ML20073G644
| ML20073G644 | |
| Person / Time | |
|---|---|
| Site: | 05000447 |
| Issue date: | 04/14/1983 |
| From: | Sherwood G GENERAL ELECTRIC CO. |
| To: | Eisenhut D Office of Nuclear Reactor Regulation |
| References | |
| JNF-024-83, JNF-24-83, MFN-069-83, MFN-69-83, NUDOCS 8304180348 | |
| Download: ML20073G644 (49) | |
Text
GENER AL h ELECTRIC NUCLEAR POWER SYSTEMS DIVISION GENERAL ELECTRIC COMPANY,175 CURTNER AVE., SAN JOSE. CAUFORNIA 95125 MFN 069-83 (408) 925-5722 M/C 682 JNF 024-83 April 14, 1983 U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation tlashington, DC 20555 Attention:
Mr. D.G. Eisenhut Division of Licensing Gentlemen:
SUBJECT:
IN THE MATTER OF 238 NUCLEAR ISLAND GENERAL ELECTRIC STANDARD SAFETY ANALYSIS REPORT (GESSAR II) DOCKET NO. STN 50-447 REVISED DRAFT RESPONSES Attached please find revised draft responses to selected questions.
This information is provided in the following attachments:
Attachment Number Revised Draft Responses to 1
Power Systems Branch Questions i
2 Containment Systems Branch Questions 3
Materials Engineering Branch Questions 4
Structural & Geotechnical Engineering Branch Questions Sincerely, Glenn G. Sherwood, Manager Nuclear Safety & Licensing Operation l
Attachment cc:
F.J. Miraglia (w/o attachments)
C.0. Thomas (w/o attachments)
D.C. Scaletti L.S. Gifford (w/o attachments) ge5 8304180348 830414 PDR ADOCK 05000447 A
0 4
ATTACHMENT NO. 1 REVISED DRAFT RESPONSES TO POVER SYSTEMS BRANCH QUESTIONS e
I i
l l
)
m._,.
Table 8.3-12 (Continued)
SUPPLEMENT TO TABLE 8.3-12 BUS CONDITION INDICATION IDCATION Div. 3 Continuous Bus Voltage Voltmeter Local and Control Room a
(HPCS)
N 125 VDC Bus "G"
Battery Output Current Ammeter Local
(
o>
Bus "G" Load (Amp)
Ammeter Local W
Bus "G" Ground Fault 125 Vdc System control Room w
Bus "G" Undervoltaca -
Trouble Alarm W
anWn;M t%D Control Power Failure to DG Cont Pnl Control Power Failure Alarm as "DC Trouble" Q,
~
co and Local t-' :
w en.
b Battery Charger Input Breaker Tripped /Open Battery Charger Failure Battery Charger Trouble Control Room gn (including high voltage and ground fault)
Alann Q:,
Low Battery Charger Amps t~.
N Charger Output Voltage Voltmeter Local o-Charger Output' Current Ammeter Local F
I Charger Ground Fault Ground Indication Light Local
\\&
C hernye mcacIver yenNy omi exl oh p re vw us sobw th/. N=w h}
reyonee vvill he ymvielet/ for next amendment F<
O 1
8.21
GESSAR II 430.33 I 22A7oo7 238 NUCLEAR ISLAND Rev. 14 1.8.63 Regulatory Guide 1.63, Revision 1, Dated May 1977 (Continued)
(3)
GE interprets " designed" in Section 1 of the regulatory position first sentence, to mean " designed and applied."
This interpretation is necessary'to clarify the use of circuit overload protection for penetration circuits.
Overload protec' tion may be external to the penetration and thus outside the scope of the penetration designer.
l.8.63.1 Analysis of Circuits Penetrating Primary Containment (1) 5.9 kV circuits for recirculation pump motors are pro-tected by two circuit breakers in series in the 6.9 kV supply circuits.
The recirculation pump motors are also fed from the low frequency motor generator sets.
This feed -is directly protected. bv_one 6.9 kV ra+ ad
(
A.ccc o nci G a y K V rq7et:i c i r~c ui r b r'co.ke n h
-h-"'d break
_'.;_ z i _. -
C/"Ost* W CIi ~$t;> g"r~c YeC Y' Yh @ Cdnf$st/2Jyten)G
^U Ce 1 5' J
oV
.. L - -. _. : ::_.
- ---'--:_i:: i=
.f.
^
^^*^'#"
~ ^ - ^ " * ^ -
l
--_l.
y Z i u.4 o m-..C1. 3 t
r
^ " "
~ ~ * ' " ^
bA
[mee3k
"**---w6aw
""w*
hJV wwwy,.
b=
h p
j n
2 1 -.. -.. - - -ma
~m
.._.. _ _ ; f _ _
1_ _
,3 7
iv11v. _.. ; ;
E^ : : c- - -vf m.4c co l
m..a
.t_
,,,_-om.
b^-
1 -~ I -. y -. m w m. m Z
1m,
y,,,,,
^ 4-rus n
-w*= sage &6 A..
u...
_w.,
w um_
g I--
e f
{ r~1 emm
___-.._m,,
i%
-c.
=
C-. w. Ivm '
a om'Y N 'n Chcanbe inczclv'erfen e wn/
pbe f ro viysmitM. t crmggenf:
rev w
c fcr nex 1.8.63-3 Q ~ / 2.-
3
O s
ATTACHMENT NO. 2 REVISED DRAFT RESPONSES TO CONTAltiMENT SYSTEMS BRANCH QUESTIONS
SU P PLsspTAL INFORM ATtod TO C SB Gwsnt o u 4 80,4o H
FROM METAL CORROSION IN A BWR CONTAINMENT 2
FOLLOWING A POSTULATED DBA LOCA The sprays that are used to control temperature in a BWR containment come from the suppression pool and consist of essentially neutral water (pH 6.5 to 7.5).
There. are no sources of chemicals in the containment to appreciably change this pH.
The environmental temperature profile cxpected is described in Figures 6.2-7 and 6.2-8 of GESSAR II.
The corrosion rates expected from the above conditions are listed in Table 1 clong with the references for each.
Also listed is the corrosion rate from the NRC GESSAR II question immen. 4 8 0. 4 0.
Applying the data listed in Table 1 yields the result listed in Table 2.
Note that using the conservative values chosen, the H from this source 2
is small, even at 1 week time, compared to the R.G. 1.7 calcul9ted
,% 8000 %CS.
l radiolysis source 4 At the limiting concentration either recombiner cocid
.Cwcase remove one weeks H 1n about i day, or' to express this fact in another way, 26 the corrosion source would cause the recombiner to be needed at about 1
% 4 rc b ts w:ek instead of 2 weeks following the initiating event, i.e., d -
me sg6
.4 no 4 ud rnAsw u ie ~;ligibic.N t*&"
t
(,cu& o b k & rynd6MbMW-9 l
_ _ _Q
.._ u-.
n,,
w /_
/
t
/.
m Q
a
~
d @.W P M P E
&E ot ** 5
'/ 0 3
TABLE 1.
BWR 6 MK III H BY CORROSION INPUT 2
QNhb surface Area cerresics ft 6
-5 Iwto p (g}
Al 6.4X10
-hr (1) 4 2
-4 3
En (galvanized) 1X10 ft 2X10 ft 2
f t -hr (2) 5 ?f
- tti I f t3 2
f t -hr (3) 5 3
Paint Organic Zinc base 4X10 ft 1.0X10-4 ft hr (4)
(1)
FRID 2nd NRC/S.nndia H Workshop 2
(2)
NMRE4, 29532, t. $ 2'1 (Sb' F (3)
NRC QA ISb* F 3
(4)
Zittel ORNL-TM-3411 (5)
A function of the type of RPV insulation chosen by the applicant
(,sb A s5%cd or a b s% Q
J evg e u e e PMyE S ov 5 y
7 TABLE 2 BWR6 MK III H
by corrosion in 168 Hrs.
2 Al IX10 Zn 0.3X10
( 0 U$ IY'O
!N Paint 7X10 3
% 0.7% H in containment from this 8.3X10 2
source l
I i
l l
l e
Joko LARE N
'l O F h 238 NUCLEAR ISLAND Rev. 0
\\
MINIMUM ECCS
-- MAXIMUM ECCS I
g 20
-~ %
a g
10 t
i t iIIII t
t t I Iiit t
I I iiIff 3
4 5
s 10 iO 10 10 TIME (esel Figure 6.2-6.
Long-Term Containment Pressure Response Following a Main Steamline or Recriculation Line Break 250 200
\\
l N
?
% N N
!0 N
<i N
5 i
N g
%*%~
'I MINIMUM ECCS 100
-- MAXIMUM ECCS IWh 8b g
' ' ' ' ' d' s0 3
10 10" 10 10 5
6 TIME (sec)
Figure 6.2-7.
Long-Term Drywell Temperature Response Following a y
~
^
Main Steamline or Recirculation '.ine Break 6.2-232
d % o L P. 6 PM)g (OF (
. Ju hit.Len.s idLAND Rev. 0
~
)
- MINIMUM ECCS
- MAXIMUM ECCS 200 E
t w
5
~%
E 150 E
% N. %
w
%-=
100 IIIl l
I I I
' I I ' ' ' '
50 10 10" 10 10 5
8 TIME tasc) kFigure6.2-8.,Long-TermSuppressionPoolTemperatureResponseFol-lowing a Main Steamline or~ Recirculation Line Break 1
[m MINIMUM ECCS I
\\
(
" " " MAXIMUM ECCS
'. e i
\\
3 g-s s
I
\\
f U
42 i
,,,,,1
....I 4
5 6
10 10 10 go T,ME (sec)
Figure 6.2-9.
RHR Heat Removal Rate Following a Main Steamlir.e r
or Recirculation Line Break l
6.2-233
w lD ATTACHf1ENT NO. 3 REVISED DRAFT RESPONSES TO MATERIALS ENGINEERING BRANCH QUESTIONS i
i
GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 14 4.5 REACTOR MATERIALS 4.5.1 Control Rod System Structural Materials 4.5.1.1 Material Specifications a.
Material List
/
fGrades F304 and F316 are retained as Control Rod. System structural rials by the exceptions allowed under RG 1.44.
The spe ic ma excep ns are the following:
s' (1)
Parts not see temperatures above 0*F during normal operation.
(2)
Parts are in a noncorr ve environment (dry environ-y/
ment).
(
f (3)
Parts ar bjected to low stress.
t (4),DeEts exposed to special processing have been und
,e surveillance programs that demonstrate that there is s
no problem in regard to intergranular stress corrosion.
The following material listing applies to the control rod drive mechanism supplied for this application.
The position indicator and minor nonstructural items are omitted.
Rea son (1)
Cylinder, Tube and Flange Assembly Excc Livii Allowed Under R.G.
1.44 Flange ASME SA182 Grade F304
(< 200 F)
Plugs ASME SA182 Grade F304
(< 200 F)
Cylinder ASTM A269 Grade TP 304
(< 200 F)
Outer Tube ASTM A269 Grade TP 304
(< 200 F) l Tube ASME SA351 Grade CF-3 Spacer ASME SA351 Grade CF-3 4.5-1
GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 14 4.5.1.1 Material Specifications (Continued)
Rea s on (2)
Piston Tube Assembly Ex c c p tie.-
Allowed Under R.G.
1.44 Piston Tube ASME SA479 or SA 249 Grade XM-19 Nose ASME SA479 Grade XM-19 Base ASME SA479 Grade XM-19 (cgoo"p) 4
)
Ind. Tube ASME SA312 Type 316
/\\(dry paviivu-(42bE'op)
Cap ASME SA182 Grade F316 A(d 2 7uv2&va
.~uur (3)
Drive Line Assembly Coupling Spud Alloy X-750 Compression ASME SA479 or SA249 Cylinder Grade XM-19
(
Index Tube ASME SA479 or SA249 Grade XM-19 Piston Head ARMCO 17-4 PH or its equivalent (4 2.00 F) g Piston ASTM A312 Grade TP 304 or gpuun o
mmor Coupling ASTM A269 Grade TP 304 (4100 *F)
Magnet
-ASmu 3717 crude 77 334 er p\\(r37 ctrc;3} {
Housing f,g73 3,co 7
q g
_7 334 7
L ASTM A312, A249, or A213 TP 316L (4)
Collet Assembly
( <. 2. c o P )
Collet Piston ASTM A269 TP 304 or g(Surccillcnee E223 "'I ASTM A312 TP 304 Finger Alloy X-750 Retainer ASTM A269 TP 304 Guide Cap ASTM A269 TP 304 t
4.5-2
GESSAR II 22A7007 238 NUCLEAR ISLAND Rnv. 14 4.5.1.1 Material Specifications (Continued)
(,
(5)
Miscellaneous Parts Stop Piston ARMCO 17-4 PH or its equivalent 0-Ring Spacer ASTM A240 Type 304 Nut ASME SA479 Grade XM-19 Collet Spring Alloy X-750
~
Ring Flange ASME SA182 Grade F304 Buffer Shaft ARMCO 17-4 PN or its equivalent Buffer Piston ARMCO 17-4 PH or its equivalent Buffer Spring Alloy X-750 Nut (hex)
Alloy X-750 The austenitic 300 series stainless steels listed under ASTM /ASME specification number are all in the annealed condition (with the exception of the outer tube in the cylinder, tube and flange assem-(.
bly), and their properties are readily available.
The outer tube is approximately 1/8 hard, and has a tensile of 90,000/125,000 psi, 50,000/85,000 psi and minimum elongation of 25%.
yield of - -
" * ~ ' * " ' '""'*" ' "- '"" "'" ' "-' -
~"
/'p"r*e"sently under review anB'wsil pe updated in 83 as required )
to be in compliance with R.G.
1.4
.--44,84G.
1.31, Rev. 3; and NUREG-0313, Rev.
1.
ceptions wi.ll-be noted T er similar t
-done-Ger revised Subsection 4.5.1.
s **'
- =-
e 4.5-2a
a-5ssar1Rt 88A7007 238 NUCLEAR ISLAND Rav. 0 4.5.2.1 Material Specifications (Continued)
I J
Shroud, core plate, and grid - ASME SA240, SA182, SA479, SA312, SA249, or SA213 (all Type 304L).
Peripheral fuel supports
'.0-"
.".21 L.A.. 20b A479 Type-316L, ASME SA312 Grade Type-304L Core plate and top guide studs and nuts, and core plate wedges - ASME SA479, SA193 Grade B8A, SA194 Grade 8A (all Type-304)
'1% L Control od drive housing - ASME SA312 TP '394, SA182 Type-
, and ASME SB167 Type Alloy 600, so 4 LH jo4 g 304 LN
%MM-Contr 1 rod guide tube - ASME SA358 Grade SA312 Grade TP-
- ASTM A358 Grade 30, A312 Grade TP-304 A351 Grade CF8, A249 TP-304g ng LN Orificed fuel support - ASTM A249 TP-394, A240 TP-316L, A479 TP-316L.
Materials Employed in Other Reactor Internal Structures.
(1)
Shroud Head and Separators Assembly and Steam Dryer i
Assembly l
All materials arel N 304L or 316L stainless steel.
I Plate, Sheet and Strip ASTMA240,TP-304)304 Lor 316L 9'
Forgings ASTM A182 Grade [F304 of 304L l
b Bars ASTM A276(TP-304 oJ 316L Pipe ASTM A312 Grade TP-304 L l,.
4.5-7 l
GESSAR II 22A7007 238 NUCLEAR ISLAND Rsv. 0 4.5.2.1 Material Specifications (Continued) l Tube ASTM A269 Grade TP-304 L Castings ASTM A351 Grade CF8 (2)
Jet Pump Assemblies The components in the Jet Pump Assemblies are a Riser, Inlet Mixer, Diffuser, and Riser Brace.
Materials used for these components are to the following specifications:
Castings ASTM A351 Grade CF8 and ASTM SA351 Grade CF3 ASTM A276 TP-304[.y Bars ASTM A479 TP-316L ASTM A637 Grade 688
(
Bolts ASTM A193 Grade B8 or B8M and ASME SA479 TP-316L Sheet and Plate C T:" A000 TT 200, crl or ASME SA240 TP-304L 316L A
Pipe ASTM A358 15meE34 316L and ASME SA312 Grade M 316L Forged or Rolled Parts ASME SA182, Grade 1ENEb> F316L, ASTM B166, and ASTM A637 Grade 688.
l' 4.5-8
GESSAR II 22A7007 238 NUCLEAR ISLAND R3v. 14 1.8.44 Regulatory Guide 1.44, Revision 0, Dated May 1973
)
Title:
Control of the Use of Sensitized Stainless Steel This guide describes acceptable methods of implementing the requirements of GDC 1 and 4 of Appendices A and B to 10CFR50, with regard to control of the application and processing of stain-less steel to avoid severe sensitization that could lead to stress corrosion cracking.
This guide applies to light-water-cooled reactors.
Evaluation The GESSAR II design complies with this regulatory guide and with the guidelines of NUREG 0313, revision 1 as well.
s\\
~ - - -
f ~ll applications of nuclear grade stainless steel are specified
'-)
A a
either 304L or 316L (or LN) grade.
See revised GWWWM4 hub-sect' ns 5.2.3.4 and 4.5.2 for additional discussion.
p s'tated, I
ElectricCompanyiscomplyingwi*.htheinbntof the Gener R. G.
1.44 by trolling the application and 7 cessing of stain-less steel to avoid vere sensitization)het could lead to stress corrosion cracking throu the use of SCC resistant materials.
In addition, stress rule eva
~
is being performed on GE scope of supply to predict other as w e IGSCC might be possible due to high stress.
s effort will ow appropriate modifica-tions to be made ere appropriate.
l Inducy Heating Stress Improvement (IHSI) treatmen on stainless
'on crack-1 weld joints to preclude intergranular stress corro ing will also be considered and implemented by GE and plant ers
/
)
L when approved by the NRC.
~'#
~
' * ' ~,.
.__._._____,_.s" l
l 1.8.44-1/1.8.44-2 l
GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. 14 3
.8.44 Regulatory Guide 1.44, Revision'0, Dated May 1973
(-
(Continued) i C
/
solutionheattreatmentisnotpractical,an[,f where Wher stress nalyses indicate potentially high stresses, the d
weld joi inside surfaces will be protected wf h corrosion addingbeforemakingthefinalwpidferrite resistant content of w d metal, and castings will be,/above the mini mum 5% require Nby Regulatory Guide 1.44.,/
/
WHIC/RIST
/
Where neither of the ab ve processgs is possible, it is
\\
r proposed that welding hea input ontrol for both shop and ec)1processmaybeusedthat field welds be applied.
A reducestheinsidesurfaceteperatureofthepipesubse-quent to the root pass.
Thi mhimizessensitizationand reduces residual stresses pi the side diameter of piping.
Acceleratedstresscorros[ontests actual pipes will be used to qualify this pr#cess.
In addition to servi,4:e sensitive lines, 1 major stainless steel lines, and y reactor internal com nents, will be analyzed accord g to IGSCC stress rules fo lated by General Elect c.
The formulation of these st ess rules was based o laboratory and field data and relie on the l
fact that or uncreviced parts, sustained stress st exceedi i
the mat al 0.26 offset yield strength for IGSCC t become i a pot ial problem.
General Electric proposes to id tify i high y stressed areas within the GE scope of supply by eans of hese stress rules and to make appropriate processing
)
difications similar to those used on service sensitive i
(
,/ lines.
1 I
1.8.44-3 1.
t
)
GESSAR II 22A7007 238 NUCLEAR ISLAND Rsv. 14
- 1. 8.h Regulatory Guide 1.44', Revision 0, Dated May 19 k.,
ontinued)
For all compeqents and pipes, material proces' contycis ar employed to assage that material susceptibility IGSCC is minimized.
Exam es of these controls inc e the contr 1 of solution heat treat 5hnt and degree of c wort.
As summarized above, the Gene 1 E}d*ctric Company is com-
/
plying with the intent of Reguka y Guide 1.44 by control ;
ling the application and pp6 cessing f stainless steel to avoid severe sensitiz on that could gdtostresscorro-j sion cracki'ng thro the use of IGSCC resistant materials. I In addition, s ess rule evaluation is being rformed on j
GE scope cp5 supply to predict other areas where SCC might I
be possible due to high stress.
This effort will allow
{
appY'opriate modifications to be made where appropriath, s
,/
i
-+n.r e *.e
. A4..
y _. __
O l
l i
i i
c.
i 1.8.44-4
"~
,,a
_h.
4-A
,,a eas--
2r
---4
-. = - - -, --
Ls_.-.-
e
--.a-
.--s.--,
t i
ATTACHMENT NO. 4 1
i l
I I
REVISED DRAFT RESPONSES TO j
STRUCTURAL AND GEGTECHNICAL ENGINEERING BRANCH QUESTIONS 4
i i
.,r-r~~-
vme
-, ',,,, -, ~,
-,.,e...,
-,,,..,+-,~.,~,-,-+-,,-nr.-
-,,~~-e.
.,n,ww.--na, en--,.,.,_,,,m-,..,-a
-w, e~-a-,,,
,n.,
.e
kiMA bvi
%o, ((
220.11 At the time of this review. Appendix 3H which decribes the effect of (3.7.2) the concrete between the containment and the, shield building on the seismic analysis, is not available.
Indicate when this appendix will be provided. This information should be made available prior to the forthcoming structural audit in December 1982.
plci
\\
i In the Suppression Pool region of the containment vessel the shell has been stiffened by filling the annulus between the Containment and the Shield Building with ref nforced concrete.
[
A seismic dynamic analysis was performed to determine the effects of this added concrete on the seismic responses of h-various structures in the Reactor Building. These structures I
include the Shield Building, Containment vessel, Drywell,
[~
Shield wall and the RPV pedestal.
p 4 Ms-A Specifically, the objective of this analysis was to estabt,thh that the original seismic envelope curves used in the plant design envelope the seismic response of the Reactor oncrete.. M,-*1. g ' 4 n d Y')
~
Building structures with the added 6
Q envelope curves as required. M Q
r-Soil Cases Four soil cases were used in the seismic dynamic analysis for the horizontal ground motion. They are the following:
CASE NUMBER DESIGNATION
~~
~ '~~
2 GE-75-A-H2 4
GE-75-VP3 i
6 GE-75-HR-H2 7
GE-FB-H2 (Fixed Base)
Two soil cases were used in the analysis for the vertical motion..
They are the following:
CASE NUMBER DESIGNATION 11 GE-75-A-V 12 GE-FB-V (Fixed Base)
The case numbers above refer to those listed in GESSAR Table 3A-1.
. Mathematical Model The mathematical model originally used for the analysis to develop the design loads and building gesponses did not include the concrete added to the region betwe n the containment and the Shield Building b lo elevation (
ft 3 in.
L %.
Mo &
For this analysis, solid ments were ad ed to represent the annular concrete, The rest of the model is similar to that used previously, (See Figure
-1 ). The computer program for axisymmetric structures (AXIS) was used in the analysis.
Dynamic Analysis The horizontal and vertical analyses were performed separately.
Shell forces, shell moments and element stresses were obtained for individual soil cases. These results were, then enveloped to arrive at a set of final responses for horizontal and vertical motions respectively. -Tables '- 1 through.
18 depict the
' final results. These tabulated values were then compared with those in Section 3.7.
Response spectra were generated for the soil cases studied.
They were enveloped to arrive at a final set of curves.
.__m
-m---w+e
.=
v esim.re.-..m
==
,w
,,#g,.,,,g,
)j
.)
v{ k huw hc4. NMcSd h) t w _ _]
Wa4
~ ~ f }K bch % c= d M h 2,c L
. E g
- & # d p a & y,4 %f i s 4 j
-. - -.- -......-hwYW YWR
._.V (km 0%)sidykts b
hd
@M be cde-WhJ td
~
~ - wM c-& a a tLK y u
muu suLaAu%
bg wJ ho he huv
)
Wu c$ edch
bN\\
&__yk?iDt0
\\m o
J 3}a u M w e spdc~
w
}
x%L d]d.-
0
\\
~^
Figure Title 3.10-1 RPV Floor Response Spectra Horizontal
~ ~
Acceleration OBE El 54.00, 2 Percent Damping
_~
.a 3.10-3 RPV Floor Response Spectra Horizontal Acceleration OBE El 17.83, 2 Percent Damping 1
3.10-8.
Shield Wall Floor Response Spectra Vertical Acceleration OBE, El 43.00, 2. Percent Damping 3.10-19 Containment Response Spectra Horizontal Acceleration OBE, El 149.00, 2 Percent Damping
'~
3.10-20 Containment Response Spectra Vertical,,___.--
--I Acceleration OBE, El 149.00, 2 Percent Damping 3.10-21 Containment Response Spectra Horizontal Acceleration OBE, El 110.83, 2 Percent Damping
.--s.
. ~ - --- = = *--
3.10-23 Containment Response Spectra Horizontal Acceleration OBE, El 93.20, 2 Percent Damping r
j Shield Building Response Spectra Horizontal
~ ~ ~ ~
~~
3.10-29 Acceleration OBE, El 113.90, 2 Percent Damping
"' ~ ~
.m m
h h
5
. 2-
. ?--
h f
--._ b h. ob.
-..s
. u. w. '
M4.
~..-
t t
}
p._.____.________,_.._.__..
.--.m..-.w..,m.
ne.--w
--.e,-.~
.o.
+
_- m _,-_ m.
-__w---
d._
. e,-.4.-..
.b
.w.-_.----e.
-g....,,...
p._,
4...w..
I
_1.
_I_.
w..-,
.._.-a s_-
~..4._.
- -..,.-~s i
s l..
.L..-
.w e
4e Ao iw e---
A-
+ = -
- -v+ g se
-4...-_w.
c..-
w
.,e_e-
-ed-e
._y
.+.
,,ei
..-ww*-
ee*+m%--.,-e
.w.-
e m
4r 6
r m.e--
---se 4
y
..-w m--e
--e.-
- m-em
. e e
th-.w
-s4
~--4.e.-
4-ge
=
4
--4
~--e
- N*
- - +. - - --
.d--
w 4
D-M =
.-*w*
em
. - i r ee _ e w-aa.eN..
4.-_$
m.--i....m.-a-me.-
g
%we__.,,=e,#
_e-_..p.
u..,,
_-g
.m..,
m.-3
-e-4-.me.--e-
-.e w.-
-en,.4 p.,..
s
.-m
+.. -..
e-
,.e p__
.ie.,
me.---e..-.
p e... -..* =
m-.-i=='--.-m.-
i
_. _ _. _ _ _ _. - __, _ _...~.... -
l.
i i
i
,r
~... --..
._-.a y-m..-
l 1
GESSAR II 22A7007 238 NUCLEAR ISLAND Rev. O U
3.7.2.1.5.1 Description of Mathematical Models (Continued) of the support building is developed to include the effect of lateral / torsional coupling.
'3.7.2.1.5.1.1 Reactor Building and Reactor Pressure Vessel Every structure in the Reactor Building is idealized by an axisymmetric finite-element model of shell or solid elements.
All equipments and piping systems which weigh more than 5 kips are identified and included as masses.
Lighter weights for equipment with unidentified systems are considered as uniform loads.
The models are shown in Figures 3.7-23 and 3.7-24.
The Shield Building is a domed, cylindrical structure which is modeled by shell elements.
At the joint of the dome and the top of cylindrical wall, an equivalent thickness is used.
The containment is also a domed, cylindrical structure and is, therefore, also modeled by shell elements.
At the crane support,
_ the modulus of elasticity of the shell element is modified to a higher value to reflect the stiffness of the shell in the local A study has been conducted which shows that interaction area.-
between the steel containment and the crane can be ignored and the crane mass can be lumped into the containment model at that level.
Furthermore, the ovaling modes have very little modal response.
i as well as small participation factors and, hence, are not sig-i nificant.
In the suppression pool region where the shell is stiffened by filling the annulus between the containment and the i
Shield Building with concrete, composite properties have been developed for the region.
The water in the suppression chamber is i
l modeled by hydrodynamic mass elements which act between the dry-well nodes and containment nodes at the same elevations.
To signify vertical excitation, the water is lumped at the bottom of the pool.
3.7-14 i
GESSAR II 22A7007
. h 238 NUCLEAR ISLAND Rev. 0
(
3.7.2.1.5.1.1 Reactor Building and Reactor Pressure Vessel i
(Continued) fThe mathematical model used for the analysis to develop the design loads and building responses did not' include the concrete added to Ithe region between the containment and the Shield Building below elevation (-) 5 ft 3 in.
Appendix 3H describes the effect of this gncrete on the seismic design loads and building responses.
The drywell is modeled by shell elements while the nn"--
modeled by solid elements.
Fne "
~
i
_ ~
-1
-T~
_a -
concrete *** i i
_ Sp ~
(
, h ___ L ^
b_
7_1
_.L
- 7.____h4u v. 64 W"
LH hd F
1 1 - Q -i O n : 'b
~~~
t_
-r y\\
DrZ L-h!j w2-% ggc L. w6-m i
I T~~ p\\ g\\
NM
. \\
\\
t u wmea&u
, pC:
-e
- L gQhtk 4 M1M#'4.j
- A
-r
-T
-r- ~
~ ~'
N -
T6 i 1
r -@psy M7T~['L Q ~~J r Q X R L -\\ ' l d
_L I
g 1
1-i p-
-~1
~ ~'~~t
~ ~~
p,
\\
s;- -T~ ^___pp i'. ;;-
p t
i 7g p-r p;
\\
l
\\
h 1
.u -
l i
j _____
3 y;
~~_y _;
- -W _ p i-- m,vue.t.
M tAL
~,t 1
.g 3 _
i t
_ f,iessure vessel (RPV) is modeled by shell elements.
The stiffness of reactor internals is neglected, but its mass is lumped onto the cylindrical shell.
The weight cf water in the vessel is also included.
This simplified reactor pressure vessel model has been included in the overall Reactor Building model to provide proper interaction with other structures.
I The RPV pedestal is modeled by shell elements,while the concrete l
pad around it is modeled by solid elements and linked to the pedestal node points by stiff, horizontal shell elements.
Steel I
3.7-15
\\
ep. co 3:- a n..<.s. u. ~ ~ n o
<, e
.E. lfo'I
- w e
e
~ ',
e ee 1
- g e ee
=
e e
ee e e
~=
e e
e ce a.
'll w er -- = m e-n nn-
=
w e e e e oe e e
1
=
l l
e e e-e eos
. s.- - - -
- - _@.,1~.* *-
~~
- 9 3______*
e e e e e eiee
____~__b
-=
,j e
s e e eege
__-____e__.______-
t e
s ee e e ele e
e e e e e
- _ _ _ _ e _ _._
,, ]99 e
el e ee e e_l_
e
,, eje[,,,
e e e eo e]o ocel e
e e
_ __ _ _ __e _ __ _ ___
e e p,,e e e
ee
_ _ __ _ _ _ _e_ _ _ _
e
' e...
a.w!sto%l_,
e e o
ew
- d" 1
e e
e s e e e ge s e g b, L.
.l.p l
e e
e e
e e e hf j
~.....
i i r, 1
l a
Figure
.l I
Mathematical model for the annular concrete f
Table
.1 UPPERSHkLDBUILDINGSEISMICFORCE ENVELOPE DUE To OBE HORISONTAL EXCITA?! IONS -
Long Circ Long Circ Shear l
Node Elev Mom Mom Force Force Flow No (ft)
(ft-Kips.. )
(ft-Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
S1 160.75 0.07 0.46 2.97 9.50 5.41 4
S3 158.81 0.53 0.30 3.13 5.75 3.98 SS 153.16 2.41 0.91 5.78 11.80 7.66 S7 145.63 0.98 0.73 6.71 24.05 11.79 S9 136.71 19.29 4.70 7.30 44.51 19.59 S11 115.70 2.84 0.31 17.47 19.50 34.15 S13 104.20 0.63 0,32 26.00 16.38 40.64 SIS 84.58 0.71 0.37 42.30 13.24 48.35 S17 55.00 0.47 0.31 67.27 12.23 57.48 S19 27.67 4.79 1.13 91.95 3.70 63.71 d
4
)
O
Table
,2 CONTAINMENT SEISMIC FORCE ENVELOPE DUE TO OBE HORISONTAL EXCITATIOR Long Circ Long Circ Shear Node Elev Mom Mom Force Force Flow No (ft)
(ft. Kip /ft)
(ft/ Kip /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
C1 152.00 0.00 0.03 0.11 0.05 0.15 C6 143.22 0.21
'O.06 0.64 6.71 1.73 C10 122.00 0.35 0.10 0.75 14.77 4.18 C13 93.20 0.10 0.03 5.24 5.93 9.31 C16 55.00 0.00 0.00 12.93 1.44 11.47 C19 27.67 0.00 0.00 18.54 1.23 12.43 C21 11.00 0.01 0.03 22.08 1.25 12.73 C23
-5.25 0.41 0.06 19.32 7.40 8.85 i
C24A
-15.58 0.02 0.00 7.67 0.00 12.44 C25A
-23.58 0.01 0.00 11.27 0.00 11.85 C26
-27.58 0.02 0.00 17.96 0.00 12.37 M131
-31.58 0.09 0.01 20.35 1.86 12.33 f
'n U
O Q)
Table 3
DRYWELL SEISMIC FORCE ENVELOPE DUE TO OBE HORIZONTAL EXCITATIONS Long Circ Long Circ Shear Elev Hom Mom Force Force Flow Node (ft)
(ft-Kips /ft)
(ft-Kips /ft)
(Kips /ft)
(kips /ft (kips /ft)
D1 75.38 0.23 0.80 5.00 16.39 4.91 D3 67.34 0.01 0.00 0.17 3.68 1.33 DS 57.58 2:52 1.32 2.00 20.67 5.59 Dll 57.58 32.69 13.50 46.93 51.68 69.35 D16
'36.83 2.12 2.90 137.43 26.82 145.73 D18 20.25 12.23 1.04 204.96 17.*93 161.89 D20 4.83 4.47 4.10 276.22 10.26 172.22 D22
-11.58 15.03 2.23 344.10 19.54 181.49 D23
-19.58 71.04 15.49 384.41 71.51 168.99 D24
-27.58 245.92 62.31 417.69 113.45 149.24 M91
-31.58 454.93 293.74 162.94 284.64 45.15 s
Trble 4
SHIELD WALL SEISMIC FORCE ENVELOPE I
DUE TO OBE HORIZONTAL EXCITATIONS l
Long Circ Long Circ Shear Node Elev Mom Mom Force Force Flow l
No (ft)
(ft-Kips /ft)
(ft-Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
SW1 50.38 0.94 0.06 0.14 4.17 1.39 SW3 36.83 0.10 0.17 3.56 2.33 4.79 SW5 20.25 1.24 0.80 14.18 3.83 12.84 SW7 4.84 0.89 0.42 29.78' 6.13 15.50 i
Table 5
i DRYWELL UPPER POOL AND' PEDESTAL NASS CONCRETE SEISMIC STRESS ENVELOPE DUE TO OBE HORIEONTAL EXCITATIONS I
Radial Longitudinal Circumferential Shear Shear Shear l
Elemant Stress Stress Stress (trg) 2 (Trt) 2 (Tal) 2)
No (Kips /ft2)
(Kips /ft2)
(Kips /ft )
2 (Kips /ft )
(Kips /ft )
(Kips /ft 56 0.42 0.55 1.53 0.79 0.09 1.88 57 0.04 0.77 1.06 0.34 0.70 0.96 96 1.54 7.64 1.06 4.78 0.68 1.37 97 2.73 1.60 0.75 2.88 1.61 0.30 s
e
s Tablo
,6 j
ANNULAR MASS CONCRETE SEISMIC STRESS DUE TO HORIZONTAL EXCITATIONS t
Radial Longitudinal Circumferential Shear Shear Shear Element Stress Stress Stress (Trg)
(Trt)
(T2f No (Kips /ft )
(Kips /ft )
(Kips /ft )
(Kips /ft )
(Kips /ft )
(Kips / t )
267 0.79 6.51 9.36 2.67 4.19 6.11 268 1.48 4.59 8.59
' O.68 7.01 5.96 243 0.33 8.48 1.04 0.94 0.20 11.60 244 0.23-13.56 1.39 1.39 0.23 10.74 213 1.10 12.91 3.75 2.63 0.19 10.95 214 2.11 14.28 4.19 1.57 0.07 10.06 l
201 2.44 15.21 4.23 8.06 9.91 12.74 202 6.36
.94 0.72 5.37 1.33 4.61 m
s
~
=.
a Table 7
~
WEIR WALL SEISMIC FORCE ENVELOPE DUE TO HORIIONTAL EXCITATIONS Long Circ Long Circ Shear Node Elev Mom Mom Force Force Flow a'
No (ft)
(ft-Kips /ft)
(ft-Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
W1
-5.50 0.56 0.03 0.41 7.54 0.67 W2
-12.00 0.47 0.06 0.35 2.70 1.07 W3
-15.00 0.23 0.04 0.37 1.20 1.52 W4
-18.67 0.39 0.08 0.63 0.99 1.67 i
Table
- 8 i
LOWER SHIELD BUILDING MASS CONCRETE j
SEISMIC STRESS ENVELOPE DUE TO OBE NORISONTAL EXCITATIONS Radial Longitudinal Circumferential Shear Shear shear (t ra) 2 (Trf) 2
[Tzt) 2)
Element Stress Stress Stress 2
2 No (Kips /ft )
(Kips /ft2)
(Kips /ft )
(Kips /ft )
(Kips /ft )
(Kips /ft 273 4.12 57.64 3.26 4.24 5.27 27.53 i
248 0.03 30.44 4.25 0.35 0.05 8.36 I
218 0.06 29.58
'6.44 0.45 0.13 8.98 206 0.50 32.10 7.26 0.78 0.35 9.88
\\
l l
1 e
Trble
-9 RPV PEDESTAL SEISMIC FORCE ENVELOPE DUE TO OBE HORIZONTAL EXCITATIONS Long Circ Long Circ Shear I
Node Elev Mom Mom Force Force Flow i
No (ft)
(ft-Kips /ft)
(ft-Kips /ft)
JKips/ft)
(Kips /ft)
(Kips /ft)
P2
-1.33 46.26 99.18 65.13 35.82 30.67 PS
-11.58 73.73 3.94 205.28 19.91 46.44 P6
-15.75 175.65 35.86 220.93 37.33 29.09 P7
-21.00 262.56 88.54 133.95 29.01 10.33 l
P8
-26.29 46.63 17.56 68.29 8.56 10.03 M41
-31.58 76.81 106.97 24.44 32.22 2.12 1
j i
l l
C
L TABLE 10 UPPER SHE LD BUILDING SEISMIC FORCE ENVELOPE DUI TO OBE VERTICAL EXCITATIONS Long Circ Long Circ Shear Node Elev Mom Mom Force Force Flow No (ft)
(ft-Kips /ft)
(ft/ Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
S1 160.75 2.21 9.39 10.99 14.77 0.00 S3 158.81 1.03 0.64 10.00 9.23 0.00 S5 153.16 2.31 1.20 9.46 4.96 0.00 S7 145.63 0.92 0.94 7.56 6.87 0.00 l
S9 136.71 14.48 2.90 5.02 17.49 0.00 I
S11 115.70 2.84 0.57 6.22 2.36 0.00
~
S13 104.20 0.97 0.19 7.15 0.60 0.00 S15 84.58 0.35 0.07 s.91 0.36 0.00 S17 55.00 0.14 0.03 11.62 0.87 0.00
)
S19 27.67 0.58 0.12 13.67 0.95 0.00
{
i l
I e
TAILE 11 CONTAINMENT SEISMIC FORCE ENVELOPE DUE TO OBE VERTICAL EXCITATIONS Long Circ Long Circ Shear Node Elev Mom Mom Force Force Flow No (ft)
(ft-Kip /ft)
(ft-Kip /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
C1 152.00 0.00 0.15 1*.38 3.65 0.00 C6 143.22 0.21 0.06 0.77 4.78 0.00 I
C10 122.00 0.13 0.04 0.46 4.69 0.00 C13 93.20 0.02 0.01 1.83 0.64 0.00 C16 55.00 0.00 0.00 2.76 0.07 0.00 C19 27.67 0.00 0.00 3.18 0.19.
0.00 C21 11.00 0.00 0.00 3.38 0.48 0.00 C23
-5.25 0.02 0.00 2.67 0.39 0.00 C24A
-15.58 0.00 0.00 1.65 0.00 0.00 C25A
-23.58 0.00 0.00 2.31 0.00 0.00 C26
-27.58 0.00 0.00 3.19 0.00 0.00 M131
-31.58 0.01 0.00 3.20 0.14 0.00-M e
e
TABLE
-12 DRYWELL SEISMIC FORCE ENVELOPE DUE TO OBE VERTICAL EXCITATIONS Long Circ Long Circ Shear Node Elev Mom Hom Force Force Flow No (ft)
(ft-Kips /ft)
(ft-Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
D1 75.38 0.09 0.39 22.03 62.01 0.00 D3 67.34 0.01 0.00 1.27 3.97 0.00 DS 57.58 0.64 1.41
-1.02 7.16 0.00 Dll 57.58 4.29 0.35.-
12.64 1.53 0.00 D16 36.83 0.78 0.16 28.17 1.39 0.00 D18 20.25 0.69 0.14 31.55 1.18 0.00 D20 4.83 1.12 0.25 33.94 0.91 0.00 D22
-11.58 3.41 0.85 35.21 0.13 0.00 i
D23
-19.58 2.46 0.61 35.58 3.03 0.00 1
D24
-27.58 4.49 1.12 35.84 7.32 0.00 l
M91
-31.58 33.33 25.33 13.04 6.53 0.00 l
i l
.l i
r
.i O
TA"LE '
13 SHIELD WALL SEISMIC FORCE ENVELOPE DUE TO OBE VERTICAL EXCITATIONS Long Circ Long Circ Shear Node Elev Hom Mom Force Force Flow tio (ft)
(ft-Kips /ft)
(ft-Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
SW1 50.38 0.00 0.00 0.33 0.04 0.00 SW3 36.83 0.01 0.00 1.21 0.01 0.00 SWS 20.25 0.00 0.00 3.69 0.18 0.00 SW7 4.84 0.48 0.14 5.07 0.61 0.00
'14 TABLE Radial Longitudinal Circumferential Shear Shear Shear (Tyg) 2 (Trd (Tal) 2)
Element Stress Stress Stress No (Kips /ft2)
(Kips /ft )
(Kips /ft )
2 2
(Kips /ft )
(Kips /ft2)
(Kips /ft 56 0.07 0.11 0.04 0.25 0.00 0.00 57 0.00 0.25 0.03 0.13 0.00 0.00 96 0.07 0.67 0.08 0.26 0.00 0.00 97 0.07 0.06 0.09 0.27 0.00 0.00
/
t l
I l
i
i TABLE 15 ANNULAR MASS CONCRETE SEISMIC STRESS DUE TO VERTICAL EXCITATIONS Radial Longitudinal Circumferential Shear Shear Shear i
Element Stress Stress Stress (Trh (Trh (T2d) 2) 2 2
2 No (Kips /ft2)
(Kips /ft2)
(Kips /ft )
(Kips /ft )
(Kips /ft )
(Kips /ft 4
267 0.10 0.91 1.09 0.40 0.00 0.00 268 0.17 0.74 1.10 0.16 0.00 0.00 243 0.00 1.53 0.30 0.12 0.00 0.00 244 0.00 1.94 0.21 0.18 0.00 0.00 213 0.14 2.13 0.14 0.38 0.00 0.00 1
214 0.27 1.95 0.13 0.26 0.00 0.00 201 0.26 2.50 0.33 1.34 0.00 0.00
~
202 0.52 0.19 0.30 0.10 0.00 0.00 j
i l
I J
)
TA[DLE 16 WEIR WALL SEISMIC FORCE i
ENVELOPE DUE TO VERTICAL EXCITATIONS Long Circ Long Circ Shear Node Elev Mom Mona Force Force Flow
,ft-Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft)
No (ft)
(ft/ Kips /ft)
(
I j
>W1
-5.50 0.01 0.00 0.03 0.15 0.00 I
W2
-12.00 0.04 0.0L 0.02 0.07 0.00 W3
-15.00 0.06 0.0L 0.05 0.19 0.00 W4
-18.67 0.00 0.00 0.05 0.30 0.00 l
l TABLE I 17 LOWER SHIELD BUILDING MASS CONCRETE SEISMIC STRESS ENVELOPE DUE TO OBE UERTICAL EXCITATIONS Radial Longitudinal Circumferential Shea Shear Shear Element Stress Stress Stress
[Tr (Trs) 2)
(TzO i
No (Kips /ft2)
(Kips /ft2)
(Kips /ft )
(Kips /
2)
(Kips /ft
,(Kips /ft2) 2 4
273 0.69 7.87 0.40 0.68 0.00 0.00 248 0.00 3.12 0.08 0.04 0.00 0.00 218 0.00 2.71 0.22 0.02 0.00 0.00 206 0.03 2.72 0.29 0.01 0.00 0.00
\\
TA2LE 18 e
RPV PEDESTAL SEISHIC FORCE ENVELOPE DUE TO OBE VERTICAL EXCITATIONS Long Circ Long Circ Shear Node Elev Mom Mom Force Force Flow No (ft)
(ft-Kips /ft)
(ft/ Kips /ft)
(Kips /ft)
(Kips /ft)
(Kips /ft) e P2
-1.33 3.73
'9.58 5.11 5.08 0.00 P5
-11.58 3.87 0.97 16.06 2.83 0.00 P6
-15.75 0.90 0.23 16.43 3.31 0.00 P7
-21.00 6.42 3.20 9.54 2.01 0.00 P8
-26.29 0.27 0.51 6.18 1.01 0.00 M41
-31.58 7.74 12.36 2.18 5.86 0.00 l
O l
3
--N 0
8 0
9 0
3 1
3 1
l i
S r
5 p
K A
G s
)'
0 0
G
]
MN
- \\
! I OP M
AMA ROD II CTP IS EAK O
PC PR2 S C C
(
V LR C
9SE l
SCP e
t NC N
s OA2 et U
E P
A R
SL F
EA0 R
RT B
N4 VO5 F
/
PZ RIT C
RE O
0 l
I l
9 T
O
(
~
i
?
I c
3' ir tce l
E 1
e l
s
, ~ '. -. -
~
l 3
T.'
a o
0 r
J e
0 S zo(z w 2.wo 45 O
n n
1 e
a G
S i
l4!
)
il 1;1l j
I
- 2ia!i<1Ii l1 j
I jl4
- ll;l
R O
9 O.
8
~
a o
- p9 6
i
\\
Di m
e H
~
n-p e3 5
3I o
m 3
t 4
n b
I h
N h
- M
^
s.;
\\
\\
\\
se
\\
^
\\
W
\\
V Um
........\\.
~
a 2
O C
c U
4 (e) N0 Mvw2130cv 4 g
.k
.h
,,il 4 ~.
I 9
3' I
e m
l s
I l _
i i
8 l'
A n
u
\\
\\
)
\\
\\
g 5
\\
s i
0 6
L AEG RRN TOI D
C P
C E
PNA f.
m SOD I
u ETT m
SAN l
r URE A
a OEC m
PLR t
i B
o SEE u
ECP t
F RCA2 C
LLL AA WT0 N
DO3
]
LZ4 EI rR uOL s! E i
s
'd g
p 0
l.
3
,I t
c f
i t
r t
(
c e
l E
e l
s e
a o
o
_ r J e
g.m v
o*e ON n
n e
a i.
- r. O E.,:d' G S I
l, j
l l
3 i
3 3
9 1
~
3
=
a
=
es 1
e.
)
l i
m e
r w
p A
8 87 o\\
1 ).
6
-o f
\\
l
'ss L
AEG k
RBN TOI
\\'
C P
E M
PNA SOD D
If I
C BTf SAY f,
J ts NRC r
OEC t
N PIR s
U SEE ft ECP A
M R
E RC B
m A2 m
TNL I
F I A8 MT0 C
NN IO9 AZ4 TI1 NR OOL CHE t
B)%.
D O
l qlv
(
c i
'..sV r.
t ce l
E 9
e 6
l s
4 6
0 a
o 0
0 4
r J
i e
5 0
5 O_
= l.$ V n
n 1
1 e
a G
S i!
4 i
l l
,l iI l
3 8
9 1
0 0
3 1
1 l
ir Y
p A
3 4
d s
\\
k 1
}
0 1
L s
AEG 5
RBN O
3 TOI C
C P
E M
P A
O
)
SND I r 5
C' N
W EIT U
STN
(
NAE A
Y ORC R
C PER N
B C
SLE 0
EEP 0
RC F
0 C2 R
F TA C
NEL8 MA0 NC s
II9 AT4 TR1 0
NE
- OVL 1
C E.
D g
A O
{
h.
b q
c irtce 1
l E
0 m
1:: 3 -
4 l
r a
a O
O.*
O*4 O-C r
J e
MO zeU5doV n
n e
a G
S t
o l
- i ji
l 3
8 9
1
~
0 3
l 0
1 1
i P
~
r
[)
A 3
64-0 N
x
'),'
3 8
7-0 1
1 G
\\
AEN RBI TOP C
M O
I P
A C
I END I
SAE N
NRC
(
U OER y
PLE A
c SEP R.
e RC2 EC B
A N
T F
NL A3
- E C
MT8 NN i
IO0 AZ1 TI1 N
1 I I I OOL 0
C?
E f
1 l
f 9~
g
(
~
- )
L c
i a
o
- .1 E
r t
ce l
E e
l s
0
- q r
J e
e a
'o*
o*
o.4 o
n n
o*m e
G S
- o
$p2' gJ i!
- \\
l!
l
(
lj'
8_
9 1
0 0
l 1
3 1
l i
O rp 3
T A
5
)
0 1
,1 AEG O
RBN C
TOI C
P 3mE M
8
]
PNA SOD N
e g
I U
ETT A
g SAN NRE R
g OEC PIR B
SEE g
ECP RC F
A2 C
T NL EA MT0 NN2 0
IO AZ3 1
TI9 NH OOt CI E l
D g
G l
{
}
c i
D' r
tce 1
l E
0 e
l s
a
~,-
b -
om'e 9*
m o,o a
o r
J e
n n
5p4b!o e
a G
S I
i
i
[
I i'
9 0
1 0
B 0
3 l
i r
n A
g?
s 7
-0
\\
0 s
0 l
1 ARTEG Cf N l
EOI P
P s
s O
S MA 1
O S
S O' D l
C l
SI NTT OAN PRE N
SEC SLR U
i REE A
CP R
GC NA2 B
I DL F
LA0 IT9 UN C
DO5 Z1 DI1 LR EOL 0
IHE l
i 1
S g/-
s
]j O
l g/.
(
c ir tce 1
l E
g e
l s
.C.
f -
5 ;.
3 :_
0 O.
0 d.
a o
O r
T.
4 0
e 2
0 3
E z%t5dg4 i
n n
1 1
e a
G S
s i