ML20217L997

From kanterella
Jump to navigation Jump to search
Small Break LOCA ECCS Performance Analysis Using Abb/Ce Suppl 2 Model
ML20217L997
Person / Time
Site: Waterford Entergy icon.png
Issue date: 04/30/1998
From:
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20217L984 List:
References
NUDOCS 9805040377
Download: ML20217L997 (52)


Text

. .

l SMALL BREAK LOSS-OF-COOLANT ACCIDENT EMERGENCY CORE COOLING SYSTEM PERFORMANCE ANALYSIS USING THE ABB/CE SUPPLEMENT 2 MODEL Waterford 3 Steam Electric Station l

l 1

i 7*J5 P

in! 3*eine2 PDR J

i

. Table of Contents

1.0 INTRODUCTION

.. .. .. .. .. .. ................. ... . .... .. . . ... .. ... .... 1 l

2.0 METHOD OF ANALYSIS.. . ........ . ......... ..... . . ... .. ........1 i

3.0 B R EAK S P E CTR U M. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . .1 i

4.0 DESIGN INPUTS...... . . .. . .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . .. .... .......2

5.0 RESULTS ..... . .. . ... . . .. ... .... . .... .... . . . ............... ...... ....2-l I 1 L I S T O F R E F E R E N C E S . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 APPENDICES A. Tables ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......................8

l 1 B. F ig u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .13 l l

i Il

o I

l

( List of Figures 2

Figure 1. 0.06 ft /PD Break Normalized Total Core Power . . ... . . . . . . . 14 i

2 Figure 2. 0.06 ft /PD Break inner Vessel Pressure. . .. .. .................15 i

1 2

Figure 3. 0.06 ft /PD Break Flow Rate ... . . . . . . . . . . . . . . . . . . . . .16 l

2 Figure 4. 0.06 ft /PD Break inner Vessel Inlet Flow Rate.... ........ . ... .. 1 7 2

Figure 5. 0.06 ft /PD Break Inner Vessel Two-phase Mixture Level . . .....18

4 2

Figure 6. 0.06 ft /PD Break Heat Transfer Coefficient at Hot Spot..... ... . .19 2

i Figure 7. 0.06 ft /PD 9reak Coolant Temperature at Hot Spot ... . . . . .. 20 2

Figure 8. 0.06 ft /PD Break Cladding Temperature at Hot Spot. ... .. . ..... 21 2

Figure 9. 0.05 ft /PD Break Normalized Total Core Power . . ..........22 2

Figure 10. 0.05 ft /PD Break Inner Vessel Pressure.. . .....................23 2

l Figure 11. 0.05 ft /PD Break Flow Rate. . . . . . .. . . . . . . . . . ... . 24 l

l l

2

. Figure 12. 0.05 ft /PD Break Inner Vessel Inlet Flow Rate.. .. .. ......25 l

2 Figure 13. 0.05 ft /PD Break Inner Vessel Two-phase Mixture Level .. . . . . 26 2

Figure 14. 0.05 ft /PD Break Heat Transfer Ccefficient at Hot Spot.. . . .27 iii f

(

l 2 I Figure 15. 0.05 ft /PD Break' Coolant Temperature at Hot Spot ....... .. ... . 28 Figure 16. 0.05'ft 2/PD Break Cladding Temperature at Hot S' pot. . . . . ..... .. 29 2

Figure 17.. 0.04 ft /PD Break Normalized Total Core Power ... . . .. . . . ..... 30 2

Figure 18. 0.04 ft /PD Break inner Vessel Pressure.... . . . . . .

. . . . . . . , . . 31 2

Figure 19. 0.04 ft /PD Break Flow Rate .... . . .... . . .... . . . .. .. . . . . . . . ... 32 2

Figure 20. 0.04 ft /PD Break Inner Vessel inlet Flow Rate.... .. .. . ........33 l

Figure 2 i. 0.04 ft2/PD Break Inner Vessel Two-phase Mixture Level ....... .. 34 2

Figure 22. 0.04 ft /PD Break Heat Transfer Coefficient at Hot Spot.......... ... 35 2

Figure 23.' O.04 ft /PD Break Coolant Temperature at Hot Spot .. ..... . . . . . . . 36 1

2 Figure 24. 0.04 ft /PD Break Cladding Temperature at Hot Spot. .. .... . . . . . 37 2

Figure 25. 0.01 ft /PD Break Normalized Total Core Power ... . ..............38 Figure 26. 0.01 ft2 /PD Break Inner Vessel Pressure. .... ..... .. .... . ... .. . 39 2

Figure 27. 0.01 ft /PD Break Flow Rate ... ........ . ... . . . ...............40 2

Figure 28. 0.01 ft /PD Break inner Vessel Inlet Flow Rate.. . . . . .. . . . . . . . 41 l

iv -,

9 ' 4 2

g - Figure 29. 0.01 ft /PD Break inner Vessel Two-phase Mixture Level . . .. . 42 2

- Figure 30. 0.01 ft /PD Break Heat Transfer Coefficient at Hot Spot... ....43-2 Figure 31. 0.01 ft /PD Break Coolant Temperature at Hot _ Spot .... ... ...... .. 44 2

Figure 32. 0.01 ft /PD Break Cladding Temperature at Hot Spot. . .... .. . .. 45 Figure 33. . Peak Cladding Temperature versus Break Size for the Small Preak LOCA ECCS Performance Evaluation. ... .. .. ... . .. 46 i

l 4

1

]

j f

y l l

l l-L List of Tables-i l

l ' Table 1. Important Parameters and Initial Conditions for the Smali Break LOCA ECCS Performance Analysis..... ... . . .... 9 i-Table 2. High Pressure Safety injection Pump Flow Rate Versus RCS Pressure Used in SBLOCA ECCS Performance Analysis ... . ...... .... ..... . ... . . . . ...... .. .. ..... . 10 Table 3.  : Significant Results of the Small Break LOCA ECCS

. P erformance Analysis . . . . . . . . . .. . . . . . . . . . ... . . . . .. .. . . . . . . . . . . . . . . . 1 1 i

Table 4. Variables Plotted as a Function of Time for each Small Break LOCA. . . ........ ... . . . . . . . . . ... ...................12 ,

1 1

4

)

)

'l 1

i l

I i

i l

l l

l-Vi i

1.0 INTRODUCTION

A Small Break Loss-of-Coolant Accident (SBLOCA) Emergency Core Cooling System

, l(ECCS) performance analysis was performed for Waterford 3 to demonstrate

.conformance to the ECCS acceptance criteria for light water nuclear power reactors ,

(Reference 1). The primary objective of the analysis was to determine the impact of a - '

reduction in High Pressure Safety Injection (HPSI) pump flow rate due to increased surveillance test measurement uncertainty using a recently approved,' revised version

= of ABB's SBLOCA ECCS performance evaluation model. The following sections describe the method of analysis, break spectrum, important design data, and results of '

the analysis.

2.0- METHOD OF ANALYSIS The SBLOCA ECCS analysis described in this report was performed with the '

Supplement 2 version (referred to as the S2M or S_upplement 2 M_odel) of ABB's -

SBLOCA evaluation model (Reference 3). NRC approval was obtained on December -

16,1997 (Reference 4) for use of the S2M in licensing applications of Combustion:

{

Engineering design pressurized water reactors. The previous Waterford 3 SBLOCA <

ECCS performance analysis used the Supplement 1 version of ABB's SBLOCA evaluation model (Reference 5). The primary difference between the two versions is the' introduction of a radiation-to-steam model in the hot rod heatup analysis computer code, PARCH. Improvements were also made to the PARCH model for convection heat transfer to steam and to the coupling between the fuel rod and coolant channel models. 2 The S2M ABB SBLOCA evaluation model uses the CEFLASH-4AS computer code (References 6-8) to perform the hydraulic analysis of the RCS until the time the safety

~

injection tanks (SITS) begin to inject. After injection from the SITS begins, the COMPERC-Il computer code (Reference 9) is used in conjunction with CEFLASH-4AS .  !

to perform the hydraulic analysis. The hot rod cladding temperature and maximum

- cladding oxidation are calculated by the STRIKIN-Il computer code (References 10-13) during the' initial period of forced convection heat transfer and by the PARCH computer  !

code (References 14-16 and Reference 3) during the subsequent period of pool boiling heat transfer. Core-wide cladding oxidation is conservatively calculated as the rod 1 average cladding oxidation of the hot rod. The initial steady state fuel rod conditions' i

used in the analysis are determined using the FATES 3B computer code (References I

' ' l

.17-19).

3.0 L : BREAK SPECTRUM 2

Four reactor coolant pump discharge leg breaks, ranging in size from 0.01 ft to 0.06 ft2, were analyzed. The reactor coolant pump discharge leg was previously determined 1

+ .

v- I to be the limiting break location (Reference 20). It is limiting because it maximizes the amount of spillage from the safety injection system.

2 2

- A' range of 0.01' ft to 0.06 ft encompasses the break sizes for which hot rod cladding heatup is terminated solely by injection from a HPSI pump.. It is within this range that the limiting SBLOCA resides. Break sizes outside this range are either too small to experience' core uncovery or are sufficiently large such that injection from the SITS t recovers the cor6 and terminates cladding heatup before the cladding temperature j approaches the peak cladding temperature calculated.for the limiting SBLOCA. These specific break sizes were chosen to bound the most limiting SBLOCA.
' As shown by the results presented in Section 5.0, the 0.01 ft2 break does not result in y any core uncovery over the 5000 seconds (1.4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />) analyzed. Prior to 5000 l- seconds, the operator would have initiated a cooldown of the reactor coolant system thereby further increasing injection flow from the HPSI pump and decreasing the leak -  ;

2 2 2 flow rate. : The 0.04 ft ,0.05 ft , and 0.06 ft breaks experienced partial core uncovery I and the resultant cladding heatup was terminated solely by injection from the HPSI pump. Although the RCS pressure decreased such that the SITS would have started to i 2 2 '

inject water for the 0.05 ft and 0.06 ft breaks prior to the time of the peak cladding temperature, no credit for this additional injection flow was taken in this analysis.

Previous Waterford 3 SBLOCA spectrum analyses demonstrated that breaks larger 2

than 0.06 ft have peak cladding temperatures that are hundreds of degrees less than the limiting SBLOCA break size.

4.0 DESIGN INPUTS .

l Table 1 lists the values of important parameters used in the SBLOCA analysis. The HPSI pump flow rates used in the analysis are listed in Table 2, The analysis assumes 25% of the HPSI flow is spilled out the broken discharge leg and that the remaining 75% is distributed among the three intact discharge legs. -In addition to HPSI flow, flow

= from one charging pump was credited for this analysis as it was in the existing licensing analysis.

Physics and fuel performance' data used in the analysis are applicable to Cycle 9 operation including both UO2 and erbia burnable absorber fuel rods. The data is also expected to' be applicable to future cycles based on normal cycle-to-cycle variations in the data.

5.0 RESULTS Significant results for the four breaks analyzed are listed in Table 3. The parameters j listed in Table 4 are plotted as a function of time in Figures 1 through 32 for each of the j four breaks. A plot of peak cladding temperature versus break size is presented in Figure 33.

2 i

L The limiting SBLOCA, the break which resulted in the highest calculated peak cladding 2

temperature, was determined to be the 0.05 ft /PD (P_ ump Qischarge) break. The PCT . j l resulting from the limiting break size for the SBLOCA is more than 240 F less than the !

l limiting large break LOCA peak cladding temperature. Conformance of the results of  !

l ' the 0.05 ft /PD break to the ECCS performance acceptance criteria is summarized  !

below:

Parameter - Result Criterion '

Peak Cladding Temperature 1929 F 2200 F Maximum Cladding Oxidation 8.09 % 17 %

Core-wide Cladding Oxidation <0.58% 1%

Coolable Geometry Maintained Yes Yes f

Based on these results, it is concluded that the design of the Waterford 3 ECCS conforms to the ECCS acceptance criteria of 10 CFR 50.46 for a spectrum of small l break LOCAs for a rated core power of 3390 MWt.

l l

l l

3 l-

D h LIST OF REFERENCES i

4

1. Code of Federal Regulations, Title 10, Part 50, Section 50.46, " Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors".
2. Waterford 3 Nuclear Generating Station Updated Final Safety Analysis Report, Revision 9.
3. CENPD-137, Supplement 2-P," Calculative Methods for the ABB CE Small Break LOCA Evaluation Model," May 1996.
4. Letter, T.H. Essig (NRC) to I.C. Rickard (ABB), " Acceptance for Referencing of the Topical Report CENPD-137(P), Supplement 2, ' Calculative Methods for the C-E Small Break LOCA Evaluation Model' (TAC M95687)," December 16,1997.
5. CENPD-137, Supplement 1-P, " Calculative Methods for the C-E Small Break LOCA Evaluation Model," January 1977.
6. CENPD-133P, "CEFLASH-4A, A FORTRAN-IV Digital Computer Program for Reactor Blowdown Analysis," August 1974.

l

7. CENPD-133P, Supplement 1, "CEFLASH-4AS, A Computer Program for the Reactor Blowdown Analysis of the Small Break Loss-of-Coolant Accident,"

August 1974.

8. CENPD-133, Supplement 3-P, "CEFLASH-4AS, A Computer Program for the Reactor Blowdown Analysis of the Small Break Loss-of-Coolant Accident,"

January 1977.

I

9. CENPD-134P, "COMPERC-II, A Program for Emergency Refill-Reflood of the Core," August 1974.
10. CENPD-135P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," August 1974.
11. CENPD-135P, Supplement 2, "STRIKIN-ll, A Cylindrical Geometry Fuel Rod i Heat Transfer Program (Modifications)," February 1975.
12. CENPD-135, Supplement 4-P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod  !

Heat Transfer Program," August 1976. ,

I i 13. CENPD-135-P, Supplement 5, "STRIKIN-il, A Cylindrical Geometry Fuel Rod  !

Heat Transfer Program," April 1977.

l l  ;

1 5 >

a

T I I l

1 i

! 14. CENPD-138P," PARCH, A FORTRAN-IV Digital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup," August 1974.

15. CENPD-138P, Supplement 1, " PARCH, A FORTRAN-IV Digital Program to

. Evaluate Pool Boiling, Axial Rod and Coolant Heatup (Modifications)," February 1975.

4

16. CENPD-138, Supplement 2-P, " PARCH, A FORTRAN-IV Digital Program to  !

Evaluate Pool Boiling, Axial Rod and Coolant Heatup," January 1977. l

17. CENPD-139-P-A, "C-E Fuel Evaluation Model," July 1974.
18. CEN-161(B)-P-A, " improvements to Fuel Evaluation Model," August 1989. ,
19. CEN-161(B)-P, Supplement 1-P-A, " Improvements to Fuel Evaluation Model,"

January 1992.

20. CENPD-137P, " Calculative Methods for the C-E Small Break LOCA Evaluation Model," August 1974.

I l

6

I.

l

)

s i .. j t.

I i

I .

l i

l 1

l i

I l

l 1

l

\

l l

l b

4 l l l

l l

l t

1

\

i APPENDICES l

l i

I I'

6 l

1 f

l 7 l

l I

i i

I

> 1 1

l 1 1

APPENDIX A TABLES l

{

l I

l l

l l 8 j

[, '.. -

1 Table 1 -

' IMPORTANT PARAMETERS AND INITIAL CONDITIONS px FOR THE SMALL BREAK LOCA ECCS PERFORMANCE ANALYSIS  ;

Quantity Value Units Reactor Power Level (102% of Nominal) 3478 . MWt .

~

!. ' Average Linear Heat Rate (102% of Nominal) ' 5.6 kW/ft I Peak Unear Heat Generation Rate (PLHGR).of 13.5 ~ . kW/ft .!

the Hot Rod Gap Conductance at the PLHGR(') 1584: Btu /hr/ft2fog Fuel Centerline Temperature at the PLHGR(')

  • 3402 .F
Fuel Average Temperature at the PLHGR(*) 2159 'F Hot Rod Gas Pressure (') 1113 psia Moderator Temperature Coefficient at initial 0.0x10" Ap/*F <

Density Axial Shape Index -0.25 . ASI units  !

RCS Pressure 2250 psia -

8 l- RCS Flow Rate . 148.0x10 - Ibm /hr Core Flow Rate - 144.15x10' lbm/hr Cold Leg Temperature 557.5 -F Hot Leg Temperature ~ '

.615.5 'F Number of Plugged Tubes per Steam Generator 500 count Main' Steam Safety Valve First Bank Opening . 1117 psia Pressure Low Pressurizer Pressure Reactor Trip Setpoint 1560 psia Low Pressurizer Pressure SIAS Setpoint 1560 psia

~

High Pressure Safety injection Pump Flow Rate Table 2 gpm vs psia Charging Pump Injection Flow Rate 18 gpm L  :(a) These quantities correspond to the rod average burnup of the hot rod (1000 MWD /MTU) I l that yields the maximum initial fuel stored energy. .

i i

g

(

i l ..

Table 2 HIGH PRESSURE SAFETY INJECTION PUMP FLOW RATE VERSUS RCS PRESSURE USED IN SBLOCA ECCS PERFORMANCE ANALYSIS Pressure, psia - Flow Rate, gpm 2500 0 1344 0 1303 100 1250 144 1203 197 1075 290 1019 330 948 371 l 850 421 675 504 I 568 553 450 603 343 646 225 693 0 777 l

l L l

]

l-I 10

Table 3 SIGNIFICANT RESULTS OF THE SMALL BREAK LOCA ECCS PERFORMANCE ANALYSIS 2 2 2 2 Parameter 0.06 ft /PD 0.05 ft /PD 0.04 ft /PD 0.01 ft /PD Peak Cladding Temperature, 1818 1929 1812 1347 F

Maximum Cladding Oxidation, 7.76- 8.09 3.07 0.11 Maximum Core-Wide Cladding <0.52 <0.58 <0.43 <0.06 Oxidation, %-

Time of Peak Cladding' 1617 1855 2048- 659 Temperature, sec Elevation of Peak Clad' Jing 12.5 12.5 1'2.5 10.6 Temperature, ft I

l 11

rf 1 L. 1. '

l i

l Table 4 l'

L VARIABLES PLOTTED AS A FUNCTION OF TIME FOR EACH SMALL BREAK LOCA

. Variable Normalized Total Coro Power

!- Inner Vessel Pressure ,

Break Flow Rate 3

InnerVesselinlet Flow Rate L Inner Vessel Two-Phase Mixture Level .

Heat Transfer Coefficient at Hot Spot Coolant Temperature at Hot Spot '

Cladding Temperature at Hot Spot i l 1 l

4 i

12 4 ._ .

I : 5 APPENDIX B FIGURES I

i I

l l

j l

i 13 l

L

Figure 1 l 0.06 ft2/PD BREAK NORMAllZED TOTAL CORE POWER 1.50 _.. ...... ......... ......... ......... ,,.......

1.25 g -

w -

3:  :

O 1.00 N  :

3 1  :

I w -

1 1 -

O -

O  :  :

_.s -

'75 -

@4 o

1 w -

N -

a -

l 2 0.50  !

e -

i O  : 1 z -

0.25 '

e

: i 1

0.00 O 100 200 300 400 500 i TIME, SEC 14 I

Figure 2 0.06 ft2/PD BREAK INNER VESSEL PRESSURE 1

2400 . . . ...... ......... ......... ......... ......... I i

W 2000 .

1600 .

g .

g .

g .-

-i m 1200 n -

Po  ;

q en -

w .

g .

n.  :  :

800 _

w_ _
  1. 9 400 .

~

~

O

.0 600 1200 1800 2400 3000 TIME, SEC 15

6, 8 Figure 3 0.06 ft2/PD BREAK FLOW RATE u

1200 . . . . . . . . . . . . . . . ... . ........ . . . . . . . . . . . i . . . . . .

W m

e e i e

m 4

1000 _

]

]

. i 4

4 w .

m s

~

- i

+ l

- . \

g . .

p n

0 a

g -

1 400 . .

- e O

W W

- 4

  • O N su

(  :

i N i

~

N -

i l

i e i e i a e i a i e i e i e ie ii,e ie i e i n n i , e i e i a e e s e a i i i e 0 600 1200 1800 2400 3000 TIME, SEC 16

l

'1 l-l l Figure 4 0.06 ft2/PD BREAK l

INNER VESSEL INLET FLOW RATE 50000 .

~

40000 -

. 1

~

30000 .

w .

u) g -

3 . .

20000 -

3  :  :

O ^

a -

u.  : -

10000 .

0 .

M

~

-10000 O 600 1200 1800 2400 3000 I

TIME, SEC 17

j f'.

i l

r Figure 5 0.06 ft2/PD BREAK l

INNER VESSEL TWO-PHASE MIXTURE LEVEL 48 .......... . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

=

e 40 .

, i e l 4

m s

l .

~

t  :  :

w a

1

=

y .

w 24

~

M *

<C * -TO.P

. . ..O.F C. ORE. ..

r -

J g .

6  :

Q_ }

  • 16 _

e e

  • e, 8 -

m e

e M

  • e i

i f I O I I i f I I I i . I f f f i f f I I t i f f I f t I f f f B f I f f 1 1 I 1 1 E 0

4 l

O 600 1200 1800 2400 3000 TIME, SEC 18

$c 4 Figure 6 0.06 ft2/PD BREAK HEAT TRANSFER COEFFICIENT AT HOT SPOT i

5 10  :..... . . . . . . . - - ... . . . . . . . . . ......... . . . . . . . . . -

L  :

4 10  : -

=

k N.

10 .

4  :

[ -

+

g .

E -

R to e

10  : .

6 i i y .

N i

-1 l

10  : j 1

j .

W E l l l E l l I $ $ I k E l l ! ! l I $ l h l l ! ! I  ! ! .

0 600 1200 1800 2400 3000 TIME, SEC

{

19 2

Figure 7 0.06 ft2/PD BREAK COOLANT TEMPERATURE AT HOT SPOT 1800 -

- 1 1500 [ -

I l

. t l

. 1

~

l

- 1 1

1200 _

- 1 LL. .

O -

LJ  : -

i x -

i i

900 [ . l m

l Lu  : -

n. -

2 -

k -

600 _s . . ,

j _

\'

300 .

I f i e e a e e e e i a s i e i e ; e i,,,,,,g ,,,,,,,,, ,,,,,,,,,

0 600 1200 1800 2400 3000 j 1

TIME, SEC 1 20

I

. i Figure 8

- 0.06 ft2fj'D BREAK l

CLADDING TEMPERATURE AT HOT SPOT 2200 .- - ..... - - -

1900 _

1600 ~

u.  : .

O ui  :  :

1 _

p _

Q 1300 _

x -

[  ;

m  :

a. _

y .

1000 -

\  :

700 w

-f _

_~ -

400 O 600 1200 1800 2400 3000 TIME, SEC 21 1

1

l l s

l .

l l

l Figure 9 0.05 ft2/PD BREAK NORMALIZED TOTAL CORE POWER ,

i i

l 1.50 .......... ......... ......... ......... .........

l 1

_ l 1.25  ;

M 9'

el 1 -

W -

N N O 1.00 a  : -

W -

1 -

O -

O  :

,,,3 .

4 -

0.75 _

a -

w -

N -

J -

2 0.50 x -

O  :

Z -

m e

e a

5 D

5 e

0.00 O 100 200 300 400 500 TIME, SEC 22

l 1

i Fig'ure 10 0.05 ft2/PD BREAK

INNER VESSEL PRESSURE 1

2400 .......... 1.. ...... . ....... ...r..... .........

2000 .

1600 .

<n .

g -

w -

E

~

A -

0 1200 .

x 8

w g

M i g -

~

800 [

M .

400 .

0 0 600 1200 1800 2400 3000 TIME, SEC 23 i

r I

l l

' Figure 11 i

0,05 ft2/PD

! l BREAK FLOW RATE 4 u

1200 .......... ......... ......... ......... .,,,,,,,,

1 l

1

~

! 1000 l .

j .

B00 O  : -

l. iis i

3 .

( .

W

~

600 .

Q .

et -

f it -

O -

J .

u.  : -

~

l 400 .

l .

t u

i 200 .

t 0 O 600 1200 1800 2400 3000 TIME, SEO 24 1-

i 6

Figure 12 0.05 ft2/PD BREAK INNER VESSEL INLET FLOW RATE i

l- 50000 .......... ........, ,,,,,,,,, ....,,,,, ,,,,,,,,,

~

40000 -

I .

l 30000 o

u.i u) _

m -

s  :

1 20000 -

! 3  :  :

t 0

u I

L1- l r

10000 .

l

. I l

. l 0 .

- . l

,g g ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, , , , , , , , , , -

0 600 1200 1800 2400 3000  !

TIME, SEC  ;

25

a Figure 13 0.05ft2/PD BREAK INNER VESSEL TWO-PHASE MIXTURE LEVEL 1 1

i l

l 48 . ........ ........, ......... ....... . ........,

i

. i 40 .

32 d

!(

V  :

w  :.

a .

W m 24 .

x .

=c .7,,,,co,,

z g

16 .

.oon. .ou or c<nn.

8 _

0 O 600 1200 1800 2400 3000 T!ME, SEC 26

9 6 l

l Figure 14 1 L

0.05 ft2/PD BREAK l

HEAT TRANSFER COEFFICIENT AT HOT SPOT 1

5 10 y........ ......... .........

~

l -

l 4 .

10  :

1 .

W LL 3 C. 10  :  :

N -I -

z -

E -

R m

2 10  : .

g  : E u

x  :

1 10  : .

M N

l 0 ,,.. ..,, .,,..,,,, ,,,,.,,,, ii.,,,,,, .,, ,,,,.

0 600 1200 1800 2400 3000 l TIME, SEC 27

0 5 Figure 15 0.05 ft2/PD BREAK COOLANT TEMPERATURE AT HOT SPOT ,

l l

1800 _

4 4

" j l ,

i l

1500 _

4 4

1 -

1 -

t _

1200 f

u.  : -

O W .

C D -

" 8  :

W  :

O.

l 2 .

s  :

w  :

600 _ t j -

e me l

M e

O O

O 600 1200 1800 2400 3000 TIME, SEC l

l l

28

Figure 16 0.05 ft2/PD BREAK CLADDING TEMPERATURE AT HOT SPOT 2200 _. ....... ......... ......... ......... .........

1900 '

1600 j _

u.  :  :

O -

ui  :  :

m p

Q 1300 _

g _

Lu  : -

1000 , -

yW l

t 400 O 600 1200 1800 2400 3000 TIME, SEC 29

Figure 17 l 0.04 ft2/PD BREAK l

NORMAllZED TOTAL CORE POWER 1.50 . . . . . . . . . ... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . ,

l 1

4 1

1.25 [ -

1

~

x -

m -

W 3 x  : .

C 1.00 l

a -

l m  :  : 1 x -

O -

o F<- 0.75 0  :

o -

w -

N Q

2

~

g 0.50 -

O  :

z -

0.25 .

1 r I 1 i f g g g 1 l t t kil l l t g e i l 3 l l j g g g A I 3 l g l l p l l 1 g g g g 0 100 200 300 400 500 TIME, SEC 30

Figure 18 0.04 ft2/PD BREAK INNER VESSEL PRESSURE I

2400 _......... ......... ......... ......... .........

2000 .

i

~ ~

i 1600 [ .

4 .

u) -

Q.  ; -

m -

E W <

I a 1200 _~ -

v)

(f) -

W -

g -

g -

l l

400 . -

0 O 600 1200 1800 2400 3G00 TIME, SEC 31 3

{

Figure 19 0.04 ft2/PD BREAK FLOW RATE I l

1200  ;,......., . . . , . . ,,, ......... , , , , , , . . . , , , , , , , , ,

1 l

e

. l M

W

~

~

1000 .

e D

9 O

W W

o w

4 1

CD -

co  :

D e

e a  : l t  :  :  :

9 g

4 a 400 .

i

- . i e

e M

a e

W a l

200

= .

~ .

O E ! $ $ l $ I I I $ , , l 5 l l l l l l l l l l l l l j l l l l l l g j l l j l l l l l 0 600 1200 1800 2400 3000 TIME, SEC 32

f l.

L 1 \

3 Figure 20 0.04 ft2/PD BREA.K 4

INNER VESSEL INLET FLOW RATE I

I l

50000 . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 4

6 4

e se l 40000 j

} _

I 1 ,

W h

e w e W

W -

1

-m .

W l ,

6 e 20000 '!

l  !

l C -

l 3

i -

O y

LL  :

. 10000 -

l -

j -  !

l e l .

t

  • e 0 - .

W W

M e

m M

I 1 I f I I I I f f f I l f g ig g g g i g g g i g g g g g g g g g g g g g g g )

0 600 1200 1800 2400 3000 TIME, SEC 33

I Figure 21 0.04 ft2/PD BREAK INNER VESSEL TWO-PHASE MIXTURE LEVEL .

48 .

4 4

e hg 9

40

.I ed GI e

e 4

O 32 _

be W

W 4

d W

I$

6 W 24 V)

<C . . ....TOP OF C.O.RE.

y .

Q.

, .~ .

h  ! b 16 .

4

,e

,e 8 _

k.

4 M

I4 mim NS R$

$  ! ! $ I I l I k I l l l l l I I $ l E l l l l j l l l l l I l l I l l I l l l l $ E O 600 1200 1800 2400 3000 l

TIME, SEC 34

i i

t l <

l Figure 22 0.04 ft2/PD BREAK l

HEAT TRANSFER COEFFICIENT AT HOT SPOT r ,

5 10  :......... . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . .-

L,  :

4 -

10  : -

m O

h a

LL. 3 o, 10 .

cy - t -

e .

E .

R m

2 10  :  :

l l 10  :  :

e e

l l l l l l l l 5 l l k l l l l l l l l $ ! $ h I l h k I ! ! !  !  !  !

O 600 1200 1800 2400 3000 TIME, SEC l

35 l

l l

l I

I Figure 23 0.04 ft2/PD BREAK l

I COOLANT TEMPERATURE AT HOT SPOT l l

1800 .

De 41 el W

1500 _

r'

[

9 91 M

O O

N h

6 y

4 D

8 m e 1200 .

u.  :  :

O -

ui  :  :

c .

3 -

Q 900 .

Lu  :  :

n. .

2 _

600 .

t_  ; _

Wim ud W

W h

a W

m e

4 W

8 D

em

.e l l l l l l l l l l l ! k l l l l l l k l l l I !  ! ! $ I ! I h ! !  !

l 0 600 1200 1800 2400 3000 TIME, SEC 36

Figure 24 0.04 ft2/PD BREAK CLADDING TEMPERATURE AT HOT SPOT 2200 .......... ... .. .. ......... . . ..... ...... .

_~

1900 .

~

1600 [

u.  :  :

O -

ui  :

c .

1300 _

m -

w  :  :

n. _

2 _

h  !

1M ,

3 .

700

-'k __ f -

400 O 600 1200 1800 2400 3000 TIME, SEC 37

3 6 9 Figure 25 0.01 ft2/PD BREAK NORMALIZED TOTAL CORE POWER 1

1.50 .

as 6

e es au 1.25 _

4 m

g _

g _

3  :

f ~ -

0 1.00 _

4 m .

g .

t O -

O  : .-

J .

H 0.75 0 -

t-  : -

o g

N -

.J .

( .

2 0.50 g .

O  :

z -

0.25 .

le as 0.00 0 200 400 600 800 1000 TIME, SEC 38

Figure 26 l -

0,01 ft2/PD BREAK l

INNER VESSEL PRESSURE 2400

(........

M 1

^

2000 _

1 I

: l l

1600 _

I

<  :  : I rn -

e -

l' 3 .

e 1200 I e - xm a .

cn .

g) w _

g -

\

e

.i 800 .

. l

. 1 Su m

4-

. l 4% _

e si e

4 l l l l . l I Y l l l l l I ! I l I  ! ! l l  ! ! ! !  ! !  !

0 1000 2000 3000 4000 5000 TIME, SEC l

39

e t 6 Figure 27 0.01 ft2/PD BREAK FLOW RATE 300 _

4 e

g y

e

~

250 _

RO m

a 200 o

W W

m  :

2 _

.J -

W 150 _

t _

e -

3  : -

os U.-  : .

100

  1. t' - ~

! L .

{

e es a

m l

50 4

0 -

0 1000 2000 3000 4000 5000 TIME, SEC 40

g 4 4 l

Figure 28 0.01 ft2/PD BREAK INNER VESSEL INLET FLOW RATE i

l l

75000 .

~

l m

_ 1

~

l l

[

60000 .

4 4

w W

e 45000 .

LU g .

m  :  :

2 -

a -

h30000 _

[

g g  :  :

oa

u.  : -

~

15000 _

se e

g e

4 4

M m

' ~

0 [ -

n e

M 4

e ne

-15000 O 1000 2000 3000 4000 5000 TIME, SEC 41

. . o Figure 29 0.01 ft2/PD BREAK INNER VESSEL TWO-PHASE MIXTURE LEVEL 48 . ......... . . . . . . ... . ...... . . . . . . . . . . . . . . . . . . .

4 m

m Di el 40 _

_ i l

l i

D h$

ism M

e O

l t  : .

1  : ~  ;

w -

W g .

W 24 W -

<C -TO.P

.. O.F CORE ............

g -

g, _

O -

4 4

8 16 _

W n

NE 4

-90TTOM OF CORE 5

,,........... ............ ............ ............ ...........s 8 _

G w

ud n

14 h l l $ I ! I !  !  !  ! k l ! l l  !  !  ! .!  ! ! !  ! I !  !

$ I I $ !  !  ! !

0 1000 2000 3000 4000 5000 TIME, SEC 42

. , a l

l l

Figure 30 i 0.01 ft2/PD BREAK HEAT TRANSFER COEFFICIENT AT HOT SPOT 1

?

6 10 ......... .. ...... ......... . ......, .......,.

m Su 4 '

10  :

e em LL 3

o. 10 -

m  : .

e .

d -

3 H 2 (

cn 10  : _

~

cf g -

i I ~

1 l

10  : .

~

e e

eu a

10 O 1000 2000 3000 4000 5000 TIME, SEC 43

1 Q *e o t

l l

Figure 31 0.01 ft2/PD BREAK COOLANT TEMPERATURE AT HOT SPOT l

1200 .

l l

=

i .

1000 _

my e

4 4

~

800 m  :

~

O -

Ld 600 D  :

Q _

( _

x .

LU CL _

2 -

s  :

400 _

eu til eu ei a

em ei 200 _

w mum el en su eq

$ 0 I 1 l l l l l l 1 l l l I l I l l l l l l l l l [ l l l l l 1 1 I l l j l l l l l 0 1000 2000 3000 4000 5000 TIME, SEC 1

44

-.i,.

1 Figure 32 l l 0.01 ft2/PD BREAK i l

CLADDING TEMPERATURE AT HOT SPOT l l

2200 ...... ... ......... ...<..... .........

1900 _

1600 [ [ -

u. . .

O _ _

ui  :  :

x _

r 1300 _ _

Lu _  :

Q. .

3 _

f . _

1000 [ [

(

700 _m w _

400 O 1000 2000 3000 4000 5000 i TIME, SEC l

45

r

! Figure 33 l

l _ PEAK CLADDING TEMPERATURE VERSUS BREAK SIZE l FOR THE SMALL BREAK LOCA ECCS PERFORMANCE EVALUATION -l l

1 1

2200 .......... ......... ......... .... .... .........

I g .

1600 _

u.  :  :

O - -

ui  :  :

cc . -

p - -

1300 _ .

W  :  :

a. _ _

2 -

~

N  :

1000 [ _

l

~.  !

l y

700 _ _

l 400 i 0.00 0.02 0.04 0.06 0.08 0.10 l l

BREAK AREA, FT2 l 46 i

l 3