ML20028G219

From kanterella
Jump to navigation Jump to search
Az Nuclear Power Project 150-Inch Reed Switch Position Transmitter & Litton Electrical Connector Seismic Qualification Test (Sine Sweep Testing). Age Considerations for Seismic Design & Surveillance in Mild Environs Encl
ML20028G219
Person / Time
Site: Palo Verde, Waterford, 05000000
Issue date: 10/09/1981
From: Haslinger K
ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY
To:
Shared Package
ML20028G211 List:
References
TR-ESE-442, NUDOCS 8302070531
Download: ML20028G219 (6)


Text

A Hnds%343 if. v.c NOV 3 0 '.551 i'

ARIZONA NUCLEAR POWER PROJECT

L 150" Reed Switch Position "ransmitter i

and.itton Electrical Connector l

l i

SiSM C QUA.lECA"10N "EST l

Sine } weep Testing ;

~

i j

Test Report TR-ESE-442 NUC. EAR.ABORATORY I

dPOWER

-m 9 SYSTEMS COMBUSTION ENG NEERING INC f

DO O 00 82 A

PDR

COMBUSTION ENGUiEERING DEVEIDPMEhT DEPARTMENT i

1EST REPORT SEISMIC QL%LIFICATION TESTING SYSTIM 80 REED SW11G POSITION TRANSMITTER AND LITION ELECIRICAL CONNECTOR ARIZONA NUCLEAR, POWER PROJECT - PAID VERDE NUCLEAR GENERATING STATIONS 1, 2, AND 3 777009 PREPARED BY:

@At (40 W REVIEWED BY:

/

/h p K. H. Easlinger g

REVIEWED BY:

41 04 0 [/[8.I, Quality Assurancs

!bu/

DOCOL T 10. :

TR-ESE-442 IRIE OF ISSUE:

Test Reques: No. SF40

TA312 0F O'IB'IS I

SECTI0ti TITLE PAGE NO.

1.0 Introduction 1

2.0 Stmuery 1

2.1 Sine Sweep Testing 1

2.2 Seismic Qualification Testing 1

3.0 Objectives 2

3.1 Sine Sweep Testing 2

3.2 Seismic Qualification Testing 2

4.0 Description of Reed Switch Position Transmitter 2

(RSFI) 4.1 RSFI 2

4.2 Litton Electrical Connector 3

5.0 Test Description 3

5.1 Mechanical Test Set-UP 3

5.2 Instrunentation Set-Up 4

5.3 Sine Sweep Test Procedure 6

5.4 RSFT Electrical Performance Monitoring 7

5.5 RSPT Inspection Requirements 7

5.6 Sinulation of Seismic Test Environment 8

5.7 Test Procedure, Test Matrix 9

6.0 Discussion and Results 10 6.1 Sine Sweep Testing 10 6.2 Seismic Qualification Testing 13 7.0 References 16 8.0 Appendices i

17.-ESE-u.2

TABLE OF CDhTa'IS (cont'd)

PAGE No.

Electrical And Functional Inspection Sheets A-1 APP EDIX A B-1 Iog Sheets APPENDIX B Results: Static load Deflection Tests and C-1 APP 5 DIX C First Mode Dynamic Test O

in-ESE-22 11

LIST OF FIGURES FIGHE NO.

DESCRIPTION PAGE NO.

1 Reed Switch Position Transmitter 18 t

2A, B ANPP RSPT Seismic Qualification Test 19 Instnrnentation locations 3

Vibration Control and Data Acquisition System 21 Sine Sweep Testing 22 4

Typical Input Listing - Sine Sweep Test SA, B, C Typical Sine Sweep Traces - Transfer Function 23 Test File RSSN02 - 0.02 g's Excitation 6

Typical Site Sweep Traces - Strain Frequency 26 Response Plots - 0.02 g's Excitation 7

Detennination cf Modal Damping Properties frcxn 27 Blown-Up Sine Sweep Traces 8-Ccrnparison of Experimental and Analytical Mode 28 Shapes - First Mode I

Cmparison of Experinental and Analytical Mode 29 9

Shapes - Second Mode 10 Cmparison of Experimental and Analytical fiode 30 Shapes

'Ihird Mode 31 11 OBE Reguired Response Spectra ANPP'RSPI Qualification Test - 2% Damping 12 SSE Rwuired Response Spectra ANPP RSPI 32 Qualification Test - 2% Damping 13 Vibration Control and Data Analysis, Instnrnentation -

33 Block Diagram Shock Response Spectrun Testing 14 Block Diagram for Monitoring of RSPT Electric 34 Output During Seismic Qualification Test 15 Typical Input Listing - Shock Response Spectnin 35 Test - ANPP SSE Event t

~ - n.,-

LIST OF FIG?RES (cont'd) j FIGHE NO.

DESGIFTION PAGE NO.

s 16 Position of Test Specimens During Test 36 Orientations 1-4/ Top View 17 Horizontal Table Time History Run 26, SSE Event 37 18 Strain and RSFT Time Histories, OBE Event Test 38 Orientation 3 19 Strain and RSPT Time Histories, SSE Event Test 39 Orientation 1 20A Horizontal and Vertical Test Response Spectra 40 OBE Event / Test Orientation 1 - Run Nos. 4 & 5 203 Horizontal and Vertical Test Response Spectra 41 OBE Event / Test Orientation 1 - Run Nos. 6 6 7 20C Horizontal and Vertical Test Response Spectra 42 OBE Event / Test Orientation 1 - Run No. 8, Test Orientation 2 - Run No.13 20D Horizontal and Vertical Test Response Spectra 43 OBE Event / Test Orientation 3 - Run No. 20, Test Orientation 4 - Run No. 27 21A Horizontal and Vertical Test Response Spectra 44 SSE Event / Test Orientation 1 - Run No. 9, Test Orientation 2 - Run No.11 21B Horizontal and Vertical Test Response Spectra 45 SSE Event / Test Orientation 3 - Run No. 26, Test Orientation 4 - Run No. 33 22 Horizontal and Vertical Table Time Histories 46 OBE and SSE Event / Test Orientation 1 47 23 Response Spectra at Different Shroud Elevations OBE lvent/ Orientation 1, 27. Damping 24 Response Spectra at Different Shroud Elevations 48 SSE Event / Orientation 1, 27; Damping a

~m

LIST OF FIGl.'RES_

(cont'd)

PAGE ?O_.

DESCRIPTION FIGURE NO.

49 Acceleration Time Histories at Different Shroud 25 Elevations OBE Event / Orientation 1 50 Acceleration Time Histories at Different Shroud 26 Elevations SSE Event / Orientation 1 LIST OF TABLES _

PAGE NO.

DESCRIPTION _

TABLE FO.

51 Smmary of Results.02g Excitation Sweeps 1

Test File RSSN02 52 Smmary of Results.05g Excitation Sweeps 2

Test File RSSN05 53 Su:: mary of Modal T$ansfer Functions - Sine Sweep 3

Testing 54 Smmary of Modal Strain levels - Sine Sweep Testing 4

55 Modal Damping Properties - Sine Sweep Testing 5

56 Strain levels and RSPT Electrical Performance 6

Seismic OBE and SSE Testing 57 List of Equipent and Instrunentation 7

IF.-ESE-C.2 v

1.0 INTRODUCTIO*'

The 150" Reed Switch Position Transmitter (RS M) and the Litten connector are electrical devices which nust function in an environ-nent of high temeprature, radiation, htanidity and vibration during normal plant operation. In addition, as a Class 1E electrical ccrn-ponent, the instnrnent must perform adequately during seismic environ-ments up to SSE intensities as transmitted up to its mounting location (namely, the CEDM shroud) in a plant.

The subject report describes the procedures which were undertaken to demonstrate the RSM's ability to withstand the seismic intensities stipulated for the ANPP reactor when it is installed in a representative CEDM. The test specimens had already undergme temperature and radia-tion aging.

2.0 SlM %RY 2.1 Sine Sweep Testing Sine sweep tests confirmed the analytically predicted dynamic behavior (natural frequencies) of the /SPP type CEDM. This fact gave assurance that the subsequently conducted qualification effort would address the worst seisnic response condition for the /SPP reactor.

The large amount of frequency, damping and mode shape data reported in this doctrnent will serve for future correlation efforts with analytical models.

2.2 Seismic Qualification Testing The two RSIT samples as installed in a representative ANPP type CEDM were exposed to a sufficient ntrnber of biaxial "randam" multi-frequency input motions of intensities greater than the required j

The RSFTs were tested in four OBE and SSE response spectra.

orientatio% to allcw for their asy-metric design. No adverse f

transients of failure modes in the electrical performance of the Therefore, the RSMs were observed in any of the ntrnerous tests.

conducted test is proof that the RSIT assembly meets the seismic

~

requirements imposed by the References 2 and 10.

3 7.SF-u.2 1

3.0 OBJECTIVES 3.1 Sine Sweep Testing he objective of the sine sweep test was to identify the dynamic characteristics of the RSIT support structure; namely, of the ANPP type CEDM with the longest nozzle. Natural frequencies and associated mode shapes, as well as modal damping parameters were to be obtained prior to the qualification tests for correlation with analytical predictions.

3.2 Seismic Qualification Testing he objective of this program was to seismically qualify the ANPP RSFT and the associated Litton electrical connector for comercial service in accordance with the purchaser's requirements of References 3 and 4.

Proof was to be established that the RSPT design would remain functional when installed at its permanent location during or following a seismic event of an intensity up to SSE magnitudes. D e RSFT was to be exposed to a minimum of five 'OSE events and one DBE event following the appropriate tem-perature and radiation aging test programs.

4.0 EQUIP.G T DESCRIPTION 4.1 RSPT Re production RSFT is a transducer device used to detemine the position of the CEA within the reactor core. De instrument is housed in a stainless steel tube within the shroud which is posi-tiened adjacent to the extension shaft upper pressure housing of a CIIM.

l 2

??-ESE-l./.2

The production RSPT is essentially a voltage divider network cmprised of an array of magnetically actuated reed switches vired to a series chain of resistors. The reed switches, resis-tors, and wire are mounted on an extruded plastic strip at precise 1.5 inch intervals. A permanent magnet attached to the top of the extension shaft generates the magnetic flux necessary to actuate and deactuate the switches yielding voltage signals proporational to the CEA position. Three additional separate circuits provide contact closures which indicate the Upper Elec-trical Limit, Imer Electrical Limit, and Dropped CEA position.

The RSM is fabricated in cmpliance with the drawing of Ref-erence 8 and specifications of Reference 7.

A 150" full length RS M has been rand ely selected fr m the pro-duction line for qualification testing. This test specimen has already undergonethermal and radiation aging.

4.2 Litten Electrical Connectoits The cmponent is a bayonnet locking electrical connector providing the interface connection between the head area cabling and the RSPT. The cable penetrations are designed to seal against fluid entry into the connector. The head area cabling connector is the Litton CIR06-CE-20-33S straight plug. The mating box motmting receptacle which is attached to the RSPT is the Litton CIR02-CE-20-33P.

5.0 TEST DESCRIPTION 5.1 Mechanical Test Set-Up A full-size 15 Chinch Control Rod Drive Mechanism (representative of the ANFP design), including the driw shaft, water, conduit and 3

3-ESE-U.:

2 RSMs (Serial Nos. 597 and 604), were assembled ontc the seismic simulation fixture.

For this purpose, a special test nozzle had been designed and fabricated. The test set-up simulated the longest CEDM nozzle which, by analysis, had been shown to yield the highest CEDM response characteristics.

For the sine sweep, as well as the ;eismic qualification tests, the hydraulic actuator of the seis..'.c shaker system was set at a 45 angle, thus providing e.citacions of similar magnitudes to both axes. Although the CEEN itself is syrmetric about its vertical axis, the RSMs are not, thus,in accordance with the Guidelines of Reference 2, four test orientations were required.

This was acconplished by rotating the test nozzle plus CEDM structure once by 90 and by switching the two RSPT samples in each of the two nozzle orientations.

Figure 16 depicts the four test orientacions. The two RSPT samples provided for the test were inserted in the CEIN shroud and clamped into place.,

The actuating magnet was attached to the drive shaft and was located near the top position inside the upper pressure housing.

5.2 Instrumntation set-Un Two control accelerometers, mounted in a mutually perpendicular arrangemnt to the base plate (which simulated the reactor head elevation) were used to monitor the excitation levels in the horizontal and vertical axes. Figure I indicates the strain gauge locations at the test nozzle which is the highest stressed ccrnponent of the CEE design. The stress levels at this location, although not a criterion for the RSM qualification, were ased as an index for the intensity of the seismic event and to help avoid overtesting (failure) by correlating measured stress values to analytically predicted ones.

g; _q 4

The response accelerometers indicated in Figure 1 were used to monitor CE24 deflections during sine sweep testing. Accelercneter locations 9, 7, 5, and 3 were also recorded on magnetic tape during the seismic qualification program to be later displayed in the form of time histories and/or response spectra.

All strain gauges (1/4 Bridge Hookmip) and accelerometers were connected over the replay panel to the patch panel of the Digital Vibration Control System. For signal conditioning of the strain gauges, the Unholtz Dickie, Type R, Charge / Voltage Amplifiers were used. Unholtz Dickie, Type H, Ciarge Amplifiers were used for the response acceleroneters and the model 2216-X units for the two control accelerometers.

Selected CEDM nozzle strain gauges were monitored on the visi-corder during preliminary and actual test runs. Tne PSPI elec-trical perfon ance was monitored on the visicorder during all qualification phases.

For the sine sweep testing, the "SN21T Version - 04" software package of the digital vibration control systen was used. This program allcus the monitoring of 4 channels of data simultaneously.

For synthesis and on-line analysis of the generated seismic envirements, the "SS20T, 3.0 Decade" sof tware package of the digital vibration control system was used. During the tests, selected transducer sig.als were recorded on a 7-channel tape recorder. Test response spectra of the table input or Cmf car ponent motions were then developed off the tape by playback into analysis sof.tware portion of the "SS20T" package.

~E-ESE-Z

Doctmented strain measurements are accurate within 5%, and the acceleration measurements within 10% of indication. All accelero-meters had been calibrated within the last 12 nonths of testing.

One non-critical response accelerometer, which showed erroneous indications, was replaced during' the early phase of the test program.

5.3 Sine Sweep Test Procedure The "SN21T Version - 04" software package of the digital vibration control system was employed for the tests. Figure 4 is a typical listing of an input file. For interpretation of the various input parameters, Reference 12 is to be used.

We C-E sinusoidal vibration control system, in conjunction with the MTS hydraulic actuator and control units (See Figure 3), is j

a closed loop, digital system that provides four-channel, multi-strategy control for performing a variety of swept-sine vibration tests. De system accepts analog input from the seismic table, digitizes the analog data, and continuously controls the amplitude of the resulting control signal so that it matches the amplitude of the specified reference spectrum. h e control signal amplitude is regulated by controlling the amplitude and frequency of a sinusoidal drive signal that is generated by a programrable frequency synthesizer.

During the test program, the horizontal table motion was controlled using channel A of the D.V.C. system. De remaining channels B, C, and D monitored selected, calibrated transducer signals and stored them on disc. In this fashion, while maintaining constant acceleration input amplitude over a frequency range as wide as 1 to 33 Hertz, frequency response data was acetrulated for all

monitoring locations in consecutive sweep cycles. ne data was later retrieved frca the disc and displayed in a suited manner as phase, response amplitude or transfer function versus fre-quency. At the ccrupletion of the test program, all pertinent files were transferred to tape NL-014 and stored at the Blog. 5 data center. ne developed hard copies, alonF with the reduced data, are stored in the Nuclear laboratories, Bldg. 2, Records Room.

5.4 RSM Electrical Perfomance Monitor.ng 4

With the magnet held in a fixed position (close to the full with-drawn position of CEA travel), the voltage output signals of both RSPTs were recorded on a Visicorder oscillograph and also stored l

on tape during all seismic test phases of test orientations 3 and 4.

Figure 14 renders a block diagram of the basic monitoring scheme. W e resolution of the oscillograph recorder was sufficient j

to detect any transient ups5t conditions or voltage signal changes dcun to five millivolts.

5.5 RS M Inspection Reouirements he operational specifications and the inspection requirements of the RS M position indication and the limit switch circuits are outlined in Sections 4.0 and 6.5 of Reference 10, respectively.

Prior to and follcuing the seismic qualification test programs, the electrical and functional characteristics of the RSPT asserrbly were inspected under laboratory ambient conditions in compliance j

with Section 6.5 of the reference test procedure. ne results of inspections gre recorded on the pertinent data sheets and are included in Appendix A of this report.

7 E-ESE-l.l.2

5.6 Simulation of Seismic Test Environment he test specimens were subjected to 32 seconds of simultaneous horizontal and vertical inputs of random wavefom motion. Bis randan wavefom consisted of frequencies spaced 1/6 octave apart over the frequen:y range of 1 Hertz to 25 Hertz s= necessary, to envelope the Required Response Spectra of Figures 11 & 12. De technique used to synthesize the shock spectrum was to generate a series of wavelets at discrete fre-quencies (spaced 1/6 octave apart within the desired frequency range). he occurrence of these wavelets at each frequency (within the available time frame of 32 seconds) was specified in an arbitrary (randan) fashion and the amplitude in g's for each wavelet was controlled by the Required Response Spectrum (RRS). At least 3 wavelets, spaced randomly throughout the event, were used at each sixth octave frequency close to the CEDM natural frequencies. We Digital Vibration Control System was used to sum up all the: wavelet parameters and to produce a canposite wawfom that contained energy at all frequencies across the band. At a low test level, this wavefom was then converted into shaker table motion by the shaker control units.

Initia111y, the program autaratically approximated the amplitude of each wavelet assuming that the transfer function of the shaker system is fint. %e shock response spectrun of the table response l

waveform (in horizontal axis only) was then analyzed and compared with the specified RRS. We difference between the two spectra was then used to adjust autmatically the wavelet amplitudes and to thereby canpensate the drive waveform. H is process was I

1 repeated until acceptable agreement had been demonstrated. Next, the output level was increased to arrive at the OBE and the DBE test levels. Following each increase in test level, several steps of synthesis were nomally required to arrive at a satis-factory drive signal.

a 3-55 =-:.:.2

~

In addition to the on-line analysis of the horizontal table motions, both horizontal and vertical control accelerometer l

response signals were stored on tape and analyzed later over a frequency range of 1-50 Hertz usir g the "SS20T, 3.0 Decade" sof tware package. Figure 15 shows a listing of the input file for the SSE event analysis. For interpretation of the various input parameters, Reference 14 is to be used. The software capabilities were verified in accordance with the Q.A.

requirements as doctanented in Reference 15.

Figure 17 depicts a horizontal table time history for Test Run 26 (SSE event). The duration of this event was 32 seconds.

The maximum value of this acceleration time history (approxi-mately 0.7 g's) is representative of the actual Zero Period Amplitude (ZPA) level reached during this event which easily exceeded the requirements of 0.4 g's (see Figure 12). The character of the wave form reflects the superposition of low, medium, and high frequency pulses which resulted in the gen-eration of a "randcm" type, multifrequency waveform similar to those of actual earthquakes. The required low frequency excitations for the high AliPP response spectrum peak (at about 2 Hertz) are noticeable even in this acceleration trace.

5.7 Test Procedure. Test Matrix For more detailed guidelines about the test performance, refer to the test procedure of Reference 10. A listing of all data runs is enclosec*as Appendix B to this test report.

%rcWL '

  • o-

6.0 DISCUSSION AND RESU1.TS 6.1 Sine Sweep Testing Tables 1 through 5, along with Figures 5 through 10, summarize the results obtained frcxn the sine sweep test. Appendix B renders the complete Test Matrix.

Initial lua level sine sweep testing verified the analytically predicted natural frequencies of interest. D e experimental frequencies of 2.32, ~ 9.2, and ~ 11.6 Hertz compare favorably with the theoretical values of 2.39, 10.08 and 11 Hertz for vibration modes 1, 2, and 3, respectively. Slight variations in these experimental frequencies with test level were observed especially for the somewhat non-linearly responding vibration modes 2 and 3.

Figure 5 exhibits a series of transfer function plots developed for all 9 accelerometer locations along the CDM height. 'Ihe three resonance modes can clearly be discerned.

D e transfer function amplitudes at these resonances were taken from all available frequency response graphs and are listed in Tables 1, 2, and 3, along with damping and strain level information.

Figures 8, 9, and 10 render ccrnparisons of experimental and analytical mode shapes. For the purpose of this illustration, the deflections are shown with similar amplitudes. However, no attempt was made hen to match the actual test levels analytically.

Generally, the mode shapes agree quite well. But, it is also noted that the transfer function levels vary with test intensity, a fact which reflects the variation of damping with test level (especially modes two and three), as well as e certain amount of scatter between repeat test runs. For these reasons, one must view the entire range of test results, rather than using a single test run for possible input to model correlation efforts or i

T;.-ESE-U.2 10

I 1

extrapolation of results to other plants or higher excitation levels.

Figure 7 shows some blown up plots of resonance peaks. These graphs were used to determine the modal critical damping properties empicying the half power point technique.

af x 100 c/c

=~

r 2fn where c/c = Critical Damping Ratio in (%)

r t.f = Width (in Hertz) of Resonance Peak at 0.707 times Peak Amplitude Value f = Fesonance Frequency in (Hertz) n For a variety of transducer: locations, modal damping properties were obtained, averaged, and listed in Tables 1, 2, and 5.

First node damping values varied between 2.2 and 3.09 percent of critical. The two percent value assumd in the CEDM analyses appears semesat conservative, however, based on this data, three percentcouldnotbejustified.

Second mode damping ranged between 3.5 and almost 6 percent.

Surprisingly, this variation showed up when results taken on different test days were compared. The damping values obtained for a wide range of excitation levels (.05 to.25 g's - Table 5),

on a single day, is quite consistent. Apparently, the CEDM structure condition (e.g. looseness of coilstack and rotation) as affected b7 test levels, can change.

1 j

Third mode damping values ranged from 2.2 to 3.3 percent of critical. It is of interest to note here that the ANPP CEDM has no additional tie between the upper pressure housing an'd shroud. This tie, which exists for the TVA and WPPSS plant, has the effect of eliminating one mode and combining the second and third ANPP modes into one.

Modal Strain levels are sumarized in Tables 1, 2, and 4.

For correlation with analytically predicted stress levels, one must detemine the associated deflections by converting transfer function levels into displacements. Considering test file RSSN02 (Table 1), this is done as follows:

ACC/9/ Horizontal Control Acc = 59.39 (g/g)

Acceleration Level = Transfer Fct x Excitation

= 59.39 x 0.02 = 1.19 (g's)

Deflection Amplitude = 9.8 x g = 9.8 x 1.19

= 2.16 (inches) 2 f2 2.32

=

The associated maximum nozzle strain = 175 uc or 81 pc/ inch deflection at CEM Top (First Mode).

Following the seismic qualification program, static load deflec-tion tests (incrementally deflect CEDM top and monitor strain gauges 7 & 8), as well as simple dynamic tests (manually excite first mode), were conducted to verify the observed CEDti strain versus deflection ratio. The detailed results given in Appendix C confirm the shaker table data.

M

~&u.2

\\

6.2 Seismic Qualification Testing The ANFP reactor design calls for 87 CEDMs with 16 different i

nozzle lengths. Earlier analyses has shown that the CEDM type l

with the longest nozzle would tend to respond in the most critical manner. Therefore, this nozzle condition was selected for testing. The stipulated seismic intensities for the reactor head elevation are shown in Figures 11 and 12 for the OBE and the SSE event, respectively. It had been decided earlier to perform the tests with the hydraulic actuator set up at a 45 angle with the horizontal plane, thereby providing equal input motions in the vertical axis and in the horizontal axis. During the tests, the horizontal control accelercxneter was used for the synthesis of the randczn type wavefoms. The Required Response Spectra (RRS) used for the synthesis represented the envelope of the vertical RRS and the horizontal RRS, whereby the latter was constnicted frcxn two horizontal spectra (using the Root-Sum-of-the-Square technique).

Figure 13 shows a diagram of the instrumentation book up and control logic. The RSFIs were placed inside the CEDM shroud and connected to recording equipnent as shown in Figure 14.

The RSFI locations during the four test orientations are iden-tified on Figure 16.

During the course of the test program, the RSFrs were exposed to at least 30 and 10 seismic disturbancea, each intensity range equal to at least that of the OBE and the SSE type earth-quakes, respectively. The official test log is enclosed as Appendix B,

.ich includes a mininm of 5 OBE and 1 SSE events in each test orientation.

In all test cases, no transient upset or anomalous conditions were found in the RSFT signal traces.

3 -ESE-C :

13

The signal loss observed during one test nm was due to a mon-itoring cable break (cable was inadequately secured at power supply). The inspections conducted prior to and following the seismic qualification tests revealed no changes in the functional characteristics of the two specimens as provided for testing (Appendix A).

Figure 17 shows the synthesized table acceleration time history for an SSE event. Since the Required Response Spectrum has a high spectrun peak at about 2 Hertz, the waveform clearly reflects these large, low frequency components superimposed by higher frequency contributions. Typical strain and RSFT time histories are shown for the OBE and the SSE events in Figures 18 and 19, respectively. With the exception of a small " ripple" (less than 3 milliseconds), all RSPT monitoring traces are undisturbed. The strain gauges reflect the response characteristics of the CET and reveal an overwhelming response l

(proportional to deflectiod) at its fundanental frequency. Peak CEDM component strain levels are listed in Table 6 for all

+

1 The maximtm values (635 uc for OBE and 770 uc for test runs.

SSE events) are well within material allowables.

Figure 20 renders OBE Test Response Spectra for all four test orientations. The analyses of the table motions was perfomed at 1/6th octave increnents over a frequency range of 1 to 50 Hertz.

In all cases, the graphs demonstrate complete envelop-ment of the Required Response Spectra (vertical lines show actual test intensity, spectrum curve reflects RRS). A seismic table resonance was responsible for the high spectrun peak above 30 Hertz.

l 14 TR-ESE-C.2:

Horizontal and Vertical Test Response Spectra are shown in Figure 21 for the SSE event. Again, ccrnplete envelopment of the requirement is demonstrated. Additional table acceleration time histories are given in Figure 22.

In order to capture the resulting seismic intensities at the RSFT mounting locations (CEDM shroud), four response accelero-meters Nos. 3, 5, 7, and 9 were monitored and recorded on tape.

Unfortunately, the tape channel recording the CEDM top motions was set up improperly which resulted in attenuation of higher frequency signal components. The test response spectra shown in Figures 23 and 24 capture the true seismic intensities at all four shroud elevations, whereby the Acc 9 curve was extra-polated using data frcm the other 3 locations. Rese response spectra (2% mping) exemplify the large CEDM response at about*

2.3 Hertz.

Some contribution fran CEDM Mode 2 is apparent at 10 Hertz. The response spectnrn peaks above 30 Hert: are due to the table resonance mentioned earlier.

Figures 25 and 26 sunmarize the acceleration time histories as recorded at the four shroud elevations during OBE and SSE event simulations. Accelerometer 3, 5, and 7 traces are basically unfiltered and some of the higher acceleration spikes may actually be caused by impacts (e.g. coilstack shif ting at Acc 3 location). Hcwever, this fact would not influence the response spectrum character across the frequency range of interest (1-30 Hert:) dich is shown in Figures 23 and 24.

Prior to seismic testing, RSPT Sample No. 604 was removed frcim test loop 7A af ter 1730 hours0.02 days <br />0.481 hours <br />0.00286 weeks <br />6.58265e-4 months <br /> of thennal aging at 375'P for a perfonrance check and a visual inspection.

The visual inspection shewed scme deterioration of the silgard encapsulant and the diallyl phthalate mounting strip. Based on this inspection, it

was decided to waive future visual inspections of both RSPT's until the entire qualificatien program had been completed.

'Iherefore, details of the above visual inspection and the final visual inspection will be doctnented in the final qualification report.

7.0 REFERI'NCES 1.

I*"- Standard Ntnber 323, 1974, General Guide for Qualifying Class 1 Electrical Equipnent for Nuclear Power Generating Stations.

2.

IEEE Standard Nteber 344, 1975, Guide for Seismic Qualification of Class 1 Electrical Equipnent for Nuclear Power Generating Stations.

3.

Specification Number SYSBO-MD-0311, Revision 02, Design Specifi-cation for Control Element Drive Mechanism.

4.

Specification Number 14273 ^O-0311, Revision 02, Project Design Specification for CEDM for Arizona Nuclear Power Project - Palo Verde Nuclear Generating Stations,1, 2, and 3.

t 5.

Doctment Nuniber QC-28-05 ER NPSHi CEDM/ PILE!24 Design Control Procedure, dated 9/19/74.

6.

Docur.ent Nunber 00000-NLE-070, Revision 0, Procedure for Control of Measuring and Test Equipnent.

7.

Manufacturing Specification for the Class 1E Reed Switch Position Transmitter, Specification Ntnber 00000-ESE-203, Revision 01.

8.

Drawing CE31-E-R1000, Revision 02, Reed Switch Assembly.

v w._,,

9.

Drawing D-SD-162-003, Revision 01, Magnet Assembly and Details.

10.

Test Procedure 00000-ESE-323, " Seismic Qualification Testing System 80 RSPT and Litton Electrical Connector - ANPP,"

K. H. Haslinger, July 31, 1981.

11.

Test Report TR-ESE-285, "SCE CE}t-RSFT Seismic Qualification Test," K. H. Haslinger, May 15, 1979.

12.

Operating Manual for Sinusoidal Vibration Control System," Time /

Data Division. Docunent 1923-5124, December, 1977.

13.

Q.A. Verification of Time / Data Sinusoidal Vibration Control Code Version 04, C-E Analysis Report Nos. S669-100 and S669-101.

14.

Operating Manual for Shock Spectrun Synthesis and Analysis System, Time / Data Division, Docunept 1973-5127, July,1977,1R-ESE-424.

15.

J. P. Thompson, "Q.A. Verification of 3.0 Ncade WAE Synthesized SRS Analysis Program," S863-113, dated May 2, 1979.

I i

m mmm

g c

-Q

%.?

t g,

I a

l

=

i l

as FIGl'H E 1

HEED SWITCII POSITION TH ASSillTTER l

l l

18 rn-ESE-u.2

N<<

4W Vu.s t

O W

j e

s l

g

'.e, i

g J

'h

-i 7

I*

I

,.. v:

q, ti 46 ti d'

A.i *f 5] f. 2 g

Mz4 O

b e y, 4.-

r- }

.s s

.:. s r;;

e a

a_

k :,i 4 0

=

d.

4.L N

I

'<1

%d r

/.1 4.*

4 M

3 O

n a

  • i 5

t r-y-

v:

P.

  • i l

a

%, rm H

'a l

l

\\'e' h

rs q'

r

=

=

,n

[

e.

4 g -

i "b

ll l

j t

6 j'

il t

r u-w u...

,e x.

w O

'e W

V.

.a W

U.

E g

N 9-3 2

2 2

i 6i 2

4 y

a c-

[

C n

I V

g

(

I i

9 a

e o

' li

N

.L*

b I

,s,d 2 d 3

x

/

s_r s_r N_/s dj m

.L

/

N_[\\

\\-

e m

jgl I

6 0'

m w

5 4 2s E

G.z a-s i

et.

,s g

H N

1 (8

e d 8 e

v.

4 m

h J 4 5

  • a p

v5 }

44 6

4

  • H 8

O A6 e

7 8

e s

,. s u

6

~j

=

k.

  • i O.

e o i

I i

\\

d E

1n

\\H--

1,; s s

r

.2=

b

% y =E.

?

Y 3 gk 2

0 l

~

L, s e Ea x

=

a 3

2a;e r

rrs

{

w WV e

.Ja 2

'c _J 5

',)

I

C' NNtL B CllANfJE L TAPE COfJTROL ROOM VIStu ):lOEll flECollDER TEST F A ClLIT Y

?.

7!

!:,*g RE LAY d - a-ACCELEROMETER y ppQ STRAIN GAUGE

,,)j LVDT i

,,1 l

R E SPONSE u

1:-

10 PANEL y> 30 RESFONSE SIGNALS SHIN A LS ANALOG SIGflAL c.

R ESI*ONSE SIGNAL.'. 'i. E OlGITAL Vici1 ATION CONDITIONING e,

t CCNT ROL SYSTEM (S Af.:r'l E APID llOLD, I

CONDITIONEllS FOR ANALO i 10 DIGli AL All A LYSIS SilROUD

,-m.u e n e.n.

4 l

l

~

CONT ROL SIGN AL CLOSED

~~-

..-~~~ ~1 LOOP lmOGRA*4 OYJillOLLED FilNCTIOfG Y

l F L I Dil A CK

~

CONillOL VAftl ABLE l

R E F EllE NCE (1E SPONSE l

SldN^l

-W-GAIN l

SP E CT RilM SIGN A L

=

S iOll AGE PROCESSING AI.i;'l lF I E R.

l CONTROL

.~

1 i;!

l

,l, g

SIGNALS

=

p___-,

V l

l FEEDRACK l

Af.W L11 UD E COf1 T RO L CONTilO L l

g.

J SIGIJ A L I

COUTROL 4-COMi'AlliSOfJ AND l

y,j, /,/

X L OGIC COltlitCTIOn SELECTION I

l O'

CA LCllL ATION l

COMMAND TO g,

l L-----i r- - - - - - e SEllVO VALVES s,

I Y

I l

IIE AL TIME

~ d l

I RECllEllCY IllEntlE NCY CONillOL c*.

CLOCK DFilVE SIGNAL MTS 406 SYij illiSIZ E il l

LOdlC l

CONT ROLLER h-STROKE

{~~~~~~~j L

FEEDCACK lilGil PR ESSURE OIL FST S 436 LifJE FROTA.

f0 OMROL WT El PLY Figure 3 VII! RATION CONTROL AND DATA ACQUISITION SYSTEM IlYDRAutlC SINE SWEEl' T ES f'NG POWER SUPPLY Cummi) to llVillt AULIC POWEil Sul'I't.Y

) TR ESE.4/.7

e 1 TEST ids RSSNO2 2 mEADINC A%**

RS*T SINE SWEEP S;EEP Ps.R 9ETEmS:

3 r"ME 2*LOCsDEC),

1= LOC (OCT), e=LIN: 2 4 START, END FREO, H:n 1.e44,25.00 FREQ Ra%CE, DEC=1 447 5 SPECIFICATION 1* RATE, 6-D'AATION: 1 RATE, DEC/n!Ns.2004 SeEED DUR ATION - NES, nIN, SECS e,7,14 TEST LENCTws G SPECIFICATICA

1. TIPI, e-SUEEP CYCIIss.e CYC'.ES : 1.004 TEC TI9E - HErS, MIN, SEc s e,7,14 7 START-UP TIFI, SECS 15.00 3 SMgT-DC.Pt tit"E, SECS 5.000 REFEFENCE SPECTR'.=ts 9 UNITS 1*P.ETRIC, 0-NON *ETRICs e to SPEC ~A"". LIMITS DIS *LACEMENT, IN (P-P ): 4.800 VELOCITY, IN/ Secs 12.50 ACCEt.ERATION, Cs.2549 11 "Y'C, VALUE, FREQs 2,.82600,28.00 ALARn LIMIT +DB, -CBs 3.000,-3.000 ABORT Lif".IT *DB, -CB s 10.04.-10.00 12 TEST LEUCL (DB BELOU RET): e.

13 CCNTROL CHANMCLSs 1 PROCESS 3=Avc ABS, 2= FUND, 1=PEAsC, e=RNSs 2 14 LIf*IT CHANNELS: e 15 AJw1LIARY CMAPELS: 2,3,4 PROCESS 3=AVO ABS, 2.ryNO, 1.pEAp(, S.Ry*S 3 2 g

f".Ax ::" 9. EASECTED Cs 3.000 16 ACCEL SENS, nV/Cs CM in 10306.

CM 2 10000.

CH 3s 10000.

CH 4 : 10000.

I 17 FILTER 1.PRCPORTIONAL BU, 9-FIXED Bus 1 l

BU, 2 50.00 18 RE ERE M CHANNEL: 1 19 REspCNSE CHANNEL: 2 6

20 F.ONIT04 CHA*vmEL: 1 21 Con *RESSION SPEED 2-MICH, 1-NORMAL, e-Lous 2 22 LOOP-CFEC< FRIQ(NZ), PAX DRIVE (VOLTS): 5.063,.2000 i

RErEEENCE LEVELSs 5Ax DIS

  • LACER:ENT, INCP-P):.3914 ri.X UILOCITY, IN/ Secs 1.230 P.Ax ACCELERATION, C.62000

!"IN ACCE'.ERATICS, Cs.62004 ACCELERATION RANCE, DB: e.

l CCRGECTIONS7 N SAVE7 Y 1-4711, e PUNCNs 1 DEVICE: Re:S sToRCo RSSNO2 FIGURE 4 TYPICAL INPUT LIS~'DC - SINE S'EEP TEST 22 TE-ESE-l42

\\

I"-

1 M.9 cn i XFER

~

~

ft5.~.i LIN

~

i L

I D

i FREQUENCYs HZ CN IS M'M i R55N32 EFF REFT SINE 5'M 4

50 i

ACf. &

12 i 3 CH I XF ?R

~

~

fa.2. I C'4 I

FREGU9CYs HZ LIN 15 RUN 2 PSSNC?

MFF F5FT SINE SWEEP 52 i

ACC.~7 CH I XCER

~

~

  • 'C.3 LIN

\\

8 F G E3'.'EN~.Y r HZ LIN 15 RUNI P55 N'02 Rh;F F537 SINE SWEEP FIG'RE 5A DTICAL SINE Sm? WCES - MSFE0 McTION ET FILE RSSN02 - 0.02 g's EXCITATION

_ -. _**Ws 4..

e.

""i.

SI AC.C.. (c CH I XFtR

~

P.O.* e LIll 6

E_

4 FRE}JENIYr HI LIN IS RUN 2 RSSW2 RNFF REFT SINE SWEE7 C

3 g

Ac.C. 6 CM i NFE9

~

P.:.2 LIN 1

\\

4

.I I

C

_57dENIY, HZ LIN ls i

5:

F'.": 1 DEE*C2 R:.;= F5FT E:NE EMEEP SI' l

Cwg -

A%.4 Ch I XC ER

~

P.8.3 I

LIN l

1 i

t.__

e i

FRE7.'ENIY, MI LIN i5 RUN 2 PSS'C2 RNFF R3FT SINE SWEEP FI G 5B TYPICAL SINF. S'?EEP TRACES - TRANSFER R.NCTION ITST FILE RSSN02 - 0.02 g's D(CITATION IE-ESE-L'.2 24

6

~

12-cu u -

Ac4 5 CH I XPER f:".2 LIN l

2 __i FRE7.fENCYi MZ LIN 15 RUN 3 855NU2 EFF REFT SINE SWEEP l2 6

~

ACC. I-gw g CM i X,CER

..= 3 LIN 1

i n

us g.

I FRE3'.'ENCYr M2 LIN 15 RUN 7 R55N 2 EFF REFT 5'NE SWEEP El i

ACC.I 1

,W.

w r.

CM i XPER

~

~

ft2.2 LIN j

h a

%g

)

I')

/

s e

8 F R E;'.'ENCY, NZ LIN 15 P' N 7 pS5NO2 RNFF F5:7 SINE SWEEP FIGL'RE SC Tf?! CAL SINE SW.e TRACES - 3ANSFER P'SCTION Tf.ST Fil.E RSSIG2 - 0.C g's GCI ATION

1 i

JU s.G. t D. s i

r* n 1

v.s. e.

,G t LIN t

I I

~

k.

g_

i FRET.'EfCYr HZ LIN l a, RUN H P55'C2 RKFF R3FT E NE SE EP I

  • 03 04 a.

s.G. 4 M"N

~

f. E.'

bl L34 1

t l.

AA c

i FRE7'5N~Ys HZ LIN I5 R'.P! 5 P55tC2 EFF F5FT ENE SE EP I

JCC s.(1. 10 CH H MOJ

.?IR.

Lt LIN r&

p la t i

FRE7JEN~Ys NZ LIN in RUtib F55 W 2 RiGF E5FT SDE 5'4EF FIGURE 6 TYPICAL SINE SWEEP TRACES - STEAIN FREQLUCY RESPONSE P1HIS 0.02 g's EXCITATIN 26 5.-ESE-u.:

52j g

i L

ec.9 CH 4 CH I AC

. t2.s.

1.

,GQ

_m. 2. 32.

- 2

,==a A# *

'2 '

~

O..':.:

,. 2..wt i.

i _Ni l

C __

5.5 1.5 FREGUENCYe HZ LIN s

RUNI R55NC5

- -- _: M.r:a :_h.: EE:

n.. r r

_v i

i i

i a

i ID I

l Ac.c. F cic.e = s

  • 1 e.. -.

mn =

En 1 L

t=5R

.v...:-

LIN f %.,= s h,-

]

/'

L:.. v'

~~

st u.v.s i

s j

i g

5 FRE30ENCYr HZ LIN 15 RUNI REEN25

. _L.:::

-v: M.c:_a :__h: :

nne:.

1 1

FIGLRE 7 DETECMIRATION OF.MDML DR?INO PROPERTIES ERN l

Nb9 'I*n' ACES

.i

l C

(N

.C.

C J

tL,

.-3,

~"O-9**

F

      • g

^1

-m

".N ps L'

^-

LmW

~

g y --

~P -

1 j-q x

m._

3.

a y

'm2Am 7

Q 3

r- --

T

_w, _

C p

_.d,

=. -

e

.em.

r i

-.b t

n w

^m-

= E m

.j _

g 3

p.

==-p*

a.

._fA i -

'n n

~

'N g

=

=

- %w-K l

~

~~

~

g

,f

- x

-*m z

~ _

_-_Aoem m

e W

l d=Lef_'

==

6

,-D m

~~

~

m_

_+ M.__c-

.g M

M m

O J

4 D C_ L.

-w W

M h

k.

-Z.~_~~ 7.'-

"2M

-m_---

m g

MN z_

2-7-

m _---

ca 1[L* 2 "

g 4

C5

.~4

___ n

,;=M----

3 N --

^^-~&

}

y IC-*_._*___.

-i_.-.-.

~ _r_.,._m__.a.r M.~ ~

  • T____

_..Q)~~s

)

Q K:

.g W*su..e._-._-we--.M_

P...

= =n._

L__.

G__C_. L_A. L. M.-

1 >

l

l._._.__.~-._---.-....____.

N

~

q g

t. t 1:_ _ __
  • g

==

y Y

Y_-

g

~ ~ ~ - - - +

~ ;

z

-~ _;

._._ _7._--.--.

y

- ~,-

p x __

z

_-.__.,q

-r'

-- N E

-Q,

/ -

x

,==:- =:-w y

rc g

x l=--- =r'-

--q -

3 _q

,-: [

L-

_q.___--,.

,y t

t_

_'1

$?

'm m

M

[-*'"~

e, m e-

.w Z

Q r-e

-v' t*

_/ E J

7-----

, q_

f.,

Q

-x w

gn r

-D

.+

F g_

- Y-qW g

w*-M 6

= - - -

+=-e p_

e 2

~

~

p.

e,.-

r r_ _

k

('~

M5d e

,-e-o__ ;

- L N

. A.

s.

-y

=--

xa,

T _ w --

X e

kMS U

- W. _ :--- " ~~7

~

%-9 5-r-

w..

,,g- - --

/

5

~__

q m

- -m x_

m

_u o

y___._ 7..

t-3

=-

5

- ~-9 f

^

T

---_---_._.s m

c::

a

__ q V~-

m

^#

y

- - _ - ~ "

  • _. +

x

_~ __

7 G- -

Q

.----+---4=p

n - -.

__~-]---

/2"

'g9-

=

~

M 8

r_ -

J'~'

W m;~

W---

g e,,,,,

E E

C

.u2--

r--

I~ _ _ __ __ _

Ve w.------C*'_.__._.___---.._.__

n._-

nx.,.,,.

~

~. _. _..

~

e

=

,~e.w.-

c=

t._.=..=..

o

^*~~

p

&C.-*__.--*~--**-~-*-

y

  • --..-g h _ _~_ -==

-e.e.

_w Q

.e 4

m.

...Q -

g-y -*

3 g

1

(.---=:.r.=_==*:_.~--___~.~"--

e

~

-+._-.-_..-.-.%.

. = -

b_r: = = = : r b

O_

~

Q

(

~7*.;..._..

gE7_=_.U_.'^._*E."_'.=__=~.~*6._..

x-1 d','-32 ~.3 '__.__ - :@, _ = S==Q=+ =_=%

_ 5, Z

%-M Q

5-Y

~

t: -: = -.- e

,=u---

i~ _:,:=.

====_

=. - - - - - - - - _ - _ -.

!c - := 1:.

r - -

'~~~~.:-'*-*^~.:=...

~ ~ - ~ ~

!.-.?_~l~~7_._._--~__

N<<lU e

y E

5 s"

~-~-

_Na

.E-ki

[

[ i

~

}'_

?",.

Xk/

~

Y

~-

-R k2 L'=, ) V =

'n

=

h

,.' 7 '

'_-i

,px

~

=, g

[

p

=

1 5

5..

C I

g.

N c

a

-z p;

m

- W 6

.M' r_

L'

>=4 a

M 7

L

_=>

g g

    • p -

-3 g~

a F* 4 f **

,/---

E p3 7Y A

4

= S._a -

2

<D

3.,

m

~ ~r-

~

E M

I 4

D W

W g

= - -

mQ h-U-

+

. y-_- --

~ --

r e

5

? S r

C V.

a w

E ge 4 -

e

=

2

--~

3--g s__t 4

y g_a 3

t-r we g eme

- Q g

.a.

- +. -

~-

L.,

g C5

-u.

10.0

.j.

q..

o:; q..p 4

b i

i

. j ;.-- "l it

f.

8'0

}.

-p' ::'l:.::l :

f..-

?

~ -:- -

!!6 i il. ! ! Ri ii!

!ii i!! -

ti: !.i

!i! !!h:!!.:

d::

.i..

- ~~

. ]

..:I-

"r

l.

. I......l...:l.mwc.P'

. car Wi.st'ac. R. ESPcdGE SPEC r.M.. _.

1 i..

1 6.0

.. I... r j

g

_.... i.i.

..t

.q..

.i....

t.

g.

s.]

, j.. i........

_.i

..':l

. dl d..__!_._..

.:_::...:. _.h _.sih.. j..

p.:.; g.3

.... _ - _ :_i # _ +.

i~ ::l.:

?

u L:

.:-8.:.-

4.0 m

. :. 8..

.1.

o

+.

.l............. m....

..l

....I...

i

.l.

s

.l.

.a.

.. t.

I.

.I l

1.

! '.I..

38.l..

I '.

e, I

t g

...l eb

...r...i..

w._.. ' -

?

.1.*

t i

l-

i-

[

3.-

1.

....j i.

  • .. :. ?.!

1 2.0

n 3-~: ~;
J :.. +.
i 4

.c.

... l.,..

.e.

~

.e.

l

.a..

t 4..

... I...

..i_....

..g a.

e i

.3............

.o

.l....

,t

.l

.a o

1*0 j

i

\\i t-

!il

D

/-

i

.\\

.1:

.l 4l j

i i

.t 8

.2.:: :n.-

. ;... :l :

j,

..t

.l. : l. j ; l :

j.

[. -~

i g

l

]

l

1. :.

. l.. :...-.. l.. 3... 1,.

..:i i

1....

g f,

x

__n..

...i _.i l N r; 1

..i....,,

e

. i. -

i.

r.,

i p

....p.

... a 1

1-21 l

{

W CR) l.C hl-T M e

.4

..,;. : 1.... q..;. s u..;i :

1..: j :

- @s3 &. y.e,..i. _,i

l.. --

f 1

. 1..

...,l t

..\\

1 1

N j

. ' I 4

1 M

r; li Ni

'g l

l i

...__).=._.

t NER DC&_[Y AXISl,_- l'

.ii -

.i

.I, s

-l j:

i

.+

k.

.2 i

.i-l' e

l.

. : t..-

[

I.

.1.

.l.

l

.e.~

.. _....,... l I

l 1

...I.....

i

..........__..._l.. -...

i o

I...

.l l

. l

..4........

...t.-

FREQUENCN (WO

,,..s....

7

.1 1

2 4

6 8

10 20 40 60 FIGURE 11 OBE REQUIRED RESPONSE SPECliRA - ANPP RS?I QUALIFICATION EST, 2*. IAMPING 31

.._ r - r _ s, m s

-~

.i r

10.0 i,

l __ _

.I ! l l

>.i

.I..._...

..I i

e,

i j

.l-

t.

.l.

6 i :

-l-. :

8.0

. :.. _... !. - 3

...I.

l I-n v-

.:.. - i a

i a.

- i, i l-- -- *!

.i 9

-- -l t -.

  • l-

'.)

-.,-...__t._.

I

-'l t-9. --' *t i..

..l

..'_'iij ' "'

At4PP. SSE_SiMStMC F.ESPot4SEL.MECTRA '.[

j_.

h 6.0 -

..l.

l..

.i o.

.i.:.

.,.. ;...i i -

i i

L i

l..

j W..

...7,...

l

...p.

.q ;

l 2-4*0 - J -- -

.j.-.-

l

..I t

t i i g

w

.-l..

..s..'..

.. :l...1....!.

...L,..

._....t

. i.

I

]

i l

i i

.i.

..t.

.I.

(

J

. -~

I

?.

i i

i :

l l.

... _........ i.. _. i.

j

... ;.... !. 4..

..... r i

t I

i-

.l.

g. -

~;

2.0 i -

i i.I

. :p l..

.l.

i.

i

=.

.a 1

. l..

..).

l l.

.g l.

l

.i i

.I.

i l

i i

t 1.0 a

a i

1

,8 l

i

.e l',.

i i

8 i

i

/j:

}

l i

. l uoR)7 et4TM ___

.6

.................l....-

.l

.(ggg y g; g pg)

I --.

.. I

,, l i. t

i j

, q.. T - :t * -t a

i

.l t

4 t

t

,1

! sinqvt tat _ Q.jQQ3).

...--__._...g..-.._..'*.

4. _ _ _

.I g

l

.a._

- w.!

I, i

I m

e.

s.

I i

3

..i.

l I:

4,.

?

' l

(

i t

s l

l-'

i ---- ; '- i - -

.2 4 -.

i i.

.g

.I i

I

~..l......

......l t

.l 1

., l

.I

. l.

i

..e

..l..

-necucue.v cc1

.g.

. I..

. i..

i g.

...j

. g.-

)

4

..a.

g

.1 1

2 a

6 8

10 20 40 60 FIGURE 12 SSE REQUIRED RESPONSE SPECIRA - ANPP RSPT QUALIFICATION TEST, 2% IRMPING 32 T!.-ES E-u.2

1 3

=

zw a E3 3 s

~

5 e

c4 w

i CU ".

o w

M c

[.

3 s

c t

v->w

=

,o,a.=

< sc 4 E eJ

\\ N 1

A an, g =

mo i

ll1 l a

=w l

.h b$b

$d

. i-l.

__n i

==

W f.....

.c.

~

<m

-Q O$

p,,,[

$E w

W

).

.J g

DC 64 f-l w

4 w

"g p

22 a Z u

E 2 85

^Q ll cw A

'L, se in.

  1. N b

fa O=

> l l

d=

n 4wo s

p w

M.s e

b s *- =0

.. _. g =]-

  • -m

< m g

b l -

C y G-o<

w 2

6 I - :..

Z C i-Z>

Ed

  • 3 v *" d o 'u-2" >o e o

, J

=

o E

0 33 u -

a u c a* E Z3 CC o

E ow C *z 5C e

E8

{d..c _ 2E lC 8

8 UEf

-o

,e

- c

.c

$ 3: 5,.

"u l3 v

z r-s8 lc

.v v=.

UU N

5 w

s4 z

e e m e

zs

@ <2

'a.

w, w2 x

, C sa A

C to m

I, o

m W>ag I

4<CH l

=

em I

Z a

  1. e l

z Nsh I

5*

o E i

I 4 0 D

W l

s Z

(

94h l

F 2

1 a

aog

<g3 4

-c I

oue I

l OH l

a l

l OOJ U 2

(

2ew C

ur O

I w<Zm o

I e

g. -

a a

a e

c se w <

e

.a l

Or

"$ d h Nb

=Cb UJO C

H Z

e_ W C l

c a-w

-C of e'b i 3 *J c CW A

" M H e de n nec e

o' o

1 5 5.>.

w a i

eg<a-m e

u l

<O o c

t i.

uom au O 2: u.

> w

,, w p l

., - 0 e.

O o p lo tes moq 2

l M

u.

u g

co I

o" 2 A CDJ e

l 2

m n-w mm i

2W l

l l-

<um i

2e s

l a

2

.m m

c<u l

OxC n..Q I

g-

< > >u. l 0

p n

w sw

>wO l

D g

4.. n
c. o. t*

se us-eu U".

cy.w b

c. w. u.

< -, o a

l

y H cc WW" u

J 'f >us I"' D u

d O(J l

C A

i, g

i b.b O

UU*

h.i l

C u.

< rc e, i

l C

[

047 L_-____

l POWER SUPPLY VISICOODER OSCILLOGGAPH 15 V DC I

41 1

i l

CPERATIONAL AMPLIFIER i

I1 l

t l

DIGITAL t7 A

i VOLTMETER REED SWITCH i

POSITION

_.]

TRANS;.ilTTER

[

RSPT FIG U R E 14 BLOCK DIAGRAM FOR MONITORING OF RSPT ELECTRIC OUTPUT DURING SEISMIC OUA LIFIC ATION TEST t

l 3%

n-r E-c.2

1 HEADING ANPP SSE 2 SENSITIVITY (MU/G) 990.

3 SHOCK RCSP DEFN C= ABS ACCEL i=REL DISPL 0 4 DAMPING COEFF1.02 5 MAX FREO:50 6

  • OF DECADES 0-2 i=2.3 2-2.6 3=3:3 7 UAVE PARAMETERS rREQ

'AMPL i

1.

1.53 2

1.12 1.95 3

1.25 2.21 4

1.41 2.87 1

5 1.58 2.92 6

1.77 2.52 7

1.99 2.5 8

2.23 2.07 9

2.51 1.61 10 2.81 1.42 11 3.16 1.38 12 3.54 1.26 13 3.98 1.21 14 4.46 1.1 15 5.01 1.07 16 5.62

.98 17 6.3

.E3 18 7.07

.79 i

19 7.94

.76 l

20 8.91

.66 1

21 10.

.72 22 11.21

.73 23 12.58

.73 24 14.12

.73 25 15.84

.66 26 17.78

.49 27 19.95

.<7 i

28 22.38

.44 29 25.11

.44 30 28.17

.44 31 31.62

.44 32 35.48

.44 33 39.81

.44 34 44.65

.44

~

35 50.1

.44 8 PEAK UAVELET AMPL(U):10.

9 AUTO MODE LEVEL SEG 0= FULL 1-1/2 2=1/4 3-1/8 4=1/1-6 5= DON FIRST 5 l

10 EXTERNAL TRIGGER MODE 0=NO i=YESti 11 ALARM BAND 1

+DB LIMITd3.

-DB LIMIT:-3.

UPPER FREO, HZ:50.

FIGLRE 15 TYPICAL INNI LISTING - SHDG RESPONSE SPECmLM TEST 27P - SSE DENT 3-GEc2 35

9 1

1 sw 9

g ')

4 3

Y

,E a

t /

.S 1, /.

h:

?

3 o

s o

e w

g g

}

8 0

'a B

B y

F m

e-a B

B 2 5 h

m 61

=

Y s

r f

Y 5

s 3

g t

'I h

'3 3

  • 6 a

=

e N'

3 W

9 0

g g

6 l

B 3

g 3

o o

a 4

0

(

)

B 1

i O.

d g

K' j

~

a E

e 1

d ef1

'd a

s 5

- - - - - [

' *[p g

_hp

.Mm_.

.JL b$

M.

-m eam sc N

s

..M -

o

~

f

{.

m v,

j Li,,

~

=:

-r-f

,. a.

e i

N..-

i

-w

%.e

-.m Fe-v e

~

=

{,

w.- _ _

ma o

e a

.. ~;;, w g. -

J

.. r-w u,

91-6 "l>

h-

".-g w

g x

6 s..&.*.

. Q n%

  • m f.

,*.y.

W M S G-y-W ^

__u,_

e t

m

\\

~

T *=~

e-6.

=.*

.&,."W

)

m ou e

t g a.

M-p

~7.M*

~

k

" - m i.p Lh&, gfM.._

' 5-r:

b, M% _ s_

  • m 0 _==

Q,1.

mW-f w

A"a c-e

-+-

~

li"

~

a-_ As4

__ %. - =.

a

~

,-___.Y_$

JC a4, S

=_

~~=

- g Mh, ' '

=

1 Q

1

__C wT.. - (%"_"="

c--- %

m --- -

__e e

M r. W_-

.~ 6 k.,. 9%

a - "

m_3-e-

c-

^ ~. ^

[' ^ W

- v n

+-;;- _-

J

  • 4 % h.,

w"

.* M

,.d e.,.

  • .'s.aq e

un

. ~

  • p-4,.

... ~ -.*

m uammh u

n ;- gm..

Y.

eh-

._m

~._~w.. _ _. _.

% o Oe~ ~

..~..1

y erv

. *ea=58 *

  • r.w-w *4 p.ir. v..:y w. 7.. rw 4.,,

.e.

a.* y w m.c... 4. -: -

.-,a..w..t,

5

...1-2

..<a

. W.

ht/wc44 " N. ~: b@:!%.y&a...'-:W d

  • 3s w 7..;+

SN W. '

' W-m s,i -ev :

.t w " y :p s.v..

.. ':~. s.m.

~

. - ' m%

~..c:pe-M,~....

....u..

l.

q s.

t-m.

-. e ~.

r r..+g.7...

.a gy.4..w~.8

. s.,.

1,:.. r.o,....... 'h.m.$,

g,,g s,.

.. :.u 4..

g-

_ _ g.;

i.

..-?,:...q...

v..

,.f. :s.:

9 - YW, -2.M. MM.,;

c i.. W.*.

. C-

  • % M,

4 f r 'sM,,,.',:;g w

n a...

2...

., s.

,s.x.' (.. f % s. s W

u:-

s iM,:y-,.a*...;.

e th 6

-.......'.r.-

/J.f a

.3,q..w.

e Aw3.,.

.,n. s.&_ :-r.

% [r

- m3

.,. f "r'ir.::-. + ; *,Th' - 3,.. :

e..

A.~.ps T

'$.'f g *t-M,f,$

f L.

S

.~

9 l/'c.j, g +Q.

tr-

..z.u.:. > :

,v

'T.gw.e.. :n > +.V.e.e

..,es 4; w

...sn c.:,g. %...

c m u y~w

l..,.... w..,..

9 k.,

..,~n x..:..-.; x e

A s

s.a.,

.r.

e

.p w y_

w.,

..t ca..

y Q, sms- ~:n

,,.w w;,spW

-m '

~..- s p r.s T
t. c~.M.w:.

-*d..

s 4.9,%, r t._s;;:r.

? ~.

u 3.~

-M.e, cy;p::

rt p

c i

I{

h. N. NM.^~'~

.***t's.-Wi.~ h.

  • i

+

.4

---.f Anhll k'M^f h ),.%..."

f

  • * *U?

4 Q. yI.

I....

.I..

.n

..y....<...m. u..

j.... w. w s,,* h,. ?..,::..

_.. s..w,... t.

m.

.a. -

.. t

. w. ~..

.ny 2; w;.{...

., ;qw :yl.;y ~

a..m

.,p.w,.

... ;.;F. :>.

pm o5 :,. - l

..c....g g.

. r:

. y,.o.:.r :,e uwr v

. d,

.. e : m k ;.;.. m.- n n.

n

.. s.4 *e.. a; Q y, g.

3..

>, i

- < sc.w*y..

- i+

4.

.5E.>15 s"TW ITy

  • So M fi c.,,n.; -t.<43.
  • s,.

--y'*;.:.Q&.,tf** w--... f...... ;. W..W-%YLB

- F'

%.ig f c.-

.1

.=.

ra.

.e2

. +

.c

. _.... m. (>

,. - e.

s

[Qq,..a.ey./

..a,:"- 3 :'

,.f... ; ' t..
...g.a m

-r 6:,a, _,-. g

..x

p..;.y u.

..,. s. ',: -

' M' h

'#y.t %, b 1

T

...'2.4R:.f.{d ay

  • G..*,

.t

,. I l : l

. Q.~.,o g r j

... p.

i

.\\\\\\h NY 1

,. Y~

.g

-- ~'A

\\

'e.:.....

.., ~.pv +o..:

w >. -

\\

s1 1

+..n

~T '

  • lpt,-???r W N.:

-I f e?..

t..r..s a.

g ;.

r--

-x.

g;::..

a - e-. a..

~

FIGJRE 18 S'I"nAIN AND RSPT TDfE HISIDRIES OBE EVENT TEST ORID.TATION 3 TR-ESF-L'.2 38

1 l &A." % p.2.? % W nN %% W .**

5

% 'Z G

"MM 5.:; F, a.- @.%. 7.x. T O S L : m g t:L5-*& e ~-

a=i. -L v.- n Q,.$<&5lWlRY.Qt.th.

f.~ E.T &..g.+f. & } &+ #

N

~

[

s

}

'3

- ~ -..

T M

(

ya s

dy ji

-['? p@.y.

Tj*

g. -:. -n 3 F }-

.% v u ~.,-

1 L

g '- -

L 3

'.L.e..,<. ud. j.., s W

a

?

,tF:TNmr 4

. sspp,..

09 h

~

I :...

a

's s e

q h*$@f.&

' *. p 7

M

-VM-1 I$p". %

g g' W

AY QfW

. m. 1.

3..,

. h=M %*

%w.

^

. _ A L ~~ =.;:.,.t. %g $

'6=:.7*:*:

.- P.=.l%.~,.

,.g:

..-~ ~ ---

w 4 w = _-.; : :. % p;e* A_n :

w.

.w..

[~T,

.2 g:s.a.. 4 -

t p&s

..' *> N,la

....a, 4

s

4 M

?>'.

Y:*f

.....q/;Avy.-

7,.
c.

W p

,Q%,M

  1. ., st-.'-3;pd y

1

=AI,$

ase. L g$ 'I $.

f.h'Ed,'. 'A!"4 I

l 4

ecu 2 e.l r

..,x.., - aj..;,

~

W

..S.Ga.'h

[.:. p*r=J.,L ylhd g;

-y,,,,,,

i r

mi R;

  • .MEy!]

.h

!b j f

r@M I

-W

-/

%nu, &7:.% -

pp.i

- 9

,,dk' -=b;@%

~

L

!c.9.i r

,. 4:cw :. y

,3,*

g R

%j f&s$h-n V65 m% cg h..

if (5'N y h.t.Q. t.,

m

'q 9-

/ d

,g

]

L

> Sh 1 y

~

Ng

,,,);g ;g:.t,,s.. '.i., m :b.. g.

.. A~

l W

, a+. I h.,,,.

%:.. ;f.

v?...t..f.

..,. ~ -

s

.W'

>.g,,;-..pq.r. p-

.; _. yki 4J.

r

. t

.'+*~..'.:.

y

..e

3....

n>f,

n 4't '. I 'l:

~

U.. "Ed!W8iSR$[&...

U-.g

' 7."+8

.h* %

..g h~

,. 4 I.) *)-I j.-

7 4.q 4MW.i - ?:, N.D

  • \\

-rStK5~ SEW.44TiVy(kh _

m A-M - ' '__

m_

7..

[$

55;f

'.$Wh

Sf ~h.j-f *R '

{(k...,..)-;,%[;;;. -.C r, 2. -5; n,-..1::'::..

%~ '

y

.'M,.*D4'dQ.,e.g,Q

,((>

R 'T _ g.,3.,[.),

y,-.... >.'.'.'..o.

) *.- s.

-e-

-id

..-uy O

  1. . <;. m.

J S '...

".:4..H,..'s?*d,4y"if 6,

r o,.

S,

.e.

Sfg

[.' _71 f

p t

.:-5Yf ' t'j.%'

,.k W m k. &g;S 'r..- A,,:...Q g

)

^

I.

,.rt ;,,a.-f:.ci,,;;;ms-w a

-- ~-

-e m s.z

.;.g f v:.;e..-JQ;t..

.g..

FIG'3E 19 SEAIR AND RSPT TIME HIS'IDRIES SSE EST TEST ORIENTATION 1

=

39 E-ESE ' C

N<<b W

emm l

\\

I e4. -==

i I

t I

J

't g'

t

  • ts i

j l

}

-d Yi2

? /,g

=

r 4w g

. _ -/

e o 'b z

e e

w l $ {g 6!!

I f

+

ge x

AE2 x

l

.9 E m x

WF8 x

x 85B x

N.. ;

h w C

U3 f.d

=

o.

m g" '

h 4

4 4

e i

Ea v'Ld 4

.o sc c

i

.a I

~

7 g(,

j

k' 1 0 4

i-l

, i

/

/

e-

_ i, kh

.S 1

<g

.i U

1 i

65 a

i

.s.

I 1

i 1,

Cf h y.d *

,5 4

Ei:

gz.

r i

a e

?

3.3 1

x

$ I 'j x

te N

e a g x

L 1.

,d f.

x E

=

x

~

g E

2 d

4

i

)

N<<

1 La.29 u

/

i ep i

li r

i I

/

L

/

/1

~e i,

i i

F I

h' 1

5 at 3

t 4

i.

i e

~3

+

1

+ '3 b

) 'i s-

~

3

}d 3 r33

=

~

/

g

/

g k

/

} j,G egf c

=

/

,J C

i y

w a

A 1

,8 x

[w hk!

'x

'; U h

U O

1:2 A

i w.

ta.2 m

e g

S e

e e

e e

_g

=

m 9Q 5 '.>

. s.

<z L

ig

.- g

~\\

a 1,

, r

~.

,1 s

.m s

t

-- ]

p 5

i

-i,

g i

<D O

.a.

a r

+

se x

$ u.

l g

'/

l m

  • t T

b

=

,a P,4 I

J e

e

, g

=

~

  • E,g p

~j 7 6 i

a

~ r" 2 et 3 i

0"3 7

E 1 '1 c:

r

/

-u, c z,s

/

_[

~

M

/.

e s.,

\\

.=1 j i

- x

% b t, 3f

_ x x

g j:

w i

n i.

x i i i

s s

i,,

a a

e e

a e

e

4 -

N<4 I

h.*

trY r

s N

k Y

I a.

.M j

f

.a Ife n";i l

I#;

c e-5 5. -

I i

z *C -

/

/

w

-/

i kb r

/

tif

'I/{,

4 cN C

h EEs~

(

\\

i i$

a =I '

2 x

e x

p.

x gi.

s hst g!

Y.

L-L/J =C w

mb e

x.

m !a.

p t=

e e

G

t

m.

me

~

f A

eE

/

/

L

,E l*

T-r-

6*

>=

p-3

-i e

E-I

/

- f,

$E

-f.

L i

E

/

/

i Q

.]

e=e H 2

i 4

f,Q I

e i.

A S

Y a4 1

=

/

~k j

0-

/

E3; il 9 ~.,.

c y '$

f

/

/

L5

- (

lqt N

5, 8

F.s. w

- x x

x tas cg g 5 't g;

x

  • 5.

x wVE x

C, r

x r

x_

x.

, x, L

E.

C.

M S

h 9

O

N<<

1W N,

/

4 f

3 3

,' l

-f-

~,.

p.

i b

6 3

I

)

b N

1 l

]

1 s

2

,f;

'l i;l' E

  • 5g i

5 CG 5

"I i 3

e' 5.t}

M g

I 4

tsJ.:

7

/

%y g

/

2 5 w* 4 O

i E

s

.1 W $

l x

e.J x

.F

.y #' t 5

x

  • I6 r

La.

r s

A as N..

i i i i

1

. i 1

i i i.,,

a

.M,.,

+

17. 5 e r.r; V:

i

%h I

e 4

g" 4

4 I

J e

q.

b CY. N 4

b hb 1

1, r

._. n as.

L y

. 3

-I g

r m

1 I

r cf q

E<

A_.

1 Si J.

/

m-i i

w e.

_4 i

h*

so if v C' e E

A $

s x

-" F k

ga

,f

,e3

r.,

7 *O h

_ /

gV g

/

e c

2 e

s J

C-y Y

I

^/

de N

g kI*l e

.h 9

s x

)sv x

p r}'.f

.y =

x a.

x j

"""'w 2

=

G e

i i

4 e

i e

11 1

244

-ESE 5_

R 1

g s

s I_

s 1

s

~

1

.~

g O

1\\

N vr-L L

'a N

s w

M j

. C

~

-'s rU e

aA s

NR 4 u l'

W e..

t.

v? e F

e T

\\

N-v a m

- \\

\\

md w u1

\\

F 0

w g

g s

m e (. t

\\

r 2

t l e L v.

s

,r E

o4o

+

SN s

c2 a cWs SO v

t g

a s e t I

A2 yE c

=

s %

AT a

r%n RA g %s v

IT v

a C N-

.i

.l

.. ~

El Pi SRO EST 7

0 NS 6

5 3

OE T

4

'I 5

C S

E,

R9 44 T ).

S K Et

\\

T g

,N

~

U I

AR i.

C

,e T-I s

r R1 F

N

.s VN l

O g

~

DI NT AA T

,T I P s

AE s

TI e

MO R

r s a

\\

7 e i.

c IT L

we

. dea ES d

KE c

A 1 t i iN j

=

I' I

n. eo s b.

l 8

J.

tn F

r 7

a e Mu s t.

T.

et A

\\

a,

F f. f y

sp.

rt 1

1 lp S t a v e i 2

h em B

k a C

E s8 t M

YS E'

T W'A

)}

. 3 IG T

I I.

F s

~

~..

y 8

g 4

g 4

4 g

4 O

i l

Me I

W E,

I k

r=

d

' ~,I r

/ '-

1

=

t 1

i

\\

m 1

O o

u I

e

]

s

/

a4.

,i

_f 2

w 3

i

<a 4

3 1

a lg3 ig eq i

m

'g

/

2

~

l

..z i

~

d c !.

/

  • 14

/

e 2

/

/

w

/

't.~

$d' s

  • Jt

/

g.8

,5 8,s 9:

mm-hy r..

g

.uo x

Is x

s

-t:

.3-x r

3 ~%$.1 x.__.

r-g

~5 s

m w F-u: q E W~

e J

e 4

4 e

4 yr d e.

=~

m A

o m$

h~

s-

/

.a i

-g

[e M=

.g

.p i

4 h

L 4"" W xn 6

ha u

C-f r

2 1

I i

1 k=.==

es,. 2 I

1 QC j

g i

1 l

N-h T

2 2

f

<f

  • h
  • Y

% [r aj3

,i

. a.

t r.

xm

.a

- r=

s. :.

7 --

yso

-ti 2(.S e * ~*

/

i I w;.a 1 ;I

_/

c I

[. 2t)

){I

/

b

/

N b

- 'j

/

i I:*ed i

p};

x _

w ep

=

x r

s c

t 1

k i i

' en

'Ao e

. i i

i e

=

g e

4 4

o

VD) Ir rDi 1-L't.N is CEG

.6 l

CI'lk) 1btION I

~

~ Lit:M Al~l'p]

l 1

%N'dbI1Al IddCl NC, g I, IC A.. (*p; g n A U,

4

'l l' l - [g

,'t,.

g g

t q

h

~

l'h!IiII !jlII'I'i

$l'l l f

' lq., yl -

.c i-j

, lJ[L)l I..'

-j ff,

t.

I l

I

!i j

J/'d -

q,

.6 e.

RESP uaVE-T we.

s.

RESP uaVE-T 58.

EtJN*

  • f

$565 1

- Rt *id

  • )

5%

1 CMuMN tr> g i ggggg g w y

ikE'Z#ILAt-CfAliftL.kc.

N'EET tr A C INTtt. AC(.

r, c.

,1,,1),,,','d,IO, i,4

, g, k

b.

': ~l}! :d,!,

,\\l t

,i 7,

t..

. l. l l*

3

~

I

~

{

Ild

{'

Ip *i,,

i

~

l I

{l(

-- ZrR ~ 0.i1Gk ypg g,g 9 1.

-s.

)

a e.

Rts.> uaut-T t.w.

e.

Acse uavc-T se.

FIGifRE 22 IlORIZOffrAT. AND VFRTICA1, TAlli.E TIME IIISREIES, OllE AND SSE EVINT TEST ORtiJTIATIOtl 1

'IR-ESE-/ I.7

100.

-..---.--.a

--a...----.-.-

. - - - ~ - " ' "

-- - ~*~*

~*~--~:".:""

- - - _. =

.=_=*-*=.=_==.=-_=:*-.

-.-w,---

N

- - ~m.

-..-.....;T.....--_.

60

'EEU E Ui i=--15E33 3 ~_7..~ ' ~-. - -- ~-.... -.='t=""d d--. - -..M6Tr;

=,9--..

- - ~ - - -. -. - - -. - - -

C ~ $~

Y3Ed-2.. --

==f==:,.:= ::.~=Y2~_,.---.-'

7 3

  • T 555#T

__..=__==.=_==-=----m: : =- q: =a~ -- a --_ =,.__=- - -- _ =5- ~--. m _. a.

.=- ---

=

-a.-w

=. _.

-= ______

- - - = =.

.=.

-===-.....==-:--

a

,g7. _. _, _O h 84 6p,- -.

___.f._..

&n_*--- r -

.xx r- -

~

f--

nA_.---n--,-a-,--__

-T W

Y 0Y R

'~

^

5 EE~ '. -$2b-2-E5'I$~Iid="=' _ __

i _~ fd=~=ftiM'-jdf=_;T* " -~ 2E'#~2# ~$.

I~' Z

==.- ===.=- m d=r#- - f, -----

= = - - - - - - -

=== =- ----.= --

7= - - -

. 333--

g f.

-~~

20

- } **'"*/ N k.r '# ace-J :

  1. 1 1

I

!l l

lr M

!r a

1 w1 n

I 1.

1 1

I X

V

'C F

a.

I 1

[

i 7

U m

I

_I I

l 1

1 I

I E

M,- n -. -

I n

l I

e 10

._-4...a m-4

-;n.8

=,

.-.-,-t-

y 8

~ ~ " - -

m "x

L'

\\

r x

1.

n,

J-

.==_ --_.---

6

=.

.==

. - -... -r g:EE,7=_.w._~--1===*=n _-. - +g:=;-

.x a-

=_Q=u=.==%==%

. - r.... 5

--- :: =4, _.33 _ =A. ~ =-. ~,-1~==. __-s

= =-

.555 -

= - = = = -, = _ -

= =

.== :-

s-_

.-s _ _.. _.

t

E._= __- fjJ-.

---v --

5

- = =t 1==u 3-%

y 4

lr m_

w-r-

4_

n

- p=-

_n rLm_

1 1 11, z

1 Yw/

  • 1-2=w=-inR==a t=:=&=--

^-^34MiiEttii2M = = q-1%_ =e=.:--

~=~=mv=

===

I r

3 i.Q.(_. _ =_= _wa==q..

=_.=4 n

Y

= 2= i_-----

w

gg== -= =

==

m=1.,..

-Q_m ta =.. _ _ _ -

m._ 4 m.

- =,=.,w-=-.--..___.--.

.--;--+._,__

v_

__17 2

". a?

5 -~"-'sE

\\

1.r'y t

x

{

.-.4 A.

1.

M A#M,YMK.*

, _ OD== -

[

I i

g 1

2 3

4 5

6 8

10 20 30 40 50 FIGURE 23 RESPONSE SPERMA 0F DIFFERST SEOUD EIRATIONS

~

OBE EVBT ORISTATION 12% DAMPING 4/

L Ts_re r_, m...

100

_ _. _. _ _... _. = _ = _ = = = _ =. _. _ _ = =.

. _ = = = _ _ = _ = _ _.. =. = = _ =. _ =..... -

~ ~ _.---

'= = = =

~~~:=.

_ _ i = =--

-+Ei 2 * % -[L

u..-.. _-

f5 -KdMcwRM 60

.---=---------_.===-==-=-me=-a-----

..=.--..===--=e===s=~:.--- - - - - = _ - -

t- - - - -

5 - =- =- =-=- =m= -Vm- -... - -

-.-- a 3---===;= m w -

_=a -=.I------

=ne

=z ir=ur-

~-

. = =

'=TI25 ?I=r II:IIiE5J.-~-8 E~:== i-- f,0==h===-~f" F. s=t n. '.f:=n:.(.=..==

.n_ =_== =.=. v ==== M --= ===g --

s tH

=

.======EEi=

2 - -

_=

-=

===-

a

- _ = _ __ _ - -,.

-==.===_=_===.n.==._._._.__1

_. = =

n 40

.e,-

FI-r=.nE=tiri*M'

- 4

_n' j=f

'O inin2F=EasMii WiEt~Er ~ ~ ~ - ~~ uMsMEnr a.

=2-

==- -= - -Z

===_=i=.=.1r=_1 mal.6:;4 F _ -> =E 1--~u.: n:=2r

.=:[:2n1 --- -

- = = = =. -.

==

.=- =n =-

=.

_... _. a 2- -

- ;=- 3= 2=_g=3 3._

-- E

- - 333---

20 wr_ =

2, Y

I T

I E

I 1

A f

. ?

1 T

F 1..

1 1

,V-

.I

,Y n,

n,

- ~

x_

_9'fi 1.

'wF

~J I

1 '

9 D_

  1. U
  • t 1

1

f. \\

f I

\\

r

_ :1 Y

L 1.

10

..-_-...,r

- -,i _--n.._=.-

_._._....==v.-.. -

==:_

._. _ f::

_ = = =.. _=.r =E! _ _.._.

1+

_.__._-i-.._.__/__.,.

. ~ r__. _._.__ __. f..._

p

-9 g

m e

.s

+-

. f-i _ - /'.

.w N'

==.==v--

We..

==== wJ-,

6

= u n=n.= l== =- - = -a== -A:== =.===-.= = = = = -=====-:-==.i=>==-

' ' M **~ M - --

p~*s --.~~-

=

==

g=

- = = =

5

~ 55

  • ME*MO N

=i. =^~

== n

_.J q=1= 5EI=- _ n..---

-.__._-===:__

gif;=gli j:r:=T;p-=t- =W3 ::

s

-;_.__:=f

--]-.==~._-----

- ~=4-x im

+

g 4.=

x.

. /-

=r -.,. i

\\_

1'.

'?

r

.j

-a--!-

c/

r-3

- - m p.p r. m e n __ % g gmn_._.c #

m ;;,; = _._#.u-

- wagg.._-~~~

gy-m r--

.J _iz'- : :jhC _=3MMM=Fi== -~

~~

_ r=;=jiNiil]N5iliP.E~~~AEE.AsiliG

~ ~~=E3 El~~=-

~ ~

==

==.=... =cg== ~ :===.

- - a +- =- = -- s-r--

=.==.=.==

-- =,

_===_=._.,..

n,..

-. _ = = - -

n.

-.qy my-

=2 w

I I

I T

I y---5

, r w n.-w -.

m, y

1 2

3 4

5 6 8

10 20 30 40 50 FIGURE 24 RESPONSE SPEC"SA AT DIFFDL%T SHROUD DAT10!G SSE EVEhT ORIfhTATION 12% IMMPDC 48 D'-ESE-Li2

N P

b d

L; u

t p:

d t

=

j

.=

. P.

f-

'G I

=

w e,.

's j"

-1

>s D.

b 4

m i

--e r

6

,e g

e

~w e-e s

tr.

m:"*-

ag te..

%, =

3 "e,7 N

3 g

4 G

.S=

N

.-m m

c*.

M

~.p Q

m.f.".

L

..=

L

~

2 W

T--

I

_

W W

Mf -

' T,~

_ &g w

==-

r-e

=.

e 7

'r=

h.

~: '

R fp=

~p c

~=

,e

=

  • r a

"a M

'e e

~=

~7 C.a e

-~*

. = -

E~-=

--d

>=

-Jr.

E h

G.

~

.f ~

I g.

  • )

i i

e i

1 i

a i

s I

a i

i I

a a

a a

g

  • ~

6 e

4 9

C e

~

I E

5

~t=

L O

5 b

7

?

M 6

9 gi c

3!

Q 6

b O

V 4

4 b

b w

1 a

G

=e w

==:=-

4

.=

.-=-

g

=0. -

~,#

p.

f*

9-3:

I e

E...

y,

~, &

W H

g.

h*

\\ fs W

3 y

e T

r-L v

m-t.

L

-; =

e 3,

n s

T

.- ~.

=

-w -.

E

~_n Q

,L-----

..= M

4. p C

-.= P

,a C

=

t3

-f.

4

.=

=;

g 7".-

W

.-C

~

'"1_

--.= em

(%

=,,o[.-

M

.=_.

- e e

~.

og q

9

.c.

3 - *,

i a

a i

a 6

3 3

3 L

O d

N d

d d

I i

i I

N c

  • 7 bwJ i

V.r e9 Y

M

--:r b M

.m. %-

T

=. *,.

M*

p

,,e C

eH h

CI h,"".

e

. en

,r -

T 6-rd f-

.='-

p

%. l g

C..

l NI

^

7""

Q

-C

~"""

a m.m

.P s

W s Q

L gj

  • um o

=

W p

k I

w==

W

- - =

y Nl E

F

?

Q M

_rf.'*

I

  • Tw a

em F b

g m

a=.=

W

. = =

5 1**

's

zr:

tn i

v2

~=

==

c-

- e':

p.

cn SA.

T **

~

a.W.

y

_g.

M

=:r

.=

4.-

H

--,-n.

r.

..=--

-S,.

e 7

""T" a

e a

s e

a 1

a a

a g

i i

g I

O w

J y

y p

d s

o V3 n

G:

6 b

5 w

g W

t W

m3 Q

w e %

  • e ti l t

9 A

w D

W 4, N 3

o nr w-

~ E ~ 4 --

~

==

g

=-

--4 i

M u

W

  • ==

~ ;-.,

5

. " _ - =

  • .m-*

p 7.-

5 5

'.9 L

C

  • .y g

- -e

""""". ?

m

__d 9

_--=ca w

y H

g

'"":: n.

i.r"-

E

""=""

O O

4. '.

ffE-M-[---

IEE -- !K Q

. =.

e r

u i=

r

.h N

._.,..; D My

. ~g*

~

b, g

=, " = -. _

A.

.r

.r :-

cN O

-==y N

-8 g

=.

.e y "* '

E r-c r

m d

G La D

C 9

Y

~

TABIE 1 f

Slft%RY OF RESUL7b.02g EXCITATION SWEEPS TET FIII: RSSN02 PODAL STRAIN ADLITUDES NDES 1

2 3

SH AIN gal.UE 2.3 Hz

- 9 Hz

-12 Hz (uc)

S.G. 10 93.51 10.11 48.09 S.G. 9 36.55 S.G. 6 141.7 S.G. 5 S,G. 4 186.07 9.16 18.89 S.G. 3 164.31 9.16 18.32 S.G. 2 171.76 10.31 18.32 S.G. 1 l

l 174. 62 l

10.31 l 18.89 I

I I

I i

FIRST MODE DAMPING

!O3AL TRANSFER AHCTIONS (g/g) g ACC 9 59.39 6.90 6.70 l 2.7 ACC 8 50.0 4.58 9.06 ACC 7 39.79 2.19 12.40 2.6 ACC 6 33.87

.95 15.08 ACC 5 23.38 2.19 15.46 l 2.4 ACC 4 3.05 13.36 l ACC 3 8.87 3.45 9.77 ACC 2 6.32 3.07 6.86 ACC 1 3.54 2.20 3.80 l

51

~E-E5r-2:

l TABLE 2

SUMMARY

OF RESUL'IS.05g EXCITATION S'*'EEPS TEST FILE: RSSN05 TML 'IRANSFER RHCTION AMPLITUDES

. DE l ACC 1 l ACC 2 ACC 3 ACC 4 ACC 5 ACC 6 ACC 7 ACC 8 ACC 9 l 1

2.8 4.6 7.0 17.4 25.5 30.1 38.8 43.3 4.8

.5 6.3 7.7 18.9 2

2.9 4.9 5.3 9.2 9.1 8.8 7.5 6.7 3

2.3 3.9 5.4 PODAL MMPING VALUES MODE ACC 5 ACC 6 ACC 7 ACC 8 ACC 9 AVG.

1 2.54 2.69 2.54 2.65 2.61 2.61 2.76 4.04 3.39 3.51 2

1 3.86 2.19 3

1.95 l 2.11 2.51

. DAL S'IRAIN AMPLI'IUDES T

LODE S.G.1 l S.G. 2 S.G. 3 S.G. 4 S.G. 6 S.G. 9 1

360 367 347 377 293 61 2

37 43 37 40 25 3

23 23 23 23 E-ESE-22 52

TABIE 3

)

SlM4ARY OF MXML 'IRANSFER PUNCITONS - SINE SEEP 'IESTING DCCITATION MODE 1EVEL (g)

ACC 1 ACC 2 ACX: 3 ACC 4 ACC 5 ACC 6 ACC 7 ACC 8 ACC 9 i

1

.02 2.77 l4.43 6.41 10.80 15.77 22.28 27.44 34.13 41.49

l

.04 2.42 3.90 5.93 9.56 14.72 20.55 26.10 31.84 38.43

.06 2.95 5.11 7.40 13.58 20.08 27.15 35.85 45.22 i 60.61

.08 l

20.36 34.23 l 52.01 l

.10 19.60 33.27 l46.18

.12 l

18.83 31.74 1 40.15 I

I I

2 l

.05 2.87

[ 4.33 l5.0 4.04 2.31 1.25 3.81 8.16, 11.35 l

.10 l3.45 l 5.48 l6.53 5.69 3.72l

.98 '

3.97 9.31l.'3.31, l

.15 l 3.50 l5.58 6.50 6.12 4.48l

.86 4.52 9.29 l 15.16 l-

.20 l

5.77 3.81 i 12.88 l

.25 l

5.66 3.37 l11.73 I

I I

I 3

.05 2.12 l3.85 l5.75 7.87 8.94 8.35l 6.71 4.52 2.69

.10 1.79 l 3.13 l4.61 6.19 7.16l 6.87 6.03 4.32l 3.74

.15 2.29 l3.88 5.77 7.60 8.33 8.87 6.63 4.99l 5.09

.20 4.62 5.19 1 l

3.75 '

.25 3.69 l

4.25 2.60 Note: 'Ihe Transfer Functions are defined by the Ratio of Acceleration levels of the monitored Accelerometer over the Horizontal Control Accelercrneter.

l 53 E-F.SE-C

IABLE 4 SLYARY OF MODAL STRAIN LEVELS SINE S'JEP TESTING EXCITATION MODE LEVEL (g)

S.G. 1 S.G. 2 S.G. 3 S.G. 5 S.G. 6 S.G. 10 1

.02 132 13 6.5 127 117 101.7 76

.04 236 241 228 212 183 149

.06 472 492 460 427 l

366 283

.08 640 660 600 560 l

480 350

.10 790 810 740 690 580 420

.12 910 920 860 790 660 480 2

.05 47 47 43 28 19 26

.10 93 96 88 55 l

34 46

.15 138 144 131 79 l

41 l

64

.20 162 165 150 96 51 l

90

.25 207 210 192 120 60 110 3

.05 29 29 26 15 9

69

.10 42 44 40 27 l

15 121

.15 74 75 70 43 l

21 203

.20 87 90 81 48 27 240

.25 96 99 84 51 27 230 Note: Strain values are listed in microinch/ inch 54 TE-ESE-a42

TABLE 5 MODAL DAMPIFG PROPERTIES - SINE SL'EEP 'IESTING EXCITATION MODE IS'EL ACC 1 ACC 2 ACC 3 ACC 4 ACX: 5 ACC 6 ACC 7 ACC 8 ACC 9 AVGAGE (g) 1

.02 3.15 l 3.05 3.10 3.05 3.12 l 3.09

.04 l

2.93 2.80 2.94 l 2.73 2.72 2.77 I 2.82

.06 2.32 L 2.32 2.38 2.14 l 2.07 1.97 l 2.20 l

.08 2.43 2.41 l 2.34 l 2.39

.10 l

2.32 2.48 l2.74 1 2.51 i

.12 l

l l

2.52 i

2.48 l

l 3.14 I 2.71 l

l l

l l

1 l

2 i

.05 l 8.32 l 6.63 I 5.17 l5.48 4.48 I l5.04 i I

5.85 l

.10 l

l l

l l

l I

l l

.15 l 4.93 4.82 l 5.09 l 4.86 l 5.05 l l

l l

l 4.95 l l

.20 l

l l 5.96 l l

[

5.96 l l

.25 l

l l5.65 l l

1 i

3.65 I

i l

l l

l l

c 3 l

.05 3.45 3.33 3.08 ' 3.08 l 3.48 l l

l l

3.28 3.14 3.19 3.47 3.28 3.19 l 3.17 l l

l 3.24 l l

.10 1

.15 3.19

,2.54 2.61 3.10 3.20 l 3.58 l

i 3.04

.20

!2.19

{

I l

i 2.19

.25 3.12 l

l l

3.12 l Damping values are listed in Percent of Critical 6

TAB 1Z 6 SHAIN IIVELS AND RSPT ELECIRICAL PERFORMA!CE SEISMIC OBE AND SSE TESTING ELEC7EICAL MEASURG STRAIN IATA-VISICORDER PER vr%NCE TEST TEST TAPE RUN S.G. 1 S.G. 3 S.G. 5 S.G. 10 RSPT 1 RSFT 2 ORIEN.

DESCRIPTION NO.

sc uc uc uc S/N 604 S/N 596 1

I OBE 1 4

625 600 550 340 OK OK I

i OBE 2 5

625 600 550 350 OK I

OK 1

i 03E 3 6

625 605 550 340 OK i

OK

~

1 i

OBE 4 7

635 605 550 335 OK i

OK 1

i OBE 5 8

625 605 550 340 OK I

OK 1

1 SSE 1 1

9 775 745 675 405 OK i

l 2

i SSE 1 I

11 i

755 745 680 405 m

i OK 2

i SSE 2 6

12 1

775 745 675 400 OK i

OK 2

i OBE 1 i

13 620 600 550 335 OK i

OK 4

2 i

OBE 2 i

14 525 600 555 335 OK i

OK 2

i OBE 3 1

15 625 600 550 330 i

OK i

OK 2

1 OBE 4 16 625 600 550 1

340 i

OK 1

OK 3

OBE 5 17 625 605 555 335 OK OK S.G. 7 S.G. 8 U_C UC 600 615 i

i OK i

OK 3

i OBE 1 20 l

~

I LOOSEiCABLE 3

i OBE 2 21 600 62.5

~

3 I

OBE 3 22 610 635 OK I

OK 3

OBE 4 23 620 630 1

OK i

OK 3

i OBE 5 24 615 630 i

OK i

OK 3

l OBE 6 25 615 630 OK I

OK l

OK i

OK 3

i SSE 26 755 740 i

4 OBE 1 27

.I 760 740 i

OK t

OK 4

OBE 2 28 760 750 1

OK I

OK i

4 OBE 3 29 765 760 OK i

OK i

OK I

OK I

30 770 760 4

OBE 4 750 i

OK OK i

4 OBE 5 31 770 l

OK i

4 i

OBE 6 32 770 750 6

OK 4

i SSE 33 765 750 i

OK 1

OK I

Note: OBE Emnts for Test Orientation 4 inadvertently wre run at SSE Intensity.

56

'IR-ESI-M2

TABIE 7 LIST OF ET)tillMNT AND INSTRitflWTATION Ins t rumnt Manufac turer Model Manber Scrial Manber Calibration Requircrrents Scismic Shaker Table H/ Rad Ilydraulic Shaker MIE 204.63 299 Shaker Controller MIS 406.11B 1094 Shaker Control thit KIS 436.llAB 463 2

P/N 2931-973 Unit C-E QA Verification of software used Digital Vibration Control Syston Time Data Corp.

'IDV-25P Control Accelerometers Unholtz Dickie 100-PA 492/493 Per Manufacturer Oicek Response Accelerometers Unholtz Dickie 75 D2/PA 156/104-117 Per Manufacturer calibrated within last 12 months Response Accelerometers Endevco 7701-100 AA15, AA16 Per Manufacturer Signal Conditioners Unholtz Dickie 2216x 145/146 Performance Check Charge Anplifiers Unholtz Dickie D-22 II Type 2024-2027 Performance Occk Charge / Voltage Amps Unholtz Dickie D-22 R Type 2048-2053 Performance Qieck Oscilloscope Tektronix 5000 Series Bil7232 Performance Check Strain Gauges Micro Heasurement WK-06-125AD-350 Visicorder lioneywell 1858-07906 170401177 Signal Calibration Power Supply

' Power Mate or equal QRD15-1 IL-ll3 Tape Recorder Racal Store 7D D7 690/S Signal Calibration 1R-ESE-442 57

APPEDIX A E12CiRICAL #O FWCTIOML INSPECTION SHEEIS A-1 3 -FSE-l.l.:

Elect ical ingwetinn.';1n'r't

'.,e g g n ected by:

D$to:

.i.

A

/

d y

Pins

)feasured Resistance (olr..::) & Remarks p

h 7.1.?.1 A-B ryypp ~~ ~ '.,C '.h A ?'

T"

h '")

I t

Zd20')

/d

' *00 l'!in l'f^ d // M

/71'l fL.2'/ M4 C^ 7<*'

\\

I I

sese is 02 n rn zas 'i rid l //of liry ** i/Fr/'Is9A' len re,

l

/eDo sipn l/p/s jcd l//rd jsg jyJJ lsfd"l/97.'l:gers/ l l

,iiJn

n4

> ?fs l /rs/ /Nd n, f/

n7r~ sen -loln 'l

/,, n 9 l

/sdo

,,.h jpsn jg.7s

,,, w itf/

j7/J sm.,. - /p9C

,9,is 7.1.2.2 A-C j.;3,3

,,,.cy,/// l,7y4 ' lpa

.',,',,g l

,y,,

sn,g ne9 n/a Urs syps l -de x2r &m' ' lws

.cuiy isse on ny dee in./ /rM i/7+f s9/o em, po nr9 Qvs li-sis i sJ // -ys_ 17 4 l iris' ln 1 A o,,,'.

I i

hA n.

/$in Jf30 M19

//n t-J7f

/Por-ljc is** g,.,s.)

l Yk'" A' 5 o b

.p l

sji/ ls%l/17?' n/d l/tf I,nd l i.vt/ l/odo l n m.-

pe s/w irsa!iwo li n o % m w.cs _

as pf

%,a_ l.

o is9/ /97f /s/.s' irdr-Mrd, n >J irk-. In:n Up tcco ]

for.g'.. /72.1-. fl.G.' up ' //o,' 2 2 d

<??n I

.tu _.ce'-,

..y

s??

z9,-0 jr 4' nod Mp/

/ J?> ms) mna

/o>9 1.1.2.3 A-C

,.pgf

(,9.;A _'~,j gzy,[ pf_ey'

,./,,

jys,,

lj$7,)

9 g

fn.(d. If 2 '. /En i 7el.'.. >?l/ O/Q.- 0 2a

. " 70 i m. Y '

?t_dd. /f.3.'. /.Ead' /Zf.k'

/i2;V.-. Mc/

/370 JM' ss ?> I..

.\\

ffG.. Ifid. /,771' Mr;'-./47d.. L.8E2 427.0- O tc d2 l,

f.cy,7

/;Y:L.. sysc~ //7d /Wr t: r -

i.Vn lya n_

i,,, p c,_ _ __

l 1

-Goo!, Lffs .1,%Z.d" ML2' J.D~;l'...G,7e n4 HF

/r. ';? l

~

ry s ais.a lD-E 460/

iS.I.2.4 T-11 i s.o o /

1 J-K 4.00/

e.1.2.3. A oMf<-

I

\\

s E1cetrical snel Funct icm1 In.mcetion ':h. e t.

I as, tcd Dy: /)./3. 372M V 8.~:P Date: ?Yy/9s 0

tser SA). css er.

/se-Sm w.r q Pars.

Pins Measured Resistance (O! ns) & Rcmsrks

'i 4.3.1 A-B 3jy 4 4

Joco JJJO

/2 21

/8T/ /$4'] l /6.f4'

/7 dv lYTf4

/ *7 9'>11' / 0 3

/n/0

// 2 /

/) 11 / 3 '// /f3*+' ' /6 6'/

/ 7 71 l /S'.Y 5' !20 Od sf/3 l

/0 Do ' // 3 /

/] 4)

/ 4.r/ /fC4

/6 7 /

/ 7 T-v /5'9 'i~ 2006 2/23I

/0 30' ll 91

/.2 <>

> 3 4/ /f74l/6?$'

/7 9.r / 70 d~ 20/ 6 l2l.3 3 I

/0 +'s li st

/2 6/ /3.7/ \\ sfrA!l /4 74

/ Wo*/

/ 'f / i j AO26 2/ 'l 3 l Jo 1.2 //6/ /1 >i ' /li' 8/ ll /h-/ /204'Wl'll /9.1 s'? 20?c 2/f 3I

/o Co // )

12 Tl

/ 3 9/ Mov 17H lN 29 19 Wl.10 /Ll 1

JO 70 // 9/ lA 9f

/ 40/ /C19

/7 2 Y ff 341 /74'>d20$~c i

^

/0 to // ft/

/?et /.u// l /6 DY

/2.3 /

/r w /9 SYl2O c'& I 1

/ 0 9 o hl 2 0,2 l_)// H 2/ 1/C 3Y I /2 W l /T Fi /PC((20 93 l

/ / c~c ll 21/ L I3,2/ I /9' 3/ l /& V4 ' /7 fa~l /W 451/9 7f l2093 i I

3 l

2/f3l2036

/7.I$ / k'.2'/ ') 7 /Y /t, c4l13c/ l12 9/

// 7/ l /0 G O r

3/ 6!3 20.2 /j__ /12 { /f'}Y

/7 OY ffVh

/ 4 ?/ l /.2 2/ //(/l/O.*f*/ I k L*1 20/6 / e /I' /-( c't ' /6 9*/ /GY

/3 7/ l/.2 6/. // f/ l /0 /A *

// +'/ l /0 3 c.

?_L ; 3 ' 200C I 190f / 796 l /t.? Y JT ? /) d}

13 6'/

a l /3 2000 /Ft f /???JJs7?

/[C4'

/3 S/ ' j.2 A!/

//3/l/c:o,

/

I

,2/03 /??6

/f7f n 7Yl//Sa

/53f JJ d/

l. 2. T/

!s.2 2 ' /0 / O

_A

/

O y>69l /g y

// W /3 3/ p 2/

j; jo

/ m,1 4.3.3 A-C D o ? ? '14 7f /f b S1 n r s' ll ??' /4' 31 /3 2/ l/ 2 //

//-gl aodd /96S /f S C 17 /s! l1634!

}d 2/

/ 4 // _lf l O f

/ b 9 0 j Jo n?

1 9 S C' ff'/ 5' /7 3 6' / / 2 4' /Y // / 3 O/ h //9/ l /u 90 l 1

00'1'6 /f U1/V3 ?" ' /? $Y /f /4'

/'i'O/ /A 9/ j // 8/ } fo 70 l D-C O f.A.

3,4 y_n

/. 0 ~^.

j_g o, G A A

/nsic nit ~7 r

4.3.5 thru e

6 TI-CSC-06h-R. ;

. ggg Electrient in-rwetinn Stret

~#

cetedby:./

rA D$te:

//

[l v

Pins l i

Ref.

}5casured Resistance (olms) & Remrks Para.

{.'

l7.1.2.1 A-B 8C/Er' sist hir lis>r war liary ist lnerls/p 19n l

3. rri sisrlncr /crr 147 lJiffI!/rF /7/F l1977 l/9P7 I l

I

/. cor av/ H#

i.'r9 s/M li,-r,c lifff l/99 7 h

l

/6if si r i/s,/o F isyf fier lner /r/r /457 iin u;7/ nrr n??

wy i.

in d sio

/prr / v17 14/F' Mpf NFF

/29 F 19sF l3 s q._

7.1.2.2 ' A-C se /F

//fy is/p

,'x/g i,/7f //s 9' s/ <G l > F4 scip I 1gsc-

/s.fr ii/9

/2yf

.N prf' isd ir9f i 7s 7 s9sf /9pf derf ap9 l/ rrr /Mf

//s9 s nf l/For nyy _......_..

io/r _ pro iss7 n/rl,vsfI/ fry 19.s I l

sow nrrD epr \\ swr i

i F" //cf /9ef li'/nf - ///f_ J/95 17?9 ffW f *~P u.or asr %r da irst nr.i sydrl/rfs io/r i _

  1. %ihn d Tep /?

,I r r li e s r _ s d s, u r li< o r irsr i m_, o Isrs,iss-r

/e,-r.-.!.

f l

so-I i./7f I sy/r nm jjf ;>

w/F gAcf /9sf _ fff. if_pf lg F t

feio 19' 9~

s,7pr _ isFF" ss:f

}//f Jh*f ire

// M f))9 f

l.

mg-. /rpf-. /pr... it;r. /of-tzSE /w Is~'e ne2.... /s.2f..

EMo fif J;;9 i/tr~. th.12.-- tf+*

4.7.zP-.. tertE

//Ds **. ses.r...;.

1.1.2 3 A-C

,yy;,_,,;g _.,y,g_,,,__,g___,g

,./ f _,of

,4,_a_ gp,g______.,, cg,,

1222.. /F1.r. /,z.2 /tdE"_ xix.-&- cxr jnd isnf '

d<c.c..

l 1.c_z__

li/ar am l

cn wir. 47fx- /t.zc. x.ac A/r

/ses

/fe2..

/f.27-. /; r,e-./Ms-. / >r.. /d' aff-.- /1.d~7.-. LeEF l

/9df__ H?f im- - //sf

/D c-

/-xp n;F jsn

//,r__

f I

/997

. /22E.. tzz2.-. Z/.c.r.-. lf.g:d

/ ?!T

/_g9 i.A e v P. l.-

-r,s a 23:,. s S

!D-E 4.soo 8.1.2.4 F-il i f.oo o U~E

s. coo

^

/' /

B.1.2.5 that

%:$ h e

/

R l

(

DATA Sillir rev. t Elcet rical anel Funct innal In.:1cetion m et a

tcd ny:jQ./2

$704' v'

%:+

Date:f/y/T/

ASY s&t/Ac>f lef.

AhM 5ed=*c 95t]

? ara.

Pins Heasured Resistance (Ohms) & Remarks 4.3.1 A-B pj

/000

//o9

/2/7

/329

/4.29

/ i 'YIl /4 M __ 17 C.Y l 19'7') / 9 9' i.

1o09 112 0

/2.27

/3 n N 49 ff$f

/6 o f 1779 N'YY 1coc IV 11 19

/.2 Att f.D 89 Jy 59 W 61 /6 M 17 5'V /9"/Y 2CC}

99 il 51 J2%

13 r+ l N C 9 J i' 77 /d WP

/7 ??

190 T' 2C* ] i 37 11 5/

12sy

/169 N 19 14'T4 /4 91 1m9 H IT

o 3?

e

//ff'

/2C 9 f ? 79 14 '10 1S' 99' /-7 0 9 IS' / f l'/ 2Y h

J/69

/071 13 Y9

/499 /t.e 7 17 / t ' /5'2 ?

M 3Y

c. 9

//$3 '

'/D V9

/ T 99 /f01

/(. / 9

/7 JV l /V'.37 l' */f l

^~

/

F.2 9 9 l l JC 9 ' / ("I f

/& 2 9 1737

/ T &'f l /7.fr l 71

/)1(T t

Y1

/197

/40 7

/ */ 19

/4"21

/C 31 17 Yf ASY l /!G Y l l

71

! 09 I3/7 IHJ1 f.r3 7 /s 41 ll?sY if t 5'\\/ 7 H l

/ / c> 9 l /f99 1990 l/379

/2 d'9 l J/SO l Jo 3 9 20.39 1927 19' /9' 2029

(? l'r : M'o? ;/s ??'

1579 i', ? 'l 3 Jo Il1 S9l l131 ! 10 29 20 !?

I907

/M9 10 ffi

/f79 /Y 69 /] 59 1.2 SC' //3 9 I lo I'l 20cf /TYT l /7??_ f. 7 ?

Jf 6 f' /YSY

/ 3 h ' l / 2 'l /

//.20 l 10 CA' a co o /WW J7 y h.4'9

/rSt N ofl /3 39 12_30 l //09 f /o c'C' 199W

/s'??

1169 /t. 4*f

/fW N 39 /329 I.2 I t

//c o I? lY

'? ' ?

ll #Y II #Y IIN

'Y

? l3l?

lA GT 'O U 4.3.3 A-C

/962 /fff /7'/Y /6 M 15"27 /4 l9

/3 /0 nco io -'y J? SY

/Y W

/ 7 Y/ 16 21\\ J f /7 JY OY

/ 300 l1! Y9

/06 Y a

}96'7

.).$.3 7

/719 lt /1

/i~Cf ' M'CO

/1 Vf

/>?/

lo cf l M.3 1 /% d1 I J 17 ' It of

//TV

/ 3.W

/2 7/

//6Y lo>ffl H

D-E

/,/2 3.4 F-It

/. Oc J-K 0, $ A-i A

/Wswr

.. 3. 3 unu

0 l,

5 APPENDIX B 0

LOG SIEEIS G

9 i

I 1

M i

S-1 in._ : e r.._.,,.

_T. _A P E.... o ATA..L_O..G..S..t-L E..E.T. _

t.oG Si4EET t4o.

01 -

7Es r__AN_P_P Rse7 sets.cuAr._

mue ssa,1,io.

RET.oRD SPG ED @1 DATE N/.SI8/

MoRD BAWD W_k_l R,r CORDED BY f. [

266 3, t ca v ATon./ Amp..ssTrwc2 RUN REEL NO.

NO.

FOOTAGE t

2.

3-4 5

(,

cot.u r.mTs

=r_ = _

r.

ll. (,

(/,C.

'*"7 y q,, ' l'.;7< %.sd-a g"

5-(jt wr.

3 l(IU l0 \\/

lOQ IU(/

Ct/ fuV IC V

~

~

t f.

os y,L p **apuTS s, set 1

do m

A u. i ~ ~, s

  • f""' /.

p.

. c a t.

e.e t..s

  • L o

6s

' v ' +- ~a r 'a e" '-

  • I 2o

-4 A 4.L iAJfk"I$

i

~s'

r. s. en 1

l 0

/Or 10 /

tot Ics to<

tre wtq,,o,, yg., gg gy J

j j o tie uT4Teow I-l SS i 4 )to B l

oTI c

5 l'2.2 O S E 2.

l

..i at i (o l~141

.._._ -. o s e s...._ _._ _

OSE 1

< _.g _'i-l not

__.._3 8

IT9 CBEJ~

i

_ =

..__ _ ]

}&f V4' 4 6

/0 22.0 u;.5 N /

i cc r 1r --

//, 2'68 s s s /...

. _. _ I

-oer 2 lE.._??

.. _... L..._

N Ai.2$..:

- _. _1.. -.. _one

.tE@

L__....

/3 yre I

of;--

i u... _... _ _...

_..._..,___~.

TAPE DATA 1_O G S14 EE T i.o s s wec t s o. __ C 2 Af# 85#7 56/_f.6/42 REST p e c x u p site s.T n o.

DATE ~7/5//B/

RECORD SPE ED f/.I p.econoce av g./

MonD "* EU l

= _. _ _

m, sa vxvoa./ AMP..S ETTmlG RUN REEL NO.

NO.

FOOTAGE,,! _

2.

3 4

5 (o

~7 cot 4MENTS F y e e" 2=~' S px Rec-Rec. kc.

5-o/ 9 H.c vc 9

7 s-

_a_ __ _ _

_ _g_ __ _._ _

/ov ior av av /or er er gzvpv 5

CAI~ E...

o47 2 I 5' M9

,c s s E v N 3 l

.c z

s l

SSb w_ tuk 4 l

l e z.,

2.

Il SS4 lc.gg egy 5 t

}

SG SG R.sPT RSPT I

N

/w#67 $ 3 h(.

YC 7

h l

Q r

mcu,

tov ic-Ie lv o.1 o.1 r;v

._....._...._d F.S. 000 lQ gg Cil l e 1.1. 4 M L

l t

l

' O C iEwi A 1:ew c l l._.

g g g / g ge.k. _7_

l N

0

' cc.iE u T. L i

b 4I1 OGE l OR 86 W 3 3

).I 4hI

= _ _ _l

___, _o s_s; 1

l 2

lk

._________J

__.4' 3 u

i ost 3 I

oSJon t.1 I

O L_ _ __._ __ _ _r) $. _.._1_4 4

_ _ __,. _ _ _l_ _.._.l _o. B E__ $ __ _

i t

1 1

1 T..AP.E._ _ D A_T_A _ _L_O._G S._M_ _E_E_..T..-

log $54EET NO..: $_.

rest ANf9 CsOi W WicGun.

HOOKUP SHEET Ho, RE40R D SPG ED 1

_k!

RECORD BAND RECORCZD SY_ l it J

-i i r : EN U ATOR/ AMP. S ETTIMC' Rus 5

(o

~7 COMMENTS REEL WO.

90. I FOOTI(4 1

2.

5

_.4

..... J l

~l qpg.,3. -

o._e_n__4

- 00.I6 uT }

b dN O A t E.__. _.)

~

CR\\ENT 3 W

SO O nnE 6 09.1d fJI 3 I

_SAE.___._.

l l

ORJEe7 r.j

~ 3 3' c'

I i

_o 6 E 1 OR.if.f0T 4

... _ __.0 4.E. A...._. _.

N G-ort 6 wT 4

$0_$b7.

_. $ 5 S O W U

..C 65_b.

OR.1E u-Lti

_b OY l

OCieyg y

.Qf*f d._ _

h^3! DN Oldl Eb7 1

.E.htE._L._....

I Ocif t.,T ij 3.__

b SA E_.. _ _____

'l.

3Y I

l._...._.... _ _

L

_...._ _ _ J....._

l. _ _ _

l 1

Teol 30 :

110t 502 Dala Kn( % h an k l Dcht:

70 3/ !

Tv) Dims;plim :

RUPP CEOtt l floch Swnos.

_ W,,

0}5trou : [(/(f. //17 a

DU C L}o luw (b>,,

clauna l llawpG [ sic Taew > du a< &

Wo.

py c

o y

g c

o y,y c

o (owntu[s

/

/

i I

ll. (.

Ra. 3 (la 7 17<< 5 lI/c lIl 15 If I.

61.2 76.5 10.5 v

v 4

2 11

'Hc c. 8 Ilct6

((cc 3 II(c.

f.0 GSS 70.5 70,1 I'

It a

Rcc l' Il a 2 fla y lik 3

u l.o go,

@.6 70.,,

i

<(

5-6 7

0 3

((ma pG{de Wo :

'"" ' ' d i

'l 3

'l 5

6 13 ftl ff (6

17 IInu.

vuliat l u fL r2<<' G R""[f I

ss-l L

3 5

s to 300 1oo 100 Sao 3ev suo J$ ({ f5 Q _

4""3 3

3 l

1/t Mt'

//t'C

a TeoI 30 :

not5of Dcla L ( %u kun kl Dcdt:

1/n/?!

Tul Duca;plim :

fluPP m oti 1'ilok

. ora OA.sz,ou: % u,,,

1 a

r e.

Ilun,
  • DU C hp leau Chananai llampli fair Tacws du s Ju<>.

Wo.

y g

c o

y g

(

o y

a c

o (musun{s l'

lll

((cc /

liccz ll<c~y llic IV

/F 16 I

h 03 7Q0 J

J 2 II. c.

l[<< 8 fire 7 Grc f I 92

71. 5 To.s t,3 ll, C, Rcc 6 licc.6 Tic < 3 o

I

&3.1 go y go,j

'l

~

T

~

6 7

~

U 1

d

(( m., Y f a a yo:

'"u d

'"' h "

G l

2 3

'l 5

6 13 ly /$

/6 17 5

licr < t.

Us, lint l v [l bcc< (1

.;r 6 (,lumy J

l

ll l

il ll l\\

'G s.

u s

(

7 W

n 1

i i

t d

V n

w 4.'

6 6

b S.

(m

/

3

?

f, s

/

G-

/

u 0o 0

o

/

c s

7 7s p

3

+

r r

5 t

t s

p s l

6-l t

ab mc ys S

r 3-s t.

i f

D O

u d

s o

2 3

a 1

i.

a 8

s 1

w o

6 e

Ta y i

i 3

l k

5 a7

<o ip

(

p 6

d 6

[

u s

i Gc i

u S

p E

~g y

3 O

I

%a 1

1 o

c c

2

/

s g

lI.

r U

l

~

Y i

S

(

p i

/

3

/

5 l

p L

/

3 o

h "

c

?

(

c n

u

" c c

A A

A h

a.

a o

G" t

l s

e v

c 4

2 7

(

v c

e x

l*

c c

n c

l' u

m w

A a

" n l

y a

A

</

I p

8

/

9 o

S m

hg c

c o

f e

c c

e l

0 i

/

hA s

W" f

l

/

lll p

C

$o U

e i

a D

c c

c

[x 'w t

0 m

y i

'H p

m/

I G

3 O

/.

t p

I r

t ho d

w i

((

N o

e Te T w o.

F f

7 0

3 A

l bW I

2 3

t

[

l-

/

,I ns n

0 M

Z-e E

7 e

i

/

s

/

'8 d

u 3

'S.

s N

/

A u

k 3

I'N O

O W" L.

.m g

o (6

U t

f I

i t.

o, r

O

(

IV s.

f c,

u t

/

l1 Mo o

s 1

1 o

r x,

x t

s.

i l'

s a c oA l

i

/r 7-c D

O u

d 3

g 2

1 a

s w

u q

c Ta p

)

'l 6

I l

u y

T 4

5 4o

/

p a

5

[

u Gc

/

't p

S 2

e 0

vg

/

3 t

u

  • 4 x

0 i

/

.h w

E l

>1

/

c

/

i' 2

4 y 'H r

a p

y i

s a

i

~

i 5

5 5

I g

L a

g o

t c-c

(

c i

i a

a m

A

/c c

c.

n l

i

/

A h

  • a, e

e G"

I, e

a a

v D

c

/~

/~

7 hC e

c a

c.

c d

a u

w p

?c c

r e

'w

/

A I

'I n

o lp f

9 9

n ig

'o e

S c

o

[f c

l c

x f

s

?

l

/

)/ k i

/

n i

!/

p C

e U

e l

l n G

Q Gw r

D e

0 u

R i

3 D

/.

l t

ai c

/

p c

w

}ro l

i o e

((n l

o y

/

l-i Te T- %W 2

3 V

5 6

o a

u I

I 1'

1 j1

Dbl <;

,129/si

~

, TeoI. 3 0 : M233 "

D a la 5 ( w (,S &

S u u p T w (_

' Tml Dm,;p% :

we aso n a ~0 uone afurou.

Clauma (

llap G{&

Taws dus ks.

DUCh[im tzw.

c o

g g

c o

y a

c o

(mumannis Wo.

g vI H.C.

ha 9 Aa 7 Aug y/c

,4

,5 79

,,,5 ggg g,,35g, 8

6 1 3

.1 H.C.:

a o

L t/ 3 H:C I

2 t

o es.o 97.c. 7sg

,f o

e y.

pC l

2 t'

li i,

99.o 9 14 7a Ai2ss/s 5~

H C.

9_

1 d~

l' 4

cit.2 10

76. 1

\\

(of.C 70 s fa.!

6 II. C.

8 6

3 n

l' k

7 H. C-B l(,

3 Il l'

9 n

69.c 7' S 1s./ til235/5 8

,4. C 2

t/

l' n

II l'

81o gyt, 7o.s 3

Q.C k9

{7 yS H

6/.2 7/ 5 7a3 G" h

((4,nIoG[dv Alo :

'"k *l I

2 3

'l 5

6 13 lt/

ji (6 '

17 Itn u.

vul,at Ted(. Sco is 12<=y toy.

toy toy or(luw, r i. -m nc

4 s

o 4

6 D

~.

s N,

i g

aQ w*

b

-6 N. - 9.

p g~

h ss

~

d V

4 eng gu g

I g4 s

~

N p

,e3 g

1 1

gn~

s i

E g

\\

so d E 2

1 1 3

L w

Qo s

3 c

fCQ D

e M

Ng 4

=

.6 m# 'N s

1 p

Ag O

b g

\\>

v e w g

.h, d

~.e e-j d Q

4 Q

5 v

gp Y '.

9:

V q.g v

g-r g.2 y-g s

1 G'

Q-e I

e y-e e,

b so a

3 o

s tr Nso a

e n

q 7-.

2 t

v v s

40

- - ~ -

e a

Q N

&h'4 f

.O Q

m r

ou C")

\\

N

~

V Teoi 30:

il55 vo 5

&la L(Se Suuo kl Dd< :

ginlutei

~

Tel Duu;pkcm :

S& Lap. oL J+p alwou : a &/x.n u

un 1%

00C hp low (bcumu i ll~pG[ul Tews du s M.

Wo.

y j

g c

o g

g c

g g

g c

o

( m utu fs

^

.I' ll.l(

Rcc 5 Un 7 Mcc '9 II.C.

I't IT 16 1.o 10.7

11. 5 Gr.z f)cc. [,gt $

/1x$ )).C ll 76 6 7p.5 t25 Hbute.a 2'

fIi) 3 II l'

//.C l

gm / v./ Altd',, Acc,f Ms si is n

y a/

gy gm ys.,

. SU S.fr./

6.&. 2 S,6. 3

//.c-l 2

3 PS 7// ffS.Y'

.,6 W S.G. /

S.S.2 56.3 7

s. & p' s.6. s s.s.'s

//c gs 4.s vs f

(

S.G.7 56 8 6G 9

'I' '

1/K V5 7/J 3

Acc</

Acc S Acc 6 5' 9,* Q f 70 V xr 76f EN"Ol'-T G"h"

((noY fie blo :

'"@'l I

2 3

It 6

13 Jy

/f f6 17 G

ilVtts.

Uc, lim

'Iu(b hcca b ko"If IG 3.6 36 JG

.,: w c,

APPENDIX C RESUL75: STATIC IIRD DEF12CHON TESTS AND FIRST HDDE DYNA.MC 7EST t

t i

e 1

1 i

C-1 3 -ESE-L'.2

Static Deflection Tests Using a pull wire arrangenent (connected to the CEN top), the CEE was deflected incrementally up to 5 inch total displacement. ne deflection i

at the CEDM top was measured by an LVUT with 5 inch travel. B e strain gauges (Nos. 7 and 8) were connected to a balance bcx and measured by a digital readout unit. De results from the static load deflection tests are surmarized on page C-3.

A linear deflection characteristic was observed with a strain to deflection ratio of about 111 uc/in, whereby the strain was measured 4 inches above the base plate and the deflection at the CEIH top.

First Mode Dvnamic Test Strain gauges 7 and 8 were connected over two dynamic signal conditioning units (same as described in main report) to the visicorder readout device.

i Le 5" stroke LVITI was displayed on a third visicorder channel. ne CEM was set into vibratory motion by exciting it manually above the coilstack.

De resulting CEN top motions, as well as the nozzle strain levels were then recorded on calibrated visicorder traces and converted into engineering units. We figure on page C-4 shows a typical visicorder trace and an averag.no::le strain of about 240 pc per 2.41 inch top deflection (or 100 uc/in) is observed. Eis value is slightly higher than those recorded for strain gauges 1 through 4 of the shaker table tests. Le differences l

may be explained by the fact that these two tests were mn with the CDM set-up in two different orientations and/or by some flexibility of the shaker table suspension system.

t

[

List of Test Equipnent in addition to items listed in Table 7.

LVUr Schaevitz Model M/N 5000 HPD, S/N 192, Calibrated 1/16/80.

Digital Volt:neter W200, C-E EL-259, Calibrated 2/10/81.

Strain Read-Out Unit Vishay VE-20A, S/N 25026, Performance Check 9/81.

m C-2 3-ESE-u 2

M 1' w

J c. __

y

-w

..,v,. ;

A'_

.c:

1 z,p y

1 A

R I

y l

LE S

x

-=

-d e

g

=

~ )

r^G

-L Ni w,-

1 v'

f 5

13C E

{

c 2

2 1

e f.

- _ -y ; r_== sa ;,.

~

STATIC DEFLECTION TEST N0ZZLE STRAIN (4" ABOVE I!ASE PIATE)

VERSUS CEat TOP DEFLECTION i

h I

^_rer_,io

~~ ^

C-3

^

-..gg

.....r

.t

. : g,',..,

g,,,

Sj g

-- th,... ;..

A.>

y

. e.... - -

.g L

~ 4

~

3

\\

m

~

m J..,...

y

-w.,.'a...a, -

G

ey..:-

m

  • o

..,d-p.....w,. 3.e.m. 4.. -.s

.y s cu.,.

,, s.

s,

.L.. f.h2.%m.c.ggp-Y

.L...

3 1

- _o-7;.':.

o ev

  • ' j.,

k

v. 9
q

~ ' ~36 g. e'.h.$...-

N

.f5 5

4.,

,.6.s.

-,. -. : v,,;a...

.%. r

.....,,,,m c,,.

". <j ~..

k.

..y..~.:

. 4 W'*.*.i l 1.Q-G~.

J.

g

iche L- ";;,&-

~'.'.

' 4_ :

~

. 's T.r. L.W%.c

.. yf e f..t-o,

.o n

. e.

O s m. #,

~ ~ * *

...g.

y

, a :.:,. %,.,;,.

.=.s.m: :;y,..

",q..

  • r

,,,.v....

r..

vs.

..-.n.-

.~J,,

p,-

. /.. &.,a-Mw>p.~..,.

...:~.'....

u o"~

.5,.k.R~, ;,

. - 9.C* -

?,:.%:Il,G'r;4*.*. -

,o,,

.....,;x.u. v.

e.

.e m

...o

.C;.,.. s.,,+i.,,..w e.w -

-a.,.:

p

..*-A W4

.E.'dM..

2

}

. n

  • O *:'

y'a-d'.,

..:,;;+.~N. N,.:',fd k e.- ; t '-

)

=

c y.

.. ~.....-,.. m...

4:.

4

.s g. e..... -. -. -....t...;

2.

.y....

g

s...

.x

-e

..-M., -

m..-,2--. w..

p.. '..s 2

...w.,,.m>..c p

p

'...h';..)Q~ -

A a

,,f.&..4 ss.,.--

n --

y e

. ~....

J. ed ~ -...w....:..i.

  • a;*'y... w.R.. y g --- 4 h y,

. t' 3

u.

A cm s,...

A q;q.n -

..,.: g.;.

.. e-.

cc

.. ;.l':::3......

i. m Gi:{;'Q W.,.;,,ss m q~Q~;.:;.. '

C

,..,='" #

h_ N s5NkfI_

7

.w,, p

.. 3 v~

n --.-.;.- n y -

- ~, -

. e w3 sew.. -

~'W

~

~"

,,.~ F,'.-@. i siv.-

7

- e2 p

gM g;r9.:.ca -

.y<

g

~._..m_..m. w. A.?hM _,

..,,., n. 1 v.**' 4

. o,.

M_

-17 m _

1 cu

% vp,,

..MF...',.

%?

b

.,R$ @ %s'#,~M' n.

+r

~

.%I@e ~ ~

'i %:'v-p _M41A w nns - OM G

o. ism 6mi--

  • . * '. J.%

..:a.m w m.;; w m : M m n..u.

v

.. ac

. w ?n

e

' &*: 8 ~.'-'.* D -

d.W..;M.,s.;;, -... :*?.;w;:wWLv..

u.:

;. >;.~. -=..c, r.
.' ;>

. Q-

..,, ; *. ; ~1 1

.. 2.~

. ;,.,.^j,e. i.,

a

\\

y-f. g.g...t.y.i'. "': ;

Qi

q i

t

~-

f.

g C

E~.

7 sd D

'O u

d V

C-4

c..: -

1

l AIT'l'07"#

O t

r 24076-1 f

I I

APPENDIX 0 AGE CONSIDERATIONS FOR SEISMIC DESIGN AND SU RVEILLANCE/ MAINTENANCE IN, MILD ENVIRONMENTS t.

240 7W-2 I

FOREWORD Ihis Appendix treats two related aspects of equipment aging.

For clarity the presentation is subdivided accordingly. Part 1 of this Appendix discusses the aspects of Age Considerations for Equipment Seismic Design.

Part 2 of this Appendix covers the f easibility of Surveillance Maintenance as Basis for Equipment Qualification.

B O

e 9

9 0-1 2: _ ___

2407W-3 l

PART 1 AGE CONSIDERATIONS FOR EQUIPMENT SEISMIC DESIGN

1.0 INTRODUCTION

Special concern exists regarding the need for equipment preaging prior to seismic test. Much of this concern arises due to the of ten conflicting guidance provided by IEEE-323-1974, DDR Guidelines,

NU REG-0588,

and IEEE-344-1975.

The purpose of this Appendix is to demonstrate the nonvalidity of the requirement to include preaging.

As a rule, when formulating seismic testing programs, in order to prove the adequacy of the equipment to perform its safety-related design function.

2.0 PO SITION Available information and evidence does not justify tnat there will be any significant enhancement to the safety of nuclear power plants by including preaging as part of the testing program f or qualification of safety-related equipment subject only to mild environments. Neither do experimental studies conducted (Refer to IEEE " Study of the Ef fect of Aging on the Operation of Switching Devices," 1980) to determine whether equipment aging affects the vulnerability of electric switching devices to malfunction caused by vibrational stresses in the range of seismic frequencies and acceleration amplitudes.

For most devices tested, the fragility level was approximately the same before and after testing, in some cases the fragility level increased while in others it decreased. Overall the changes were not significantly different from the fragility levels variations observed for duplicate specimens under identical test conditions.

The results of this test support the position that seismic qualification need not be conducted with aged specimens.

Based on above considerations and other equipment aged versus non-aged testing such as the Position Paper " Justification for Seismic Testing Un-Aged Sub-Jendor qualified It ems," tests results provided from such Sub-Vendors as: Amp Special Industries, Anaconda Ericson Inc, Brand Rex Co, Electroswitch Corp and General Electric Co, it is our position that the preaging requirement to seismic test (IEEE-323-74, Subsection 6.3.5) be waived in ene qualification Program of Safety-Related Equipment subjected only to Mild Environments and that only IEEE-344-75 requirements be considered for s eismic testing in this Class IE equipment.

0-2

240 TJ-4 l

3.0 DISCUSSION j

l 3.1 Based on information submitted by the Industry, and in particular the data presented by the Atomic Industrial Forum, and in a meeting held with the NRC on August 12, 1981 we concluded that any requirement

. for preaging of equipment would have no meaningful consequence on the F

results of a seismic test program perfonsed on unaged equipment.

This conclusion was documented with information supplied to NRC from the following sourc es:

i. Manufacturers Tes t Reports Tests performed on aged and unaged equipment show results not supportive of a conclusion that aging effects play a consequential role in tLe ability of the equipment to function, even in the upper limits of seismic operability.

ii, l$st La boratory Report s Tests performed in components illustrate that the aging -

seismic combination is not significant in terms of component ability to f unction under seismic stress conditions.

iii. Historical Dat a Reports evaluating equipment operation of aged equipment subjected to actual seismic events conclude that the electrical equipment perf ormed its functions even where seismic design considerations were exceeded and when some of the devices were approaching end-of-life condition.

iv.

Industry Standardg Perf ormance requirements for nonnuclear s tations f or seismic considerations are based on standards which are also applicable to nuclear stations because equipment environmental conditions and seismic stresses are similar for nonnuclear and nuclear non harsh conditions. Pre-aging is not included in the seismic test neither is recommended.

v.

Manuf acturers Type and Ra ting Tests These tests document the equipment's ability to reach an end of design lif e without degradation of structural, mechanical, or electrical integrity not af fecting the equipment's capability to perform its safety functions during seismic l

conditions.

i 0-3

24074-5 vi. Plant Surveillance and Testing Programs These aspee is of equipment aging are disc'ussed in the latter part of this Appendix.

3.2 Tne IEEE members S P Carf agno, Franklin Research Center, and G Erich Herberlein, Jr, Gould Inc., conducted an experimental study in 1980 on i

twenty-four (24) different specimens consisting of duplicated pairs, except for starters, circuit breaker and current-limiting fuses, to deten=ine pre-aging effects on the vulnerability of electric switching devices to malfunction caused by vibratory stress in the range of seismic frequencies and acceleration amplitudes.

The devices tested were':

Circuit Breakers, Relays, Time-Delay Relays, Contactors, Start ers, Current-Limiting Fuses and Fuse Blocks.

The experimental program consisted of:

a.

Functional Test b.

Vibration Test c.

Functional Test d.

Gamma Radiation e.

Functional Test f.

Accelerated Tnermal Aging (At High Relative Humidity) g.

Functional Tes t h.

Electrical / Mechanical Life Cycling i.

Functional Test j.

Accelerated Thermal Aging (Coils Only) k.

Functional Tes t 1.

OBE Vibration m.

Repeat of Vibration Test n.

Functional Test Description of these t ests can be found in IEEE Paper F-80-259-2, IEEE Power Generation Committee, IEEE Power Engineering Society, F abrua ry 3-8, 1980.

Results of the tests show that specimens SB, 6B and 21B vere removed from program af ter irradiation.

These specimens correspond to devices Time-Delay Relay (SB, 6B) and Circuit Breaker (21B) because they f ailed to function af t er irradiation. All the other devices passed the environmental test and were af terwards submitted to the seismic test.

In most cases, there was no difference between the fragility levels before and af ter aging; this includes the cases in which the fragility level exceeded the tes t limit.

Table 1 shows the specimen identification by number and function description. Table 2 shows the Cycles Accumulated During Electrical /

Mechanical Life Tests.

The test results demonstrate that there is no significant difference between fragility levels before and af ter accelerated aging, including cases in vnich the fragility level exceeded tne test limit.

i 0-4

2407W-6 i

I t

The specimens passed inspections and functional tests conducted in accordance with the experimental program where minor exceptions occurred af ter gamma irradiation. Details of the exceptions are discussed in the IEEE Paper, Page 4 affecting mostly plastic material of some components.

Since two time-delay relays (specimens 7B and 85) did not function properly after irradiation, they were replaced by

[

specimens 27B and 28B, added to the program, which funct.ioned satisfactorily af terward s.

All specimens passed the final vibration tests and all passed successfully the initial vibration test (Specimens 27B and 28B were not submitted to the initial vibration test due to lack of availability of test f acility when the sp'ecimens were added to th e program).

An analysis of the component seismic vulnerability was made to determine whether aging had produced a significant change in the fragility level (measure of the ability of the devices to withstand vibrations in the seismic range). An attempt was made to ascertain whether the changes observed were sufficiently large to be unlikely to have occurred by chance. A curve was plotted showing the significant reductions in fragility level af ter aging compared to the level before aging (aging effect on sei' mic capability), chance variations (small s

reductions in fragility level) and the normal distribution curve.

A thorough analysis of the Fragility Level Carve by the probability law was conducted. Tnese anlayses again support the hypothesis that there is no statistically significant aging effect. Summary of the results is tabulated in Table 3.

From the test and study conducted, in which devices were submitted to vibration test consisted of shaking each device in the direction that was most likely to cause spurious opening or closing of contacts, at discrete frequencies between 1.0 and 32.0 Hertz at interval of 1/3 octave and maximum acceleration amplitudes increasing from 0.4g at 1 Hz to 6g at 12.7 Hz, it was concluded that aging does not have a significant effect on the seismic vulnerability of most of the types of contact devices tested.

3.3 Suecarizing the documents, tests and analysis referred to in above Paragraphs 3.1 and 3.2 of this discussion confirm the statement of our position, Paragraph 2.0 that the pre-aging does not affect substantially the seismic capability of equipment when in mild environments such as Motor Control Center Rooms, Switchgear Rooms, Main Control Rooms, etc, therefore the pre-aging requirement for seismic testing in Class 1E equipment should not be included in the seismic reports.

It is no coincidence that the above testing demonstrates the insignificance of accelerated aging before seismic testing.

Virtually all of the components used within mild environ =ents are identical in design to their commercial grade components.

In mos t cases the only

(

parameter increased for the nuclear grade component is the price, the

\\

lead time and the volumes of documentation supplied by test labs attempting to reinvent the decades of experience of the international elec trical industry.

0-5

24074-7 I

The conclusion of the ITE Gould/ Franklin Research test program demonstrating that equipment aging does not effect seismic withstand ability serves as testimony to the quality of industry in its design and manuf acture of equipment.

Industry, both in the U.S. and worldwide, has addressed the subject of equipment aging for the past 30 years and has designed their equipment accordingly.

Industry representations have developed many concensus s tandards to cover the area of equipment aging.

In particular, two ANSI standards apply to a vast majo.ity of the 2

equipment of concern. Tne first is the Standard for Industrial Control Equipment ANSI /UL-508 and the second is the Standard for Polymeric Materials, Long-Term Evaluations ANSI /UL-746B.

Both these ANSI standards were adopted from the standards of Underwriters Labora t orie s.

A review of ANSI /UL-746B standard identifies among its basis materials standards published by the IEEE. These include IEEE-1 and IEEE-101, the same standards which form the basis of Arrhenius methodology for NUREG-0588.

The point above is that the utilities already use industry standards developed over decades which reasonably addresses aging.

Unfortunately, a mystique has been carried around the word " nuclear," requiring a reinvention of techniques adopted not only within the U.S. but worldwide (IEC 216, " Guide for the D'etermination of Thermal Endurance Properties of Electrical Insulating Materials," IEC 493, " Guide for the Statistical Analysis of Aging Test Data," etc).

Ihe entire issue regarding the aging of mild environment equipment before OBE and DBE goes away when analysis can point

  • ack to the o

indus try standards. Moreover, the NASA, and MIL, Standard s are more s tri ng ent. These reflect vibration and require severe acceleration values for extended time periods much greater than 30 seconds at under 5g's (the typical nuclear plant numbers).

Another aspect of equipment aging addresses solid state component. As indicated within IEEE-650 solid state devices are generally considered not to possess age related failure mechanisms.

This position is support ed by reliability models such as the bathtub curve and the Unified Field Theory.

The latter approach identifies a constantly decreasing failure rate with time when the equipmeat is under a continuous stress (i.e., aging, voltage, etc).

Us e of the standard bathtub curve with its infant f ailure region of decreasing failure rate, the flat region of constant failure rate, and the hypothetical region of increasing failure rate demonstrates that equipment operating in the constant failure rate region does not significantly age, all failures being considered random. The recent evidence Figure 0-1 more than supports the theory that aging to the deteriorated "end-of-life point" is not applicable for solid state j

l components.

The mos t f ailure prone time is the beginning of lif e,

{

\\~

consequently supporting the industry practice of solid state component "b u r n-i n. "

O-6

2407W-8 I

There is however an immediate problem with these philosophies.

Both models account only f or a continuous level of equipment stres s.

The situation in a harsh environmental area of a nuclear plant is different. Here, the equip =ent appears to see a step function increase in the level of equipment stress (especially that equipment used only for and during accident mitigation).

This apparent situation decreases confidence level regarding immunity to common-mode f ailures. Use of

,I engineering analysis tools such as thermal inertia calculations, review of actual Arrhenius curves, etc can still be used to demonstrate acceptability. Moreover, component derating can be used to regain the reliability numbers during all adverse conditions.

I

(

0-7

4 2408W-1 e

PART 2

)

THE FEASIBILITY OF EQUIPMENT QUALIFICATION BY SURVEILLANCE MAINTENANC6 Tni is Part 2 of Appendix 0 which describes the Applicant's approach to determining tne cost-ef fective feasibility of applying surveillance /

maintenance as the basis for mild environment equipment qualification.

At the time of issuance of this appendix there is no Class If equipment dependent on surveillance / maintenance to establisn qualification.

1.

Introduction NUREG-0588, paragraph 1.5(2) requires that, " Equipment located in general plant areas outside containment where equipment is not subjected to a design basis accident environment should be qualified to tne nor=al and abnormal range of environmental conditions postulated to occur at the equipment location." Every nuclear plant receiving an operating license subsequent to May 23, 1980 (per NUREG-0588 Revision 1.

Memorandum and Order CLI-80-21 and IE8 79-01B Supplement 2 Question / Answer 3) is required to meet NUREG-0588.

Earlier plants (those in operation prior to May 23, 1980) were to meet IES79-01B (Supplements 1-3) whien did provide a specific limitation in scope of the formal submittal to the NRC for harsh environment located equipment, (refer to IEB 79-01B Supplement 1. Question / Answer 1).

However, even enese plants required " qualification" (IEB 79-01B enclosure L, paragraphs 4.3.3 and 7), where significant aging degradation has been identified.

No official regulation (prcposed 10CFR50.49) or regulatory guide (proposed RG 1.B9, revision 1) exists on the issue of mild environment equipment.

Literally thousands of pages of draft staff positions, ACRS/NRC meeting transcripts, etc. exist - but no official guidance to

~

the industry.

What does exist is NUREG-0800 (Rev 2 - July 1981) Section 3.11 which is the NRC Standard Review Plan (SRP).

Contained within that plan is tne following:

Mild Environment The environmental qualification of all electrical and mechanical equipment located in the mild environment is acceptable if the following procedure is followed:

"Tne documentation required to demonstrate qualification of equipment in a mild environment are the " Design / Purchase" specifications.

The specifications shall contain a description of I

the functional requirements for its specific environmental zone during normal and abnormel environmental conditions.

A well supported maintenance / surveillance program in conjunction with a I

good preventive maintenance program will suffice to assure tnat

)

equipment that meets the design / purchase specifications is l

qualified for the designed life."

l O-8

i 24084-2 l

i l

f "Furtnermore, the maintenance / surveillance program data and records shall be reviewed periodically (not more than 18 months) to ensure that the design qualified life has not suffered thermal and cyclic degradation resulting from the accumulated stresses tr.iggered by the abnormal environmental conditions and the normal wear due to its service condition. Engineering judgment shall be used to modify the replac* ment program and/or replace the I

equipment as deemed necessaty."

2.

Definition Replacement / Maintenance Internal Ine replacement / maintenance interval is determined as tne maximum cost effective period of time during.whien there is a high level of confidence that installed equipment can perform its necessary function up to, during and following a design basis event.

3.

Evaluation of NRC SRP Position on Mild Environment Equipment and Its Potential NeEative impact Tne key pnrases in ene NRC SRP position are "well supported maintenance / surveillance", "a good preventive maintenance program", and

" maintenance / surveillance program data and records shall be reviewed periodically (not more than 18 months)."

These phrases and unofficial NRC discussions reflect very intensive surveillance / maintenance activities, perhaps at every refueling outage.

Implementation of these activities necessitates a definition of meaningful degradation, determination of a surveillance / maintenance procedure to measure that degradation, initiation and maintenance of traceable surveillance /caintenance records for trending, and other very labor intensive and burdensome tasks.

The magnitude of the intensive effort must consider:

Labor Productivity a) Travel Time b) Waiting for tools and parts c) Unavailability of components Workload and Workwindow a) Magnitude of craft personnel b) Time available to do work (e.g. ref?seling) f h

(

O-9

2408W-4 The impact on resources to establish "well supported"

(

surveillance / maintenance both by the utility during plant life and by the design tea = appears to be more costly than qualifying equipment for mild environments.

For example, simp 2y extending the surveillance / maintenance interval from a 2-4 year range to a 6-8 year range on 40-50 valve / damper operators results in a plant cost savings of some $350 - 400,000.00 on an enginetring evaluated (present worth) basis.

It is clear that excessive dependence on frequent surveillance / maintenance will run in the many millions of dollars.

4 Qualification Methods for Mild Environments Significant data exists and/or can be cocpleted to demonstrate that a significant percentage of equipment is qualified. Much of this analysis is based on the application of Military and Industry St anda rd s.

Appendix E contains much data which can be used to qualify equipment by analysis supported by " partial test data".

5.

Industry Frankly, some industry members want to close the mild environment issue in the short term and are presently willing to commit the industry to intensive surveillance / maintenance planning to " renew the fight at a lat er day".

Other members want to face and resolve the entire issue now and recognize the qualification inherent in the standards now used f or commercial grade items described in Appendix E.

6.

gualification Feasibility By Surveillance / Maintenance Decision Logic Ite e The attached logic tree (Figure 0-2) may aid in detenmining if surveillance and maintenance, as a basis for mild environment equipment 3

qualification is feasible and logical. Use of this logic tree quickly and directly leads to a "real world" determination if and when qualification based on surveillance / maintenance in lieu of qualification is prudent.

l l

l O-11 Rev. No. 1, (1/83)

2408W-3 iq Le adership/ Training a) Quality of supervision and training Availability of QC/QA Support a) Magnitude of QA/QC personnel available to I

support work on Class IE items Planni ng/ Scheduling a) Significant magnitude of planning / scheduling to support intensive efforts without impacting plant availability -

Is it possib' Engineering Support a) Evaluation of treading Purchasing / Inventory Support a) Level of inventory for seals, gaskets; service engineering to support maintenance.

Nuclear Records Management a) Significant historical record keeping to verify maintenance perf ormed, maintenance results and other pertinent inf ormation.

The collected information can be handled manually on historical record cards or preferably by computer.

Surveillance /Haintenance Operating Review a) l'rocedures (efforts) to identify deficiencies and problem areas b)

Factor (a) above into continuing program To bring this into context review Guidebook Subsection 8.3.4 and Appendix E.

We can easily demonstrate that most com=ercial grade items such as simple relays, precision switches (e.g. Microswitches) have a cycle life far in excess of the majority of plant requirements or alternatively we can check every relay contact f or wear at every refueling. Likewise cables and motors can be qualified for the 40 year life, or alternatively the insulation resistance can be measured and dielectric tests can be conducted at each refueling or at a maximum of eighteen month intervals. For solid state components we can demonstrate that aging is insignificant and need not be considered prior to seismic I'

testing (as described in part 1 of this appendix), or we can attempt to g

establish (if practical), meaningful surveillance / maintenance tests for solid state components.

L h

r 2409W-1 l

TABLE 1 1DENTIFICATION OF TEST SPECIMENS Note: All specimens consisted of duplicate pairs, except specimens 19B through 22B.

i Specimen No.

De scription 1B Circuit Breaker 2B Circuit Breaker 3B Relay 4B Relay SB

  • Time-Delay Relay 6B*

Time-Delay Relay 7B Time-Delay Relay 8B Time-Delay Relay 9B Relay 10B Relay 11B Contact or 12B-Contactor 13B Sta rter 14B Starter ISB Circuit Breaker 16B Circuit Breaker 17B Circuit Breaker 18B Circuit Breaker 19B Sta rter 2 0B Starter 21B Circuit Breaker 22B Current-Limiting Fuses / Fuse Block Trip Indicator 27B Time-Delay Relay 28B Time-Delay Relay I

  • Failed functions test af ter irradiation

2009W-2

(

TABLE 2 CYCLES ACCUMULATED DUAING ELECTRICAL /MECi4ANICAL LIFE TESTS Specimen No.

No. of Cycles Conditfons I

1B 6000 30 amp 4000 No load 2B 6000 30 amp 4000 No load

~33 2.0 x 100 5 amp 6

4B 2.0 x 10 5 amp 5B Removed from program af ter irradiation 6B Removed from program af ter irradiation 6

7B 1.0 x 10 Relay load 8B 1.0 x 106 Relay load 9B 2.0 x 306 5 amp 6

10B 2.0 x 10 5 amp 11B 2.5 x 106 30 amp 12B 2.5 x 106 30 amp 13B*

2.5 x 106 yog,3 14B

  • 2.5 x 106 got, 3 ISB 6000 30 amp 4000 No load 16B 6000 30 amp 4000 No load 17B 6000 125 amp 4000 No load IEB 6000 125 amp 4000 No load 19B
  • 1.0 x 106 Not e 2 20B*

1.0 x 106 got, 3 21B Removed from program af ter irradiation 22B No operations required 27B 1.0 x 106 Relay load 6

28B 1.0 x 10 Relay load.

  • These devices were cycled without electrical loading. However, the contacts were replaced with contacts removed from identical devices previously subjected to electrical load cycles as follows:

Note 1.

Make 84 A& 4 5% P.F., break 14 A& 90% P.F. and 480 v.

2.5 x 106 cycles at rate of 900/h Note R.

Make 300 A& 45% P.F., break 50 A& 98* P.F. and 480V.

2.5 x 106 cycles at rate of 450/h Special Note -

A quantitative review and analysis of contact cycle life based upon electrical ratings is discussed within Appendix E of this Guidebook.

0-13

E t 9e he en C

E 6

4 a.

A b

k N N N NN NN N t

C E,

N N N N N NN N W

S P

b am

&E b

C em N

R.

f te en t 8';

M N N N KN M N 4

e C

E N N N N N N N N w

l es==

M Er S T

= =,

4 &

C

== b h3 b

el se c M!

.s

=

s e

c Ca

.a e

N g

h I

t &w==

P

.D=.

== c 2 ad

$ F a C L b

==

4 h M

N N

N

=

C

&b aC M G h

E O

=

b g

=

i C

N N

N N M E N N N N N N

5 O

15 g

M K

at an*

4 h.s M

4 E

E t-C C

N 6 as e=

g a

b M

C ee

.C.

3 C

aC

.e E

N Eg N

w c

u-M 4 & C C EeE i

== T ese b b 6f3 N

N N

em

4. to r La b'

.e

' 84 N

N N

C E

N N N N N N N N N

M C e to E em b

M N N e

R C

S 6 S

C2 e.

==

    • U M

N E

h S

o e

a i

a w

C

==

k

.t.f W &

M N

N N N F tt Me O

C ad me M

N N e

t e

E M N NN N N

g I

N 5

No C

en h O a. er O h, t=

O e em O em N O O m o

  • * *
  • e e g.

e e e o e

e e e

e e O N @ O em N N

=

e==

M N N m 4 em em E====== N N m

, 0-14

1000 I

500 250 e

100 sn g

50 I

t 25 at e

e 10 5

a 2.5 1.0 I

250 1000 M0 M.M 100 SM 2500 10,000 50,000 AVERAGE AGE /LRU. HRS i

i i

i i

l IIII 1

JAN JAN JAN 72 73 77 l

4 t

o l(

LOUI5!ANA Figu e POWER & LIGHT CO.

ELECTRONICS FAILURE RATE VERSUS Y'sterford $teom AVER.%E AGE IN HOURS O1 E.eetri: Stetion

{

1

-m q

m-I WHfCH TASE CAN BE,DONE WHIC_H,T_ASR CAN1RE DONE WHfCH TASM SHOUL. D.SE_DO.N. E g

(COST ANALYSISI LIST FAILURE pS tesPENOfMO ygg FAlttmE Of fECI ARLE MODEls) AND BY MONif 0RINC DEFINE Mf ANT OF MONITORING NO LIST FAILIIRE

~

~

18feePfMOINO MODEISI AND DOf S RE At. AND DOfS Of5 POSITION VtS

=

FAILURE DETECTABLE TASRS Rf FEmMO TO "--"---~~-~~~~~-~~~-"T+

snour Tat

TEM CAuSE scHr Out t r)

BY MAINTENANCE ALL POTENilAL APPLICABLE DATA FAILURE OF RELAf tVE TO OR TEST DE TECilON OF g

DESIRARfLITY OF A SAf f f V MAIN T E NANCE IMPENDING F ALLURE g

A SCHEDUltip TASK CONCE RN PROGRAM 1

+

B

- - NO g

s vt S----- -- -- -- --- - + eNCtuoE l

DOf S F AltimE LIST ALL UTHICH T A%K g

MODE HAVE A VES FAlltlHE MODElSI MUST BF EM)NFP DIRECT ADVERSE AND ALL AT LE Asi ONE TASE,l

",,* = YE S== -= = = + REOLRR E S EFFECT Og POTENilAL TASR$

MUST flF SELECTED EVALUAT NO 4,g %

PLANT SAFE TY REFERING TO EMPLAIN ANY TA$g

- PLANT SAFET Y NOI SELECTED NO ------ + DELETE NO J

j seey em s.esmie LOUlllANA POwfit & LIGHT EO.

w.e..f J 1s El chie 5e. 4 IpsAt of Of A 908988 9 6 A%*Att O f V DT 9retWS og g A8ef f hSA#80tl Seatti 5 838 Il'.N180 t(Ett 9 R9 f FIGtmE O F

.