ML20212A958

From kanterella
Jump to navigation Jump to search
Summary Rept for Startup & Power Escalation, Waterford 3 Cycle 9
ML20212A958
Person / Time
Site: Waterford Entergy icon.png
Issue date: 10/23/1997
From:
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20212A954 List:
References
NUDOCS 9710270126
Download: ML20212A958 (15)


Text

_ -- - - - . _ . . - -- - . . - . . . _ . - - . . - . - . - . _ - - . - - - . - ..

Y

l. .

r t

4

)

i t

i h

i ATTACHMENT Waterford 3 Cycle 9 Summary Report for Startup and Power Escalation 9710270126 971023 PDR ADOCK 05000382.

P PDR

i 1

TABLE OF CONTENTS 3

Page 1.0 I N T R O D U C TI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .l 2.0 R EAC (OR C OR E DE SC RI PTIO N . . ... . . .... . . .. .. .. . .. .. . .. . . .. . . . . .. . . ... .. .. ... . . .. .. 2

+

3.0 LOW POWE R .*HYSIC S TE STIN G . .... ... .. . . . . ..... .... . .... ........ . . .. .... . . .. .. .. . 3 3.1 I n itial C ritica lity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Critical Boron Concentration Measurement............................... 3 3.3 Isothermal Temperature Ccefficient Measurement.................... 3 4.0 POWE R A SC E N SIO N TE STI NG . .. . ... . ..... . . ........... . . . .. . .. . . . . ...... ..... . . . . . . . 4 4.1 Fuel Symmetry Ve rification .. ........ .. . .. . . .. . ... .. .. . . .. . . .. . . .. ..... .. .. .. . . .... 4 4.2 Core Power Distribution Measurement...................................... 4 5.0 OPE RATION AL TESTI N G . ... . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.1 Isothermal Temperature Coefficient Measurement.... ............... 6

6.0 CONCLUSION

S...................................................................................7

~

7.0 R E F E R E N C ES .. ... ... . ...... . . . ........... . ... ........ ................................ .... 8 8.0 FIGURES Figure 1 Waterford 3 Cycle 9 Enrichment Zoning Pattern for B atch R Fu e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 2 - CECOR Results for Fuel Symmetry Verification ...........10 Figure 3 GETARP Results at 68% Power with ABB-CE P red ictio n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Figure 4 GETARP Results at 100% Power with ABB-CE P red i cti o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 1

I 4

7

1.0 INTRODUCTION

t This report surnmarizes the results of the WSES-3 Cycle 9 startup physics test program, as it pertains to the introduction of erbia as an integrated

-burnable absorber. This program included pre-critical tests as well as

!, those conducted -during low - power- physics testing (LPPT), power F . ascension and at full power. While all tests perfomied as a part of this program were completed satisfactorily, not all test results are included in

~ this summary. Only those tests deemed necessary to demonstrate g acceptance of the measured core physics parameters are included.

The objectives of these tests were to demonstrate that, during reactnr i

operation, the measured core physics parameters would be within the

! assumptions of the FSAR accident analyses and within the limitations of .

l the plant technical specifications, as well as to verify the nuclear design ,

l calculations. It was also the intent of these tests to demonstrate adequate conservatism in the Cycle 9 core performance with respect to the WSES-3 i FSAR,-Tecimical Specifications, Cycle 9 Core Operating Limits Report

! (COLR), and Cycle 9 Reload Analysis Report.

n l 2.0 ' REACTOR CORE DESCRIPTION i

! The design of the WSES-3 Cycle 9 core includes using erbia as an i integral burnable absorber. Erbia, integrally mixed within select fuel pins, l replaces !adividual B4 C pins as the poison in all Batch R fuel assemblies.

A total of 84 new Batch R fuel assemblies were loaded with fuel rod j enrichments as high as 4.42 w/o U-235 and ertda rod er.richments of 4.07 w/o U-235 and 2.1 w/o erbia, in addition, 37 Batch J and 96 Batch P asi amblies were loaded into the Cycle 9 core. See Figure 1 for additional

.? er chmentinformation.

The designs and manufacturing processes for the ABB-CE 16x16 GUARDIAN and HID-1L spacer grid assemblies .were modified -to

] incorporate the coreless spacer grid assemblies into the Batch R fuel J

bundle assembly design. This is a manufacturing process change and

does not impact the mechanical design bases.

f i The only mechanical design change incorporated into Batch R assemblies

[

4 is the addition of " backup arches" to the top spacer grid assembly. This change is expected to improve contact between the grid and rods, thereby i

' reducing or eliminating the poscibility of fretting, as observed in the fuel failures of Cyc'e 7. The evaluation of this design shows no impact on the i grid's form, fit, function, or pedormance requirements. As such, the top grids are fully compliant with all internal and external product requirements.

2

- . . . ~ . -- -

i 4

L

[ ,

3.0 LOW POWER PHYSICS TESTING 3,1 Inito! Cri%ality E i

j Following each refuel, initial criticality is achieved by boron dilution.

l The initial RCS boron concentration is required to be greater than-E the predicted ARO Critical Boron Concentration (CBC) by .an ,

amount worth 1.5%Ap. An estimated CBC is calculated for ARO, Regulating CEA Group 6 at 75 inches withdrawn. All Shutdown, Part-length, and Regulating CEA Groups are withdrawn to their upper electrical limits,~ with the exception of Group 6 at 75 inches, and dilution is commenced. For Cycle 9, the estimated CBC was ,

l calculated to be 2033 ppm. Criticality was achte.ved with a CBC of o

2033 ppm and Group 6 at 79 inches withdrawn.

.3.2 Critical Boron Concentration Measurement i The purpose of this test is to verify the critical boron concentration

for the ARO CEA configuration of the startup-test predictions.

i Initially, CEA's are ARO except for Regulating CEA Group 6 a*

greater thar.130 inches withdrawn. Three stable RCS boron simples are averaged to estimate the rodded CBC. Group 6 is l withdrawn to the upper group stop and 'the residual worth is j- measured using a reactivity meter. The rodded CBC is theo

! corrected using the Group 6 residual worth. The measured ARO l CBC for Cycle 9 was 2066 ppm. .The predicted ARO CBC for 1 Cycle 9 was 2066 ppm.

3.3 Isothermal Temperature Coefficient Measurement The isothermal Temperature Coefficient- (lTC) is estimated by measuring changes in reactivity associated with RCS temperature

j. -changes. The RCS average temperature is decreased by approximately 5*F and the reactivity change is measured using a reactivity meter. The temperature is then retumed to 545"F and L

the reactivity change is again measured. This process is repeated

_two additional times in order to obtain an average ITC.

The Moderator Temperature Coefficioat (MTC) is then calculated

by subtracting the predicted Fuel Temperature Coefficient (FTC) from the measured average ITC. Additional calculations include MTC linear extrapolations to both 70% and 100% power.

i 2

j 3 i

]

  • - - , - . ~ - - - ..

Table 3.3-1

- WSES-3 ITC/MTC Measurement Results*

Measured" ABB-CE Acceptance Predicted - Criteria ITC 0.2738 0.2019 i0.3 MTC (0%) 0.4338 0.3619 -3.3<MTC<0.5 MTC (70%) -0.1427 NA -3.3<MTC<0.0 MTC(100%) -0.3662 NA 3.3<MTC<-0.2

!

  • M values are dO 4.-
    • MTC values at 70% and 100% are extrapolated.

The -acceptance criteria demands, per WSES-3 Technica' Specification 3.1.1.3, that the MTC be less positive than 0.5 x 10 d

' p/deg A F at zero power and within the limits of the COLR. This requires that the MTC be less positive than 0.0 x 10" Ap/deg F at ,

d 70% power, more negative than -0.2_ x 10 Ap/deg F at 100%

4 power, and less negative than -3.3 x 10 Ap/deg F at any power.

Also, the measured average ITC must agree with predictions to 4

within i0.3 x 10 Ap/deg F. All acceptance criteria were met and are summarized in Table 3.3-1, 4.0 POWER ASCENSION TESTING 4.1 Fuel Symmetry Verification -

Prior to exceeding 30% full power, fuel syr,1 metry verification must be' performed to ensure that no detectable fuel misloadings are present. Assembly power data is obtained by executing CECOR, a computer code used to construct three dimensional assembly and peak pin power distributions from incore detector signals. Each instrumented assembly power is compared with the average of its symmetric group' and a percent difference is calculated. The acceptance criterion states that this difference must be less than or equal to 10%. The largest percent differenie from average observed was approximately 4.1%. See Figure 2 for CECOR output.

4.2 Core Power Distributinn Measurement The purpose of this test is to verify that selected measured core power distribution parameters agree with the predicted core power distribution parameters at both the 68% and 100% power levels.

These parameters include the measured radial power distribution, 4

.. o

' axial power distribution, planar radial peaking factor (F,y),

integrated radial peaking factor (F,), core average axial peaking factor (F,), and three-dimensional (3-D) power peaking factor (Fq).

A snapshot is taken and CECOR exect'.ad to obtain assembly power data. The comparisons were made '. sing the GETARP program and the results are shown in Figures 3 and 4, and summarized in Tables 4.2-1 and 4.2-2.

Table 4.2-1 WSES-3 Cycle 9 68% Core Power Distribution Results ABB-CE Measured *  % Acceptance Predicted Difference Criteria Radial RMS NA 2.2841 NA <5%

Axial RMS NA 2.6266 NA <5%

Fw 1.530 1.5529 1.50 iS%

F, 1.020 1.5180 -0.13 15%

F, 1.210 1.1802 -2.46 15%

F, 1.830 1.8508 1.14 iS%

  • RMS values in %.

Table 4.2-2 WSES-3 Cycle 9100% Core Power Distribution Results

, ABB-CE Measured *  % Acceptance Predicted Difference Criteria Radial RMS NA 1.9141 NA <5%

Axial RMS NA 2.3920 NA <5%

Fw 1.530 1.5499 1.30 15 %

F, 1.510 1.5130 0.20 iS%

F, 1.180 1.1676 -1.05 iS%

Fa 1.780 1.8115 1.77 15%

  • RMS values in %.

The acceptance criteria ste'es that for the measured radial power distribution, the total RMS error between measured and predicted relative power densities for all assemblies must be less than 5%.

Also, for each assembly with a predicted relative power density less than 0.9, the percent difference between measured and predicted must be less than 15%. For those assemblies with predicted relative power densities greater than or equal to 0.9, the pe,rcent difference between measured and predicted must be less than 5

J

J d 4

10'/c. For the axial power distribution, the RMS error between measured and predicted relative power densities must be less than 5%. Additionally, for all four peaking factors, measured and predicted values must agree to within 110%. All acceptance criteria were met at both the 88% and 100% power levels and are summarized in Tables 4.2-1 and 4.2-2, 5.0 OPERATIONAL TESTING 5.1 Isothermal Temperature Coefficient Measurement Prior to reaching 40 EFPD core burnup, an additional ITC/MTC test must be conducted to verify compliance with Technical Specification and COLR requirements. Initially, power is reduced 1

to 93% to allow temperature fluctuations necessary for the test. In a process similar to the Low Power Physics Testing ITC Measurement, RCS temperature is increased and decreased by approxirr,ately 8'F and the power change is measured. This process is repeated 3 additional times to obtain sufficient data to determino an average rate of change of power with temperature.

This value is multiplied by a predicted Power Ccefficient to arrive at an average ITC.

The MTC is then calculated by subtracting the predicted FTC from

. the measured average ITC Additional calculations include MTC linear extrapolations to 70% and 100% at the current burnup and an extrapolation to 100% power at the end of cycle (EOC).

Table 5.1-1 WSES-3 ITC/MTC Measurement Results*

Measured" ABB-CE Acceptance Predicted Criteria ITC -0.5635 -0.6402 i0.5 MTC (70%) -0.1770 NA -3.3<MTC<0.0 MTC(100%) -0.4952 NA -3.3<MTC<-0.2 EOC MTC (100%)

-2.7870 NA -3.3<MTC<-0.2

  • A!! values are x10"

" MTC values at 70%,100% and EOC 100% are extrapolated.

The acceptance criteria demands that, for any core burnup, the 4

MTC be less positive than 0.0 x 10 Ap/deg F at 70% power, more negative than -0.2 x 10 4 Ap/deg F at 100% power, and less negative than -3.3 x 10 4 Ap/deg F at any power. Also, the 6

measured average ITC must agree with predictions to within i0.5 x 4

10 Ap/deg F. All acceptance criteria were met and are summarized in Table 5.1-1.

6.0 CONCLUSION

S Based upon the successful completion of all startup tests required, specifically those described above, and the proximity of core physics parameters to predicted values, it is concluded that the measured core parameters verify the Cycle 9 nuclear design calculations and demonstrate adequate conservatism with respect to the limits and requirements of the FSAR and technical specifications, respectively.

I i

7 1

m

7.0 - REFERENOES 7.1 WSES-3 Technical Specifications: ,

j 7.2 WSES-3 Cycle 9 Core Operating Limits Report (COLR) 7.3 . WSES-3 Final Safety Analysis Report (FSAR) 7.4 Waterford 3 Cycle 9 Reload Analysis Report 7.5 CEO-97/00235, WSES-3 Cycle 9 Startup Physics Test Results, i - August 26,1997 -

i 7.6 WSES-3 Procedure NE-002-002, Revision , Variable Tavg Test

< 7.7 WSES-3 Procedure NE-002-003, Revision , Post-Refueling Startup Testing Controlling Document 7.8 WSES-3 Procedure NE-002-030, Revision , Initial Criticality 7.9 WSES-3 Procedure NE-002-050, Revision , Critical Boron Concerivation Measurement 7.i0 WSES-3 Procedure NE-002-060, Revision , Isothemial Temperature Coefficient Measurement 7.11 WSES-3 Procedure NE-002-110, Revision , Fuel Symmetry Verification 7.12 WSES-3 Procedure NE-002-140, Revision , Core Power Distribution Measurement 8

i Figure 1.

Waterford 3 Cycle 9

, Enrichment Zoning Pattern for Batch R Fuel l

i l RSOS RSeG

! BeSG $2SG l

RS$$ atB2B R1 Fuel (32 erb rods) R2 Fuel (48 erb rods) 4 i

I i

E i

i l R3 Fuel (72 erb rods)

O HiEnrichment g Lo Enrichment w/ Erbium E Lo Enrichment

, 4.42 w/o U-235 4.07 w/o U-235 4.07 w/o U-235 l

i i

)

I . . . . . . .-. _ . _ -

1 i

e Figura 2. CECOR Results for Fuel Symmetry Verification

  • GLOM 11tl 0F ICTRJtWT 'N (4CH 00 ANT SMtTRIC GROLP SW(0 Ovik ALL ((WIL5 F019%f & A55tRV IN CCM 9%P AS5tieLT UWR Of TEC1GI wwR PMR la INSTRLMNT[0 A55E' ell [5 AWERAGE PMR 14 OCIANT SM(TRj( GRIP PIRCINT O!FTERIE1 TRm 5 METRIC AG 1-00 2 00 3 00 4 00

.000 .000 .000 .000

.000 .000 .000 .000 000 .000 .000 .000 5 01 6-00 7 02 8-00 9 03 10 00 11 04 12 00 13 05

.234 .000 .777 .000 1 514 .000 . 7% .000 .241

.235 .000 .773 .000 1 511 00u .773 .000 .235 501 .000 561 000 .218 000 . 910 .000 2 505 14 00 15-00 16 00 17-00 18 00 19 00 20 00 21 00 22 00 23 00 24 00

.000 .000 .000 .000 .000 000 .000 .000 .000 .CE .000

.000 .000 .000 000 .000 000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 25-06 26 00 27 07 28 00 29 08 30-00 31 09 32 00 33 10 34 00 35 11 36 00 31-12

.234 000 1.441 000 14% .000 .000 .000 1.465 .000 1.4 78 .000 .241

.232 .000 1.449 .000 1.461 .000 .000 .000 1 461 .000 1 449 .000 .232

.777 .000 .589 000 -23 .000 .000 .000 .225 .000 1.9% .000 3 885 38 00 39 00 40 00 41 00 42-00 43 00 44 00 45 00 46-00 47 00 48-00 49-00 50-00 $100 52 00

.000 .000 .000 000 000 000 000 . 00P .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 53 00 54 13 55 00 56 14 57-00 58-15 59 00 63 16 61-00 62-17 63 00 64 18 65-00 66-19 67-00

.000 1.380 .000 1 812 .000 1.893 .000 1 624 .000 1.916 000 1.836 .000 1.3% .000 000 1.378 .000 1.814 .000 1.899 .000 1 623 .000 1.899 .000 1.814 .000 1.378 .000

.000 .092 .006 .134 .000 .334 .000 .079 .000 .875 .000 1.213 .000 1.270 .000 68 00 69 00 70 00 71-00 72-00 73 00 74 00 75 00 76-00 77-00 78 00 79 00 80 00 81-00 82-00

.000 000 .000 .000 .000 000 .000 .000 .000 . 000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 000 .000 .000 .000 .000 .000 83-20 000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 84 21

.290

.281

.286 85 00 86 22 87-00 88 23 89 00 90-24 91-00 92 25 93 00 94 26 95-00 %-27 97-00 98-28 99 00 .286 1.282 .000 1.709 .000 1.806 .000 1.888 000 1.812 .000 1.920 .000 1,854 .000 1.723 .000 1.715

.000 1.710 .000 1 828 .000 1.909 .P00 1.788 .000 1.909 .000 1.828 .000 1.710 .000 100 00 000 .006 .000 1.198 .000 1.065 000 1.304 .000 1 093 .000 1.405 .000 .776 .000 101-00

.000

.0a0

.000102 00 lu3 00104-00105-00106-0010b00108 00109'00110 00111-00112-00113 00114 00115-00 !!6-00 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 117-00 000 000 .000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 118 00

.000

.000

.000 119-00 120,29 121 00 122 30 123-00 124 31 125 00 126-32 127-00 128-33 129-00 130 34 131 00 132-35 133-00 .000

.0u0 .000 1 699 .000 !?97 .000 1.890 .000 1.765 .000 1 927 *"

1 855 .000 1.707 .000 .000

.000 1. 71 0 .000 1.8.8 000 1.909 .000 1.788 .000 1.909 .900 1.828 .000 1.71 0 .000 134 36 .000 621 000 -1.694 .000 . 972 .000 -1.304 .000 .943 .000 1.488 .000 .150 .000 135-37

.278

.295

.266136 00137 00138-00139-00140 00141-00142 00143d 144-00145 00146 00147 00148 00149 00150 00 .286 2.860 000 .000 .000 .000 .000 .000 .000 000 .000 .000 .000 .000 .000 .000 .000 3 293

.000 .000 .000 .000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 000 000 .000 .000 .000 000 .000 .000 .000 .000 .r0 151 00 152-38 153 00 154-39 1 % 00 156-40 157-00 158 41 159-00 160 42 161-00 162 43 163 00 164-44 165-00

.000 1.366 .000 1.783 .000 1.8 79 .000 1 622 .000 1.909 .000 1.826 000 1.372 .000

.000 1. 3?8 .000 1 814 .000 1 899 .000 1 623 .000 1.899 .000 1.814 .000 1.378 000

.000 . 872 .000 1.712 .000 -1.074 .000 - 079 .000 .533 .000 .633 .000 .4 21 .000 166-00 167-00 168 00 169 00 170-00 171 00 172-00 173 00 174 00 175-00 176 00 177 00 178 00 179 00 180 00

.000 .00 .000 .000 000 000 .000 .000 000 .000 .000 . 000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 000 .000 .000 000 .000 000 .000 .000 .000 .000 .000 181-45182 00183-46184 00185 47186-00187-48188 00189 49190-0P s!-50 192-00 1%3 51

.223 .000 1.431 .000 IM6 .000 1.852 .000 1.488 000 1 448 .000 . 2 11

.232 .000 1.449 .000 1.461 .000 1 852 .000 1.461 000 1.449 .000 .232

,4 104 .000 -1.274 000 1.712 .000 .000 .000 1.840 .000 .103 . 0% .558 194 00195-001%-0019b00198 00199 00 200-00 20100 202 00 203 Of,204 00

. 000 .000 000 .000 ,000 .000 000 .000 .000 .000 .000

.000 .000 .000 .000 040 .000 .000 .000 .000 .000 .000

.000 000 .000 000 .000 .000 .000 .000 .000 .000 .000 205-52 206 00 20b53 206-00 209 54 210 00 211-% 212-00 213-56

.235 .000 .765 .000 1.508 .000 .784 .000 . 23G 235 .000 .773 .110 0 1.511 .000 .773 .000 235

.137 .000 1 067 .000 .218 .000 1 416 .000 2.141 214-00 215 00 216 00 217-00 000 .000 .000 .000

.000 .000 .000 .000 40 .000 000 .000 10 j

+

F:IglLirst Ol.

GETARP Results at 68% Power with ABB-CE Predictions W9343GV on July 31,1997 @ 11:57:03,0.7435 EFPD RE1ATIVE RADIAL .ONER DISTRIBUTION COMPMISON 0............. .............................

s PRIDICTED s s .228s .308s .330s .230s (MLAs. -PRIDICTED)

MEASURED s s .246: .336s .350s .246 s 7.95; 9.07; 6.05; 7.10s 4 D! r rERENCE = +-...----..------ X 100. 0 s.t..........+

DIrrER +......,.............+......+......+......+...................,

PREDICTED s .172s .42Ss .644s 1.051s 1.137s 1.053; .644; .425 .173s a .179; .428; .634s 1.035s 1.142s 1.033s .630s .429; .183; i 4.15s .76s 1.54: 1.40s .40s 1.90s 2.25s .86: 5.62

+.............+.........................................+......+......+......+

s .191s .560s 1.069s 1.252s 1.313; 1.169; 1.312s 1.252s 1.064; .564; .100s i .208s .561s 1.039; 1.206s 1.216s 1.15Ss 1.275s 1.209s 1.043s .570s .197:

7.91s . 14 -2.83: -1.16 -2.84s .3.44s -2.301 .99; 9.54s

+.... .#......+.......s -2.85s -3.64:......+.....................s ....................+.............+......,

s .180s .453s 1.112s 1.137 1.181s 1.202s 1.3 tis 1.201: 1.180s 1.13Si 1.110s .453: .193:

.183s .465s 1.09.s 1.11Ss 1.152; 1.104; 1.361; 1.187; 1.160s 1.124: 1.110s .471; .202 s 1.40s 2.652 1.24; .1.91: 2.46; .1.18 1.424 1.20s .1.66s .90s .01s 3.92 4.45:

............................+......+.............+...........................+......+......s

.173s

.......+......,

l .564 1.110s 1.230s 1.374 1.210s 1.399: 1.273; 1.386s 1.209s 1.376 1.230s 1.112; .568: .172s s .191; .566s 1.094s 1.210s 1.357s . 213s 1.386s 1.275: 1.387; 3.219s 1.369s 1.222 1.109s .576s .193s a 10.38s .33: -1.464 -1.60 -1.36s .23s .14; .19s .05; 79s .Sti .67; .37s 1.40s 12.14s

+...... ......+...... .......s . . . . . . + . . . . . . . . . . . . . , . . . . . . + . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . .

  1. .425s 1.068s 1.135s 1.316s 1.245i 1.401: 1.223s 1.229s 1.228s 1.403: 1.245; 1.376s 1.137s 1.049: .425s
  1. .435s 1.049: 1.1223 1.365s 1.251s 1.421s 1.240s 1.245s 1.253; 1.420s 1.2634 1.376: 1.136; 1.060s .430s a 2.39; .1.42 .1.104 .82; .47i 1.40s 2.00s 1.32s 2.02; 1.77: 1.46s .00s *.12s

+......+.......s ....................._  :,.......................................+.............+......+

.sts 3.03s s .644s 1.252s 1.180s 1.209; 1.403 1.251s 1.394: 1.252s 1.396 1.251s 1.401: 1.210s 1.181s 1.252; .644

+.....-s .639s 1.221s 1.176 1.214; 1.407; 3.2784 1.422; 1.291s 1.429s 1.291; 1.423s 1.228s 1.1 bis 1.230s .640s------+

s .230s . 42; .2.49s .34: .42s .31s 2.19 2.00s 3.12s 2.40 3.23i 1.S4s 1.49 .59s -1478: .59s .220s

, s .240.......+......+......+.............+.............+..............s...... ......+.............+......+......+ .233s

{ s 4.36s 1.053; 1.312s 1.201 1.386 1.220s 1.39ss 1.20Ss 1.306 1.205: 1.394s 1.223 1.388; 1.202: 1.313 1.051s 2.10s

+--- --s 1.C20s 1.26 6s 1.19 64 1.368 1.241 1.422: 1.249 1.348; 1.256 1.439; 1.260s 1.390s 1.200s 1.291: 1.021s-----.+

i .330s -3.09s -1.98: 1.21s -1.30s 1.06: 1.95: 3.64s 3.25 4.23i 3.26; 2.99; .12: .20s -1.70s -2.87: .100s s ,339.......+.............+......+.............+......+-

. + . . . . . . , . . . . . . + . . . . . . + . . . . . . . . . . . . . , . . . . . . + . . . . . . . .31gs s 2.70s 1.137# 1.169: 1.381; 1.2733 1.229s 1.252; 1.306; .50Ss 1.306s 1.252s 1.229s 1.2'3s 1.391s 1.169: 1.137; 3.36:

+....--i 1.096 1.144; 1.352s 1.264; 1.253; 1.209s 1.350s .872 1.361 1.308; 1.2764 1.2891 1.371: 1.152; 1.101s---...+

s .300s 3.44: .. 16; -2.00s .69; 1.98; 2.92: 3.)4; 8.28: 4.25: 4.46: 3.86s 1.27s *.75i -1.49: -3.15 s .311+-- ---+------+ .330s

+------+------+------+------+------+------+------+------+------+-.----+------+-----++

s 3.06s 1.CSis 1.313s 1.204, 1.399: 1.223s 1.194s 1.205: 1.306: 1.205: 1.396s 1.220s 1.306s 1.201s 1.312 1.053: 3.04:

.340s

+------s 1.014s 1.280; 1 ' 79; 1. 354 s 1. 233 s 1. 412 s 1. 2 4 3 s 1. 3 4 9s 1. 256 s 1. 4 36 s 1. 2 60 s 1. 3 92i 1.197 s 1. 2 8 7 ; 1. 02 3 s ------+

i .220s -3.54 2.53s -s.92: -2.44; .80s 1.31; 3.14 3.33 4.27; 2.87s 2.642 .45: .33; -1.92; -2.83 .230s a .232+ = ---+-.-=--+-~----+- +=

  1. 1.63; .644 1.252; 1.191; 1.210 1.401; 1.251s 1.394i 1.252s 1.394; 1.2 Sis ---~~+-

-+--~*.-+------+------+-~----+--.---+ ----+------+------+~~----+

1.403s 1.209: 1.190s 1.252 .644;

.241:

+..----s 4.94

.634s 1.214s 1.161s 1.202; 1.3s4; 1.270s 1.414s 1.292s 2.425s 1.286# 1.421s 1.224s 3.182: 1.222, .6394------*

  1. -1.34; -3.04s -1.21s .69s 49s 1.52s 1.27s 2.43; 2.22i 2.92; 1.27; 1.28 .16

.......+.............+......+......,......+.........................................+;......+s-2.42; .............,

. 74:

i .425: 1.069; 1.137s 1.376s 1.245: 1.403s 1.22ti 1.229s 1.223; 1.401 1.245; 1.316s 1.132s 1.068 .425:

434# 1.046s 1.114s 1.342; 1 737; 3.40$s 1.240s 1.2344 1.252s 1.432; 1.261: 1.371s 1.124s 1.043: .431 s 2.04: 2.17s .2.06s -2.45; .61: .13s .97; .54s 2.38s 2.21s 1.29; .38 ,4ts .2.19s 1.53s

........+......+...........................+...........+...................................

s .172 .563: 1.112s 1.230s 1.376; 1.209 1.386s 1.273: 1.398 1.210s 1.376s 1.230s 1.110 ,564s .173s

.191: .364: 1.004s 1.196; 1.345: 1.203s 1.3tos 1.270s 1.39Ss 1.225: 1.360s 1.215s 1.094; .562: .381s

, 11.30s .76s -2.50s -2.1Ss -2.28s .50s .46 .42 .49; 1.20s 61 -1.26 -1.41s .36s 4.36s

+_ _._ _ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --+.............+.............+.................... .......

s .193s .453s 1.110s 1.135s 1.180s 1.201: 1.381s 1.202: 1.181 1.137s 1.112; .453; .180s s .184s .459: 1.049; 1.106; 1.142s 1.187 1.384; 1.200s 1.173; 1.125; 1.099; .464s .179s s -4.44s 1.27; -1.90s -2.54 -3.2Ss -1.19 .24i .19s .71; -1.06s *1.21s 2.44s

............................. ..,..................................+......+.............,s .33 s .1404 .564 1.068: 1.252s 1.312s 1.169 1.313s 1.252s 1.069) .569 .193s s .192; .561: 1.032s 1.199; 1.211 1.157 1.282s 1.217; 3.046; .568; .208;

  1. 6.56 .60s -3,41: -4.22 -3.11; -1.00s -2.33; -2.77; -2.15; .04; 7.69:

.. _.......+......, ,................... 4......................... ,

t .173s .425; .644s 1.053s 1.137s 1.051s .644: .425: .172s i .381 .429s .631s 1.029s 1.134 1.035s .637: .430s .177s i 4.35: .62; -2.06 -2.27s . 28: -1.56s -1.12 1.26s 2.91:

,.............,......+....................+....................+

s .230s .330s .308: .229;

  1. .246: .340s .334s .245s s 6.91; 5.39: 4.30s 7.46:

.......+....................,

11

u, 4

F:IglLarst 3.

GETARP Results at 68% Power with ABB=CE Predictions (Continued)

RELATIVE AXIAL POWER DISTRIB:1TICM CCMPARISON NODE PREDICTED MEA 3. 4 CIFFERENCE 1 .3030 .3590 18.1554 2 .4190 .4523 7.9450 3 .5290 .5401 2.0914 4 .6100 .620$ .4023

$ .6910 .4930 .2921 6 7$10 .7574 .4575 7 .0000 .4138 1.7294 9 .9420 .9626 2.4421 9 .8700 .9042 2.9856 10 .9090 .9396 3.3613 11 .9360 .9695 ' 5753 12 .9610 .9949 3. 246 13 .9930 1.0167 3 42'2 14 1.0040 1.03St  !.1636 IS 1.0230 1.0$29 . 9141 16 1.0410 1.0684 2.6356 17 1.0590 1.0830 2.3663 19 1.0740 1.0969 2.1290 19 1.0990 1.1100 1.9298 20 1.1030 1.1225 1.7640 21 1.1160 1.1341 1.6103 22 1.1290 1.1446 1.3852 23 1.1410 1.1540 1.1399 24 1.1110 1.1620 9520 23 1.1620 1.1684 .SS21 26 1.1710 1.1733 .1997 27 1.1900 1.1768 .2720 28 1.1970 1.1709 .6902 29 1.1940 1.1000 -1.1744 30 1.1990 1.1002 -1.5665 31 1.2040 1.1799 -1.9985 32 1.2080 1.1794 -2.3689 33 1.2400 1.1797 -2.5853 34 1.2110 1.1700 -2.7275 35 1.2100 . 1770 -2.7275 36 1.2070 1.1754 -2.6139 31 1.2020 1.1728 -2.4329 3e 1.1950 1.1681 -2.2489 39 1.1950 1.1606 -2.0626 40 1.1720 1.1489 -1.9120 41 1,1340 1.1319 -1.9211 42 1.1310 1.1090 -2.0293 43 3.1020 1.0762 -2.3383 44 1.0640 1.03S2 -2.7091 45 1.0160 .9034 3.1626 46 .9570 .9216 -3.7031 47 .0920 .9474 -3.0727 40 7890 ,7627 -3.3354 49 .6770 .6665 -1.5532 50 .3350 .5600 4.6767 51 .3960 .4446 15.1694 1

PEAFYNG PARAMETER CCMPARISLM PARAMETER MEAS. PREDICTED t CIFFEREN('E FKY 1.5329 1.S300 1.4942 4 FR 1.5100 1.5200 .1329 %

F3 1.1002 1.2100 -P. 4413 %

FQ 1.0509 1.9300 1.1373 4 0 CALCU1ATED Smi VALUES RADIAL = 2.2941 AXIAL = 2.6266 0 MEASURED A31 = .0$35 PREDICTED ASI = .0744 0

ACCEPTANCE CRITERIA REPORT O MEASURED FXY NAS WITHIN PLUS OR MINUS 5.000 % or THE PREDICTED VALUE, O HEASURED FR NAS WITHIN PLL*3 OR MINUS S.000 t CF THE PRE 0!CTED VALUE, 0 NEA3URED FE MAS N! THIN PLUS OR MINUS 5.000 t OF THE PREDICTED VALUE.

O MEASURED FQ NAS WITHIN PLUS OR MINUs 5.000 t CF THE PRED.CTED VALUE.

O NH3 ERROR CN AXIAL CISTRIBUTION WAS LESS TRAN OR E2UAL TD S.000 4.

O RFB ERROR CN RACIAL DISTRIBUTION NAS LESS THAN CR EOUAL TO 5.000 4.

O ALL PREDICTED RADIAL POWERS LESS TRAN C 9 WERE WITHIN PLUS OR MINUS 15.000 t OF MEASURED.

C ALL PREDICTED RADIAL PCWERS GRIATER TRAN OR EQUAL TO 0.9 NERE W1.HIN PLUS CR MINUS 10.000 . 6F MEASURED, O ***

ALL ACCEPTANCE GRITERIA WERE MET. ***

12

___j

_- ~_ _ .

4 o

. F:Isptaresdt.

GETARP Results at 100% Power with ABB-CE Predictions W9347D0 on August 4,1997 @ 09:12:58,4.3475 EFPD DELATIVE AXIA1. PONER DISTRIBUTICH CCMPARISON 0............. .............................

  1. PREDICTED # # .232s .311; .334; .234s (NEAs.. PREDICTED 1 i HEA$URED # .246 .333 .347s .247s t DIFFERENCE a .--. -----....--- X 100.0
4 D1FrER s s 6.11s 7.23
4.02s 5.50s PREDITTED

+....... ..+ ..............+......+......+.............,......+......+.......

s .177s .432s .647s 3.040s 1.123s 1.042; .647s .431s .177s s .187s .433s .642s 1.034s 1.121s 1.032s .638; .434s .191s

5.92s .27s .94# .62s .37 .99s -1.33: .64: 8.10s

+......,....................+.....+......,......s......+......s......+......,

s .190s .516s 1.066s 1.240s 1.291s 1.162: 1.297 1.240s 3.064: .572s .185s s .210s .571s 1.044s 1.213s 1.200s 1.153s 1 279 1.216s 1.049: .572: .198s

.......+.......s.............,......

s 5.90 . 85; -2.04: 2.16 1.34; .7 5 s .1. 4 0s -1. 92 s .1. 4 4 :

.............,......+......+.............4.......s .00 7.03 s .195s .460s 3.110s 1.136s 1.183 1.204: 1.372s 1.202s 1.182 1.135 1.100s .460s .1991 s .193s .460s 1.102: 1.118s 1.156s 1.191s 1.367; 1.1994 1.165 1.125; 1.110s .473s .213

  1. 4.30s 1.65s .71s -1.60s .2.30s .1.12s .36J -1.06 1.47s . tis .20s 2.72s 1.86i

+....................+......+......+.............+......+......+............+......+....................+

s .177s .5724 1.100s 1.225s 1.360s 1.214s 1.385s 1.274; 1.383; 1.213s 1.360s 1.225s 1.110s .576 .177; 3 .191# .560s 1.095: 1.210s 1.360s 1.213i 1.392# 1.280s 1.392; 1.218s 1.370 1.219s 1.108 .578s .193s s 3.11 *.67s -1.20s .1.26s .56s .04s .53; .50s .67; .40s .14s *.46; ..les .42s 9.24;

........s .............+.............+....................+....................+......+............. .......

  1. .431s 1.064; 1.1352 1.360s 1.241s 1.399: 1.232s 1.240s 1.237s 1.400s 1.247s 1.360s 1.136s 1.066s .432s s .435J 1.049s 3.119s 1.360s 1.249s 1.421s 1.252s 1.2b8s 1.255s 1.424s 1.259s 1.371; 1.13;; 1.062 .438; s .98; .1.37; 1.39s . 56: .12s 1.56s 1.61; 1.48s 1.45: 1.75; .97; .23s .333 .35s 1.471

....................+..................................+......+....................+......+......+......,

  1. .647; 1.240s 1.182s 1.213 1.400s 1.258: 1.396s 1.261s 1.390s 1.258 1.399 1.214s 1.183s 1.240s .647s

+......l .6Jes 1.216s 1.170s 1.210s 1.409s 1.2's, 1.428s 1.295; 1 434s 1.2894 1. 422s 1.22 3s 1.183J 1.226; .640s--...-+

  1. .234s -1.38; .1.95# . 98s .23:

,;gg ...- ........,................................................+......+............'s

.64; 1.t 2.29s 2.67; 2.56: 2.45; 1.64; .7 .04; .1.15s -1.03:

...............+.....-+ .241s

.232;

  1. 5.93s 1.044s 1.291s 1.202s 1.303s 1.237s 1.3981 1.216s 1.312s 1.216i 1.396s 1.232s 1.305s 1.204s 1.291s 1.040s 3.99s

+......a 5.017s 1.272s 1.179s 1.369s 1.240s 1.421s 1.251s 1.352s 1 256; 1.439s 1.256s 1.390s 1.193s 1.270s 1.019s-.-.+.*

s

.334s .2.42s.. .1.94s -1.*7; . 90s 262 2.04: 2.95; 3.02i 3.29s 3.10s 1.97

,339+...... . ..........+......+......,......+....................+...... .............+.............,......,

.33; . 92s -1.46s .2.03s .311

,313,

  1. 1.36# 1.123s 1.162s 1.372; 1.274: 1.245s 1.261s 1.312; .920s 1.312s 1.261s 3.2.Os 1.274: 1.372: 1.162: 1.123s 2.47;

+-..-..s 1.091s 3.133s 1.347s 1.2.1s 1.251; 1.288; 1.355: .073 1.365s 1.305 1.273s 1.296s 1.367s 1.143: 1.099s.-.-.-+

4,

.311: 2.07: 2.46s .1.19s .1.04;

,311+......+...................+.......s .85 2.12s 3.26: 6.50s 4.05: 3.50s 2.62- .90s . 35s -1.60s .2.17s .334:

.........................+......+......+...........,............., .340, s 1.90s 1.040s . 297s 1.204; 1.395: 1.232s 1.396: 1.216s 1.312s 1.216 1.396# 1.232s 1.383s 1.20?s 1.297; 1.042; 2.94:

+...-..# 1.010s 1.265; 1.171s 1.354 1.230s 1.413s 1.245s 1.360s 1.258s 1.436; 1.258s 1.394: 1.192: 1.2774 1.022s-----.+

s .232: 2.87: 2.45i -2.71s .2.21s . 17s 1.19s 2.39s 3.68s 3.47s 2.85; 2.00s .77s .07s -1.55; .1.90s .234:

, ,340,......+.............+.....4......+......,......+......+......+.............+......+......+.............+ .250s

3.36; .441s 1.240s 1.193s 1.214s 1.399s 1.258s 1.399
1.261s 1.3963 1.256s 1.400s 1.213s 1.182: 1.240s 647s 6.75s

+--....# .633s 1.209 1.161; 1.196; 1.394: 1.268: 1.419s 1.287; 1.430s 1.294s 1.421s 1.220s 1.171s 1.219s .640s.-----+

  1. -2.09: 2.51s -1.90s -1.451 . 39: .79s 1.40s 2.01s 2.40s 2.07: 1.48; .50s . 38s .1.67; 1.00s

+......+......+....................+.............+............... ,... .............................,

i .432s 1.066 1.138s 1.368; 1.247s 1.400; 1.2374 1.240s 1.232s 1.399: 1.247s 1.368: 1.135r 1.064: .431s

  1. .434s 1.048s 1.11os 1.3367 1.2331 1.402: 1.240s 1.245 1.252s 1.429s 1.257i 1.366s 1.121s 1.047s .432s 444s .1.73; .2.33: 2.33; -1.12s s .11; .29s .40s 1.64s 2,16; .00s . 12s -1.23: 1.56; .31s

..............+......+......+......,......v.....+...................,s......+......+....+.............,

s .177: .576s 1.110s 1.225s 1.368 1 ^13; 1.383s 1.274s 1.395; 1.214s 1.368s 1.275: 1.108s .572; .171;

.192s .566
1.0844 1.193i 1.345 1 201 1.380s 1.276 1,395: 1.222 1.366; 1.2124 1.094s .564: .181s s 9.33; -1.82s -2.38s -2.59 -1.70s -1.01 . 22s .1 34 71s .69 ,03; .1.07 .1.223 -1.32s 2.20;

....... ......,_ .......+......+._...........+......+..............i..............s ....................+

2 .198s .460s 1.10$s 1.135: 4.182: 1,202s 1.372; 1.204; 1.182: 1.135s 1.1: .460s .185s s .194; .460s 1.099: 1.106: 1.144 1.182: 1.313: 1.195s 1.173s 1.124i 1. 0it s .466: .189:

s .2.10: .01: 1.683 -2.53 .05 .70s .tos .96 -1.03s 1.22i 2.19s

+ . . . . . . + .... . . . .. . . . .+ . .. ....................+......+......+........

. . . .s - 3 . 2 4 s - 1. 6 4 : ...................

s .105 .572s 1.064s 1.240s 1.297; 1.162; 1.297: 1.240s 1.064 .576: .190s s .192s .563s 1.035s 1.203: 1.269: 1.149: 1.280s 1.219s 1.048s .571: .209:

  1. 4.01: 1.58: 2.73 -2.96s -2.12 1.23 1.35 1.67; 1.49;

,... . ......,......,......,......+.............+.... . ....+.............,s

.95: 5.32 s .171 .431s .64ss 1.042s 1.123; 1.040s .647s .431; .177:

  1. .188s .432s .630s 1.024s 1.116s 1.029; .642: .434s .185; s 6.464 .10s .1.40s .1.71s .65: 1.08: . 79; .65; 4,54:

............................+.............+.............+......+

i .234s .334s .311: .232s s .245s .344: .330s .244s 4.88s 3.06s 6.13s 5.341

........ ...... ...+.......

13

. a

. , c F:iglLarsi st.

GETARP Recults at 100% Power with ABB=CE Predictions (Continued)

DELAT!VE AXIAL POWER DISTRIBUTION C NPARISON NODE PREDICTED MEA 3. 4 DIFFEDENCE 1 .3310 .3946 19.2047 2 4560 .4978 9.1621 3 .5750 .5933 3.1774 4 .6690 .6800 1.6462 5 .1470 .7574 1.3863 6 .8100 .8250 1.0543 7 .0610 .4831 2.5655 8 .9040 .9320 3.0951 9 .9410 .9724 3.3359 10 .9720 1.0052 3.4191 11 .9980 1.0316 3.3654 12 3.0200 1.0526 3.1920 13 1.0410 1.0693 2.7191 14 1.0600 1.0029 2.1592 15 1.076C 1.0942 1.6933 16 1.0910 1.1041 1.1999 17 1.1040 1.1130 .3191 18 1.1170 1.1215 .4015 19 1.1290 1.1296 .1405 20 1.1380 1.1374 .0560 i

21 1.1410 1.1447 .2005 22 1.1550 1.1514 .3122 23 1.1620 1.1572 .4132 24 1.1690 1.1619 .6096 25 1.1740 1.1652 .7475 26 1.1780 1.1671 .9221 27 1.1820 1.1676 -1.2210 28 1.1840 1.1666 -1.4604 29 1.1950 1.1644 -1.7353 10 1.1950 1.1613 -2.0026 31 1.1950 1.1574 -2.3310 32 1.1930 1.1530 -2,5343 33 1.1800 1.1404 -2.6789 34 1.'750 1.1436 -2.6743 35 1.1690 1.1385 -2.6073 36 1.1620 1.1330 -2.4994 37 1.1520 1.1265 -2.2165 38 1.1400 1.1183 -1.9999 39 1.1260 1.1077 -1.6233 40 1.1090 1.0936 -1,3922 41 1.0800 1.0741 -1.2231 42 1.0420 1.0499 -1.1429 43 1.0300 1.0179 -1.1789 44 .9900 .9775 -1.2598 45 .9420 .9279 ~1.4971 46 .9940 .8682 -1.7838 47 .8130 7991 -1.8328 '

48 .7250 .7174 -1.0434 49 .t200 .6266 1.0582 50 .4920 .5262 6.9519 51 .3570 .4175 16.9413 1 +

PEAKING PARAMETER COMPARISCN PARAMETER MEA 3. FREDICTED t DIFFERENCE rxY 1.5499 1.5360 1.2994 4 FR i.5130 1.i100 .1990 t FE 1.1676 1.1800 -1.0535 4 FQ 1.8115 1.7800 1.7694 4 0 CALCULATED RMs VALUES RADIAL = 1.9141 AXIAL = 2.3920 0 MEASURED ASI = .0143 PREDICTED ASI = .C293 0

ACCEPTANCE CRITERIA REPORT O MEASURID FXY O

WAS WITHIN PLUS OR MINUS 5.000

  • OF THE PREDICTED VALUE, MEASURED FR NAS WITHIN PLUS OR MINUs 0 5.000 s OF THE PREDICTED VALUE.

NEASURED FE KA3 WITHIN P1US OR MINU 5.000 t OF THE PREDICTED VALUE.

O MEASURED FQ WAS WITHIN PLUS OR MIN J 5.000 t OF THE PPEDICTED VA7.UE, 0

RM3 ERROR ON AXIAL DISTRIBUTION NAS LESS TRAN CR EQUAL TO 5.000 n.

O PMS EPROR DN RADI AL DISTRIBUTION O WAS LESS TRAN CR EQUAL TO 5.000 4.

ALL PREDICTED RAf!AL POWERS LESS TRAN 0.9 WERE WITHIN (LUS OR MINUS 15.000 t OF MEASURED.

O ALL PREDICTED RADIAL POWERS GREATER THAN OR EQUAL TO 0.9 WERE WITHIN plt'S OR MINUS 10.000 % OF MEASURED.

0 ***

ALL ACCEPTANCE CRITERIA WERE MET. * -

14

---