ML20077J962
ML20077J962 | |
Person / Time | |
---|---|
Site: | North Anna |
Issue date: | 07/31/1982 |
From: | Dillard F, Ford C, Snow C VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | |
Shared Package | |
ML20071K375 | List: |
References | |
VEP-FRD-50, NUDOCS 8208020088 | |
Download: ML20077J962 (49) | |
Text
{{#Wiki_filter:- - - - _ - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _
.. : 2 .: : . :- : ' ' ~ '
i 9EP-FRD- 50 i i Vepco t NOTTH ANNA UNIT 1, CYCLE 3 CORE PERFORMANCE REPORT . l
~
1 1. PUEL RESOURCES DEPARTMENT VIRGINIA ELECTRIC AND POWER COMPANY s . .i ~, , s _ : :'s
VEP-FRD-50 HORTH ANNA UNIT 1, CYCLE 3 l l COPE PERFORMANCE REPORT l BY C. Alan Ford F. Douglas Dillard Reviewed: Approved: _ {. o , C. T. Snou, Supervisor E [. Lo g'eo, Director
~
Nuclear Fuel Operation u lear E4cl Operation Nuclear Fuel Operatic.n Subsection Fuel Resources Department Virginia Electric & Power Company Richmond, Virginia July, 1982
"= _ _ _ _ . _ _
l 4- .,' l ~ t -
'+g , . *= :. %f'*'~T ?
g
. 4r - .. .
CLASSIFICATION / DISCLAIMER .
, ,- g i s+ f ',
Ehe data, techniques, information, and conclusions in this report have . . i been prepared solely for use by the Virginia Electric and power Company , ,. .c-Y e (the Company), and they may not be nppropriate for use in situations y ; . othat than those for uhich they were specifically prepared. The company - therefore makes no claim or warranty whatsoever, express or implied,as , . . " '- ',
. s.
to their accuracy, usefulness, or applicability. In particular, THE ' COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR -} [j y ..
, dj,jn
- Q PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALIE3 OR USAGE OF TRADE, with respect.to this report,or any of the ,, .'gh
- p. ]*
- data, techniques, information, or conclusions in it. By making this J'
- 7. .
report available, the Company does not authori=e its use by others, and .." - .?( y .
,w any such use is expressly forbidden except with the prior written , ~, -
approval of the Company. Any such written approval shall itself be ,,
. ~;
g 9, f the disclaimers of liability and disclaimers of 6 y deemed to incorporate ., . . f uarranties provided herein. In no event- shall the Conpany be liable,
* # - - ? ~: ?
under any legal theory whatsoever (whether contract, tort, warranty, or [ . strict or absolute liability), for any property damage, mental or *
.. ~ "E .,
q # ',.
.4 -.
physical injury or death, loss of use of property, or other damage .
~
- I' <4E"'-
resulting from or arising out of the use, authorized or unauthori=ed, of f , -- /?- *
.: = -
this report or the data, techniques, information, or conclusions in it. (J'n - a _. :
- .I e !*
[. .'$( d ' 4
+* : .
fNY. ' :
,o '.
a, s ., O k ' %'
,._m
- ^s ;* 3
.4 * < q.
1 - ., .' s w N r n
+. .
ACKNOWLEDGEMENTS The authors would like to acknowledge the cooperation of the North Anna Power Station personnel in supplying the basic data for this report. Special thanks are due Messrs. R. S. Thomas and J. P. Smith. Also, the authors would like to express their gratitude to Dr. E. J. _ Lozito and Mr. C. T. Snou for their aid and guidance in preparing this -[ report. 9 11
----~ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _
TABLE OF COMTENTS SECTION TITLE PAGE NO. Classification / Disclaimer . . . . . . . . . . . . i Acknowledgements . . . . . . . . . . . . . . . . ii List of Tables . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . v 1 Introduction and Summary. . . . . . . . . . . . . 1 2 BurnuP Follow . . . . . . . . . . . . . . . . . . . 7 S Reactivity Depletion Follow . . . . . . . . . . . 14 4 Power Distribution Follou . . . . . . . . . . . . 16 5 Primary Coolant Activity Follow . . . . . . . . . 36 6 Conclusions . . . . . . . . . . . . . . . . . . . 40 7 References. . . . . . . . . . . . . . . . . . . . 41 iii
== = * =^
LIST OF TABLES
- as m ~
TRBLE TITLE PAGE NO. i 14 . 1 Summary of Incore Flux Maps for Routine Operation . . . . . . 20 --
===
6
-e Y ==== -M M .m m ] 'm-iv -
, 8 ,)
d LIST OF FIGURES FIGURE TITLE PAGE NO. 1.1 Core Loading Map . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Movable Detector and Thermocouple Locations. . . . . . . . . . 5 1.3 Control Rod Locations. . . . . . . . . . . . . . . . . . . . . 6 2.1 Core Burnup History . . . . . . . . . . . . . . . . . . . . . 9 2.2 Monthly Average Load Factors . . . . . . . . . . . . . . . . . 10 2.3 Assemblyuise Accumulated Burnup Measured and Predicted . . . 11 2.4 Assemblyuise Accumulated Burnupt Comparison of Measured with Predicted . . . . . . . . . . . . . . . . . . . 12. 2.5 Batch Burnup Sharing . . . . . . . . . . . . . . . . . . . . 13 3.1 Critical Boron Concentration versus Burnup - HFP-ARO . . . . . 15 4.1 Assemblyuise Pouer Distribution - N1-3-14 . . . . . . . . . . 22 4.2 Assemblyuise Pouer Distribution - N1-3-33 . . . . . . . . . . 23 4.3 Assemblyuise Pouer Distribution - N1-3-87 . . . . . . . . . . 24 4.4 Hot Channel Factor Normalized Operating Envelope . . . . . . . 25 4.5 Heat Flux Hot Channel Factor, F(T)-9(Z) - N1-3-14 . . . . . . 26 4.6 Heat Flux Hot Channel Factor, F(T)-9(Z) - N1-3-33 . . . . . . 27 4.7 Heat Flux Hot Channel Factor, F(T)-2(Z) - N1-3-87 . . . . . . 28 4.0 Maximum Heat Flux Hot channel Factor, F-9, versus Burnup . . . 29 4.9 Enthalpy Rise Hot Channel Factor, FDH(N), versus Burnup. . . . 30 4.10 Target Delta Flux versus Burnup . . . . . . . . . . . . . . . 31 4.11 Core Average Axial Power Distribution - N1-3-14 . . . . . . . 32 v
LIST OF FIGURES CONT'D FIGURE TITLE PAGE MO. 4.12 Core Average Axial Power Distribution - N1-3-33 . . . . . . . 33 4.13 Core Average Axial Power Distribution - N1-3-87 . . . . . . . 34 4.14 Core Average Axial Peaking Factor ,F-Z, versus- Burnup . . . . . . 35 5.1 Dose Equivalent I-131 versus Time . . . . . . . . . . . . . . 38 5.2 I-131/I-133 Activity Ratio versus Time . . . . . . . . . . . 39 vi
4
': ' 2 a-.-
Coction 1 . , -( .j [
- 1 INTRODUCTION AND OUMMARY w . i .. - 'a ,
On May 17, 1982, North Anna Unit I completed Cycle 3. Since the '.
- e -
I - initial criticality of cycle 3 on April 6, 1981, the reactor core Y- - - produced approximately 79 x 106 MBTU (13,335 Megawatt days por metric -
.. '= T contained uranium) which has resulted in the generation of ton of appscximately 7.4 x 10' MWHr gross (7.0 x 10' MWHr not) of electrical .. . .) . .. . . 4. .
purpose of this report is to present an analysis of the *~ The
=
energy. The physics ' core performance for routine operation during Cycle 3. ~ 8, ?*-: -' f ),J tests that vero performed during the startup of this cycle were covered :
++
in the North Anna Unit 1, Cycle 3 Startup physics Test Report' and, J' '
~~ i~. s therefore, will not be included here. .6 The third cycle core consisted of four batches of fuel. Tuo once .;
burned batches and one twice burned batch were brought from Cycles 1 and . 2 (Batches 1A3, 3A2, and 4). One fresh batch of fuel was added to the ' ' i. -~ 1 .,
* , . ~ ,e pg cycle 3 core. The North Anna 1, Cycle 3 core loading map specifying the ". - "
1 _r fuel batch identification, fuel assembly locations, burnable poison .c. . j locations, and source assembly locations is shown in rigure 1.1. i;'. *
-= '~
Movable detector locations and thermocouple locations are identified in J a ?. Tigure 1.2. Control rod locations are shown in Figure 1.3. f, ; f Routine core follou involves the analysis of four principal ; . performance indicators. These are burnup distribution, reactivity . depletion, power distribution, and primary coolant activ2ty. The core . It l burnup distribution is folloued to verify both burnup symmetry and 1 r
> '~g i 1 .; - ' '8 l , t?, . ~
y-
.. . /
l
^^^
l _ _==- proper batch burnup sharing, tl.ereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is -- inserted. Reactivity depletion is monitored to detect the existence of -j55
,mme eny abnormal reactivity behavior, to determine if the core is depleting m
as designed, and to indicate at what burnup level refueling will be 2"[)) a --- required. Core power distribution follow includes the monitoring of _7 nuclear hot channel factors to verify that they are within the Technical ,,, Specifications z limits thereby ensuring that adequate margins to linear - power density and critical heat flux thermal limits are maintained. _]" Lastly, as part of normal core follou, the primary coolant activity is -U menitored to verify that the dose equivalent iodine-131 concentration is __-- within the limits specified by the North Anna Unit 1 Technical _-d!
~
Specifications 2, and to assess the integrity of the fuel. __ Each of the four performanco indicators is discussed in detail for the North Anna 1, Cycle 3 core in the body of this report. The results age summarized below ___ a
= - ==
- 1. Burnup Follou -
The burnup tilt (deviation from quadrant
-_=
symmetry) on the core was no greater than 20.5% uith the burnup em accumulation in each batch deviating from design prediction by less than 0.9%. M
- 2. Resctivity Depletion Follow - The critical boron concentration, used to monitor reactivity depletion, was consistently within 10.6% bh delta K/K of the design prediction which is well within the 11% delta ---
K/K margin allowed by Section 4.1.1.1.2 of the Technical Specifications. ___- G 2 -
- 3. Pouer Distribution Follow - Incore flux maps taken each month indicated that the assemblyuise radial power distributions deviated from the design prsdictions by an average difference of less than 3%. All hot channel factors met their respective Technical Specifications limits.
- 4. Primary Coolant Activity Follou - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 3 was approximately 8.2 x 10-2 micro-Ci/gm. This corresponds to less than 9%
of the operating limit for the concentration of radioiodine in the primary coolant. . In addition, the effects of fuel densification were monitored throughout the cycle. No densification effects were Observed. 3
Figure 1.1 -
==
m NORTH ANNA UNIT 1 - CYCLE 3 CORE LOADING MAP R P H H L K J H G F E O C B A W - l C33 1 E59 l C46 l
-3 l
i l l l I l 1 M I l C11 1 E53 ! E21 1 051 1 E41 1 E51 1 C29 l - 1 I I SP l l SP l l l 2 - l C17 I E64 E18 032 l C05 1 008 E06 E56 C45 i l l 4P l 20P I l SS I l 20P l 4P l 1 3 - 1 I I I I I I I I i _ l CC8 1 044 i E04 1 006 I E29 i CIS l E61 1 030 1 E14 1 035 i C19 l l i l 20P l ! 2CP l 8P l 20P l l 2CP l l I 4 Z I I I I l l I I I I I i l C24 1 E40 l E 13 1 005 l E19 i C13 1 034 l C44 i E50 1 047 i E02 1 E60 I C37 i l l 6P l 20P l 1 20P I i 12P l 1 20P l l 20P l 4P l l 5 1 I I i 1 I I I i I I I I i r i EDS i E24 1 017 I E30 i C32 1 045 1 003 1 014 i C28 I E47 l CO2 1 E16 l E57 i _ l l 20P l l 20P I l 12P l 1 12P l 1 20P I l 20P l l 4 -- l l 1 l l __ I l ! I I I I l I i ' l C50 1 E01 1 039 l E54 i C27 1 022 l 007 l E45 1 037 1 020 i C51 l E39 l 040 1 E07 i C26 l - l l 8P l 1 20P l i 12P l l 20P l l 12P l i 20P I l 6P l l 7 _
! l I I I I I I I I I I I I l 1 l E33 I C41 1 C43 1 023 1 009 1 031 l EIS I All l E35 1 027 1 015 1 049 I C49 l 042 1 E20 l i i i I 6P l 12P l 1 20p i 1 20P l i 12P l 6P l 55 l l l 8 -
I I l l l 1 1 I I I I I i l I i I C04 1 E44 1 050 1 E17 I C42 I 510 1 029 I E10 1 021 1 048 i C12 I E52 1 046 I EZ7 I C04 I " i I op I l 20P 1 1 12P 1 1 20P l t 12P l l 20P I l $P l ! 9 I I I i 1 i l i I I I I I I l l l E09 l Ee3 1 013 1 E46 I C14 1 026 1 004 l 025 l C25 l E22 l C19 l E31 1 E36 I l l I 20P 1 I I 1 20P l I I i 12P I I I i 12P l I,_ _ l i 20P l l I i 20P 1 I i 1 1 10 _" -W l C38 I E32 1 E23 1 011 l E26 i C44 1 028 I C10 1 E49 1 033 1 E56 i E36 i CEO l l 2CP I l l 4P 1 20P ! i 12P l l 20P l l 20P l AP l l 11 -- 1 I I I I I I I I I I I I I I C36 1 016 i E55 1 012 i E42 1 033 1 E25 1 045 l Ell l CS2 i C07 1 l 1 l 20P I l 20P l 8P l 20P l l 20P l l l 12 l l l 1 1 1 I l I l l 1 - 1 C03 i E12 1 E03 1 001 l CO2 1 024 1 E37 l E05 l C21 1 M l l 4P l 20P l l SS I l 20P l 4P l l 13 4 C23 E34 1 E62 0 36 E24 1 E44 i C30 l l l 6P i l 6P l l l 14 - 1 I I I I I I I _ l C39 I E45 i C40 1 - I l--> ASSEMBLY 10 l I I i 15 - I l--> cut CF Tut l l l l M i 1 . oLLCun G -B A. $5 - $ECCIOAPY SC'JRCE _ B. XXP - St2 U.SLE POISCH ASSEMBLY q (XX-tLTata CF 2005 3 _ mm J FUEL ASSEMBLY DESIGN PARAMETER = BATCH 1A3 3A2 4 5 l INITIAL ENDICHMENT (W/0 U235) 1 2.11 1 3.10 l 3.21 1 3.41 1 - 1 ASSEMSLY TYPE I 17 X 17 l 17 X 17 l 17 X 17 l 17 X 17 1 - l N'JMBER OF ASSEMBLIES l 1 1 40 1 52 1 64 l - l FUEL RCOS PER ASSEMBLY I 264 l 264 I 264 i 264 ' I ASSEMBLY IDENTIFICATICH I All l CO2-CC8 1 001-052 l E01-E64 I I l I C10-C14 l l l l l l C17 I i 1 - l I l C19-C21 I l l l l l C23-C33 l l l l l l C30,C33 l I l l l 1 C36-C40 l I l C42-C4'2 I l I I I l 1 I i C48-C51 I l i l 1 1 I I i ---
~
i l _ t
Figure 1.2 NORTH AM4A UNIT 1 - CTCLE 3 MOVABLE OETECTOR Ate THERM 0 COUPLE LOCATIONS R P N M L K J M G F E D c 5 A l 8 8 l 1 Mc TC 1 I I I I i . I I l l l Tc l TC 1 te l l E I I I I I I I I re i I I to 6 11 I I te I i Tc I I Tc I re l Tc I ll Tc I Il Tc I 3 I I I l* I I I 'l i I I I I I I I I I Tc I I Me I te I te , Tc I I 4 t I 1 i u I l l I i i re i Mo i I I te I te i Tc l re i Tc l Tc ' MD I Tc I Tc I 5 I I
- 1. I I I I I I i . m I i l I I i 1 TC '
l Tc I I to , Tc te 1 I I I 6 I I I I I I I I ll l , I i i i i i Tc I Tc . te i I . I Mo te i I Tc I to te 1 7 I ' I I I I I I I l 11 to I l PD ,, I i l l i MD ,l I te i Tc ll Tc I I TC 'l Tc I Tc , Tc ;i MD l Tc I , Tc 'l MD TC 4 i I I I ! f I I I I ' I I
,' I I I I I I re i l' l ll t , Tc I re l l I Tc I re Tc I I Mo I 9 I I I I I I I I I I I re ll l i re ! I I l .I re i l l Tc I I l Tc I '
I I Tc to i Tc I to I l I I I , 1 I I I I I I I I re 1. I re I i i I I l' TC 1 te ' Tc I Tc I I Tc to .I I I i 11 I I I I ' I 'I I I I I I I I i . I re I I I I re i i re 1 I Tc 1. I Tc I I Tc l te i Tc I 1E I I I I l ' ' l I I I I I le , te 1 l 4 I I Tc I . Tc I I I is I . I I u I I i
,l to I i ll I I I Tc I I , m i i ni 14 I I I I I I I re - tevAsLE DETrcroR I 1 Tc - THERM 0 COUPLE I te I Tc TC 15 I I 5
Figure 1.3 NORTH Alt 4A UNIT 1 - CYCLE 3 CCHTROL RCD LOCATIQ43 R P H M L K J H G F E O C 8 A 160' 1 LOOP C l 6 l l LOOP 8 1 OUTLET 1.,,,,_, _ f ,,_ l ItiLET H-41 Nl_ l^_l _l SAi l _l l _SA 1l ^_l l l l SP _ l 2l H-43 3 i -irl-lrl-l-l-Irl-lrl i 4 i-lwi-ivl-!vl-l-l-lvl-l-l S lrl-Irl-lrl-Irl-Irl-l s-l-lri LCO ,8 umpC_i_i_i_i_i_i_i_i_i_i_i_i_l_i_lZ IKETl l l SA l N-Irl-i-l-irl-l-l-Iri-l-l-Irl l 1 1 58 l l $8 i l SP l l SA i i CUTLET T.- 7 8 l_l_l_l_l l_I_l l_ _3 _ l_I_ __l _l__ l I I i 1 SA I j SP l l SS l 8 SS I l l l SA I I l 9 l_l_I_1_!_l_I_I_l_I_l_I_ IA I i8 I l 0i lc I IO I _I_l Ie i _IAl_ I I to l_l l_l l So 1 l_i_I_1_l_I_I_I_l I SP l 1 $8 l l SP i l l 11 I i I 1 . 3 I_l_1 I_l_.1 1 l_.l_.l_! 1 i I 12 i ic I i8 1 1 1 ie l lC I l_I_l l_!_l_l l_l l_l l i I SP l i SA I i SA i l l l 13 N-44 l_,,, l.,,,,,, l _,,,l _ l,,_,,_ f ,,,,,,,, l .,,,_,1,,,,,,,1,,,,,,,1 N-42 I ia i iO I IA I i 14 s' '-l-l-l--l '-k 1. A.SOR. R MATERIAL
=^ '
l
=^
AG-!N-CD 08 FUNCTION 6421BER OF CLUSTERS CONTROL BANK 0 8 CCitTROL BAtM C 8 CD4TRCL BA7M S 8 CCf tTWOL BAtM A 8 SHUTDOL34 BAPM $8 8 SHUTD05a4 BANK SA 8 SP (SPARE 500 LOCATIONSI 6 6
-' + e - - e , , , . . . . . . . . , , , . , , , , . , , ,. , ,, ~
1 . T e
~
Section 2 ~ 4 l. BURNUp FOLLOW . ,, 4 s.. The burnup history for the North Anna Unit 1, Cycle 3 core is j' -- graphically depicted in Figure 2.1. The North Anna 1, Cycle 3 core (~
?
2.2, the average '* cchieved a burnup of 13,335 MWD /MTU. As shown in Figure .
.y . -
load factor for Cycle 3 was 79.5% when referenced to rated thermal power . (2775 MW(t)). -
< .~
Radial (X-Y) burnup distribution maps show how the core burnup is s . f . L. ' shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE3 computer code is used to f' -
~
calculate these assemblywise burnups. Figure 2.3 is a radial burnup :
.~ .y W- ,
distribution map in which the assemblywise burnup accumulation of the *y .. y core at the end of Cycle 3 operation is given. For comparison purposes, . Figure a radial burnup
~'
the design values are also given. 2.4 is
+
distribution map in which the percentage difference comparison of ,
. - 9 measured and predicted assemblywise burnup accumulation at the end of r ~.; . +
Cycle 3 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within !3% of the predicted . - - '. addition, deviation from quadrant symmetry in the core, as "N values. In
~~ .s indicated by the burnup tilt factors, was less than !0.5%.
The S urnup sharing on a batch basis is monitored to verify that the .
+
core is operating as designed and to enable accurate end-of-cycle batch . burnup predictions to be made for use in reload fuel design studies. - ' Batch definitions are given in Figure 1.1. As seen in Figure 2.5, the
~ '
7
?
l < t , m f
e- ,
= .
batch burnup sharing for North Anna Unit 1, Cycle 3 followed design .-
, i-
! - r, . ipredictions very closely with each batch deviating less than 0.9% from ..~ "_
. k -
ty -h ' design.; this is considered excellent agreement. Therefore, symmetric burnup in conjunction with good agreement between actual and predicted ' f~-" assemblyuise burnups and batch burnup sharing indicate that the Cycle 3 core did deplete as designed. , 9: ...< b k.g 4
?p"-
lb. te (
\~.,, ' ,_~. ..+ ,1
- e ,_.
,e .6 : '
4 . -
- # 3 *>- zs e .a ..<
h* e - g s u z
.- -' v Ik .. ~
g s .
. .e ', .c
FIGURE 2.1 NORTH ANNA UNIT 1 - CYCLE 3 CORE BURNUP HISTORY 16000 15000 14000 13000 C Y 12000 l e L 11000
/
E 10000 [ l U 9000 - N 8000 7
/
7000 j M 6000 H 0 5000 ' l l M 4000 T U 3000 l 2000 / 1000 f
/
0-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A M J J A S 0 N O J F M A M J J A U U U E C 0 E A E A P R U U R Y N L G P T V C N 8 R R Y N L 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 TIMEtMONTHS1 9
e FIGURE 2. 2 " NORTH ANNA 1 - CYCLE 3 ' MONTHLY RVERAGE LORD FACTORS PERCENT 100 - - 2 90 -
?
80 - 70 - 60 - - M 50 - m 40 - , 30 - .
]
1 . - 60 - \ . l .x . 1 A M J J A S 0 N O J F M R M C C 0 E R E A P R Y l P R U U U E ___ R f N L G P T V C N 8 R R Y C l ? i
- i i
- i ?
i i i ' i MONTH l I N N THERMRL ENERGf GENER47!ON IN MONTH!MWHT1 LORD FACTCR : j 'EXCLUCES REF'JELING OUTAGESi 10 E
Figure 2,3 NORTH ANNA UNIT 1 - CYCLE 3 ASSEMDLYHISE ACCUMULATED SURNUP MEASURED AND PPEDICTED (1000 7%"J/M7U) R P H M L K J H G P E D C B A i I 31.06l 8.921 31.341 l MEASURED 1 1 1 31.331 8.851 31.331 1 PRt01CTED l 2 1 28.321 11.741 13.841 21.441 13.961 12.031 28.111 2 1 27.931 11.861 13.981 21.561 13.981 11.861 27.931 1 30.551 14.291 15.631 27.161 33.651 27.431 15.921 14.421 30.681 3 3 1 30.271 13.991 15.701 27.56; 34.031 27.561 15.701 13.991 30.271 m................._...__........._._....._................ 4 ! 30.461 20.471 16.361 28.271 16.44l 23.561 16.491 28.651 16.501 20.711 30.371 4 1 30.271 20.481 16.131 28.591 16.651 23.621 16.651 28.591 16.131 20.481 30.271 1 28.04I 13.961 16.013 27.401 16.781 35.12l 22.841 35.301 17.C51 27.631 16.23! 14.561 2S.511 5 5 1 27.93l 13.991 16.131 27.54l 16.981 3*.471 23.171 15.471 16.981 27.541 16.131 13.991 27.931 6 l 11.861 15. ell 2$.431 16.701 34.941 22. 771 25. 391 22.871 34.861 16.951 28.281 15.961 12.t81 6 l 11.861 15.701 28.591 16.981 35.05l 23.101 25.771 23.106 35 051 16.931 28.596 15.701 11.861 7 I 31.641 14.001 27.291 16.431 34.701 22.56l 26.311 16.721 26 831 22.64l 35.501 16.481 27.531 13.781 31.241 7 1 31.331 13.981 27.561 16.651 35.471 23.101 27.101 17.241 27.101 23.101 35.471 16.651 27.56l 13.981 31.331 8 i 8.86l 21.191 3'. 251 23.291 22.911 24.951 16.641 27.191 16.801 25.521 22.651 23.491 33.811 21.611 9.071 8 I 8.851 21.161 34.031 23.621 23.171 25.771 17.241 27.331 17.241 25.771 23.171 23.621 34.03l 21.561 8.851 9 ' 31.251 13.951 27.601 16.501 35.261 22.671 26.571 16.37I 26.421 22.831 35.031 16.641 27.491 14 261 31.401 9 1 31.331 13.981 27.561 16.651 35.471 23.101 27.101 17.2il 27.101 23.101 35.471 16.651 27.561 13.981 31.33! 10 1 11.8'l 15.811 25.471 16.921 34.691 22.761 25.271 22.421 34.521 16.761 28.641 15.871 12.441 10 1 11.861 15.701 2$.541 16.981 35.05l 23.101 25.771 23.101 35.051 16.981 28.591 15.701 11.861 1 28.131 14.371 16.45l 27. 31 16.741 35.101 22.741 34.971 16.861 27.111 16.511 14.351 27.981 1 11 1 27.931 13 911 15.131 27.541 16.981 35.471 23.171 35.471 16.981 27.541 16.131 13.991 27.931 12 1 30.741 21.07I 16.171 28.711 16.491 23.361 16.531 28.541 16.151 20.931 30.601 12 1 30.271 20.481 16.131 28.591 16.651 23.621 16.651 28.591 16.131 20.481 30.271 13 1 30.( 11 14.95I 16.191 27.551 33.811 27.511 15.851 14.131 30.571 13 1 30.27l 13.991 15.701 27.561 34.031 27.561 15.701 13.991 10.271 14 1 28.401 12.751 14.461 21.731 13.921 11.101 27.951 14 1 27.931 11.861 13.991 21.561 13.931 11.861 27.931 15 1 31.921 9.161 31.551 15 1 31.331 8.851 31.331 R P H M L K J H G F E D C 5 A 11
F Figure 2.4 _ n
^
z NORTH ANNA UNIT 1 - CYCLE 3 ASSET'8LYWISE ACCUMULATED BU2t!Up ' CCMPARISCH CF MEASU*AED WITH FliEDICTED (1000 MWD 41TU) R P H M L K J M G F t D C 8 A 1 1 31.061 6.921 3' %I l M2A5URED 1 1 1 -0.481 0.791 ?l I tb P X DIFF 1 1 28.321 11.74! 13.841 21.441 13.961 12.031 28.111 2 _i 2 1 1.421 -1.04l -1.031 -0.561 -0.171 1.461 0.661 3 3 1 30.551 14.191 15.631 27.161 33.651 27.431 15.921 14.421 30.681 1 0.921 2.201 -0.451 -1.431 -1.121 -0.451 1.411 3.131 1.371 . 4 4 1 30.461 20.471 16.36l 26.271 16.44l 23.561 16.491 28.65l 16 Sol 20.711 30.371 1 0.631 -0.041 1.451 -1.121 -1.261 -0.271 -0.758 0.201 2.301 1.101 0.331 5 5 1 26.0*! 13.961 16.011 17.401 16.761 15.121 22.841 35.301 17.061 27.631 16.231 14.561 26.511 1 0.401 -0.171 -0.721 -0.511 -1.171 -0.988 -1.451 -0.691 0.591 0.321 0.64l 4.09l 2.101 6 6 1 11.861 15.611 23.431 16.701 34.941 22.771 25.391 22.871 34.861 16.951 28.261 15.968 12.281 i 0.041 0.671 -0.551 -1.661 -0.311 -1.431 -1.461 -1.021 -0.521 -0.161 -1.101 1.641 3.521 7 _ 7 1 31.641 14.001 27.291 16.431 34.701 22.561 26.311 16.721 26.831 22.641 35.501 16.481 27.53l 13.781 31.241 1 0.998 0.141 -0.961 -1.361 -2.181 -2.361 -2.911 -3.001 -0.991 -2.001 0 091 -1.061 -0.101 -1.451 -0.281 8 8 l 8.868 21.191 34.281 23.291 22.911 14.961 16.841 27.191 16.801 25.421 22.681 23.498 33.813 11.611 9.071 1 0.171 -1.711 0.731 -1.381 -1.111 -3.071 -2.341 -0.701 -2.581 -1.331 -2.111 -0.551 -0.65l 0.24l 2.481 9 9 1 31.151 13.951 27.601 16.501 35.261 22.671 26.571 16.871 26.421 22.831 35.031 16.641 27.491 14.26! 31.401 I -0.271 -0.151 0.161 -0.931 -0.591 -1.661 -1.931 -2.141 -2.511 -1.191 -1.248 -0.111 -0.241 1.961 0.221 10 10 1 11.871 15.811 18.471 16.921 34.691 22.761 15.271 22.421 34.52I 16.761 28.641 15.871 12.441 1 0.041 0.671 -0.441 -0.351 -1.011 -1.471 -1.921 -2.961 -1.511 -1.291 0.161 1.051 4.661 11 11 1 18.131 14.371 16.45l 27.431 16.741 15.101 22.741 34.971 16.86l 27.111 16.511 14.381 27 81 1 0. 721 2.741 2.011 -0.421 -1.411 -1.051 -1.891 -1.411 -0.741 -1.561 2.351 2.611 0.191 1 30.741 21.071 16.171 28.711 16.491 23.361 16.531 26.541 16.151 20.931 30.601 12 12 1 1.561 2.851 0.261 0.421 -1.011 -1.091 -0.721 -0.191 0.131 2.201 1.101 - 1 30.831 14.951 16.191 27.551 33.811 27.511 15.651 14.131 30.571 13 13 1 1.651 6.911 3.111 -0.021 -0.651 -0.191 0.941 1.011 1.011 1 ARITHMETIC AVG l IPCT DIFF a 0.031 l 28.401 12.751 14.461 21.731 13.921 11.901 27.951 14 14 1 1.728 7.54l 3.441 0.801 -0.421 0.341 0.071 1 11.911 9.161 31.551 l AVG ABS PCT I 15 15 i STA> CARD DEV l I a 1.16 i l 1.891 3.561 0.711 i OIFF s 1.17 1 R P N M L K J N S F E O C 8 A Burnup Sharing _ (102 u:nt u) Burnup Tilt I i Cycle i I l l I Batch t 1 2 3 1 otal 1 l gy . 0.9951 I l_ l I i g g I 1A3 1 14.05 - 13.14 l 27.19 I g g _ g'g39 g i 3A1 i 11.57 11.70 t.66 1 31.93 1 I
- I - - 9.94 15.06 I 25.00 I I I I 5 I -
.4.8/ I 14.87 I l SW - 1.0037 l I I I I l l I Core 4verage 13.34 l l SE - 0,9993 l I
I I 12
N - FIGURE 2.5
- t-NORTH ANNA 1 - CYCLE 3 BRTCH BURNUP SHRRING W - ~~
l SYMBOLIC POINTS RRE MERSURED DATR BRTCH . IR3 3R2 4 5 SYMBOL: 50VARE TRIRNGLE HRSH X 36000 _, / - 32000 r= 7 / _ 28000 a / / = f y - _ / /
/
B R j Y
/ ,A / / [ --
C 24000 p A fc A pr H B U 20000 g , / y ____ f / - U f / / l P 16000 / .
/ < /
M / / [ ' [ i - W
/ /
0 12000 r
/ , / ^
p 7 T - /__ Y ~ U -"
/ 7 l 8000~ ! /
Y ", x 1 4000 ' / + ~~ 7 _ Y ~ 0: / 4000 6000 8000 10000 12000 14000 16000 O 2000 CYCLE BURNUP (MWO/MTU) ._
}i 13 q h-..-. ..
Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous
~
reactivity behavior. The FOLLOWS computer code was used to normalize
" actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the North Anna'1, Cycle 3 core is shoun in Figure 3.1. It can be seen that the measured data typically compare to within 75 ppm of the design prediction. This corresponds to less than 10.6% delta K/K uhich is well within the 21%
delta K/K criteria for reactivity anomalies set forth in Section 4.1.1.1.2 of the Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 3 core depleted as expected without any re activity anomalies. 14
FIGURE 3.1 NORTH ANNA UNIT 1-CYCLE 3 CRITICAL BORON CONCENTRATION VS. BURNUP HFP-ARO X MERSURED PREDICTED l 1400 1 1200
~
C R 1 T I 1000 C k [ cex x B E g N O 800
& : Q R 'h 0 S k Nkv C xN O Wv N
C 600 y E N
-1w T W 1
I 400 g 3 0 % 3 ; e n A,g - 200
. k ~
- 0. .
\
0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MWO/MTU) 15
lSection 4 I POWER DISTRIBUTION FOLLOW I Analysis of core power distribution data on a routine basis is F 'necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is l operating without any abnormal conditions which could cause an " uneven" !burnup distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCOREs i l computer program. A summary of all full core flux maps taken since the completion of startup physics testing for North Anna 1, Cycle 3 is given in Table 4.1. Power distribution maps were generally taken at monthly intervals with additional maps taken as needed. Radial (X-Y) core pouer distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a pouer distribution map that was taken near mid-cycle burnup. Figure 4.3 shows a map that was taken late in Cycle 3 life. Most of the radial pouer distributions were taken under equilibrium operating conditions with the unit at approximately full power. In each case, the measured relative assembly powers were generally within 5% of the predicted values with an average percent difference of approximately 2.2%. The North Anna Unit 1 quadrant power tilt anomaly was described in the Cycle 2 Core performance Report 6 and in the Cycle 3 Startup physics 16
Test Reporti. Further evaluations of the power tilt behavior during
~
Cycle 3 indicated that the measured quadrant tilt did not exceed 1.2% at beginning-of-life, full-pouar, equilibrium conditions, and had decreased to less than 0.5% by the end of cycle operation. An important aspect of core power distribution follou is the moni.toring of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and' maintaining fuel cladding integrity. During most of Cycle 3 the Technical Specifications limit on the axially dependent heat flux hot channel factor, F-S(Z), was 2.10 x KCZ), where K(Z) is the hot channel factor normali=ed operating envalope. Figure 4.4 is a plot of the KCZ) curve associated with the 2.10 F-S(Z) limit. On April 13, 1982, the Nuclear Regulatory Commission issued Amendment No. 39 to the Operating License for North Anna power Station 7, which revised the Technical Specifications limit on F-S(Z) to be 2.14 x KCZ). All of the full core flux maps were performed prior to this license amendment. Therefore the results of those maps were compared to the original limit value. The axially dependent heat flux hot channel factors, F-S(Z), for a representative set of flux maps are given in Figures 4.5 through 4.7. Throughout cycle 1, the measured values of F-S(Z) were within the Technical Specifications limit. The maximum values for the Heat Flux Hot Channel Factor measured during cycle 3 are given in Figure 4.8. As can be seen from the figure, there was a 7% margin to the limit at the -beginning of the cycle, with the margin generally increasing throughout cycle operation. 17
! The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integral of the power along the rod with the highest
- integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated. Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. The Cycle 3 limit on the enthalpy rise hot channel factor was set at 1.55 x (1+0.2(1-P)) x (1-RBPCBU)) , where P is the fractional power level, and RBP(BU) is the rod bou penalty. At end-of-life, the rod bou penalty reduced the F-delta H limit by approximately 1%. A summary of the maximum values for the Enthalpy Rise Hot Channel Factor measured during
! Cycle 3 is given in Figure 4.9. As can be seen from this figure, there was a 4% margin to the limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation. The Technical Specifications require that target delta flux
- values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the 'c ore at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of Pt-pb
- Delta Flux = ----- X 100 where Pt = power in top of core (MW(t)) ,
2775 Pb = power in bottom of core CMW(t)) 18
burnup, the target value is updated monthly. Operational delta flux l limits are then established about this target value. By maintaining the 1 Ivalue of delta flux relatively constant, adverse axial power chapes due to xenon redistribution are avoided. The plot of the target delta flux .versus burnup, given in Figure 4.10, shows the value of this parameter to have been approximately -8% at the beginning of Cycle 3. By the middle of the cycle, the value of delta flux had shifted to -5% and then moved to -4% by the end of cycle 3. This power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.11 through 4.13. In ' Map N1-3-14 (Figure 4.11), taken at approximately 500 MWD /MTU, the axial power distribution had a cosine shape with a peaking factor of 1.26. In Map N1-3-33 (Figure 4.12), taken at approximately 6,900 MWD /MTU, the axial power distribution had flattened somewhat with an axial peaking factor of 1.18. F i ".a l l y , in Map N1-3-87 (Figure 4.13), taken at apprmdbataly 12,400 MWD /MTU, the axial power distribution was slightly concave with an axial peaking factor of 1.16. The history of F-Z during . the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.14. In conclusion, the North Anna 1, Cycle 3 core performed very satisfactorily with power distribution analyses verifying that design Predictions were accurate and that the values of the hot channel factors were within the limits of the Technical Specifications. 19
TABLE 4.1 HORTH Al#1A LD1IT 1 - CYCLE 3 Sut1 NARY OF INCORE FLUX NAPS FOR ROUTINE OPERATION 1 2 i l 1 l l l I I I i i i 1 4l l l l BURHI l l F-Qt TI HOT l F-OH(N) HOT l CORE F(ZI I I l l IBANK l CHAHilEL FACTOR I Chill.F ACTOR I HAX l 31 QPTR l AXIAll HO.! l l UP l l OFF l 0F l 1 l I (F(XYll l HAP l DATE l NWD/IPWRl D i lAXIALI l l l lAXIAll l NAX l l l SET ITHINI I HO. l l NTU l(XIISTEPSI l l IASSYlPIHlPOIllTl F-QtTilASSYlPIHlF-DHtHilPOINTl F(Zil l NAX lLOCl (%) IBLESl I i 1 I I I I I l__ I I I i I l l __ l I l_I I I l___I I I I I I I I I I I I I I I I I I I I I i 14 1 4-27-811 48611001 224 I K141 t#al 37 l 1.953 l K141 I NHI I 1.474I 1 38I 11.26411.55311.0131 I I I I SWIl -7.881 I 42 I I i i l i I I I I I i 15 1 5-13-811 112011001 218 i K141 MHI 37 l 1.912 i K141 I I MHI 1.452 I 1 I38 11.26111.52311.0091 I I I I SulI -6.881 I 46 I I I I l i I I l 1 1 i 16 I 5-18-811 133211001 218 i L131 DKI 37 1 1.910 i K141 I NHl I 1.447I 1 38I 11.256l1.52411.0091 i l i I SWI -6.591 I I 46 l i i ! i l ! I I I I l 17 1 5-14-ell 13331 981 207 i L131 OKl 37 1 1.953 l K141 I NHI I 1.451 I 1 38I 11.28911.52211.0111 I I I I SWl-10.331 I I 45 l I I I ! l I I I I I I 20(511 5-19-811 135111001 218 l L13lI OKl I35 1 1.887 I i K141I I NHI 1.450 I 1I 37 11.23911.53411.0121 I I I I SWI I -3.661 I 46 I I I I I I I I . $$ I 21 1 5-20-811 138911001 221 i List OKI 36 l 1.890 1i KielI NHII 1.447 1I 37 11.24911.52211.0111 I I I SWII -5.221 I 46i I l I I I I I I I i 1 I ' l 2386)l 6-11-811 223211001 221 l L131I OKl 36 l 1.864 i L131 I OKI 1.438I I 38 I 11.23711.51711.0111 I I I I SW1 I -5.421 I 46 l l I I I I I I I i 1 1 l 24 l 7-15-811 344011001 216 i L131 OKl 46 1 1.824I l L131 I DKl l 1.414 i 1 38I 11.23111.48711.0091 I l i i SWI -7.391 i I 46 I I I I I I I I I I l 25 I 8-10-811 441511001 211 l F051 QQl 39 l 1.781 I l L131 I I OKl 1.403I 1 38I 11.21411.46911.006l I I l 1 SWI 1-6.391 I 46 I I I i l I a l I I l 27(711 8-12-811 4475l1001 205 i L131 OKl 46 l 1.849 l L131 OKl 1.412 1 45 11.24311.47911.0071 SWI -9.801 46 i HOTES: HOT SPOT LOCATI0tlS ARE SPECIFIED BY GIVING ASSENBLY LOCATIOllS (E.G. H-8 IS THE CENTER-OF-CORE ASSENBLYle FOLLOWED BY THE PIH LOCATIDH (DEt10TED BY THE "Y" COORDINATE WITH 1HE SEVEl4 TEEN ROWS OF FUEL RODS LETTERED A THROUGA R AfD THE "X" COORDINATE DESIGilATED IN A SINILAR HAIR 1ERI. IN THE "Z" DIRECTIOli THE CORE IS DIVIDED 184T0 61 AXIAL POIHTS STARTIHG FRON THE TOP OF THE CORE.
- 1. F-QlT) INCLUDES A TOTAL UNCERTAINTY OF 1.05 X 1.03.
- 2. F-OHtHI IllCLUDES A NEASURENENT UllCERTAINTY OF 1.04.
L F(XVI INCLUDES A TOTAL UtiCERTAIHTY OF 1.05 X 1.03.
- 4. QPTR - QUADRANT POWER TILT RATIO.
- 5. HAPS 18 AND 19 WERE QUARTER CORE NAPS TAKEH FOR INCORE/EXCORE CALIBRATIOH.
- 6. HAP 22 WAS ABORTED DUE TO All It4 SUFFICIENT 11UNBER OF THINGLES.
- 7. NAP 26 WAS NOT USABLE FOR INCORE/EXCORE CALIBRATION DUE TO ITS AXIAL FLUX DIFFERENCE SINILARITY TO HAP 25.
THEREFORE. NAP 26 WAS NOT SHALYZED.
l TABLE O.1 (CCNT. I I l l 8URH1 i i F-QtT) HOT l F-DHtHI HOT l CORE FtZ) l I i l l l l l UP l l BANK l CHAHHEL FACTOR I CHHL. FACTOR l HAX l l QPTR l AXIALI H0.1 1 NAP l DATE I NWD/lPWRl 0 l l l IFIXYll 1 0FF l OF l l HO. l l NTU lt%)lSTEPSl l lAXIAll l i i IAXIALI l MAX l l l SET lTHIMl
! l l l 1 lASSYlPINIPOINTl F-QtTilASSYlPINIF-DHtHilPOINTl FtZij l HAX lLOCl (%) 18LESI I i I l__I I 1. _ I I I l._I I I I I l _ .I I l I I I I I I I I I I I I I I I I I i I I l 28 8 8-13-811 451211001 217 I L131 OKl 29 l 1.729 l L131 OKI 1.406 l 29 11.17911.476l1.006l SWI -1.611 46 I i
I I I I I i i l i I I I I I I I I I I l 29 1 8-24-811 493811001 219 l F111 QAl 37 l 1.726 l L131 OKI 1.401 1 29 11.17411.47211.0071 SWI -1.501 44 I I I I I I I I I I l l l l l 1 1 I I I I l 30 l 9- 9-811 54971 751 143 l FOSI LKl 29 l 1.804 I F05l QQl 1.411 1 29 11.22711.482l1.0071 SEl -4.211 47 l 1 1 I I I I I I I I I I I I I I I I I I I l l 31 1 9-15-811 572011001 215 l F051 LKl 38 l 1.751 1 F051 LKl 1.405 1 38 11.18611.48411.0051 SW1 -5.231 44 l i I I I I I I I I I I I I I i i I I I l l l 32 1 9-17-811 579411001 195 l F051 LK! 38 l 1.817 i F051 LKl 1.407 l 38 11.226l1.48511.005l SW1 -8.671 46 l I I I I I I I I I I I I I I I I l l 1 1 I 33 111-13-811 6883!1001 213 i F1:1 LGl 47 l 1.743 l F051 LKl 1.417 1 46 11.17611.49411.006l SW1 -5.101 48 I w I i l i I I : l l 1 I I I I I I I I I I "~ l 3618:112-10-811 79261 991 217 l FOSI LKl 46 l 1.717 l F051 LKl 1.546 1 46 11.15611.50411.005l SWI -3.621 48 Il 1 1 I I I I I I I I I I I I I I I I I l 391911 1- 4-821 88991 981 219 l L1:1 GFl 47 l 1.733 i F051 LXI 1.433 l 47 11.15011.51211.0071 NElI -3.231I 46 li 1 1 I 1 l l l l l l l l l l l 1 I 179(10ll 1-18-821 94131 991 219 i F051 LKl 47 l 1.709 l F051 LKl 1.437 l 47 11.14211.51011.0091l NEli -3.191i 47 ii i i i I I i i I i i i I I i l i 183(1111 2-10-82:1021811001 218 l F051 LKl 48 1 1.736 I F051 LKl 1.435 1 47 11.16111.50911.0071 NEl I
-5.041 I
47 li I I I I I I I I I I I I I I I I I 184 1 3-15-82l1143411001 216 l F051 NLI 53 l 1.717 i F051 NLl 1.427 1 53 11.14611.50311.006l HEl -3.921 48 li l l 1 1 I I I I I I I I I I l i I I I 187(1211 4-12-821124331 991 214 l F051 NLl 53 l 1.738 I F051 HLI 1.427 I 53 11.15511.50311.0051 NEl -3.901 48 I
- 8. NAPS 34 AND 35 WERE QUARTER CORE NAPS TAKEN F'OR INCORE/EXCDRE CALIBRATIDH.
- 9. NAPS 37 AND 38 WERE 8 SYtstETRIO THINGLE NAPS TAKEN FOR QUADRANT POWER TILT RATIO VERIFICATION.
- 10. NAPS 40 AND 42 WERE QUARTER CORE NAPS TAKEN FOR IHCORE/EXCORE CALIBRATIDH. NAPS 41. 43, 44. AND 46 THROUGH 78 WERE SYtttETRIC THItt0LE NAPS TAKEN FOR QUADRANT POWER TILT RATIO VERIFICATION.
NAP 45 WAS HOT ANALYZED DUE TO EXCESSIVE POWER CHANGES DURItG THE NAPPING.
- 11. NAPS 80, 81, AND 82 WERE 8 SYttNETRIC 1HINBLE HAPS TAKEN FOR QUADRANT POWER RATIO VERIFICATI0H.
- 12. HAPS 85 AHO 86 WERE QUARTER CORE HAPS TAKEN FOR INCORE/EXCORE CALIBRATIDH.
l l l
Figure 4.1 NORTH ANNA UNIT l-CYCLE } ASSEMBLYWISE POWER DISTRIBUTION N1-3-14 1 i 8 P N N L K J H 8 F E D C B A
. MEASURED . . 0.40 . 0.75 . 0.39 . . MEASURED . 1 . PCT DIFFERENCE. . 3.5 . 3.5 . F.9 . . PCT 01FFERENCE. . 0.41 . 0.93 . 1.13 . 1.14 . 1.14 . 0.96 . 0.43 . 2 . -1.0 . -0.5 . 0.7 . 0.7 . 1.6 . 2.2 . 4.3 . . 0.40 . 1.04 . 1.15 . 1.17 . 1.02 . 1.18 . 1.16 . 1.08 . 0.43 . 3 . -1. 0 . -1. 0 . -0.8 . -1. 9 . -2. 0 . -1.1 . 0.5 . 2.6 . 6.6 . . 0.41 . 0.93 . 1.14 . 1.19 . 1.17 . 1.11 . 1.17 . 1.20 . 1.17 . 0.95 . 0.42 . 4 . 1.5 . -0.6 . -1. 6 . -1. 8 . -2.4 . -t.5 . -t .3 . -1.1 . 1.1 . 2.1 . 3.6 . . 0.42 .1.07 .1.14 . 1.21 . 1.17 . 0.95 . 1.03 . 0.97 .1.18 . 1.23 .1.15 . 1.c6 . 0.41 . 5 . 1.5 . 1.5 . -1.1 . -2. 0 . -2. 3 . -4. 9 . -5.0 . -3.7 . -1.4 . -0.9 . -0. 2 . 0.6 . 1.3 . . 0.96 . 1.18 . 1.21 . 1.17 . 0.98 . 1.05 . 1.17 . 1.05 . 0.99 . 1.18 . 1.20 . 1.16 . 0.95 . 6 . 2.0 . 2. 0 . -0.2 . -2.4 . -3.1 . -4.8 . -5.0 . -4.5 . -1.6 . -1.1 . 0.8 . -0. 0 . 1.2 . . 0.39 . 1.15 . 1.22 . 1.17 . 0.96 . 1.06 . 1.15 . 1.15 . 1.16 . 1.06 . 0.97 . 1.18 . 1.19 . 1.13 . 0.39 . 7 . 2.6 . t.6 . 2.6 . -1.8 -4.2 . -4.1 . -5.3 . -5.5 . -4.7 . -3.5 . -3.0 . -1.3 . -0.4 0.5 . 1.1 . . 0.74 . 1.16 . 1.07 . 1.13 . 1.04 . 1.19 . 1.17 . 0.91 . 1.17 . 1.18 . 1.04 . 1.13 . 1 04 . 1.18 . 0.77 . 8 . 2.6 . 2.6 . 2.6 . -1.4 . -3.5 . -3.6 . -4.0 . -3.1 . -4.2 . -4.3 . -4.1 . -1.2 . -0.4 . 3.9 . 6'.4 . . 0.39 . 1.14 . 1.21 . 1.17 . 0.97 . 1.07 . 1.17 . 1.18 . 1.17 . 1.06 . 0.96 . 1.18 . 1.18 . 1.19 . 0.43 . 9 . 1.3 . 1.3 . 1.3 . -1.8 . -3.1 . -3.5 . -3.9 . -3.0 . -4.1 . -4.3 . -4.2 . -1.3 . -1.3 . 5.6 . 11.3 . . 0.95 . 1.17 . 1.20 . 1.18 . 0.98 . 1.06 . 1.19 . 1.07 . 0.98 . 1.17 . 1.19 . 1.13 . 1.04 . 10 . 1.3 . 1. 3 . -0.5 . -1.4 . - t . 3 . -3.8 . -3. 3 . -3.1 . -2. 3 . -2.2 . -1. 4 . -2.1 . 11.3 . . 0.43 . 1.09 . 1.18 . 1.22 . 1.18 . 0.90 . 1.06 . 0.98 . 1.19 . 1.23 . 1.17 . 1.08 . 0.44 . 11 . 3.9 . 3.9 . 1.9 . -1.9 . -1.7 . -2.3 . -2.4 . -2.4 . -0.8 . -1.2 . 1.2 . 2.3 . 6.5 . . 0.43 . 0.95 . 1.13 . 1.20 . 1.20 . 1.14 . 1.20 . 1.21 . 1.16 . 0.96 . 0.43 . It . 6.5 . 2.4 . -1.9 . -0.5 . 0.2 . 8.1 . 0.3 . 0.4 . 0.4 . 3.1 . 6.5 . . 0.44 . 1.16 . 1.22 . 1.21 . 1.07 . 1.23 . 1.20 . 1.08 . 0.43 . 13 . 8.1 . 9.8 . 5.3 . 2.0 . 3.0 . 3.6 . 3.6 . 2.7 . 6.5 . . 0.45 . 1. D4 . 1.21 . 1.21 . 1.16 . 0.97 . 0.42 . 14 . 9.8 . 10.8 . 7.7 . 6.5 . 3.7 . 3.7 . 2.7 . . 0.43 . 0.78 . 0.40 . 15 . 11.9 . 8.5 . 4.8 .
STANDARD DEVIATION a 2.363 AVERAGE PCT. 01FFERENCE e 2.9
SUMMARY
MAP Not H1-3-14
- DATE 4/27/81 POWERt 100%
CCHTROL R00 POSITIONSt F-QtT)
- 1.953 QPTRt D BANK AT 224 STEPS F-OHtH) = 1.474 HW 0.987 l NE 0.993
__________l__________ FtZ) 1.264 SW 1.013 l SE 1.007 FtXY) a 1.553 BURNUP = 486 MW3/NTU .0s -7M8 t %) 22
Figure 4.2 l NORTH ANNA UNIT l-CYCLE 3 ASSEM*LWISE POWER DISTRIBUTION N1-3-33 -
~
1 l E__
=
as R P N M L K J H 4 F t O C 4 A =
--= ................ ...................... ................ g . MEASURED . . 0.34 . 0.64 . 6.36 . . MEASURED . I g . PCT DIFFERENCE. . 1.0 . 0.9 . 1.4 . . PCT 01FFERENCE. . 0.43 . 0.87 . 1.01 . 0.97 . 1.02 . 0.89 . 0.43 . 2 O . 5.7 . -0.4.. -0.2 . -0.4 . 0.5 . 1.7 . 3.8 . . 0.44 . 1.07 . 1.18 . 1.09 . 0.96 . 1.11 . 1.20 . 1.08 . 0.45 . 3 - . 3.0 . 2.7 . -0.4 . -1.4 . -1.5 . -0.3 . 1.3 . 2.9 . 6.0 . . 0.43 . 0.95 . 1.14 . 1.19 . 1.25 . 1.15 . 1.25 . 1.21 . 1.25 . 0.96 . 0.44 . 4 - . 2.5 . 1.2 . 1.5 . -0.4 . -1.2 . -1.3 . -1.0 . 0.9 . t.0 . 2.4 . 4.6 . --- . 0.41 . 1.04 . 1.21 . 1.23 . 1.24 . 1.01 . 1.11 . 1.02 . 1.30 . 1.25 . 1.23 . 1.09 . 0.44 . 5 . 0.5 . -0.5 . -0. 8 . -0.9 . -0. 4 . -t .4 . -2.5 . -1.5 . 0.8 . 0.6 . 4.5 . 4.0 . 7.4 . == . 0.84 . 1.18 . 1.19 . 1.27 . 1.02 . 1.13 . 1.19 . 1.13 . 1.03 . 1.19 . 1.20 . 1.20 . 0.90 . 6 l . 0.4 0.4 . -0.5 . -1.3 . -1.3 . -2.4 . -t.4 . -t.0 . -0.1 . 0.3 . 0.2 . 1.7 . 3.5 . _
\ .......................................................................................................... l . 0.36 . 1.03 . 1.12 . 1.25 . 1.00 . 1.12 . 1.18 . 1.28 . 1.19 . 1.14 . 1.02 . 1.25 . 1.10 . 1.01 . 0.35 . 7
. 1.2 . 1.1 . 1.1 . -1. 0 . -3.1 . -2. 8 . -3.3 . -2.9 . -t . t . -1.5 . -1. 0 . -0.5 . -0. 8 . -1. 0 . -1. 2 . . 0.64 . 0.98 . 0.98 . 1.16 . 1.11 . 1.19 . 1.28 . 1.00 . 1.28 . 1.19 . 1.11 . 1.16 . 0.96 . 0.98 . 0.65 . 4 . 0.9 . 1.0 . 1.1 . - 0 5 . -2. 2 . -2.1 . -t . 3 . -1. 7 . -t .4 . -2.5 . -2.4 . -0.5 . -0. 8 . 0.9 . 2.0 . --- . 0.36 . 1.01 . 1.12 . 1.25 . 1.01 . 1.13 . 1.18 . 1.29 . 1.19 . 1.12 . 1.01 . 1.26 . 1.11 . 1.04 . 0.37 . 9 . 0.4 . 0.7 . 0. 7 . -0. 7 . -2. 0 . -2.4 . -3. 2 . -2.1 . -2.5 . -t . 7 . -t . 2 . -0.1 . -0.1 . 1.9 . 3.2 . . 0.84 . 1.14 . 1.20 . 1.29 . 1.02 . 1.12 . 1.19 . 1.13 . 1.02 . 1.28 . 1.20 . 1.19 . 0.91 . 10 . 0.4 . 0.4 . 0.1 . 0.0 . -1.1 . -3.2 . -2.5 . -t.4 . -1.6 . -1.2 . 0.3 . 0.8 . 4.5 . ! . 0.4 2 . 1.0 7 . 1.t4 . 1.24 . 1.27 . 1.01 . 1.11 . 1.01 . 1.2 4 . 1.2 5 . 1.25 . 1.0 7 . 0.42 . 11 . 2.4 . 2.4 . 1.6 . 0. 2 . -1.4 . -2.6 . -2. 6 . -2. 5 . -0. 9 . 0.4 . 1.9 . 2.4 . 3.3 . . 0.44 . 0.96 . 1.33 . 1.19 . 1.24 . 1.14 . 1.25 . 1.19 . 1.22 . 0.97 . 0.45 . 12 . 4.4 . 2.4 . 0.2 . -0.6 . -1.5 . -1.5 . -1.0 . -0.1 . -0.2 . 1.9 . 5.4 . . 0.45 . 1.11 . 1.21 . 1.10 . 0.97 . 1.11 . 1.19 . 1.06 . 0.45 . 13 . 5.5 . 6.6 . 2.6 . -0.6 . -0.5 . 0.3 . 0.5 . 1.0 . 5.4 . _
o...............................................................
. 0.44 . 0.93 . 1.05 . 0.99 . 1.02 . 0.84 . 0.42 . 14 . 6.6 . 6.4 . 3.5 . 2.0 . 0.2 . 0.4 . 1.0 . . 0.38 . 0.66 . c.35 . 15 . 6.8 . 3.3 . -0.2 . -
STANDARO Otv1AT10H e 1.574 AvtRAtt PCT. DIFFERENCE e 1.8 m St#1 MARY F1AP H0t H1-3-33 DATEt 11/13/81 POWER 100% CONTROL ROO POSIT 10HSt F-QtT) = 1.743 QPTRt D BAta( AT 213 STEPS F-OH( H ) = 1.417 NW 0.992 1 NE 1.006 -
== - __ _ ==l =__
F(Z) a 1.176 SW 1.006 l SE 0.996 u FtXY) a 1.494 - 1 BUPNUP = 6883 t%'0/MTU A.O a -5.10tX1 .;; 23
m Figure 4.3 - m NORTH ANNA UNIT l . CYCLE 3 - ASSEMBLYWISE POWER DISTRIBUTION = i N1-3-87
=,
R P H M L K J M G F 2 0 C B A
. NEASURED . . O.37 . 0.65 . 0.37 . . MEASURED . 1 2.0 . 1.9 . 2.0 . . PCT DIFFERENCt. E . PCT DIFFERtHCt. . .................................................. ................ _=i . 0.45 . 0.84 . 1.00 . 0.95 . 1 00 . 0.87 . 0.44 .
4.0 . t @
. 6.4 . 0.7 . 0.7 . 0.6 . 1.2 . 1.9 . . . 0.45 . 1.06 . 1.19 . 1.08 . 0.95 . 1.08 . 1.21 . 1.07 . 0.47 . 3 3 . 2.8 . 2.4 . -0.5 . -0.6 . -0.7 . 0.1 . 1.5 . 3.2 . 6.2 .
3 ""
. O.45 . 0.95 . 1.26 . 1.18 . 1.28 . 1.16 . 1.28 . 1.19 . 1.26 . 0. % . 0.46 . 4 . t.5 . 0.9 . 1.3 . -0.3 . -0.5 . -0.6 . -0.5 . 0.9 . 1.6 . 1.8 . 4.3 . . 0.42 . 1.03 . 1.22 . 1.19 . 1.29 . 1.03 . 1.14 . 1 04 . 2.32 . 1.22 . 1.24 . 1.07 . 0.46 . 5 = . -1.1 . -1.1 . -1.6 . -1.7 . -1.3 . -1.5 -1.6 . -0.7 . 0.9 . 0.3 . -0.5 . 3.4 . 8.1 . 'm . 0.85 . 1.19 . 1.17 . 1.28 . 1.02 . 1.15 . 1.18 . 1.16 . 1.04 . 1.30 . 1.16 . 1.20 . 0.89 . 6 - ill . -0.1 . -0.1 . -1.0 . -1.0 . -1.2 . -1.3*. -1.1 . -0.7 . 0.5 . -0.7 . -1.4 . 0.9 . 4.0 . . 0.37 . 1.00 . 1.09 . 1.27 . 1.01 . 1.14 . 1.17 . 1.31 . 1.18 . 1.16 . 1.03 . 1.26 *. 1.07 . 0.99 . 0.36 . 7 0.9 . 1.0 . 1.0 . -1.2 . -1.6 . -t.7 . -1.8 . -1.3 . -1.0 . -0.5 . -1.5 . -1.9 . -1.1 . -0.4 . -0.5 . . 0.64 . 0.95 . 0.97 . 1.17 . 1.14 . 1.17 . 1.31 . 1.02 . 1.31 . 1.18 . 1.13 . 1.15 . 0.95 . 0.95 . 0.65 .
4
. 0.9 . 1. 0 . -0.3 . -1. 8 . -1.5 . -1. 0 . -0.5 . -1.3 . -1.4 . -2.6 . -1.7 . -1.1 . 1.4 . 2.5 .
1.0 . 9 -
. 0.36 . 0.99 . 1.04 . 1.27 . 1.03 . 1.14 . 1.16 . 1.30 . 1.17 . 1.15 . 1.03 . 1.18 . 1.09 . 1.02 . 0.34 . . -0.7 . 9.2 . 0. t . -0.7 . -1.6 . -t . 0 . -2.9 . -1.6 . -1. 7 . -1. 8 . -1.5 . 0.1 . 0.4 . 2.4 . 3.7 . == . 0.05 . 1.18 . 1.17 . 1.31 . 1.03 . 1.13 . 1.16 . 1.14 . 1.02 . 1.29 . 1.18 . 1.20 . 0.90 . 10 . -0. 8 . = 0. 8 . -0. 4 . -0.1 . -1. 0 . -3. 2 . -2. 3 . - 2. 4 . -1.5 . -1. 2 . 0.2 . 1.2 . 5.0 . _ . 0.43 . 1.06 . 1.25 . 1.21 . 1.28 . 1.01 . 1.13 . 1.01 . 1.29 . 1.20 . 1.27 . 1.07 . 0.44 . 11 - . 1.9 . 1.9 . 1.1 . -0.5 . -1.9 . -3. 0 . -3.1 . -3.3 . -1.6 . -0. 8 . 2.0 . 2.8 . 3.8 . _ . 0.66 . 0.96 . 1.24 . 1.16 . 1.25 . 1.14 . 1.26 . 1.16 . 1.23 . 0.97 . 0.47 . It _ . 4.7 . 2.2 . -0.5 . -1.6 . -2.2 . -2.2 . -1.9 . -1.2 . -1.2 . 3.0 . 5.8 . . 0.47 . 1.11 . 1.22 . 1.07 . 0.95 . 1.08 . 1.18 . 1.03 . 0.47 . 13 . 5.9 . 7.1 . 2.3 . -1.5 . -1.2 . -0.5 . -0.6 . -0.6 . 5.8 . . 0.45 . 0.92 . 1.03 . 0.96 . 0.99 . 0.05 0.42 . 14 . 7.1 . 7.3 . 3.6 . 1.7 . -0.6 . -0.6 . -0.6 . . 0.39 . 0.66 . 0.36 . 15 - . 7.3 . 3.3 . -0.7 . _
STANDAR0 OtVIATION e 1.633 AVERAGE PCT. DIFFERENCE e 1.8
~
m
SUMMARY
MAP Hot H1-3-87 OATEt 4/12/82 POWERS 99X CONTROL R00 POSITIONSI F-QtT1 = 1.738 QPTRt NW 0.996 l NE 1.005 D BANK AT 214 STEPS F-DHtH) a 1.427 =
......l---.......
FtZ3 a 1.155 SW 1.001 l SE 0.998
=_
FtXY) = 1.503 Q M BURNUP a 12433 MWD /MTU A.O s -3.90tX)
=
24 =
l I Figure 4.4 e s
?^
HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE
. . _ .. . . . .-.n_ -- ^
__l*~~ -'
=E~'iHE -. u :.%-~ ~__ ----t= L ---.- - = ==^ = =^- =a n::=r-- : ~~~.=- . _..- il'- . =. .. (6.0 ~~* ~ =1!E=: -- __T ,1.0) ~ ' =-*' m = - y . - .--+.--
- is-_ _. _a_:in-t=
- (11.01 '0.94) - ==t= - + -
1.0 E '".-"+ " " "P"" T- ~"- ~ ~ N - -
*-~~
L_ i ._t-- t=u.=:. r --
. g- g7- n ;;_r =___==_.==:
3
* ~ ' - -- ~1- C: - - + - ~ ~ ~
- __,_ UCI -g i- - - -
-U~~~
_. .u .
.-_l. . 2_ ~~.{ ; .--d= rdn.. - -+- . = . . _ = _ _ _ -_ _.;_ .p. . _ -. : =_ =.=_- . - . _ - . _- .=. .ir . =n. =;
O.8 7- :--. 2= r:\ = = = - - - -
-- -r;;i.z:---- 21 = . t =.C m-e n- . _ . .~ = . - ' - __. _ r--- =1s. ~~*.~~ - = ==_ ., + . + -
v . .._ - - - -
" t---- - ^ ~ ~~~-!
- cr _-*:
_ . . . . ...'.--....;n.._ . ;.y _
- ^ ^
- - - - + - ._'-t-. .
N . _ . . .. x.
._.4._.__ w __w-- . - -2t - . - _i---+-h---+--- ----+:-= - - + - - - --- _g :
t - - - - - - O 4 - . :{x . a=
-~;-- -- g_ ; . . . _ . - . - - - - . - - . - - - - _ _ _ . _ . _ .= f- ;;.- 32 -- .
y O.6 . =-r = . _ _ . . _ .. i- =.__-:= F..__.._._. ===i= E== -- eel:r _,e._r-. --er== = - . a= .-~~-*11.'25 '0 * !~~{=
--- = '(( - :-
a : t --
- (2: 2
.1 := :- -- .: u,u---r --- = =: n- - : - rr t- r - -m
- -- = :=w=::=2xrc= =lai _ i!_1 C =~ ::aiQiniElEBE-g _ ... -. . - .
.: .;=- =y-+==:=. g-:.- =t --;2 4- =~x:r d =i ==i= -' n = : ._:. nr2- n -l==
p :E- .:= . ar- .. o e - C.nh : =- }= i.;;=_x. . Ei.H-- ::=
-iE: . i.. ~~ '_ + % 9iMij(12.0 .0.48) E -.-
O.4 ._; . g}. . .....{. ~ f '" SETR 7D " m g
==-
- .-i. a. .- a r:
. m.E.. H =.ti- -- - -- rtM "i : iWi 3
- r: -- nar= -- : = -T-:=2'=-9-. i_ jd. jiTili .Ei.; I-'i. .: . .:n.
v ;
..:n' f. .' 722-y u.n. .x...-.n m.= --y_-- - - r .- -- -:--- u= . . . -
hff-[--IIIE * - Ti ! ~ -i "--' - [I[~! - r[ ~b5f - 0.2 r: .uw p- n p a- n f ur rE =- n ME - ' _ i-dij#i--b -
}' 1 3'
- - --- l ; * . . . . _
* -1. . :I : ... e
- t. - - . . . , _..
.j .f :j. . . f- I . ._ :-{ - -- -i- :2is--~ i:l': 2
- 0 4 6 8 10 12 0 2 CORE HEIGHT ( FT. ) TOP BOTTOM 25
'M Figure 4.5 NORTH ANNA UNIT 1-CYCLE 3 HEAT FLUX HOT CHANNEL FACTOR, Ff(Z) -
x N1-3-14 M 2.5 o
. -9 ~
^ . . m N _ _ _ _______ g .
= M 4 =
v 2.0 xxxxx g . xxxxx x 0 . x x x xxxxxx h . x x
~
[ xxxx
. xxx xx xx J . x $ 1.5 . x x . x x . x x y . X XX ; . x H . x o . x , . x x . x ._
U . X - g xx 1.0 x g .
. x m
E ~ x
- x x x
- xx _
0.5 + - e e 0.0 , r, , r r ,r r r, r , r....I r r i 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP a M 26 M
Figure 4.6 NORTH ANNA UNIT 1-CYCLE 3 HEATFLUXHOTCHANNELFACTOR,F[(Z) l ! N1-3-33 2.5 .
~
4 a CY . .
- 2.0 . - =
. XXXXX XXXX . . X X XX XX . XX XX X X XXXX XXX - X X X XXX - X X X X X xXx 1.5 . .- x xX 9 . X X - X *X h - X XX X
g i
. X 1.0 ; x . x -X . X X - X . X 0.5 ..
0.0 + T.. T ...T .T .T T. .. T....T. .T... T ...T . T...T 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 27
Figure 4.7 NORTH ANNA UNIT l-CYCLE 3 HEATFLUXHOTCHANNELFACTOR,Ff(Z) N N1-3-87 2.5 .
- -- :-- :_:_ _::_;__________ = =
7 - . 2.0 .
. X - XX X XXX - XXX - X XX X XXXXXX . XXXX XX = *X X XXXXXXX X X X XX x x x x 1.5 . = X X X = X X X X
XX
- X X .X X ~
1.0
. X . X X O
e X O e 0.5 ; 9 9 9 O e O e e r . r .. T... Y....r....r....r....r....r....r... r....r...: 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 28
. y( ;
FIGURE 4.8 ' f .
- p. ; , . ; .
NORTH RNNR UNIT 1 - CYCLE 3 4-MAX 1 MUM HERT FLUX H0T CHANNEL FRCTOR. F-0 VS. BURNUP : TECH SPEC LIMIT . X MERSURED VALUE f~ 2.2j ,' .- a ,g 2 .1 .[, m s 2.0 - v .. g ,g : x . >= x - . .: r y 1.8 . 'A '. x . , g) . . ; - v <
^
x x . . x x , 1.7 .' i A e,e. ,vv..w9w, +
~
l .6-1.5 . . ; :.
.s .
t
- 1. 4 ..
\ .
e 1.3 . 1.2- ,- 0 2000 4000 6000 8000 10000 12000 1400C 16000
~5 CYCLE BURNUP (MHD/MTU) ~
29 ,_
.I
FIGURE 4.9 NORTH ANNA UN,IT 1 - CYCLE 3 ENTHALPY RISE HOT CHANNEL' FACTOR, F-OH(N1 VS. BURNUP
- TECH SPEC LIMIT X MEASURED VALUE 1.60, ,
1.55 ~ l 1.50' - S ' 1 ..
^
0 : s 1.45 D x x x 7 . y v x
- q :
x
- 1.40 1.35 1.30 1.25 "
1.20 1.15 1.102 . 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MWD /NTUI 30
FIGURE 4.10. NORTH RNNR UNIT 1 - CYCLE 3 TARGET DELTR FLUX VS. BURNUP 10 ' B b 6
~
T R R - G 4~ E T 0 E 2 L T R . F O' L U X I -2 N - O P e E ~ R -4 a a C - fy : .
-6 A
6
-8 a s-0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (MHD/MTU) 31
Figure 4.11 NORTH AhNA UNIT 1-CYCLE 3 CORE AVERAGE AXIAL POWER DISTRIBUTION N1-3-14 1.5 M
- F = 1.264 4 Z i A.O. = -7.9 b
x ***x* 4 x*x**x
- x *xx*x x 1.2 : x x d u
- x ** *u"x *u x xx x x b x **u
- x x 0.9 i x x
s *:
- a : x sJ e.
9
-e . N J g E **
3
- 3 0.6 4 x 3 N.
% i x j x M
- x 0.3 4 i
0.0 4 g..........g.........g.........i.........g.........g........i 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 32
Figure 4.12 ! NORTH ANNA UNIT 1-CYCLE 3 l i CORE AVERAGE AXIAL POWER DISTRIBUTION
.N1-3-33 1.5 1 F = 1.176 M
Z
- A.O. = -5.1 a
1.2 d a
*x***x* xxxxx* *xxxxx x
- x* x x xxxu **
a x x j x * " x xx x *x, b
- x x 0.9 .l x
*: x
- d. xx a
- x
*3 *
- x 0.6 *: N A "
. x x N
M {x i 0.3 d J J a a 0.0 Al..........l.........l.........l.........l.........l........l , 61 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 33
Figure 4.13 1 NORTH ANNA UNIT 1-CYCLE 3 CORE AVERACE AXIAL POWER DISTRIBUTION N1-3-87 m 1.5
*: F = 1.155 i _
- Z M
- A.O. = -3.9 a
J 1.2 *: b *** - x*xx,== xxxx x
- x xxxM* "M 1 5 x x
xxxxx x x x x x, -
"
- x x "
2 ,
- x 3 -
j - x 0.9 : , x
, 'i ._
3 3 x = 9 : 2 4 x 5 : 2 *: o :
- E s
0.6 - =
, 4" -
N '
'N N $ x M
e - = 4 a O.3 : _' - 4 -- 4 a " 0.0 ~I'*********l*********I'********f*********1*********I* - t -- 61 50 40 30 20 10 1 AXIAL POSITION (NODES) TOP BOTTOM m 4 - 34 5
.a
FIGURE 4.14 ; NORTH RNNA UNIT 1 - CYCLE 3 CORE RVERAGE RX1RL PERKING FRCTOR, F-Z VS. BURNUP 14 W 1.3 a a 6 6 1.2 a a a 11 M-1.0-0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP (NWO/NTUI 35
pection 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follou analysis because they are used as indicators of d'e.iective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding. As indicated in the North Anna 1 Technical Specifications, the dose equivalent I-131 concentration in the primary coolant was limited to 1.0 micro-Ci/gm for normal steady state operation. Figure 5.1 shous the dose e'quivalent I-131 activity level history for the North Anna 1, Cycle 3 core (the demineralizer flow rate averaged 87 gym during power operation). The data demonstrate considerable scatter due to the erratic power history but the trend shows a decreasing equilibrium coolant activity level during cycle 3. The large increase in the coolant activity lavel that occured early in Cycle 3 . indicates a possible defect formation event during the first useks of cycle 3 opervtion. After that time, the equilibrium coolant activity level shows that no further cladding degradation occured during the remainder of the cycle. Despite t,he increased coolant activity level, figure 5.1 shows that the core operated substantially below the 1.0 micro-Ci/gm limit during steady-state operation (the spike, data are associated with pouer transients and unit shutdown). Specifically, the average dose 36
= .i.
equivalent I-131 concentration of 8.2 x 10-2 micro-Ci/gm is less than 9% 7== of the Technical Specification limit. _' - A ratio of the specific activities of I-131 to I-133 is used to J The chazacterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-1ife (approximately 21 hours) compared to that of I-131 Capproximately eight days). For pinhole defects, where 223 the diffusica .me through the defect'is on the order of days, the I-133 decays out larving the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles _~ in the coolant, and/or " tramp" uranium *, where the diffusion mechanism . is negligible, the I-131/I-133 ratio will generally be less than 0.1. si Figuze 5.0 shows the I-131/I-133 ratio data for the North Anna 1. Cycle ;== 3 core. These data generally indicate there were probably pinhole defects in the fuel used during cycle 3. _jl _r The core off-load fuel inspection following Cycle 3 operation _ revealed no fuel assembly damage which uould adversely affect the __ performance of the fuel to be used in subsequent cycles. The absence of any significant fuel integrity anomalies during the core off-load _ indicates that satisfactory fuel operability can be expected during dl Cycle 4. a 7
*" Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process.
a 37
=
S
= . FIGURE 5.1 _
NORTH ANNA UNIT 1 CYCLE 3 - DOSE EQUIVALENT I-131 v5 TIME 1 o
- ~
s
=
e e o
"o i".s,TEC'HNICRLSPECIF~1CRTIONSLIMITo ge ~i i 8% e 8 $*g - - oo o e o8 __
See 8 . eB e o oo oc oo * *e O o Q ee e e me gb gl lk%a$$$g/54 y-- 3g *
- f* g 2 --34 y e y gQ o e -
o ce o _ b;
-O . o e * -
e -- E ", ,
- o 0 -
o __ 0 0 0 13@e oo c , h e
~~~-- ~ -b ~.
y- - .10 0,, 7-q
-[ ~
50
. 5 .
- J l E O '
, , , , , , .- , , ,,,,O MRY JUN JUL RUG SEP OCT NOV OEC JRN FEB MAR RPR MAY _
1981 1982 ] 38
r _ FIGURE 5.2 NORTH ANNA UNIT 1 CYCLE 3 - I-131/I-133 RCTIVITY RATIO.v5. TIME - 4 8 A e i SS I e e - p b _ [8 e e 9
>4 e 9 =
C e e e = c e M e C a 9
.m e C- e e 80 0 e 3 3 -
E e o e e c o e ses e" 4 [9 -.Ab e ;N *
*e * ~
3 S,L% ? 3 e$ *0* - e t Pyrse 8 ee;sgg c
, e e . ee o ,
3 j , eMe[3kk, , 5 e 8%b/5 g - o i ei i e o _ 100
~I f3 ~ -
t l l C- , 50 m 8 5
..0 MAY JUN jut. AUG SEP OCT NOV DEC JRN FEB MAR APR MAY 1981 1982 39 _ = 'R
1 Baction 6 CONCLUSI0HS The North Anna 1 core has completed Cycle 3 operation. Throughout this cycle, all core performance indicators compared favorably with the Besign predictions and all core related Technical Specifications limits Mere met with significant margin. No abnormalities in reactivity or turnup accumulation were detected. In. addition, the mechanical integrity af the fuel has not changed significantly throughout Cycle 3 as indicated by the radioiodine analysis. 40
5 j i Bection 7 REFERENCES
- 1) T. S. Rotella and D. M. Kapuschinsky, " North Anna Unit 1, Cycle 3 Startup Physics Test Report," VEP-FRD-43, May, 1981.
'2 ) North Anna Power Station Unit 1 Technical Specifications, Sections 3/4.1, 3/4.2, and 3/4.4. I 3> T. K. Ross, "NEWTOTE Code",Vepco'NFO-CCR-6, Revision 3, February, 1982.
- 4) R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart,
" FOLLOW Code , " WC AP-7'l8 2, February, 1970.
- 5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
- 6) J. R. Ju and T. S. Rotella, " North Anna Unit.1, Cycle 2 Core Performance Re, port," VEP-FRD-40, March, 1981.
- 7) Letter from L. B. Engle (NRC) to R. H. Leasburg (Vepco),
dated April 13, 1982 (Docket Nos. 50-338 and 50-339). 41
- _ _ _ _ _ _ _ _}}