ML20211K367

From kanterella
Jump to navigation Jump to search
Rev 5 to Project Instruction PI-02, Dynamic Analysis of Cable Tray Sys
ML20211K367
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 10/10/1986
From: Barrett L, Ramsey B
ABB IMPELL CORP. (FORMERLY IMPELL CORP.)
To:
Shared Package
ML20211K089 List:
References
PI-02, PI-2, NUDOCS 8611170143
Download: ML20211K367 (330)


Text

{{#Wiki_filter:- - - . . _ _ - _ _ _ _ o PROJECT INSTRUCTION i Dynamic Analysis of Cable Tray Systems l l INSTRUCmON NUMBER: PI-02 ' PAGE 1 OF .76 W ENT. Texas utilities Generating company l MECT: Comanche Peak Steam Electric Station Unit 1 JOB NUMBER (S): 0210-040

              ""S' "(S)                           '" '"'""

O

m. y PREPARED APPROVED 0 11/13/85 (( '

W im/n M ( z 3/v/sG @%y"

      .. wa.       s/21/es                  gs Q                           ; &e ,cwwns    p. d g c

o4 - c/i7/ac & [. da-I A o-r.= 1 -, 10 /~lec, 4A y d~f 6(aKd5 l

O _
     -          8A"I868R 8saa8Ls A                             PDR

kb e-TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS i O suusEa: ex-o2 REvislON: 5 PAGE2 OF76 DESCRIPTION OF REVISION Revision 5 I This revision incorporates the following: j PI Addendum No. 7 dated 7/8/86 which revised the tray properties Iyy values. Revises 24 x 6" ladder tray properties based on test data. Adds 36 x 6", 18 x 6", 12 x 6" ladder tray properties and 6 x 6" trough tray properties.. Clarifies the tray to support eccentricity definition.  ; Clarifies directional weight modelling procedure for non-global tray orientations. Provides thermoblanket weights. , l Clarifies the calculation numbering scheme. Updates the standard calculation sheets to include additional checklists from PI-ll and tray and clip qualification sheets. Editorial changes O

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 3 OF 76 TABLE OF CONTENTS EA2ft

1.0 INTRODUCTION

7 A 2.0 SCOPE 7 3.0 ANALYSIS PROCEDURE 7 I 3.1 OVERVIEH 7 3.1.1 Model Definition 8 3.1.2 Codes of Record 33 3.2 HODELLIN'G 34 3.2.1 Available Reference Material 35 3.2.2 Cable Tray Components 37 3.2.3 Support Members 52 3.2.4 Tray Connections 56 3.2.5 Anchorage 58 Q 3.2.6 SUPERPIPE 62 3.3 LOAD CASE ANALYSIS 68 3.3.1 Variability in System Behavior 68 3.3.2 Deadweight 69 3.3.3 Thermal 70 3.3.4 Seismic Anchor Hovements 70 3.3.5 Response Spectrum Analysis 70 3.3.6 Load Case Combinations 71 3.3.7 Modification Analysis 72 3.3.8 Alternative Analysis Methods 72 3.4 ACCEPTANCE CRITERIA 72 4.0 DESIGN VERIFICATION PROCEDURES 72 5.0 STANDARD CALCULATION FORMAT 73

6.0 QUALITY ASSURANCE 74

7.0 REFERENCES

75 O

l TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE4 OF76 TABLE OF CONTENTS (continued) j l APPENDICES EA2ft Appendix A Sample Support Stiffness and Tray Frequency , Calculation 6 pages l Appendix B Tray Clip Stiffnesses and Example Clip Types 19 pages l Appendix C Hass Point Spacing 4 pages Appendix D Example Load Combination 2 pages Appendix E Sample Calculation with Checklist 35 pages lk O O

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 5 OF 76 i List of Tables Table Description Page h 3-1 Cyprus Cable Tray Properties 39 I 3-2 Anchor Stiffness 61  ; O .O i

Nb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 6 OF 76 List of Figures Description Page  ! Fiaure 3-1 Sample Break Support Locations 11 h 3-2 Model Overlap Along a Straight Tray Segment 12 3-3 Model Overlap at a 90' Horizontal or Vertical Bend and Vertical Bend 13 3-4 Model Overlap at a 90' Tee 14 3-5 Trays Ganged at " Analysis-Only" Supports and Continuing into Partial Model 17 3-6 Trays Ganged Solely at " Analysis - O Only" Supports 18 3-7 Two Tray System 27 3-8 Analysis of System with Both Trays Included in a Single Model 28 3-9 Analysis of System Using Single Tray Models and Lumped Weights 29 3-10 Sample Tributary Span Lengths 30 3-11 Member Connections 55 3-12 Tray Clip Modelling 57 3-13 Anchorage Types 60 3-14 Coordinate Systems 64 3-15 Sample Node Numbering 67 0

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS

                                                                  ..                 . 3, NUMBER: PI-02                            REVISION: 5                     PAGE 7 OF 76

1.0 INTRODUCTION

This project instruction provides guidelines for the dynamic analysis of cable tray raceway systems for the Comanche Peak Steam Electric Station (CPSES) Unit 1. The dynamic and " system" response of a cable tray system ) can be predicted accurately using a detailed three dimensional model, including the tray routing and the support details. With a system dynamic analysis, many of the approximations inherent in the equivalent static force approach can be eliminated. In this project instruction, details on the modelling of the various tray components, tray connections, support members and anchorages are discussed. The analysis methodology is also included. 2.0 SCOPE This procedure is applicable to Seismic Category 1 cable tray systems of . the Comanche Peak Steam Electric Station (CPSES) Unit 1. 3.0 ANALYSIS PROCEDURE O a.i Overv4ew Presented in the following sections is a comprehensive procedure to be used for the analysis of cable tray raceway systems at CPSES. This procedure is intended to provide guidelines on the construction of analytical system models and generation of the system response to calculate loads, both static and dynamic, to show acceptance of the tray systems. l The cable tray system analyses will be performed using three-dimensional finite element models designed to accurately predict the system response to the design loads. To do this, all of the significant components of the cable tray system will be modelled in detail. More specifically, tray components, including straight tray, bends, tees, crosses, reducers, splices, etc. and support components, including tray-to-support clips, member connections, support anchorage, etc., will be modelled to accurately represent their behavior. Also included in the following sections are basic guidelines for determining logical analysis boundary locations so that model sizes l can be made man 6Jeable. This includes the treatment of " overlap" supports and the use of boundary spans and " analysis only" supports when analysis boundaries are introduced. O l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 8 OF 76 3.1.1 Model Definition Cable tray systems generally are broken into smaller subsystems for analysis purposes. This is desirable because the smaller models can be analyzed more efficiently. In determining an analysis model, two criteria need to be considered. The first is the model size and the second is the boundary conditions. 3.1.la Model Size Analysis of the cable tray systems will be performed using the Impell structural analysis program SUPERPIPE. For more efficient analysis, individual models should be limited to approximately 250 data points. Systems consisting of a single tray run should be limited to roughly 20-25 supports, systems with two tray runs should be limited to 15-20 supports, and systems with three or more trays runs should be limited to 10-15 supports. , 3.1.lb Separation of Models Along Tray Runs An important consideration in dividing system models is the model boundary. Preferably, model boundaries will be at f ree tray ends. O s' ace tais =ev aot eiwevs be possibie it is aecesserv to de bie to divide the system into separate models. This is accomplished by overlapping a region between the two model boundaries. General guidelines for defining overlapping regions are discussed below. A large system model may be divided by choosing any appropriate break location support. The following supports are considered to be appropriate break locations - A longitudinal support at any point in the system. The nearest support past a 90' horizontal or vertical bend. The support nearest a 90' tee on either the run or branch segment. j In all the above cases, three " analysis-only" supports are required l to be modelled past the break location support. Figure 3-1 shows ! examples of possible break locations. Figures 3-2 through 3-4 l illustrate three specific examples of dividing models. lO l

bb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 9 OF 76 In Figure 3-2, Example A shows a portion of a large analytical model of a cable tray system. To divide the model, a longitudinal support (i.e., one with significant bracing and/or strong axis flexural , restraint in the longitudinal direction ) is chosen for the break i location. If several such supports exist, the break location should I be made at the stiffest support. Support 0 in Example A is assumed to be the break location support, and the model is divided into partial models Al and A2. For analysis of partial model A1, supports E, F, and G are modelled as " analysis-only" supports. " Analysis-only" supports are used only' to simulate boundary conditions. Loads on these supports are not used for support qualification. The " analysis-only" supports may 1 therefore be modelled in detail or simplified. To simplify the modelling, supports E, F, and G are modelled with the clip component included and a full (six-way) anchorage point modelled at the clip base. Translational stiffnesses at the support point are modelled . l to approximate the actual support stiffness. Rotational stiffnesses are assumed rigid. Lumped weights are placed at anchorage points of

                " analysis-only" support locations.       These weights represent the weight of the cable tray support. The calculation of stiffnesses Q

v and weights for simplified modelling of " analysis-only" supports is further discussed in Section 3.1.lc. For analysis of partial model A2 the procedure is reversed and supports A, B, and C become " analysis-only" supports. Qualification of supports E, F, and G is done using the results of analysis A2. Support D must be separately qualified in both models. l In Figure 3-3, Example B shows a portion of a large analytical model ( with a 90* elbow. This figure represents both a horizontal or a vertical bend. Note that for a vertical bend, the riser supports l are typically multi-directional supports, which may provide transverse restraint through weak axis bending. It is necessary to j consider the support before and after the bend together to see if they provide significant restraint in all three translational degrees of freedom. Only then may the vertical bend be used as a break location. The nearest support past the elbow is chosen as the break location for each model. The model is divided into partial models B1 and B2. The qualification procedure is identical to that followed for Example A. Note that the break location support is different in each model. The two break location supports must be l completely modelled and qualified in both models. In Figure 3-4, Example C shows a portion of a large analytical model with a 90" tee. A transverse support closest to the tee on the branch section is chosen as the break location. The model is . O i l

IMM@ l TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 100F 76 divided into partial models C1 and C2. Note that three

                " analysis-only" supports are required along each run direction.

There is only one break location support which must be separately qualified in both models. In general, the three " analysis-only" supports may be transverse supports, and therefore the longitudinal stiffness of the cut-off portion of the system is conservatively neglected. For models brcken at a change of direction (e.g., Figures 3-3 and 3-4), this may unacceptably overpredict loads for the break location support (s). In this case the longitudinal stiffness may be included at the tray end of the partial model. A conservative lower bound stiffness should be used. Support loads in the overlapping region (the region common to both models) will be increased by a 1.10 load factor to ensure conservative results. . O O l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS $ O

                                                         ~

NUMBER: PI-02 REVISION: 5 PAGE 11 OF 76

   -SS                                                                             SS-4 J

00 00@Q o SS 3 -ss ss-0 9* O

  • 0@

O e

                                                                    ~

N

                                         .                            I h ALLOW AsLE.         SREAM LocA7 son Twaw sv s.m s t H awgiLn Louqwooiw AL HA+4gER Figure 3-1   Sample Break Support Locations O

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS Q NUMBER: PI-42 REVISION: 5 PAGE 120F 76

                                                              '      ~

EXAMPLE A FULL SYSTEM MODEL

                         @ @ @                        @,@p        E F      &

A e c _ O . SECTION Al PARTIAL OVERLAP MODEL O O O @4 @DD o i i . . ., I l  ! l SECTION A2 PARTIAL OVERLAP MODEL

                          @@@                         Q@@O
                            !A         B       fc       .b                                         __

1 1 I l l 1 om.,m . ....... -.. m - . . . . ..- v

                    = >>4mt. ai s o w us " sveroer Moos.t.

G Q u An.a Ft to su georg AuabVts.S Figure 3-2 Model Overlap Along a Straight Tray Segment O

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS I 1

                                                                                                          )

NUMBER: PI-02 REVISION: 5 PAGE 13OF 76 EXARPt.E B ' FULL SYSTEM MODEL

                                       -                                                                  l
                                                                                               .          1 3
                                                                   @                @l@
                                                                                   @I@

OI@ SECTION 81 4 @ l@ PARTIAL QVERLAP MODEL

                                              -55                     -
                                                    @@ @
  • Cl@
                                                                               --@lQ O                                                                         --
                                                                               -- @ l@
                                                                           'j;x@l@

Low 4 vuesust f SECTION 82

                                                                                 **fc't.uo PARTIAL OVERLAP MODEL t - ,,,... n u
                           ** FFMESS May       ,    ,       ,
                           . i o- . . .        .    .       .
:  : , 3 D@D @ * @ l@
                                                                            ~

Ol@ P l pr.vuur.o socorr u . . u. we o u u. w i c.sv . .q

                             = maut . . . .wwt - swer. e m.. u                                            i e     ousunao iw     e,.m   a w u.v .s. s                                          i
                     @ raAusvrksE C0R LoH&rruOmt.)HM&EK H4 WWK
                      @ e vt.71- oin ccrio  w 3-3 Figure tL Model Overlap at a 90*

Horizontal or Vertical Bend !O l l 1 \ l _ _ _ _

O IMPER.AY TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 140F 76 EXANPLE C FULL SYSTEM N00EL

                           .                      D@                     D@
                                        -ss         l      l l       ss-1::9 i

SECTION C1 PARTIAL OVERLAP MODEL

                                            @00                          000' 4;          i      l    .

W ' O Xs.N . i,. . . - .. Jrs FFN L b 5 M Ay u sucuvoep SECTION C2 PARTIAL OVERLAP MODEL L.odgirvosN At. herr.4e ss x6y 7 hhh. . . hhh YW; Pb et inc6voep . . . i a l

                                                                  --h                                       ;
                                                                        -O                                  !

varau.co ...e.er wo o r_i m , avauiric$v. q l

                        * *>.aur a i s o ui.9  awerest m. s.a.

e aumurino .w wm a u s uv.a .s

              &       7PAMSvfesE foR LONG!rVOINAL.) HnWGER Figure 3-4 Model Overlap at A 90' Tee O

L

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 15OF 76 3.1.lc Translational Stiffness and Lumped Weights at " Analysis-Only" Supports As discussed in the previous section, the analyst may simplify the modelling of " analysis-only" supports as pictured below: e

                         =
                                                    /

a [ h 4 LIP C LU>iPf.D WEsa,HT AT AN CHoMA qE A six-way anchorage is modelled at the base of each clip component. O Translational stiffnesses at this anchorage point can be approximated by idealizing the support structure and using textbook formulas. Rotations are rigidly restrained. Using SUPERPIPE, this configuration can be modelled using an ANCH support at the anchorage point with all translations released and rotations restrained. Three SNGL supports can then be specified at the same point with the calculated translational stiffnesses. Supports which have translational stiffness greater than 103 kip /in in a particular direction can be modelled as rigid. Appendix A provides guidelines for calculating support stiffnesses for typical CPSES support configurations. Since it is impossible to list all possible configurations, the analyst should u:e similar j assumptions to obtain order-of-magnitude stiffness approximations.  ! Each anchorage point at an " analysis-only" support will include a non-directional lumped weight representing the dead weight of the support structure. The weight of baseplates, base angles, and other  ; members rigidly attached along their longitudinal axes should not be ' l included. O i

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS M NUMBER: PI-02 REVISION: 5 PAGE 160F 76 If a support to be modelled as " analysis-only" gangs several trays, and each tray continues as part of the partial model, each tray will have a separate simplified " analysis-only" support. The dead weight of the support structure will be equally distributed among the lumped weights of the " analysis-only" supports. Different stiffnesses, as appropriate, should be calculated for each

              " analysis-only" support. This configuration is illustrated in Figure 3-5.

If a tray is ganged solely at " analysis-only" supports not adjacent to the break location, and does not continue as part of the partial model, the ef fect of that tray on the partial model can be neglected. The dead weight of the support is then distributed only to the " analysis-only" nodes, so tnat 100% of the support weight is included in the model. If the tray is ganged olely at

              " analysis-only" supports, including the support adjacent to the break location, the " analysis-only" supports must be modelled in    .

detail. All ganged trays are therefore modeled in the

              " analysis-only" region. If a pcrtial tray segment is modelled in the " analysis-only" region, the longitudinal stiffness of the cut-off portion may also be included. Both configurations are illustrated in Figure 3-6.

O

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 17OF 76 h s 9 6 9 f U/ 4

                                                                                                      @,4 g-                 e                   p          /g          su                  e n f f,                   f,                f ,.                      .f,               f           .g c

f f l f MEAK " Aw m.Y d t s - " Aww.vs e s - " A e4 A uf 5ss - L.ocAri o w o w uv " owW" o u v( "

                            @)       kC1"V A t. SvsTE.v1 O                               fy-li' W

p' > k

      -         /                     /                       f                        //

_/ l

                                  /    ,

t/ /

                                                                                   ,L/
                                                                                      /

a ga

             /                    ,7                  4                            as            a a SREAK               "ANAw%IS-             " AN Auf 515 -             "ANAn.htg.

L oc.Ari o W O Ni.y " ow s_Y " o u t_4 * (b) APJALNSIS N C D E- L-Figure 3-5 Trays Ganged at " Analysis-Only" Supports and Continuing into Partial Model O

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS M Q NUMBER: PI-02 REVISION: 5 PAGE 180F 76 i ' Ajr# , ,, sW sw /

                                                          /
                                                          /

7

                                                                           /
                                                                                              /

7

                                                                                                               '3 E"*'dDP R        F ggga4 g

[ . [ g,w% , Ad*$ v$ i$ , 51 STEM To mE Aam$t . N84 sup(* eng a q. Mac LLLD (a) AcTVAL Systr.M l l Lou c,4 rvo, u n t. O . ( STiP rNESS May

                                                                                        # f-   I N C 6.w p t p 3J I'          y                I,5                   )F w

Y V 8v . b M$

                                         /                 /               /
                               ',7 7                       /               /

f f f Rt.MAmot.R of ' gesa$ ' whw% - Ad wts85- ' Ad esti-PAwTAL Moot.L m mew ouv(

  • e a w( * *a4Y "

(b) ANALYSIS M o D F L. Figure 3-6(a) Trays Ganged Solely at

                                                      " Analysis-Only" Supports 1O

WE TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: S PAGE 19 OF 76 I 9 . fl 'l> +s Yh A Y $

                                                                                                          /                /

DV 8V

                                         %                            kb>             L
                                                   /                                                                            /
                                        $4 1                       sw /                                     /              /                    / 'j' Met 4AnwoLa os:

pesAv. 7 " w=ww - 7 7

                                                                                            " gwes as -

A A 7

                                                                                                                  ' a ALysts -

Snr m fe Bs. 6,a c a s o u ca.u v" e m 6V " mak.Y " M c pli.LF-D (a) AcrvAL SysrEM O I h$ l ($ TyrAV Nsswes Qp __ .__

              -                       ~              ,                           ,             ,.                 ,+
                                    ~

[ i W. fWi#$ iN3 - " eam. wow s seau wievs 5 w m. was ,.. FArf1 AL, Me t>f.6 LOCArno4 84L9 *el a.Y " op ty *'

(k) ANAL.4btS K oDEL.

Figure 3-6(b) Trays Ganged Solely at

                                                                  " Analysis-Only" Supports O

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 200F 76 3.1.ld Separation of Models at Ganged Hangers In some instances the analyst may find two or more trays ganged together by consnon supports. Figure 3-7 shows a portion of a system comprised of two cable tray runs. The two trays run parallel for a given segment and share two common hanger supports. It is desirable for both cable tray runs and the ganged supports to be included in a single model. If it is necessary to break the model, the procedure outlined in Section 3.1.lb for defining the ' overlap regions should be followed. The analyst should define the overlap region so that the parallel segment common to both trays remains intact, as shown in Figure 3-8. If more than two trays are ganged, or if few break location supports exist, it may be impractical to analyze both trays in a single l model. In this case the trays may be analyzed separately, with the .  ! ganged supports modelled in detail. Loading from the omitted tray (or trays) is considered by including a directional lumped weight ' and stiffness for each orthogonal direction on the ganged support at each tray attachment point. The ganged support must then be qualified separately in each analysis. Support loads on the ganged , O 1 aeaser wii' de iacreasea va e i io ioed rector to easure  ; conservative results. The two analysis models are shown in Figure  ! 3-9. For a model to be separated at a ganged support, the following  ! conditions must hold true: The ganged support must be part of a segment run which is I longitudinally supported. ) If the ganged support is adjacent to a horizontal bend, the i span past that bend must be longitudinally supported. If the ganged support is one of a consecutive series of ! longitudinal restraints, the support should be of similar longitudinal stiffness to the adjacent longitudinal supports. I l l  ! l I O  ! l- - - - _ _ _ - _ _ . - .

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS . O NUMBER: PI-02 REVISION: 5 PAGE 21 OF 76 l I For the omitted tray, the lumped weight (s) to support connection should model an eccentric axial load, as discussed in Section 3.2.4. The connection of rigid links and flexible elements shown in Figure 3-12 must therefore be used. When directional lumped weights l are used to simulate the response of an omitted tray, the vertical direction lumped weight is placed atop flexible element no. 1. The 1 transverse and longitudinal direction lumped weights are placed atop i flexible element no. 2. The stiffnesses of the flexible elements, modified to simulate tray response, and the magnitude of the directional lumped weights are i defined as follows:

                - Longitudinal Direction -

A different longitudinal lumped weight is calculated for transverse hangers and for longitudinal hangers. . For a transverse hanger, the longitudinal direction lumped weight is the weight of one-half the span length to each adjacent support, as shown in Figure 3-10(a). Tray stiffness is modelled by a longitudinal direction support (a SUPERPIPE SNGL support) defined at O the longitudinal lumped weight location. The stiffness of this support is derived from the following formula: Jugorf t. ft/b/w = W Yi. Where: ft = 14.0 Hz. (representative longitudinal system frequency). WL = longitudinal lumped weight (kips) g = 386.4 in/sec2 The longitudinal stiffness of both flexible elements nos. 1 and 2 is set essentially rigid (10000. kip /in) for a transverse hanger. The rotational stiffnesses of the flexible elements are set to 10000. kip-in/ rad. O

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: PAGE 22 OF 5 76 I For a lonoitudinal hanger, the longitudinal direction lumped weight i is the weight of one-half the span length to each adjacent longitudinal support, as shown in Figure 3-10(b). Note that a /\ transverse support past a tray bend, for typical CPSES span lengths, /S\ will provide longitudinal restraint to the tray, and therefore will be considered an adjacent longitudinal restraint. The longitudinal I stif fness of flexible element no.1 is again set rigid. The longitudinal stiffness of flexible element no. 2 is derived from the following formula:

                          } (KIP //Af
                                               =      f     L Where:      fL = 21.0 Hz. (lower bound longitudinal tray frequency).

l l WL = longitudinal lumped weight (kips) O g = 3ee.4 4n s 2 t The rotational stiffnesses of the flexible elements are set to i 10000. kip-in/ rad. N' Y J m j# J 1 _ _ _ _ _ _ - -( J %- - - - f d I [ f - - -- -} rat wr SQtPCYj  ; ( 2 TMAna sWERSE m rect l 2 L o n44 t v u p i m4 A L., Mr STR AaN T RESTRAIN T (A mic,io) NL M" rest,6 raon p 2o (Arw FroH r.2i FLEA. ELE M. ,M 5'L siiPro er FLEX. ELE M. j) No. 2 ' No.1 o e

  • pay agm, 0 g r5E.y ELuf
                             ,w        H e. s                                      w              H*

(Au aigie,) b' #'4D) RIGip LINKS RIGip LlWKS

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O suusen: ,1_o2 nevisio n: s e^os 23 os ,,

                       - Vertical Direction -

The vertical direction lumped weight is the weight of one-half the  ! span length to each adjacent support, again as shown in Figure i 3-10( a ) . The vertical stiffness of flexible element no. 1 is then determined by the following formula-1 ky (K!P/tN  : $ V F' \ l Where: fy = vertical tray frequency, Hz. (This is based on a pinned-pinned tray of length equal to the tributary span in Figure 3-10(a). A formula - guideline is included in Appendix A.) Wy = vertical lumped weight (kips) O 9 - 386.4 ia'sec2 The vertical stiffness of flexible element no. 2 is set essentially rigid (10000. kip /in.). The rotational stiffnesses of the flexible elements are again set to 10000. kip-in/ rad. N / - 1 Y f 1--- - d

                                                                                         .N            __ __       _ _ _ _(

i 1 ( a 7

                                                                                                                }        k
                                     =
                                                                                                              =

{f, If L on44t vuos o4 A L. MSTRAIN T Fon Beva : VLEX. ELEM 4'" WV NC 7-( FLEY ELF.>1.

             !                                (b niei to)                           -           N o. 8 (ftePaomiAsolt) sticilo Law k s

kb TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 24 OF 76

                           - Transverse Direction -

The transverse direction lumped weight is calculated using the same procedure as for the vertical direction, as shown in Figure 3-10( a ) . The transverse stiffness of flexible element no. 2 is then determined by the following formula: 4 7 (n + ) = 4 r fr. wr) F' Where: fT = transverse tray f requency, Hz. (This is based on a pinned-pinned tray of length equal to the tributary . span in Figure 3-10(a). A formula guideline is included in Appendix A.) WT = transverse lumped weight (kips) g = 386.4 in/sec2 The transverse stiffness of flexible element no. 1 is set essentially rigid (10000. kip /in). The rotational stiffnesses of the flexible elements are again set to 10000.kio-in/ rad. 3 /

                                                                                                 /       -                     a
                             %_______-_f d                                                        A                %--       -   ---              $
                     )      /                   '
                                                                  /         I                /
                                                                                                                             /
                                  .                                                                        >         (

m a T M A u ses.M 5 E Lo%:T u p s u A L. Mr STM NN T MstnAIN T l Ten s.r,4 : Wt. FLD. ELE t 1 Ho.1 o g r a x n u,,, w N o. I [ArFre.1a..<s.) (Aymisto) O a>ci uw s

Mb l l TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS l M l O NUMBER: PI-02 REVISION: 5 PAGE25 OF76 l The use of directional weights to simulate the response of the  ! omitted tray will result in the following tray weight distribution , l [r$i l suppovi-

                                                                                              +ie r This weight distribution will be properly applied for dynamic load cases. However, for the gravity load case this weight distribution will be interpreted by SUPERPIPE as follows:

we[

                                          ~z
  • m Wx,N WwkJf i i

l O d Y swa her l Where Hx(; is the directional weight applied along the global x direction. For the gravity load case, point forces must be applied [' ; in addition to achieve the proper weight distribution. val be, b b e eyal +o g %ce #A Me po+.o

                                                                                                    ;uve wv in m y

a.m% y 0 fiVc Y di eHon p l l (O

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O suMBER: PI-02 REVISION: 5 PAGE26 OF 76 For longitudinal supports on trays skewed with respect to Global Coordinates, the procedure described on the previous page is to be used with one exception. If NL is larger than HT . NL is to be applied in both the global x and z directions. O l i I O

kb TITLE: TRAY SYSTEMS DYNAMC ANALYSIS OF CAB M M NUMBER: PI42 REVISION: 5 PAGE 27 OF 76

                                  .                l eo f

f M y 'A'N l Au l } COMMod 'Ge' l MM

                                                                           /ce O

1 x /h

v/
                                                                      /

, ~ l l A h1'O' l l l i l l Figure 3-7 l l Two Tray System O

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: 28 0F PI-02 REVISION: PAGE 5 76

                                                                                  'GA 46 RED' 44A46ERS MooELrtD 1 4 D e. Tait

' /  ? O '

                                                                     /

($ k.

                                                                                                                    /
                                                                              %                                           i t OWCLA.P 2.eGiod (typ)

Figure 3-8 Analysis of System with Both Trays Included in a Single Model l l _. _ _ - _ _ _ _ . . . . - _ _ _ _ . __ - _ _

[ggg , E: nVNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVIS!ON: 5 PAGE 29 0F 76

                           /         W f4IP 5.Laus4T CTTP) l g

LuMPao wtwT 10 SiuuLATE Loa.me cP TEAT b OVWuAP SEMAJ

  • Gyr)

TWAT A Os:TMLED MooaL O i c3 4 o -

                                                   ~ CLif f.44MW CTff) t.uw m wyAM To 01640 LATE L4Ep4dr-
                                             ,e      5 MTA 1rAv 8 DeTML.ED t4cCEL i

Figure 3-9 Analysis of System Using Single Tray Models and Lumped Weights

bb TITLE i ... ... i .: O NUMBER: PI-02 EMON: 5 PAGE 30 0F 76 NH *f'") x,-(, a-Y Lo eLn 2

                                                                                        -                       e                                                      ,.

x n. u.

                                      ,/                                                                        n Li           L1
                                                                                                                                                   ' ' Ls      -
                                                                                                                                                                 ~

l l (a) For Transverse Ganged Hanger i I O (TatBdT2Jt.T SPAu) x 7 Lo*La+ Ls , / l o Y 2 M Te e m e.T oPA)4)

                                                                                              =x                  ;~           ,-             ,,

{ %t

                                         /

Lo L2 ' Ls i I (b) For Longitudinal Ganged Hanger l ) i I Figure 3-10 Sample Tributary Span Lengths O 'l

TITLE DYN AMIC ANALYSJ $_QF Q ABd TRAY __$1ST_ dis __ _ .., . . . . _ __.__ - l NUMBER: PI-02 REVISION: 5 PAGE 31 0F 76 l 3.1.le Decoupling of Ganged Hangers There are several gang supports which couple many large systems at a single support. Modelling these supports using the standard overlap l criteria may result in excessively large models. This section l presents a simplified and conservative methodology for decoupling these supports from the system models so that manageable model sizes , are obtained. This methodology is outlined as follows

1. Construct a lumped weight and beam model of the support using SUPERPIPE. Determine the tributary weight of the attached trays l and lump these masses at the appropriate locations. Tray i stiffnesses are to be neglected in this model. The lumped weight-to-support connection should also be modelled.
2. Perform a frequency and a gravity analysis of the support.
3. Evaluate the seismic response by performing an equivalent static analysis. Spectral accelerations for both OBE and SSE events shall be determined at the fundamental frequencies of each of A the global axes. The peak of the spectra shall be used /6\

regardless of the support frequency. Spectral accelerations O shall be multiplied by a multiple mode f actor (MMF) of 1.5.

4. Combine the results of the gravity and seismic analyses as shown in Section 3.3.6. Evaluate the support using the criteria given in PI-03 (Reference 15).

The above procedure describes an acceptable methodology for evaluating decoupled supports. The following procedure shall be applied to evaluate the attached cable tray systems.

1. Determine the stiffness of the decoupled supports at each of the tray attachment points. This shall be perforined by simultaneously applying unit loads in the directions of interest at each attachment point. The stiffness is defined as the value of the load divided by the resulting deflection. The simultaneous application of unit loads in this fashion is performed to approximate tray-to-tray interactions. Note that a transverse support will also provide longitudinal restraint of the tray.

O

NS l l

                                                                                                                                                \

DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 32 OF 76

2. Determine an equivalent support mass at each tray attachment point using the following equation:

m= I /k ) l 4ttL r Y )l where: m = equivalent support mass at tray attachment point ) l f = fundamental frequency of the support t k = translational stiffness at the tray attachment ' point as calculated in Step 1 The mass for each of the three orthogonal directions of excitation shall be calculated. Note that the directional mass must then be converted to a directional weight for SUPERPIPE - input. i

3. Construct system models of the attached trays. The following simplified model shall be used for the gang supports in question:

b y' N ew ,

                                                                                                       - c u t'         - rgAy 7

G .m es) seroer ucsonAqc. A six-way anchor is modeled at the base of the cilp. Translational stiffnesses are taken from Step 1. Rotations are modeled as fixed. The support weight is modeled at the base of the clip. l l O t

                                                                                                                               ^

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O

                                               ~~                                 '
                                                                            ~~

NUMBER: PI-02 REVISION: PAGE 33 OF

                                                      $                             76 l

3.1.2 Codes of Records The applicable Codes of Records are as follows: Cable Trays IEEE Standard 344-1975 (Reference 1) Cable Trays American Iron and Steel Institute (AISI) 1968 Edition (Reference 2) Supports American Institute of Steel Construction, (AISC), 7th Edition (Reference 3) l l I l O

)

i l O

IMMh , l TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 34 OF 76 l l l 3.2 Modellina The modelling of cable tray systems for dynamic analysis is discussed in this section. The required design input, modelling of various component types, and the use of SUPERPIPE are covered. These modelling procedures are intended to establish a standard I approach for accurate and ef ficient production work. l O l I l l I l iO i l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuuses: ,1.o2 sevision: S e^as 3S or ,, 3.2.1 Available Reference Material The following is a list of reference documents related to the  ! analysis and qualification of CPSES cable tray systems. l Information Reference i l Modellina 1 Cable Tray Routing 1. Cable Tray Hanger Span Drawing (CTH-1-SL-XXXX) l

2. Tray Dimensions 2a. CYPRUS Piece Marks Drawings (e.g., JM-0640-R-CP) 2b. Raceway Material Summary 2323-El-1700 Report Section 11
3. Tray Weights 3a. Seismic Design Criteria for Cable Tray Hangers for CPSES No.1, (Ref. 13) 3b. Raceway Percent Fills 2323-El-1700 Report Section 30 0 3c. Cebie Trev eerceat riii Drawia9s 3d. Impell Project Instruction PI-08 (Reference 18)
4. Tray Properties 4. Vendor Test Data (Reference 10)
5. Support Detail 5. Cable Tray Hanger Orawings (CTH-1-XXXXX)
6. Support Location 6. Cable Tray Hanger Span Drawings
7. Support Component 7. AISC, " Manual of Steel Construc-Properties tion," 7th Edition including Supplements No. 1, 2 and 3.
8. General Modelling 8. " Design Criteria and Methodo-Methodologies logy CPSES Unit No. 1 Cable Trays and Supports' Impell Report No.

01-0210-1462 (Reference 4) O

   .____.----__.,...,,.-----y---------.w-
                          ,.                                          w--                        '"

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 360F 76 Analysis

1. Response Spectra 1. TUSI-Refined Response Spectra 4% OBE 7% SSE (Reference 6)
2. Thermal Expansion 2. " General Instructions for Cable ,

Tray Hanger Analysis for CPSES (Reference 12) 3 General Analysis 3. " Design Criteria and Methodology" Hethodologies (Reference 4) Acceotance Criteria

1. Cable Trays and Clips 1. Impell Project Instruction PI-06 I (Reference 14)
2. Supports 2. Impell Project Instruction PI-03 *

(Reference 15)  ;

3. Anchorages 3. Impell Project Instruction PI-07 (Reference 9)

O l l i 1 l !O

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 37OF 76 3.2.2 Cable Tray Components The cable tray modelling involves the following component types:

1. straight trays
2. bends
3. tees
4. crosses j
5. reducers
6. splices
7. special components i

The conrnonly used components are illustrated and the reconsnended l modelling procedure has been provided. Refer to Section 3.2.2h for  ! an example of the steps involved in tray section identification. 3.2.2a Straight Trays . Straight cable tray runs shall be modelled as general beam elements with section properties calculated as indicated below. O l f a Area Ax = cross-sectional area of the side rails Ay = Az = 1000 in2 Moment of Inertia l Ixx = Analytically calculated lyy = From test results Izz = From test results The results from the appropriate vendors shall be used to calculate I yy and I zz. l O , l l

MS ' TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuuseR: el-o2 REVISION: 5 PAGE 380F 76 Cable Trav Testina Due to the complexity of cable tray systems, the best approach to determine section praperties is through testing. A typical cable tray test progra'n considers the response of a simply supported span of tray under uniform static loading. The test specimen is loaded in the vertical and transverse directions. Load-deflection date is recorded from initial load to the collapse load. From the load-deflection data, the moments of inertia for the cable tray can be calculated using equations for beam deflections. The data from the spliced tray tests are to be used to determine these properties. For a simply supported beam under a uniformly distributed load, the deflection at midspan is: , 4 A=5w1 384EI Solving for I, 4 I = 5 w1 6 384E Where I=I for transverse loading (in ) I for vertical loading (in ) zz w = load within elastic range of test (lb/in) b = tray displacement at midspan corresponding to w 1 = span between supports (in) E = 29.5 X 106 psi l Similar methodology may be used for data from other cable tray test programs. A table for Cyprus cable trays is provided in Table 3-1. Tables for other makes of trays will be provided later if required. l l O i-_-___-. _ _ _ . _ _ , _ _ _ _ _ _ _ _ _ . - - - _ - _ _ _ _ _ - _ - . _ _ . . . _ _ . _ _,.. __

kb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O suusen: eI-02 sevision: S enes3, oe76 CYPRUS TRAY PROPERTIES Cyprus (in2) (in4) Tray Cat. No. Description Ax Ixx Iyy Izz M GI-36SL-12 36x6 1/4x1 1/4 Ladder 1.787 0.0189 3.27 2.32 12 GA. Siderail GI-30SL-12 30x6 1/4x1 1/4 Ladder 1.787 0.0183 3.73 2.32 12 GA. Siderall GI-24SL-12 24x6 1/4x1 1/4 Ladder 1.787 0.0176 4.19 2.32 12 GA. Siderail GI-18SL-12 18x6 1/4x1 1/4 Ladder 1.787 0.0169 3.89 2.32 12 GA. Siderall . GI-12SL-12 12x6 1/4x1 1/4 Ladder 1.787 0.0162 4.38 2.32 12 GA. Siderail JM-36SL-12 36x6 1/4x1 1/4 Corrug. 1.787 0.0197 2.89 2.10

                      't "S" '2 ^ S ' d' r'"

O JM-30SL-12 30x6 1/4x1 1/4 Corrug. 1.787 0.0189 3.27 2.10 Trough 12 GA. Siderall JM-24SL-12 24x6 1/4x1 1/4 Corrug. 1.787 0.0157 3.30 2.10 Trough 12 GA. Siderail JH-18SL-12 18x6 1/4xl 1/4 Corrug. 1.285 0.0062 1.84 1.439 Trough 14 GA. Siderail t JH-06SL-12 6x6 1/4xl 1/4 Corrug. 1.285 0.0058 1.52 1.44 Trough 12 GA. Siderail GG-36SL-12-06 36x4x1 1/4 Ladder 1.316 0.0151 3.68 2.53 12 GA. Siderail GG-30SL-12-06 30x4x1 1/4 Ladder 1.316 0.0144 4.02 2.53 12 GA. Siderail l Table 3-1 O i t l l

IMMh TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE40 OF76 CYPRUS TRAY PROPERTIES (Cont.) Cyprus (in2) (in4) Tray Cat. No; Description Ax Ixx Iyy Izz GG-24SL-12-06 24x4x1 1/4 Ladder 0.949 0.0069 2.20 1.63 14 GA. Siderail GG-185L-12-06 18x4x1 1/4 Ladder 0.949 0.0062 2.46 1.63 14 GA. Siderail GG-12SL-12-06 12x4x13/16 Ladder 0.658 0.0033 1.50 0.813 16 GA. Siderail GG-06SL-12-06 6x4x13/16 Ladder 0.650 0.0026 1.30 0.813 16 GA. Siderail , GF-36SL-12 36x4x1 1/4 Corrug. 1.316 0.0157 3.41 2.07 Trough 12 GA. Siderail GF-30SL-12 30x4x1 1/4 Corrug. 1.316 0.0149 3.72 2.07 O Trouan 12 c^. siderati GF-24SL-12 24x4xl 1/4 Corrug. 1.316 0.0142 4.46 2.07 Trough 12 GA. Siderail GF-18SL-12 18x4x1 1/4 Corrug. 0.949 0.0047 1.17 1.288 Trough 14 GA. Siderail GF-12SL-12 12x4xl 1/4 Corrug. 0.949 0.0046 1.24 1.288 Trough 14 GA. GF-06SL-12 6x4x13/16 Corrug. 0.658 0.0021 0.638 0.839 Trough 16 GA. Siderail Notes:

1. All ladders have 16 GA. rungs.
2. Shear areas, Ay and Az are assumed equal to 1000 in2, Table 3-1 O

i TITLE: OYNAMIC ANALYSIS OF CA8LE TRAY SYSTEMS O suuses: ,,_3; nevision: 5 exos 41 0s ,5  : Trav Weichts (Also See Appendix C) l Unit Weight (lb/ft) Cable, Tray, Cover l Trav Size Cable. Trav and Cover Thermolan and Thermolaa 6' x 4' 18 13 31 12' x 4" 35 18.5 53.5 18' x 4" 53 24 77 24' x 4" 70 29.5 99.5 30" x 4" 88 35 123 36" x 4" 105 40 145 6" x 6" 18 14.5 32.5 12' x 6" 35 20 55 18" x 6" 53 25.5 78.5 24" x 6" 70 31 101 . 30" x 6" 88 36.5 124.5 36" x 6" 105 42 147 Notes: 1. The above data is applicable for both ladder and solid bottom () types of trays. (Reference 12)

2. The values above assume 100% cable fill.
3. As-built cable tray fill data have been derived from References 2b and 3b of Section 3.2.1. As-built cable fills have been tabulated on drawings labeled " Cable Tray Fill Loads" for the individual support hangers.

For systems with Thermoblanket, the following weights can be used: Trav Size Thermoblanket (ib./ft.) 6' x 4" 4 12' x 4" 5.5 18' x 4" 7.5 24" x 4' 9.5 30" x 4' 11 36" x 4' 13 6" x 6" 4.5 12" x 6" 6 18" x 6' 8 24" x 6" 10 30" x 6" 12 36" x 6" 13.5 ()l l l

kb ITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 42 OF 76 3.2.2b Bends Cable tray bends shall be modelled as curved beam elements. The mass and cross-sectional properties for straight trays shall be used for curved tray sections.

                                                                               ~ ~
                                                                    /
                                       ~
                                /
                                                                  /    V                   i j [P, i
                            /                                                              \
                          /                               l    9
                        /         ,                      /    7            t             .

i I I s' H oRizoNTAL VEPLTi c A L O see seno i O 1

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: pyjj , REVISION: 5 PAGE 43 OF 76 3.2.2c Tees Cable tray tees can be idealized as follows:

                                             ^

O ) D - m -- g - g , g

                  ~,                       =                      >
                        \            [                              ]      [
                                                                    ]      [

FLAT TEE VE RTICAL TEE Model a node at the tee intersection. Element Cross-section properties 1,2 Same as straight tray for run side 3 Same as straight tray for branch side 1 I O

     !b TITLE:

OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE g OF 76 3.2.2d Crosses The cable tray cross shall be modelled as follows:

                                           /
                                         /            \

N AMr L

                                                           ,/~        -
                                                                                               ~
                                        \              /
                                          'g                        FLAT t       i
                                                     /             C Mf6$

0 1. Model a node at the cross intersection.

2. Model each leg using straight tray properties corresponding to the appropriate tray type.

{ l l O l

Ikb TITLE-0 NUMBER: pgy. .g REVISION: 5 PAGE 45 OF 76 3.2.2e Reducers O O .. t ..

                                   /)                                      g#   ,P h        (/                         \.       .

1'

                        -        a Ne O                .

STRAIGHT REDUCER OFFSET REDUCER O

1. Model a node at the change in cross-section (middle of transition). .
2. Model a rigid link for any of fsets between the centerlines of the trays. For the rigid link use the following properties:

(in2) (in4) Ax Ay Az I xx I yy I zz 1000 0 0 1000 1000 1000

3. Use straight tray properties for 1 and 2.

O

1 TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: PAGE 46 OF 5 76 l 3.2.2f Splices Tests indicate that spliced cable trays are generally more flexible than unspliced trays. The impact of splicing is an overall reduction in the system stiffness. Because splicing is utilized throughout the cable tray system, of ten at unknown locations, it is not very practical to model the local flexibility at each splice location. Instead, it shall be addressed in the analysis phase by using frequency shifting techniques (See 3.3) 3.2.29 Special Components In addition to the basic components described above, cable tray systems may consist of hinged connections, adjustable bends, vertical cable support elbows, Y-branches, and other less conimonly used components. The modelling of these components shall follow similar rules defined for the basic components. Particular attention shall . be given to the special features of these components. For example, for the vertical cable support elbows, rigid members shall be used to reflect the rigidity provided by the gusset plates. Cable tray side rail extensions can be neglected since a study indicates they will have little or no impact on the cable tray system response. O However, the side rail extensions can be included for additional conservation. 3.2.2h Tray Component Identification The following is an example of the steps required to obtain the sectional / mechanical properties of various components of a given cable tray raceway system. l 3.2.2.h.1 Required Documents l Obtain the required documents associated with your analysis:

a. Span drawing (CTH-1-SL-4066)
b. MAP (FSE 00178)
c. G & H Plan (2323-El-0600)
d. G & H Segment (2323-El-0600-12)
e. CYPRUS Piece Marks Drawings (TISA: GF-12SL-12-CP)

(T15T: GF-1291-R-CP) (T15K: GF-1290-R-CP) O

TITLE-O suusen: ,I.o , sevision: s eroe 4 , os 2. 3.2.2.h.2 System Identifier Determine tray system identifier:

1. Go to the tray span drawing ,T 1 40 _S DA08 (See CTH-1-SL-4066)

Tray Unit System Safeguard Bldg Point Designator

            ** Use this identifier as a key throughout **
2. If you don't find the identifier on the Span drawing go to the Segment drawing in your area. Look for "like' raceway ,

geometries. The lack of a system I.D. No. on a Span drawing should be recorded as an open item in the calculation file for later resolution. O 3.2.2.h.3 Component Selection - CYPRUS Piece Marks Utilizing the G & H Plan drawing corresponding to your system you will locate your analysis raceway. The CYPRUS piece marks are indicated here for each component of raceway. l Go to the indexed CYPRUS Piece Mark drawings and obtain the drawing number (s) detailing your component (s); i.e. Riser Elbows, Horizontal Elbows, etc. Record these piece marks and drawing numbers in your calculation as design input. The use of the G & H Plan and the CYPRUS Piece Marks facilitates the proper selection of CYPRUS Tray Properties - Table 3-1.

1. First you need to locate your raceway corresponding to the span drawing on:

a) Map-FSE 001,8 i b) G & H Plan El-0600

                                                                                             )

c) G & H Segment El-0600-12 O l 1 l l

kb  ; l TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 4g OF 76 l l

2. CYPRUS Piece marks on G & H Plan I S k, Tl403boh L ' \

O -- ri4esuo7 ,,, L rue sosos Parthi Secuan /3-13 Red 09 23.15 -El- s400 O , 2 3 2 5 -E/ -04% -/2 ' l l

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuusen: ,,.o, nevision: s enas 4 , or ,, 3.2.2.h.4 Summary STEPS

1. Collect documents relative to your analysis:

Span drawing (s) Map drawing G & H Plan drawing G & H Segment drawing CYPRUS Piece Marks

2. Determine system identifier:

T140SDA08 (span or segment drawing)

3. Locate system on "G & H Plan" .
4. Find the piece mark on the "G & H Plan" and correlate to CYPRUS Piece Marks
5. Prepare collected data for SUPERPIPE/ HANG 10 input.
6. Record CYPRUS Piece Marks and drawing numbers as design input to the analysis calculation.

I O

TITLE: DYNAMIC ANALYSIS OF CA8LE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 50 OF 76 ( 3.2.2.h.5 Drawing Correlation TUGC0 Cable Trays UNIT 1 - SAFEGUARD BLDG. MAP ELEV. G & H PLAN G & H SEGMENT (2323- ) (2323- ) 178 785'-6" El-0600 El-0600-12 181 773'-0" El-0600-01 El-0600-11 176 790'-6" El-0601-01 El -0601 -11, 12, 13 187 810'-6" El-0602-01 E l -0602-11, 12, 13 . El -0701 -11, 12, 13 El -0716-11, 12, 13, 14 195 810'-6" El-0716 E l -0602-11, 12 E l -0701 -11, 12 El -0716-11, 12, 13, 14 205 810'-6" El-0727 El-0602-11 216 810'-6" El-0716-01 El -0602-11 208 831'-6" El-0717 El-0602-14 E1-0717-12 212 831'-6" El-0602-03 El-0702-11 215 831'-6" El-0717-01 El-0602-13 El -0717-11 202 852'-6" El-0603-01 El -0603-11 206 852'-6" El-0718 El -0603-11 El-0703-11, 12 El -0718-11, 12 O

M .S. TITLE: DYNAMIC ANALYSIS OF CA8LE TRAY SYSTEMS O NUMBER PI-02 REVISION: 5 PAGE 51 OF 76 UNIT 1 - REACTOR BLOG. MAP ELEV. G & H PLAN G & H SEGMENT (2323- ) (2323-) 180 800'-0" El-0500-01 El-500-11, -15, -16 184 808'-0" El-0500-02 El-500-12 192 808'-0" El-0500-03 El-500-13 193 808'-0" El-0500-04 El-500-14 194 808'-6" El-0501-04 El-501 -14, -16 - 220 860'-0" El-0510-01 -- 221 808'-0" E1-0510 -- l 223 832'-6" El-0501-01 E1 -501 -11 224 832'-6" E 1 -0501 -02 E 1 -501 -12 l 225 832'-6" El-0501-03 E l -501 -13 226 849'-0" E1-0501-05 E 1 -501 -15 l 228 860'-0" El-0502 -- l I 229 860'-0" E1 -0502-01 El-502-11, -12, -13,

                                                                           -14, -15, 17 232           860'-0"               El -0512                              --

263 832'-6" El -0518 -- 264 851'-0"/873'-0" El-0503 El-503-11 l O , 1 l l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuuees: ,1 02 sevision: s exas s2 os y 3.2.3 Support Members 3.2.3a Member Eccentricities and Connections The structural members of the cable tray supports shall be modelled as beam elements. The centroidal axis of the beam shall be used to define the spacial relationship between the members. Since the centroidal axes and shear centers for typical cable tray support members do not coincide, eccentri-cities need to be considered. Examples of typical member eccentricities to be considered include: (a) tier to post connection (b) bracing angle connection Tier to Post Tier and post members are typically composed of channel members welded back-to-back as shown in Figure 3-11. Since the centroids and shear centers of these members are eccentric, the transfer of forces through this connection results in the generation of additional force couples acting on the structure. O Typically, the cable tray will impose forces and moments in three orthogonal directions as shown in Figure 3-12. The axial force in the tier member acts through its centroid. Since the tier and the post are eccentric, this force will create a torsional moment about the post. The moment arm is equal to the distance between the shear center of the post and the centroid of the tier. This eccentricity is very small (generally less than 1/4 inch) in comparison to the overall dimensions of typical support structures and can be neglected. This eccentricity shall be considered for combinations of members that cause an eccentricity greater than 1/4 inch. The vertical force from the tray acts through the centroid of /[E the tier member. This force is transferred to the post creating bending in the post. The moment arm in this case will be conservatively input as the distance between the centroids of the tier and post members. This eccentricity shall be modelled by placing the tray load eccentric from the tier and modelling the tier and post using concentric beam elements. This approach is discussed in Section 3.2.4. O 1

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS - O nuusen: p1 02 nevision: s e^as s3 or ,s The eccentricities shall be modelled using a rigid beam element with the following properties: (in2) (in4) Ax Ay Az Ixx Iyy Izz 1000 0 0 1000 1000 1000 Bracing Angles Bracing angles are generally connected to the post either by gusset plates or by a direct weld to the web of the post as shown in Figure 3-11. Gusset plate connections shall be modelled as fixed joints with the appropriate moments released. Figure 3-11 provides two examples, one for a flexible plate, and another more . rigidly attached. In both cases, eccentricities are not significant and need not be considered. Bracing angles which are directly welded to the webs of the posts will be modelled as restrained for all forces and O omeats. Tae most sisair4ceat ecceatric4tv ror these brec4a9 angles is the eccentricity between the shear center of the post and the centroid of the angle. Since these eccentrici-ties are not significant, they can be neglected. An eccentricity exists when the bracing angle centroidal axis does not intersect with the intersection of the centroidal axes of the post and tier member. This eccentricity must be modelled according to the conditions of Reference 12, Attachment I. Eccentricities shall be considered for connections that are not similar to Figure 3-11. 3.2.3b Simplified Modelling Normally, a detailed representation of the support shall be included in the system model. Alternatively, the supports can be separately evaluated for mass and stiffness, and an equivalent simplified model can be used in the system model. 3.2.3c Thermolag Support members may also be covered with Thermolag. Refer to Reference l? for weights. O 1

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O suuses: ,I.02 sevision: s exass , or ,, 3.2.3d Composite Sections Composite sections such as two channels forming a tee are commonly found in braced cantilever supports. Reference 12 provides section properties for composite sections including the shear center, centroid, and moments of inertia. Criteria in AISC Section 1.18.2.4 should be used to determine if a double angle section should be modelled as a composite section or as two independent angle sections. 3.2.3e Conduits and Clamps For cable tray hangers which support conduit, the following modelling criteria must be followed: (a) All conduit clamps shall be treated as . multi-directional. Therefore, conduit load occurs in all three directions on the cable tray hangers. This will be treated as a multidirectional lumped weight on the support. (b) The conduit span lengths and conduit unit weights used are those supplied on the as-built support drawing or Conduit Support Location Drawing (Ref erence 16). O

INb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS g O NUMBER: PI-02 REVISION: 5 PAGE 55 OF 76 l MEMBER CONNECTIONS 11 \ rs l i 1 l ENA&f J POS %  ; M

                                                       '                       k      n z.c a c.a w r e w
                                                       '       7/cg            V l

l Q e l WELDED MEMBER TO MEMBER . 1 O "

                              '             ~

Q'  ;*l l I i I s I s I

                                                                                             .-       g s       [                                                               I l

I l 2 l l _ _ _ _ _ - - - _ - - r -( j y ' E_________ .' - _ t g. 7- ' kelme M x,aed Mgy , g i Ii A f l Ee/ene Maa nel My l 1 i FLEXIBLE PLATE PLATES FOR BRACE  ! i i l l Figure 3-11 l

   !N _N                     _ _ _

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS m NUMBER: PI-02 REVISION: 5 PAGE 5pF 76 3.2.4 Tray Connections l l The cable trays are connected to support beams with a variety of I clips. Examples of various clip types are shown in Appendix B. ) These clips shall be modelled using a combination of rigid and flexible elements between the support and the tray mass center. The tray clip modelling is shown in Figure 3-12. Flexible element No. I has only axial translational stiffness. This element is l provided to model the eccentricity between the load point of the tray and the shear center of the tier, resulting in torsion in the tier. In addition, this element is used to model the eccentricity between the vertical load acting in the tier and the post. This eccentricity causes a bending moment in this post. The eccentricity used in the model shall be taken to be the larger of the following values:

1) The distance between the centroid and the shear center of the ~

tier.

2) The distance between the centroids of the tier and the post.

O 3) The distance between the bolted tray to clip connection and the centroid of the post, for non standard clip connections which Ig I are offset excessively from the tier. An example is shown below. cup TRAY i o o i I l M FST . N na Flexible element No. 2 includes the remaining translational and rotational stiffnesses. The stiffnesses for clip modelling are provided in Appendix B. The rigid links shall be modelled using the properties provided in Section 3.2.3. I t l O i

Nb - TITLE: ' DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS , O NUMBER: PI-02 REVISION: 5 PAGE 57 OF 76 TRAY CLIP MODELLING N fos t (b t" f I{ edible Bearat No.2

                                                           ^, peisga saaa t No./

o Q g;;, S y d 44,k No.I Ajid link NO.2., . NOTES: 1. Flexible element No. 1 transmits the vertical force from the tray to the support.

2. Flexible element No. 2 transmits all other forces and moments.
3. Rigid link No. 1 is the eccentricity as defined in 3.2.4.
4. Rigid link No. 2 is the distance through the support steel member to its C.G.
5. Cantilever supports shall use the same clip modelling as is done for tiers shown above.

Figure 3-12 0

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O suuees: p1 02 sevision: s e^oss , os x 3.2.s Anchorage In general, cable tray support anchorages consist of three types; base angles, expansion (and insert) anchor plates, and embedment plates. The stiffness of the support anchorage affects the stif fness properties of the cable tray support system. For this reason the values shown below should be used to represent this stif fness in the cable tray system model. There are three basic anchorage configurations which are addressed in this instruction. These configurations are shown in Figure 3-13 and are representative of the most frequently used support anchorages. For each- of these types of anchorages, the boundary assumptions used should reflect the actual configuration. The boundary conditions which should be used for each of the configurations shown in Figure . 3-13 are as follows:

1) Base Angle - 1 bolt a) Attachment to bolted leg O Translation X - Fixed Y - Fixed Z - Fixed Rotation XX - K f rom Table 3-2 YY - Free ZZ - Fixed b) Attachment to free leg T ranslation X - Fixed Y - Fixed Z - Fixed Rotation XX - K from Table 3-2 YY - Free ZZ - Fixed O
     !     b TITLE:

DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: PAGE OF 5 59 76

2) Base Angle - 2 & 3 bolt a) Attachment to bolted leg (Note 1)

Translation X - Fixed Y - Fixed Z - Fixed Rotation XX - K from Table 3-2 YY - Fixed ZZ - Fixed b) Attachment to free leg Translation X - Fixed Y - Fixed Z - Fixed . Rotation XX - K from Table 3-2 YY - Fixed l ZZ - Fixed () 3) Expansion and Insert Anchor Plates (>2 bolts along 2 unique axes) Translation X - Fixed Y - Fixed Z - Fixed Rotation X - Fixed Y - Fixed Z - Fixed

4) Embedment Plates Translation X - Fixed Y - Fixed Z - Fixed Rotation X - Fixed Y - Fixed ,

Z - Fixed l Note 1: These boundary conditions also apply to baseplates with 2 or more l bolts along a single axis. (2) 1

REVISION: PAGE 60 OF 76 NUMBER: PI-02 5 ANCHORAGE TYPES d lE b o e S *o Hed

                                                                                           /]

N'

                            /                      '
                                                     /                        /        [/r e 1 and 2 Bolt Base Angles (Attachment to Bolted or Free Leg)

O , ,

                                                   /                                     =x
                                               /                             .
                                      ./

v n Expansion Anchor Plates

                                     . c                               g         ,

c l ,' .Q*%

                                                /.     .             .   .   '.      (

f If ! Embedment Plates Figure 3-13 ,O l l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuusen: ,1 02 sevision: s eies ,, or ,, ANCHOR STIFFNESS BASE ANGLE KIP-IN/ RAD THICKNESS 2-BOLT 1-BOLT 0.375" 1200 1000 0.75" 3600 2600 or thicker O Table 3-2 O

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 62 OF 76 l 3.2.6 SUPERPIPE The Cyber SUPERPIPE Version 19A or the VAX SUPERPIPE Version 19.4 shall be used for the analysis of cable tray systems. Guidelines in SUPERPIPE modelling are provided so that consistency is achieved in i the project. The program HANG 10 may be used to generste a SUPERPIPE input deck (Reference 7). 3.2.6a Coordinate Systems The global coordinate system to be used in defining the cable tray system shall be as follows: SAFEGUARDS. ELECTRICAL AND AUXILIARY BLOGS. X = East I Y = Vertical Up ' Z = South CONTAINMENT AND R.B. INTERNAL STRUCTURES X = South O Y = Vertical Up Z = West The local coordinate system for various components shall be as follows: Straight Trays x = longitudinal y = vertical z = transverse Trav Bends  ! x = longitudinal i y = vertical for vertical bends / transverse for horizontal  : bends z = transverse for vertical bends / vertical for horizontal bends 1 l l 1 O  ; l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 63 OF 76 Tray Clips x = perpendicular to tray y = longitudinal direction of tray z = transverse direction of tray Structural Members (All sections except composite T sections) x = axial y = weak axis for bending z = strong axis for bending Structural Members (Composite T sections consisting of two channels)  ;

                                                                                        )

x = axial y = strong axis of weaker channel .

                                                                                        )

z = strong axis of stronger channel ' Base angles x = by right-hand rule O y = parallel to f ree leg z = parallel to bolted leg l

                                                                                        )

Base Plates'and Embedment Plates x = long direction of plate (or long direction of bolts for square plates) y = normal to and outwards from the plate z = by right-hand rule The coordinate system is arbitrary for symmetrical plate configurations. These coordinate systems are shown in Figure 3-14. O l

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS d Q NUMBER: PI-02 REVISION: 5 PAGE 64 OF 76 Coordinate Systems d.) ,.

                        "_Z
                                                                                                           /
                                   /                                                                   .'

y GD. ..w 2x Straight Tray [ E Vertical Bend Y N . 5A / Horizonal Bend 7 i (Verify l yy, I zz using component properties, not "k" node.) Structural Members

                                           ~

p g E d rt +' e x . . T "

                                                                                    \           /                f Tray Clips Anchorages Figure 3-14 0

NN TITLE. DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS , l O NUMBER: PI-02 REVISION: 5 PAGE 65 OF 76 l l 3.2.6b Material and Element Selection The material used in the cable tray system components is carbon steel. The modulus of elasticity shall be 29.5 x 106 psi for l analysis purposes, j i The various tray and support components shall be as defined below: i l SUPERPIPE Element Selection j Item Component Run/ Misc. Member Straight Tray STRP Run . (including tees, crosses) ) l Tray Bend CRVP Run Tray Clip FLXC Run Structural Members BEAM Misc. MMB Eccentricities BEAM Misc. MMB O (except support to tray - define as Run) 3.2.6c Mass Point Spacing Dynamic analyses using a lumped mass idealization requires that a sufficient number of mass points be defined. The mass point spacing shall be calculated using the following equation: 1/2 -1/4 b Ela m

                                                               =f                             (Reference 11)

Where S = mass point spacing (in) f = analysis cutoff frequency, 33 Hz 6 E = 29.5 x 10 34 I = moment of inertia (weak bending axis) (in#) 9 = 386.4 in/sec w = unit weight of compO7ent (lb/in) 10

l TITLE. DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS 1 NUMBER: PI-02 REVISION: 5 PAGE 66 OF 76  ; I This mass point spacing assures that all significant modes below 33 1 Hz are considered. For trays (STRP, CVRP components) the mass point I spacing shall be specified on the MASS card. For the support members, DCPs need to be located such that the maximum spacing is not exceeded. Support members are typically modelled as beam elements, using the centroidal axes of the beams to define the spacial , relationship between the members. Actually the members are fixed to each other over a finite width as determined by the weld configuration. To calculate the support member lengths to be considered for additional DCPs, this actual member connection distance can be neglected. Using a trapeze support as an example, the effective post length is from tier to tier (or brace) CG, minus j one half of the tier width (tier CG to welded edge) as applicable at ) each end. The effective tier length is from post to post CG, minus  ; the distance from the post CG to the weld edge, as applicable at each end of the tier. These calculated support member lengths are to be compared to the allowable maximum mass point spacing. Refer to Appendix C for the mass point spacing for typical tray and support , members. l 3.2.6d Modelling Convention In order to facilitate the interpretation of analysis results, the O following rules shall be used (See Figure 3-15):

1. Define a separate miscellaneous member group for each support.
2. Define stress output points (S0PS) and displacement output points (00PS) at two foot intervals.

1

3. Use the following node point numbering convention. I

! a. For the trays, use 4-digit numbers between 1000 and 9000, where ! the first digit is the tray run number (as defined by the analyst). At support locations the last three digits shall correspond to the last three digits of the support number (e.g., j location of CTH-10256 on tray run 1 will be defined as point 1256).

b. Designate the tray eccentricity node using a prefix "E" witn the tray run number and the last two digits of the support location node (e.g., eccentricity for 1256 is E156). 1
c. For the supports, use the support number with a letter suffix  !

(e.g. , CTH-10256 may be defined as 256A, 2568, etc.) . l ! d. The tray clips shall be given a unique component name.

4. Define the local coordinate systems in accordance with 3.2.6a.

l l 1 l 1

OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 67 OF 76 Sample Node Numberinq l MM 264c  : NU 2 S4D l 1766 5IGbv 2SC

                                                                  '2548 l

l l Figure 3-15 iO I 1

 - ' ~

N

                                             ~

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS

    , NUMBER: p;_02                          REVISION:   5 PAGE 68 OF 76 3.3 Load Case Analysis The cable tray systems shall be verified for deadweight, thermal
  ,              expansion, seismic anchor movements, and seismic loading. No live loadings are currently defined for the cable tray systems.

Therefore, live loads shall be assumed to be negligible. To account for potential variability in cable tray system behavior (3.3.1) several bounding analyses will be used for each of the design loadings considered. The bounding analyses will envelop system f requency shif ts resulting f rom variability in tray component s stiffnesses. The extent of these bounding envelopes may be reduced if data, either from test or analysis, become available which confirms one set of analytical modelling assumptions rather than a range. 3.3.1 Variability in System Behavior . Cable tray systems exhibit some variability in behavior resulting from variability in the stiffness characteristics of individual components. The tray system components which exhibit the highest potential for some variability in stiffness characteristics n Q incitde: tray components (straight tray, bends, tees, splices, and crosses), tray connections (tray clips and components welds), and tray support anchcrages. This potential variability in component stiffness characteristics may result in cable tray system frequency shifts. The floor response spectra (Reference 6) which will be used for the cable tray system design includes spectral broadening of a minimum of plus or minus 10 percent. The variability of component I stiffnesses indicates that tray systems may have wider variability in frequencies than that included in the floor response spectra. l 'O

Nb _ TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 69 OF 76 For conservatism, the seismic analysis will be performed by enveloping analyses with consideration for upper and lower bound shif ts in the cable tray predominant frequencies. This is done by first establishing the variability in system frequencies. Then, the broadened floor spectra will be shifted into the higher frequency range by an amount equal to the total variability and an analysis performed. Second, the broadened floor spectra will be shifted into the lower frequency range by an amount equal to the total variability and an analysis performed. Finally an analysis will be performed using the broadened floor spectra directly (no frequency shifts). The results from all analyses will be enveloped for qualification purposes. An alternative conservative seismic analysis option is to broaden the response spectra an additional amount equal to the established total variability in system f requencies. The seismic analysis performed with the additional broadened spectra will provide results. as or more conservative than the spectral shifting technique described above. 3.3.2 Deadweight The cable tray system shall be analyzed for gravity loading (deadweight), which is a sustained mechanical loading on the tray and supports. The weight of tray components, cable fill, support components, and any fire protection or other permanently attached materials shall be considered in this analysis. If the actual tray fills, (i.e. number of cable bundles) have been as-built the design weight used for the tray components shall be W design " Wt ray & cover + Wcable + Wthermolag + 3 lb/sq. ft. Since the actual cable fill can vary within a system, the following procedure is suggested. If the variation of actual fill within the system is within 25%, use the upper bound value as the fill weight. If 25% variation is exceeded, vary the cable fill as required while maintaining a conservative cable fill weight. The 3 lb/sq. ft. represents an increase in weight added to actual tray fill to account for future cable addition. Wt ray + cover + Wcable + 3 lb/sq. ft. must not exceed 35 lb/sq. ft. If as-built data is unavailable the tray component weights should be based on assumed 100 percent fill as noted in 3.2.2a. l O i l

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuusen: p1 02 nevision: s eroe ,0 os ,e 3.3.3 Thermal In general, support loads resulting from cable tray thermal expansion when considering the small variation in installation to maximum ambient temperature, are insignificant. There are many factors which contribute to this result. The most significant is the composition of the cable tray system. The system is composed of a series of bolted components. These bolted connections as well as the inherent tray and support flexibilities will ensure that thermal growth of the Safeguards and Reactor Building systems are allowed for the associated temperature increases. For the analysis of the CPSES cable trays in the Safeguards and Reactor Buildings, thermal loads will not be considered. 3.3.4 Seismic Anchor Movements Seismic anchor movements will be considered when tray runs are continuous between buildings or when they are attached to both the containment shell and the Reactor Building Internal Structures. For horizontal or vertical trays which are located in a single building (Safeguards or Reactor building), the support loads developed will O be small compared to the support loads developed from the other loadings. Therefore, SAM loads can be neglected for trays not continuous between buildings. 3.3.5 Response Spectrum Analysis The seismic events must be considered for the design of the cable tray raceway systems at CPSES. These are OBE and SSE, assuming 4% and 7% structural damping respectively. The seismic response of cable tray systems shall be analyzed using the " simple excitation" envelop response spectrum method. The design response spectra is the in-structure floor response spectrum , which envelopes the building elevations between which the system is l supported. For example, if the cable tray system being evaluated is l i supported in the Reactor Building between floor elevations 860.0 ft. ' end 885.5 ft., the response spectrum used in the analysis must envelop these elevations and any intermediate floor elevations. I Note that all higher elevations of response spectra envelop the g\ lower elevations for the Safeguards and Reactor Buildings with one exception. The Safeguards Building elevation 896.5' spectra does l not completely envelop elevation 873.5' for both OBE and SSE. l l O

Mb a TITLE: DYNAHIC ANALYSIS OF CABLE TRAY SYSTEMS O " NUMBER: """"""""" ~ REVISION: PAGE 7j OF 76 PI-02 5 The mode shapes and frequencies shall be calculated up to 33 Hz. Missing mass correction shall be applied to account for higher frequency response. The three orthogonal directions of earthquake loading shall be considered to act simultaneously. The modal responses shall be combined using the Grouping Method (10%) for closely spaced spaced modes in accordance with Regulatory Guide 1.92 and CPSES FSAR. The response due to three directions of earthquake shall be combined using square root of the sum of the squares method. For all tray systems the OBE and SSE load cases shall be evaluated in detail. 3.3.6 Load Case Combinations The SUPERPIPE analysis sequence to be followed for the cable tray systems is outlined in Appendix D. Each model will be analyzed for gravity, seismic OBE and SSE loadings. The results from these . analyses will be saved. The required load case combinations will be generated and saved. These are described as follows:

1. Combine the gravity results with OBE results considering maximum positive and negative (DSUM):
a. Gravity plus 08E
b. Gravity minus OBE
2. Combine the gravity results with the SSE results considering maximum positive and negative (DSUM):

i

a. Gravity plus SSE
b. Gravity minus SSE The combinations generated above are used to evaluate the adequacy of the cable tray supports using SUPERPOST (Reference 17).

O

DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: $ PAGE 72 OF 76 3.3.7 Modification Analysis In the event that a support requires modifications, the analyst shall determine if a reanalysis is required to evaluate the impact on the system response. Reanalysis will be required if the modification significantly changes the stiffness and frequency of the cable tray system. (e.g., adding a brace for longitudinal loading). If it can be shown that the modified support has little or no impact on the system response, no reanalysis will be i necessary. Reanalysis shall be performed using hand calculations when practical. Otherwise, reanalysis shall be performed in accordance with 3.3 above. The analyst is required to document all judgments concerning reanalysis if supports require modification. Guidance for evaluating the impact of modifications is given in Reference 19. 3.3.8 Alternative Analysis Methods . Generally, cable tray systems shall be analyzed with the simple excitation envelop response spectrum method as discussed in 3.3.5. When it is deemed appropriate, the multiple level response spectra (MLRS) or linear time history methods may be used. 3.4 Acceptance Criteria See " Design Criteria and Methodology" (Reference 4) and Impell Project Instruction PI-06 (Reference 14) for acceptance criteria of trays and clips. See Reference 4 and Impell Project Instruction PI-03 (Reference 15) for Acceptance Criteria of supports. i ( See Impell Project Instruction PI-07 (Reference 9) for Acceptance l Criteria of anchorages. l l 4.0 DESIGN VERIFICATION PROCEDURE The design verification of the cable tray systems includes the qualification of supports, clips, and trays. Project Instruction PI-02 is an integral part of this qualification procedure as outlined below: l

1. Collect all necessary design input.
2. Model and analyze the tray system using the modelling instructions outlined in PI-02.

O

Y , TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuvees: p1 02 nevision: 5 eroe ,3 or ,e

3. Verify design of as-built supports as documented by the Red-Lined as-designed drawings or as-built drawings.
4. If supports do not qualify, follow instructions of PI-11 (Reference
19) for modification reduction techniques, modification issue, and g

reanalysis requirements. Reanalyze system if the results of Item 2 will change due to support 5. modifications. (See PI-02, Section 3.3.7 and Reference 19 if this step is required.) lg

6. Qualify modified supports on system.
7. Reverify any previously modified or verified supports af fected by the reanalysis in Item 5.
8. Mark up the CAD as-built drawing for any modified supports (Reference 19).

lh l

9. Verify the CAD as-built drawing for unmodified supports against the l red-lined walkdown drawing and sign of f as appropriate (Reference 19).

hi 5.0 STANDARD cal.CULATION FORMAT The modelling assumptions, methodology, and analysis techniques for the cable tray systems are to be documented in the form of a calculation. Each cable tray system shall have a unique calculation and calculation number. A suggested calculation number is defined as follows. Three digits are used to designate the map number. Alternatively, one or two g characters can be used to designate the map number as defined in the tables on the following page. This is followed by two or three digits to indicate the room number and the remaining digits to indicate a l consecutive numbering sequence for the analyses from each map. I t i i ( l O t i __ _ .

IYN TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 74 OF 76 Safeguards Buildina Reactor Building Map No. Letter Map No. Letter 176 A 180 N 178 B 184 P 181 C 192 Q 187 0 193 R 195 E 194 S 202 F 220 T 206 G 221 U I 208 H 223 V ' 21 2 J 224 W j 216 K 225 x l 215 M 226 Y l 228 Z ' 229 AA I 232 BB 263 CC 264 00 A sample calculation format is given in Appendix E. The format of the sample calculation is to be followed and the sections as shown in the Table of Contents are to be included. The forms given in Appendix E may be used in the calculation. Sections 8.0, 9.0 and [si 10.0 contain calculation checklists. These checklists address the modelling and analysis techniques set forth in this Project Instruction. The checklists are intended to be an integral part of the checking procedure. Their use will ensure consistent and complete cable tray system models, load case analyses, and calculation files. The checker is required to initial the 'yes' column on the checklist to signify concurrence that the item has been properly addressed. When a checklist has been completed, the checker initials the revision block and marks the date of completion. The checking of calculations shall be performed in accordance with the Impell QA Manual, Section QP-3.6, Independent Verfication. The checker shall perform a review of the calculation, the originator will resolve any coments, and when all comments are resolved the checker shall initial and date the original calculation. 6.0 OVALITY ASSURANCE All calculations shall be documented and verified in accordance with Revision 17 of the Impell Quality Assurance Manual.

Mb TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE 75 OF 76

7.0 REFERENCES

1. IEEE Standard 344-1975
2. American Iron and Steel Institute (AISI), Cold-Formed Steel Design Manual, 1968 Edition
3. American Institute of Steel Construction (AISC), 7th Edition including Supplements 1, 2, and 3 (through 1973)
4. Impell Report No. 01-0210-1462, " Comanche Peak Steam Electric Station Unit No. 1 Cable Trays and Supports, Design Criteria and Methodology", Revision 4.
5. Comanche Peak Steam Electric Station, Final Safety Analysis Report (Amendment 55, July 19, 1985)
6. CPSES Refined Response Spectra for:

Refined Response Spectra for Fuel Handling Building, dated Oct. 1985. Refined Response Spectra for Reactor Building Internal Structure, O dated Jan.1985 for SSE and Jan.1983 for OBE. Refined Response Spectra for Containment Building, dated Jan. 1985 for SSE and Jan. 1983 for OBE. Refined Response Spectra for Auxiliary Building, dated Nov.1984 f o_r SSE and Jan. 1983 for OBE. Refined Response Spectra for Electrical Building, dated Nov.1984 for SSE and Nov. 1982 for OBE. Refined Response Spectra for Saf eguards Building, dated Nov.1984 for SSE and Jan. 1983 for OBE.

7. HANG 10 - An Interactive Computer Program to Automate Generation of SUPERPIPE Cable Tray Models (Project Specific Program for Impell Job No. 0210-040).
8. TUGCo Nuclear Engineering, TNE-AB-CS-1, Rev.1 dated September 30, 1985, "As-built Procedures, Cable Tray Hanger Design Adequacy Verification."
9. Impell Project Instruction PI-07, Rev. 3, " Design Verification of Base Plates, Base Angles, and Embedment Plates".

O

                         !     b TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS 1

O suusen: el-02 nevision: s exas7e oe76 l

10. Impell Calculation H-03, " Cable Tray Properties" Revision 3.
11. Impell Computer Program SUPERPIPE, Version 19A (CYBER Version),

Version 19.4 (Vax Version).

12. " General Instructions for Cable Tray Hanger Analysis for Comanche Peak Steam Electrical Station No. I and 2", Revision 2, December l 1985, by Ebasco Services.  !
13. " Seismic Design Criteria for Cable Tray Hangers for Comanche Peak Steam Electrical Station No. 1", Revision 1, December 1985, by Ebasco Services.
14. Impell Project Instruction PI-06, Rev. O, " Design Verification of Cable Trays and Clips".
15. Impell Project Instruction PI-03, Rev. 4, " Design Verification of Cable Tray Supports". .
16. TUSI, " Conduit Support Locations", Drawing 2323-S-0910, Sht. LS-Sa, Rev. 3.
17. SUPERPOST, Impe11 Project Specific Computer Program for the Design Q Verification of Cable Tray Hangers.
18. Impell Project Instruction PI-08, Rev. O, " Cable Tray Fill Loads." .
19. Impell Project Instruction PI-11, Rev. O, " Cable Tray System Analysis and Qualification Closeout."

f O

TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O nuvees: ,1 02 nevision: s e^oe 1 os e APPENDIX A SAMPLE SUPPORT STIFFNESS AND TRAY FREQUENCY CALCULATION l l O l The following pages provide examples for calculating stif fnesses for overlap supports. Examples include trapeze, cantilever, and L-cantilever supports.

For other configurations, similar methodology shall be used. A formula is also provided for the first frequency of a tray span modelled as a pin-pin ,

beam. l l l i 1 O

Cantilever Supports O a W & y . l Il '

                                                                                                                    )

I

                  / Ib                l     l 2_                ,,

1 X ) S SasA' A40 MaMu a coessoiw e s,s Actual Support Vertical Stiffness: Ky = 3E(I ) h b% $ , l W O Transverse Stiffness: KZ " 00 -

                                               ?

l l Longitudinal Stiffness: KX = 3E(I ) $ b1

  • W APPEQDix A JOB NO PAGE
                                                   "^"
  • REV BY DATE CHECKED DATE IN PELLdb

(""* 1 i1~Ob or

I sLe . Sumoorts i U f1) Y fc o l N Ec :j I I l wwaowwg l s* *nes um ns l

                                                                                                 = W     r                                                                                                                  !

Actual Support U l.J./ Vertical Stiffness: Ky = 1

                                                                                                                                                                                                                  ~

3 I I 9 , gtg 3MIbS I " o v atu Transverse Stiffness: KZ = 3E(Iciv. i , 3 H i

                                                                                                                                                                              !.L!.!U Longitudinal Stiffness:                            KX"            I 3

' W + H3 +WH 3E(Ib )y E cy E l__j (Where G = 11,200 Ksi for steel) i l l APPEMOl% A l O se ~e

                                                                                                                                                                        '^'"

IM PELLO or 3 l REV BY DATE CHECKED DATE C O*^^^ * ~ b

  ,__m.-.. , . _ .,., . _ _ . _ _ , _ , . - . - . _                . _ - _ _ , , - , , _ _ _ _ ,                     ._-.._..,,_,,--.,,.,,,----.__..--__..,,e--_._v._         -                       _-..__,...__y      ..

1 O Tranaza Sunnarts

                        . UUJ                fL U./

e I. J Y H il rI6 2= :j Actual Support U l I w g ,,, w ca emowwas U.UJ f.l.4/J O -> Vertical Stiffness: Ky = 48E(I ) W l d l aw aw 25c sf Longitudinal Stiffness: KX" I H +W 3 I I 2(JE(Ig )) 45E(I ) , , O JOS NO

                                                                      '^'"

APPEMDIx A PAGE d MEV SY DATE CHECKED DATE IM PELLdk

                                                     ' N 'm                       PI-02 Or

(,

KZ is heavily dependent on the amount of in-plane bracing - No B RA C I P4 C,r uUJ uUJ Kg = 6E(Ic ), 6(I b)<.H + (I ),W c H 1.5(I bx

                         )H + (I )Wg5                I       I m o v e t.c. rir_.R:

UU) ///// u_u_/ . 21c s

                                                                        =>            \

O \

                                                                                          \

K=5(12E(I)J 7 f H 1 l 1 7777 HF. AVILY BRACELD UUJ l_L UJ K7: 00 l l O JOS NO APPENDiY PAGE db ' ' ' " REV BY DATE CHECKED DATE IMPELL t- I-01 "6

l Swtra TgAy FeLa.vtea c.y

                                                                          +

l l

         - - - - _ _ _ _                                                  m g        !

b b) 9

                            ,_     lo
  • LL Z

W 5 f= m (flRS Y MODE) N)- O 2Lz g l E = 29 x to ' is/in 2 I=Igy foe rennsysess reso ) is 4 (( ro e h e ro ca s in +

                    =I y                                feze.)

m = mass pr uor tongM of try Ib s */en '

l. = hog y . pr r,$. s-sota) in O - ,n h CALC 800
                                                                                    ,b
      -     .,  un    e e. nn                u    %T           n - o 1.             c

i MN l TITLE DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O NUMBER: PI-02 REVISION: 5 PAGE j OF 39 l 1

                                                                                                                               )

l l APPENDIX B i TRAY CLIP STIFFNESSES AND EXAMPLE CLIP TYPES - i l O , I I I I l O i . _ _ _ --- _ _ _ _______. _-- _ _ _ _ _ _ _ _ . - _.

IMPELL@ TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS l O NUMBER: PI-02 REVISION: 5 PAGE 2 OF 19 The clip stiffnesses presented on the next page are to be used as follows: If the clip types are known, the longitudinal clip stiffnesses are to be used for all longitudinal clips including types B,D,E,F,H,J.K,L,LA,M,N, P,Q,R,T. For tranverse clips A, C, and G, the transverse clip stiffnesses are to be used. If clip types are not known due to inaccessibility, the following procedure applies. First, the support type must be determined. If the support is a longitudinal support (braced in the longitudinal direction, [ or the hanger's vertical posts are oriented such that the strong axis opposes longitudinal forces), use the longitudinal clip stiffnesses. If the support is a transverse support (no longitudinal bracing), use the transverse clip stiffnesses. O O

O O O I ' 3 2 I . e i -< CABLE TRAY CLIP STIFFNESSES l I o ) 4

    "               W = WIDTH OF CAELE TRAY       11 = HEIGHT OF SIDERAIL Lable Iray      !: ansla tional 5ti f f ress-K/IN l                   CLIP TYPE                 Size Rotational Stiffness  K-IN/ RAD Kx         Ky             Kz       Kxx        Kyy      Krz l

E l l'; Transverse Clips 36 x 6 3.60 69.3 653.0 770.0 1.2E4 22.4 o 5 30 x 6 660.0 1.1E4 o 24 x 6 563.0 9.9E3 i 18 x 6 472.0 776.0 36 x 4 5.40 73.2 5.6E3 3.5E4 30 x 4 5.2E3 3.3E4 "U 24 x 4 p m 8 71. 0 3.1E4 18 x 4 679.0 91 3.0 9F j g 12 x 4 507.0 640.0 i 17 , 6x4 I 360.0 411. 0 I o <-

                -o m
          ? e   m o    z z i o.
   -d          E H

tr$ Longitudinal Clips W x ll 580.0 150.0 7.1E3 1.5ES 4.7ES 804.0

)  N i

1

    ;; w 2

TtIIlD Civil Structural Btgineering 155-AMS-1, Rev.1 Septammer 34 1985 O '' ATEROBS E D cl* 4 BOLT

        !     !     M               W/ WASHER Y
       ?      ?

HOLE FOR {*# BOLT & WASHER (TYP) CYPRUS OR BURNDY HUSKY  ! t , BOLT

                           '         CONFIGURATION CLAMP                      b MAX FILLER E.            ,

THICKNE55st' FRICTION CL F

                        \       t I

FRICTION TYPE NORMAL ASSEMBLY q , CLArP N , FILLER i

                                                                                                         )

I C' O [ ( fREO O 5 l' THICK ( MAX) , I SQLT FOR - kGAP MAX I TRAY CLAMP BOLT FOR l SUIT)( TYP) ( A-307 MIN) TRAY CLAMP ( A-307 MIN) , NOTE: FOR WASHER ( IF REQ' 01 DETAILS AND ORIENTATION SEE ATTACHPENT 'E'. TYPE ' A' CLAMP SH 1 0F 2 O APPENDIX B PI-02 Page 4 of 19 1

i 1 101R3) Civil Structural Engineering 19tD-ADH:5-1, mer. 1 September 30,1985

         ]                                                                            Page 73 ATTRCIDENT D (Cont'd)                 ,

TRAY I TRAY SUPPORT ALTERNA s A } MIN ) TO WELO ' g v g myg

                                                      /'    .

SHIM PLATE SETWEEN TRAY

                                                                                     & SUPPORT j' THICKL MIN)

(LENGTH & WIOTH TO SUITI

                                                              / \                                    TRAY
                      ~""                /                           N 9                                              .

80LT e CAGE LOCATION

                                                                                                                               /

OF SUPPCRT SECTION - P (CHANNEL. ETC TYP) . p

                                                                                           /       :
                                                                                                            ,/  N,                  '
                                                                                        /. . . . .  ..f. g.. ..     ........        m         -

O

                                                                                               /TDAY CLAPP                              '

TO SUIT

                                                                                                                             ' MIN d

k ) fMIN( WEL NOTE: 0VERMANG OF ' CLAW ' FROM SUPPORT STRUCTURE IS ACCEPTASLE AS LONC AS 80LT HEAD CR NUT OR WASHER ( IF USED) MAS TOTAL SEARING WITH SUPPORT STRUCTURE. SHIM PLATE MAY BE r!!LO Fa8RICATE3 AND PAINTED WITh ' GALVAN 0X PAINT' WELOS FOR SHIM PLATE TO CTH MEttiER ARE NCN-C WELOS TYPE ' A' CLAMP SH 2 0F 2 O APPENDIX B PI-02 Page 5 of 19

M Civil Structural Ragineering 151345-C5-1, any. 1 8EPtamber 34 1985 Plage 74 O AFMCBENF D (Coat'd) E TR AY f f h3 RD Y0Q C. 1 r WASHER R 3 CHANNEL wk$EbhP.kV W/570 WASHER , h CHANNEL [ lPART. PEN. ONLY WHEN 3

                                    ) PLATE IS J5ED OR)

FULL PEN. ( p PLATE) O O hC.TEL THE PLATE MAY BE BENT TO !T THE CURVATURE OF TRAY.

                      ^-    *

( HOLES FOR l BOLTS dWASHERPLATE DETAIL TYPE 'S' HEAVY OUTY CLAMP N0iEs FOR WASHER ( IF REQ' 01 OETAILS AND ORIENTATION SEE ATTACHMENT *E'. O APPENDIX B PI-02 Page 6 Of 19

M Civil Structural Engineering M-ABK:5-1, Rev.1 Septaber 39 1985 O 87s A!MODENT D (Cont'd) , FLANGE OF SUPPORT # TRAY g TRAY i ,. T gg r- yu u ananan,y C L AMP _..______

                                                                                                                    -                  e 3...g. .           .......y.

i , IE MI CHANNEL

                                                 ._                          p                          _

E .li MIN ggy WELDED CLIP - __ ^ Y O 7 A etaTE

                                                                                                        =0LTED CLIP SHIM E IF REQ' O 1       K ( MAX)       TRAY HOLE FOR )* p BOLT             g

( A-30T MIN) WIDTH TO 3HIM ( FILLER PL ATE) SUIT) IF REQ' O TRAY CLAMP ( REF ONLY) MOLE FOR l'f BOLT & WASHER SUPPORT ( TYP) i FILLER HOLE AS IN CLAMPf PLATE

                                                                                                                                             / IF REQ'O 4

[CSOLT L-MAX FILLER R THICKNES$a{' NOTE: SHIM PLATE MAY BE FIELO FA8RICATED AND PAINTED - WITH 'CALVANOX PAINT'. WELOS FOR SHIM PLATE TO CTM MEP9ER ARE NON-Q WELOS, O , TYPE ' C' CLAMP ECLTED OR WELDED SH 1 0F 2 , APPENDIX B PI-02 Page 7 of 19

TIIII) Civil .(.ructural Bigineering Y4 55 O miscagNr D (Cont'd) gg ) MIN ALTERNATE j v } ngy xTO LOQ TO M l p If TRAY CLAP 9

                                                  . . }..

s+ e t ut n .... . j... TRAY k k  ? {h MI.NMIN< wELO Q NON O . TR AY CL AMP-CUT FROM STANCARD TRANSVERSE TYPE "a"' m . A- SUPPORT 7.2 d.. / - TRAY TRAY NOTE: FROM SUPPORT OVERH ANO OF 'CLAt48' STRUCTURE IS ACCEPTABLE AS LCNC AS BOLT HEAD OR NUT OR WASHERMAS TOTAL S ( IF USED) SUPPORf STRUCTURE, OETAILS

                                                   'E'.

FOR WASHER ( IF TYPE REQ C'01AND SH 2 OF CLAMP ORIENTATION SEE A

                                                            ~

O ll1 APPENDIX 8 Pl.02 Page 8 of 19

stII:D Civil structural Engineering 25-AS-cs-1, nov. 1 September 34 1985 8mee 77 Minattac D (Cent'd) OR HEAVY

            ) DUTANCLE                      TRAY                               ANCLE SHIM PLATE CHANNEL bFORTRAY                                        )*pR0H0 l_ 24 ' 1 UP                     qy-            BOLTS ( A307) w y                   W/STO WASHER t[8 80LT( A-325 MIN)

NOTE: THE ANGLE

                    ;)     ()        HOLES FOR                                  MAY BE BENT TO FIT THE

{ BOLTS & WASHERS CURVATURE OF. THE TRAY dWASHERPLATE O THLWN HOLE V kSAMEAS Cf. AMP SHIM PLATE WASHER PLATE (LENGTH & WIOTH TO SUIT) i NOTE: OVERHANG OF *CLAff* FROM SUPPORT STRUCTURE IS ACCEPTABLE AS LONG AS BOLT HEAD OR NUT OR WASHER (IF USED) HAS TOTAL BEARING WITH SUPPORT STRUCTURE. SHIM PLATE MAY BE FIELO FA8RICATED AND PAINTED WITH GALVAN 0X PAINT. FOR WASHER ( IF REQ' 0) DETAILS 1 AND ORIENTATION SEE ATTACHMEN T 'E *. TYPE 'D' HEAVY DUTY ClaMA O - APPENDIX B PI-02 i Page 9 of 19

10G00 Civil Structural Engineering on-=<s-i, me,. i Septaber 39 1945 Page 78 A1'5CBENT D (Chat'd) l t8-l'eR0 anggg fk3! R W/STO WASHER / s r .. . l PART. P E'N. FOR } PLATE) [ g hhff FULL PEN. FORl PLATE CHANNEL

                                    \        >

t . O NOTE: THE PLATE P'AY BE BENT TO FIT THE CURVATURE OF TRAY. FOR WASHER ( IF REQ' 01 DETAILS AND ORIENTATION SEE AT TACHTNT *E *. TYPE ' E' HEAVY DUTY CLAMP AT TRAY SPLICE O l APPENDIX B PI-02 l Page 10 of 19

M Civil Structural hgineering 1554&CS-1, Rev.1 Septaober 39 1985

                                                                                                       %M JnOSENE D (Cont'd)                ,
                          )ORl MEAVY DUTY (A GLE SHOWN ORh PLATE)\[                                                             ^^^^                j HD gg                    g no               ;

SHIM PLATE "J p LT L* THICK IIII vv vv

                                                                                                                           / -    ( A3 3 W/S O WASHER

( MAX) i

                                                                                     ~

i W 8 Uj'880LT& WASHER CHANNEL HOLEFORl

                                                                                                \ SOLT mm THE ANGLE NAY 8E SENT TO FIT O                                                                                              ,I THE CURVATURE OF TRAY.

SHIM PLATE ( LENGTH & WIOTH TO SUIT) NOTE: OVERHANG OF ' CLAW " FROM SUPPCRT STRUCTURE IS ACCEPTABLE AS LONG AS 80LT HEAD OR NUT OR WASHER t IF USED) HAS TOTAL BEARING WITH SU##0RT STRUCTURE. SHIM PLATE MAY BE FIEt.0 FAERICATED AND PAINTED WITH GALVAN 0X PAINT. FOR WASHER ( IF REQ' 0) DETAILS AND ORIENTATION SEE ATTACHtTNT *E'. TYPE ' F' HEAVY OUTY CLAMP AT TRAY SPLICE O APPENDIX B PI-02 Page 11 of 19

M Civil strJetural twinnering 1ME-ADH:S-i f Rev. I 88Ptaber 39 1945 0 WM AE1RC334Bff D (Cont'd) l R i' X2( 2)) (TYP) gF-- E W *M ' 55 et r s* P f{'"3 [80TTOM CF Tray y j gyg3 TYP SUPPORT TRAY TOR HORZ PLATE . O ..,.

                                                                                    ..1:::

THIS DETAIL MAY SE USEO WHERE TRAY RENOS. IF REQUIRE 0. THE VERTICAL PLATE MAY BE SENT TO FIT THE CURVATURE OF TRAY. TOP HORIZONTAL PLATE MAY ALSO SE CUT TO MATCH TR AY. NOTE: FOR WASNER ( IF REQ' 0) OETAILS i AND CRIENTATION SEE ATTACMPf.NT 'E'. i l TYPE ' G' CLAMP . l O APPENDIX B PI-02 Page 12 of 19

                                                     'RIII) Civil Structural hgineering
                                                     'BW4&CD-1, Rev.1 September 39 1985 O                                                     ""                                         i ATmGBGNP D (Chat'd) k OR l ANGLE e    - e RD t

uff0 wAssER ANGLE F N. S. OR l "- b F. S. AS) iy - A A *

  • acTEaNaTE IIII
                     ..                                           ..z..m.z._x ..

CMIT FOR = TRAYS LESS THAN 24* UNLESS

                                       \k       N / NORMAL                   CHANNEL CONSTRUCTION                                 I N WELD LOC 17 IS CCMPLETE ALTERNATE \

20 LOC' f . gO g Q , {N / NCRMAL O = .. ...... .... - --------" V '~o'" Y ..................7 TUBE STEE:. ,'( ( Tg4NTE TUSE STEEL NOTE: THE ANCLE MAY BE BENT TO FIT THE CURVATURE OF TRAY. FOR WASHER ( IF REQ' D) DE TAIL S AND ORIENTATION SEE ATTACHMENT 'E'. TYPE ' H' CLAMP HEAVY DUTY AT TRAY SPLICE O APPENDIX B PI-02 Page 13 Of 19

                                                                       '1 TIED Civil Structural BIgineering 3           5                            l a=

0 ar= = ==> a (c a= 4) 8 RD {CRlANCLE

                                                                    ,N S OR F S )y                                TRAY
              '-     ir g{'!lOWASHER f

W/kT gf7 OMIT FOR TRAYS LESS THAN 24' e j WASHER 9. UNLESS

                                                                                                    -i F     FOR TRAY 24' ANO UP
                   ' CHANNEL                                        CONSTRUCTION IS COMPLETE         '                        '
                                                                                                                              )

CHANNEL kg jgoRMAL N WELD LOC

                                                ;     ;;       ; H0LE'                             gv FORfBOLTS                                             .

dWASHERPLATE O i / ALTERNATE NORMAL VELDLOC)g,) --

                                                   / g' NVELD LOC                                     g g '.
                                        "/T .....___ -----'

THE MCLE MAY

                           --                                              ^       ^                  BE SENT 70 FIT
                                                          ""                                      THE CURVATURE OF
                              .......................                                                  igAy,
                                                                         ---------~- ---

TUSE 3 TEEL TUBE STEEL E

                                                                                             ' C ( ".h" i

NOTE: FOR WASHER ( IF REC' 0) DETAILS AND ORIENTATION SEE ATTACHMENT 'E'. 1 TYPE ' J' CLAMP HEAVY DUTY o -  !

                                                                                                                              \

APPEllDIX B PI-02 I Page 14 of 19 { l

M Civil Structural Winnering .

  .                                                 1MFA>CS-1, mer. I                       l 8'Ptauber 39 1985 Q                                                  %U Afr5 0BGMP D (Cont'd) t 8   '8 RD HD g    TS
                      ,,        pW T WASHgR G

HEAVY DUTY -

                + --1' 1 I     /          PART. eEN.) ,,

et A. y _J F _p lOR PLATE . CHANNEL FufL PEN. ,. FOR PLATE w CHANNEL O l NOTE: THE PLATE MAY BE SENT TO FIT THE CURVATURE OF TRAY. FOR VASHER ( IF REQ' 0) DETAILS AND ORIENTATION SEE ATTACHMENT *E'. l TYPE ' K' CLAMP HEAVY DUTY AT TRAY SPLICE O . APPENDIX B PI-02 Page 15 of 19

                                                       .1 TIED Civil Structural magineering S D 4 M:3-1, Rev. 1 September 30 1985 0                 .

AESCBENT D (Cent'd) ANGLE iOR ANGL iRAY

                                                                 ,                      f T                l0R )

( A-325 MIN) W/ WASHER e-d'WASHERR W D CHANNEL I FOR TRAY _24

  • 4 up CHANNEL s W/STD WASHER tiDIEA.

THE ANG

                                                                                              $Fh      THf CURVATLWti. OF 80LT THRU SUPPORT-                            HOLE AS                                     THE TRAY IN CLAff                                                         !
           "AY HOLE 4 OR
                                                                                           '           lFOR 80LT           ,
               %            -SHIM PLATE IF RE0'O                     ~                          "       -'

9 O Md k (L' MAX) THICK SAPE As CLAMP SHIM PLATE dWASHERPLATE (LENGTH & WIDTH TO SUIT) NOTE: . OVERHANG OF ' CLAP 9' TROM SUPPORT j STRUCTURE IS ACCEPTABLE AS LONG AS 80LT HEAD OR NUT OR WASHER LIF USED) HAS TOTAL BEARING WITH SUPPORT STRUCTURE. SHIM PLATE MAY SE FIELD FAERICATED AND PAINTED WITH GALVAN 0X PAINT. FOR WASHER (IF REQ'01 DETAILS  ! AND ORIENTATION SEE ATTACHMENT 'E'. l TYPE *N' CLAMP HEAVY DUTY O APPENDIX B PI-02 , Page 16 Of 19 l

TIIE33 Civil Structural hglasering 1ME-APCS-1, Rev.1 Septaner30,1985 WD A25CIDEND D (Cont'd) , ANGLE g pg g

                                                                )ORl agg(            Yggy 80LT (A307) qp                 W/STO WASHER lc j' WASHER E.

CHANNEL CHANNEL # N. S. OR F. S. AS ALTERNATE) ) OMITFORTRAYS{ LESS THAN 24* /{k ) (NOR WEL UNLESS ) NOTE: - CONSTRUCTION IS COMPLETE THE ANGLE MAY SE SENT TO FIT THE CURVATURE OF THE TRAY O _f HCLE =0R _ {80LT dWASHERPLATE NOTE: OVERHANG OF 'CL Aff ' FROM SUPPCRT STRUCTURE IS ACCEPTABLE AS LONG AS SQLT MEAD OR NUT OR WASHER tIF USED) HaS TOTAL BEARING WITH SUPPORT STRUCTURE. SHIM PLATE MAY BE FIELO FA8RICATED AND PAINTED WITH GALVAN 0x PAINT. FOR VASHER ( IF REQ' 01 DETAILS AND ORIENTATION SEE ATTACHPt.N T *E'. TYPE ' P' CLAMP HEAVY DUTY O APPENDIX B PI-02 Page 17 of 19

SIED Civil Structural Engineering 3d, 985 O *" MThcDENT D (Cont'd) , ANGLE CHANNEL r ., AS~e , LATE R 24 ' & UP % f A-3 MIN) g

        .h." l      W/ WASHER
                                                              ; ;'=

4 vc~~~5' a t0trh"aT, / - - W/ WASHER ' * * *' * * * * * * * * *

  • N SAPE AS
    ~                                                -y LN                          TRAY TRAY H0LE AS IN CW                                      WASHER PLATE
                                                     ,7 BOLT THRU SUPT l
               ' ' $1" hg "7E 1

SHIM PLATE

1. THIcx ( LENGTM & WIDTM TO SUIT)

( MAX) O - NOTE: OVERHANG OF 'CLAPP* FROM SUPPORT STRUCTURE I3 ACCEPTA6LE AS LONG AS BOLT HEAD OR NUT OR WASHER (IF USED) HAS A TOTAL SEARING WITH SUPPORT STRUCTURE. SHIM PLATE MAY BE FIELD FABRICATED AND PAINTED WITH 'CALVANOX PAINT *. FOR WASHER i IF REQ' 0) OETAILS AND ORIENTATION SEE ATTACHMEN T *E'. TYPE 'O' CLAMP HEAVY DUTY O APPENDIX B PI-02 Page 18 Of 19

TOEM Civil structural Engineering its-AM:3-1, mer. I september 30,1985 MM Jmmeur D (onet'd) , 1

                                                       '   h      , NORMAL ANGLE               v    s WELD LOC.

CHANNEL g (ALTERNATE

  • WASHER PLATE OR 24* & UP %
                      .....       ....                     ~::llI       $)

g , y . 3 .

                                                 -p.       '

4 . p . CHANNEL - SAME AS d IR"Y OLT A307) w/ washer dWASHERPLATE O NOTE: FOR WASHER ( IF REQ' D) DETAILS AND ORIENTATION SEE AT TACHfTNT *E *. TYPE ' R' CLAMP HEAVY DUTY O APPENDIX B PI-02 Page 19 of 19

TITLE: OYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O suueER: ,1.o, REVISION: 5 PAGE j OF 4 APPENDIX C MASS POINT SPACING O The following tables list the mass point spacing for typical trays and support members. The weights for the tray, cover, and thermolag are provided so that the mass point spacing using as-built cable fill weights can be calculated. The formula for calculating mass point spacing for cable trays is as follows: S, = C(h) where Sm = mass point spacing (in) C = number provided in the following table for cable trays W = total weight of tray system including tray, cover, cables, and thermolag where applicable. (lb/ft) ( t l l lo '

O MASS POINT SPACING CABLE TRAYS i l l MASS POINT SPACING (IN) WEIGHTS (LB/FT) l Cyprus 100% Desian Fill Cover Tray Without With & Cat. No. Description Thermolaa Thermolac C Trav Thermolac GI-36SL-12 36x61/4x1 1/4 Ladder 12 GA. Siderail k 25 23 - - - GI-30SL-12 30x61/4x1 1/4 Ladder 26 24 81.25 16.61 36.5 12 GA. Siderail GI-24SL-12 24x61/4x1 1/4 Ladder 28 25 81.88 14.62 31.0 12 GA. Siderail GI-185L-12 18x61/4x1 1/4 Ladder 30 27 - - . - 12 GA. Siderail GI-12SL-12 12x61/4xl 1/4 Ladder 33 30 - - - 12 GA. Siderail O aa-36s'-12 36x6 i'4xi ><4 corrue. Trough 12 GA. Siderail 24 22 28 49 2i 48 42 o JM-30SL-12 30x61/4x1 1/4 Corrug. 25 23 78.49 19.16 36.5 Trough 12 GA. Siderail JM-24SL-12 24x61/4x1 1/4 Corrug. 27 24 78.49 14.74 31.0 Trough 12 GA. Siderail JH-185L-12 18x61/4xl 1/4 Corrug. 26 23 71.11 10.83 25.5 Trough 14 GA. Siderail JM-06SL-12 6x61/4x1 1/4 Corrug. 35 30 - - - Trough 12 GA. Siderail GG-36SL-12-06 36x4x1 1/4 Ladder 26 24 85.12 16.87 40.0 12 GA. Siderail GG-30SL-12-06 30x4x1 1/4 Ladder 27 25 85.12 14.91 35.0 12 GA. Siderail GG-24SL-12-06 24x4x1 1/4 Ladder 25 23 74.26 12.41 29.5 14 GA. Siderail i Appendix C PI-02

p. 2 of 4

MASS POINT SPACING CABLE TRAYS MASS POINT SPACING (IN) WEIG'iTS (L8/FT) Cyprus 100% Desian Fill Cover Tray Without With & Cat. No. Description Thermolaa Thermolaa C Trav Thermola EG-18SL-12-06 18x4x1 1/4 Ladder 27 25 74.26 10.45 24.0 14 CA. Siderail GG-12SL-12-06 12x4x13/16 Ladder 25 23 62.94 6.60 18.5 16 GA. Siderail GG-06SL-12-06 6x4x13/16 Ladder 30 26 62.94 4.63 13.0 16 GA. Siderail GF-36SL-12 36x4x1 1/4 Corrug. 24 22 79.57 17.48 . 40.0 Trough 12 GA. Siderail GF-30SL-12 30x4x1 1/4 Corrug. 26 23 79.57 15.19 35.0 Trough 12 GA. Siderail O cr-24s'-i2 24x4xi i'4 corr #9-Trough 12 GA. Siderail 27 25 79 s7 ii 2i 2$ s GF-185L-12 18x4x1 1/4 Corrug. 26 24 70.97 9.34 24.0 Trough 14 GA. Siderail GF-12SL-12 12x4x1 1/4 Corrug. 29 26 70.97 7.47 18.5 Trough 14 GA. Siderall GF-06SL-12 6x4x13/16 Corrug. 30 27 63.89 4.54 13.0 Trough 16 GA. Siderail O Appendix C PI-02

p. 3 of 4

MASS POINT SPACING SUPPORT MEMBERS MASS POINT SPACING (FT) SECTION Without Thermolac With Thermolaa C4 x 7.25 2.67 2.25 C6 x 8.2 2.92 2.42 C8 x 11.5 3.17 2.67 C10 x 15.3 3.42 2.83 MC 6 x 12 3.42 -- MC 6 x 16.3 3.83 -- L 3 x 3 x 3/8 3.08 2.58 To calculate mass point spacing for sections not represented, use the equation O as defined in Section 3.2.6c. O Appendix C PI-02

p. 4 of 4
           !$b                                                                       i TITLE:        DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS O          nuusen: ,1.o ,                                 navision:             s     enoE , os 2 APPENDIX 0 EXAMPLE LOAD COMBINATIONS O

l l l l l O l

SUPERPIPE ANALYSIS SEQUENCE O

                           ~

CABLE TRAY SYSTEM MODEL U PERF'ORM GRAVITY, OBE, SSE ANALYSIS, SAVE RESULTS O GENERATE LOAD COMBINATIONS USING DSUM, SAVE RESULTS GRAVITY + OBE GRAVITY - OBE GRAVITY + SSE GRAVITY - SSE RUN duPERPOST e i O ~j wggg 0;"=ou o PI-o2 "2

I b TITLE: DYNAMIC ANALYSIS OF CABLE TRAY SYSTEMS NUMBER: PI-02 REVISION: 5 PAGE 1 OF 35 I l APPENDIX E SAMPLE CALCULATIONS HITH CHECKLIST I O l l l l l l O l _ _ _ _ _ _ _ _ _ ______l

CALCULATION / PROBLEM COVER SHEET Calculation / Problem No: i l

Title:

Cable Tray Evaluation Client: TUGCo Project: CPSES Unit 1 JobNo: 0210-040 Designinput/

References:

(See Section 6.0) l l Assumptions: (See Section 2.0)  ! l 1 Mothod: (See Section 1.0) Remarks: REV. NO. REVISION APPROVED DATE 0 Original Issue O PI-02 APPENDIX E o 2 of 35 sw g

Table of Contents O Number of Pages per Section Ca lcula tion / Problem Cover Sheet. . . . . . . . . . . . . . . . . . . Table of Contents................................. Revision Log...................................... 1.0 Description of Analysis........................... 2.0 Assumptions / Outstanding RFI's..................... 3.0 Tray and Support Models........................... 4.0 Back-up Calculations.............................. 5.0 SUPERPIPE P1ot.................................... , 6.0 References / Design Input........................... 7.0 Computer Date/ Time Log............................ 8.0 Calculation Checklist................. .. .. . 9.0 Tray and Clip Qualification... . . ... ......... 10.0 Closecut Review................................... Total Pages ATTACHMENTS (A) T ra y S p a n D ra w i n g s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TUGCO CPSES UNIT 1 O W =*Y sEh Joe no 0210-040 cucuo or av sv mu cascun su PI-02 APPENDIX E p 3 of 35

O Revision Loa Revision Description of Revision O TUGC0 CPSES UNIT 1

 -    -             ~    ,,,

wggg ~~*.

                                                             -  *o PI-02 APPENDIX E P 4 of 35

1.0 Description . Analysis

1.1 Scope

The intent of this calculation is to determine the acceptability of the () cable tray system described below and to generate support member forces and moments for support qualification. The Comanche Peak Steam Electric Station Unit 1 supports within the scope of this calculation are listed below: CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 () CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 CTH-1 Map Drawing No. Room No. Note 1. For those supports that are ganged with another system, are jh break supports or analysis only supports, the analysis number that the support is assigned to is shown in parentheses.

2. An asterisk (*) indicates an " analysis only" support.
3. An asterisk followed by a 'C' (*C) indicates a support sharing a A common baseplate. If another system must qualify this baseplate /6 the analysis number is shown in parentheses.
4. Support in this system which must be cualified with a 1.1 load f actor are indicated with an 'LF' .

TUCCO CPSES UNIT 1 0210-040 N o . - .-. - wrai-# "Jos

                                                                                         - suo                          -

PI-02 APPENDIX E p 5 of 35

1.2 Modellina 1 1 The tray system has been modelled according to Project Instruction PI-02 Section 3.2 for analysis using SUPERPIPE. Both the tray and the supports have ) been modelled in detail (see Section 3.0 Tray and Support Models) with the l exception of " analysis only" supports that may have been required for boundary conditions. For those supports a simplified model was used (as shown in Section 3.0). For the modelling of the trays, routing and span data were taken from the span drawings [ Reference 3]. The properties for the trays are from test data as tabulated in Project Instruction PI-02. The tray weights used assume as-built cable fill plus 3 psf and Thermolag weight as noted in Section 3.0. Mass point spacing for dynamic analysis was specified such that all significant modes below 33 Hz were considered (see calculation in Section 4.0). The connection of the tray to the support required special detail in order to produce conservative reactions in the support members. The eccentricities of the C.G. of the tray to the C.G. of the loaded member, the eccentricity of the shear center of the loaded member to the C.G. of the loaded member, and the - eccentricity of the C.G. of the support tier to the C.G. of the post members were all considered. For a detailed description of the modelling procedure see Project Instruction PI-02 Sections 3.2.3 and 3.2.4. For the anchorage of the cable tray supports, the anchorages fall into three O general categories; base angles, expansion (and insert) plates, and embedment plates. The base angles and two bolt base plates were modelled using stiffnesses as defined in Project Instruction PI-02 Section 3.2.5. The other plates were modelled as rigid six-degree-of-freedom anchors. l l TUGC0 CPSES UNIT 1 Joe no 0210-040 W O w6u? PE - nrv sv mu cwecuo mu *N i PI-02 APPENDIX E p 6 of 35 l

{}SE WHEA/ PERK (Akti : SHof7tA10 15 US E'D . 1.3 Load Case Analysis: I l l The following load cases were considered for this calculation; dead weight loading, OBE seismic, and SSE seismic loading. For the dead weight analysis, the weight of tray components, tray fill, support components, and any other attached materials such as fire protection materials, conduits, etc. were included. A dynamic analysis was performed for the seismic evaluation. A response spectrum analysis was performed with spectral shifting using 4% damped, minimum 10% peak broadened, enveloped spectra for OBE loading, and 7% damped, minimum 10% peak broadened, enveloped spectra for SSE loading. Mode shapes and frequencies were calculated up to 33 Hz with missing mass correction applied to account for higher frequency response. The three directions l of earthquake loading were considered to act simultaneously. The modal responses were combined using the Grouping Method (10%) for closely spaced modes in accordance with Reg. Guide 1.92 and the CPSES FSAR. The response of the three directions of earthquake were combined using the square root of the sum of the squares method. Due to the small variation in temperature in the Safeguards and Reactor Buildings and considering that the tray system is made up of a series of bolted connections, the loading due to thermal expansion is insignificant. O I TUGCo CPSES UNIT 1 O .- 02,o-040

   =v    -      un             un         W JPEU."r                               .

PI-02 APPENDIX E o 7 of 35

ON' OSE WHEN pqg ggg O 1.3 Load Case Analysis: The following load cases were considered for this calculation; dead weight loaoing, OBE seismic, and SSE seismic loading. For the dead weight analysis, the weight of tray components, tray fill, support components, and any other attached materials such as fire protection , materials, conduits, etc. were included. A dynamic analysis was ' performed for the seismic evaluation. A response spectrum analysis was performed using 4% damped, 30% broadened spectra for OBE loading, and 7% damped, 30% broadened spectra for SSE loading. Mode shapes and frequencies were calculated up to 33 Hz with missing mass correction applied to account for higher frequency response. The three directions of earthquake loading were considered to act simultaneously. The modal responses were combined using the Grouping Method (10%) for closely spaced modes in accordance with Reg. Guide 1.92 and the CPSES FSAR. The response of the three directions of earthquake were combined using the square root of the sum of the squares method. Due to the small variation in temperature in the Safeguards and Reactor Buildings and considering that the tray system is made up of a series of bolted connections, the loading due to thermal expansion is insignificant. O l l l TUGCo CPSES UNIT 1

                                                                               '- 02io-o o              -

O dk "" a-

          =     =      ==   o, c                              IN w PELaL r l

l PI-02 APPENDIX E o 3 of 35 l

2.0 Assumptions /Outstandino RFI's Open Items List: 1 I ITEM DESCRIPTION l RESOLUTION l DATE CLOSED l l l l l l l l l l l l l l l l l l l l l l 1 l I i l I . I I I I i l i i l l0 I I l l 1 I I I I I I I I I I I I I I I I I I I l l l 1 I I I i TUGC0 CPSES UNIT 1 aos e 0210-040 **0E O . . _ __ _ wtpet_tg e-= - PI-02 APPENDIX E p S of 35

1 3.0 Trav and Support Models: 3.1 Modellina Details: Tray Types: Clip Types: Friction Type Longitudinal (3-way) Tray Fill: See Back-up Calculation Section 4.1-Tray Fill Sunnary Additional Lumped Weights: Thermolag: (yes/no) O N TUGC0 CPSES UNIT 1 Joe no 0210-040 PAGE O av av mu cwacun un IN k-=D PELLdk "" m PI-02 APPENDIX E p 10 of 35

O 4 o 8eck-uo ceicuietio#s: Tae reiio i e sheets ere eooitieaei a cu-up calculations. List of Back-up Calculations: 4.1 Tray Fill Sumary l 2

                                                                                                               )

O TUGC0 CPSES UNIT 1 Joo mo 0210-040 ma O W L'AdF NLLdk "" nrv av mn owecan su l PI-02 APPENDIX E p 11 of 35

4.1 TrayFillSummary CableTrsy Teight(ib/n) Hanger Number Actual 10% of Cover. O (trsy node soint) of Cable man Trsy Sub-total Thermo- TUTAL Variance Value to be used Cables Fill (3 esf) weiaht (note 1) laa wt vt (note 2) (note 3) l O l Note 1: Subtotal-(actual cable n11).(10% of man tray vt. inci cable).(cover. tray vt.) (Sobtotal < 35 psf) Note 2: Variance.(u , v.io. ror ciankrinahr:A..: =>. __ t .io.) l (use total vt) (Max.value for run) l Note 3: If Variance is > 05, then use multiple cable tray weights. If Variance is s 03. then use the maximum value for the whole run. ( TUGC0 CPSES UNIT 1 Joe no 0210-040 PAGE O mv sv nan onecse man W la=c== PEU_ ^U PI-02 APPENDIX E p 12 of 35

O 5.0 SUPERPIPE Plot: NOTES: 1. Overlap supports indicated with bubble.

2. An asterisk (*) is indicated for any " analysis only" supports.
3. The SUPERPIPE plot is for reference only. [

O TUGC0 CPSES UNIT 1 Jos no 0210-040 NE O nav sv mn casenso un IN kcomme PELLdk D m PI-02 APPENDIX E p 13 of 35 l

i l 6.0 References /De '1n input: I

1. Iripell Project Instruction No. PI-02 rev Dynamic Analysis of Cable Tray Systems TUGCo - CPSES 1 Job No. 0210-040 0 2. TUGCo MAe Owe. No. FSE- aev. PSo- aev.

FSE- Rev. FSE- Rev.

3. TUGCo Cable Tray CTH-1-SL- Rev. -SL- Rev.

CTH-1-SL- Rev. -SL- Rev. CTH-1-SL- Rev. -SL- Rev.

4. AISC " Manual of Steel Construction", 7th Edition including Supplements No.1,2, and 3.
5. AISI, " Cold-Formed Steel Design Manual", 1968 Edition.
6. Hanger sketches (dwg. type is indicated in parentheses:

l=AS-Designed /PRFI, 4 = prelim Redline, 6 = final Redline, 8 = prelim As-built, 9 = QC mark up,10 = final As-Built,11 = Impell mod. Cable Tray Fill Load Data Sheet rev. for Hanger No. shown in brackets [ ). , CTFL CTF L CTF L Hanger sketch [rev) Hanger sketch [rev] Hanger sketch [rev] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ] CTH ( )[ ]

7. CYPRUS Piece Mark Drawings.
8. " General Instructions for Cable Tray Hanger Analysis for Comanche Peak Steam Electrical Station No. I and 2" Rev by Ebasco services.

TUGC0 CPSES UNIT 1 Joe no 0210-040 N O O "" - nuv sv mu cuecan un IN PELL*Y PI-02 APPENDIX E p 14 of 35

O e.0 aerere#ces oes4a# I#out: 4

9. Impell Project Instruction No. PI-06, Rev. " Design Verification of Cable Trays and Tray Clamps".
10. RFI No.
11. Impell Project Instruction No. PI-il, Rev. " Cable Tray System Analysis and Qualification Closeout".

O TUGC0 CPSES UNIT 1 Joe No 0210-040 ** O IN PELLgY O ""*" av av om enac e om PI-02 APPENDIX E p 15 of 35

7.0 Comouter Date/ Time Loa-O Description Execution Date/ Time Comments xx/xx/xx xx.xx.xx. I l l I l GE0 METRY l l i i l I I l DYNAMIC PROPERTIES I I l l 1 I l i GRAVITY l l 1 1 I I l l SEISMIC OBE I I l l l l 1 l SEISMIC SSE l l l l l 1 l l LOAD COMBINATIONS l l l l l l i I I I I I I I I I I I I I I I I l I i l i I I i 1 1 I I I I I I I I I l l O l l l l l I l I I I I l l l l I I I I I I I I I I l l l l l l I I I I I I I I I I l l l l l l l TUGC0 CPSES UNIT 1 O - - - . _ wggg O'o o2'o-o'o 7 l PI-02 APPENDIX E P 16 of 35

S.S Colmlation Checklist: l lYes NA Comment i ITEM l(init.) Number I l l Section 1.1 : Scope i l l l l 1. Aaalysis name, location.and boundary clearly 1 l l l l identified? l l l l I I I I i 1 l 2. Have all Cable Trsy Hangers within the scope of I l l l l l analysis been identified (with gang apports ident- l l l l i l ified as such) ? l l 1 l J l I l' I  ! l 3. Has the correct MAP drawin g been indicated? I l l l j l i I l- l ' l Section 12 : Modelling i i l l l 4. There overlap is required.har a sofficient number I I i l i of supports been included? l 1 l l l l 1 l l-l 5. For simplified modellina of trays. vere the support i l I i l and tray mas considered appropriately? I l l l 1 I I I I l 6. Component weight includesThermelag when in- i I l l 0 l

7. Mass point spacina was specified such that n!! sig- l l l l

l l l l l l alficant modes below 33 Hz were considered (tray l l 1 .l l and support members) ? I l l l l l l l l l S. Eccentricity of shear center to (Xi oflanded member I i l l l and eccentricity of member CG's at connections l l l l l vere considered? I I i l l I I I l l 9. Eccentricities for brace angles consideredwhere l l l l 1 applicable? I I I I I I I I I l 10. There base angles exist,was the appropriais stiff- l l l l. I neesinput for the anchorage? l l l l 1 I I I I l 11. All modifications to SUPERPIPEinput as indicated l l l l l in HANG 10 User's manual have been reviewed? l l l l I I I I l l l TUGC0 CPSES UNIT 1 ! Joe no 0210-040 PAGE

   -        e,      -        --        -         N h- d                                                   or PI-02 APPENDIX E p 17 of 35

s.9 Calculedes Checkna(cent'd) - I lyes WA Comment O i t'ai i m =6 r i I I I i 1 Section 1.3 : 1.and Case Analysis l I l I i 12. Was a sufficient number of modes considered for I I i l i . dynamic properties? I l l l

                              ~

l l l I I i 13. Spectral shifting used in seismic anstysis (SMPS)? l l l l 1 1 I I l l 14. Was 4% damped OBE spectra and 7% damped SSE I I l l l spectra used la response spectrum analysis? l l l 1 I l l i 1 1 15. Was missing mass correction specified for analysis?! I l l I I I I I i 16. Were att three directions of earthquake considerodi i i l i to actsimukaneously? I I I I I I I I I l 17. Were the modal responses combined using the I l i l I grouping method (10%) for closely spaced modes I l l i I (GRUP)? I I i l 1 1 i Section 2.0 . Assumptions / Outstanding Items 1 I I l' I l l 1 1 18. Han all assumptions used in analysis been  ! I I I I documented? I l l l l l 1 I I

19. Han all oustanding items been resolved?

O 1 I I Section 3 0 : Tray and Support Models l 1 l I l I l I

                                                                                    !           l       l         l l           20. Are the tray and support models of sufficient           l           l       l         l I                 detail?                                                I          I        I         t i                                                                        l           I       i         I l            21. Han say differences between as-built dimensions l                  I        l         t I                 and as-analysed dimensions been noted?                 I          l        l         l l                                                                        l          1        1        1
i 22. The oriente2 ion and the component properties for l l l l the following isens han been wriraed

I 1 I I l I I i i i I a. Trays (straightand heads) l l l l l l l l 1 I b.TrayClips i I l l 1 I I I I I c. Support steet i l l l i I I I I l d. Anchorage l l l t l I t i i l TUGC0 CPSES UNIT 1 O IMkU PELLO

                                                                               >= - 02,o-040 nuv         ev      om      onsenso   em PI-02 APPENDIX E p 18 of 35

3.0 CalculatioaChecklist(cont'd) O i l TTDA iv - l(iniL)

                                                                                                 =^ Com-ent Number I

1 l l l l l Section 4.0 : Back-up Calculations  ! I l l 1 23: Esve all properties not in claded in design input l l l l 1 tables been documented? l 1 l l 1 l l l l l Section 5.0 : SUPDtPIPE Plot i I I l l 24. The SUPDtPIPE plot has been rweiswed for I I l i i reasonablenes? I I l l l l 1 1 I l Section 6.0 : References / Design Input l l l l l 25. Have all appropriate references been indicated? l I l l 1 1 I I I l Section 7.0 : ComputerDate/TimeI43 l l l l l 26. Have all appropriate computer runs been legged? l I I I i i i l l l Overall Calculation File i l i l l 27. The problem is organized in accordance with the I i l 1. I applicable table of contents. l I l l l l l l l l 28. In the table of contents, the number of sheets in l l l l l each section isindicated l l l l l l l 1 I

29. Complete file has been checked for any missina O I I signatures?

l I l I I l I I I I I I I I 30. Can the analytical steps be verified without l l l l l recourse to the originator? I l l l 1 I I l l I 31. Art all attachments stamped and arrangod in l l l l l order? l l l l l l l l 1 1 I 32. Are calculation results consistentwith inputs. 1 I I i l technical procedures. and design criteria? I l l l l l l 1 I l 33. Are all markings legible and suitable for photo- 1 I I I l duplication and microfilming ? I l l l l l l l l l 34. Are all rsvisions clearly documented? l l l l l l l l l l l I I I I I I I i i i i i i TUGCO CPSES UNIT 1 Joe wo 0210-040 PAGE O arv sv mu owecuan mu W PEU. "N* PI-02 APPENDIX E D 19 of 3E

3.0 Calculation Checklist (cont'd) O l l Accepted l l Comment l I Unitial) l , l No. I COMMENT l RESOLUTION ' I I l I I I I l i I 1 I I I 1 l I I I i I I I I I I I I I ' I I ' I I I I I I I I I I I I I I i l l l l l l i I I I I I l I I I l i l 1 I I l 1 I I I i I I I I I I I I I I I I I I i l I I I i I - I I I 1 I I I I I i l i I i i i I I i I i i i O i l i i l i i I i i l i i l i l I I I I i l I I I I I I I I i I i l I i I I I i l I I I i l I i i i I i I I I I i I I i i I I I I , i l I I I l I I I I I I I I I I I I i I I i l I I l i I TUGCO CPSES UNIT 1 PAGE ! Jos no 0210-040 O d ' " " - l v - - INPuELL) t 1 PI-02 APPENDIX E p 20 of 35

9.0 Trav and Clio Qualification l O c bie travi ad ciias are au iiried aer aerereace 9 as snowa oa the following calculation sheets. , l All trays and clips qualify except for the DCP's noted below: 1 l Trav OCP's l Highest interaction ratio: Clio DCP's Highest interaction ratio: TUCCO CPSES UNIT 1 Jos no 0210-040 pasa O O "

 .            -    -        .        W P_E_LLsr t

PI-02 APPENDIX E p 21 of 35

9.0 Trav and c Oualification Checklist l l l 1  ! l ITEM l YES l NA l COMMENT l O V I I I (INIT.) l l NO. I l l l l l 1. Qualification component clearly l l l l l identified? l l l l l l l l 1 l 2. Enveloped forces and moments (if used), l l l l l related supports listed? l l l l l l l l l l 3. Correct Allowable Tables used for l l l { l allowable forces and moments? l l l l l l l l 1 l 4. A factor of 1.6 applied to resulting l l l l l ratio sum? l l l l l l l 1 I l S. A factor of 1.1 scaled for overlap l l l l l region? l l l l l l l l J l 6. Local clamp coordinate properly observed l l l l l for forces and moments? l l l l 1 l l l l l 7. Proper transverse or longitudinal l l l l l direction considered for clamp l l l ,l l allowables? l l l l 1 l l l l l 8. Lower allowable for the two in each l l l l l direction used for clamp of dissimilar l l l l l or unknown types? l [ l l l 9. Edge tear-out considered for bolted l l l l l longitudinal clamp? l l l l 1 1 I I I i l 10. Edge distances included bolt diameter l l l l [ in checking edge tear-out? l l l l [ l l 1 1 I l 11. Have tray and clip dimensions used in l l l l  ! l the model been resolved to PI-10 l l l l l criteria based on calculated stresses? l l l l l COMMENT l l l ACCEPTED I I No. I COMMENT I RESOLUTION l (Initial) l I I l l l l l l l l 1 1 I l l l 1 l l l l l l l t l l l l l l l l I l TUGC0 CPSES UNIT 1 Joe wo 0210-040 N O O "" nrv sv mu onecnan mu IN PELLkawa eD PI-02 APPENDIX E p 22 of 35

t 10.0 Closeout Review a The following items have been completed to closeout this calculation: O PI-02 checklist (Section 10.1). PI-10 as-built reconciliation (Section 10.2). Closeout Review checklist (Section 10.3). O TUGC0 CPSES UNIT 1

                                                          ** 0210-040              eaos
 -      -      --    ~                 WML@              ~~

PI-02 APPENDIX E p 23 of 35

10.1 PI-02 Checkl , l i Resolved Comment Item (Init.) N/A No. Modelling

1. Tray section properties have been revised. i Revision 2 and 4 properties may be used provided peak shifting is used. If Revision 5 properties were used, modification reduction techniques may be applied if all the criteria of Section 3.3 are met.
2. Tray section properties for GI-24SL-12, 24 x 61/4" ladder tray have been revised.

Tray section properties have been added for GI-36SL-12, GI-185L-12, GI-12SL-12 and JM-06SL-12 trays.

3. Tray shear areas were revised from equal to the cross-sectional area to 1000 in2 '

l

4. Horizontal bends must be oriented by i correctly specifying lyy, Izz,
  • not by using K nodes.  ;
5. If the tray to tray clip connection is offset from the tier flange, this 1 additional eccentricity should be O coasidered when modeiiine the trev to support vertical load eccentricity.

I l

6. Directional weights are properly modelled by l including point forces in the gravity load '

case as described in Revision 2. Revision 5 , provides the directional weight modelling technique if trays are not globally oriented.

7. Revision 5 added actual thermoblanket weights.

Previously, heavier weights of thermolag were to be used for thermoblanket. l'

8. 6" high tray thermolag weights were added.

Previously, 4" high tray thermolag weights l were used for both 4" and 6" trays.  !. l TUGC0 CPSES UNIT 1 Joe no 0210-040 PAGE i O O ' " " arv av mn cwec e un IN PELL6eN PI-02 APPENDIX E p 24 of 35

10.1 PI-02 Checklist Resolved Coment O Item (Init.) N/A No.

9. Revision 3 had the incorrect thermolag weight for a 30 x 6 tray. Revision 2 and 4 specified the correct weight.
10. AISC 1.18.2.4 criteria is to be used for modelling double angles, as composite or independent angle sections.
11. The composite T section local coordinate  ;

system must be specified consistently with . SUPERPOST. If not, loads must be manually input to SUPERPOST. .

12. The eccentricity of the bracing angle centroidal axis to the intersection of the post and tier centroidal axes should be considered for the conditions stated in Revision 3. .
13. The base angle stiffnesses were revised.
14. The base angle local coordinate system should be consistently defined.

O 15. The Safeguards Building Elevation 896.5' OBE and SSE spectra does not envelop Elevation  ! 873.5 spectra. The use of this spectra may be unconservative if a system spans several elevations. Overlap l l. l

1. The overlap modelling procedure for system l  !

breaks at a horizontal bend was defined in I Revision 3. { TUGC0 CPSES UNIT 1 Joe No 0210-040 Ne O "" O =v n un cc mn W PELLL JF - PI-02 APPENDIX E p 25 of 35

10.1 PI-02 Checklist c Resolved Comment Item (Init.1 N/A No. (

2. Revision 3 had an incorrect vertical stif fness for an "L" support. Revision 2 and 4 are correct.
3. When calculating longitudinal lumped weight, the first transverse support past the elbow should be considered to provide longitudinal support. If greater tributary length was considered, the analysis results may be overly conservative.
4. For a partial tray modelled in the overlap region, the longitudinal tray stif fness may be included for the omitted tray.

Omissions of this stiffness could provide overly conservative results.

5. For systems separated at ganged supports, each system must be longitudinally supported. -

If not, this is an improper break.

6. For decoupling of hangers, both OBE and SSE must be considered, as indicated in Revision 3.
7. For decoupling of hangers, a 1.5 MMF must be ,

included. Revision 2 had specified a 1.25 MMF. l , _ _ ._ l i f i TUGC0 CPSES UNIT 1 Joe No 0210-040 P^ot O "^'" C) nav av mn cowem an IN PELLk d7 - PI-02 APPENDIX E p 26 of 35

l 10.2 PI-10 As-Built Reconciliation O O I \ l l I l TUGC0 CPSES UNIT 1

                                                                             *w 0210-040   Pasa
                    *
  • an ==== mn EdQgg 4y PI.02 APPENDIX E P 27 of 35

jc d APPENDIX B FOR PI-10 O As- Built Reconciliation Cover Sheet Tray System No.: Rev.: This package includes: Page Number Cover Sheet Summary of Out-Of-Tolerance condition - Conclusion Document Used:

1. Hanger Drawings - See "Sumary of Out-Of-Tolerance Condition" ,
2. Span Length Orawing CTH-1-SL , Rev.

CTH-1-SL , Rev. O

3. Cabic Tray Fill load Data Sheets, Rev.

except for hangers: CTH , , , , ,

4. " General Instructions for Cable Tray Hanger Analysis for Comanche Peak Steam Electrical Station No.1 and 2," Rev. by Ebasco Services.
5. Acceptable Tolerance Table Maximun Member Stress Interaction -

l Maximum Weld Size Ratio Maximum Anchorage StressTaITo 6.. Project Instruction PI-02 Revision No. Project Instruction PI-03 Revision No. Project Instruction PI-07 Revision NO. I u TUGC0 O COMANCHE PEAK UNIT 1 Jos no 0210-040 PAGE O *" o, l REV SY DATE CHECKED DATE IMPELL com**o Y l 1 PI-02 APPENDIX E p 28 of 35

IA" APPENDIX B FOR PI-10 O

SUMMARY

OF OUT-OF-TOLERANCE CONDITIONS AFFECTING SYSTEM ANALYSIS (1 set per system) l I I I I I

                                                                                                                   **               l l                               l      l      OUT OF TOLERANCE                      I             l l                               l      1 (REY. CODE                                 l ACCEPTABLE l RESOLUTIONI I            ITEM               I NC* I vs. REY. CODE                         )     l    YES/NO   l   NUMBER l l                               I      I                                            I             I            I
1. TRAY I I I I I
a. size i I I I I I I I I I I I I I I I i i I l
b. fill load l l l l 1 I I I ,

I I I I i 1 1 I I l

c. clamp type l l l l l 1 I I I I I I I I I I I I I I O d T ' /T 8- i l

i I i I i I i I I I I I I I i i i I 1

e. hanger l l l l l location i I I I I I I I I I I I I I l
f. other l l l l l l l l l l l l l l l
  • NC - No Change or within Tolerance
                             ** - Acceptable yes - Resolutien shows that Out-of-Tolerance Conditions                                    i are acceptable.                                                             I no - Out-of-Tolerance Conditions may result to overstress condition, computer analysis may be required.

Dwg. Code: 4 6 Preliminary Redline Line or Design

                                               =6 Final Redline
                                               =8 Preliminary QC Dwg O                                                                                                   JOS NO                      PAGE O     '^""                        O, REV         SY           DATE  CHECKED   DATE                  IN1PELL Coeuute PI-02 APPENDIX E p 29'6fr35

i APPENDIX B FOR PI-10 i O Su m ARY OF OUT-OF-TOLERANCE CONDITIONS AFFECTING SYSTEM ANALYSIS (1 set per hanger) For CTH 1 I I I I I l l OUT OF TOLERANCE l l l l l l l (REY. CODE I ACCEPTABLE l RESOLUTIONI I ITEM l NC* l vs. REY. CODE )l YES/NO l NUMBER l l l l l 1 l 2 TIER I I I 1 I

a. type / size l l l l l l l 1 l l
b. length l l l l l l 1 1 I I
c. orientation l l l l l 1 i i I I
d. clip eccent. I I l l l l 1 I I ~l
e. T.L./T.B. 1 I l l l l 1 I l l I
f. location l l l l l of tray l I l l l O 3 BRACING l l l I I l
a. type / size l l l l l  ;

i I I I l l

b. length I l l I l '

1 I I I l

c. orientation I l I l l ,

I I I l l i l l l l

d. eccentricity l l l 1 I i l
e. other l l l l l 4 POST / COLUMN l l l l l
a. type / size l l l l l l 1 I I l
b. length l l l l l l 1 I I l
c. orientation l l l l l l 1 I I l
d. T.L./T.B. I I l l i l I l
e. other l I l I i TUGC0

'O COMANCHE PEAK UNIT 1 JoeNo 0210-040 PAGE REV BY DATE CHECKED DATE IM PELLO Co*w' o, PI-02 APPENDIX E p 30 of 35

'l APPENDIX B FOR PI-10 O

SUMMARY

OF OUT-OF-TOLERANCE CONDITIONS AFFECTING CAPACITY OF HANGER (1 set per hanger) For CTH 1 I I I I I l l l OUT OF TOLERANCE I l l l l l (REY. CODE l ACCEPTABLE l RESOLUTIONI I ITEM l NC* l vs. REY. CODE ) l YES/NO l NUMBER I l l l l l l

1. MEMBER SIZE l 1 I l l
a. post / column l l l l l l l l
b. tier l l l l l l l l l l
c. bracing l l l l l
2. WELD I I I I l
a. pattern I l l I i l l I I l
b. size l l l l l O c. ieasth  ! i i i I
3. BASEPLATE / ANGLE l i i i l
a. type / size l l l l l l 1 i i i I
b. length l l l l l l l l i I ,
c. member l l l l l location l I I i l 1 I I I l
d. other l l l l l 6
                                                                                                                                                       \

l TUGC0 O cos "c e eeAx unit i JOs NO O210-040 PAGE O ^ ' " o, may av oAtt essenso oats IMPELLcw - us D PI-02 APPENDIX E p 31 of 35

APPENDIX B FOR PI-10

SUMMARY

OF OUT-OF-TOLERANCE CONDITIONS AFFECTING CAPACITY OF HANGER, Continued (1 set per hanger) For CTH 1 I I I I l l l l OUT OF TOLERANCE l l l l l l (REY. CODE l ACCEPTABLE I RESOLUTIONI I ITEM l NC* l vs. REY. CODE ) l YES/NO l NUMBER I I I I I I I

4. BOLT l I i i l
a. type l I I I I I I i I l
b. dia l l l l l 1 I I I I
c. mark l l l l l l l l I I
d. proj i l l I . I I i i i i
e. location i I I I l l l 1 i i
f. G dim l l l l l
g. spacing i l l l l l 1 I I I
h. other l l l l l iUGLU COMANCHE PEAK tit !T 1 PAGE Jos NO O210--040 O ^'*"

AEV BY DATE CHECKED DATE IMPELL CO*0** PI-02 APPENDIX E p 32 of 35

APPENDIX B FOR PI-10 [ As-Built Reconciliation Resolution Resolution Item No: Description of Problem: Resol ution/Justi fication: O i l TUGC0 O- COMANCHE PEAK UNIT 1 Joe No 0210-040 PAGE IM PELL dk *^'*" o,

  • SV DATE CHECKED DATE (Nre F PI-02 APPENDIX E p 23 of 35

APPENDIX B FOR PI-10 O As-Built Reconciliation Conclus' ion All changes are within the acceptable tolerances. The as-built l-l conditions are therefore acceptable. Some changes exceed the acceptable tolerances. These out-of-tolerance l-l conditions have been reconciled and are found to be acceptable. Justification for these changes are documented for hangers No. CTH , CTH , O Certain out-of-tolerance conditions are shown to be unacceptable by ll conservative hand calculations. Ccnfirmatcry computer analysis is required. Hangers in question are CTH , CTH . l l TUGC0 O c0sanc e esax unit 1

                                                              .ca No    0210-040      'AraE REV    gY      DATE  CHECKED   DATE IM Ch' PELLdk  E o,

PI-02 APPENDIX E p34 of 35

I I d f 10.3 Closecut Review Checklist (Reference 11) O Item Y N/A Conrnent No.

1) Model Reconcilation (Section 2.0) a) Drawing changes reconciled to PI-10 (Section 2.1) b) Criteria Reconciliation (Section 2.2)  !
               - PI-02
               - SUPERPOST
               - PI-03
               - PI-07 c) Hidden attribute criteria incorporated (Section 2.3)
2) Support Evaluation (PI-03, SUPERPOST)
                                                                                   ~

a) Non standard welds evaluated b) Members not evaluated by SUPERPOST considered c) Gusset plates evaluated (PI-03) d) Anchors evaluated (PI-07)

3) Tray and clip evaluations performed (PI-06)
4) Resolution of Failures (Section 3.0) t a) Refined qualification techniques performed I l' '

b) Refined analysis performed ' c) All failures resolved l d) Final modifications issued for j construction t

5) Open Items Resolved (Section 4.1)
6) All interface loads reported or received
7) Document Review Completed (Section 4.3)

TUGC0 CPSES UNIT 1 Joe m 0210-040 PA8E O * " " O^ my sv mn c> esc u o un IN PELLbeY PI-02 APPENDIX E p 35 of 35

                                                                       }_,Z g 19d-C.S'O- (52 '? "

O 1 . I 1 Acuo.Ulv, vocument No. A-UUU150 Rev. 1, December 1985 Test Plan DYNAMIC TESTING OF TYPICAL CABLE TRAY SUPPORT CONFIGURATIONS COMANCHE PEAK STEAM ELECTRIC STATION' (CPSES)

       .                   Prepared for TEXAS UIILITIES GENERATING COMPANY Glen Rose, Texas
                        ~
                            !~                               L   J 01 Gel                                _   _     w                                 o ANCO
     -                   ENGINEERS,                                                                          '

INC. w 9937 Jefferson Boulevard Culver City Califomia 90230-3591 (213) 204-5050 Telex:182378 Cable: ANCOENG s I. . I O 9

                                 -4&f416@lT2 w*

1806.01G Test Plan DYNAMIC TESTING OF TYPICAL CABLE TRAY SUPPORT CONFIGURATIONS CONANCHE PEAK STEAN ELECTRIC STATION (CPSES) TEST CASES 1 THROUGH 5 g Document Number A-000150

!!                                                                Prepared for TEXAS UTILITIES GENERATING COMPANY Glen Rose, Texas e,

Approval Signatures A ' h tfL4 ?lf i Project Ngr./Date Cog. Prin./Date j i

                                //                    f     in'11/6pf'fN'i W C D %klT6
                                                                       /

l Techn'ical QA/Date Editorial QA/Date l< - l\ .b,,[,ur G,[Yeo I 2-l tl': ,' l, Chief Engineer /Date I Prepared by 9 The Technical Staff ANCO ENGINEERS. INC. 9937 Jefferson Boulevard Culver City, California 90232-3591 (213) 204-5050 Rev. 1, December 1985 Test Plan, Document No. A-000150. Page i of v

r~h b' REVISION RECORD PAGE hs Test Plan I DYNAMIC TESTING OF TYPICAL CABLE TRAY SUPPORT CONFIGURATIONS COMANCHE PEAK STEAM ELECTRIC STATION (CPSES) TEST CASES 1 THROUGH 5 , Document No. A-000150 i Rev. Date Consents Approved l-0 12/85 Original Issue g , 1 12/85 Page 1, replaced bulleted text and changed "They' e to " Test types." I Page 3, added Subsection 2.2.1. Page 5, changed "a g, a7, a 8, and a25 "t A,A, y 7 A , and A O g 25' Page 6, changed per page 5 and moved Location D3. Page 7, capitalized "d" and added Subsection 4.2.4. Page 14, changed " performance" to " response" and deleted "one half of" and added sentence to end of Subsection 6.2.1, par. 1. Page 15, deleted "1.5 x OBE ZPA" and added "at the raceway's anchorage elevations (1 3 in.)." Page 16, added par. to Subsection 6.2.5.5. Page 18, added "(or designated client repre-sentative)." Page 84, changed "42, 21, 2.8, and 3200" to "90, 60, 4.0, and 10,000," respectively. Changed footnote to read " Estimated values." Added, in Section 8.7, pages 130 to 135. Page 136, renumbered page and added paragraph 88. 'Y*/tf' I to Section 8.9. Added Pages 137 through 152. Renumbered pages 153 through 156. g MWh' r1 M O Test Plan, Document No. A-000150 Page 11 of v

TABLE OF CONTENTS Page 1.0 OBJECTIVES............................ . ... .. .. .. .. .. 1

2.0 REFERENCES

...... ... .... ..... .. .... ............. . . . 3 g 2.1 ANCO Documents....................... ................. ... 3 2.2 TUGC0 Documents............................................ 3 2.3 Industry Documents...................................... .. 3 4 3.0 PERFORMANCE CRITERIA....................................... .... 4 TEST EQUIPMENT........................................ 5 [- 4.0 ... ..... 4.1 The Shake Table.................. .......... .............. 5 4.2 Sensing Instrumentation........................ . ......... 5 4.3 Data Recording and Analysis Instrumentation................ 7 i i 5.0 TEST CONFIGURATION............ ................................. 8 l ., 6.0 DATA. DATA ANALYSIS. AND REPORTING.............................. 14

  ,                                     6.1     Resonance (Preliminary) Testing, Test Data                                                                                                         14 4
  !                                              and Data Analysis........................ .................

6.2 Seismic Testing. Test Data and Data Analysis............... 14 6.3 Fragility Testing, Test Data and Data Analysis............. 17

                                                                                                                                                                                                  ~

i 7.0 PROCEDURE....................................................... 18 I l ! 7.1 Setup Case A.............................................. 18 7.2 Preliminary and Earthquake Tests Case 1, i Fixed Boundary Conditions, 104 Cable Loading............... 18 7.3 Preliminary and Earthquake Tests, Case 1. Fixed Boundary Conditions. 30% Cable Loading............... 21 7.4 Preliminary and Earthquake Tests, Case 1, l Fixed Boundary Conditions, 504 Cable Loading............... 22 7.5 Preliminary and Earthquake Tests, Case 1, I Fixed Boundary Conditions. 754 Cable Loading............... 24 7.6 Preliminary and Earthquake Tests. Case 1. l Fixed Boundary Conditions, 2004 Cable Loading.............. 25

  !                                     7.7      Preliminary and Earthquake Tests, Case 1, Pinned Boundary Conditions, 2004 Cable Loading.............                                                                                       26 7.8       Fragility Level Tests, Case 1. Pinned Boundary Conditions, 100% Cable Loading.............................                                                                                      28 i

I 7.9 Data Reduction. Case 1..................................... 7.10 Teardown and Removal of Case 1............................. 29 30 30 ! ,, 7.11 Setup. Case 2........................ ..................... l * 7.12 Preliminary and Earthquake Tests, Case 2, Fixed Boundary Conditions, los Cable Loading............... 31 7.13 Preliminary and Earthquake Tests, Case 2, Fixed Boundary Conditions, 30% Cable Loading............. . 33 Test Plan, Document No. A-000150, Page 111 of v

TABLE OF CONTENTS (Continued) O em 7.14 Preliminary and Earthquake Tests. Case 2, Fixed Boundary Conditions, 50% Cable Loading.. . . ... 34 7.15 Preliminary and Earthquake Tests, Case 2. Fixed Boundary Conditions, 75% Cable Loading............... 36 y 7.16 Preliminary and Earthquake Tests, Case 2, Fixed Boundary Conditions, 200% Cable Loading........ ..... 37 7.17 Preliminary and Earthquake Tests Case 2. Pinned Boundary Conditions, 200% Cable Loading.......... .. 39 7.18 Fragility Level Tests, Case 2. Pinned Boundary Conditions, 100% Cable Loading............................. 40 P 7.19 Data Reduction, Case 2............................ .... .. 42 7.20 Teardown and Removal of Case 2............................. 42 7.21 Setup, Case 3.......... ..................... ............. 43 7 7.22 Preliminary and Earthquake Tests, Case 3.

   )            Fixed Boundary Conditions, 10% Cable Loading. .............                  43
   '      7.23 Preliminary and Earthquake Tests, Case 3.

Fixed Boundary Conditions, 30% Cable Loading............... 45 7.24 Preliminary and Earthquake Tests, Case 3, [ Fixed Boundary Conditions, 504 Cable Loading............... 47 3 7.25 Preliminary and Earthquake Tests, Case 3.

   .            Fixed Boundary Conditions, 754 Cable Loading...............                  48 N      7.26 Preliminary and~ Earthquake Tests, Case 3.

Fixed Boundary Conditions, 100% Cable Loading.............. 49 7.27 Preliminary and Earthquake Tests, Case 3. O Pinned Boundary Conditions, 1004 Cable Loading............. 7.28 Fragility Level Tests. Case 3 Pinned Boundary 51 Conditions, 100% Cable Loading....................... ..... 52 7.29 Data Reduction, Case 3..................... ....... ....... 53 7.30 Teardown and Removal of Case 3............................. 54 7.31 Setup Case 4..................................... ........ 54 7.32 Preliminary and Earthquake Tests Case 4, Fixed Boundary Conditions, 104 Cable Loading............... 55 7.33 Preliminary and Earthquake Tests, Case 4, Fixed Boundary Conditions, 30% Cable Loading............... 57

   ;      7.34 Preliminary and Earthquake Tests, Case 4 Fixed Boundary Conditions, 50% Cable Loading.... ..........                  58 7.35 Preliminary and Earthquake Tests, Case 4, Fixed Boundary Conditions, 75% Cable Loading...............                  60 f,     7.36 Preliminary and Earthquake Tests, Case 4, Fixed Boundary Conditions, 100% Cable Loading. . .........                   61 7.37 Preliminary and Earthquake Tests, Case 4,

,B i Pinned Boundary Conditions, 100% Cable Loading............. 62 g 7.38 Fragility Level Tests, Case 4 Pinned Boundary Conditions, 100% Cable Loading............................. 64 g 7.39 Data Reduction. Case 4..................................... 65 7.40 Teardown and Removal of Case 4............................. 66 7.41 Setup, Case 5......................................... . .. 66 7.42 Preliminary and Earthquake Tests, Case 5. Fixed Boundary Conditions, 104 Cable Loading............... 67 O Test Plan, Document No. A-000150 Page iv of v

TABLE OF CONTENTS (Concluded) P_ age 7.43 Preliminary and Earthquake Teats. Case 5. Fixed Boundary Conditions. 30% Cable Loading...... . .. .. 69 7.44 Preliminary and Earthquake Tests. Case 5. Fixed Boundary Conditions. 50% Cable Loading............... 70 7.45 Preliminary and Earthquake Tests. Case 5.

           )                              Fixed Boundary Conditions. 75% Cable Loading...............                                                            71 7.46 Preliminary and Earthquake Tests. Case 5.

I Fixed Boundary Conditions. 1004 Cable Loading.............. 7.47 Preliminary and Earthquake Tests. Case 5 Pinned Boundary Conditions. 1004 Cable Loading............. 73 74 7.48 Fragility Level Tests. Case 5. Pinned Boundary f Conditions. 100% Cable Loading.................... ........ 75 7.49 Data Reduction. Case 5.. .................................. 77 7.50 Teardown and Removal of Case 5........................ .... 77 I i 8.0 ATTACKMENTS...................................... .. ........... 79 8.1 ANCO R-4 Planar Triaxial Shake Table....................... 79 p 8.2 Calibration Procedures......................... ........... 87 8.3 Construction Details (General)............................. 121 8.4 Construction Details. Case 1........................... ... 122 8.5 Construction Details. Case 2............................... 124 8.6 Construction Details. Case 3.. ............................ 126 8.7 Construction Details. Case 4............................... 128

                                 8.8   Construction Details. Case 5. . .........                                             . ..............              136 j                                   8.9   OBE and SSE Required Response Spectra.... .................                                                         136 9.0       CONTINGENCIES...................                                  .... .. .... ... .. .... .....                          153 t

8-10.0 CHRONOLOGICAL LOG.......... . .... ............................. 154 11.0 TEST REPORT................ ...................... ...... ..... 156 l 1. APPENDIX A: 44 OBE AND 7% SSE TIME HISTORIES (NUMERICAL VALUES)...................................... A-1 APPENDIX B: CHRONOLOGICAL L0G....................................... B B-21 { I P i Test Plan. Document No. A-000150. Page v of v

1.0 OBJECTIVES O The overall objective of the test effort discussed herein is to study the response of typical multi-tier cable tray systems, constructed using representative site-specific construction details and hardware intended to withstand postulated seismic loading. The tests will provide a basis for the following evaluations:

  • Verification that damping values of not less than 44 for the OBE and not less than 74 for the SSE are appropriate for design of CPSES cable tray hangers that have welded connections.
  • Quantitative determination of damping as a function of the level of vibration and level of tray fill for a variety of different types of cable tray supports, boundary conditions, etc.

I

  • Determination of tray clamp connection behavior under the effects of dynamic (seismic) load.

I

  • Measurement of cable tray system response / damping to provide the basis for possible revision of the damping values (greater than 44
 %                     and 74) as presently used in design and design verification of l                     CPSES cable tray hangers.

O + The measurement of tray / clip connection behavior to modify, if any, V modeling procedures now used in hanger design. The data will e provide information on the dynamic characteristics of the cable tray hanger system (i.e., frequencies and mode shapes) for con- [" firming the accuracy of analytical models; e provide a basis for developing cable tray performance criteria (e.g., tray / clip slip) and true ultimate capacity (fragility testing): and

  • provide realistic damping values for the as-built cable tray hanger

{' systems. The test effort will include the dynamic testing of five full-scale multi-tier raceway systems (up to 40 ft in length) under a variety of load ! 9 cases and input levels. Test types are identified as follows:

  • random dwell testing will be performed at selected mass loadings and input amplitudes to determine trends in dominant mode resonant O

Test Plan Document No. A-000150, Page 1 of 156

frequencies and nodal damping ratios as functions of these variables. l

  • sine-dwell testing will be performed to quantify system base motion amplification and modal response shapes, and
  • earthquake simulation testing will be performed measuring damping under postulated earthquake excitation, establish performance cri-teria, and establish fragility modes and levels.

b l l l i i s r !O i 1 , i i i (' I O Test Plan, Document No. A-000150, Page 2 of 156

2.0 REFERENCES

2.1 ANCO Documents 2.1.1 QA-100 Rev. 4. Quality Assurance Program Manual, 7/24/85. 2.1.2 QC-1001. Rev. O, Personnel Qualifications, 7/10/81. 2.1.3 QC-1006. Rev. O. Document Distribution and Control. 7/10/81. 2.1.4 QC-1012 Rev. O, Instrumentation Quality Control, 1/25/85.

   ,    2.1.5   QC-1015. Rev. O. Quality Control Procedure for Defects and Noncom-pliances, 7/19/84.

2.1.6 Document No. A-000062. Rev. O. Calibration of Endevco Model 5241 l Accelerometers. 7/20/83. I 2.1.7 Document No. A-000132. Rev. O. Through-Calibration Procedure for Dytran Model 3100C2 Accelerometer, 6/84. s 2.1.8 Document !;o. A-000148. Rev. O. Calibration Procedure for a Celesco-Type Displacement Transducer. 9/85. 2.2 TUGC0 Documents 2.2.1 Ebasco Services. Incorporated. Specification SAG-CP4-9/85. 2.3 Industry Documents - (TBD) i . 1 l l

 \

f 1 o !O Test Plan. Document No. A-000150 Page 3 of 156

l

                                                                                       \

3.0 PERFORMANCE CRITERIA Each of the three test types described in Section 1.0 will have dif-The criteria are not specifically used to l ferent Performance Criteria. evaluate the structure, but will be used to judge the applicability of the current test plan (see Section 7.0) or whether deviations are required. U (a) Randon Dwell and Sine Dwell Testing - No performance criteria, other than general systes collapse, is required. (b) Earthquake Testing - No performance criteria, other than general system collapse. is required. System inspection will be required after each event. Inelastic behavior, including small permanent deformations, will be acceptable. However, testing will be tem-porarily helted af ter the f ailure of any component in order to determine if test plan deviation is warranted. (c) Fragility Test - The fragility test is a series of consecutively run incremental TRS. The system will be inspected after each TRS I is completed. Large displacements and slippage will be con-sidered acceptable. Testing will only be terminated if the table limits are attained or general structural collapse is observed. O u 9 t.. i

     ~

Is ( O Test Plan. Document No. A-000150, Page 4 of 156 l l . - . - - - .. . . - .

4.0 TEST EQUIPMENT O 4.1 The Shake Table The ANC0 R-4 shake table, more thoroughly discussed in Section 8.1. consists of a 40-ft by 14-ft steel truss frame supported on 45-degree, g ball-jointed linkages. The table was specifically designed and constructed to dynamically excite and test cable tray and conduit raceways of up to 40 ft in length and, over limited areas, up to 13 ft in depth. Anchor attach-ment is provided at five locations along the upper surface of the table on p 8'0" centers. For these tests, the table will be modified to provide I anchor attachments on 9'0" centers. I Shake table force input limits (as discussed in Section 8.1) have been i increased by fitting higher capacity servo-hydraulic actuators to the mechanism, permitting approximately +/- 2.8 g input in the coupled trans-I verse and vertical and in the independent longitudinal directions over the frequency range of 3 to 35 Hz. Some improvement in input velocity (1.5 to 3.0 Hz range) is also expected. Input motion is discussed in more detail p in Section 8.1. 4.2 Sensing instrumentation 4.2.1 Accelerometers na Endevco Model 5241, Model 5241A, and/or Dytran Model 3100 piezo-

'    electric accelerometers or equivalent will be used to sense input and response accelerations.      These are illustrated in Figure 4.1, which repre-j sents the minimum set of transducers used, in this example, on Test Configuration 1. Accelerometers At through A7 will sense shake table input f    motion amplitude.      Accelerometers A8 through A25 will sense raceway and tray response. Additional accelerometers will be added for those test con-figurations with more than two tiers or where additional information, in g

L the opinion of both ANCO and the client. is required. Conversely, acce-lerometers will be deleted if test configurations have less than two tiers g or if, in the opinion of both ANCO and the client, redundant data are being collected. Appropriate entries will be made in the test log to reflect any changes. The actual locations of all accelerometers will be depicted in the final test report. Test Plan, Document No. A-000150. Page 5 of 156

                 *in   m   ~~

a CP== Y'  : m E O O Oe n A f

                                                                                                #h 0 /*d)

L (%ng% " g0 f H t

  • s' S /
                                                                                              /

3 AS

  $                                             A2          At P f.'AI /d N/                           ,-          N    /

f g 9A AI5 - / g24K (','( f "n 5

                                                                                ,/
   $                            \    7                   os    - ' An
   >                                        All AC h p 34 o

3 A4 8 AN/$ o N ('Ae N Pi A +A = Shake Table Acceleration input Ad A +A 25

                                                                                                     = Raceway Response
;   e                                                                                  Dg&D2 " support & Tray Displacement 8                                                        D     +D     = Tray Displacement Relative to 3      5 m                                                                                                 Support TA
      '         /  l Al$                                                               gg    +g     = Strain Cages to Sense Loads 3

Alt I N- 35 Figure 4.1: Typical Measurement Locat ions (minimum set)

4.2.2 Displacement Transducers O Celesco linear potentiometers (; 10-in. full range. : 0.005-in. resolution at a calibration of 1.0 in./ volt) will be used to sense relative displacement between the shake table and the test raceway (D1 and D2 Of gg Figure 4.1) and to sense the longitudinal relative displacement between tray and support (D 3. D 4. and D 5)- I 4.2.3 Strain Gates as Load Sensors Selected structural members will be fitted with strain gages to act as load sensing devices. Candidate locations (shown on Figure 4.1 as gi through g3) include the tray itself adjacent to the hold-down devices at L. Supports 1 and 3 so that load data can he compared with deflection data (D4 and D5 ) and approximately 12 in, below the anchor elevation at Support 3 to f sense axial load and moments about a longitudinal axis through the support member (Mx )- 4.2.4 Cable Integrity Monitoring () During selected high-level earthquake testa. a circuit will be assembled to sense cable discontinuities greater than 0.010 seconds as a means of quantifying cable integrity. 4.3 Data Recording and Analysis Instrumentation 9

 "         This is discussed in Section 8.1. An IBM-PC-based system may be used in lieu of the Data General NOVA 3/12 system discussed in Section 8.1. In addition, a Sangano 14-channel FM tape recorder may be placed in parallel with the A/D converter - CPU to minimize vibration exposure during prelini-nary tests.

t n O Test Plan. Document No. A-000150. Page 7 of 156

5.0 TEST CONFIGURATION O Five test configurations, designated as Cases 1 through 5, will be tested. These configurations consist of five-support, four-span cable tray support systems that were selected to slaulate site conditions. The eleva-tions shown in Figures 5.1 through 5.5 represent the test configurations. g General site construction details, such as ainlaus bolt torques by diameter and cable tie-down procedures, are given in Section 8.3. Specific construction details are given for Cases 1 through 5 in Section 8.4 through 8.8. respectively. These show section views of each raceway on a hanger-9 by-hanger basis and specify the hardware to be installed at attachment locations. Additional configurations may be tested. If so, their

     . construction details shall be appended to this procedure.

l l l 1 Q O Test Plan, Document No. A-000150. Page 8 of 156

i

                                                                                                                                . .d.

t O ,g

                                                                                 .                                                G L_          t A               1 1       a!            I O

L > L to e r., d

        '                                                                                                                         s I

p ( 1 J t J t e g 4 W 80 X L, O - 3 g y l e - as e

                                                                                                   $                              I
                                                                            n                    v                      ,       7
                 ,            L            & J              KJ        t                       "f.                         e 1
                                                                               <              0 o

E 1 sp $

                                                                                                                           =

I P ' Y o

                                                                               $,             >    w Y                                                                                   ) h sU l_        aa               aJ         t       eJ l                                           -

I P E O I &5 S 1 5 l s f I M l l

                                ,            r               r           )
  • i 6, 6. m I '-

O

                                                       &        Y W
                     .,                                '4       4
                      /                                d Y

u Y l I rd 8 ,

                                                                                                  ~#

Test Plan, Document No. A-000150, Page 9 of 156 l . _ _ . . . _

l 4 T ( ) v e of W 2

          \                 _        _

M 3 " L 5 6 C. O 3 *J e y L a i a V5 , r0 4 Y f 2.-  :

e. t I (s

i LJ nn 3 _ e , M< U N d 3 = w  : ( ) .. . 3 A eI U

                                                  $            J >R r

I E Q l ae

  • u
                                                  '=

F  %-- M l h l I I y ,a m M i o L -

                                                      ~

I , 1 Test Plan, Document No. A-000150, Page 10 of 156 1

d se l l .

  • l I

o'. \ 2 d N

d.  ;

P .. 3G

                    '                                          @                                                                           h
   ]                                                           b                                                                           O G            -                                   W
            ~N R                                        :       I L      ___

p

                                                            ... g N           C                                                                                                                                ..
             .-                                                                                                                             3 j

r-l -

                                                                                                        &                       3  y u

p -

                                                                                                                                >   =

e 3 0 LJ Y $ b E u w s - L ---

                                                          @$           CL-g
                                                                                  ^y L-     =

W @e W Is

o. &
l. t j s  !

I f' h --. q, 3  :: L. / I I O \ - s

            -4                              \
 @                                                                                             I
                                                                                                      ~-   ~

l i L __ _ _ _ ' so c A O / I )4 o _l

                           .:p      /vn A >2 Test Plan, Document No. A-000150, Page 11 of 156

t d e y W h,

              \                        f~
                                       ,                              9 2
                                      ~                               *n         +4
                   -                                              am ,
                                                                      ~'

k b 0 D Yvt 7 E l _ o y W Y O O

                  =                                               u       I v

I' A 3y t . O h t* %J ,

                                                                      &                             ^ s 4                                                                                       -   T
    ..                                                                                  yw *5 i     r 2

o' y J

         @                                                                  h            d 8

ii A __ s i

        .9 i

P N-- r l d i C l - -o I b <> git m O N n - o

               /

C Test Plan, Document No. A-000150, Page 12 of 156

Figure 5.5 O (TO BE SUPPLIED LATER) b r 7 i t O t I l { c, l l l lP .. l l O Test Plan, Document No. A-000150, Page 13 of 156

6.0 DATA. DATA ANALYSIS, AND REPORTING TestinC is divided into two groups of tests, one to gain an under-standing of the dynamic characteristics of the test raceway (resonance or pre l imir.ary ) , the other to investigate the response of the test cable tray configuration when subjected to various seismic input levels (seismic and b fragility tests). 6.1 Resonance (Preliminary) Testing, Test Data and Data Analysis Appropriate channels of information (accelerometers or displacement transducers) will be analyzed to determine resonant frequencies and damping ratios of the test raceway. Response accelerations will be compared with input accelerations via spectral analysis to determine the dynamic charac-teristics of the system. Data will be in the form of X-Y plots of input and response, transfer functions, and/or phase relationships. These data I will be summarized and tabulated so that meaningful information can be extracted with minimal review. Band-limited randon input motion will be j , used to identify resonant frequencies and damping ratios. fg Once the resonant frequencies of the system being tested have been identified, the system will be held at resonance (sine-dwell testing). Response accelerations will be compared with input accelerations at reso-l j nance to determine the shape (s) of the response (mode shapes) and to esti-mate modal participation factors. 6.2 Seisric Testing, Test Data and Data Analysis 6.2.1 Input Motion

    .           Simulated-seismic motion (as prescribed by the unbroadened response spectrum' curves and time histories of Appendix A) will be input simulta-neously in three orthogonal directions.        For the initial seismic test, the boundary condition shall simulate fixed connections, the level of tray fill shall be the minimum (i.e., 10% of the maximum), and the peak acceleration i     level of the simulated-seismic motion shall be scaled to the OBE ZPA (refer to Appendix A for OBE and SSE RRS).

The simulated-seismic motion shall be applied to the test specimen for a duration of about 30 seconds, corresponding to the total duration of the three time histories provided in Appendix A. l Test Plan Document No. A-000150 Page 14 of 156

6.2.2 Amplitude Seismic Tests for other levels of simulated-seismic motion will be performed (i.e., motion scaled to the OBE ZPA and 1.0 x SSE ZPA). 6.2.3 Cable Fill U The above tests (i.e., both the Frequency Tests and Seismic Tests) will be performed at other tray fill levels (i.e., 30%, 50%, 754, and 100% I of maximum fill). 6.2.4 Boundary Conditions Selected preliminary and earthquake tests (i.e. both the Resonance Tests and Seismic Tests at extreme values of tray fill level) will be per-formed with a second boundary condition (i.e., simulated pinned connections). 6.2.5 Test Data and Data Analysis Data will consist of the following: 6.2.5.1 Response spectra of shake table motion shall be calculated at var-ious damping values to quantify the level and frequency content of the seismic load used for each test. As a minimum, a response spectrum shall be calculated for each orthogonal direction at the raceway's anchorage elevations ( 3 in.) at each of two levels of ' l# damping which bound the level of damping measured. Typically, these would be computed TRS at 44 for OBE events and 74 for SSE events plus (TBD*) for each seismic level (OBE or SSE) such that (TBDS) > the anticipated damping for that level based on prelini-nary (resonance) test data extrapolation to seismic levels and/or experience gained during previous seismic tests. If the shake table's action is not uniform over the length of the table, then spectra shall be calculated at a sufficient number of locations to p accurately quantify the seismic load used in the tests. Response

   ~

spectra shall be plotted for inclusion in the test report. O Test Plan. Document No. A-000150 Page 15 of 156

6.2.5.2 Peak response acceleration shall be extracted from each measure-ment location for each test and tabulated for inclusion in the test report. 6.2.5.3 Transmissibility (transfer function) plots shall be calculated between test specimen response and shake table excitation for each b orthogonal direction. In general, test specimen response measured at tray mid-span locations shall be used. Shake table excitation from more than one location shall be used to calculate transmissi-bility, if the shake table's motion is not uniform over the length of the table. 6.2.5.4 Using the transmissibility plots of Item 6.2.5.3 above, damping for the dominant modes of the test specimen can be calculated. Modal damping shall be calculated as follows: (a) from the width of the magnitude of transmissibility function at the half-power level of each resonance peak (i.e., D= (f 2 -f 1 )/2fn, where f2 fl = frequency width of the reso-nance peak at the half-power level and fn = natural frequency V of the dominant mode of interest), and (b) from the magnitude of the transmissibility function at each resonance peak (i.e., lH(f)l n

                                                                     =

[(1 + 4D*)/4D8]%. where lH(fn)l = magnitude of the transmissibility function at the natural frequency, f n. of a domins.. .:. ode and D = fraction of critical damping). 6.2.5.5 Damping values calculated from Item 6.2.5.4 above shall be verified by the bounding results of Item 6.2.5.1. In other words, the measured response in the dominant mode (s) of vibration should be bound by the predicted response (TRS) calcu-lated at damping values less than and greater than the actual modal damping. p 6.2.5.6 Time histories of the measured variables (input and response values) shall be plotted for all seismic and fragility level tests l over the time of the events. l l l l Test Plan, Document No. A-000150. Page 16 of 156 l l

j 6.3 Prrrility Testing, Test Data cnd Date Anelynis After completion of the preliminary (resonance) and seismic tests, O fragility level testing shall be performed. All fragility level testing shall be performed on test raceways at 100% cable fill with pinned boundary i conditions only, b 6.3.1 Input Motion I Simulated-seismic motion (as prescribed by the unbroadened response spectrum curves and time histories of Appendix A) shall be applied simulta-r neously in three orthogonal directions with a peak acceleration level equal to approximately 1.2 times the SSE ZPA. 6.3.2 Inspection Test specimen inspection for damage / failure shall be made. 6.3.3 Further Testing Fragility tests and damage inspections shall be repeated as described above until failure of the test specimen occurs, using increasingly higher levels of seismic Ic i (20% incremental increases) or the limits of the R-4 shake table are reached. I 6.3.4 Test Data and Data Analysis Data recorded during fragility tests shall be processed per Section 6.2.5, Seismic Test requirements, for the level of fragility test which caused test speclaen failure (or the highest level which could be obtained [ due to shake table limitations). If failure of the test specimen occurs, then the type and nature of the mode of failure will be determined and I i documented in the test report, along with an estimate of the vibration amplitude which caused failure to occur. N O Test Plan, Document No. A-000150 Page 17 of 156

7.0 PROCEDURE The following represents the testing sequence (procedure) that will be used: however, in the unlikely event of an occurrence that is deemed likely to cause nonacceptance, several contingencies have been provided in Section 9.0. Exercising any of those contingencies will cause a deviation y in the test plan that will be noted in the chronological log (Section 10.0). In addition, some of the individual tests that follow may be deleted if, in the judgment of both ANCO and client (or designated client representative), the data would not add to an understanding of the system { response. Conversely, individual tests may be added if, in the judgment of both ANCO and client, the data would be necessary to gain an understanding of the system response. Notations of the deletions / additions will be made In the chronological log. Additional test case (s) may be added to the pro-cedure and appended hereto. 7.1 Setup, Case 1 Date ANCO Client 7.1.1 An approved copy of this procedure is on site, and ANCO QA procedures as discussed in Section 2.0, are in affect. 7.1.2 Install Case 1 on R-4 shake table as per appropriate Sections 5.0, 8.3, and Appendix A. 7.1.3 Calibrate all measuring transducers

 !          as per 8.2.

7.1.4 Torque all assembly bolts as per 8.3. 7.1.5 Verify shape of TRS. 7.1.6 Install minimum cable (104) and tie down as per 8.3. 7.2 Preliminary and Earthquake Tests, l g Case 1, Fixed Boundary Conditions, lot Cable Loading g 7.2.1 Input coupled transverse and vertical n random motion at 0.05, 0.10, 0.15, 0.20, 0.25. 0.35, and 0.45 gras, approx. 120 seconds at each level. Record accelerometer data on FM tape. Test Plan, Document No. A-000150, Page 18 of 156

Date ANCO Client 7.2.1.1 Determine transverse and vertical resonant frequencies and damping ratios. 7.2.1.2 Note any system degradation per Section 10.0: repair and retorque assembly bolts as required. 7.2.2 Input steady-state sinusoidal motion at approx. 0.10 g coupled (T/V) only for approx. 30 seconds at each resonant frequency identified in 7.2.1.1. Record on FM tape. 7.2.2.1 Determine response (mode) shapes and estimate modal participation factors. 7.2.2.2 Repeat 7.2.1.2 (repair and retorque). 7.2.3 Input longitudinal random motion at

   '             O.05, 0.10, 0.15. 0.20. 0.25. 0.35, and 0.45 gras, approx. 120 seconds at each level. Record accelerometer data on                                      .

g FM tape. t 7.2.3.1 Determine longitudinal resonant frequencies and damping ratios. 7.2.3.2 Repeat 7.2.1.2 (repair and retorque). ,,__

 ,8      7.2.4   Input steady-state sinusoidal motion at approx. 0.10 g longitudinal (L) k               only for approx. 30 seconds at each resonant frequency identified in 7.2.3.1. Record on FM tape.

7.2.4.1 Letermine response (mode) shapes and

   '               estimate modal participation factors.

j l 7.2.4.2 Repeat 7.2.1.2 (repair and retorque) 7.2.5 Input simulated seismic motion in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration level of the motion is scaled to (1/2) i I the CBE ZPA. Store on digital tape. O Test Plan, Document No. A-000150, Page 19 of 156

Date ANCO Client

     -- 7.2.5.1   Compute TRS at 4% and at (TBD4), the latter based on observed damping during preliminary testing such that (TBD*) 1 anticipated system damping.

Compute TRS at all anchor locations. 7.2.5.2 Verify TRS = 1/2 OBE RRS. [j 7.2.5.3 Backup data on digital tape using the test number in the file name. 7.2.5.4 Repeat 7.2.1.2 (repair and retorque). 7.2.6 Input simulated seismic motion sealed to approx. 1.0 x OBE ZPA as in 7.2.5. Store data on digital tape. 7.2.6.1 Repeat 7.2.5.1 (compute TRS). l i 7.2.6.2 Repeat 7.2.5.2 (verify TRS). I e 7.2.6.3 Repeat 7.2.5.3 (backup data). J 7.2.6.4 Repeat 7.2.1.2 (repair and retorque). J 7.2.7 Input simulated seismic motion scaled to 1.5 x OBE ZPA as in 7.2.5. 7.2.7.1 Repeat 7.2.5.1 (compute TRS). 4 7.2.7.2 Repeat 7.2.5.2 (verify TRS). 7.2.7.3 Repeat 7.2.5.3 (backup data). 7.2.7.4 Repeat 7.2.1.2 (repair and retorque).

 '~

7.2.8 Input simulated seismic motion scaled to l 1.0 x SSE ZPA as in 7.2.5. 7.2.8.1 Compute TRS at 74 and at (TBD4), the latter based on anticipated damping

 ;                such that (TBD*) 1 anticipated values.

Compute TRS at all anchor locations. 7.2.8.2 Verify TRS > SSE RRS. 7.2.8.3 Repeat 7.2.5.3 (backup data). pg 7.2.8.4 Repeat 7.2.1.2 (repair and retorque). l l t Test Plan, Document No. A-000150, Page 20 of 156 i

7.3 Preliminary and Earthouake Tests, Case 1. Fixed Boundary Conditions. 30% Cable Loading Date ANCO Client 7.3.1 Increase cable loading to 30% of maximum and repeat 7.2.1 [ random dwell tests, (T/V) input]. 7.3.1.1 Repeat 7.2.1.1 (det. f t , 4 1). 7.3.1.2 Repeat 7.2.1.2 (repair and retorque). I 7.3.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.3.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.3.2.2 Repeat 7.2.1.2 (repair and retorque). 7.3.3 Repeat 7.2.3 [ random dwell test. (L) input]. 7.3.3.1 Repeat 7.2.3.1 (det, f i , $ 1). 7.3.3.2 Repeat 7.2.1.2 (repair and retorque). 7.3.4 Repeat 7.2.4 [ sine dwell. test, (L) input]. 7.3.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). i 7.3.4.2 Repeat 7.2.1.2 (repair and retorque). g 7.3.5 Repeat 7.2.5 (input 1/2 OBE). , , 7.3.5.1 Repeat 7.2.5.1 (compute TRS). ! 7.3.5.2 Repeat 7.2.5.2 (verify TRS). ( 7.3.5.3 Repeat 7.2.5.3 (backup data). l I 7.3.5.4 Repeat 7.2.1.2 (repair and retorque). i. 7.3.6 Repeat 7.2.6 (input 1.0 x OBE). 7.3.6.1 Repeat 7.2.5.1 (compute TRS).

  ,   7.3.6.2   Repeat 7.2.5.2 (verify TRS).

7.3.6.3 Repeat 7.2.5.3 (backup data). I lO l l Test Plan, Document No. A-000150 Page 21 of 156

Date ANCO Client 7.3.6.4 Repeat 7.2.1.2 (repair and retorque). 7.3.7 Repeat 7.2.7 (input 1.5 x OBE). 7.3.7.1 Repeat 7.2.5.1 (compute TRS). 7.3.7.2 Repeat 7.2.5.2 (verify TRS). W 7.3.7.3 Repeat 7.2.5.3 (backup data). 7.3.7.4 Repeat 7.2.1.2 (repair and retorque). 7.3.8 Repeat 7.2.8 (input 1.0 x SSE). 7.3.8.1 Repeat 7.2.8.1 (compute TRS). 7.3.8.2 Repeat 7.2.8.2 (verify TRS). 7.3.8.3 Repeat 7.2.5.3 (backup c'3ta). 7.3.8.4 Repeat 7.2.1.2 (repair and retorque). 7.4 Preliminary and Earthquake Tests, Case 1. Fixed Boundary Conditions. 50% Cable Loading l /""\,

      \d    7.4.1   Increase cable loading to 50% of maximum and repeat 7.2.1 [ random dwell tests. (T/V) input].

7.4.1.1 Repeat 7.2.1.1 (det. f i . 4 1). !'l 7.4.1.2 Repeat 7.2.1.2 (repair and retorque). >\ 7.4.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.4.2.1 Repeat 7.2.2.1 (mode shapes and participation factors).

 !                     Repeat 7.2.1.2 (repair and retorque).

7.4.2.2 L. ~ 7.4.3 Repeat 7.2.3 [ random dwell test. (L) input]. 7.4.3.1 Repeat 7.2.3.1 (det. f i , $ 1). 7.4.3.2 Repeat 7.2.1.2 (repair and retorque). 7.4.4 Repeat 7.2.4 [ sine dwell, (L) input]. O Test Plan, Document No. A-000150, Page 22 of 156

Date ANCO Client 7.4.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.4.4.2 Repeat 7.2.1.2 (repair and retorque). 7.4.5 Repeat 7.2.5 (input 1/2 OBE). g 7.4.5.1 Repeat 7.2.5.1 (compute TRS). 7.4.5.2 Repeat 7.2.5.2 (verify TRS). 7.4.5.3 Repeat 7.2.5.3 (backup data).

 "1          7.4.5.4      Repeat 7.2.1.2 (repair and retorque).

7.4.6 Repeat 7.2.6 (input 1.0 x OBE). t t 7.4.6.1 Repeat 7.2.5.1 (compute TRS). 7.4.6.2 Repeat 7.2.5.2 (verify TRS). } , 7.4.6.3 Repeat 7.2.5.3 (backup data). . 7.4.6.4 Repeat 7.2.1.2 (repsir and retorque). 7 7.4.7 Repeat 7.2.7 (input 1.5 x OBE). iO 7.4.7.1 Repeat 7.2.5.1 (compute TRS). 7.4.7.2 Repeat 7.2.5.2 (verify TRS). l' 7.4.7.3 Repeat 7.2.5.3 (backup data). l 7.4.7.4 Repeat 7.2.1.2 (repair and retorque). 7.4.8 Repeat 7.2.8 (input 1.0 x SSE). 7.4.8.1 Repeat 7.2.8.1 (compute TRS). 7.4.8.2 Repeat 7.2.8.2 (verify TRS). 5 7.4.8.3 Repeat 7.2.5.3 (backup data). 7.4.8.4 Repeat 7.2.1.2 (repair and retorque). I P O Test Plan Document No. A-000150, Page 23 of 15 6

7.5 Preliminary and Earthquake Tests, Case 1, Fixed Boundary Conditions. 754 Cable Loading Date ANCO Client 7.5.1 Increase cable loading to 75% of maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. 7.5.1.1 Repeat 7.2.1.1 (det. f i, pi). 7.5.1.2 Repeat 7.2.1.2 (repair and retorque). I 7.5.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input). p 7.5.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.5.2.2 Repeat 7.2.1.2 (repair and retorque). 7.5.3 Repeat 7.2.3 [ random dwell test, (L) input]. f 7.5.3.1 Repeat 7.2.3.1 (det, f i , A i). 7.5.3.2 Repeat 7.2.1.2 (repair and retorque). 7.5.4 Repeat 7.2.4 [ sine dwell test, (L) input). 7.5.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.5.4.2 Repeat 7.2.1.2 (repair and retorque). K. 7.5.5 Repeat 7.2.5 (input 1/2 OBE). l 7.5.5.1 Repeat 7.2.5.1 (compute TRS). 7.5.5.2 Repeat 7.2.5.2 (verify TRS). 7.5.5.3 Repeat 7.2.5.3 (backup data). 7.5.5.4 Repeat 7.2.1.2 (repair and retorque). 7.5.6 Repeat 7.2.6 (input 1.0 x OBE). 7.5.6.1 Repeat 7.2.5.1 (compute TRS). 7.5.6.2 Repeat 7.2.5.2 (verify TRS). 7.5.6.3 Repeat 7.2.5.3 (backup data). 7.5.6.4 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 24 of 156 t

Date ANCO Client g h 7.5.7 Repeat 7.2.7 (input 1.5 x OBE). 7.5.7.1 Repeat 7.2.5.1 (compute TRS). 7.5.7.2 Repeat 7.2.5.2 (verify TRS). 7.5.7.3 Repeat 7.2.5.3 (backup data). U 7.5.7.4 Repeat 7.2.1.2 (repair and retorque). 7.5.8 Repeat 7.2.8 (input 1.0 x SSE). 7.5.8.1 Repeat 7.2.8.1 (compute TRS). 7.5.8.2 Repeat 7.2.8.2 (verify TRS). 7.5.8.3 Repeat 7.2.5.3 (backup data). 7.5.8.4 Repeat 7.2.1.2 (repair and retorque), i 7.6 Preliminary and Earthquake Tests. Case 1. 3 Fixed Boundary Conditions, 100% Cable I Loading w 7.6.1 Increase cable loading to 100% of p maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. 7.6.1.1 Repeat 7.2.1.1 (det. fi 41 ). 7.6.1.2 Repeat 7.2.1.2 (repair and retorque). 7.6.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. !g 7.6.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). l 7.6.2.2 Repeat 7.2.1.2 (repair and retorque). i . ll 7.6.3 Repeat 7.2.3 [ random dwell test, (L) i input]. l 7.6.3.1 Repeat 7.2.3.1 (det. f i , S i). 7.6.3.2 Repeat 7.2.1.2 (repair and retorque). 7.6.4 Repeat 7.2.4 [ sine dwell, (L) input]. 7.6.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). Test Plan. Document No. A-000150 Page 25 of 156

Date ANCO Client

         -- 7.6.4.2    Repeat 7.2.1.2 (repair and retorque).

7.6.5 Repeat 7.2.5 (input 1/2 OBE). 7.6.5.1 Repeat 7.2.5.1 (compute TRS). 7.6.5.2 Repeat 7.2.5.2 (verify TRS). bd 7.6.5.3 Repeat 7.2.5.3 (backup data). 7.6.5.4 Repeat 7.2.1.2 (repair and retorque). 7.6.6 Repeat 7.2.6 (input 1.0 x OBE). 7.6.6.1 Repeat 7.2.5.1 (compute TRS). 7.6.6.2 Repeat 7.2.5.2 (verify TRS). 7.6.6.3 Repeat 7.2.5.3 (backup data).

 ,          7.6.6.4    Repeat 7.2.1.2 (repair and retorque).

7.6.7 Repeat 7.2.7 (input 1.5 x OBE). 7.6.7.1 Repeat 7.2.5.1 (compute TRS). 7.6.7.2 Repeat 7.2.5.2 (verify TRS). O 7.6.7.3 Repeat 7.2.5.3 (backup data). i 7.6.7.4 Repeat 7.2.1.2 (repair and retorque). 7.6.8 Repeat 7.2.8 (input 1.0 x SSE). I 7.6.8.1 Repeat 7.2.8.1 (compute TRS). 7.6.8.2 Repeat 7.2.8.2 (verify TRS). 7.6.8.3 Repeat 7.2.5.3 (backup deta). 7.6.8.4 Repeat 7.2.1.2 (repair and retorque). l' l

                     ~

7.7 Preliminary and Earthauake Tests. Case 1. Pinned Boundary Conditions. 100% Cable I 7.7.1 Loading Loosen and lock anchor attachment bolts hl so that there is approx. 1/8-in, gap , .- between shake table mounting surface and hanger attachment surface. t O Test Plan. Document No. A-000150. Page 26 of 156

D2ta ANCO Client 7.7.2 Input coupled transverse and vertical randon motion at approx. 0.25 grms, approx. 120 seconds. Record accelero-neter data on FM tape. 7.7.2.1 Verify (via XFER of structural response to shake table input) that the lowest g transverse structural mode of vibration is within t,15 percent of either:

1) the peak of the SSE RRS, or
2) the dominant transverse tray resonant frequency. Adjust anchor bolt gap as required to achieve (1) and/or (2).

t Record final gaps and subsequent lowest transverse structural frequency. s 7.7.2.2 Repeat 7.2.1.2 (repair and retorque). O 7.7.3 Repeat 7.2.2 [ sine dwell tests. (T/V) input] at frequencies identified in 7.7.2.1. 7.7.3.1 Repeat 7.2.2.1 (mode shapes and g participation factors). 7.7.3.2 Repeat 7.2.1.2 (repair and retorque).

 . 7.7.4                   Input longitudinal randon action at approx. 0.25 gras, approx.120 seconds.

Record on FM tape. 7.7.4.1 Repeat 7.2.3.1 (det. f t , $ 1). I 7.7.4.2 Repeat 7.2.1.2 (repair and retorque). 7.7.5 Repeat 7.2.4 [ sine dwell test, (L) input]. IM l L, 7.7.5.1 Repeat 7.2.4.1 (mode shapes and participation factors). l l l Test Plan, Document No. A-000150, Page 27 of 156

Date ANCO Client 7.7.5.2 Repeat 7.2.1.2 (repair and retorque). 7.7.6 Repeat 7.2.8 (input 1.0 x SSE). 7.7.6.1 Repeat 7.2.8.1 (compute TRS). 7.7.6.2 Repeat 7.2.8.2 (verify TRS). N 7.7.6.3 Repeat 7.2.5.3 (backup data). 7.7.6.4 Repeat 7.2.1.2 (repair and retorque). 7.8 Fragility Level Tests. Case 1 Pinned

   &                         Boundary Conditions. 1004 Cable Loading 7.8.1   Input simulated seismic motion in the (T/V) + (L) directions for approx. 30 I

seconds such that the peak acceleration I level of the motion is scaled to 1.2 x SSE ZPA. Store all data on digital i tape.

 .1 7.8.1.1   Repeat 7.2.8.1 (compute TRS).

7.8.1.2 Verify TRS > 1.2 x SSE RRS. l 7.8.1.3 Repeat 7.2.5.3 (backup data). 7.8.1.4 Note any system / component damage per Section 10.0. Photograph and attach ( photographs of any damaged areas to the test log. Repair and retorque bolts as required. l 7.8.2 Continued fragility level testing. If lp significant structural damage has not occurred, continue increasing the ampli-

 -                             tude of simulated seismic action by j                             approx. 20% increments and repeating the sequence of 7.8.1 through 7.8.1.4 until significant structural damage does occur, or the limits of the shake table are reached. Record the sequence below.

Note damage (if any) in Section 10.0. G O Test Plan, Document No. A-000150 Page 28 of 156 l

i Date ANCO Client O b f I i i O a M 7.9 Data Reduction. Case 1 7.9.1 Preliminary testing data reduction. I Appropriate channels of information have been reduced to hard copy and are contained in the test log book, by test number, to determine trends in dominant resonant frequencies, their modal damping ration, the shape of their response (mode shapes), and their participation () factors. Test Plan, Document No. A-000150, Page 29 of 156 i

Date ANCO Client O 7.9.2 Earthquake testing data reduction. All appropriate TRS have been computed and plotted and the time histories of input and response have been rendered to hard copy and are contained in the test log, by test number, so that peak values of response can be extracted and g) dynamic amplification estimated. 7.9.3 Fragility level data reduction. All f appropriate TRS have been computed and

  • plotted, all time histories of input and response have been rendered to hard copy,
   ,r           and all damage (where appropriate) has been photographed and are contained in the test log, by test number.

7.10 Teardown and Removal of Case 1 I 7.10.1 Perform post-test calibrations on all [ sensing transducers in accordance with Section 8.2. j 7.10.1.1 Post-test calibrations are within limits established in Section 8.2, () where found beyond limits, note below: Data Channel No. Xducer S/N

  • Difference i

l i i l L. I i i 7.10.2 Remove Case 1 from R-4 Shake Table. [ 7.11 Setup. Case 2 7.11.1 An approved copy of this procedure is on site, and ANCO QA procedures as discussed in Section 2.0, are in effect. O Test Plan Document No. A-000150, Page 30 of 156

Date ANCO Client 7.11.2 Install Case 2 on R-4 shake table as O per appropriate Sections 5.0, 8.3, and Appendix A. 7.11.3 Calibrate all measuring transducers as per 8.2. g 7.11.4 Torque all assembly bolts as per 8.3. i 1 7.11.5 Verify shape of TRS. 7.11.6 Install minimum cable (10%) and tie down as per 8.3. F 7.12 Preliminary and Earthquake Tests. Case 2. Fixed Boundary Conditions.

 .              104 Cable Loading s

7.12.1 Input coupled transverse and vertical [ random motion at 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 gras, i [ approx. 120 seconds at each level.

 ,                Record accelerometer data on FM tape.

7.12.1.1 Determine transverse and vertical l resonant frequencies and damping ( ratios. 7.12.1.2 Note any system degradation in Section 10.0; repair and retorque l' t-assembly bolts as required, l 7.12.2 Input steady-state sinusoidal action l g at approx. 0.10 g coupled (T/V) only for approx. 30 seconds at each resonant frequency identified in 7.2.1.1.

     .            Record on FM tape.

7.12.2.1 Determine response (mode) shapes and estimate modal participation factors. , s. 7.12.2.2 Repeat 7.2.1.2 (repair and retorque). l 7.12.3 Input longitudinal random motion at 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 gms, approx. 120 seconds at each level. Record accelerometer data on h FM tape. 7.12.3.1 Determine longitudinal resonant frequencies and damping ratios. O Test Plan, Document No. A-000150, Page 31 of 156 l 1

l l Date ANCO Client 7.12.3.2 Repeat 7.2.1.2 (repair and retorque). 7.12.4 Input steady-state sinusoidal motion at approx. 0.10 g longitudinal (L) only for approx. 30 seconds at each resonant frequency identified in 7.2.3.1. Record on FM tape. U 7.12.4.1 Determine response (mode) shapes and estimate modal participation factors. 7.12.4.2 Repeat 7.2.1.2 (repair and retorque).

  ,             7.12.5   Input simulated seismic action in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration                                  ,

i level of the motion is scaled to (1/2) the OBE 2PA. Store on digital tape. I 7.12.5.1 Compute TRS at 4% and at (TBD%), the latter based on observed damping [ during preliminary testing such that (TBD%) > anticipated systen damping. Compute TRS at all anchor locations. 7.12.5.2 Verify TRS = 1/2 OBE RRS. 7.12.5.3 Backup data on digital tape using the test number in the file name. f a, 7.12.5.4 Repeat 7.2.1.2 (repair and retorque). __ i 7.12.6 Input slaulated seismic motion sealed to approx. 1.0 x OBE ZPA as in 7.2.5.

      ,                  Store data on digital tape.

7.12.6.1 Repeat 7.2.5.1 (compute TRS). l 7.12.6.2 Repeat 7.2.5.2 (verify TRS). . I 7.12.6.3 Repeat 7.2.5.3 (backup data). 7.12.6.4 Repeat 7.2.1.2 (repair and retorque), l 7.12.7 Input slaulated seismic action scaled to 1.5 x OBE ZPA as in 7.2.5. 7.12.7.1 Repeat 7.2.5.1 (compute TRS). 7.12.7.2 Repeat 7.2.5.2 (verify TRS). O Test Plan Document No. A-000150 Page 32 of 156 i

s Date ANCO Client , I 7.12.7.3 Repeat 7.2.5.3 (backup data). O 7.12.7.4 Repeat 7.2.1.2 (repair and retorque). 7.12.8 Input simulated seismic motion scaled to 1.0 x SSE ZPA as in 7.2.5. g 7.12.8.1 Compute TRS at 7% and at (TBD4), the latter based on anticipated damping such that (TBD*) 1 anticipated values. Compute TRS at all anchor locations. 7.12.8.2 Verify TRS 1 SSE RRS. 7.12.8.3 Repeat 7.2.5.3 (backup data). 7.12.8.4 Repeat 7.2.1.2 (repair and retorque). 7.13 Preliminary and Earthquake Tests. Case 2. Fixed Boundary Conditions, 30% Cable Loading g.) 7.13.1 Increase cable Joading to 30% of

    '             maximum and repeat 7.2.1 [ random dwell tests, (T/V) input].

() 7.13.1.1 Repeat 7.2.1.1 (det, f i . pi). 7.13.1.2 Repeat 7.2.1.2 (repair and retorque). 7.13.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. i 7.13.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.13.2.2 Repeat 7.2.1.2 (repair and retorque). 7.13.3 Repeat 7.2.3 [ random dwell test. (L) input]. 7.13.3.1 Repeat 7.2.3.1 (det, f i , Ai). 7.13.3.2 Repeat 7.2.1.2 (repair and retorque). 7.13.4 Repeat 7.2.4 [ sine dwell test. (L) input]. 4 7.13.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.13.4.2 Repeat 7.2.1.2 (repair and retcrque). Test Plan, Document No. A-000150, Page 33 of 156

Date ANCO Client 7.13.5 Repeat 7.2.5 (input 1/2 OBE). 7.13.5.1 Repeat 7.2.5.1 (compute TRS). 7.13.5.2 Repeat 7.2.5.2 (verify TRS). 7.13.5.3 Repeat 7.2.5.3 (backup data). b Repeat 7.2.1.2 (repair and retorque). 7.13.5.4 7.13.6 Repeat 7.2.6 (input 1.0 x OBE). 7.13.6.1 Repeat 7.2.5.1 (compute TRS). 7.13.6.2 Repeat 7.2.5.2 (verify TRS). 7.13.6.3 Repeat 7.2.5.3 (backup data). 7.13.6.4 Repeat 7.2.1.2 (repair and retorque). 7.13.7 Repeat 7.2.7 (input 1.5 x OBE). 7.13.7.1 Repeat 7.2.5.1 (compute TRS). 7.13.7.2 Repeat 7.2.5.2 (verify TRS). 7.13.7.3 Repeat 7.2.5.3 (backup data). 7.13.7.4 Repeat 7.2.1.2 (repair and retorque). 7.13.8 Repeat 7.2.8 (input 1.0 x SSE). 9 7.13.8.1 Repeat 7.2.8.1 (compute TRS). 7.13.8.2 Repeat 7.2.8.2 (verify TRS). 7.13.8.3 depeat 7.2.5.3 (backup data). [, 7.13.8.4 Repeat 7.2.1.2 (repair and retorqv?). f 7.14 Preliminary and Earthquake Tests. Case 2.

 '           Fixed Boundary Conditions. 50% Cable Loadins 7.14.1   Increase cable loading to 50% of 7

maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. g 7.14.1.1 Repeat 7.2.1.1 (det. f i , $1). 7.14.1.2 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 34 of 156

Date ANCO Client 7.14.2 Repeat 7.2.2 (sine dwell tests, (T/V) input]. 7.14.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.14.2.2 Repeat 7.2.1.2 (repair and retorque). D 7.14.3 Repeat 7.2.3 (random dwell test, (L) E input). L 7.14.3.1 Repeat 7.2.3.1 (det. f t , $ 1 ). ( 7.14.3.2 Repeat 7.2.1.2 (repair and retorque). 7.14.4 Repeat 7.2.4 (sine dwell, (L) input]. 7.14.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.14'.4.2 Repeat 7.2.1.2 (repair and retorque). 7.14.5 Repeat 7.2.5 (input 1/2 OBE). t 7.14.5.1 Repeat 7.2.5.1 (compute TRS). O v 7.14.5.2 Repeat 7.2.5.2 (verify TRS). 7.14.5.3 Repeat 7.2.5.3 (backup data). 7.14.5.4 Repeat 7.2.1.2 (repair and retorque). 7.14.6 Repeat 7.2.6 (input 1.0 x OBE). 7.14.6.1 Repeat 7.2.5.1 (compute TRS) 7.14.6.2 Repeat 7.2.5.2 (verify TRS). 7.14.6.3 Repeat 7.2.5.3 (backup data). 7.14.6.4 Repeat 7.2.1.2 (repair and retorque). 7.14.7 Repeat 7.2.7 (input 1.5 x OBE). 7.14.7.1 Repeat 7.2.5.1 (compute TRS). 7.14.7.2 Repeat 7.2.5.2 (verify TRS). 7.14.7.3 Repeat 7.2.5.3 (backup data). 7.14.7.4 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 35 of 156

I i l i l Date ANCO Client 7.14.8 Repeat 7.2.8 (input 1.0 x SSE). 7.14.8.1 Repeat 7.2.8.1 (compute TRS). 7.14.8.2 Repeat 7.2.8.2 (verify TRS). 7.14.8.3 Repeat 7.2.5.3 (backup data). U 7.14.8.4 Repeat 7.2.1.2 (repair and retorque). 7.15 Preliminary and Earthquake Tests. Case 2. Pixed Boundary Conditions. 754 Cable 7 Loading 7.15.1 Increase cable loading to 75% of maximum and repeat 7.2.1 [ random dwell tests, f (T/V) input]. 7.15.1.1 Repeat 7.2.1.1 (det, f,4). i 3

 ,           7.15.1.2     Repeat 7.2.1.2 (repair and retorque).

7.15.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.15.2.1 Repeat 7.2.2.1 (mode shapes and y participation factors). 7.15.2.2 Repeat 7.2.1.2 (repair and retorque). 7.15.3 Repeat 7.2.3 [ random dwell test, (L) input].

   ~

7.15.3.1 Repeat 7.2.3.1 (det, f i , $ 3 ). 7.15.3.2 Repeat 7.2.1 2 (repair and retorque). 7.15.4 Repeat 7.2.4 (sine dwell test, (L) input]. 7.15.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.15.4.2 Repeat 7.2.1.2 (repair and retorque). 7.15.5 Repeat 7.2.5 (input 1/2 OBE). 7.15.5.1 Repeat 7.2.5.1 (compute TRS). ! 7.15.5.2 Repeat 7.2.5.2 (verify TRS). 7.15.5.3 Repeat 7.2.5.3 (backup data). Test Plan, Document No. A-000150, Page 36 of 156

Date ANCO Client 7.15.5.4 Repeat 7.2.1.2 (repair and retorque) . 7.15.6 Repeat 7.2.6 (input 1.0 x OBE). 7.15.6.1 Repeat 7.2.5.1 (compute TRS). 7.15.6.2 Repeat 7.2.5.2 (verify TRS). d 7.15.6.3 Repeat 7.2.5.3 (backup data).

   !   7.15.6.4   Repeat 7.2.1.2 (repair and retorque).

7.15.7 Repeat 7.2.7 (input 1.5 x OBE). 7.15.7.1 Repeat 7.2.5.1 (compute TRS). 7.15.7.2 Repeat 7.2.5.2 (verify TRS). 7.15.7.3 Repeat 7.2.5.3 (backup data). 7.15.7.4 Repeat 7.2.1.2 (repair and retorque). 7.15.8 Repeat 7.2.8 (input 1.0 x SSE). 7.15.8.1 Repeat 7.2.8.1 (' compute TRS). g-'g 7.15.8.2 Repeat 7.2.8.2 (verify TRS). V 7.15.8.3 Repeat 7.2.5.3 (backup data). 7.15.8.4 Repeat 7.2.1.2 (repair and retorque) 7.16 Preliminary and Earthquake Tests. Case 2 Fixed Boundary Conditions. 100% Cable Loading 7.16.1 Increase cable loading to 100% of maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. [' 7.16.1.1 Repeat 7.2.1.1 (det. f i , Ag). 7.16.1.2 Repeat 7.2.1.2 (repair and retorque). 7.16.2 Repeat 7.2.2 [ sine dwell tests, (T/V) input). 1 7.16.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.16.2.2 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 37 of 156

Date ANCO Client 7.16.3 Repeat 7.2.3 [randos dwell test, (L) input]. 7.16.3.1 Repeat 7.2.3.1 (det, f,4). i 3 7.16.3.2 Repeat 7.2.1.2 (repair and retorque). g 7.16.4 Repeat 7.2.4 [ sine dwell. (L) input]. 7.16.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.16.4.2 Repeat 7.2.1.2 (repair and retorque). T e 7.16.5 Repeat 7.2.5 (input 1/2 OBE). 7.16.5.1 Repeat 7.2.5.1 (compute TRS). 7.16.5.2 Repeat 7.2.5.2 (verify TRS). i 7.16.5.3 Repeat 7.2.5.3 (backup data). f 7.16.5.4 Repeat 7.2.1.2 (repair and retorque). f 4 7.16.6 Repeat 7.2.6 (input 1.0 x OBE). 7.16.6.1 Repeat 7.2.5.1 (compute TRS). 7.16.6.2 Repeat 7.2.5.2 (verify TRS). I Repeat 7.2.5.3 (backup data). 7.16.6.3 i 7.16.6.4 Repeat 7.2.1.2 (repair and retorque). i 7.16.7 Repeat 7.2.7 (input 1.5 x OBE). 7.16.7.1 Repeat 7.2.5.1 (compute TRS). 7.16.7.2 Repeat 7.2.5.2 (verify TRS). 7.16.7.3 Repeat 7.2.5.3 (backup data). 7.16.7.4 Repeat 7.2.1.2 (repair and retorque). 7.16.8 Repeat 7.2.8 (input 1.0 x SSE). l g) 7.16.8.1 Repeat 7.2.8.1 (compute TRS). 3 7.16.8.2 Repeat 7.2.8.2 (verify TRS). O Test Plan, Document No. A-000150, Page 38 of 156

Date ANCO Client 7.16.8.3 Repeat 7.2.5.3 (backup data). 7.16.8.4 Repeat 7.2.1.2 (repair and retorque). 7.17 Preliminary and Earthquake Tests, Case 2, Pinned Boundary Conditions, 100% Cable Loading b 7.17.1 Loosen and lock anchor attachment bolts so that there is approx. 1/8-in. gap between shake table mounting surface f 5 and hanger attachment surface. f 7.17.2 Input coupled transverse and vertical ' i random motion at approx. 0.25 grms, approx. 120 seconds. Record accelero-meter data on FM tape. 7.17.2.1 Verify (via XPER of structural response to shake table input) that the lowest [ transverse structural mode of vibration is within + 15 percent of either:

1) the peak of the SSE RRS, or
2) the dominant transverse tray resonant h frequency. Adjust anchor bolt gap as required to achieve (1) and/or (2).

Record final gaps and subsequent lowest transverse structural frequency. O I 7.17.2.2 Repeat 7.2.1.2 (repair and retorque). 7.17.3 Repeat 7.2.2 [ sine dwell tests. (T/V) input] at frequencies identified in 7.7.2.1. 7.17.3.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.17.3.2 Repeat 7.2.1.2 (repair and retorque). 7.17.4 Input longitudinal randon motion at approx. 0.25 g, approx. 120 seconds. Record on FM tape. O Test Plan, Document No. A-000150 Page 39 of 156

x Dtte ANCO Client 7.17.4.1 Repeat 7.2.3.1 (det. f i , A i). 7.17.4.2 Repeat 7.2.1.2 (repair and retorque). 7.17.5 Repeat 7.2.4 (sine dwell test, (L) input]. 7.17.5.1 Repeat 7.2.4.1 (mode shapes and b participation factors). 7.17.5.2 Repeat 7.2.1.2 (repair and retorque). 7.17.6 Repeat 7.2.8 (input 1.0 x SSE). l 7.17.6.1 Repeat 7.2.8.1 (compute TRS). 7.17.6.2 Repeat 7.2.8.2 (verify TRS). 7.17.6.3 Repeat 7.2.5.3 (backup data). 7.17.6.4 Repeat 7.2.1.2 (repair and retorque). 7.18 Fragility Level Tests. Case 2. Pinned 80undary Conditions. 1004 Cable Loading 7.18.1 Input simulated seismic motion in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration Ox level of the motion is scaled to 1.2 x SSE ZPA. Store all data on digital e tape. 7.18.1.1 Repeat 7.2.8.1 (compute TRS). I 7.18.1.2 Verify TRS > 1.2 x SSE RRS. 7.18.1.3 Repeat 7.2.5.3 (backup data). 7.18.1.4 Note any systes/ component damage in Section 10.0. Photograph and attach photographs of any damaged areas to the test log. Repair and retorque bolts as required.

                ~
 ,     7.18.2     Continued fragility level testing. If significant structural damage has not occurred, continue increasing the ampli-tude of simulated seismic action by
   @              approx. 20% increments and repeating the sequence of 7.8.1 through 7.8.1.4 until significant structural damage does occur, or the limits of the shake table are O

Test Plan, Document No. A-000150 Page 40 of 156

Date ANCO Client reached. Record the sequence below. O Note damage (if any) in Section 10.0. b c.

 'O i

b sie L 9 O Test Plan, Document No. A-000150 Page 41 of 156

7.19 Data Reduction, Case 2 Date ANCO Client s 7.19.1 Preliminary testing data reduction.

     ,             Appropriate channels of information have been reduced to hard copy and are contained in the test log book, by test number, to determine trends in dominant resonant frequencies, their modal damping ratios, the shape of their response (mode shapes), and their participation b)                  factors.

7.19.2 Earthquake testing data reduction. P All appropriate TRS have been computed and plotted, and the time histories of input and response have been rendered F. to hard copy and are contained in the test log, by test number, so that peak values of response can be extracted and dynamic amplification estimated. 7.19.3 Fragility level data reduction. All appropriate TRS have been computed and plotted, all time histories of input and response have been rendered to hard copy, and all damage (where appropriate) has been photographed and are contained in the test log, by test number. O 7.20 Teardown and Removal of Case 2 7.20.1 Perform post-test calibrations on all sensing transducers in accordance with Section 8.2. [ 7.20.1.1 Post-test calibrations are within limits established in Section 8.2, where found beyond limits, note below: Data Channel No. Xducer S/N

  • Difference

{ I 9 . O Test Plan, Document No. A-000150, Page 42 of 156 1

Dtte ANCO Client 7.20.2 Remove Case 2 from R-4 Shake Table. O 7.21 Setup. Case 3 7.21.1 An approved copy of this procedure is on site, and ANCO QA procedures, as discussed in Section 2.0, are in effect. hs 7.21.2 Install Case 3 on R-4 shake table as per appropriate Sections 5.0, 8.3, and P. Appendix A. 7.21.3 Calibrate all measuring transducers r as per 8.2. 7.21.4 Torque all assembly bolts as per 8.3. l

  .       7.21.5   Verify shape of TRS.

L 7.21.6 Install minimum cable (10%) and tie I down as per 8.3.

     ,. 7.22 Preliminary and Earthquake Tests.

Case 3. Fixed Boundary Conditiens. 10% Cable Loading

      '() 7.22.1   Input coupled transverse and vertical random motion at 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 grms,
              -    approx. 120 seconds at each level.

j Record accelerometer data on FM tape.

      ,   7.22.1.1   Determine transverse and vertical resonant frequencies and damping ratios, g

7.22.1.2 Note any system degradation in I, Section 10.0; repair and retorque assembly bolts as required. 7.22.2 Input steady-state sinusoidal motion L, at approx 0.10 g coupled (T/V) only for approx. 30 seconds at each resonant frequency identified in 7.2.1.1. ' Record on FM tape. 7.22.2.1 Determine response (mode) shapes and Nl . estimate modal participation factors. 7.22.2.2 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 43 of 156

Date ANCO Client 7.22.6.3 Repeat 7.2.5.3 (backup data). 7.22.6.4 Repeat 7.2.1.2 (repair and retorque). 7.22.7 Input simulated seismic motion scaled to 1.5 x OBE ZPA as in 7.2.5. 7.22.7.1 Repeat 7.2.5.1 (compute TRS). 7.22.7.2 Repeat 7.2.5.2 (verify TRS). T. 7.22.7.3 Repeat 7.2.5.3 (backup data). a 7.22.7.4 Repeat 7.2.1.2 (repair and retorque). 7.22.8 Input simulated seismic motion scaled to 1.0 x SSE ZPA as in 7.2.5. 7.22.8.1 Compute TRS at 7% and at (TBDt), the latter based on anticipated damping such that (TBDt) 1 anticipated values.

. Compute TRS at all anchor locations.

7.22.8.2 Verify TRS 1 SSE RRS. 7.22.8.3 Repeat 7.2.5.3 (backup data). 7.22.8.4 Repeat 7.2.1.2 (repair and retorque). 7.23 Preliminary and Earthquake Tests. Case 3. Fixeu Boundary Conditions. 30% Cable oading I 7.23.1 Increase cable loading to 30% of J6 maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. 7.23.1.1 Repeat 7.2.1.1 (det. f i , $g). 7.23.1.2 Repeat 7.2.1.2 (repair and retorque). 7.23.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.23.2.1 Repeat 7.2.2.1 (mode shapes and participation factors).

  )             7.23.2.2    Repeat 7.2.1.2 (repair and retorque).

7.23.3 Repeat 7.2.3 [ random dwell test, (L) input]. Test Plan Document No. A-000150, Page 45 of 156 i

Date ANCO Client 7.23.3.1 Repeat 7.2.3.1 (det. fg. 41). 7.23.3.2 Repeat 7.2.1.2 (repair and retorque). 7.23.4 Repeat 7.2.4 [ sine dwell test, (L) input]. g 7.23.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.23.4.2 Repeat 7.2.1.2 (repair and retorque). 7.23.5 Repeat 7.2.5 (input 1/2 OBE). F yr 7.23.5.1 Repeat 7.2.5.1 (compute TRS). j 7.23.5.2 Repeat 7.2.5.2 (verify TRS). i 7.23.5.3 Repeat 7.2.5.3 (backup data). I 7.23.5.4 Repeat 7.2.1.2 (repair and retorque). t p 7.23.6 Repeat 7.2.6 (input 1.0 x OBE). 7.23.6.1 Repeat 7.2.5.1 (compute TRS). t

     ,      7.23.6.2   Repeat 7.2.5.2 (verify TRS).

7.23.6.3 Repeat 7.2.5.3 (backup data). 7.23.6.4 Repeat 7.2.1.2 (repair and retorque). 7.23.7 Repeat 7.2.7 (input 1.5 x OBE). I i 7.23.7.1 Repeat 7.2.5.1 (compute TRS). i 7.23.7.2 Repeat 7.2.5.2 (verify TRS). I 7.23.7.3 Repeat 7.2.5.3 (backup data). 7.23.7.4 Repeat 7.2.1.2 (repair and retorque).

l. 7.23.8 Repeat 7.2.8 (input 1.0 x SSE).

7.23.8.1 Repeat 7.2.8.1 (compute TRS). 7.23.8.2 Repeat 7.2.8.2 (verify TRS). 5 7.23.8.3 Repeat 7.2.5.3 (backup data). \ .. 7.23.8.4 Repeat 7.2.1.2 (repair and retorque). lO l Test Plan, Document No. A-000150 Page 46 of 156

7.24 Preliminary and Earthauake Tests. Case 3, Pixed Boundary Conditions 50s Cable (} Loading Date ANCO Client 7.24.1 Increase cable loading to 50% of maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. 7.24.1.1 Repest 7.2.1.1 (det. f i. $1). O Repeat 7.2.1.2 (repair and retorque). 7.24.1.2 I 7.24.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.24.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.24.2.2 Repeat 7.2.1.2 (repair and retorque). 7.24.3 Repeat 7.2.3 [ random dwell test. (L) input]. W" 7.24.3.1 Repeat 7.2.3.1 (det. f . Ai).i s' 7.24.3.2 Repeat 7.2.1.2 (repair and retorque). { Repeat 7.2.4 [ sine dwell. (L) input]. 7.24.4 e 7.24.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.24.4.2 Repeat 7.2.1.2 (repair and retorque). 7.24.5 Repeat 7.2.5 (input 1/2 OBE). l l 7.24.5.1 Repeat 7.2.5.1 (compute TRS). 7.24.5.2 Repeat 7.2.5.2 (verify TRS). 7.24.5.3 Repeat 7.2.5.3 (backup data). l 7.24.5.4 Repeat 7.2.1.2 (repair and retorque). i 7.24.6 Repeat 7.2.6 (input 1.0 x OBE). 7.24.6.1 Repeat 7.2.5.1 (compute TRS). 7.24.6.2 Repeat 7.2.5.2 (verify TRS). 7.24.6.3 Repeat 7.2.5.3 (backup data). 7.24.6.4 Repeat 7.2.1.2 (repair and retorque) . () 7.24.7 Repeat 7.2.7 (input 1.5 x OBE). l Test Plan. Document No. A-000150. Page 47 of 156 l

                                            -   - _ _ , _ - - - _ _ - _ _ . , -   . _ - . __--__,.-_-wy,-,7y,--        - - - - - - - , _

Date ANCO Client 7.22.3 Input longitudinal random motion at 0.05, 0.10, 0.15. 0.20, 0.25. 0.35. and 0.45 grms, approx. 120 seconds at each level. Record accelerometer data on FM tape. 7.22.3.1 Determine longitudinal resonant frequencies and damping ratios. 7.22.3.2 Repeat 7.2.1.2 (repair and retorque). 7.22.4 Input steady-state sinusoidal motion at approx. 0.10 g longitudinal (L)

  ,--                                  only for approx. 30 seconds at each
  "                                    resonant frequency identified in 7.2.3.1. Record on FM tape.

7.22.4.1 Determine response (mode) shapes and estimate modal participation factors.

    '                         7.22.4.2   Repeat 7.2.1.2 (repair and retorque).

l ' 7.22.5 Input slaulated seismic motion in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration level of the motion is scaled to (1/2) the OBE ZPA. Store on digital tape. 7.22.5.1 Compute TRS at 44 and at (TBD%). the latter based on observed damping during preliminary testing such that (TBD4) > anticipated system damping. j Compute TRS at all anchor locations. [, 7.22.5.2 Verify TRS = 1/2 OBE RRS. 7.22.5.3 Backup data on digital tape using the test number in the file name. { 7.22.5.4 Repeat 7.2.1.2 (repair and retorque). i I 7.22.6 -Input simulated seismic motion sealed to approx. 1.0 x OBE ZPA as in 7.2.5. Store data on digital tape. lg l g' Repeat 7.2.5.1 (compute TRS). l 7.22.6.1 7.22.6.2 Repeat 7.2.5.2 (verify TRS). O Test Plan, Document No. A-000150, Page 44 of 156

Date ANCO Client 7.24.7.1 Repeat 7.2.5.1 (compute TRS). 7.24.7.2 Repeat 7.2.5.2 (verify TRS). 7.24.7.3 Repeat 7.2.5.3 (backup data). 7.24.7.4 Repeat 7.2.1.2 (repair and retorque). 7.24.8 Repeat 7.2.8 (input 1.0 x SSE). 7.24.8.1 Repeat 7.2.8.1 (compute TRS). 7.24.8.2 Repeat 7.2.8.2 (verify TRS). F 7.24.8.3 Repeat 7.2.5.3 (backup data). 7.24.8.4 Repeat 7.2.1.2 (repair and retorque). 7.25 Preliminary and Earthquake Tests. Case 3 Fixed Boundary Conditions. 75% Cable Loading

   .,             7.2d.1   Increase cable loading to 75% of maximum and repeat 7.2.1 [ random dwell tests, i                       (T/V) input].

O 7.25.1.1 Repeat 7.2.1.1 (det. f i , $1). 7.25.1.2 Repeat 7.2.1.2 (repair and retorque). 7.25.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. l t l 7.25.2.1 Repeat 7.2.2.1 (mode shapes and L participation factors). 7.25.2.2 Repeat 7.2.1.2 (repair and retorque). 7.25.3 Repeat 7.2.3 [ random dwell test. (L)

input].

i I i 7.25.3.1 Repeat 7.2.3.1 (det. f i , 41). 7.25.3.2 Repeat 7.2.1.2 (repair and retorque). 1 7.25.4 Repeat 7.2.4 [ sine dwell test, (L) input]. l 7.25.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). , 7.25.4.2 Repeat 7.2.1.2 (repair and retorque). l Test Plan, Document No. A-000150, Page 48 of 156 { 1

7.25.5 Repeat 7.2.5 (input 1/2 OBE). 7.25.5.1 Repeat 7.2.5.1 (compute TRS). 7.25.5.2 Repeat 7.2.5.2 (verify TRS). 7.25.5.3 Repeat 7.2.5.3 (backup data). 7.25.5.4 Repeat 7.2.1.2 (repair and retorque). b 7.25.6 Repeat 7.2.6 (input 1.0 x OBE). 7.25.6.1 Repeat 7.2.5.1 (compute TRS). 7.25.6.2 Repeat 7.2.5.2 (verify TRS). w 7.25.6.3 Repeat 7.2.5.3 (backup data). 7.25.6.4 Repeat 7.2.1.2 (repair and retorque). 7.25.7 Repeat 7.2.7 (input 1.5 x OBE). 7.25.7.1 Repeat 7.2.5.1 (compute TRS). 7.25.7.2 Repeat 7.2.5.2 (verify TRS). 7.25.7.3 Repeat 7.2.5.3 (backup data).

   ,    7.25.7.4   Repeat 7.2.1.2 (repair and retorque).

7.25.8 Repeat 7.2.8 (input 1.0 x SSE). 7.25.8.1 Repeat 7.2.8.1 (compute TRS). I 7.25.8.2 Repeat 7.2.8.2 (verify TRS). 7.25.8.3 Repeat 7.2.5.3 (backup data). u-7.25.8.4 Repeat 7.2.1.2 (repair and retorque). 7.26 Preliminary and Earthquake Tests. Case 3, Fixed Boundary Conditions. 100% Cable Loadins 7.26.1 Increase cable loading to 100% of maximum and repeat 7.2.1 [ random dwell tests, (T/V) input]. 7.26.1.1 Repeat 7.2.1.1 (det. f i . Ag). 7.26.1.2 Repeat 7.2.1.2 (repair and retorque). 7.26.2 Repeat 7.2.2 (sine dwell tests. (T/V) v input]. I Test Plan, Document No. A-000150, Page 49 of 156

7.26.2.1 Rzpgat 7.2.2.1 (cada shipas atnd participation factors). 7.26.2.2 Repeat 7.2.1.2 (repair and retorque). 7.26.3 Repeat 7.2.3 [ random dwell test. (L) input). 7.26.3.1 Repeat 7.2.3.1 (det, fi 41). 7.26.3.2 Repeat 7.2.1.2 (repair and retorque).

  , 7.26.4   Repeat 7.2.4 [ sine dwell. (L) input].

7.26.4.1 Repeat 7.2.4.1 (mode shapes and 3 participation factors). 7.26.4.2 Repeat 7.2.1.2 (repair and retorque). '. 7.26.5 Repeat 7.2.5 (input 1/2 OBE). 7.26.5.1 Repeat 7.2.5.1 (compute TRS). 7.26.5.2 Repeat 7.2.5.2 (verify TRS). [ 7.26.5.3 Repeat 7.2.5.3 (backup data). 7.26.5.4 Repeat 7.2.1.2 (repair and retorque). 7.26.6 Repeat 7.2.6 (input 1.0 x OBE). 7.26.6.1 Repeat 7.2.5.1 (compute TRS). 7.26.6.2 Repeat 7.2.5.2 (verify TRS). 7.26.6.3 Repeat 7.2.5.3 (backup data). 7.26.6.4 Repeat 7.2.1.2 (repair and retorque). 7.26.7 Repeat 7.2.7 (input 1.5 x OBE). 7.26.7.1 Repeat 7.2.5.1 (compute TRS). 7.26.7.2 Repeat 7.2.5.2 (verify TRS). [ 7.26.7.3- Repeat 7.2.5.3 (backup data). 7.26.7.4 Repeat 7.2.1.2 (repair and retorque). 7.26.8 Repeat 7.2.8 (input 1.0 x SSE). 7.26.8.1 Repeat 7.2.8.1 (compute TRS). 7.26.8.2 Repeat 7.2.8.2 (verify TRS). O Test Plan. Document No. A-000150. Page 50 of 156

7.26.8.3 Repeat 7.2.5.3 (backup data). 7.26.8.4 Repeat 7.2.1.2 (repair and retorque). 7.27 Preliminary and Earthquake Tests. Case 3 Pinned Boundary Conditions. 2004 Cable Loading Date ANCO Client y 7.27.1 Loosen and lock anchor attachment bolts so that there is approx. 1/8-in. gap between shake table sounting surface and hanger attachment surface. 7.27.2 Input coupled transverse and vertical random motion at approx. 0.25 gras, approx. 120 seconds. Record accelero-meter data on FM tape. 4 7.27.2.1 Verify (via XPER of structural response t to shake table input) that the lowest transverse structural mode of vibration is within 1 15 percent of either:

1) the peak of the SSE RRS. or
2) the dominant transverse tray resonant frequency. Adjust anchor bolt gap as f' required to achieve (1) and/or (2).

Record final gaps and subsequent lowest , transverse structural frequency. 4 i. I 1 7.27.2.2 Repeat 7.2.1.2 (repair and retorque). ! 7.27.3 Repeat 7.2.2 (sine dwell tests. (T/V) input] at frequencies identified in I -7.7.2.1. 7.27.3.1 Repeat 7.2.2.1 tsode shapes and

-E g                                 participation factors).

i 7.27.3.2 Repeat 7.2.1.2 (repair and retorque).

        '~                         Input longitudinal randon action at 7.27.4 approx. 0.25 g. approx. 120 seconds.

Record on FM tape. I Test Plan, Document No. A-000150, Page 51 of 156

7.27.4.1 Repeat 7.2.3.1 (det. f i , 4 1 ). 7.27.4.2 Repeat 7.2.1.2 (repair and retorque). 7.27.5 Repeat 7.2.4 [ sine dwell test, (L) input). 7.27.5.1 Repeat 7.2.4.1 (mode shapes and participation factors). C 7.27.5.2 Repeat 7.2.1.2 (repair and retorque). 7.27.6 Repeat 7.2.8 (input 1.0 x SSE). 7.27.6.1 Repeat 7.2.8.1 (compute TRS). 1 7.27.6.2 Repeat 7.2.8.2 (verify TRS). 7.27.6.3 Repeat 7.2.5.3 (backup data). 7.27.6.4 Repeat 7.2.1.2 (repair and retorque). [ 7.28 Fragility Level Tests, Case 3. Pinned ( Boundary Conditions. 100% Cable Loading

  ,                                     7.28.1                   Input simulated seismic motion in the l'                                                             (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration r\                                                          level of the motion is scaled to 1.2 x SSE ZPA. Store all data on digital tape.

7.28.1.1 Repeat 7.2.8.1 (compute TRS). 7.28.1.2 Verify TRS > 1.2 x SSE RRS. 7.28.1.3 Repeat 7.2.5.3 (backup data), t 7.28.1.4 Note any system / component damage in Section 10.0. Photograph and attach photographs of any damaged areas to the test log. Repair and retorque bolts as required. 7.28.2 Continued fragility level testing. If significant structural damage has not I occurred, continue increasing the ampli-tude of simulated seismic motion by approx. 20% increments and repeating the sequence of 7.8.1 through 7.8.1.4 until S significant structural damage does occur.

  '~

or the limits of the shake table are reached. Record the sequence below. Note damage (if any) in Section 10.0. O Test Plan, Document No. A-000150, Page 52 of 156

O = I f n O I l I 7.29 Data Reduction, Case 3 7.29.1 Preliminary testing data reduction. Appropriate channels of information have been reduced to hard copy and are contained in the test log book, by test number, to determine trends in dominant resonant frequencies, their modal damping Test Plan, Document No. A-000150, Page 53 of 156

ratios, the shape of their response (mode shapes), and their participation factors. 7.29.2 Earthquake testing data reduction. All appropriate TRS have been computed and plotted, and the time histories of input and response have been rendered to hard copy and are contained in the j f test log, by test number, so that peak values of response can be extracted and dynamic amplification estimated. 7.29.3 Fragility level data reduction. All appropriate TRS have been computed and

   ~

plotted, all time histories of input and response have been rendered to hard copy, and all damage (where appropriate) has been photographed and are contained in the test log, by test number. f 7.30 Teardown and Removal of Case 3 7.30.1 Perform post-test calibrations on all sensing transducers in accordance with l Section 8.2. t 7.30.1.1 Post-test calibrations are within

                            ;1mits established in Section 8.2, where found beyond limits, note below:

I Data Channel No. Xducer S/N 4 Difference I I 7.30.2 Remove Case 3 from R-4 Shake Table. l l 7.31 Setup. Case 4 7.31.1 An approved copy of this procedure is on site, and ANCO QA procedures, as discussed in Section 2.0, are in effect. Test Plan, Document No. A-000150, Page 54 of 156

7.31.2 Install Case 4 on R-4 shake table as per appropriate Sections 5.0, 8.3. and Appendix A. [) 7.31.3 Calibrate all measuring transducers as per 8.2. 7.31.4 Torque all assembly bolts as per 8.3. [3 7.31.5 Verify shape of TRS. 7.31.6 Install minimum cable (10%) and tie t down as per 8.3. f' 7.32 Preliminary and Earthquake Tests. Case 4. Fixed Boundary Conditions, 10% Cable Loading 7.32.1 Input coupled transverse and vertical random motion at 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 gras, l approx. 120 seconds at each level. L- Record accelerometer data on FM tape. 7.32.1.1 Determine transverse and vertical resonant frequencies and damping ratios. l 7.32.1.2 Note any system degradation in Section 10.0; repair and retorque assembly bolts as required. 7.32.2 Input steady-state sinusoidal motion at approx. 0.10 g coupled (T/V) only

 , !,                                       for approx. 30 seconds at each resonant frequency identified in 7.2.1.1.
 '-                                         Record on FM tape.

t 7.32.2.1 Determine response (mode) shapes and estimate modal participation factors. l 7.32.2.2 Repeat 7.2.1.2 (repair and retorque). 7.32.3 -Input longitudinal random motion at 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 gras, approx.120 seconds at each [ level. Record accelerometer data on FM tape. 7.32.3.1 Determine longitudinal resonant frequencies and dumping ratios. 7.32.3.2 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 55 of 156

7.32.4 Input steady-state sinusoidal motion at approx. 0.10 g longitudinal (L) () only for approx. 30 seconds at each resonant frequency identified in 7.2.3.1. Record on FM tape. 7.32.4.1 Determine response (mode) shapes and estimate modal participation factors. 7.32.4.2 Repeat 7.2.1.2 (repair and retorque). {} 7.32.5 Input simulated seismic motion in the (T/V) + (L) directions for approx. 30 i o seconds such that the peak acceleration level of the motion is scaled to (1/2) [ the OBE ZPA. Store on digital tape. l 7.32.5.1 Compute TRS at 44 and at (TBD*). the latter based on observed damping during preliminary testing such that (TBD4) > anticipated system damping. Compute TRS at all anchor locations. 7.32.5.2 Verify TRS = 1/2 OBE RRS. I 7.32.5.3 Backup data on digital tape using the test number in the file name. 4 7.32.5.4 Repeat 7.2.1.2 (repair and retorque). 7.32.6 Input simulated seismic motion sealed to approx. 1.0 x OBE ZPA as in 7.2.5. Store data on digital tape. 7.32.6.1 Repeat 7.2.5.1 (compute TRS). 7.32.6.2 Repeat 7.2.5.2 (verify TRS). t 7.32.6.3 Repeat 7.2.5.3 (backup data). 7.32.6.4 Repeat 7.2.1.2 (repair and retorque). 7.32.7 Input simulated seismic motion scaled to 1.5 x OBE ZPA as in 7.2.5. 7.32.7.1 Repeat 7.2.5.1 (compute TRS). 7.32.7.2 Repeat 7.2.5.2 (verify TRS).

r. '

7.32.7.3 Repeat 7.2.5.3 (backup data). 7.32.7.4 Repeat 7.2.1.2 (repair and retorque). () 7.32.8 Input simulated seismic motion scaled to 1.0 x SSE ZPA as in 7.2.5. Test Plan, Document No. A-000150, Page 56 of 156

i 7.32.8.1 Cerpute TRS ct 74 cnd at (TBD4), tha latter based on anticipated damping such that (TBD4) 1 anticipated values. Compute TRS at all anchor locations. 7.32.8.2 Verify TRS 1 SSE RRS. 7.32.8.3 Repeat 7.2.5.3 (backup data). 7.32.8.4 Repeat 7.2.1.2 (repair and retorque) g 7.33 Preliminary and Earthquake Tests, fa Case 4. Fixed Boundary Conditions, 30% Cable Loading 7.33.1 Increase cable loading to 30% of maximum and repeat 7.2.1 (random dwell tests. (T/V) input]. I l 7.33.1.1 Repeat 7.2.1.1 (det. f i , 41). pp 7.33.1.2 Repeat 7.2.1.2 (repair and retorque).

!G
   "               7.33.2          Repeat 7.2.2 (sine dwell tests. (T/V) i input].

F { 7.33.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.33.2.2 Repeat 7.2.1.2 (repair and retorque).

        ;          7.33.3          Repeat 7.2.3 (random dwell test. (L) input].

I 7.33.3.1 Repeat 7.2.3.1 (det. f i , A1). 7.33.3.2 Repeat 7.2.1.2 (repair and retorque). ( I 7.33.4 Repeat 7.2.4 (sine dwell test, (L) input]. 7.33.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.33.4.2 Repeat 7.2.1.2 (repair and retorque). 7.33.5 Repeat 7.2.5 (input 1/2 OBE). 7.33.5.1 Repeat 7.2.5.1 (compute TRS). 7.33.5.2 Repeat 7.2.5.2 (verify TRS). 7.33.5.3 Repeat 7.2.5.3 (backup data). O Test Plan, Document No. A-000150, Page 57 of 156

7.33.5.4 rip 22t 7.2.1.2 (rspair and raterque). 7.33.6 Repeat 7.2.6 (input 1.0 x OBE). 7.33.6.1 Repeat 7.2.5.1 (compute TRS). 7.33.6.2 Repeat 7.2.5.2 (verify TRS). 7.33.6.3 Repeat 7.2.5.3 (backup data). b 7.33.6.4 Repeat 7.2.1.2 (repair and retorque).

  • 7.33.7 Repeat 7.2.7 (input 1.5 x OBE).

7.33.7.1 Repeat 7.2.5.1 (compute TRS). I 7.33.7.2 Repeat 7.2.5.2 (verify TRS). 7.33.7.3 Repeat 7.2.5.3 (backup data). 7.33.7.4 Repeat 7.2.1.2 (repair and retorque). 7.33.8 Repeat 7.2.8 (input 1.0 x SSE). 7.33.8.1 Repeat 7.2.8.1 (compute TRS). 7.33.8.2 Repeat 7.2.8.2 (verify TRS).

     ;   7.33.8.3   Repeat 7.2.5.3 (backup data).

7.33.8.4 Repeat 7.2.1.2 (repair and retorque). 7.34 Preliminary and Earthauake Tests. Case 4 Fixed Boundary Conditions. 50% Cable Loading . t

   ,     7.34.1   Increase cable loading to 50% of maximum and repeat 7.2.1 (randoa dwell tests. (T/V) input].

7.34.1.1 Repeat 7.2.1.1 (det. f i , 4 1 ). 7.34.1.2 Repeat 7.2.1.2 (repair and retorque). 7.34.2 Repeat 7.2.2 (sine dwell tests, (T/V)

!                 input].

7.34.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). g 7.34.2.2 Repeat 7.2.1.2 (repair and retorque). 7.34.3 Repeat 7.2.3 [ random dwell test, (L) input]. Test Plan, Document No. A-000150. Page 58 of 156

7.34.3.1 R2p20t 7.2.3.1 (d2t. f i . Ag). 7.34.3.2 Repeat 7.2.1.2 (repair and retorque). 7.34.4 Repeat 7.2.4 [ sine dwell. (L) input]. 7.34.4.1 Repeat 7.2.4.1 (aode shapes and participation factors). 7.34.4.2 Repeat 7.2.1.2 (repair and retorque). {) 7.34.5 Repeat 7.2.5 (input 1/2 OBE). [. 7.34.5.1 Repeat 7.2.5.1 (compute TRS).

    ?- 7.34.5.2   Repeat 7.2.5.2 (verify TRS).

l 7.34.5.3 Repeat 7.2.5.3 (backup data). 7.34.5.4 Repeat 7.2.1.2 (repair and retorque). 7.34.6 Repeat 7.2.6 (input 1.0 x OBE). 7.34.6.1 Repeat 7.2.5.1 (compute TRS). l 7.34.6.2 Repeat 7.2.5.2 (verify TRS). 7.34.6.3 Repeat 7.2.5.3 (backup data). I 7.34.6.4 Repeat 7.2.1.2 (repair and retorque). 7.34.7 Repeat 7.2.7 (input 1.5 x OBE). I 7.34.7.1 Repeat 7.2.5.1 (compute TRS). l 7.34.7.2 Repeat 7.2.5.2 (verify TRS).

,s 7.34.7.3 Repeat 7.2.5.3 (backup data).

7.34.7.4 Repeat 7.2.1.2 (repair and retorque). 7.34.8 Repeat 7.2.8 (input 1.0 x SSE). 7.34.8.1 Repeat 7.2.8.1 (compute TRS) . L. 7.34.8.2 Repeat 7.2.8.2 (verify TRS). 7.34.8.3 Repeat 7.2.5.3 (backup data). 7.34.8.4 Repest 7.2.1.2 (repair and retorque). O Test Plan. Document No. A-000150. Page 59 of 156

                                                              -w ---- - - - - , - -- ,w---m w-    ,       , , , -

7.35 Prelininery rnd Eerthourk7 Tests, Ces* 4 Fixed Boundary Conditions. 75% Cable Loading Date ANCO Client 7.35.1 Increase cable loading to 75% of maximum and repeat 7.2.1 [randos dwell tests, (T/V) input]. 7.35.1.1 Repeat 7.2.1.1 (det. f i , $ 1 ). _ h 7.35.1.2 Repeat 7.2.1.2 (repair and retorque). 7.35.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. e 7.35.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.35.2.2 Repeat 7.2.1.2 (repair and retorque). 7.35.3 Repeat 7.2.3 [randos dwell test. (L) input]. _, 7.35.3.1 Repeat 7.2.3.1 (det, f i , $ 1). 7.35.3.2 Repeat 7.2.1.2 (repair and retorque). t. 7.35.4 Repeat 7.2.4 [ sine dwell test, (L) input]. b] 7.35.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). t 7.35.4.2 Repeat 7.2.1.2 (repair and retorque). 7.35.5 Repeat 7.2.5 (input 1/2 OBE). 7.35.5.1 Repeat 7.2.5.1 (compute TRS). 7.35.5.2 Repeat 7.2.5.2 (verify TRS). 7.35.5.3 Repeat 7.2.5.3 (backup data). 7.35.5.4 Repeat 7.2.1.2 (repair and retorque). _ 7.35.6 Repeat 7.2.6 (input 1.0 x OBE). 7.35.6.1 Repeat 7.2.5.1 (compute TRS). 7.35.6.2 Repeat 7.2.5.2 (verify TRS). 7.35.6.3 Repeat 7.2.5.3 (backup data). 7.35.6.4 Repeat 7.2.1.2 (repair and retorqJe). Test Plan, Document No. A-000150. Page 60 of 156

7.35.7 Repeat 7.2.7 (input 1.5 x OBE). 7.35.7.1 Repeat 7.2.5.1 (compute TRS). 7.35.7.2 Repeat 7.2.5.2 (verify TRS). 7.35.7.3 Repeat 7.2.5.3 (backup data). 7.35.7.4 Repeat 7.2.1.2 (repair and retorque). b 7.35.8 Repeat 7.2.8 (input 1.0 x SSE). 7.35.8.1 Repeat 7.2.3.1 (compute TRS). , 7.35.8.2 Repeat 7.2.8.2 (verify TRS). F- 7.35.8.3 Repeat 7.2.5.3 (backup data). 7.35.8.4 Repeat 7.2.1.2 (repair and retorque). 7.36 Preliainary and Earthquake Tests. Case 4 Fixed Boundary Conditions, 1004 Cable Loading

 + 7.36.1   Increase cable loading to 100% of

' saximum and repeat 7.2.1 (random dwell tests. (T/V) input]. 7.36.1.1 Repeat 7.2.1.1 (det. fi $1). 7.36.1.2 Repeat 7.2.1.2 (repair and retorque). 6 7.36.2 Repeat 7.2.2 (sine dwell tests. (T/V) input). J Repeat 7.2.2.1 (mode shapes and 7.36.2.1 . participation factors). 7.36.2.2 Repeat 7.2.1.2 (repair and retorque). 7.36.3 Repeat 7.2.3 [randos dwell test. (L) input]. ' 7.36.3.1 Repeat 7.2.3.1 (det. f . Ai). i 7.36.3.2 Repeat 7.2.1.2 (repair and retorque). 7.36.4 Repeat 7.2.4 (sine dwell. (L) input]. 7.36.4.1 Repeat 7.2.4.1 (mode shapes and

'~

participation factors). 7.36.4.2 Repeat 7.2.1.2 (repair and retorque). Test Plan. Document No. A-000150. Page 61 of 156

7.36.5 Repeat 7.2.5 (input 1/2 OBE). l () 7.36.5.1 Repeat 7.2.5.1 (compute TRS). 7.36.5.2 Repeat 7.2.5.2 (verify TRS). 7.36.5.3 Repeat 7.2.5.3 (backup data). 7.36.5.4 Repeat 7.2.1.2 (repair and retorque).

   )   7.36.6   Repeat 7.2.6 (input 1.0 x OBE).

7.36.6.1 Repeat 7.2.5.1 (compute TRS). 7.36.6.2 Repeat 7.2.5.2 (verify TRS). ____ e-7.36.6.3 Repeat 7.2.5.3 (backup data). 7.36.6.4 Repeat 7.2.1.2 (repair and retorque). 7.36.7 Repeat 7.2.7 (input 1.5 x OBE). 7.36.7.1 Repeat 7.2.5.1 (compute TRS). A 7.36.7.2 Repeat 7.2.5.2 (verify TRS). 7.36.7.3 Repect 7.2.5.3 (backup data). () I 7.36.7.4 Repeat 7.2.1.2 (repair and retorque). 7.36.8 Repeat 7.2.8 (input 1.0 x SSE). i 7.36.8.1 Repeat 7.2.8.1 (compute TRS). 7.36.8.2 Repeat 7.2.8.2 (verify TRS). I t 7.36.8.3 Repeat 7.2.5.3 (backup data). 7.36.8.4 Repeat 7.2.1.2 (repair and retorque). 7.37 Preliminary and Earthauake Tests. Case 4. Pinned Boundary Conditions. 1004 Cable Loading 7.37.1 Loosen and lock anchor attachment bolts so that there is approx. 1/8-in. gap between shake table mounting surface and hanger attachment surface. S 7.37.2 Input coupled transverse and vertical random motion at approx. 0.25 gras, approx. 120 seconds. Record accelero-meter data on FM tape. Test Plan. Document No. A-000150, Page 62 of 156 l

7.37.2.1 Verify (via XPER of structural rssp nse to shake table input) that the lowest transverse structural mode of vibration N is within 1 15 percent of either:

1) the peak of the SSE RRS. or
2) the dominant transverse tray resonant frequency. Adjust anchor bolt gap as required to achieve (1) and/or (2).

Record final gaps and subsequent lowest transverse structural frequency. I 7.37.2.2 Repeat 7.2.1.2 (repair and retorque). j 7.37.3 Repeat 7.2.2 [ sine dwell tests. (T/V) input] at frequencies identified in ,s 7.7.2.1. I 7.37.3.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.37.3.2 Repeat 7.2.1.2 (repair and retorque). , 7.37.4 Input longitudinal randon action at approx. 0.25 g. approx. 120 seconds. I Record on FM tape. 7.37.4.1 Repeat 7.2.3.1 (det. f i . Ag). 7.37.4.2 Repeat 7.2.1.2 (repair and retorque). 7.37.5 Repeat 7.2.4 [ sine dwell test. (L) input]. 7.37.5.1 Repest 7.2.4.1 (mode shapes and [. participation factors).

              ~

7.37.5.2 Repeat 7.2.1.2 (repair and retorque). 7.37.6 Repeat 7.2.8 (input 1.0 x SSE). 7.37.6.1 Repeat 7.2.8.1 (compute TRS). 7.37.6.2 Repeat 7.2.8.2 (verify TRS). 7.37.6.3 Repeat 7.2.5.3 (backup data). O Test Plan, Document No. A-000150. Page 63 of 156

7.37.6.4 Repeat 7.2.1.2 (repair and retorque). O' 7.38 Frarility Level Tests, Case 4. Pinned Boundary Conditions. 1004 Cable Loading 7.38.1 Input slaulated seismic motion in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration level of the motion is scaled to bA 1.2 x SSE ZPA. Store all data on digital tape. 7.38.1.1 Repeat 7.2.8.1 (ccepute TRS).

    -    7.38.1.2    Verify TRS 2 1.2 x SSE RRS.

7.38.1.3 Repeat 7.2.5.3 (backup data). , 7.38.1.4 Note any system / component damage in Section 10.0. Photograph and attach photographs of any damaged areas to the test log. Repair and retorque bolts as required. [. 7.38.2 Continued fragility level testing. If 4 f significant structural damage has not occurred, continue increasing the ampli-g tude of simulated seismic motion by approx. 204 increments and repeating the sequence of 7.8.1 through 7.8.1.4 until significant structural damage does occur, l , ,6 or the limits of the shake table are reached. Record the sequence below. Note damage (if any) in Section 10.0. be s l_ - e O Test Plan Document No. A-000150, Page 64 of 156 l l l

O b I I O 7.39 Data Reduction, Case 4 7.39.1 Preliminary testing data reduction. Appropriate channels of information have been reduced to hard copy and are I contained in the test log book, by test number, to determine trends in dominant ,j resonant frequencies, their modal damping

p. ratios, the shape of their response (mode shapes), and their participation factors.

7.39.2 Earthquake testing data reduction. [ All appropriate TRS have been computed l , and plotted, and the time histories of i input and response have been rendered to hard copy and are contained in the test log, by test number, so that peak values of response can be extracted and dynamic amplification estimated. lf ' 7.39.3 Fragility level data reduction. All appropriate TRS have been computed and plotted, all time histories of input and response have been rendered to hard copy, and all damage (where appropriate) has Test Plan, Document No. A-000150. Page 65 of 156

been photographed and are contained in the test log, by test number. 7.40 Teardown and Removal of Case 4 7.40.1 Perform post-test calibrations on all sensing transducers in accordance with Section 8.2. R 7.40.1.1 Post-test calibrations are within limits established in Section 8.2, where found beyond limits, note below: Data Channel [-- i No. Xducer S/N % Difference i i O 7.40.2 Remove Case 4 from R-4 Shake Table. g 7.41 Setup. Case 5 i 7.41.1 An approved copy of this procedure is on site, and ANCO QA procedures, as discussed in Section 2.0, are in effect. l I 7.41.2 Install Case A on R-4 shake table as per appropriate Sections 5.0. 8.3. and

  '            Appendix A.

7.41.3 Calibrate all measuring transducers

              - as per 8.2.

t 7.41.4 Torque all assembly bolts as per 8.3. 7.41.5 Verify shape of TRS. 7.41.6 Install minimum cable (10%) and tie f down as per 8.3. O Test Plan. Document No. A-000150 Page 66 of 156

l i I l 7.42 Preliminary and Earthquake Tests. l I Case 5. Fixed Boundary Conditions, I 104 Cable Loading 7.42.1 Input coupled transverse and vertical random motion at 0.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 gras, j approx. 120 seconds at each level. Record accelerometer data on FM tape. D 7.42.1.1 Determine transverse and vertical resonant frequencies and damping ratios. 7.42.1.2 Note any system degradation in Section 10.0; repair and retorque j assembly bolts as required. 7.42.2 Input steady-state sinusoidal motion I at approx. 0.10 g coupled (T/V) only I for approx. 30 seconds at each resonant frequency identified in 7.2.1.1. Record on FM tape. 7.42.2.1 Determine response (mode) shapes and estimate modal participation factors. 7.42.2.2 Repeat 7.2.1.2 (repair and retorque).

    .O         7.42.3    Input longitudinal random motion at O.05, 0.10, 0.15, 0.20, 0.25, 0.35, and 0.45 grms, approx. 120 seconds at each level. Record accelerometer data on FM tape.

g 7.42.3.1 Determine longitudinal resonant i frequencies and damping ratios. 7.42.3.2 Repeat 7.2.1.2 (repair and retorque). 7.42.4 Input steady-state sinusoidal motion f at approx. 0.10 g longitudinal (L) only for approx. 30 seconds at each resonant frequency identified in L 7.2.3.1. Record on FM tape. 7.42.4.1 Determine response (sade) shapes and estimate modal participation factors. 7.42.4.2 Repeat 7.2.1.2 (repair r.nd retorque). 7.42.5 Input simulated seismic motion in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration level of the motion is scaled to (1/2) the OBE ZPA. Store on digital tape. Test Plan, Document No. A-000150, Page 67 of 156

I 7.42.5.1 Compute TRS at 4% and at (TBD*), the f latter based on observed damping during preliminary testing such that (TBD%) > anticipated system damping. Compute TRS at all anchor locations. 7.42.5.2 Verify TRS = 1/2 OBE RRS. , 7.42.5.3 Backup data on digital tape using the g test number in the file name. 7.42.5.4 Repeat 7.2.1.2 (repair and retorque). 7.42.6 Input simulated seismic motion sealed to approx. 1.0 x OBE ZPA as in 7.2.5.

  • Store data on digital tape.

7.42.6.1 Repeat 7.2.5.1 (compute TRS). 7.42.6.2 Repeat 7.2.5.2 (verify TRS). 7.42.6.3 Repeat 7.2.5.3 (backup data). [ 7.42.6.4 Repeat 7.2.1.2 (repair and retorque). d 7.42.7 Input simulated seismic motion scaled to 1.5 x OBE ZPA as in 7.2.5. 7.42.7.1 Repeat 7.2.5.1 (compute TRS). - 7.42.7.2 Repeat 7.2.5.2 (verify TRS). 7.42.7.3 Repeat 7.2.5.3 (backup data). 7.42.7.4 Repeat 7.2.1.2 (repair and retorque). 7.42.8 Input simulated seismic motion scaled to 1.0 x SSE ZPA as in 7.2.5. 7.42.8.1 Compute TRS at 74 and at (TBDS), the latter based on anticipated damping such that (TBD%) > anticipated values. Compute TRS at all anchor locations. L 7.42.8.2 Verify TRS > SSE RRS. 7.42.8.3 Repeat 7.2.5.3 Ibackup data). 7.42.8.4 Repeat 7.2.1.2 (repair and retorque) O Test Plan, Document No. A-000150, Page 68 of 156

7.43 Preliminary and Earthquake Tests, Case 5, Fixed Boundary Conditions, 30% Cable Loading 7.43.1 Increase cable loading to 30% of maximum and repeat 7.2.1 [randos dwell tests. (T/V) input). 7.43.1.1 Repeat 7.2.1.1 (det, f . $1). i O 7.43.1.2 Repeat 7.2.1.2 (repair and retorque). 7.43.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. Repeat 7.2.2.1 (mode shapes and [ 7.43.2.1 participation factors).

 <      7.43.2.2             Repeat 7.2.1.2 (repair and retorque).

7.43.3 Repeat 7.2.3 [ random dwell test. (L) input].

  . .:  7.43.3.1             Repeat 7.2.3.1 (det. f . 41). i L                        Repeat 7.2.1.2 (repair and retorque).

7.43.3.2 7.43.4 Repeat 7.2.4 [ sine dwell test. (L) 4 input]. 7.43.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). I g 7.43.4.2 Repeat 7.2.1.2 (repair and retorque). 7.43.5 Repeat 7.2.5 (input 1/2 OBE). L- 7.43.5.1 Repeat 7.2.5.1 (compute TRS). 7.43.5.2 Repeat 7.2.5.2 (verify TRS). 7.43.5.3 Repeat 7.2.5.3 (backup data). 7.43.5.4 Repeat 7.2.1.2 (repair and retorque). { 7.43.6 Repeat 7.2.6 (input 1.0 x OBE). 7.43.6.1 Repeat 7.2.5.1 (compute TRS). 7.43.6.2 Repeat 7.2.5.2 (verify TRS). 7.43.6.3 Repeat 7.2.5.3 (backup data). 7.43.6.4 Repeat 7.2.1.2 (repair and retorque). O Test Plan. Document No. A-000150. Page 69 of 156

7.43.7 R2 prat 7.2.7 (input 1.5 x OBE). 7.43.7.1 Repeat 7.2.5.1 (compute TRS). O 7.43.7.2 Repeat 7.2.5.2 (verify TRS). 7.43.7.3 Repeat 7.2.5.3 (backup data). 7.43.7.4 Repeat 7.2.1.2 (repair and retorque). 6 7.43.8 Repeat 7.2.8 (input 1.0 x SSE). 7.43.8.1 Repeat 7.2.8.1 (compute TRS). 7.43.8.2 Repeat 7.2.8.2 (verify TRS). 7.43.8.3 Repeat 7.2.5.3 (backup data). 7.43.8.4 Repeat 7.2.1.2 (repair and retorque). j 7.44 Preliminary and Earthquake Tests. Case 5, Pixed Boundary Conditions. 50% Cable r- Loading

  ;      7.44.1   Increase cable loading to 50% of I              maximum and repeat 7.2.1 [ random dwell tests, (T/V) input].

7.44.1.1 Repent 7.2.1.1 (det, f i , $g). 7.44.1.2 Repeat 7.2.1.2 (repair and retorque). f 7.44.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.44.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). 7.44.2.2 Repeat 7.2.1.2 (repair and retorque). 7.44.3 Repeat 7.2.3 [ random dwell test, (L) g input]. k' 7.44.3.1 Repeat 7.2.3.1 (det. fg, $ 3). 7.44.3.2 Repeat 7.2.1.2 (repair and retorque). l 7.44.4 Repeat 7.2.4 [ sine dwell, (L) input]. 9 Repeat 7.2.4.1 (mode shapes and 7.44.4.1 participation factors). 7.44.4.2 Repeat 7.2.1.2 (repair and retorque). O Test Plan, Document No. A-000150, Page 70 of 156

7.44.5 Repeat 7.2.5 (input 1/2 OBE). 7.44.5.1 Repeat 7.2.5.1 (compute TRS). 7.44.5.2 Repeat 7.2.5.2 (verify TRS). 7.44.5.3 Repeat 7.2.5.3 (backup data). g 7.44.5.4 Repeat 7.2.1.2 (repair and retorque). 7.44.6 Repeat 7.2.6 (input 1.0 x OBE). 7.44.6.1 Repeat 7.2.5.1 (compute TRS).

   ,   7.44.6.2   Repeat 7.2.5.2 (verify TRS).

7.44.6.3 Repeat 7.2.5.3 (backup data). 7.44.6.4 Repeat 7.2.1.2 (repair and retorque). 7.44.7 Repeat 7.2.7 (input 1.5 x OBE). 7.44.7.1 Repeat 7.2.5.1 (compute TRS). 7.44.7.2 Repeat 7.2.5.2 (verify TRS). 7.44.7.3 Repeat 7.2.5.3 (backup data). 7.44.7.4 Repeat 7.2.1.2 (repair and retorque). 7.44.8 Repeat 7.2.8 (input 1.0 x SSE). 7.44.8.1 Repeat 7.2.8.1 (compute TRS). 7.44.8.2 Repeat 7.2.8.2 (verify TRS). 7.44.8.3 Repeat 7.2.5.3 (backup data). 7.44.8.4 Repeat 7.2.1.2 (repair and retorque). l 7.45 Preliminary and Esrthquake Tests. Case 5. Fixed Boundary Conditions. 754 Cable (., Loadinz 7.45.1 Increase cable loading to 75% of maximum and repeat 7.2.1 [randon dwell tests. I (T/V) input]. 7.45.1.1 Repeat 7.2.1.1 (det. f i , #i).

 .f.

7.45.1.2 Repeat 7.2.1.2 (repair and retorque). 7.45.2 Repeat 7.2.2 [ sine dwell tests. (T/V) O input]. l Test Plan. Document No. A-000150. Page 71 of 156

7.45.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). O 7.45.2.2 Repeat 7.2.1.2 (repair and retorque). 7.45.3 Repeat 7.2.3 [randos dwell test. (L) input). 7.45.3.1 Repeat 7.2.3.1 (det. f i , Ag). 7.45.3.2 Repeat 7.2.1.2 (repair and retorque). 7.45.4 Repeat 7.2.4 [ sine dwell test, (L) input]. 7.45.4.1 Repeat 7.2.4.1 (mode shapes and participation factors). 7.45.4.2 Repeat 7.2.1.2 (repair and retorque). 7.45.5 Repeat 7.2.5 (input 1/2 OBE). ! 7.45.5.1 Repeat 7.2.5.1 (compute TRS). 7.45.5.2 Repeat 7.2.5.2 (verify TRS). 7.45.5.3 Repeat 7.2.5.3 (backup data).

  '-  7.45.5.4    Repeat 7.2.1.2 (repair and retorque).

7.45.6 Repeat 7.2.6 (input 1.0 x OBE). 7.45.6.1 Repeat 7.2.5.1 (compute TRS). 7.45.6.2 Repeat 7.2.5.2 (verify TRS). I 7.45.6.3 Repeat 7.2.5.3 (backup data). l 7.45.6.4 Repeat 7.2.1.2 (repair and retorque). 7.45.7 Repeat 7.2.7 (input 1.5 x OBE). 7.45.7.1 Repeat 7.2.5.1 (compute TRS). 7.45.7.2 Repeat 7.2.5.2 (verify TRS). 7.45.7.3 Repeat 7.2.5.3 (backup data). __ 7.45.7.4 Repeat 7.2.1.2 (repair and retorque). 7.45.8 Repeat 7.2.8 (input 1.0 x SSE). 7.45.8.1 Repeat 7.2.8.1 (compute TRS). 7.45.8.2 Repeat 7.2.8.2 (verify TRS). Test Plan, Document No. A-000150, Page 72 of 156

7.45.8.3 Repeat 7.2.5.3 (backup data). 7.45.8.4 Repeat 7.2.1.2 (repair and retorque). 7.46 Preliminary and Earthquake Tests, Case 5, Fixed Boundary Conditions, 100% Cable Loading b 7.46.1 Increase cable loading to 100% of maximum and repeat 7.2.1 [ random dwell tests. (T/V) input]. 7.46.1.1 Repeat 7.2.1.1 (det. f i , 41). (' 7.46.1.2 Repeat 7.2.1.2 (repair and retorque). 7.46.2 Repeat 7.2.2 [ sine dwell tests. (T/V) input]. 7.46.2.1 Repeat 7.2.2.1 (mode shapes and participation factors). I' 7.46.2.2 Repeat 7.2.1.2 (repair and retorque). 7.46.3 Repeat 7.2.3 [ random dwell test, (L) l input]. 7.46.3.1 Repeat 7.2.3.1 (det. f i , $1). 7.46.3.2 Repeat 7.2.1.2 (repair and retorque). I 7.46.4 Repeat 7.2.4 (sine dwell. (L) input]. ( 7.46.4.1 Repeat 7.2.4.1 (mode shapes and p participation factors). 7.46.4.2 Repeat 7.2.1.2 (repair and retorque). 7.46.5 Repeat 7.2.5 (input 1/2 OBE). 7.46.5.1 Repeat 7.2.5.1 (compute TRS). j 7.46.5.2 Repeat 7.2.5.2 (verify TRS). t. l > 7.46.5.3 Repeat 7.2.5.3 (backup data). 7.46.5.4 Repeat 7.2.1.2 (repair and retorque). 7.46.6 Repeat 7.2.6 (input 1.0 x OBE). 7.46.6.1 Repeat 7.2.5.1 (compute TRS). l l 7.46.6.2 Repeat 7.2.5.2 (verify TRS). l 1 O Test Plan, Document No. A-000150, Page 73 of 156

7.46.6.3 Repeat 7.2.5.3 (backup data). 7.46.6.4 Repeat 7.2.1.2 (repair and retorque). 7.46.7 Repeat 7.2.7 (input 1.5 x OBE). 7.46.7.1 Repeat 7.2.5.1 (compute TRS). 7.46.7.2 Repeat 7.2.5.2 (verify TRS). 7.46.7.3 Repeat 7.2.5.3 (backup data). 7.46.7.4 Repeat 7.2.1.2 (repair and retorque). 7.46.8 Repeat 7.2.8 (input 1.0 x SSE). (' 7.46.8.1 Repeat 7.2.8.1 (compute TRS). 7.46.8.2 Repeat 7.2.8.2 (verify TRS). . 7.46.8.3 Repeat 7.2.5.3 (backup data). 7.46.8.4 Repeat 7.2.1.2 (repair and retorque). a 7.47 Preliminary and Earthouake Tests. Case 5 1 Pinned Boundary Conditions. 1004 Cable I Londing 7.47.1 Loosen and lock anchor attachment bolts so that there is approx. 1/8-in. gap between shake table mounting surface and hanger attachment surface. l 7.47.2 Input coupled transverse and vertical random motion at approx. 0.25 grms, approx. 120 seconds. Record accelero-meter data on FM tape. l 7.47.2.1 Verify (via XFER of structural response to shake table input) that the lowest transverse structural mode of vibration is within 1 15 percent of either: l[ lt

1) the peak of the SSE RRS or
                     ~ 2) the dominant transverse tray resonant frequency. Adjust anchor bolt gap as I

required to achieve (1) and/or (2). i Record final gaps and subsequent lowest i transverse structural frequency. 1 i p O Test Plan, Document No. A-000150, Page 74 of 156

O 7.47.2.2 Repeat 7.2.1.2 (repair and retorque). 7.47.3 Repeat 7.2.2 [ sine dwell tests. (T/V) g input) at frequencies identified in

  • 7.7.2.1.

7.47.3.1 Repeat 7.2.2.1 (mode shapes and participation factors). r 7.47.3.2 Repeat 7.2.1.2 (repair and retorque). 7.47.4 Input longitudinal random motion at approx. 0.25 gras, approx. 120 seconds. Record on FM tape. 7.47.4.1 Repeat 7.2.3.1 (det. fg. 4 1). 7.47.4.2 Repeat 7.2.1.2 (repair and retorque). j 7.47.5 Repeat 7.2.4 [ sine dwell test. (L) input). 7.47.5.1 Repeat 7.2.4.1 (mode shapes and () participation factors). 7.47.5.2 Repeat 7.2.1.2 (repair and retorque). 7.47.6 Repeat 7.2.8 (input 1.0 x SSE). t 7.47.6.1 Repeat 7.2.8.1 (compute TRS). , E! 7.47.6.2 Repeat 7.2.8.2 (verify TRS). [ 7.47.6.3 Repeat 7.2.5.3 (backup data). 7.47.6.4 Repeat 7.2.1.2 (repair and retorque). 7.48 Fragility Level "ests, Case 5. Pinned Boundary Conditions. 1004 Cable Loading l L 7.48.1 Input simulated seismic motion in the (T/V) + (L) directions for approx. 30 seconds such that the peak acceleration level of the motion is scaled to f6 1.2 x SSE ZPA. Store all data on digital tape. 7.48.1.1 Repent 7.2.9.1 (corpute TRS). O Test Plan. Document No. A-000150, Page 75 of 156

l 7.48.1.2 Verify TRS > 1.2 x SSE RRS. l () 7.48.1.3 Repeat 7.2.5.3 (backup data). 7.48.1.4 Note any system / component damage in Section 10.0. Photograph and attach photographs of any damaged areas to the test log. Repair and retorque bolts as required. b 7.48.2 Continued fragility level testing. If significant structural damage has not occurred, continue increasing the ampli-tude of simulated seismic motion by approx. 20% increments and repeating the sequence of 7.8.1 through 7.8.1.4 until significant structural damage does occur, or the limits of the shake table are reached. Record the sequence below. Note damage (if any) in Section 10.0. O l i lt I m O Test Plan, Document No. A-000150, Page 76 of 156

O u I 7.49 Data Reduction, Case 5 P' 7.49.1 Preliminary testing data reduction. Appropriate channels of information have been reduced to hard copy and are f contained in the test log book, by test number, to determine trends in dominant resonant frequencies, their modal damping ratios, the shape of their response (mode shapes), and their participation I factors. 7.49.2 Earthquake testing data reduction. l All appropriate TRS have been computed and plotted, and the time histories of

     ^          input and response have been rendered to hard copy and are contained in the test log, by test number, so that peak values of response can be extracted and

! dynamic amplification estimated. t 7.49.3 Fragility level data reduction. All p* appropriate TRS have been computed and plotted, all time histories of input and response have been rendered to hard copy, and all damage (where appropriate) has been photographed and are contained in i the test log, by test number. [ 7.50 Teardown and Removal of Case 5 7.50.1 Perform post-test calibrations on all sensing transducers in accordance with I- Section 8.2. 7.50.1.1 Post-test calibrations are within {} ... limits established in Section 8.2, where found beyond limits, note below: O Test Plan Document No. A-000150, Page 77 of 156

                                                          - .-                           -                         --  .     .     .__ -~          --                                                            _. - -

Data Channel No. Xducer S/N 4 Difference i b [ 7.50.2 Remove Case 5 from R-4 Shake Table. I i t

l. I i
      ,0 L

l [ I E O Test Plan, Document No. A-000150, Page 78 of 156

8.0 ATTACHMENTS 8.1 ANCO R-4 Planar Triaxial Shake Table l 8.1.1 Test Facilities The ANCO Seismic Laboratory, located in Culver City, California, is D housed within a 10,000-sq-ft enclosed high-bay building structure and includes a 1,000,000-lb reinforced concrete foundation and strong-wall structure that provides the reaction mass and anchorage points necessary for the conduct of dynamic testing. This laboratory is supported by a f~ high-pressure hydraulic oil supply system and a computerized data moni-toring, control, and acquisition system capable of handling 64 channels of transducer output signals. ANCO has designed and bui'It two seismic shake tables that utilize state-of-the-art servo-hydraulic actuators and feedback control systems to achieve desired table motions. These tables are both capable of providing a triaxial input motion. 8.1.2 ANCO R-4 Shake Table s The unique ANCO R-4 planar triaxial (two degree-of-freedom) shake table was used to provide the input motions for the prototypical suspended ceiling system. A general isometric drawing of the R-4 table is shown in Figure 8.1. The steel truss R-4 frame was especially designed to test suspended equipment. The table's dimensions are 14 ft in width, 40 ft in length, and 14 ft in suspension height. It is capable of providing a pla-nar triaxial input notion at the test object suspension points. Four actuators are arranged (two longitudinal; two transverse) in an orthogonal , configuration, allowing planar motion in two independent directions to be i' specified by applying the appropriate input signals to the actuator servo-valves. A schematic of the table kinematics is shown in Figure 8.2, which indicates the configuration utilized for the test program described herein. With the pin-jointed linkage arms in the orientation indicated in Figure 8.2 (Y-Z plane), the motion of the suspension plane of the frame will be horizontal in the longitudinal direction of the frame and a biaxial motion at 45* from the vertical in the transverse direction. An alternate con-figuration can be achieved by orientation of the pivot arms in the X-Z O Test Plan, Document No. A-000150 Page 79 of 156

O lw MM l w

                                ~-

L_ Esaction [ r 3. O 1 Figure 8.1: Isometric Drawing of R-4 Frame with Suspended Cable Tray Test Specimen (actuators not shown) l O Test Plan, Document No. A-000150, Page 80 of 156

    .-~.   . . . _ _ . .                                     _

O I - a 2 I w I i n E 5 g e . . .

                                                                                                                      ,2
                                           ,/'ns ' , , '                                                              :

r  : w S* l

                                   /

i

                                                                                                                     .I as N
                =,/_'
                                                                                                                               /

s'i '

                        \                    /              \                                                                                       -

g i

                                                                 \

i- - se W s' ,/ .i

                                -\                                                ..

s

                                                                     ~
                                         =                        /      ~[

l

             ,                   u
                                                             ,l              '

N i

          . - - -                        l                                 ,                                                                      d i                    *                          -

t E 3 m 3 oo 3 A_2 3 I IS w a 3:

                                                                                                                               . !.s ss O a                w N
                                                   >       3w                   "
  • mT~m-,. ' ./

n * 'f *gu o3 = l[ _

                        *A             .
                                                           =

y 'Mg j

                                          \            ,-                     v 7                ie s l lL                    g *E                  -

A A.

                    -                          \ 's                                              i t                                 'l                           #,%         i I
                    $5                                    5                                                     !

l Test Plan, Document No. A-000150, Page 81 of 156

plane, allowing the converse planar motion. The pitching, rolling, and b) x yawing motions of the table are accommodated by the actuator internal feed-back control systems. The dead weight of the table test frame, and test ites, are independently supported by flexible pneumatic isolator units with adjustable air pressure. The shaker table drive signal instrumentation is shown in block U diagram form in Figure 8.3 for the case of input motion specified by acce-I leration time histories. The longitudinal (X) motion of the suspension plane is achieved by switching in the desired horizontal drive signal. The transverse (Y/Z) biaxial motion of the suspension plane is achieved by switching in the desired vertical drive signal. The shake table drive system is operated in an open loop control mode without frame motion feedback control (each actuator / controller has an

   '    internal displacement feedback control using transducers incorporated in I      the actuator unit). The original digital motion time histories are stored in the computer RAM, digital-to-analog (D/A) processed, and recorded on FM tape. The corresponding drive signals are then applied to the shake frame drive system via an analog FM tape recorder.           The motion level for a par-ticular test run is established with the master gain control in the mixer control unit. Accelerometers are used to measure the table acceleration levels achieved during testing. Additional monitoring instrumentation con-t i      sists of test item response-measuring accelerometers and displacement transducers. All transducer signals are passed through 35.0-Hz low-pass filters (8-pole Butterworth), digitized; and the resulting time series data are stored in the computer RAM.

A variety of software packages can then be utilized to process the acquired data into a suitable format (time histories, response spectra, ( Fourier -spectra) for comparison with preselected criteria. Since test frame motion levels are most commonly specified by a response spectrum, the rasponse spectrum of the measured table acceleration is computed and com-pared to the computed response spectrum of the acceleration drive time history. The peak value and root mean square (RMS) levels of all data channels are scanned for anomalous values. Time history plots and response O Test Plan, Document No. A-000150, Page 82 of 156

3 .e r av - 3 m g-O t l l I I a.s .. as. m. a.: s.: seassees e4 H Dea leet aseles 3,3 5,5 g eseelessesee aseele.es8.e a.eele.seles 5,5

                                   .        e...,

arsele.eeSee Deepte. vie. .. .., r, o. .. - i we .. - ie .o. . ease,

                                                                                                                                                                     . ia

! N j w M.6 aose emessel ----> - - - - *

  • Flo re,e - ' -*

Dia aann/s ...ae

y >;;;e.-

e

                                                                        .s v.-.
                                                                             .edes
                                                                                                  *-*; t "                             etees..ess

_. ,e _ _. . ...e.... O ' O Vesemble Gate F8.e4 Cole O F8eed Cole 8 et D rv

a. ,IIfIed ecs esees 3,8 O
  • M *PBsesesee .te,lecameos D.8ee 84seele D.8se 80gasle g = .

I ,_i . I c, ee, an. .., .. e.. . w m .. C.e..e.  ; -

     =

[ adlmetable Gate end " s hesseSam of Aete tu 00 (D L.2 SftS C.eeselles - IIII 'F 88"I'8 E lg { o l f l ac a.eas se

                         - Ists C.es.este,                                  I IIFS .pdeseIIe I
     -                                              le                    7        ana sew                                        l             t        a . .. I (n                                                                                            [                              u             I 0%                       .

urs .pd. seas.

                            .gutsC.-..isse
u. .e l l
                            .       . . .. ...,       .                         ars .,4.~ise Jl u s ue.e I

i i Figure 8.3: Shaker Drive Instrumentation Block Diagram (Acceleration Time-History input) i

spectra may be computed for selected data channels and compared to test acceptance criteria. In addition, a two-channel real-time spectrum ana-lyzer may be utilized to directly monitor the analog transducer signals of selected data channels. Analysis of time history plots. Fourier spectra plots, and transfer functions between data channels may be conducted for test acceptance. The response monitoring instrumentation system is pre-sented schematically in Figure 8.4. s R-4 Shake Table Capabilities and Limitations

   --       The displacement, velocity, and acceleration motions of the unique R-4 shake table are limited by the actuator / servo-hydraulic system as follows:

Frequency Range Motion Limitation DC to 1.5 Hz Longitudinal 14.2 in. t Transverse 2.1 in. g & Vertical 1.5 to 3.0 Hz Longitudinal 1 90 in./s* l Transverse 1 60 in./s t & Vertical 3 to 35 Hz Longitudinal 4.0 g (10.000 lb-mass)* Transverse 14.0 g (10.000 lb-mass)

                                            & Vertical For input signals with broadband frequency content, such as a typical earthquake motion, the performance of the R-4 table is not limited by the servo-hydraulic system response, but instead is limited by the signal-to-l       noir 7 ratio of the drive signal.      The preferred drive signal instrumen-tation setup is shown in Figure 8.3.        The signal-to-noise level of the input drive system is limited by the dynamic range of the FM tape recorder.

The electronic (analog) bandpass filters and integrators effectively J increase the signal-to-noise level of the drive signal. However, the transfer function amplitude of the integrators and filters tends to roll-off at a frequency of 0.8 Hz. Thus. If the frequency content of the input , motion (which is less than 0.8 Hz) is important for the test specimen response, an alternate drive signal instrumentation setup must be utilized. O

  • Estimated values.

I t l Test Plan. Document No. A-000150 Page 84 of 156

{ l l l l l l e-t to (n n H

   .D O

18

  • e' III 0"80~
         -accelesemates    power Sugply and               Allee O                   .. Aga m esfSegnal   -*                                     afe               Sees emmeset O    -p 4eimal                                      R$ltese geoggagemot                                      Comeettot                 3336      ---*. F8 easer  - tsee lesseesy Plass stopleeammes lin                                           , ice
  • S e
                                                                 *O #*

og , tempense spessee D n ti: O same-t h as Cet - SIIS med esea, level o esip.e- 9 ,g,,g ,,g ,,, O O.= e D t.n

    .O N                                                IIP MS3a         - T6en Steeeey plege

{ -. g, - - e.... .se

      ,                                               Amelyses          ---- Ts emele s Fume t tees Ln O

m p.e u Cb Figure 8.4: Response Monitoring Instrumentation Block Diagram L

It should be noted that the displacement limitation imposed by the actuator stroke will often necessitate the use of a highpass filter to limit the low-frequency (< 0.8 Hz) displacement amplitudes of typical strong motion earthquake records. High-frequency (> 30 Hz) contamination of the drive signal is unavoidable due to signal noise: hence, the table motion will often have higher peak accelerations than would be typical of earthquake he motions. High-frequency modes of the R-4 frame also contribute to this high-frequency amplification. However, in the intermediate frequency range (1 to 25 Hz), the table can reproduce the frequency content of a typical earthquake so fon or filtered earthquake motion, with good accuracy. The F R-4 frame currently has amplified frequency response within the range of 4 to 6 Hz, but these frame response modes are systematically being removed by - addition of appropriate stiffening elements. Unwanted frequency content l i within the intermediate frequency range can be " tuned out" by appropriate adjustment of the feedback controls for each actuator. Thus, rather than attempt to match a specific acceleration time history, a response spectrum (at a specified damping value) of the time history is utilized as the input criteria for adjusting the response of the R-4 table. While the low- and high-frequency content of a table response spectrum will not match, close agreement between the table response spectrum and criteria response spectrum can be achieved in the intermediate frequency range, n O L I P o Test Plan Document No. A-000150, Page 86 of 156

8.2 Calibration Procedures 8.2.1 Calibration Procedure f or Endevco Accelerometers Document No. A-000062 Procedure CALIBRATION OF ENDEVC0 MODEI. 5241 ACCELEROMETERS O I r i Approval Signaturae s

                                         % 0. N+/pAu P J J! G +l#
                                       /Proj ect'       r./Date'
  • Cog. Prin./DatE l

Technical M/Date Iht $] / h !n 1 F/%g3 Editoriar QA/Date L & W - L-c m y/s.in Chief Edfinear/ Data t !I Prepared by l The Technical Staff i ANCO DGINEERS, INC. 9937 Jefferson Boulevard Culver City, California 90230-3591 i L (213) 204-5050 July 1983 1 4 Calibration Procedure, Document No. A-000062, Page 1 of 9 Test Plan, Document No. A-000150, Page 87 of 156

REVISION RECORD PAGE b CALIBRATION OF ENDEVC0 HDDEL $241 ACCELEROMETERS Document No. A-000062 i Rev. Data Comments Approved 0 7/83 Original Issua

                                                                   /&
 /

O i la 3

   .k tr i

i Calibration Procedure, Docu=ent No. A-000062, Page 2 of 9 Test Plan, Document No. A-000150, Page 88 of 156

i TABLE OF CONTENTS

                                                                                                                                           ?.* K *.

1.0 INTRODUCTION

................................................... 4 [') 1.1 5 cope..................................................... 4 1.2 Background................................................ 4 1.3 0bjective................................................. 4 1.4 Applicable Documents...................................... 4 2.0 CALIBRATION EQUIPMENT.......................................... 6 I i 3.0 CALIBRATION PROCEDURE.......................................... 7 4.0 DOCUMENTATION.................................................. 9 g APPENDIX A: ENDEVC0 PRODUCT DATA SHEET, MODELS 5241 AND 5241A ACCELEROMETERS......................................... A-1 ( APPENDIX B: ACCELEROMETER CALIBRATION DATA SHEET. . . . . . . . . . . . . . . . . . . B-1 k L I l l P t l I F Calibration Procedure, Document No. A-000062 Page 3 of 9 Test Plan, Document No. A-000150, Page 89 of 156

t O

1.0 INTRODUCTION

1.1 Scope This document presents the procedures and decraentation requirements U for calibration of Endevco Model 5241 Acceleroasters. The procedure is applicable to both basic Model 5241 units and low-cross-axis sensitivity Model 5241A units. The procedure utilizes a transfer standard accelerometer with a cali-bration that is traceable to the National Bureau of Standards. l 1.2 Backaround The Endevco Model 5241 Accelerometer is an industrial vibration sensor with integral electronics. It requirea 30-Vdc excitation and has a dynamic

 ,.                    range of approximately 14-3 peak. The low-frequency cutoff is dependent

'l upon the output load. Physically, the unit is hermetically sealed and weighs 6 on. These important characteristics are listed as part of the product data sheet included as Appendix A. 1.3 Objective l l The objective of this procedure is to asasure the sensitivity of an accelerometer in units of V/3 1.4 Applicable Doc aents 1.4.1 ANCO Document [. e QA-100. ANCO Quality Assurance Program Manual. e QC-1012, ANCO Instrumentation Quality Control Procedure. F O c tie to ><oc 4 e. oco e=t so ^-oooo*2. 4 of 9 Test Plan, Document No. A-000150, Page 90 of 156

1.4.2 Endevco Doctment e Product Data Sheet, Models $241 and 5241A, Integral Electronics Industrial Vibration Sensor, November 1980. J D I 'I

,r
 /

O F !( l lu [- ( L I r Calibration Procedure, Document No. A-000062, Page 5 of 9 s Test Plan, Document No. A-000150, Page 91 of 156

2.0 CALIBRATION EQUIPMENT The following equipment is necessary for calibration of Endevco Model 5241 Accelerometers: b e Vibration Calibrator, GenRad Model 1557-A e Reference Accelerometer Endevco Model 2221F e Charge Amplifier, Kistler Model 504D f a Spectrum Analyzer, Hewlett Packard Model 3582A e Digital hitimeter, Hewlett Packard Model 3490A, or Fluke Model 8020 i e Power Supply, ANCO 5241, 30-Vdc Eagulated l O i t ( l R Calibration Procedure, Document No. A-000062, Page 6 of 9 O Test Plan, Document No. A-000150, Page 92 of 156

                                                                                                    - ~ --          -

u- -ALJ-- i l

                                                                                                                      )

i I i O 3.0 CALISAATION PROCEDURE

1. Set up equipment as shcwn in Figure 3.1, with only the reference ,

acceleroaster mounced to the vibration calibrator and the refer- l ence accelerometer signal temporarily connected to both channels of the spectrum analyser.

2. See the charge amplifier controls as follows:

e Time Constant - Short e Charge Sensitivity - Raf. Accelerometer Cal. Value, pc/g

    ?                                   e Range - 1.0 V/g
3. Set the spectrum analyser controls as follows:

j e Input Mode - Both e Sensitivity - 3.0 V e Coupling - ac e Frequency - 250 Hz e Passband Shape - Flat Top f e Average - ras e Number - 256 e Scale - Linear e Display - Channel A and XF1 FCTN Amplitude 4 Adjust viaration calibrator to 1.0 g rus with only the reference ( accelerometer mounted. (Not's that the total moving mass is 115 go.) Measure the peak amplitude ras value and frequency and transfer function amplitude.

5. Install the accelerometer being calibrated on the vibration calibrator. Connect the accelerometer signal to Channel B of the spectrum analyser. Adjust the calibrator to approximately g

1.0 g rue (note that the total moving mass is 270 ga). l

6. Measure and tabulate the amplitude of the transfer function,

[H(f)], between the test and reference accelerometers at the peak amplitude frequency of the reference accelerometer.

7. Calculate the sensitivity of the test accelerometer:

I Sensitivity = 1000+ll E(f c) Test Ref. Accel.

                                                                                                I        ****1 ~1 Accel. Il
  • Il H (c f ) Ra f .' Ac c el .'
8. Verify test accelerometer sensitivity within limits of 750 to 900 mV/g.

I Calibration Procedure, Document No. A-000062, Page 7 of 9 O Test Plan, Document No. A-000150, Page 93 of 156

O h I i BNC Low-Noise Microdot Cable Cable

Charge g Amplifier l Spectrum Accelerometer Analyzer Under '*
  • 8 Vibration " C libration P Calibrator q Power Supply (100 Hz) Digital
                                                            .                                          .                                 for Referenc[e                                                                      D ree-Wire A""*L**#*****

Multimeter

{ Accelerometer Shielded s

Cable O Figure 3.1: Accelerometer Calibration Setup ii l I t I L F O Calibration Procedure. Document No. A-000062. Page 8 of 9 i Test Plan, Document No. A-000150, Page 94 of 156

i 1 4.0 DOCUMENTATION I i Complete the Accelerometer Calibration Data Sheet (Form QC-578, see Appendix B). 1 IU i i I i I ~l !I lI !l

O i

4 i 1: ( f ( i I P Calibration Procedure. Document No. A-000062. Page 9 of 9 l l l l l l Test Plan, Document No. A-000150, Page 95 of 156 1

 -,er-~-     -   .--------y----,.

O , l i k I ' APPENDII A I ENDEVC0 PEODUCT DATA 5HIET 2 EDELS 5241 AND 5241A ACCELEROMETERS I O I I s. R

                                                      ~
           /;. i)-) COCUM2NTd                                        ~ 'PAGtd               'A Test Plan, Document No. A-000150, Page 96 of 156

MODELS 5241 5241 A e.ioevcomoover cara p INTEGRAL ELECTRONICS INDUSTRIAL VfBRATION SENSOR ' I The Eneoco $241 Vitronen Seneer enetwees me Ense.co escoverse iSCSWR* p.escosectnc trenaeuction eeement ano en senseeance convers on circuit. The , h ****"'""***"*"****"'"***""*'*****"**'**'*** oserseen meiout oogrecomen in numes anc contenensees environmente. '"

                                                                                                                                                    '                             'j
                                                                                                                                                      -_- a The somer roeuirement is murrent oc weetage Elecences connecnon se                                                                                                       '

rarouen a rugges. 3-een connector of MIL-C 901S conhguration. The cartuitis r4 protectee from esmage it any or a## of tne casse seees are anortee togemer or to grouns .- 1 p8 the Mosese S241 ene 5241 A are uponecas emesse me Moem 5241 nee t3% ans me Moem 524: A noe 8% mammum reneseres senoewty 88EC8PICATHNe8 POR et00GL Saat vleAAftoft SEfesOR OvmeaIIC RANGE 10 g rme at 30 Vec SENSITIVITY (at 100 Hal 730 mv/g m men 30 vec excitanen PREQUENCY RESPONSE 210%. 02 Ha to 2 000 Ma (swiusoseaf) RESIOUAL NOISE (come grounese) l 7O BROAO SAND ACCELSATION 0 000E g rms, typicas TEMPERATURE RESPONSE. TYPtCAL s% from 0'F to -t30'8 (-20*C to 48'C) j ' stS% from 80'P to *290*P ( Go*C to +12S'Cl OUTPUT LOAD REQUIREMENT 1 MO minerAup' aNates by caste cosecrtance us to 025 uF (5 000 ft tWesso wet seneetmty attenuan:en of 0 S% per0 025 uF (Sal ft) ' VOLTAGE RECUrREMENT 30 vec CURRENT ORAIN 15 mA essesy esses. Aaertionsa 8 mA reeuarse per0 025 uF caose l cesecreenes It00 ft typecen us to 02S wF manwnum Current { preseroonesesy resuces as power sweepy resuces POWER SUPPLY MIPPLE REJECTION 30 og asennuemen at 12 Mt. typicas INSULATON 10 WQ mansmum at 100 Voc from case to eacn ein

   '          MAGNETIC SedSITivlTY                                           0.0001 essvesent e outout per gauen, fysicos in to Ha magnecc nees meneures at 100 gause TRApagvensE SENSITIVITY                                        t3% mamanum.

TYMCAL M Rep 00eSE

                    .sse i        i
                      *    ~

5

   ~                 '"

l I Nj I i h e, i se e i ese ve see j %emenes. as l

                                                    .                      A-UUUUO4                        5 ..             A-4
s. . .

1 Test Plan, Document No. A-000150, Page 97 of 156 t

i

            $8ECIFiCAflCNS FCf3 wCCEL 5241 vlO2ATION (ENSC2 l
                                                                      ..se .=se sa -asac                                                        n 8
                                                               -eawe e asene+ac.:                                                 l~                                                  f 6c                                                              j
                                                               =.>oa..s. sno
                                                               .             o m s cc=e o \         ma' o= m                                                l 7 sw /o                                               o]
                                                                                           .     ..                                                        l       .n wa        .  - - - - -

I' ' y t \ f ascervacts a

                                                                 -  o~
                                                                                                                              -o-                   . oj            !

t

                                                                                         . .e .. i aa.soum.- /

seaCso oss a ' 373

                                                                                                                                                    \.u-t    ce=F e Caf Cao C                                                         C  h s*omat omouseo
                                                                                          '             8*

e or

                                                                                                                                     'O-    I' 21 g I                                                                                     $ ate 30. osa l                                    osa was A

f eCSPT&Cig agy I I r - - i l oo .

                                                                                                                                                      .              was ciwe=sions im sacwes .wwwetnesi es
                                                                                           ,                                             .;4                              1 su *'                                           X XIX X
                                                                                          ,                              i.                      g             "o8> o e-. .s"e,i   ,,                                  sen% muassen I

k

         #94YSOCAL CASE                                                               30aL Staineene Stoes i
 !           WEIGHT                                                              8 os (170 g)
   ,         MOUNTING                                                            Four mrougn-notes for a4 Doits-on 1375 in elemeest $$C CCNNECTOA                                                           Steineses siese #10 enee Sein MILC501S ccchguranon.

metoe utn Mg31De. tost.35 ACCESScalES tootionssi Connector MS3tosA 10SL-3S #EP 182) Caose C:emo MS30 ETA-4 IEMPOS) EMytnOfetBENTAL TEM *ERATURE 40'F to *290'F ( S0*C to .52S'C)

             **UWlOITY                                                          Mermancelly sensee Dy weecing and giaes to metal sees SMOCK                                                              1000 g on Connaues proeuct improvenient neceemisane met Encevco reserve me nont to meeW mese seeciticanons wimout nonce mELIAtattTV Eneouco meinemens a program of constant surw elance over em oroeucts to ensure a negn sewee of rehaoehey This program inctuees anonson to reneoehty factere eunne proeuct oseen me ouesort of stangent Quenty Contros recueroments. and cornouisory corrective menon procoeurve Tnese measurve. togetner witn conservative seecrhcanonst neve mese me norme Enoevco synonymous wim rehaointy Ence.co s Quanty ano mesiao. hey System meets tne roeustements of MIL-O-9058A sne MIL STD.TOSA I

ana .e w ca e aetanta o.a e sa6ewcas wo e ecsv smaa.cs e swece=

  • w= ao emocou e a seawas., ens va e en.cao.o
                                                          , a moe=t.=4 3

m ANCHC Vit.C SC AC

  • S AN W AN CA88'STm ANC. CA 93e75
  • TELE **=CNE t?'41493-8981 au .6 e caveose on e a enumemca au .==ousto= 's e mato a to ca e eas**:a, c-s wa s.co e =s t=estamo's e monwa r e s sea.ca . s sonsa e sea.m .semasia e emac6 e camaca es we e awise....

seitgsnsano e ta.wa= e vassagwa,a e a6, cowecom c e cm.se ea.g .,gga *s *%amo e .=o's a essn essisse en.='re = .sa ae v . so A ry- A-000062 -,-,, . A-3 Test Plan, Document No. A-000150, Page 98 of 156

O u I 8 APPENDII 3 ACCELEIONETER CALIBEATION DATA SHEET O l r

             -~.>c, O   ... .   . . ' G CUP.MNT# A-000062                                     p,.,3 g,   s_t ._

Test Plan, Document No. A-000150, Page 99 of 156 __ _ ___ _ - ._. ,_ . ~,_ _ _ - ___ . . _ _ _

I I O i l A.m. C&LIBR&TIOu D&2A luRIT Sy Date Chechad By Date e verify eatisation weltees from 28 to 31 Tde . o Seference octalerometer peak emp11tude val m True. e Referesse eccelereester peda say11tude frequency Es. m e Spectre saalyser trensfee fect1em value with idestital eigmals inte hie & and S . e Test aatelarematar Sanoitivity heta Accelerumster

                                                                                                                                                  ^ '                   "

Accel. Asteleroenter ABC0 framefer l Withia Output Lead Stu ) us. l Pasties value l st/s L M ae m3 1 I i I I I

                                                                                                      !                                 i            I                                 l
l l I l l l l
      . O                                                                                            '

i Test Esmaammat Rasa gg g I caitheetion Iguapment Item War. us. us. us.  ; Last i Due i V1brettee Cal. l Gented l L33 7. A I l l ' asf. Assaler. l tadevee l 2221F ! l ' Charge W . l tietier l $0e9 l i

                                                                .p.etra        . i .                                       3.

i i ,  ;

                                                                  ,t    t.t       -, -Fluka     er                   ,     -

0020 l I  ! l  !

   \                                                                                                                                                                                        !

OC-578 tis)

 . P._

A-000062 b ) h DOCUMENT

  • pagg, s-2 Test Plan, Document No. A-000150, Page 100 of 156

8.2.2 Calibration Procedure for Dytran Accelerometers 1579.05 O THROUGH-CALIBRATION PROCEDURE FOR DYTIULN MODEL 3100C2 ACCELEROMETERS U I Document Number A-000132

                                      - ?           /N.          _-
                                                              --"./Date/9h
                                                                      ~

Project M r./DJte Cog? Prin b I SY /k l^^^ L/Au e Editorial QA/Date O \TechnidalQA/ Ch LW Unsin f Engineer /Date Prepared by l l The Technical Staff l ANCO ENGINEERS, INC. 9937 Jefferson Boulevard Culver City, California 90230-3591 (213) 204-5050 Rev. O, June 1984 I

   =

r-Through-Calibration Procedure, Document No. A-000132, Page i of iii O Test Plan, Document No. A-000150, Page 101 of 156

O TABLE OF CONTENTS P_, age _ U

1.0 INTRODUCTION

.                    .................. ... .. .                                                           1 1.1 Scope . . .... .. . ... .. .. . . .. . .. ...                                                                     I I

F 1.2 System Components . . .. .. . ... . . . . .. 1.3 Objective . .......... ... .. . . .. ... . I 1.4 Applicable Documents . . .. . ... .. .. . . .. .. 2 2.0 CALIBRATION EQUIPMENT .... ... . .. . . . . .. . ... 3 r 3.0 CALIBRATION PROCEDURE .. ... . . . .... .. . . . ... 4 4.0 DOCUMENTATION .................. . ... .. 7 l APPENDIX A: DYTRAN PRODUCT DATA .... . .. . .. . . .. .. . A A-2 b O d f I . ! 4 ) 1 s. I 2 1 Through-Calibration Procedure, Document No. A-000132, Page iii of iii Test Plan, Document No. A-000150, Page 102 of 156

1579.05 O REVISION RECORD PAGE THROUGH-CALIBRATION PROCEDLTE FOR DYTRAN MODEL 3100C2 ACCELEROMETERS b Document No. A-000132 f 7 Rev. Date Comments Approved 0 6/84 Original Issue g y. O l 'I i

L f ,

l i l i l ll l R Through-Calibration Procedure, Document No. A-000132, Page 11 of 111 Test Plan, Document No. A-000150, Page 103 of 156

       -~ _                                                                                                 _

1.0 INTRODUCTION

g 1.1 Scope This document presents the procedures and documentation requirements for performance of a through-calibration of a data acquisition system r employed for monitoring of acceleration data. 1.2 System Components 1.2.1 Dytran Model 3100C2 accelerometers. t 1.2.2 Dytran Model 6013 low-noise coaxial accelerometer to charge converter cables. 1.2.3 Dycran Model 4750 charge convertors. 1.2.4 Charge convertor to Dytran Model 4121 current source cabling. l 1.2.5 Dytran Model 4121 current source. 1.2.6 STI-AA32 anti-aliasing filter amplifiers. 1.2.7 ANCO's data acquisition system. 1.3 Objective The objective of this procedure is to: e Determine the accelerometer's sensitivities as connected in a system. y r Through-Calibration Procedure, Document No. A-000132, Page 1 of 8 l l Test Plan, Document No. A-000150, Page 104 of 156

                                                                                                   ,%m   - -- - - - -- - -- - - -+
                      -          --              - - - - -y- ---++r---w-wwwyy- ,,.,-- ~- - - ----.

e Enable a comparison of manufacturer's accelerometer calibration data to determined system connected sensitivities, e Ensure the integrity of the connected system. g 1.4 Applicable Documents

1. 4 .1 ANCO Documents i o QA-100, "ANCO Quality Assurance Program Manual" e QC-1012, "ANCO Instrumentation Quality Control Manual" 1.4.2 Dytran Documents i, i e Model 3100C2 Product Data Sheet; see Appendix A.

.I Y l l f i l 'S - . Through-Calibration Procedure, Document No. A-000132, Page 2 of 8 Test Plan, Document No. A-000150, Page 105 of 156

O 2.0 CALIBRATION EQUIPMENT The following equipment is necessary for implementation of this y procedure. I o Gen Rad Model 1557-A vibration calibrator o Endevco Model 2221F reference accelerometer e Kistler Model 504D charge amplifier

,    F                       o Hewlett Packard Model 3582A spectrum analyzer 1

O o i I 5 Through-Calibration Procedure, Document No. A-000132, Page 3 of 8 O Test Plan, Document No. A-000150, Page 106 of 156

O 3.0 CALIBRATION PROCEDURE 3.1.1 Set up equipment as shown in Figure 3.1, with only the reference g accelerometer mounted to the acceleronieter calibrator and the charge amplifier output signal connected to both channels of the spectrum analyzer. (Note that the 4121 current source must be in the normal racge.) F

  ,                                             3.1.2   Set the charge amplifier controls as follows:

e time constant - short e range - 1.0V/g e charge sensitivity - reference accelerometer calibration

.l value, pc/g
  .j 3.1.3   Set the spectrum analyzer controla as follows:

3 e input mode - both e sensitivity - 3.0V e coupling - ac e frequency - 250 Hz e passband .;upe - flat top e average - of f i e scale - linear e display - channel A and XFR FCTN amplitude 3.1.4 Adjust vibration calibrator to 1.0g ras with only the reference accelerometer mounted. (Note that the total moving mass is 115gm.) i Record the peak amplitude ras value, frequency, and transfer function l amplitude. 3.1.5 Prepare the data acquisition system for sampling analog data using I the XTAKE.SV program. Through-Calibration Procedure, Document No. A-000132, Page 4 of 8 l Test Plan, Document No. A-000150, Page 107 of 156

q ~ -- -

                                                                    -a        g g m-       q    ~ g O                                                           O                                O
                               ,        504D                                 3582A 2221F           CIIARCE                            SPECTRUM REFERENCE ,        AMPLIFIER                           ANALYZER
                                                    ~

ACCEL. ' DYTRAN DYTRAN 84750, DYTRAN #4121 H

                    #3100C2            CHARGE                              CURRENT H               ACCEL             CONVFRTOR                            Knm er f

5:r 1557-A it i VIBRATION ST1- AA 32 i* 7D . IBRAp3 FILTER

   ~

p" AMPIIFIFR i O  % es 4 0 RTP 74 35/4 7 1 h 0 A/D

. 5.

1 D 80 2 I j F 2 NOVA 3/12 l I = CPU lt

,o
  • A i i il Io r ~ 2 o

o 5 i g 2, 4 [ 1 P if I so z e ,o C300 6021 6045 LA36 HOUSTON

;   -               CRAPHICS          MAGNETIC           10 MBYTE         DECWRITER      DP-1
;O       Y O

TERMINAL TAPE DISK PRNTR./ TERM. PLOTTER 1 O s O y 1

    %    o
    -    C             6156
    $   .           CRAPHICS i         .o         PRINTER
!         es S

I u o m C" ,i i l Figure 3.1: Accelerometer Calibration Setup i d

O 3.1.6 Set STI-AA32 filter amps for F, = 200Hz and gain equal to 1. 3.1.7 Install the accelerometer to be calibrated on the vibration calibrator. Adjust calibrator to 1.0g ras. (Note that total b moving mass is 115ga plus the mass of the test accelerometer.) 3.1.8 Measure and record the amplitude of the transfer function (H(f)], between the test and the reference accelerometers at k the peak amplitude frequency of the reference accelerometer. 3.1.9 Take a data sample using the XTAKE.SV program and record the bias and ras values. f 3.1.10 Calculate and record the actual sensitivity of the test accelerometer Ref. Accel. Sensitivity = 1000 e H(f,) Test Ref. Accel. Accel. ('c Ref. Accel. O 3.1.11 Calculate theoretical sensitivity of the test accelerometer.

     't                                  3.1.12 Verify that the test accelerometer sensitivity is within the
  • limits specified by the manufacturer.

P b i f i i lL !R Through-Calibration Procedure, Document No. A-000132, Page 6 of 8 i Test Plan, Document No. A-000150, Page 109 of 156

t i 2

O
,                                       4.0 DOCUMENIATION                                                                                                      r I

Complete the Accelerometer Calibration Record (Form QC-594; l

 ;y see Figure 3.2) .

i 1 j lI, La i i

     . O                                                                                                                                                        -

i j

e i

!fL. I i i l l I lE l i IU i,. - ! Through-Calibration Procedure, Document No. A-000132, Page 7 of 8 'O 4 Test Plan, Document No. A-000150, Page 110 of 156 < l,

O ACCELEROlGTER CAI,13 RATION RECORD h e Ref erence eccelerometer peak emp11tude value vrue. e Reference accelerometer peak esplitude frequency Rs. e e Spectrum analyser transfer factica value with identical signale tato Cheasele A and 8 . Test Accelerometer Sesettivity Date T cowe - - -- _. , measums answssrf neo. esse r '#r acTues Ten. xtase scat seen ore e suo . ein Pto see. sise pio sees. suse, me. cesse wakus see. tr.sg sess. see. asco ch a ser a A - L 's W/ n r, P VI VJ Q .J _lJ

   'O Test teutament Cete 8'"'8'                                                                   " " ' ' "

smJimment e Tuns v f Wee?IOps Cak. mare.

                                                                                    ".sen        un peo t.ame          num ase. acesken.

owsma a.sr. N AfteLY. es...e eine suv. e u I Figure 3.2: Accelerometer Calibration Record P Through-Calibration Procedure, Document No. A-000132, Page 8 of 8 i Test Plan, Document No. A-000150, Page 111 of 156

O ANCO w h APPENDIX A O P t L. L 5 O ,

                                                             ,      A-000132 ,   . ,   . __6- 1
                            , ___. _ __{es t Plan, Document No . A-000150, Page 112 of 156. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SPEC!T* CATIONS MCCEL SERIES 31CCC CHARGE MODE ACCELDOMETERS SPECIFICA U CN MODEL UNITS O 3100C 31CCC1 3100C2 RANCE 1000 750 1000 C CHARGE SENSITIVITY (-5%) 100 150 100 pC/C VOLTAGE 3 D S.. NOM 28 62 28 nV/C g FREQU DCT RESPONSE ( 5%) 5 to 5000 Hz TEMFD ATURE RANCE -65 to .375 -65 to .375 -65 to +500 'r 1 CAPACITANCE. NOM. 3000 - pr ' I MCUNTED RESCNANT FREQUD CY, NOM 32 30 32 KHz I TRAN3 VERSE SENS, MAX. 5 -  % AMPLITUDE LINEARITY g2 %F.3. WEICHT 44 57 44 Crass i SIZE, HEX X HEIGHT .625 x .932 .625 x 1.12 .625 x .932 In. CASE MATERIAL STAINLESS STEEL j CC' NECTCR 10-32 CCAXIAL - 1 4

       ,          MOUNTING                                                                                    -.10-32 STUD j                  CROUNCI':C                                                                            - CASE CND IS SIC RETURN          -

1 PCLARITY NECATIVE SUL EPCXY EPCXY WED & EPCXY ACIES3 CRIES SUPPLIED (Il MODEL 6200 STUD l TYPICAL SENSITIVITY V3. TDPERATURE, CHARCE CUTPUT l l

                                                                                                                                                    , .20 l
                                                                                                                                                    ' ,go hf            -                                  --                              .i Et                                                                                 ,

o 22 _

                                                                                                                                                       -10
                   .)                  -
                                                                                                                                                     . 20 200            30 ,0     I   400              500
                        -100                             0               100

[] *373 limit for 3100C Jr Cl Temperature 'T M m * *aWITp A-Oon t u _

                                                                                                                           ;pAgg,    A-2 Test Plan, Document No. A-000150, Page 113 of 156

8.2.3 Calibration Procedure for Celesco Displacement Transducer O N CALIBRATION PROCEDURE FOR A CELESCO-TfPE DISPI.ACEIENT TRANSDUCER Document Number A-000148 O I f Approval Sigantures

                                  .            4    /
   ,                         roject'Ngr./Dats'3        C: W. Pritt.QDotd 0                    .Y Technical QA/Date 9ldM y ldito'clal Q4/D M
                                                                       !_' W
                                  $1/$

ta.~ k. .' ik$I Chief Engineer / Late A I l l

     ~

Prepared by The Technical Staff d ANCO ENGINEERS. INC. 9937 Jefferson Boulevard Culver City. California 90232-3591 (213) 204-5050 September 1985 l lO t l Calibration Procedure. Document No. A-000148. Page 1 of ill l l l Test Plan, Document No. A-000150, Page 114 of 156

O ANCO REVISION RECORD PAGE CALIBRATION PROCEDURE FOR A U CELESCO-TYPE DISPLACDIENT TRANSDUCER Docume.nt Number A-000148 f Rev. Date Comments Approved 46% 0 9/85 Original Issue A, ya L,

     ,O s

I r. - . O Calibration Procedure, Document No. A-000148, Page 11 of 111 Test Plan, Document No. A-000150, Page 115 of 156

TABLE OF CONTENTS

                             /^

k

1.0 INTRODUCTION

. ....... . ..... .. ....... ... . ... .. ... . 1 2.0 REQUIRED INSTRUMENTATION....... ......... ........ ........... 1 System Instrumentation.. ................... g 2.1 2.2 Calibration Instrumentation.................................

                                                                                                                                                                                                                      ....... ......            I 1

3.0 EQUIPMENT DESCR'IPTIONS......................... . ............. 1 4.0 CALIBRATION PROCEDURE. .......................................... 2 5.0 CONSIDERATIONS.. ..... ................ ........... ............. 3 h O l'r" l P Calibration Procedure, Document No. A-00014 8 Page iii of 111 Test Plan, Document No. A-000150, Page 116 of 156

1.0 INTRODUCTION

The purpose of this document is to define the procedure necessary to calibrate a Celesco-type displacement transducer and the instruments required to accomplish this task. The calibration procedure will qualify as a certified calibration per ANCO Documents QA-100 and QC-1012. g 2.0 REQUIRED INSTRUMENTATION The instrumentation used in this calibration pertain to two categories: I 1) system instrument and 2) calibration instrumentation. The equipment list is as follows: 2.1 System Instrumentation

  • Celesco-Type Displacement Transducer
  • Strain Gauge Signal Conditioner
  • Transducer to Signal Conditioner Cable 2.2 Calibration Instrumentation f

t

  • D.C. Voltmeter
  • Linear Scale (Tape or Ruler Acceptable) 3.0 EQUIPMENT DESCRIPTIONS The instrumentation defined in Subsections 2.1 and 2.2 represent generic equipment. The specific equipment list that follows defines those instruments that are currently applicable to this calibration procedure, f This specific instrument list shall be revised as new instruments are employed and old instruments are deemed obsolete and retired from active use. All equipment employed for calibration purposes shall be in current calibration adhering to specifications and procedures per ANCO Documents QA-100 and QC-1012.
  • Celesco-Type Displacement Transducer - Celesco Model PT-101
  • Strain Gauge Signal Conditioner Q
  • D.C. Voltmeter -

Fluke Models: 8020A and 8040A: Tektronix Oscilloscope DVM Model: 2236: Hewlett Packard Model 3490A. O Calibration Procedure, Document No. A-000148, Page 1 of 4 Test Plan, Document No. A-000150, Page 117 of 156

l 4.0 CALIBRATION PROCEDURE 1 4.1 Connect displacement transducer to strain gauge signal conditioner as a full bridge as instructed in strain gauge conditioner manuf acturer's instruction manual. 4.2 Null signal conditioner amplifier output by adjusting the AMP balance g tria pot with excitation voltage off. (Tolerance = +/- 5 MV.) 4.3 Adjust bridge excitation voltage for 10.00 VDC and place excitation switch in "0N poeition. (Tolerance = +/- 10 MV.) I 4.4 Determine mechanical range of dieplacement transducer by fully extending sensing wire and measuring stroke with a linear scale. (Tolerance = +/- 0.10 in.) i 4.5 Extend sensing wire to 50% of mechanical range and null signal conditioner amplifier output by adjusting the bridge balance pot.

 =          (Tolerance = +/- 5 MV.)

c-4.6 Fully extend sensing wire and adjust signal conditioner amplifier gain to achieve desired scale factor. (Fully extended inches minus 50% extended inches divided by signal conditioner output in volts at fully extended position = scale factor in inches per volt.) 4.7 If desired scale factor cannot be achieved in Paragraph 4.6. then read-

   =        just bridge excitation voltage to increase or decrease scale factor and l

repeat procedures discussed in Paragraphs 4.2 through 4.6. l . 4.8 Retract sensing wire to the 50% position and note that signal con-ditioner amplifier output is still at null. (Tolerance = +/- 5 MV.) Repeat Paragraphs 4.5 and 4.6 If necessary. 4.9 Retract sensing wire to the 04 extended position and determine the scale factor over the 0% to 50% (null) range. (50% extended inches divided by signal conditioner output in volts at the 04 extended post-I tion = scale factor in inches per volt.) 4 4.10 Compare the scale factor for the 50% to 1004 extended span and the scale factor for the 50% to 04 extended span to determine linearity. (Tolerance = +/- 14.) O Calibration Procedure. Document No. A-000148. Page 2 of 4 l l Test Plan, Document No. A-000150, Page 118 of 156 l I

4.11 Calculate the average scale factor. 4.12 with sensing wire at the 50% position, place CAL switch on the signal conditioner in the "A" position and record amplifier output on ANCO Document QC-573 (see Figure 4.1) instrumentation data sheet or equi-valent. g 4.13 With sensing wire at the 50s position, place CAL switch on the signal conditioner in the "B" position and record amplifier output on ANCO Document QC-573 instrumentation data sheet or equivalent. 4.14 Record excitation voltage, gain dial position, average scale factor. anu displacement transducer serial number on ANCO Document QC-573 instrumentation data sheet or equivalent. I j 4.15 Forward a copy of the ANCO Document QC-573 instrumentation data sheet or equivalent to the IQA Lab so that a copy of each transducer

                  !                                                           calibrated can be inserted into respective file for record of perfor-
                  $                                                          mance.

5.0 CONSIDERATIONS

                       -V     O                 5.1                 The sensing wire should be inspected for fraying, kinks, and ease of extension.

5.2 The transducer should be mounted at a distance away from the sensed I specimen so that physical impact during dynamic testing does not occur. 5.3 A sensing wire extension can be fabricated of braided stainless steel l wire and used to connect the sensing wire to the specimen. I I 5.4 The sensing wire extension and the physical location of the transducer shall be such that the transducer sensing wire is extended to a 50% position with the specimen in a null position. This will insure that j the transducer is free to operate over fully cal;brated range. l r l O Calibration Procedure. Document No. A-000148. Page 3 of 4 i Test Plan, Document No. A-000150, Page 119 of 156

                                                                                                                                                                                          'C3N"*SE'                         =A3E         ;c Engineers. Inc.

f 9937 #ew Bovearo Ceer C4 CA 9C2% DESCRP? ION I MADE dY DATE g (j CHE0KED BY DATE INSTRLHENTATION DATA SHEET g CHAN. LOCATION ID/ TYPE S/N CABLE COND. STI A/D CAL XCALlEXC.,A/B GAIN REMARKS f I L (oh I i , I l l 0 l i t i l . I I I n

               .                                                                                                                                                                            l                                                      f.

QC-573, Rev. O, 2/83 ( f Figure 4.1: Instrumentation Data Sheet l Calibration Procedure, Document No. A-000148, Page 4 of 4 \ l l Test Plan, Document No. A-000150, Page 120 of 156

i 8.3 Construction Details (General) 0% The following details shall be used to simulate Comanche Peak site conditions. These notes and details should only be used when specific ; information is not available on the drawings. The drawings in Sections 5.0 and 8.4 through 8.8 will control when in conflict with these details. g Nonconformances to the configuration drawings and details shall be recorded and shall require TUGC0 concurrence, for example (TUGCO to supply): r 1. bolt torque schedules, p 2. cable tie-down recommendations (i.e., every 10th rung, every 10 feet), and

3. pertinent notes from Gibbs & Hills. Inc., Drawings 2323-S-0901 through 0931, including field tolerances.

h-. O i !i l 4 O Test Plan, Docuatent No. A-000150, Page 121 of 156 i

8.4 Construction Details, Case 1 D

                                                                                                                                              '?
  • O 0 * #

w% s I \ ~o3 e-

1. 0 5-
  • g y
                                                                                                                                        ",' ' N u .. . c .

4 ,

                                                                                                                                                                       ,s  - ----

3 , fi ' cc 2$ r

                                                                                                                                                                                                                                  .s 1

e [ 3 E I l e i 2 g I F. ,  ; . 2 rx- " a

                                                         ~

El *\ @ 'l

                                                                                                                                                                                                     }-                           .

3 n

                                .                    l,j     -

b l \ 5. y D y >t%,? f;i'j Ti" ( e

                                                                                                            ~
                                                                                                                                                     .4 e

{ . s 5 I ,' N.  ? 3 $ W g 9 i  ! f4 rr s' g s G 9' i l-e T is o9 t. ( 5'

  • D l +

r g s r- N b L {, k 1 # S _.4~,s. - ,

                                                 '                                                                                                                         4 g                                         . . .                                            ,
                                                       ~

[ l ,i 4 1 _ . 4-- , ,,, 3 o . T*""

                                                                                       -         I                  l              -l>       "9                     *3                                                               !

e I I ( -I f i W 'i

  • I i L

h E I dI ,- j I '

                                      .                                                          ,                                                 .!                 3                                    8
                                     -1                                                   (                     *!              4                                     d i                                                        i              .                   I
                                                                                                                "                 O Ak          , _ _ _ _

i I l M q . si .a.

  • E-
                                                 ...                     A ,s                              4 ,2 f

0 :Vf

                                                                                                                                            .g f                                                                     Test Plan, Document No. A-000150, Page 122 of 156

l

                                             " ~ " ~ ~ ~ " ' ' '

O l'4 (Tye)- _ 2'-4 (' '!- )  %\ /7 yp b - (Th) > f* n j

                                                                                                                           ,L          ;,7,4  -

I b s.

                                      %                                                      gS*g- Vo -

V4 \ /I## o t,,s.

                                                                      . . .j                          c4,1.25 (vve.)                    ..                   v4 / N
                                                                                                                                                          %\/ TYP' V4 / \

b N g ~ # TRAY CLAMP MTE N) h TRAY = _ - - i .I# .- , a wy a 3 C A f g > f 4 5 A C C A 4 N 4 .... u i

         -                                                                                         4
         '                                                                                       l i  l U                           i a   i           _ _ _h TRM          . - _ _ t_ _ _ _ .

s ., i l y g) s'-o = M /, .r s h .a - ,r is. -

                                                                                . _ t h.

e t ll ,jQ f gegf FOR I4pf BOLT V

                            ~'
                                          -4)                !                                   (TYR) r                                      ,

t' t' .

                                                   .Orcra w H                                                                                                                    ~

O DWN.SY: R.S.S. CHK'n SY S1 DWKs.W8 4 le. ~ Test Plan, Document No. A-000150, Page 123 of 156

8.3 Construct ion Details, Case 2 mi Lus m, _ - g NY.; & , Wk 1 b

                                                                                                                                                                                                                                                           '   T
                                                                                                                                                                                                                                                                  .  }
n. r i

A t y2% AE a p

                                                                                                                                                                                                                                                       "     b      %"

d' ld

                                     ,d            n i                                                                                         i n                                                                                                       1 J l   1 9l                                                                                      10 h                                   *'                                                                        ," -                             &
                                                                                                                                                                                                                                                         \   \

a l ; g,g O, I b o 6A

 ,                                                             7      anG y                                                                                                                                                                              {h u                                      T_E1". E                                                  %

ct > o.5 N M-O _ S E CT. C -C ELEVATION lh T t'4' 64&v3 - 14' M _- fS' f it' TRAY CAudP m* t 6*_'

                                                                                                                                           ~~

DETAIL

                                           '.d W R I                                   I                                           n                                     wppy gTPg, I    D J   '

' ' c. gs s

                                                                      +
                                                                                                                                     \ n,I W~

l Lc* SECT. A AfAS SW4') a l'

                                                                                                                                      \ ,

r es e~ z.s//Ji RCT. S MOPR >#JW Ql g 1 w.m ws qs,V 5 % in 9 l O ~ psy w s., ~~ s.a Test Plan, Document No. A-000150, Page 124 of 156

t '= 4 ' . t *. s' , s'. t *

                                                                                                                                                                                                   .        \' 2'    ,

p f/6* IY,i i r/s* , p,t Ya* SO LT 3, 1 I,*M} g-l/p \I (TI-) i s,- .'..._____..- r' E s 3 /g T---._ -. --t-T} 8 4 \ O " " I CYR L G sG r S/4 @TRN , y V-

                            ,                                e

( >l (s

e. N
                           <                                                                                                                                                              e
                                                                                             '                                                                                             >       I G                                                                                                                            @

u . (J t

                                                                                                                                                                               \'- 9 2                                                                                                                                                                                    _

T ". IT I _ i . .i.s , _______ .ee I[ I

                                                                                                             ,...____.______h__----
           'O                                                                            ,  , ,   , .. .

C4%7.15/ s., ,, 4 $~ O _ ,

                             .e

_ _ _ . r1 11 i s.va , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ f s___ ' i

                                                                                                         .   ,__________                                       ____                             -:.s_a t                                                                                           , . . .

C4 % 7.2.5 / 'N TRANCLAMP DEWL g*, g , ' - SUPP'T ' TYPE TCPI tol 2 A a 3 G A I fn A s 1-sp e d 2.=s- 4 S C G G C 5 DWW.ST : SAM lCW K'O.M TO lDWO.MI.4-1C Test Plan, Document No. A-000150, Page 125 of 156

g -- - - 7 9 W~ O O O e i C i a 5*

                                                                                                                                    . L6 r 6 x $ x 3' 3'4 L4.

TRAV CLAMP fI lg 'al .'; p DC *ask

  ",                           L -Q
h. sotx
                                                                                                                 '*               7 1,D                                   w.. t nn j

9 ! E "2 - l/ Br=ei _ L 6 X 6 X kX S'-OL6, ' 7 j n 1 ) FwP i < t E 1 e pps 4 A3 M'*8 l - i,d + B O L T L m j 1 g

             ,n== x m g . .. '

C6 x 8.2. -. ' jj 4% ., _ O'-9, _.

F
                                      ,r '                                                                    yt      -

2'-e _ 1 , _ + SECT. A-A i 8 N

                                                              +4                                  P. A t -6 g

ji '

                                                                                                ,$. v2-6, N                                            _q
  ,                            ..                                                  ,4-                                           w                          e s7                                                                    V eens                                                           , ,*

4 3

  $.                          ..                                                   '4     l                        y                                         i e
                                    - -                      { lt           -

Alx4 xd-s tc.. o

                                                            , - - - -         w n c6 C;
d. ---- - - - - --

SECT. B-B [  %. gJB _g -;; g

                                   .      . a.                                A                                                     ,                                ,

L5x641 3 _ i'- 3 ; sL PLAN ii e ar .= = i'4 + wtT _l'4 ( SOLT tn 1, Lo d / SECT. C-C SP7 - lnpAWN RY: LA nadW A !(' M M O A Y

  • V A A OWI' M O* # '

f O I l'/[d bol.T (TTR) 6 o b'/n *

Lfa*(aaYa
                                             ,_._ e                                                                                       4       'b A p

c g4 e+ l ff l [fl 8/4 V TRAN 1 _] l

                      =                                                                                                              -

c ...s h?

                     *h                                                                                                              _ o' 9' O
                                                                                                                                     .                   s*e             .

L ... TRAY CLAMP DE" AIL SUPPT TYPE Z A 3 G 4 C Cau.3,4 y,d 3=r L s . O DRAWN SY: EAMj CMOlBY S VS ~~iDW4 M 4-3C Test Plan, Document No. A-000150, Page 127 of 156

8.7 Construction Details, Case 4

                           ^

O

                                   ,           1i,                                                                                       $,

j u h 2 d

                                              ,J                                                                                       T hJ y                                                                                           8 U    'g f 5                                                   lY i

{

  • I e ..
                                      .' 4j, J r                            e                                           h   a     j a

E

                                                                                                                                          =                  x y

2

                          . . =.    {-                            3 2 v)       S e

g s I-hj y

  • 3 i 7

.f

           ?
           .-      n, i +g+f, a                                                                           s __I<-      ,4                        5                                                    _!2.
                                                                      '#                                                                                    . \'

um . . . _, g g g,5

                                    ?-     --..(---
k. ._-_____1 :ARTE-b  : (f .
    '~.

cv 5 [ g- , q g 3

'O 2O'd -]~h.[ ,

T

                                                                                                                                                               =

_f i e~ t

                                                                                                                                                          <a h
  • a4 w

c 1 $v _ & I 4 i E

   '                                                                     g7N. s
                                                                                                                                                                                 ~
             $ j- yv:
  • g f .

9 ,9 ,S ;7tp a _____.J & [

                               , ,;-              s3ini a                                                                        ,

7n d' d -M I ( ld p l

                                                                                                                         ,    i s                        s            ": *t n              i    8/       =0                9                       -

1 Y l K =~, > b q u

                         .v             -                               n s .r l    n a                fa               '4 .-T       i                      s   :

l z JJ ' g 9 l . W

                      '<f'~

N 4

                                                                                                                                                                                   ,e
,F                             .      IV - - - -                                                                                       a
                    +5:;.                  i                           . si . .

O g - 4' 4 - . e f i _ - - - - - - - - - - - - - - , - . - - - - - - - , - - - - - - - - . - - - - - , , - , - , , , --------,,-,_.,-m --

O

                                                                                                                             .                                              _-                   L '- 4 l'4 W B ot.T (TYP)

S't GAGE 8I - - 'I

                                                                                                                                                                                -_lZ
                                                                                                                                                                                             .              ~~
                                                                                                                                                                                                  'l                       l'4 t                                                                                                                                                                  %                         :          a         f q- - +

g ,

                                                                                                                                                                                                          /-Lu G x %
                                                                                                                                                                                           ?

E

                                                                                                                                                           '4 N                             ~                                  94
                                                                                                                                                            '4 V                           i x

d u g TRAN CLAMP DETML suPP'T hPE 1 A TRYl '

                                                                                                                                                        - 1;;2-          ---                        r.a r 1                                                    C O                             4 5

G A -- . - - k

                                                                                                                                                                                               -\-m l

I

                                                                                                                                                                                                'T

_ 4" - _ &-[ [

      '                                                                                                                                                              [m l f pyd J ~a~

I F . O ona. =: . . m.., s a  ! u. 4 4. l l l Test Plan, Document No. A-000150, Page 129 of 156

TRAY TRAY p O' M si tt. site

                                                                        =       --

4a (; l l 2 A 5.% t'/+ 6.20 ! P4 l l 1 5 I N 1'4 lb I E+

                                                               !                          '   "        C V6 cah6 Sost $(a E                                                                                                         1.325 hs 1.525 1 %

o l Vt 1 Ys Yz t Vs E F 'h - o' 'I6 l o' F

                                                                   ,                                            + Va         + Va
                                   .x "                                                                G        -o    '/S      o E\                                                        7!O + 0Vs Y8 + Ys 96* 14'                                         W                       0 o                                             J   I.75 +.y+

o 1.75 +ov4 K M

  • L .or,3 a . o (o S R L pe S Pt.Acss)  % TARE l SoLT HOLE l Sit.E DIA.

l , < . . i

c.  %  %

v2  % 5 - 6/8 #As

                                                                                                            /4       #bG
                                                          ~

TYPE W CLAMP i. ( ' l h i l C rs L cwP CE. TAIL Test Plan, Document No. A-000150, Page 130 of 156

TRAY TRAY O'M- SILE sit S

g. ,,

O. -

                                                  ^             -
                                                                                       ^ 42*
  • 2"'

B - _ S 2 !V4 2th C 7/8 Mid. 7/8 MIM. t) D 4 f V8 [o k e 2 t v2 2 !,)2 ! @ 0 f) F Ia'aV2  %**Vi n = a %< %< f G

                                                                      ~

v 1  : .: ;i: l ~F i i i, I TYPE 'B" CLAMP I J I

                               ~

5 . O - N J CLAMP C)G. TAIL Test Plan, Document No'. A-000150, Page 131 of 156

l l 81

                                                       +V4 7.k4           af3" b                           ;                                                       =

4'I$#E - a ll W+ M. .. g *o (p ll Il _so< . ll  :'

  • n w me i
                                                                                         "g
  • Y4
                                                                                                          -O                                         1 l

l

                                     . + /4

__ l '/4 - o " -. O ' va::g;.1 n i f- a si g s. TYPE 'C' CLAMP u.

                        ~

I i O rfra o c a n a m t. Test Plan, Document No. A-000150, Page 132 of 156

4 P" 4 2" f V4"  %" uosi. O _ TYR '- h

                                                                                                               ~~

w O O

                                                                                                               .-    m  i  *                                   %)                        )

l V54  ?

                                                                                                                     =
                                                                                                                            'k N

J l g ,

                                                                       ;                                                p     p
                                                                                                                                            ------                    m, ,           ----s I

R" Anal mc - a

                                                                                                                                                                                 ,k b l L Sh x292 x %
                        , g!Q"                                                                                                            M                                    ~

l l' - = L.S 262xh \ l p' l l TYPE "D" CLAMP 1 l - { t I

                                                                                                             ~

m

O - .

[,(gg W/./ C.f AhAP DE. TAIL .: Test Plan, Document No. A-000150, Page 133 of 156 '

LENGTW To suit , d , MEt/4" O l 1 I u n ,  :: , 4 mv s '4V

                                     %.m g                                                        RMk2'tkl
                          !ii 9

W a

   .                      e v

o _ O TYPE 'G" CLAMP R O - - 3.% 91.1 CLAMP DETAIL Test Plan, Document No. A-000150, Page 134 of 156

I 4* T. Ye r 2 2." I Y4 . 7 Mid . _

                                                                                  , _I
                                                            =

r<e. - n hm

                           ~~'

f} gj j

                           .:.      h    a                %                    f}>
   -       '4                   k k _.'r h-l                          qb % g        _ _ _ _ _ _ _       _ _ _ _    _ _ _ _ _ _ _

l = 5"MN. , l @ MA%.

                                                                          %' s
 .I i

I O I

 ;                                    TYPE "J' CL AMP t

l l Fl f 1 l l I E m s s a. fn,y R dN. C,,Lk P CTnTA\L,. - Test Plan, Document No. A-000150, Page 135 of 156

8.8 Construction Details Case 5 O (TO BE SUPPLIED LATER) 8.9 OBE and SSE Required Response Spectra The first four spectra that follow represent the combination of l spectra calculated to envelope all buildings at the site (less the con-tainment building) based on a " lower bound," "best guess," and " upper bound" of soil properties. They represent the envelope of the twelve indi-vidual spectra which follow. They represent the 44 damped OBE and 74 damped SSE required response spectra (RRS) that vill be enveloped by test

        ,       response spectra (TRS) at appropriate damping values during the test effort l       governed by this procedure.

I O i 1 Y le I n O Test Plan, Document No. A-000150. Page 136 of 156

ENVELOPINC* FLOOR REQUIRED RESPONSE SPECTRUM HORIZONTAL OBE - S = .04 o G la.

                                                          "===                                                                                                                                                                            _;

9 Z E.E -_: 11 .! u_ d- j- .j.3:3j i j

                  ,        =-; ;:: =E.EO .Z ~~1--= == = .1                                                                               #-- ! -i .i H                                                                                            i 7_ _
                          .-.u._..--                         .
                                                             .       J...._.._                      .-p                                  t           , . t.               ,

1 . . . . . .

                                - - - n- : . . . r. -__......-__....u..._.._...._t._.~_.._t.._g__.

pc -  : - 7 . _-* g j_g. . 273 . ;; c:- __...t_. 1._- :c.-- .p i. j i ,j . g' (] ----

                                                       =4i= 3 .e a _ . a-;_ _.=

p u = =- ._: e: := ;=ig = _

                                                                                                      .-                                                                                                                         :=L =
                                                                                                                                 ;= =;. _
                                                                                                                                              .=.                  .. p j-       ...;.

a =i p ==-4 =:;_==== ...=_.:;=.-

                                                                                                                                                                                                              ---e          ._ - -._ ==_a:=._-
                                                                                                                                                                                                                                                                                     =-~

i__ - j i i t

                                                                                                                                                                                                                                                                                                                                                               , 5 i

g

                                                                                                                             - -ir .1 5k-J % -i---k::: . . - li "-M .--d - _dr .~ .1. . r -                                                                                                                                                           '
                                                                                '~

1~i f W ' ---~.2 :=  ;--~

                                                                                                                                                                                                                                                                                                   ~r!                       l-I t                    !

1-M : : .. _ ; . _ . _j u . _ . . ;- j .a Lg.j_1__j - i: n : ._ _  :- .j  ! 8 _f .- E . T_L 1  :+=i Trl I :.i ..a..- iH-P=li'.~ .'.=i-.=i l l g ...:_..iiii ... .=ii

                                                                                                                 - - - (42) -. ;:= nlr)-1.                    ,
                                                                                                                                                                                               ..                                                                               1 g ,s_ .
                                                                                                                                               -J yl u.,g,sfy. s.u                   .
                                                                                                                                                                                                              ~. _... .
                                                                                                                                                                                                                                                                -m  --

1- l __ ; r i - __ ;_ _ . , _ _- . . _ . - Ej .

                                                                                                                                 ._. . ,pf I              E~ _ _g g. J. ).I_-@ : :: =K =_. .cE._ " _ f.._,i:iEb.il-}
                                                                                                                                                                                                                                                                                                                                                          -i:l l
  • W =_: __7 . , . ,
                                                                                                                                                                      , i                      -- - - - -                              -

2 ., .

1" _.i _j .-i : :- /I .V.J -T 1- ~ ~ ~ ~ i - ' H--E F :-M --~ d.2 -
                              =:....                        .            ;-                  . ,

q . 3 g + ..p_xi _ n -- g-- ..% . ._ \ ~ ~.. . _.=_-- g;-g_m=-}-. g2 ; 3,3

                                                                                                   -1                      c-/:-:                             . _                                                                       : t - --- _                                            c-n-- .=:: :r-: i 9                        4 . . , .

4_ _ , _ _ __g____ ._______g.. __

                                                                                                                                                                                                                                                                                                                       .g                , . . _ , . ,           ___
                                                                                         .. _ ] .                     .g. . . _ ;__ _ . p _ p ..j _ . p.,_

g __ gg _ _,_ .q  ; _ ..}

                                                                                                                                                                                       ]                          [g.g..,g___

4 i.

                                                                                                                                     . ;..p _]._._
                                                                                                                                                         . . ]. .q ..          , . . _
                                                                                                                                                                                                                                                                                                                           . j -.__.

4  ; { .; .

j. 4
                                                                                                                                                                                                              . g .p:                       . :p . _ . . __                                   -:. p . . .j _ j _q.
      .O
      >j            ,
                                      ---                              w.f ,pA g                                                          i           !       i                i                                -V                     Y                             +=:.ir1                                                                           -
                                                                                                                                                                                                                                     ---l.\....-- y x h 7

h.( w i _ M i - i ! - - i

                                                                                                                                                                                                                                     . . .;_ -- 9
                                                                                                                                          .                                ., .                        . _ _ _ _                                                                                        .          2.        :
                                                                                                 - _: f 4                                                            t/                   \ /                         i              ,                    !      !                                                                                                         i                                                  

l p5 I \/ J  ! !  ! I i M y; - 3 , 1  ; . , , - - 1 - - _- - ,  ! 08 4 f! ,

                                                                                                     !                  i- i .1-1                             '

l -i 1 -- i i O 2

                                                                /'        .

i _ i l i 50 g 3 ./ t  !

                                                                                                                           .             .l _ r_n        .

j ;. .: 1 is / i k .I I I 8:: / . i. .. l i i 1. 1  : o 2.5 W .~_h::II"

                                                      *r-WM 22-- - - - - '- 4 C 2 7 2 i_=-~: ~_-i :m'i            ~.5N--
                                                                                                                                      ~

27

                                                                                                                                                                                 ~
                                                                                                                                                                                                . 2 -5.
                                                                                                                                                                                            ~ ~ " ~ ~ ~
                                                                                                                                                                                                                                              'I i                                                        !
             %      2.

3

                                                                                                                                                  ."3.._.__.[
                                                                                                                                 ..                                                                 ..                  .                         n                                                                                       1
 }                                    __                                                                  =__ _:_                                                                          . _ _ _ . . _ . _                                            . ._ :          .             -.

('

                                                                                                                                              . _ _1 3,3. 3. 1,g )_ _____ ___ _ _ _
                                                  .. r                                                    . . . . .

_ _ _ _ . . , ,_=si: Hi:- 4.. . . r _u -- = .

                                                                                                                                                                                                                                                                      ~
                                                                                                                                                                                                                                                                                                          -l                  .
                                                                     ..g.._...                                             ,        .._.
                                                                                                                                                           .;             _ . .j _ _              _                                               ,
_r.- :: .d --l : ., ._ .. r- l__ _ :r-- _ :  ! :l -
                                                                                                                                                                                                                                                                                                                              ;           ;                    i r - - _. , -. __                 . f, "-
                              - r _- : r                                                 .. _:l     f.                                                     _..

_ . _ . . _ _ _ - ;j'. , _j.  ; . __ . _ ._. . _ . I 1.5 2 2.5 3 4 5 6 7 8 9 10 1.5 2 2.5 3 4 5 6 7 8 9 b0 y A l l q

  • Combines lower bound, best guess and upper bound soil spring predicted floor o response spectra. -

Test Plan, Document No. A-000150, Page 137 of 156

ENVEILPING FLOOR REQUIRED RESPONSE SPECTRUM VERTICAL OBE - B = .04 n

     /N j\

10 - n - :-- . ~ t : F= 4 i

                                 = ==._ _ l.f- =- f"" f--+E- - P .! + 11:- 'I m                                             -

n t=! : 9

=  :- :.____ g.z z 1 --t= i ;. 4 24 .M- =- "= - { :-. t-
                        ]~=_?E-&$U 5 ~~~ ::- ?                                                                                                                                                - (_5-~~? '.lW ~                             .

5- -Y - y_ _ j j e

                                                                                                                                                            -- - - p: _.. .. _: t-.__.                     ..- t: :-*
                                                                                                                                                                                                                                                                                                          - . _. . T - --- .; r.;_._..--.-]-
                                                                                                                                                                                                                                                                                                                                                                                                                                *                                        ' - l
-- = - = A . __;__a. j. . T 9, a. __ _ _ . .

g __ W_. : -~~_ .. i l 1 .- ;;;W =-j. - -. _2-  : : -j - _2_ .=-=3=2.-. 3

                            + ;r_wa;2- =-+r_.. ==.;_-- w _- +-i
                                                                                                                                  ~
                                                                                                                                                                                                                    ~'                                "                                                                                               #            '

i

5. . .
                                                                                                                                        =: _                                    '.:_ _.N"_-                                                                                     ._._-~                    =5__. :_ g- ] j                                           _: .                                                        l              j                                   i I
                              "                   2._ ; __ : .: u.                                                       .

_.. = - 4_..

                         - _ . . . . _ . - . _ _ . .                                                                     ._.__              __!                                                   ln                : _ _ j ...d _                                         _. 95 ;- i i~~ .:Q.                                                .4__                                               i                              i              ;
                                                                                                                                         -_._gq %........4                          =[ _cf y. t= - - ~ ugi-g =g y = = = ]                                                                                                                                                                     !                              !
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \

g y= : =1 = ._G= _ _ _; j

                                                                                                                                                                                                                                                               ....g,__;._-__. _a r p                                                      _=
                                         - --- Tr:r- _-.- : -- - z t- rt- :r t r. - t .~ .L n_._3 _- _._
                                                                                                                      . __                                                                                                                                                                                                      ~

_ _ . . _P : _- W j y ._. - E :w = r .. .- .  ! w -- 1 _ d -- g5, a: -

                                             .c.
                                                                                                                                                                                       . . .           . .              ..          .                  . . .         ,.--          -.-----:.a----

Y: ~~.0 $.5.-l. _; .__:_

                                                                                                                                                                                                                                                                                                                                                                                                              . . . __.y
                                                                                                                                                                                                                                                                                                                                                                                                                                               ,             q-o .,
                                                                                                                                 . . _: -. _j -                                                                                                                                                                                                                      . . . .;
                                                                                                - .                                                                 g.               --- g ;p _ _                    _ . . _        . . __ ,;-

1:; f:_;

                                                                                                                                                                                                                                                     ,r-                           _ _ , _ _-..:..~~.__._.-_. _: _. _._ - . =:_                                                                                                                               . . ]. -

1

                          .._. =_. : . _. : :_ . . . _ . . . ., . ._;                                                                                   4, -                                                      .

u :_. r__.n

                                                                                                       ~..

u- . = .-- - - :_x _ Q] h p_=:dY~5 a_-J .p ;

                                                                                                                                                                                                                                                                                    ; '2:2_m
                                                                                                                                                                                                                                                                                                                                                                                                                         ~~-                                                          !
                                                                                                                                                                                                                                                                                                                                                                                                                             .f_      y: _j_%'~

2....... H P j ..[ [i.[ _]2 M[) 2i -- k.f.:.f__ fil]

                                                                                                                                                                                                                                                                    .y_.                                                 .                     ___. _ _ . . _ . _
                                                                                                                                                                                                                                                                                                                                                    -- - -~ ~ " * - * " - ~ -
                                                                                                                                                                                                                                                                                                                                                                                                                      .__g-;--                                     . g-    '

j

                                                                                                                           !                                                                                                                         ;              f -                          .N
                                                                                                                                                                                                                                                                                                                                                             -*                                                            - ' - --r                                 r 1.5
      '                                                                                                                                                                                       W - .x_.
  • _-.jFG.'.g ,"__._- _ ~_. ..__p..._._ ,,4 _1__i, .
                         =. __:_ _~. ~. . ___f. p _._._.*
g. . r. ., : . _} g, i
                           . . . _ . . . _ _                                                                    _. . . . _ _ --7,
                                                                                                                                                                           .T- ._ .i _ g. . . . ] * .                                                                                ___ ._

_ . . . . . { -Q. .r__- {---{.~ l. _ _ _ _ . _ _ . _ _ _..._g. ,

                                                                                                                                                             .                                 .4...u                                                      ..

_ .4 . g .._+ ,

                                                                                                                                                                                                                                                                                                                                                                                                                    . = . _

_ p. . _-; ff .j g. 7 .q__ __c - .3 2.u .= _3._ _ g_ _ g 1 ;J t .m  ; i a - ! . w=; -q =%q,3 w 14 i

      ,3
                                                                                                                                                                                                                                                                                                                              .~.] -~.~_EJ { } ~~j M j V                                                  _.                                          -~ _ . i . . _ . . - j                                            ((                         ].

1 J.i. . _ p; _. . __ ____ _. __ _ p ._ . . .g _ . . _ ; _. . l . _

                                                                                                                                                                                                                                      . _ _g                                                  _ __

i i i iX e: W. Al 1 //i l

                                                                                                                                                                                                     '                                                                                                 =F                          I'                          -i                                                 '

T61-5>~~#~)

                                                                                                                "*'M                                       i / / 8                                                  l                                                  I
                                                                                                                                                                                                                                                                                                                                                  ~ ~

g;i 5 i = -

                                                                                                                                                                                                                                                                                                                           ~.F                                  -l~                                               !

a h g f _E1/ if - i_f -j9 " M- - - j  !  ; { l l y,

            ~a
                                                                                                                              ; - A j f: 1 "~~
                                                                                                                                                           ;                      .                   _...4                             .                               .
_. . : _ . ^

l,  ;

                                                                                                                                                                                  .           :.._3 . _ ; p                             !.              ; }                                                                                                                                                         ,

l , n i 2  ;

                                                                                                                              /.                         d 1                 Y. . r.1 --i. . 'i. ..l               .
                                                                                                                                                                                                                                                                   .                               _ _ rh. . . _.                 l

_, 3 I J 2.5 / --I I il[ i

                                                                                                                                                                                                                                             -]'
                                                                                                                                                                                                                                                                                       - - - '._ - - - ~ -

l 1

                                                                            ...                                                             . _ . . _ . .      .   . . . .                         j ----                        -                                                           -:...ie-I l

N .-- ._Tb.; d -__. -

                                                                                                                                       .~ ..Z--_: :.T-_E.
                                                                                                                                        ;                                             ~.                                   ali: .;--                                                   . M - 5.E:2,.
                                                                                                                                                                                                                                                                                                    = :-                                                               l.

g g_ -- =:- +:1_E-l . . _

= = ..
3. - .- _

1 y= _. c-.;.. . _ __. 2 =:-- _: -.--_ . ._

                             - : :; -- -                                                                                                                              ..                                      . . _ = .. . . = .                                                                                ..
.2 _ : ~ __.=1  :;_ . - r- . . -_: : _ . _:: . :
                                                                                                                                                                   ..=t                               t=-                  .;-                       :.$ ^

g,$_

                            =

y

                                   - -- s_ : f - ._.___..                                                                                                                                                  _ _ _ . .
                                                                                                                                                                                                                                                                                        '.______y
                                                                                                                                                                                                                                                                                            - - - - - ' _ .- - -                                                         j 7.._                                                           _,

j g

                                                                                                                                                                                                                                                                                                                                                               ~

i . _ _ . . _ - _ . . . . . . - _ 4

                            --/~ (~$ / J ..I.,...,..._
                                                                                                                                                                                                           ~~
                                                                                                                                                                                                                               ~                         "' - ~ '
                                                                                                                                                                                                                                                                                      "-- ~ - -                                        '
                                   ~ ~ ~ ~ - ~ - '

i -~~~~~~7

d. 1.

1 1.5 2 2.5 3 4 5 6 7 8 9 1.5 2 2.5 3 4 5 6 7 8 9 __ 10 g M M p t s Test Plan, Document No. A-000150, Page 138 of 156

ENVELOPIEG FLOOR REQUIRED RESPONSE SPECTRLM I HORIZONIAL SSE - 6 = .07 LJ 10 ~ ~

    • ~ 7
                                                                                                                                                                               ~ ~                              ~~                                 ~
                                                                                                                                                                                                                                                                                           '-                                                                       b 9                    -
                                       . 4 g=---
                                                                                          .Z ~~~j._" j .- ; _                                  j . j.                    .f_. , -l                                       :
                                                                                                                                                                                                                                                           -l.                -- 1:                                      i
                                                                           .-_;.,                                            - i----f                           i---j i--j-j ' ~.1                                                        .
                                                                                                                                                                                                                                                   --- ! . _ ' M.~~ 2 - -]

i

-- - -- - -- - - - r -d. ._.. g:* a-_- m :6t at: . . -j- u. ;- x:...  ;  : . .

_ _ :_ _r . -_ __- r =r - - -- . . g g - -- - x :t_.___. . . . _ 1 - '--.4.. . - . W 3.i_:= - 4: g :=1 __ :._-t - --j  : H :- .%= -r _ . . __: 4 . . - @ j ::;- =-  : # - -- ~  % _. ., t  ;  ;

                                                                                                                                                                                                                                                                                                                     ~
                                                                                                                                                                               ~'

EN ~ ' " -5 NE E N~ -# ~ ~

                                                                                                                                                                                                 '             --                                              '~
5. .

r gj ..- .

u a.__._ . Q : :/ .

_]_.. .:- u. . n.  :; - , : .Q-1--iri. u sg_ ;- .n_b __ i .. . *. _'. j  ! E EE

                                                                                                                                                                                                                                                                                                        ~

O 4 ~~ I TI ' ~~Y - 5 ' 7-- -

                                                                                                                                                                                                                                                                                                    " ~ ' - '
      @               fi ri"                 .!Ei :il:f?_ f.;,-jc;.p Hj .'j;n.j ~_[_j.j .%j . 5ff.[}_@i U.-E-["=; m. . ] .                                                                                                                                                                                          . ;} .         '          .

i N -. .-. -. .-. -. .-. -. .-, -.--- p--- ..i. 4 . . . , . , . _ . .. Y s g.4g, j) _g. .. 4x-.- g rgy: . . . - g - - - - 3_ - -- - - _ [ =- w 1. v M3 i-t : - w

                                                                         ---- i %--- (h.i d=.                              tAisj                  "f MI-% N                                                                               &-7 h E
=. --

i.

                                                                                                                                                                                                                                                                                                                  =: -- i - -

2"5 " ..- i: - - u. _ .x _ - =_JNM= H --- Mi ~- : r _ ==_; : = - =__

                                                                                                                                                                                                               = ' i-.E -f= ~g--ii =i---g..-.:-g-
                                                                                                                                                                                                                                                                . . . _ . . = . _ . _.n=_.. = ~ n_

g . g* gM= ;- . .- = :i=. M=_;3

                                                                                                                                                                                                                                                                                                                                           ._._- } -gg L g t-i

_:: .9_: - i 2.= :: 4.+=_q - , .., _. t y : :_ -- _- =. = -. ..;==,==- - ;_ 3

             ,                                                                                                                                                                                                                                                                                                              : = g
                                                                                                                                                                                          .u._=_.                             :- :._ = _ .                  r- - 2: =;..                                                                      ..r       -.
                                                                           --- - : _ . .- - ~ ; - i -h_.i ._f                                               . . .~ " .__;                                                                                                                                                                           :-2_.yh.. . :. ...-

r E_ _ .

                                                                                                               ~
                            ~
2 . __I9_. _h_.

2_. } '- ~~r ;.C__[ __. ____._. .._..! _._... _- . _ ~. ~._T _ _

                     ._ _ . .i = i . 7~ !.1.i. ... . . _. _ .7 m._

_ _.. ..__ __ _. t.

                                                                                                                                                                                                                                                                                                                                -t--                           : -- t _ .
                                                         . ._ _; 1                                                                                                                                                                                                                   ------,=-*._,t.

_ _' . ... ,..+__, 1.5 '___-

                                                                                                                                                                                                                ..___.._. g _ _ _4._.____.                                                                                         -             ;             .

_ _ _ . ..__p.._._._.__3.._.f 4 .

                        ~ 7 _~.                                                                                                 , . .l ? -                            '.'.~^'-f.'                  T_                1 . _ . . . . _. . ~ I                  ,.Z.             . . . . _ _            .~ ~~~~ ~ fTN T_~~ ~~f ~ ~
                                . . _    - ~ . . "_. . ; . : . C~ ~ ~.'N ~~. ' ' ~ f  T. ' ... . (),Q) T 1 * . . , _. . . +..__+R_._--_.
r --;.:~. = - = . - - - '

{

1 1  !. .: -  :.-
                                                                                                                                                                                                                                  - - - - -                                                           - -                     ~
n .._ r .[i :
g. .; .;.... _ ... h- . .. . _. . f_ g:.r-) __.._ I_ \v , f
                                                                                                                                ..                              ,                       .                  1               .-...._____4.------. _ _ _ __ _ . _ _ __ _ _-_..._.4                           ,
                                                                         .. .g .q                                         f j                3                  ;                       ; 3                 9...-
                                                                                                                                                                                                                                                                        .g ._ ;                     gyy.                                             :._r        .          .

p%) 8 '/ U i i i' I i

                                                                                                                                                                                                                                                                          ~

_~-Y-l/'N=i=#T'4=r ier vyg, py j, d

                                                                                                                                                                                                   ,. l 7
                                                                 .;g                                       _i

_g.

                                                                                                                               *                                                        '                                                                  .!                                     t-                     l            :
                                                              / -                                            1                                                  i           ?                                                                                                       _.

6 '

       .n :                                                // '                                                                 i                i                                                                                                                                                !                                   #

{y 5 // --

                                                                                                                                '                !                          I i                       I y!.

v y -

                                                                                                           ,                                     ; ---                                  4 a-                              !                                         ,

to - f/ , -j . - f-};-: . t;! --

                                                                                                                                                                                                                                                             !                                    i                       i 3,                                 f.                    1                                            :                -l             11_. -1                        i i ! l                                                     :i                                                                                ;

h 2: . . . . . .

                                                                                                                                                                             , ; !- - l.

J2 -}.i. 5e

       -s 3

D .

                                                                                                                                                        , .4 =                                                                                               .                                    i                       ;
                                       -                                                               '-~          -*                                             --                          -

I 5 1_ 2.5 .-

                                                      . _                                                        _ _ . -               7_ ._i._.                   - . .                           s.                ..
                                                                                                                                                                                           . .f ,

LAJ c :7- -_t ___.__. .

                        - *_           -* g =--- -- - - - -- - - - +_- _--, _-- .--_ .~-.                                                                                                                                                                                                                                              ,
                                                                                                                                                           -~' - '
                                                                                                                                                                                              =-                  :=-                                                                       --'                                        '         1 X        2.                                                          - - - - -                                                          -

7 _.;icr---

                                                                                                       ~
                                                                                                                    '-- a _.gc_"_ (                                :. .:          a_ :1_Q-f = _n q _. -                               . . .. ._.;_.                      a                         , /l              j          i                ,

N . - ____

                                                                                                                      . _ .                          ._::_ = = .
                                                                                                                                                     . . . .                       . .    =.
                                                                                                                                                                                                                 . .: . :. .=. _1. :
                                .=                                                                                                     ..-                    .y T-                                              .:.::-- -                                                             '=             .                                t
             , s_                                                                                              -.-.
                     =_... __..--                                _. . _ . .                              _
                                                                                                                             ......;_4.__.                                                . . _ .__                _ _ _ . . . . .

__._.=--

                                                                                                                                               .        =            . . . .                 z._ . _ _ . . _ :.i :                                                                        --
                                                                                                                                                                                                                                                                                                                                       ;          i
r _: =. .. . _ . . _ . ._ = m_ ._ : . --

rr ~_-__.~

                      . _ . -Tz_                                        x-rz.                         . . :.                                                                                                                                                                                                                                       ;         .
t .; . ._ {,

g ._ ._ . . . .._. _ . . . . . .. . 1 1.5 2 2.5 3 4 5 6 7 8 9 6 7 8 9 10 1.5 2 2.5 3 4 5 M M /d Test Plan, Document No. A-000150, Page 139 of 156

ENVELOPING FLOOR REQUIRED RESP 0ESE SPECTRUM VERTICAL SSE - $ = .07 o, tv!

10. .
                                         .      ,._g            _    _.__=                   -              - - -
                                                                                                                                            .q 4.p_; .1                                   .i.                   a         a _.                                                 , _                          p                   .

9 -- - - - - - --

a. ~ " & : ~ =~~ - - - - 55"- I' ~ "~ N AII~":I "I I f I I y, .
                                                                                                                          . , .               . t. - =.. - -L .=.s .--t.

_ : . 1 W - - - - ? =-- - i - - ~~~ } - ; _

                           . _ _ _ _ _ _ _ _ _ .                            ............_.1.....i..._1_._.                                                                               . 1-       .4. ._ .t              :  r_ . . _ =.:-----:1-__...._._,.                                                                  1                       ,

g g. .._.._2.. 1. - _ _a. _ __ -.---+-+- ____ a c_ -

1. --- . - - - - ~ ~

W + M W __. " - 'j=___ u.= ~ 4,= : .: 4 = = -'  : 4- -- - d; . r_a.- rz.a V. - i:: -- i  ! s,_ - =~ ~ ==-HmW e -  : cr i. 9= =* =ii- =:=-- = '= E!= . =- i+"= = E"=:= = = " = " = i  ! H. Q4. .. _l 4[i n r : __. ; _. ! -

                                                                                                                                            . .                   -;-Erj __ . . -l_; c -.                     .

3

                                                                                                                                                                                                                                             !.a.;.apn:_; .__ . _ ; ..y.Q ~                   .

i T 4. Y~ UY 5=~ ~ ~ - - Y  : ~~ 5 g _hi-ii =_r E ; i. :._ : --- d ; _i-u(_'{3 =M -l H- - id;i--$ _

                                                                                                                                                                                                                                                                                           +-~;;"_=_)                ,

i t R _- _c_;.: ._ . : ;r. .: . _ _ .. . . . _ _. _ _ _ _3, . . ___n2 .3..__ __4. _.. . . .. . . :g..g_ ; _=__4_5 q. . . . ._ q_ _.__ _.;-_ ._:. _-- g 3.

                                                                                                                                                                                                 +        .=~
                                                                                                                                                                                                                             - Mfi                        _..

_4 9:+ _:. . w:  ;

                                                       - :t
                                                                                                                           .]

8- ' 2.5. i= :-N ;-ia = i + :

                                                                                                   ~~ ~

NWU ~ -iE"N[=d_NS~b.lM'-N ;EN - ~ rf!- J -[ .l' ! 2 i= -

                                                                                                            - -IYM.MIU[~-
                                                                                                                     . 'I                              -l                           --JN{      - i'                                                                       U 5 = ~ -- ; ' -i                                                                     '
                          @%                                       .:s                         n_ Q = i ' ! 4 M rs;.$ M_'&=='f-                                                                                                                                                                  =M-isi=.@= .-g.s. ;       ~                                                 .
                                                                                                                                                                  .' -'r_254 l~i ..E-i r.1: .:=--: -- %=r--+----722[                                                                                                                ri' i-j -Ti3:j . i j                          - -- x :- - -
                                                                                                            ---l                                t                                                                                                                                           -                          --*                                      - ---

1.5

                                                                                                                                                                                               ...,'_q__'_____-__._.g__--'g"g____.---

l _.__._ . , _ . . . ,_ . . , ' __ . y . _ _j.

                                                                                                                  ._. g ._ . . _                     ._. 3 ___ . . 7 _ .              _
                                                                                                                                                                                                                                                                        ...q._                      _.__       _
                                                                                                                                                                                                                                                                                                                              ;_-._                   y __ ._ _

__ - - :.,___t... -' - - 7 ~n---___. c. ___._..s.  !; . . - . I> ._ _ . .__ . . ._ :.. t 1_ - ;, j, T, _ .--}+-. .; . .p _- ..}" :. _.m. .!, _ _.._. _.. 1 . _ ... . _ _ _ _ _ _ 3

                                                                                                                                         . ,f [        ._;                                                                                         _ . . . _ _ _ _ . __
                                                                                                                                                                                                                                                                                       ...____g                                              _

4.. g, _ . _ _ _ _ _ . . . _ . . . , . _. _ . _ _ _ . . _ _ . _  ! _... _. _ . t

                              = . . . .                                               ; .. . .                                 p j p.                           ,               3 -; ; .; 4                                                         _.                                 .

r_=_y y 5_ g g . , we 8 _ _ _ . .

                                        ~~~

b  ![ ' I I -! i' ' 3 i

                                            =_. _                                     l._                                                                                    .,j- ! . ,. ..! i                                                                                                                                             i 7    3.                                                                                                       / /:                                                                                                                _                    ..
                                                                                                                                                                                                                                                                               .                            !                 3 r                       _ . . _ (3 dpIN/                                                                (                  ._. '                                    j. .4._:
  • t . ._ .

y N :# I I I ' ' 6 ' l

           ,                                                           KinOsWW /                                                                                  i             i                       i i                                                                    i y; 5                                                                                    /V                                           i                               i                       i !                                                                    I                            i L.s vs 4p.
                                                                                      .s
                                                                                               ,/                              ;                       ..,--r-r ;                                              .

5 i, ,4 . i

 ,o        ~
                                                  ----i ff                             - !                                --j-r                                        "! } {

j i I I 3, -

                                                                               /jf                                             !                I                 l-            l            ; i ! !                                                                                                                                                               - ---

3 . . . _ . ge f[, j j ~2 - ]

                                                                                                                                                                                                        '        ,. l u3                                                    ?                .li                                                                                   .:
.j  :] ~
                                                                                                                                                                                   "~
           "8:d
             2 .5 -.___-e'
                                                  =-

i

                                                                                                                                                                    = , =
                                                                                                                                                                                  ==           .=                    _.
                                                                                                                                                                                                                                 ~ -

I BAl M u t. :- "" Nr ~-"i. = . ; : . r. i-DE 5 _: ;_ =- uz i l l i X 2. E+FE'" -E --*-- F ~~ E Ti"" ---E "- ~~ ~~~ :"' I I

                                                                                                  " - ~ ~ - - -

i_f _/

                                          . ___. _- - -~ ~                                                              _. r_=

li ___ _.___..

                                                                                                                                                                                                                                                                                                                 .__                       i I                                                                                                                                                                                                                                                                                                              I           t 4y-
                                                                                                                                 -:                         r:_                   ._                                          . _ . .                       .

1.5. 2 ,

                                                                                                                                                                                  . 3 j                  .           .

f - .:- 7 j

                                                                                                                                                                                                                                                                                                                             .l            l                             .

g

                                                                                                                                                                         ~-                               -                      -
  • r m = . . -- ._ 7: -. l
                                                                                                                                                                                                                                                                                                                                                       ;                 I
                         .______.y_.__.,    _
                                                                                                                                                                       .q.__                                                         . __.

f I 1.5 2 2.5 3 4 5 6 7 8 9 10 1.5 2 2.5 3 4 5 6 7 8 9

                       /d
                                                                                                                                                                                                                   /d                                                                                                                                                          A i

o s

    \_J' Test Plan, Document No. A-000150, Page 140 of 156

b

                                                    .         00*S '

00*h ' 00*E 00*2 00*I ' 00'O *. e o W Ln Oe ,. m w . ._ ., m

c. a U

en m. .. . ._ .m Cz b C~#

u. a. is m

c _; C z e - m. .. . ..

                        ~mx u ce
f. w W" e 05-m wa m* o o

o o zm Ow o-

                                                                                                                                                                                                         .o-c_ m                                                                                                                                                                              e -

m* cn.-. . . N Wg C

                                                     ...                              ..                                                     .                                                        .- e r     -

e

                                ,                    n  -.                   .        .                                                      .                                                    ._     +
                        @sez
                                                        ..                            .                                                      .                            .                       ._     e u    z
                        - _Iwe;-c w

u O Oew eu

m. .. . . . . ._

e a W o y e- c ., c 1 Qv- wa g C a.

 \

a*d w

                        >g  w>z- m.                      ..           .               .                       .                              .                                               -
                                                                                                                                                                                                  ..     .m zo~
1. y & me
                                            *-a we i ez a35                          m. ..                ..       ... .                                                   ...                                                    ..     .m U 3z ewa
                                                            .- m O                   -               am  .

[- + cwe &E

                                       >-                     e ow J .J                    .O ww                         MW I                               DUC z Il! C w                o
                                                  ~

E CD E* m

                                                                    ,                  ,                                 ,                   ,                   r O

O e-00*S 00*h 00*E 00*2 00*I 00*O ~

 .f-(D)          NOI161:131338
           ~

TUGC0 - ENVELOPED EPEC ~ pmr - t& C, rars SE!$MIC RESPONSE SPECTRA O o **drame .se ar >

                                                                                                                                                    ==

ta. 1 c. amies.. masses.aw, m.

                                                                                                                                                                                            >>>>-oe>-io i
                                                  ,*E P ",dll;;O238"  **                                        nem een                    as . m s                                      FIGURE- 77
               .'38.,,e we..c Test _P1an, Document,_,,No. A-000L5_0dage 141 of 156

fo,

  • 00*S 00*h 00*E 00*2 00*I, 00*0 *. <

e e W m O. O y r .

                                                                                                                                                                                  .y I

O CL E j L: o en -. . .- m g Cz , Ce* LA. L =r I m I CJ C g g cu.

                                                    >- m -
                                                                           -.                    .                                                                            -   .<N WK     W c

CGC Wf 6.- WM D* O o g O C m . Cy c- -. . .

                                                                                                                                                                                  . =e CL ID         ===

m, CF> - . - W$ co- - .

                                                                                                                                                                              -   e      "!"

C m - f rs.-. . . . .- + i s >- co ... . .- q U c z

                                                     -Jc                                                                                                                                 y LI w g2 O                                                                                                                                                                               7 p,,..                          ,
                                                                                                                                                                          , , ,   ,,g m-                                                                                                                             O C C >=                                                                                                                              U y >U-W    W      "lP---                                       -                                                          -    -:r C r                                              g         g CL-J"*                                                                                                         j yWJ
                                                     >gC              cr> --                            .                                                                  .-      m t

ze-W 05 e WW l C> E ***** -** - - - W CV"

  • CC --
  • U .a z r-QwC a-= >= ta-E .

3 O >= nn . (- HWE == I g . W J .J . r' ww x m'*

                                                            >UC               E LD                                                                                                    C EWc               E*                                                                                                      O 1

WEO " Q

                                                                   ~

00*h 00*E 00*2 00*I 00*0 ~ ' ar 00*S (0) NOI1BW37338

               ~

TUGC0 - ENVELOPED SPEC Dm 7- It c , se r.C SE!$MIC MESPONSE SPECTRA O ,%, m..u me. we. m ,- - -, - enimme.a.,i .swince. FIGURE- 7 3

                                        '3*=,e n,..               3 P 2"' 7? *,i s' * ' '                       i                          , 3333 Test; Plan, Document; .N_o ,g,090129% Ragg_}.,4 2.,gf.1.5,6. ,.,, ,,, _
               ...                   ,                  3...    .          . . . .                -
  • 00*S 00*h 00*E
                                                     ,                                       ,        00*2   ,

00*1 , 00*O . o , c O' - D in m w :r-- .

r O

Q C U n -- ,

                                                                                                                                                                   .m C

ucN . I 2

                      == N Cm CgH gy..,                                                                                                                           ,

C UJZ LLJ c ~ Q_ en z WC - m _z e o Z 6- O Q O En Q W --- . .

                                                                                                                                                                   . c.

Q_ ** CD. -- . . . m - m *nE N

                      $          CD.        -
                                                                        .                                                                                     .-   c Z l                   g          n      ..                              .                                    .                                               ..    .
- m >

Om (D.-- .c U g - .. . Z ez tt>. -. . . . . .

                                                                                                                                                                   .m CU                                                                                                                                                  Q Qcw                                                                                                                                                      W y-m gyg             :lP- --                                        .                                                                             .-   -::r C CA J"$
                  >g LL.! W *g m .          -.                .                                                  .                                               .-    .m ze~

y A *-* mC J Wc [ l EZ l mz ty ... ... cy l gg. -. . . . . . . W hz f 3 u. o *- ev E CM 3 c =o- .

   -              WWG                            ED LE OW JJ                        eh l

I WW

                      >UC zuo Wmo       -

MC E@ E

  • m j

O O e P'

                             ~~

00*S 00*h 00*E 00*2 00*I 00*O ~ l (0) NO I .l.UW31338 1 1 TUGC0 - ENVELOPED SPEC f

                                                                                                         '"'c """"5" "'"a l

O , , GIS85 & MILL. INC. 2323-047-1471

           , i.g. , , .                                                                                  sai ars sa,2 ***.======

FIGURE- 77

          'We sn             & P "" *M' " "" *^                                        i ==.                         . 2333 Test Plan,      Docu:nent No. A-000150. , Page 143..o..f.156
                           . . . . ~,                                                                                      '
                                                                    ~
  • 00*h 00*E
                                     .          00*S                                     ,                              ,              00*2                       00 1     ,

0 0 *, O *. o , e D O t,n

          ~.           D y              y.   .                                                                                                                                                         .
                                                                                                                                                                                                            .y Ln CL                    z G
m. -. . . .

m C LA. C z

r. Cc CgN
                           =N cu. -.                                                                                                                                                         .
                                                                                                                                                                                                             .m
                       &        n

(. GJ

   !                   Woz
a. m -

WE t e- a WgC O c D-Z e- C C en

  • Cw c- -. . . . .. o CL .=

e- gn. -. e - mO . . , . N f,

                            $         (D. --                                                                                                  .
                                                                                                                                                                                                      .-     ,.tD        Z r%   - .                                      ..                                                        .                                                       ..

i e >-

                            *         (D- --                                              .                                                   .                               .                      .
                                                                                                                                                                                                              -(D        C c                                                                                                                                                                                            Z
                       -Je                                                                                                                                                                                               y O               LL 6 g E *-*
m. .. . . . .
                                                                                                                                                                                                             .e          3 O

Oc- W y e- u

j. uw p. -. . . . . . .. .y C CL w e g as C L(n== C . . ,

ywJ t >pg m. .. . . . . . . . .. .m z== y Aen>- e Ww l E> EI . . ..... N gg, ry. .. . . .. . .. . .. WSz C6C

                                              >= r-
z. I U

HwC e e- m

                                                -=

bC Cw 'j JJ .N Ww x C

                            >UC               eN zuQ               E*                                                                                                                                                                     O wee       -

N i e

                                    ~~

00 5 00*h 00*E 00*2 00*1 00*O ~ (0) NOI16W37336 s TUGC0 - ENVELOPED SPEC SEISMIC RESPONSE SPECTRA GIB85 4 MILL. INC. 2323-041-1471 e .sem , meiame.a, sip.assensvens FIGURE- Eo

             'E'* wee sve.ame.83-         E" 2"8"A*Md                                                  .                 ,,,                     , ,,, 2 3 p .,

Test Plan, _Document No. A-000150, Page 144 of. .. . . . _........

                                                                                                                                                          .. 156              . . . - ~ . _ . . . -                           -.
z. ... ., . - ...
                                 * .              00*S                   00*h                    00*E                   00*2                   00*Ii             0 0
  • O *.

t f 1 1 O~ D D O y =, . . . ., W 0- E U m... . . .. .m b cc C $* L-y I Cm C F c on g m. .. . .

                                                                                                                                                                         .m
   ~

UCL W*E CL. c c - mEo ye I me ww o o o o

                    .3             .                                                                                                                                         .

Co o. .. . . .- .o~

n. J ~. -

g* g

  • ca .. . . . .
                                                                                                                                                                         .e N

Wp C co... . . e I-s m r .. . . .- .r

                    @~s             p     ..                                     .                                              .                                  .

e U cz Z O CC y

     *O             WLg              m. ..                                       .                 .                            .                                  .-    .m     p eu Oew                                                                                                                                                        .o g

y u .e. . =yn. .. . .. .y C O- w a g CL I"e g, w yaw g m. .. - e L4 ZbN y a. = mc we i ez g g 2, m. .. .. . .. ... . . . . .... . .m U3x (3 L o o e.- m em 3 m e-

                    >-- w e                       e oe ew                      .@

I JJ ww xr

                         >uo                  E-                                                                                                                            o zuo                  E-                                                          -

o wEo N j cm

                                                         ,                         ,                      .                      .          <we-       ,
                                 ~

00*S 00*h 00*6 00*2 (10*I 00'0 ~

 $.                                                                                        (D)        NOI16W37336
               '                                                                                                                 TUGC0 - ENVELOPED SPEC
                      .b Mr- re c, se r s SEISMIC RESPONSE SPECTRA GIBBS & MILL. INC. 2323-047-1471 e im, y                            ,

sammen.sg.insame 8/

                 'Ea,,,m.,,,,,sg.P = g *.m u {                                                  , , , , , , ,                     ,,,,, ,,,,

FIGURE

                                              ....Tes
                                                    .t Plan, Document. . _ . . ...        ..No. A-000150,..P.. .age
                                                                                                                            . - . .145. of 156. .. ......                     . . - . . . . .
                                                                     /

0' d 00*S , 00*h , 00*E 00*2, 00*I 0 0

  • 0 *.

e , D D O<* O W w= . - .y 0 0 C U CO= -. . cn b Ccz LL. - N C L2 CD C H tw -. . . .s. . W l== o UCz F. W L CL o z - m DC zE C

  • I y ID Og C C Zw z C C
 ,               C O           O.-.                                .                                     .
                                                                                                                                            ..   . O CL .J         ~                                                                                                                       ~

g * (y> .. , . e - N yWm m. . . .. z g r% -. . . . e C-N >- g CD- -. . . -. 4D C c Z 1o w LL 6 g W O C E t-e- e 3 a W U y >= g gy .. . . . .

                                                                                                                                                 .y        CC 1

c a. sn C WwJ

     .           y to g en            ..                  .        .       .                             .                                  .      c9 zE-y A >-sn E WW i                l   C>

g h b CW -. . ..s.. . ... . . . . c.y i O3z (.D w o c

                                         >-to I

I E f9 i t 3 c >-

                 >=- W E                   LD i

I

                      'A E Ow                                                                                                                                                1 JJ                 .-                                                                                                                             l 3

ww xm i

                       >UC               E sD                                                                                                          C
    ,                           C        E*                                                                                                            c a h! c w                   -                                                                                                           e                 ,
                               ~

E 00*S 00*h 00*E 00*2 00*.I 00*O ~ E (0) NOI.l.0831330 I

s. p2 ,, c , TUGC0 - ENVELOPED SPEC SEISMIC RESPONSE SPECTRA GIBOS & MILL. INC. 2323-047-1471 FIGURE t 2-e* **? "' *^- i.,,,, ,. 3

_'38 m vs.ame.3

                          . . .            Test . Pl..an , D.
                                                            . ocum. en. t No . A.00015 0._,_.P. a..g e._.14.6... o.f 1,5 6 .... .. .. . . . . _ .

i 1

l Il -

                                                                                         *            ,,l'l          - .'                               -

3 0 0

                             .           8.m   -

Co. _ 8.m - o9m - o9- - o9o 0. 0 O. S E 5 9' ~ i4 5 S - P n - C ~- 9 ' .

                                                                                                                                    ~

F R O F G% m AN RI R7 F ' i A T P = 1 CS E lNG Pl I sop SN R E DD N S U 0 0 0 NOB . 0 O 0 .' - i' 0 PR 1 1 7 S EN 9' . .  ; 6 ) EO Z 9' i6 H RL ( T. RE S

             .               7      '

i) OS Y O RN 9' .

                                                                                                                     .                        ;6            C L OO                                                                                                                                                 N E

O FFI T9 DRE RC 6 U Q ETR E CI Y' 4 R PED  ; F ~ OP SL L A EET V SN  ? ' . - ~ N0 i NOl E Pi SR EO

        - RH RN 0OI  O
                        ?          '         .               ._                                      - :                                      ;

A C LN 0 GFO i3 U I n3 DT . TEA 8 PR OE LL .3 EE x0 m VC0 NC0 EA0 n7 n. 2 - 0 0 0 1 7 8.m oo. o9m o9- o9ol Gw 8.m._ zo bEcJJoOa o11 - U S H' 4 0, g*95 .hno

                                                                                                        -           i mz<mG =mo mT*        -

2_gg . m4g=mmang" O 2.I 1

                                                                                                                    = p s                 ~n=       y~5 Q;,I?!@k 1 Ip 5ir 8gk                      .1 s1 l!

i i aaee,,.

                                                                                                                                          ,acg' %W g.,,       mT!? D 8 g 8 9, zO ;. 8o L.C. E:i E " a,
                                                                                       /
         .                      ,'                 -       :       .i'i-             .     :       :.         !-          #      i'                  .!:      i
                !lIl'
                                           .,                                 p       7
                                                                                                      ,y    ..

O. O Q m/ s 1 I .

   '       'f
            ; $                                                                       TUGC0 - ENVELOPED FLOOR RESPONSE SPECTRR FOR CPSES                                      !

3 ENVELOPE 0 FLOOR RESPONSE SPECTRA FOR SSE, LONER BOUND SOIL SPRING g j I k ' g RCCELERRTION IN VERTICAL DIRECTION ORMPING = 7 7. is q 1.000 50.0 p

                                    ,                                                       . ?,        ?,     Y,  5, 0     7 0 9,10.00  .
                                                                                                                                                       ?, ?,   9 A                                           MRX.       RT                                                                  A g                                                                                                                    O
  .U         'I                    n                                         2.217 6 . 2116
   $ /                        . .

L g- -a i

   !;g d                       ni B   fi!                      '

y *. il g

                       '~

g j ,; g. . . . . . . . . _g

3

! .!g: 5 o o l? ! z . ig a og- -

                                                                                                                                                                   -a i   iS                                    ~

\ i$ H i  :- c l  :.a E

   ..                                    tuo                                                                                                                        o 9,

[$

   ._ i IS          $.

J9 g uonc - n ! g a .g=*I o - l y 'g a " O - n E

iS, d -

x 1 i- . Il pr == ' .

i: iy 8 E

8

                                                                                                                                                                   ~*

i-n h. < E m m l G

                            ~

U A i 4' c  ? n m o g _ g . l g g ; . , , , , , , , , , , , , .

                 '           y =              o                                                                    6  6     ) 66'                      A  h    6 o

ui A $ 4

                %           -         1
  • 1.000 10.00 50.0
   .               b 3                                                                                     FREQUENCY            (HZ)

l

         @
  • 00*S 00*h 00*E 00*2 00*1 0 0
  • 0 *.

e D s,n

             -          D w                 w.-                                                                                                                                 -  -w O

C- E U en. .. . .. . . . .m C$ u-. m C .h C g ev. -. .. . .. cy

                       &                                                                                                                              p UCL E W         g QOC miO WE Oc             C C

c C ZWL . . Oo o- -. . .. l CL 3 - o. g U>. -. , . . g3 -

e. .. . .

e

                            ,n                                                                                                                                                               -

N-. . .

                                                                                                                                                                                .cm C .N g                 to.  -.                                        .                        .                                                        . - . e U eE                                                                                                                                                               Z d OO                                                                                                                                                                  w O                U6-QcW sW tt>. -.               .                        .                                  .               .                              .
                                                                                                                                                                                .m           3 c

y e- c W u- y. -.. . y [ C- W Q g C, L

                       .-. e gJ                                 .

W uJ >- yng m. -. . . . . . . . .

                                                                                                                                                                                .cn zE~                                                                                                                     -

C i WC { i ez g $ 2, , cu. .. . .. . ... . . . o U E O Owo = e-to < 3 a s- EM l

                       >= W E                        (c                                                                                                                                            .

OE l CW

  • l JJ 2 '

WW My )

                           >uo                                                                                                                                                       O             !

Euc E co. C l WEC (V . C i i i i i

                                     ~

q 00*S 00*h 00*E 00*2 00*I 00*O ~ (D) NOI1BW37336 i TUGC0 - ENVELOPED SPEC DPs 1 - IC C , S E T .t" i SEISMIC RESPONSE SPECTRA O 4 GIB85 4 HILL. INC. 2323-047-18471

                , .% ,                            ,                               , ,                                   amm..u,ny.c.m sne T*.m *=.a 3 F ""'*M'"                       -

i ,. . p323 FIGURE- Kf

                                                    . Test, Plan, , Document ,N,o.
                                                                                ,                  A,-000150        4   Page 149 of,{ g , ,,,,_ , ,,,,,,,.,,,,

l

        .b,                                                                                                                                                                                                                                                    l s                                                                                                                                                                                                                                                  :

1

                                            .           00*S                               00*h        ,

00*E 00*2 , 00*1 , 0 0

  • O *. I C C i W W j O w La.J :lP= = -*-=  ;
                            @                                                                                                                                                                                                                                  l Q.                       C U

n .. . .

                                                                                                                                                                                                                          . . cr)

C b og LA. - N C

  • C (t) g C II ry .. . , (y Fo UC2 I W g~

i C. O E g223C C i WE Og C C zwg o . o . Og o... . .

                                                                                                                                                                                                                        ...c==

Q_ 3 == p g> g * . .. .. - N W$m C O. . . .- @ "l'- r .. . . . e ! N >== i "-

         ,_                                 p..                                                      .                                                   .                                                    .         .

e U A.C . z s u W LA. h- g n.. . . . d) D

      '                          C=                                                                                                                                                                                                     Q O z *.-

y>w U w U :y .. . .y C Q. W c g2,, O Lmo == g WWJ l y C p.. . . . . . .. cy)

 \

zC-y L >- to C WW l C> Z *** D " 'V"-~ '" "#V U3z m

                                                    >-to
   --                      O O u.c C.                 C.
                                    >.                 m
                           >=- W E                     -
                                 &C CW JJ                   *C WW                 MN
                                 >UC                C ED                                                                                                                                                                           C EUQ                E
  • O WEQ =

Q i . i i i

                                         ~

00*S 00*h 00*C 00*2 00*I 00*O ~ 9 (D) NOI.I.UU37336

         ~"

TUGC0 - ENVELOPED SPEC

                                  .D r>4 2 * /4 C , SE7 [

SEISMIC RESPONSE SPECTRA O GIB85 4 HILL, INC. 2323-047-1471

                    --                                                                                                                             SWJ M .531tIMS.CW,erftle o 8% Pao * .ar
                                                                                                                                                                   ==

FIGURE- #g

                     !rs.,n,..           3.FE N
  • A W " " seem e. me pus
                   ~

Test P. lan., Document. cNo.

                                                          .    .                                                .         A-000150, Page.150 of 156

l T3 M

                                                                              ~ ~ ~       ^ ^ ~

M r W [] O,, O O .- i k' i,l B}o .

                              ;                                               TUGC0 - ENVELOPED FLOOR RESPONSE SPECTRA FOR CPSES f

i8 9 ENVELOPED FLOOR RESPONSE SPECTRA FOR SSE. UPPER BOUNO SOIL SPRING

 .                    i       I        %            3               RCCELERATION IN HORIZONTRL DIRECTION                        DANPING = / %

i g y 1.000 50.0 9 1 3 , i

i. V. 4 5 7 9 9.10.00 .
                                                                                                                           .            ?.      ?. Y.

n MAX. RT ' R

l{

j , n 2.769 6.502 8 f .9 iy *. . I m M a ' - p . .. 3 - t2 . O - O g O . n o . o

@ ~';

t . . b _ 9 . ! L 0 - O Z i %g la om _m I . . I o b ~ i

                        -                                   E l                        m                                 C
                        'm                                  tijo                                                                                                O 1

lE $ 4 33. .. . . ... . . . - . ,

                                             "          Q io    u        el
  • 5 "a "

c I  % w - x I

                              )              p s-3 M       I     O                                                                                                O
                                             '                                                               .                                                  O
e. m -

g a - - z -

 ,                     s                     n a        <                                                                                                                 -

m m - I, ,i .u un E  : i a n

  • a O

I C O m O , U f k' h a a i a a A A A i E i g .  :

? " (n, 8 $ 4 $ 8 ) 88' h $ 11  !
                                    =        ;          '
  • 1.000 10.00 50.0 i "

3 FREQUENCY (HZ)

                  -                ~
                                                                        'T . .                        .                                           ~~~~.                                   ..                          .                .     .    .           .
    'O I
  • 00*h 00*S 00*E 00*2 00*I 00*O O*

o c W sn

     .                D w                :r= ~                                                                                                                                                                                                             -
                                                                                                                                                                                                                                                           -w Z

Q. C U g n .. ers O LL r C2N CE c cv.-. .-e 3 f b L l CM 11 Wac Q_ - 2 mC- to L l r ycC m!Q o C o C zC "o d. .. . ..

                                                                                                                                                                                                                                                           .d Q_ c         -                                                                                                                                                                                                                            -

I gWA CD' -- - - @

  • N h (g) .. . . -

(l0

                                      ~.                                                              .        .                                                                      .                                                             ._     .

m m >- N (g) .. . .. @U O . 5s

                      \.L. L E        m,,..                                                                                                                                                                                                                .m
                                                                                                                                                                                                                                                                    =

3 m- C O e >- y y >U-UW =p. .. . . .- -y C Q. W e w Q LDC=== ww:

                      > g g ,,,...                                                                    .                            .                        .                  .      .                                                            ._      .

ze-y L b-ee j WW i e> EI .s. g, ty. ..

                                                                                              .     ......                                            .                      .                  .                                                  .       .(y U3z Owo m
                                               >- i.n
                               ==              g .

6 2 c o- CD

                      >='- W G                      -

oe eW aJ eC . WW MW .

                          >uO                  C CD                                                                                                                                                                                                             C Zuc                  E      -                                                                                                                                                                                                         O wee                       -                                                 .

l e f* ~ 00*S 00*h 00*E 00*2 00*I 00*0 ~ (0) NOI18831338  ; TUGC0 - ENVELOPED SPEC

                              ;D M Z - ts c , g a r 5 O'
  • SEISMIC RESPONSE SPECTRA Giggs a MILL. INC. 2323-047-1471 i

T@wa m - MIWHE.M..lleWIB.DustingTse - g I3% vi.o...M F "- *AO*** issuse m m m. n a

               ~
                                             ..Te.s.t, Plan.,.
                                                 . .                                       -.   .D..oc.ume.nt
                                                                                                  .... .--                    No
                                                                                                                              .. A...000150,
                                                                                                                                            ..                    ~ . .. Page     ~.... .152
                                                                                                                                                                                           . .....            of 156               ...     ,      . , . . . . . - .     .

9.0 CONTINGENCIES r As stated in Section 7.0 the test plan procedure any deviate froa the original plan as test results are recorded and assessed. These contingency test plans will be determined just prior to actual testing, and the results will be recorded in the chronological log (see Section 10.0). Configuration drawings will be provided in the final report. Although no contingencies are anticipated at this tiae, examples are as follows:

1. Change of tray to support hold-down clip type due to premature

{ failure.

2. Change of input wave fora based op. new data.

l-1 O i t I l. . I O Test Plan, Document No. A-000150 Page 153 of 156

   - . _ .                                                                 . _ . _ _ _        _             .- _       - -.. _ - _ . __                   .- __ - - . ._ ~-

l 10.0 CHRONOLOGICAL LOG

 ,                                                           A Chronological log will be maintained to document all deviations from the test plan procedure. The format of the standard log sheet is pro-vided in Figure 10.1.                  Log sheets are provided in Appendix B.

l l 4 b l l l P- 9

 +

i O 1 i s J .l l l t I a I i

o Test Plan Document No. A-000150, Page 154 of 156
j. CHRONOLOGICAL LOG t
j JOB
Comanche Peak (IUGCO)

TITLE: Cable Tray Support Testing i ANCO Jg Date Time Initials Item i 1 i i I i i 1 i O I l! 1 I 8 I m I Figure .' ' .1 l Test Plan, Document No. A-000150, Page 155 of 156 l. L . . _- - - ._. . . . . . . . - _ _ - . .. - . - - .

11.0 TEST REPORT () Ten copies of the report will be issued subsequent to the completion of testing. This report will be signed by a registered professional engi-neer and will summarize the pertinent recorded data, input and response values, test chronology, test plan deviations, and will include photographs i g3 of the test setups. Summarized data. .as a minimum, will consist of reso-nant frequencies and dampings as a function of vibration level, resonant frequencies and dampings as functions of percent cable loading, a com-parison of resonant frequencies and dampings for the two support boundary { conditions, and a discussion on transverse and longitudinal tray-to-support relative displacement (if present). The report will also contain a list of test equipment used, calibrations, instrumentation log sheets, cable tray hanger and cable tray identification, test loads, test procedure, and the test data. \ I.

 ?

e i O F f P i O Test Plan, Document No. A-000150, Page 156 of 156

O w

                                                                      ~

f f' l 1 APPENDIX A 4% OBE AND 7% SSE TIME HISTORIES (NLHERICAL VALUES) (PLEASE SUPPLY VALUES ON DIGITAL TAPE UNDER SEPARATE COVER) R l l. n O DOCUMENT, A-000150 ^-1 PAGED

O l l 6 r APPENDIX B O CHRONOLOGICAL LOG f l L. l t l

    .                                                                                l l

O 8 lO 1 DOCUMENTd A-000150 pAggp n_t

CHRONOLOGICAL LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO O Data Time Initials gg,, c I n. O E l - R

 -                                                                                                         1 e-                                                                                        e

, O l M DOCUMENT

  • A-000150 PAGED B-2 l

l l

           , . -                ~   ,-      --     -

CHRONOLOGICAL LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO N Date Time Initials Item r i P, a O k i L 9 i f - a r-O M DOCUMENT

  • A-000no PAGE+ 8-3

CHRON0 LOC

  • CAL LOG JOB: Comanche Peak (TUGCO)

TITLE: Cable Tray Support Testing l ANCO b Date Time Initials gg , f O I {' l - M i O A-000150 PAGED B-4 DOCUMENT

  • CHRONOLOGICAL LOG JOB: Comanche Peak (TUGCO)

TITLE: Cable Tray Support Testing ANCO O Date Time Initials gg,, I f s - O

 +

l l . L I _ m P O MCO nocuesar, ^-oootso exas, 8-s

CHRONOLOGICAL LOO JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ) U Date Time In is Ige, l = r O E bJ l - 5 e M DOCUMENT

  • A-ooo150 PAGEf. B-6

CHRONOLOGICAI. LOO JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO U Date Time Initials Item m i O ... I O O L I. 5 , l l O M DOCUMENT # A-000no PAGEf B-7

CHRONOLOGICAI. LOG O JOB: Comanche Peak (TUGCO) b TITLE: Cable Tray Support Testing ANCO b Date Time Initials Item f r F-O l I l - P O A-000150 8-8 DOCUMENT # PAGE# _

CHRONOLOGIC<d. LOG JOB: Comanche Peak (TUGCO) TITL : Cable Tray Support Testing g Date Time ANCO Initials rge. I PM I I O w 9 l O A- 00n 8-9 DOCUMENie PAGED

CHRO.N0 LOGICAL LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO Date Time Initials Item I j i 1

   'O i

a 1 l 1 F O M DOCUMENT # A-000150 PAGEf_ R-in l l 1

I CHRONOLOGICAL LOG l JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing g ANCO Date Time Initials Item I , I' O 4 b 9 D - 5 O A-000150 PAGEf- B-ll DOCUMENT #

CHRONOLOGICAL LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO b Date Time Initials Item I 6 O 1 I ( I - P O M DOCUMENT

  • A-ooo150 PAGEf-B-12 l

CHRONOLOGICAL LOG JOB: Comanche Peak (TUGCO) Ov TITLE: Cable Tray Support Testing m ANCO g Date Time Initials gg,, F 1 I O ( l 1 I . V, O M DOCUMENT # A-000150 PAGED B-13

CHRONOLOGICAL LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing g Time ANCO Date Initials Item I O 0 l - A t O M DOCUMENT

  • A-000150 PAGE# R-14

CHRO:;0 LOGICAL LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO h Date Time Initials Ig , f

   ,4 O

( l l l 5 1 6 is O A-ooalso B-15 DOCUMENT # PAGED

CHRONOLOGICAL. LOG JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO l Date Time Initials gee, I 1 I f O i, t e I . r O M DOCUMENT, A-000150 PAGED B-16

CHRONOLOGICAI. Loc JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO I Date Time Initials Item i ~ l O i i 1 f . O

                                                            ^~000150 PAGE,               B-17 DOCUMENT #

I CHRONOLOGICAL LOG l JOB: Comanche Peak (TUGCO) j l TITLE: Cable Tray Support Testing ANCO Daee Time Initials Itam i 1 i

                                                                         .6 a

O a L L . O M DOCUMENT #

                                             ^~

PAGEf B-18

CHRONOLOGICAL LOO JOB: Comanche Peak (TUGCO) O' TITLE: Cable Tray Support Testing g ANCO Date Tina Initials Item .O f O e f . 5 O M DOCUMENT #

                                           ^^

PAGED 8' "

CHRONOLOGICAI. LOG ( JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing b ANCO Date Time Initials Item I i b O

                                                  *~**""              "-

ARCO occune neu i

CliRON0 LOGICAL LOC JOB: Comanche Peak (TUGCO) TITLE: Cable Tray Support Testing ANCO h Item Date Time Initials P O f 1 Ia I . F 0 M DOCUMENT

  • A-000150
                                                                -PAGEf_

B-21

6/6/86 9 l OVERSIZED BOLT HOLES (Issue 14F)

   .O                                           Impell Special Study No. 5.9 1.0 Introduction This report addresses the issue of oversized bolt holes in the connections for the Comanche Peak Steam Electric Station cable tray supports. These 4               connections occur primarily at the tier to tray connection and at the support anchorage connection.           The issue centers around two primary 1               points. The first is whether or not oversized holes are acceptable in bearing-type connections. The second pertains to the load distribution in connections with oversized bolt holes.

Based on our review of the specifications and other reference documents, we feel that the use of oversized bolt holes in these connections at the Comanche Peak Station is acceptable. 2.0 Anol icabil ity of Oversized Holes In reviewing the applicability of oversized holes relative to the AISC speci ficati on, it is important to remember the context in which the material in the specification is presented. The AISC specification is i intended to provide a uniform practice for the design of steel frame i buildings. It is not intended to cover all problems within the full range of the structural design practice. The AISC committee cautions that independent professional judgment must be used when interpreting and relying on the specifications, and the committee indicates that the design of the structure is to be under the direction of a licensed professional who is responsible for the application of the specification. The AISC specification has two sections which deal with bolted connections. These are Section 1.16, which deals with the design of the connection, and Section 1.23, which deals with the fabrication of the connection. In the seventh edition of the AISC spectfication no mention i is made as to the design of oversized hole connections. The eighth edition provides some guidance and requirements for design of connections with oversized holes. Section 1.16 covers the allowable loads and stresses, the determination of bearing area, and other factors which contribute to the strength of the connection. This section discusses ovorsized holes, but does not put any limitation on their use or appl ication. In Section 1.23, the fabrication of connections is discussed. In Section 1.23.4, the use of oversized holes is clearly permitted for anchor bolts in concrete attachments. Section 1.23.4.2 requires the use of standard holes for other connections unless oversized holes are permitted by the designer. Further portions of this section appear to limit the use of oversized holes to f riction-type or non-slip connections. It would appear that the fabrication section places a more stringent requirement on the design of connections than the design section. In order to resolve this discrepancy, it is necessary to refer to the primary document on which the connection design sections are based. This is The Guide to Design Criteria For Bolted and Riveted Joints (Reference 3).

e 1 Oversized Bolt Holes

 . Issue 14F (continued)

Page Two The primary factor in determining the acceptability of an oversized hole is the potential for slip in the connection under load. Connections which must not exhibit slip under applied load are generally referred to as f riction-type connections.

           "If slip is not considered a critical factor, a load transfer by shear and bearing is acceptable." (Reference 3) The criteria for determining the acceptability of slip is based on the presence of repeated stress reversal, need to limit undesirable misalignment in the structure, and the need to resist displacementsa due to dynamic loads such as machine vibration and crane operation.        When ordinary structural bolts, such as A307, are used in bearing connections, slip is expected to occur under working loads.

For the connections in question at CPSES, the use of oversized holes for base plates and base angles is not an issue. It has been norwal practice over the years to use oversized holes at the anchorage connections to concrete. This is acknowledged even in the fabrication section of the etghth edttion code. (l.23.4) In evaluating the applicability of oversized holes at the tier-to-tray connection, the magnitude of slip must be considered. The standard hole O is 1/16 of an inch larger in diameter than the bolt. The original designers for the Comanche Peak Station have allowed an additional 1/16 inch, allowing a total gap of 1/8 of an inch. This would indicate that the maximm slip that could be expected to occur at a cable tray joint would be limited to the full hole clearance, or 1/8 inch. In reality, the slip is generally less than the full hole clearance. (Reference 3) In all likelihood, the slip will be considerably less, as there is some clamping force and f rictional resistance induced in A307 type bolted connections. Given the flexibli tty of the cable tray supports at the Comanche Peak Station, the possibility of an additional 1/8 inch displacement is considered negligible. If slip were actually to occur in the cable tray-to-tier connection, there would undoubtedly be an increase in internal damping in the system. This increase in damping would lead to a potential reduction in the seismic load, thus decreasing the probability of a failure at the connections. 3.0 Load Distribution and Caoacity of Oversized Hole Conne-tions In bearing-type or slip connections, the ultimate capacity of the connection is dependent on the bearing strength of the material and the strength of the bolt. Section 1.16 of the Code provides requirements for edge distance, center-to-center spacing, and bearing area. In fact, the section provides for the consideration of the reduction in the above i connection dimensions, depending on the size of hole that may be used. I Reference 3 clearly indicates that the ultimate strength of a joint with O oversized holes is the same as the ultimate strength of a joint with l l 1

Oversized Bolt Holes . Issue 14F (continued) g Page Three 3.0 Load Distribution and Canacity of Oversized Hole Connections (continued) standard holes. (Page 181) There are many discussions contained within Reference 3 and other references concerning the distribution of bolt loads in connections. Without a doubt, the load is not applied uniformly to the bolts in the connection until such time as the ultimate capacity is a pproached. The use of the design limits set out in Section 1.16 will lead to an appropriate and conservative connection design for the tier and tray connections with oversized holes. 4.0 References

1. AISC Manual of Steel Construction, Seventh Edition
2. AISC Manual of Steel Construct 1on, Etghth Edition
3. Guide to Design Criteria For Bolted and Riveted Joints, Fisher &

Struik, 1974 0 O l l l l l J

 %-                                                                                                                                                                           =            _ _ .

5 Added Parts VI and VII for junction boxes m { qualification and rework. Support Type 7-5-0910 l criteria (Part II) was revised (Support C-Sa with j one plate).

                                                                                             , Added MM en1 A for Type 5 supports in Part
                                                                                               .n.'W .rb61t spacing and edge distance requirements for Type 4 supports, Level 4 screening (Part III). Revised Part V to reflect linear interaction for Unistrut bolts.

Incorporated PICN Nos.: 001, 004, 005, 006, 007, ' 008, 010, 011, 012, 013. Revision 5 added  ! numerous other clarificatior,s, all marked as such. Previous work must be reviewed to assess i the impact, if any, of Rev. 5 revisions.  ! 4 e l l 1 I

                    ,                                                                                                                                                        y.- ..s -.su 9
                      . , - - - . , . ~ _ - . - . - - - - . - . - - . . - - - . ,                   - - , . . -                             . - -, .- - - - m    .                 , - - - -}}