S . ~0. S . =2. 9 . ~2. 9 . -2. 1.09 . 0.79 . 0.52 8

. 0 1.2 . 3.3 .

. 0.33 . 0.99 . 0.94 1.20 . f 09 . 1.29 . 1.00 . 1.19 . 1.00 . 1.29 . 1.09 . 1. te . 0.94 . 0.99 . 0. 3 3 .

. 0.33 . 0.9e . 0.93 . I.27 . 1.00 . 1.28 . 1.06 . 1.19 . 1.07 . 3.27 . 1.02 . f.26 . 0. 916

0. 7 . *0. 7 . - I . S . -l .1 . =0. 7 . *0. 7 . *1. 7 . -0. S . + 1. 2 . = 0. 3 .
  • 1. 2 . - 1. 2 . *0.1 1.06 . 0.35 9
2. 3 . 4.6 .

0.89 . 1.18 . 1.2S

  • 1.31 1.06 . 1.29 . 1.07 . 1.29 . 1.06 . 1.31 1.2% . 1.18 . 0.e9

. 0.90 . 1.18 . 1.26 . 1.33 1.0

. 1.07 . 1.25 . 1.09 . l.26 . 1.06 . 1.31 1.27 1.19 . 0.93 10

. 0.4 . 0.4 . 0.8 . 1.0 . *3.0 . -1.8 . -2.0 . =0.S . =0.3 . 1.4 1.1 . 4.2 .

0.53 . 0.9e . 1.24 1.04 1.31 . 1.09 , 1.23 . 1.09 . 1.31 . 1.04 . 1.24 . 0.98 . 0.53 .

0.SS . 1.0 0 . 1.27 . 1.05 . 1.31 . 1.06 . 1.20 1.06 . 1.32 1.04 l.26 . 0.99 . 0.54 11

. 2.9 . 2.9 . 2.3 . 1.2 . *0.2 . *2.3 . *2.4 . *2.7 . 0.3 . 0.8 . 1. 7 , 1.3 . 2.4 0.61 . 1.04 1.2S . 1.29 . 1.28 . 1.09 . 1.20 . 1.2S . 1.2% . 1.04 0.61 0.6% . 1.07 . 1.26 . 1.2S . 1.25 . 1.02 1.26 . l.26 . 1.26 . 1.07 . 0.63 . 12

. S.4 3.3 . 1.2 . *0.3 . *2.6 . -2.7 . -1.9 . 0.4 . 1.1 . 2.6 . 1.8 .

.0.61.0.94.l.14.0.99.1.11.0.99.1.18.0.9e.0.61

. 0.65 . 1.04 1.21 . 0.92 . 1.09 . 0.94 1.18 . 1.00 . 0.63 . 13

. S.9 . 6.3 . 2.3 . *2.6 . *2.1 . *0.9 . 0.S . 1.7 . 1.4 .

. 0.53 . 0.09 . 0.99 . 0.78 . 0.99 . 0.89 . 0.S$ .

. 0.57 . 0.96 . 1.01 . 0.7e . 0.98 . 0.90 . 0.S4 14

. 6. 3 . 7.1 . 2. 3 . 1.0 . =0.9 . 0.3 . 1.5 .

37Asupaa0 DEVtailoil

. . 0.33 . 0.50 . 0.33 . . evtRACE .

. . 0.36 . 0.52 . 0.33

.PC1 OtFFEAE11Ct. 13

. 1.S43 . F.7 . 3.6 . -0.e . . - 1.e .

SUMMARY

MAP NO: N2-3-25 DATE: 12/30/83 POWER: 100%

CONTROL ROD POSITIONS: F-Q(T) = 1.754 QPTR:

D BANK AT 217 STEPS F-DH(N) = 1.434 NW 0.994 ' NE 1.002 F(Z) = 1.161 SW '1.008 SE 0.997 F(XY) = 1.528 BURNUP = 7647 MWD /MTU A. 0 = -3.95(%)

l l

- - , . , - - - . - -- , ,. - - - - - - - - - - , -.,-,w-, , , - + - -

Figure 4.3 NORTH ANN'A UNIT 2 - CYCLE 3 ASSEMBLYWISE POWER DISTRIBUTION N2-3-38 R P II 80 L N J 40 0 F E O C e A

. Paf0aC7t0 . 0.39 . 0.S3 . 0.3S . , Paf0tcit0 .

. est Asunt 0 . . 0. 36 . 0. 9 3 . 0. 3% . . setAsunt0 . 1

.FC7 OIFFERtact. . 1. 7 . 1.6 . 1.2 . . PCT DIFFtntsect.

. 0.54 . 0.04 . 0.90 . 0.74 . 0.90 . e.04 . 0.54

. 0.SS

2. 4 .

. 0.44 . 0.97 . 0.77 . 0.97 . 0.08 . 0.55 . 2

. -3. 6 . -0. 9 . - 0.1 . =0.4 0.6 . 1. 9 .

. 0.H . 0. 9 7 . 1.19 . 0.94 . 1.06 . 0.94 1.19 . 0.97 . 0.62 .

. 0.62 . 0.97 1.16 . 0.92 . 1.06 . 0.93 . 1.19 . 0.94 . 0.64 .

0.1 . -0. I . -2. 6 . -1. 9 . -2. 0 . -1.0 . 0.0 .

3 1.5 3.2 .

. 0.62 . 1.02 1.26 . 1.22 . 1.24 . 1.04 1.14 . 1.22 . 1.26 . 1.02 . 0.A2

. 0.64 1.03 . 1.26 1.21 . 1.27 . 1.03 . 1.27 . 1.21 . 1.26 1.03 . 0.63 . 4

. 2.4 0.3 . 0. 2 . =0. 5 . -t . 3 . -1. 3 . -1. 4 . -0. S . 0.2 . 0.S . 1.8 .

. 0.94 . 0.97 . 1.26 . 1.04 l.33 . 1.04 . 1.21 . 1.00 . 1.33 . 1.04 1.26 . 0.97 . 0.54 .

. 0.94 . 0.90 . l.23 . 1.03 . 1.31 . 1.09 1.23 . 1.09 . I.34 . 1.04 1.23 . 0.94 . 0.56 . S

. 2.9 . 1.4 . -1.7 . -1.6 . -1.3 . 0.0 . 0.0 . 0.4 0. 7 . -0. 3 . -2.0 l.2 4.S .

... 0.64 1.19 . 1.22 . 1.33 . 1.00 . 1.31 . 1.07 . 1.31 I.06 . 1.34 . t.22 . 1.19 . 0.es .

. 0.90 1.22 . 1.22 . 1.31 . 1.07 . 1.31 . 1.07 , 1.33 . 1.10 . 1.31 . 1.18 . 1.14 . 0.90 . 4

. 2.9 . 2.9 . 0.0 . =0.S . -0.7 . 3.1 . 0.4 1.5 . 1.9 . -1.7 . -3.) . *0.4 2. 7 .

. 0.3%.0.90.0.94. 1.29 1.09 . 1.31 . 1.00 . 1.14 . 1.04 t.31 . 1.09 l . 2 86 0.94.0.94.0.3S.

. 0.36 . 0.99 . 0.9$ . 1.27 . 1.09 . 1.28 2.3 . 1.1 . 0.7 . -1.4 . -3.5 . 2.3 .

1.00 . 3.19 . f.09 0.6 . e.6 .

. 1.33 . 1.0 7 . 1.24 . 0.9 3 . 0. 98 . 0. 36 f.S . 2.0 . -1,6 . -3.7 . -l.1 7

0.4 . 1.5 .

. 0.93 . 0.74 . 1.06 . 1.04 0,$4 9.21 1.07 . 1.14 . 0.99 . 1.18 . 1.07 . 1.21 . 1.04 l .08 . 0. 78 . 0.S1

. 0.79 . 1.00 . 1.04

2. 3 . 1.0 . 0.3 . -0.3 .

1.20 1.06 . 1.14 . 0.99 . 1.10 . 1.06 . 1.16 . 1.00 1.07 . 0.e0 . 0.5% . 4

. *I.I. -0.7 . =0.8 . 0.9.=0.3.-0.4. -4,5.-3.6.-1.0 2. 3 . 4.1

. 0.39 . 0.90 . 0.94 1.29 . 1.09 . 1.31 . 1.00 . 1.18 . 1.00 . 1.31 . 1.09 f.29 . 0.94 0.94 . 0.39 .

0.34 . 0.97 . 0.92 . 1.27 . 1. 00 . 1.29 . 1.01 . 1.14 . 1.0A . 1.28 . 1.06 . 1.26 . 0.94 1.00 . 0.37 9

. 2.3 . -0.6 . =2.1 . -1.5 . =0.4 . -1.4 . =2.3 . -0.8 . -1.4 . -1.6 . =2.6 . -1.6 . 0.2 . 2.8 . 4.0

. 0.04 , 0.19 . 1.22 1.33 . 6.00 . 1.31 . 1.07 . 1.31 1.00 . 1.33 . 1.22 . 1.19 . 0.e4 .

. 4.e4 . 1.16 . 1.22 1.36 . 1.06 I.20 . 1.0S . 1.20 . 1.06 1.31 . 1.23 . 1.19 . 0.92 . 10

. -2.3 . *2.3 . 0.5 . l.9 . 0.4 . -2.2 . *1.3 . -2.2 . *l.0 . -1.3 . 0. 7 . 0.S . S.2 .

..................................................... . .s..................................

. 0.S4 . 0.97 . 1.26 . 1.04 1.33 . 1.04 . l.21 1.00 . 1.33 . 1.04 1.26 . 0.97 . 0.S4

. 0.S4 . 0.94 . 1.27 . 1.07 . 1.32 . 1.06 . 1.19 . 1.05 . 1.32 . 1.04 . 9.28 . 4. 90 . 0. SS .

2. 6 . -0. 7 . =2. 3 . -2. 3 . 11

. 0.9 . 0.9 . 1.5 . -2. e . .a S . 0.1 1.7 . 1.5 . 2.e .

0.62 . 1.02 . 1. 26 . 1.22 . 1. 24 . 1.0e> . 1.20 . 1.22 . 1.26 . 1.02 . 0. 62

. 0.6S . l.06 . 1.29 . 1.22

. 4.0 .

1.25 . 1.02 . 1.21 . 1.21 . 1.2S . 1.05 . 0.64 3.3 . 2. 6 . -0. 0 . -2. 4 . -2. 4 . -2. 4 . *0.4 . -0. 9 12 2.6 . 2.6 .

0.62 . 0.97 . 1.19 . 0.94 1.00 . n.94 1.19 . 0.97 . 0.62 .

0.6% . 1.03 . 1.21 . 0.92 . 1.06 . 0 93 . 1.18 . 0.97 . 0.64 13

. S.O . 6.0 . 1. 7 . -2. S . -1. 9 . -1. 5 . - l .0 . -0.1 2.S .

. 0.54 . 0.44 . 0.94 . 0.74 . 0.94 . 0.e4 . 0.54

. 0.57 . 0.98 . 1.01 . 0.00 . 0 96 . 0.07 . 0.S3 . 14

. 6.0 . F.e . 3. 7 . 2.1 . -1.4 . =0.9 . -s.6 .

. StantAAP . 0.35 . 0.93 . 0.39 . . Avinact .

O.fv6ATION 1.493

. . 0.34 . 0.SS . 0.3S . .PC7 04FFtsetsect. 15

. . . 9.6 . 4.e . -0.3 . . 1.e

SUMMARY

MAP NO: N2-3-38 DATE: 6/21/84 POWER: 100% )

CONTROL ROD POSITIONS: F-Q(T) = 1.760 qPTR:

1 D BANK AT 221 STEPS F-DH(N) = 1.453 NW 0.996 NE 1.002 F(Z) = 1.144 SW 1.006 SE 0.994 i F(XY) = 1.546 BURNUP = 13299 MWD /MTU \.0 = -2.60(%)

24 I 4

1 1

Figure 4.4 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE 1.2 ,

(6.0, 1.0)

I'O (10.91, O.94)-

i M  :

= 0.e .

I

\

eg O

R M 0.6 . .

R L

1 Z

E 1 1

D F 0.4 (12.0, 0.45),

o -

t e

I I  :

0.2 '

4 0 0 ,. .,.

0 2 4 5 8 10 12 CORE ME10H1 IFT1 BOTTOM TOP 25

Figure 4.5 NORTH ANNA UNIT 2 - CYCLE 3 HEAT FLUX HOT CHANNEL FACTOR, F (Z)

N2-3-13

e. .

n .

w V

2.0 +

Ed Cr .

m . NNNN w . X X XNNNNN

. NNNN N N N M . N N NNNNN Q . NN N N N t; *

. N N

N g

N N N NN N

1.5 .+ N N N

a  : M

~

N N

. N j . N O ..,..

N NN H - N O . N

= .

N x

o

=

d .N N

  • M M

y 0.9

  • 6  :
,. . ;,. . . ;,. . . . g. . . . ;,. . . ;,. . . ;,. .

30 TION OF CORE TOP OF CORE AXIAL POSITION (NODES) 1 1

l l

i I

l 26 1

1 i

1 i

Figure 4.6 NORTH ANNA UNIT 2 - CYCLE 3 HEAT FLUX HOT CHANNEL FACTOR, F (Z)

N2-3-25 2.9 +

m .

A .

N .

v 2.0 +

HO

  • h
  • w -

M

  • 4NNNN N N Jt M Q N N N N p =

MMM N N NNMMNNN NNNN g

  • N N . NN N N N NN N NNNM

,4 ..S .

= M N N

=

N N d - a U N 3

  • NM N

Q

  • M

. . . =.

H N O .X

=  : M N

g -

N w

a  :

m .

g ..S ,+

si

. ;,. . . . g. . . . ;,. . . . ; ,. . . ;,. . . ;,. . . . ;,. r. . . ;,. . . . ;,. . . . ;,. . . . ; . . .

AXIAL POSITION (NODES) 27

_ _ _._ _ . . . - - - - _ _ - . . . ~ . _ _ _ _ . _ _ . _ _ , _ _ . . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _. . _ _ .

l l

l 1

I I

Figure 4.7 NORTH ANNA UNIT 2 - CYCLE 3 HEAT FLUX HOT CHANNEL FACTOR, F (Z)

N2-3-38 2.9 .+

^ .

N .

V P Cf 2.0 .+.

4 M =

MNN O

  • N N NNNNN H
  • N NN MNNMM NNNN Q
  • N NNNNN MNNNN N 4 M NM N NN N N N N N i.S +

N N N N g . M M N N

z z  :

$ .M N N

c ... .

w . N N

O = N

= .

N ts d  :

g ..,.

d

=  :

,.. . g. . . . ;,. . . . g. . . ;,. . . . ;,. . . . ;,. . . . ; ,. . . . ;,. . . . ;,. . . . ; . . . ;

80T10N Of Coat TOP OF CORE AXIAL POSITION (NODES) 28

Figure 4.8 NORTH ANNA UNIT 2 - CYCLE 3 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F q*P, vs.

AXIAL POSITION F0 = P LIMIT

= NAXIMUM F0 m P 2.4 4 I

l 2.2 '

'N -

2.0 '

)

1.8 - * *** i

...... . . - l

, 4 . ii . l

\

I .4 * * .

F .

G * '

-_ *\

r 3 10 -

Ib 0.8 06 -

0.4 0.2 0

0.0-61 55 50 45 40 35 30 25 20 15 10 5 t BOTTOM 0F CORE TOP OF CORE 29

- . . - _ - - . - - . - , . _ , _ - . . - - . - - _ . , . ~ - , _ - - . - - - - _ _ - . . -

Figure 4.9 NORTH ANNA UNIT 2 - CYCLE 3 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F g (Z),

vs. BURNUP

. TECH SPEC LIMIT X MERSURED VALUE 2.4 a

2.3 M

R 2.2 X -

3 M

U 2 .1 M 1 H

E 2.0 R

T v

F 1.9 L ~

U x X Jt 18

  • x *
  • y yr x x >

T x

1.7 -

C H ,

R N 1.E N '

E L

1.5 F -

R C

T 1.4 0

R 1,3 1.2-O 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MND/MTU) 30 l

Figure 4.10  ;

NORTH ANNA UAIT 2 - CYCLE 3 l MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta H, '

l vs. BURNUP

- TECH SPEC LIMIT X NERSURED VALUE 1.60 1.55 E 1.50 1 N

T x  ;

H ^

R  :

L 1.45' ' x  :

p :c Y -

x x X X

t R x
  • I 1 40 S

E -

H 0 1.35 T ,

C '

H A 1.30 N  :

N E '

L l.25 F -

g .

C T

0 1.20

R l.15'  ;

a 1 102  ;

s-0 2000 4000 6000 8000 10000 12000 14000 16000 j CYCLE SURNUP (NWO/MTUI l 31

. . .. _ _ . _ _ _ _ . - _ .m_ . . _

. Figuro 4.11

' NORTH ANNA UNIT 2 - CYCLE 3 TARGET DEL 7 \ FLUX vs. BURNUP 10, 8

6:

T R'

R' G 4 E

T  :

l 0

E 2 L

T A

F.

L-u X

. I -2  :

N 4

P E. A R~ '-4  : ..  :.  :  :

+

C s ,

E . .

N T A .

-6' i

l l,

0 2000 4000 6000 8000 10000 12000 14000 16000 i CYCLE SURNUF (MWO/NTU)

i l

32 1

. . . , . . - . . .. . . . . . . . , . _ , , , _ ~ . , _ . _ _ ~ _ . - , . - - _ _ , . . . . , . _ - _ . - ._ ....,_,_ _ ,m.. . _m,~..

Figure 4.12 NORTH ANNA UNIT 2 - CYCLE 3 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-3-13 1.5 *

Fg = 1.242
A. O. - -4.8

= XXXXXX XX 1.2 + XXXX X X XXX

= X X

. X XX XXX

= X X X XX

= X X

  • XX X

= X XX

= X X

= X X X

^ X X g 0.,=. X g i X x.

. X- X

. XX E X

- x n

5 -

  • x

%n . .. X

. X

  • X X

= X C.3 +

.g....;,....g....;,....;,....;,....g....;,....;,....;...;

SOTTON OF CORE TOP OF CORE

, AXIAL POSITION (NODES) 33

1 l

Figure 4.13 NORTH ANNA UNIT 2 - CYCLE 3 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-3-25 1.5

  • l F

g

= 1.161 A. O. = -4.0

... .. xxx

. ** xx xxxxxx

- xx xxxxxx xxx

  • X x g x xx x x xx

- x x xx x xx

~

A x x e.,. . , x 8  :

x N

>t x xx

=.

  • x x g  :

, x w

  1. : xx

.x C.0 +

s;; ,;j; jo ,....g....;,....;,,,,, ,,,, ,,,, ,,,

109 Of Cent AXIAL POSITION (NODES) 34

,9 Figure 4.14 NORTH ANNA UNIT 2 - CYCLE 3 CORE AVERAGE AXIAL POWER DISTRIBUTION N2-3-38 1.5

  • F., = 1.144 A. 07 = -2.6

,.a

= XXX XX

= X X X XXA

=. X X XXX X XXXX

  • XXX XXXXXX XXX XXX X X

= X X X X

= X XX X

= X X X X

..,.= x x

= X n

8  :

N.4 p - = X X A =

= X o-X x

n = X g =X v =

, s -

i N --

C.3 *

=

t .

3 .

.0

,.....;,....;,....;,....g....;,....;,....;,....;,....;,....;,....;...;

-SOTTOM OF C0pt tap OF COAC l

AXIAL POSITION (NODES) i 35

Figure 4.15 NORTH ANNA UNIT 2 - CYCLE 3 CORE AVERAGE AXfAL PEAKING FACTOR vs. BURNUP 14 1.3 A

X 1

A L a

^

P ..

E a A

K 1.2 I a N

G i G

F at R ^ ^ '

C A A I

0 R _

1.1

+

1.0-2000 4000 6000 8000 10000 12000 14000 t6000 CYCLE SURNUP (MWD /NTUI 36

Section 5 l

PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are important with respect to the offsite dose calculation values associated with accident analyses.

Both l-131 and 1-133 can leak into the primary coolant system throught a breach ' in the cladding. As indicated in the North Anna 2 Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1.0 pCi/gm for normal steady state operation. Figure 5.1 shows the dose equivalent 1-131 activity level history for the North

-Anna 2, Cycle 3 core. The domineralizer flow rate averaged 76 gpm during power operation. The data shows that during Cycle 3, the core operated substantially below the 1.0 pCi/gm limit during steady state operation (the spike data is associated with power transients and unit shutdown). Specifically, the average dose equivalent 1-131 concentration of 0.0405 pCi/gm is equal to 4% of the Technical Specifications limit.

i i The ratio of the specific activities of I-131 to 1-133 is used to characterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because 1-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole def ects, where the diffusion time through the defect is on the order of days, the 1-133 l decays out leaving the 1-131 dominant in acm!ty, thereby causing the l 37 i

r x

- ratio to be 0.5 or more for a domineralizer flow rate of 75 gpm. In the

. case of large leaks, uranium particles in the coolant, and " tramp" u ra nium*, where the diffusion mechanism is negligible, the 1-131/l-133 ratio will generally. be less than 0.1 for a domineralizer flow rate of 75 gpm. Figure 5.2 shows the 1-131/l-133 ratio data for the North Anna 2, Cycle 3 core. These data generally indicate there were probably pinhole defects in the fuel used during Cycle 3.

J 4

  • " Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process.

38

- . . . _ _ . - . _ . . _ . _ . .__ _.__. _ _ ..__.. ~ . _

Figure 5.1 NORTH ANNA 2 - CYCLE 3 DOSE EQUlVALENT l-131 vs. TIME TECHNICAL SPECIFICATIONS LIMIT (n-o-

w-u3-ci-N-

E C e O N

in LM

  • O Og C $ 0 0 -- . =
  • O U

O *~

O O

O O

O QC co- 0 0 C O O e oO

- n. e O O e r 0 0 O o o O m- o0 g @O

- O g O i

N.

00 M&

  • O O

O O

8 p

4 ,

~

f U g.

l or'T-]

O I

I Fff U '

.50 g Y ' l g I" i e E I I I I I I I I I I I I I I JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1963 1984 39

l Figure 5.2 l NORTH ANNA 2 - CYCLE 3 1-131 / l-133 ACTIVITY RATIO vs. TIME E

a m o i a m

O O

3 C'

c us ,

"3 nu C

3 Wm 3 mN wi, ,,

b U

D m _

.-. D o I b O

" C N O O m e O p- e- O

" Cr C O

O '

Q d O O'  :

  • d O e e,

$, , og e B

g hh h NbhNPhMON a

- 100 rr7-] , -

( lj y

50 g s - ,

g 0

i e i e i i e i i i .i e JUN JUL RUG SEP OCT NOV DEC JAN FEB MAR RPR MAY JUN JUL RUG 1983 1984 40

Section 6 CONCLUSIONS The North Anna 2, Cycle 3 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and all core related Technical Specifications limits were met . with significant margin. No abnormalities in reactivity, power distribution, or burnup accumulation were detected. In addition, the mechanical integrity of the fuel has not changed significantly throughout Cycle 3 as indicated by the radioiodine analysis.

L i-l l

l i 41 l

l L

I l

i 1

Section 7 REFERENCES

'1)- B. D. Mann, " North Anna Unit 2, Cycle 3 Startup Physics Test Report," VEP-NOS-4, June, 1983.

2) North Anna Power Station Unit 2 Technical Specifications, Sections 3/4.1 and 3/4.2.
3) T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6 Rev-8, April,1984.
4) R. D. Klatt, W. D. Leggett, lil, and L. D. Eisenhart,

" FOLLOW Code," WCAP-7482, February,1970.

5) W. D. Leggett, Ill cnd L. D. Eisenhart, "lNCORE Code,"

WCAP-7149, December,1967.

42

+ ,m,- ww- , - ,,---n.--w- , , , -

- - - - - - --- -,