ML17037B505

From kanterella
Jump to navigation Jump to search
Start-up Physics-Test Results-Cycle 5 September 1977
ML17037B505
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 11/02/1977
From: Dise D
Niagara Mohawk Power Corp
To: Lear G
Office of Nuclear Reactor Regulation
References
Download: ML17037B505 (34)


Text

DISTRIBUTION AFTER ISSU OF OPERATING ~ ICEiVSE NRC FOai+ 195 l. U.S. NUCI EAR REGULATORY CQMM 'IQN OOC T NUMBER (2-7S)

FII E NUMBER NRC DISTRIBUTION FQR PART 50 DOCKET MATERIAL TO: FROM: OATS OF OOCUME N T Niagara Mohawk Pwr>> 11/2/77 Mr. George Lear j.

~kew York Corp'yracuse, OATS RE CEI V E 0 Donald P ~ Disc . 11/4/77 i

TTER C}NOTORIZED T PROP INPUT FQRM NUMBER OF COPIES RECEIVED

)klRIQINAI UNCLASSIF ISO QCQPY

~ 3-f-/7 /fg. ENCI.QSURE "Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle 5 September 1977" pLANT NAIIE: Ni.ne Mile Point Unit No 1 RJL . 11/7/77 (1-P) , (29-P)

SAFETY FOR AC i ilON/INFORMATION BRAVCH CHIEF: 7)

INTERNAL 0 ISTRI BUTION I GE (2)

OELD CHECK EISENHUT SHAO BUTLER GRITS

~ OLLINS J. O~

EXTERNAL DIS I RIBUTION NTROI. NUMBER LPDR: O ~

TIC NSIC 16 CYS ACRS SENT CATE 0 Y ~~->iO)12,

v'I e ", j r

't

('(tLBS~ It y~tt'5 Yv'rg I~ "X~(

NIAGARA MOHAWK POWER CORPORATION NIAGARA '~ MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE, N. Y. I3202 Cgpg November 2, 1977

'< o~

'-'irector of Nuclear Reactor Regulation Attn: Mx. George Lear, Chief Operating Reactors Branch g3 U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Re: Nine, Mile Point Unit 1 Docket No. 50-220 DPR-63

Dear Mr. Lear:

Your letter of March 4, 1977 requested Niagara Mohawk to submit a summary report of the startup physics tests within 90 days following completion of the Cycle 5 startup test program. The enclosed information addresses your re'quest.

Very truly yours, NIAGARA MOHAWK POWER CORPORATION Donald P. Disc Vice President-Engineering 773il0112 SWW/szd Enclosure

NINE MILE POINT UNIT 1 Start-up Physics Test Resu1ts - Cyc1e 5 September 1977

Test Abstracts and Results The test abstracts, results, and comparisons of measured and predicted responses for the star tup physics tests are outlined below.

1.0 Control rod drive scram tests (hot) 2.0 Shut down margin tests.

3.0 Instrumentation calibrations.

4.0 Cold Critical comparison with actual measurements.

5.0 Power distribution calculation comparison above 505 power with actual measurements.

1.0 CONTROL ROD DRIVE SCRAM TESTS (hot)

1.1 Control Rod Drive Scram Test Abstract Following a major refueling outage, it is necessary to verify that the control rods fully insert upon receiving a scram signal within the time interval specified in the Technical Specifications.

The general procedure is to withdraw the control rods in the A sequence to the "black and white" pattern; then alternate between scram-insertion and withdrawal until all the previously withdrawn rods .have been scrammed arid the remaining rods withdrawn. At this point, the rod pattern will be in the B sequence "black and white"; then alternate between scram-insertion and withdrawal until all rods have been scrammed, and the rod pattern is the A sequence "black and white" again. After analyzing the scram times, the control rods are withdrawn to the specified beginning of cy'cle pattern.

The control rod time testing shall be considered acceptable if Technical Specification 3.1.1C is met.

1.2 Control Rod .Drive Scram Test Results Table 1. 1 contains the results of the control rod drive scram tests (hot). Results of the test are within the values specified by Technical Specification 3. 1.1C. (see .Table 1.2).

Tabl e .1.1 ROD SCRAhf TIhKS AFTER JULY 1977 OUTAGE RODS 20~o 50<o 90~o 02-19 .32 .72 1.54 2.66 02-23 .33 .76 1.73 2.94 02.27 .33 .71 1.60 2.74 02-31 .33 .76 1.66 2.80 02-35 .34 .76 1.63 2.68 06-15 .34 .80 1.80 3.06 06-19 .34 .78 1.69 2.78 06-23 .34 .77 1.69 2.86 06-27 .34 .78 1.70 2.85 06-31 .33 .82 1.'82 3.07 06-35 .33 .79 ~ 1.77 2.99 06-39 .34 .78 1.74 3.07 10-11 .35 ..84 1.87 3.20 10-15 .35 .82 1.84 3.11 10-19 .32 .72 1.65 2.82 10-23 .32- .72 1.65 2.87 10-27 .37 .91 1.98 3. 31 10-31 .35 .84 1.84 3.25 10-35 .32 .81 1.86 3.19 10-39 .35 .81 1.75 2.95 10-43, .33 .76 1.68 2.85 10-07 ;36 .79 1.67 2.78 14-11 .37 .82 1.85 3.14 14-.15 .35 .75 1.68 3.00 14-19 .39 .93 2.07, 3.40 14-23 .36 .90 2.00 3.39 14-27 .35 .85 1.88 3.23 14-31 .33 .74 1.66 2.94 14.35 .34 '77 1.75 2.99 14-39 .34 .78 1.71 2.93 14-43 .34 .79 1.78 3.03 14-47 .34 .71 1.59 2.74 18>>03 .36 .71 1.54 2.90 18-07 .34 .80 1.73 2.88 18-11 .35 .73 1.61 2.95 18-15 .39 .87 1.91 3.23 38-19 .37 .85 1.84 3.07 18-23 .35 .80 1.78 3.01 18-27 .35 .75 1.71 3.25 18-31 .34 .80 1.74 2.93 18-35 .36 .88 1.95 3.28 18-39 37 .85 1.88 3.22 18-43 .34 .81 1.77 3.02 18-47 .34 .78 1.72 2.96 18-51 .36 .75 1.68 3.00 22-03 .32 .74 1.62 2. 79 22-07 .36 .84 1.86 3.11 22-11 .32 '.75 1.68 2.89 22>>'15 .34 .75 1.76 3.19 22-19 .35 .83 . 1.94 3.44

22. 23 .34 .72 1.65 3.08 2? -27 .35 .78 1.69 2.85,

y Tab1e 1.1 (Continued)

RODS 20~a 50~o 90~

22-31 .35 .82 1.80 3.07 22-.35 .37 .82 1.78 2.99 22-39 ~ 33 .77 1.68 2.82 22-43 ~ 33 .77 1.72 2.96 22-47 .33 .74 1.55 2.59 22-51 .35 .81 1.80 3.04 26-03 .31 .76 1.69 2.86 26-07 .34 .79 1.72 2.90 26-11 .33 .74 1.67 2.87 26-15 .36, .83 1.81 3.07 26-19 .39 .88 1.88 3.18 26-23 .34 .80 1.84 3.27 26-27 .36 .84 1.89 3.22 26-31 .33 '71 1.69 2.93 26-35 .36 .87 1.80 3.06 26-39 .33 .79 ,.1.73 2.94 26-43 .34 .82 1.88 3.18 26-47 .35, .86 1.81 3.08 26-51 .31

'79 1.82 3.08 30-03 ,35 '8] 1.75 2.92 30-07 .35 . :80 1.76 2.99 30-11 .34 .82 1.85 3. 16 30-15 '.37 .83 1.82 3.07 30-19 .38 .87 1.82 3.08 30-23 .34 .77 1.68 2.88 30-27 .37 .91 2.08 3.48 30-31 37 . .89 1.93 3.21 30-35 .36 .86 2.00 3.34

'30-39 .36 .74 1.68 3.09 30-43 .35 .80 1.76 2.98 30-47 .30 .72 1.65 2.85 30-51 .35 .79 1.73 2.91 34-03 .31 .73 1.58 2.66 34-07 .31 .71 1.54 2.58 34-11 .32 .74 1.65 2. 80'.40 34-15 ..36 .87 1.98 34-19 .35 .83 1.90 3.27 34-23 .36 .81 1.78 3.05 34-27 .37 .88 1.99 3.48 34-31 .39 .93 1.91 3. 19 34-35 .36 .76 1.68 3.04 34-39 .37 .80 1.70 2.85 34-43 .31 .74 1.69 2.87 34-47 .32 .75 1.62 2.77 34-51 .32 .75 1.61 2.74 38-07 .31 .78 1.72 2.90 38-11 .36 .80 1.74 2.94 38-15 .35 .76 1.73 3.20 38-19 .34 .81 1.78 3.06 38-23 .36 .86 2.03 3.43 38-27 .36 :80 1.75 2.99 38-31 .30 .77 1.76 3.00

Table l. 1 (Continued)

RODS 5 o~ 20~o SO~o 90~o 38-35 .36 .81 1. 75 2.96 38-39 . 3'3 .78 1.69 2.89 38-43 '35

.75 1.63 2.76 38-47 .30 .72 1.54 2.60 42-11 .31 .77 1.72 2.93 42-15 .36 .82 1.77 2.99 42-19 .37 .86 2.07 3.65 42-23 .$ 5 .78 1.69 2. 85'.23 42-27 .37 .86 '.90 42-31 .33 .72 1.58 2.79 42-35 .36 .85 1.83 3.04 42-39 .36 .81 1.74 2.94 42-43 .30 .76 1.68 2.84 46-15 .29 .72 1.60 2.72 46-19 .35 .78 1.67 2.79 46-23 .32 .79 1.75 3.01 46-27 .36 .83 1.81 3.03 46-31 .35 .84 1.87 3.06 46-35 .36- ;80 1.70 2.88 46-39 .28 .69 1.51 2.60 50-19 .32 .76 1.64 2.75 50-23 .34 .77 3.61 2.70 50-27 .31 .74 1.63 2.78 50-31 .35 .80 1.75 2.92 50-35 .33 .77 1.63 2.78 Average

.345 .814 1.78 3.08

Table 1.2 Avera e Scram Insertion Time Com arisons

'A Inserted Average Scram Insertion Times (SEC)

From Fully After July 1977 Tech Spec Withdrawn Outa e Limit 0.345 0.375 20 0.814 0.90 50 1.78 2.00 90 3. 08 5.00

2.0 SHUTDOllN MARGIN TEST

2. 1 Shutdown Mar inTest Abstract The purpose of this test is to demonstrate that the reactor can be made subcritical with a shutdown margin of 0.25Ã k at any time in the subsequent cycle with the strongest operable control rod fully withdrawn.

With the core at its most reactive condition, cold and xenon-free the analytically strongest control rod is fully withdrawn from the core. A second control rod is then withdrawn to a position which results in an amount of reactivity at least equal to the required maroin.

The shutdown margin test shall be considered acceptable if the reactor has remained subcritical throughout the test.

2.2 Shutdown Mar in Test Results Figure 2.1 summarizes the results of the Shutdown Margin Test. Control rod 18-27, shown analytically to be the strongest, was fully withdrawn from the core. Control rod 14-31 was then withdrawn to position 08 which analytically resulted in an insertion of approximately .8% delta K. As shown on Figure 2. 1 the reactor remained subcritical throughout the test. Results of the test are within the criteria specified in the Technical Specification.

FIGURE 2.1 REACTIVITY MARGIN - CORE LOADING Procedure:

1. All Rods In SRM Readings

'143 12 35 13 29 14 17

2. Rod CR1 18-27 selected
3. Rod CR1 18-27 position 48
4. Reactor Subcritical SRM Readings

'1 44 12 50 13 30 14 20

5. Rod CR2 14-31 Selected
6. Rod CR2 to position 08.
7. Reactor Subcritical SRM 11 12 13 14 Readings 45 58 32 19

3.0 Instrumentation Ca1ibration Test T.

\

3.1 Instrumentation Gal ibr ation Test Abstract The purpose of this test is to calibrate the Local Power Range Monitoring (LPRM) System.

The LPRM System is a spatial array of in-core fission chambers used to monitor the in-core neutron flux. In the process computer formulation, each chamber signal is calibrated to produce a meter reading which is proportional to the neutron flux in the water gap at the axial elevation of the chamber.

The calibration procedure consists of data taking, calculations and amplifier adjustments. A set of LPRM readings and Transverse In-Core Probe (TIP) traces are recorded. The process computer is used to determine the correct readings'hat the LPRM's should have read based on the TIP traces.

The individual amplifier input calibration currents required to produce a selected standard meter reading on each LPRM meter are recorded. These input currents are divided by the ratio of the calculated-to-observed LPRM readings (Gain Adjustment Factors-GAF). These new input calibration currents are then applied and the amplifier gains adjusted to produce the selected standard meter readings, thereby calibrating the LPRM's.

3.2 Instrumentation Calibration Test Results Figure 3.1 contains the LPRN Instrument Calibration Results for an instrumentation calibration performed at a power level of 985 of rated.

FIGURE 3.1 LPRN INSTRUMENTATION CALIBRATION RESULTS REqUIRED LPRH AS FOUND INPUT CURRENT PROBE 'NPUT'CURRENT G;A.F. '105%8-41C 512 .87 588 36-33C 880 1.05 838 36-49C 855 1. 00 Same 44-41C 851 .99 859-28-41A 720 1. 78 395 36-33A 842 l. 05 801 36-49A 994 1. 01 984 44-41A 943 .99 952 36-41C 1100 1. 08 1018 28-49C 10 10 1. 06 952 44-33C 515 1. 11 463 28-33C 970- 1. 08 898 36-41A 874 1. 11 787 28-49A 44-33A N

807 o D e t e c tor 1.05 I npUt 768 28-33A 783 .68 1151 36-17C 970 1. 04 932 44-25C 815 1. 06 768 28-09C 630 .96 656 28-25C 903 1:09 828 36-17A 970 1. 09 890 44-25A 473 1. 0,8 438 28-09A 752 1. 05 716 28-25A 890 1. 10 809 28-17C 949 1. 06 895 36-09C 1060 .97 1092 36-25C 656 1. 00 Same

~ 44-17C 970 1. 01 960 28-17A 927 1. 09 850 36-09A 750 1.03 728 36-25A 536 l. 11 482 44-17A 823 l. 00 Same 12-33D 930 1.03 902 20-41D 894 1. 00 Same 12-33B 983 l. 00 Same 20-41B 307 l. 17 262 12-41D 1120 .35 1160 04-33D 1483 l. 05 1412 20-49D 1240 .96 1292 20-33D 1160 1. 18 983 12-41B 1060 1. 03 1029 04-33B 857 1. 05 816

FIGURE 3.1 (Continued)

LPRM INSTRUMENTATION CALIBRATION RESULTS REQUIRED LPRM AS FOUND INPUT CURRENT PROBE INPUT'CURRENT G.A.F. 105K 20-49.B 859 1.00 Sarge 20-33B 887 1.01 878 12-17D 1410 1. 09 1293 20-09D 1200 1. 08 1111 04-25D 1290 1. 03 1252 20-25D 1123 1. 13 993 12-17B 1031 1.05 981 20-09B 791 1.02 775 04-25B 1000 1. 05 952 20-25B 1018 1.08 942 04-17D 1110 .95 1168 12-09D 1052 .99 1063 12-25D 1020 1.02 1000 20-17D 941 1.04 905 04-17B 1010 l. 13 971 12-09B 930 1.04 894 12-25B 980 .95 1031 20-17B 685 .99 691 12-.33A 20-41A N

870 o Detec tor03 Input 844 1.

'12-33C 676 l. Ol 669 20-41C 820 1. 02 803 12-41A 840 0.00 712 04-33A 944 1.06 890 20-49A 743 1. 02 728 20-33A 738 1.09 677 12-41C 1150 1.01 1138 04-33C 1095 0.00 755 20-49C 580 1.03 563 20-33C 830 1.20 691 17A 910 1.04 875 20-09A 733 l. 18 621 04-25A 20-25A N

555 o Detec tor 1.06 Input 523 12-17C 1000 1. 05 952 20-09C 823 1. 12 734 04-25C 1030 1.08 953 20-25C 970 1. 07 906 04-17A 753 .96 784 12-09A 1061 .99 1071 12-25A 413 1.05 393

FIGURE 3. 1. (Continued)

LPRM INSTRUMENTATION CALIBRATION RESULTS REQUIRED LPRM AS FOUND INPUT CURRENT PROBE INPUT CURRENT G.AD F. 105K 20-17A 694 1.01 687 04-17C 990 .97 1020 12-09C 970 1. 02 950 12-25C 725 1. 11 653 20-17C 900 1. 02 882 28-41B 760 1. 01 752 36-33B 870 1. 03 844 36-49B 926 1.04 890 44-41B 800 1.01 792 28-41D 557 1. 05 530 36-33D 1050 1.06 990 36-49D 1000 1. 03 970 44-41D 1108 .98 1130 36-41B 1090 1. 07 1019 28-49B 904 1. 01 895 44-33B 1010 1. 05 962 28-33B 1230 1. 80 683 36-41D 1300 1.09 1193 28-49D 1460 1.02 1431 44-33D 1420 1. 30 1092 28-33D 1250 1.09 1147 36-17B 1008 1. 09 925 44-25B 740 1. 03 718 28-09B 741 1. 00 Same 28-25B 970 1.07 906 36-17D 1300 1. 09 1193 44-25D 710 1.04 683 28-09D 1540 1. 22 1262 28-25D 1256 l. 11 1131 28-17B 1042 1. 10 947 36-09B 800 1.04 769 36-25B 680 1. 02 666 44-17B 275 0.00 238 28-17D 1100 1.06 1037 36-09D 1143 1.03 1109 36-25D 995 I. 13 880 44-17D 1120 .99 1131 Ho Detector Input- No signal is received from the LPRM. This could be caused by faulty connections or failed detectors.

4.0 Cold Critical Comparison Il ~

e 4.1 Cold Critical Com arison Test Abstract The cold critical control rod pattern was analytically derived as shown on Figure 4. 1. Control rod withdrawals to target control rod inventory were compared to the analytically derived pattern.

4.2 Cold Critical Com arison Test Results Figure 4.2 contains the actual cold critical control rod pattern.

The difference between the observed and predicted control rod inventories is less than one percent in reactivity.

COI:RITICAL CONTROL ROD PATTERN X = POSITION 48 51 47 43 X X 39 35 31 27 X X 23 19 15 11 X X 7

3 2 6 10 14 18 22 26 30 34 38 42 46 50 FIGURE 4.1 51 47 43 39 35 31 27

-23 19 15 ll 7

3 2 6 1014 18222630 34384246 50 FIGURE 4.2

5.0 Power Distribution Comparison 6.1 Power Distribution Co arison Test Abstract The power distribution in the core is monitored by the process computer.

Off line predictive Models are used to develop a power distribution corresponding to specific plant operating conditions.

5.2 Power Distribution Com arison Test Results The power distribution comparison test was performed under the core operating conditions shown on Figure 5. 1. Comparisons of the actual to predicted core axial power distribution is shown on Figure 5.2. Comparisons of the actual to predicted core average radial power distribution is shown on Figure 5.3.

'6 Date August 31, 1977 Core Power Level 1830 MMt (98.9%)

Core Flow Rate 66.4 Nlb/hr. (98.4/)

Pressure 1035 PSIA Subcooling 22.9 Btu/Lb.

CONTROL ROO PATTERN NOTCHES WITHORAWN BLANK ~ 48 ~ FULL OUT'1 47 22 22 43 38 38 39 14 14 35 34 34 , 34 31 22 14 14 22 27 34 23 22 14 14 22 19 34 34 15 14 14 11 38 7

3 2 6 1014 18 22 26 30 34 384246 50 Figure 5;1 NINE NILE POINT UNIT 1 OPERATING CONDITIONS FOR BEGINNING OF CYCLE 5 COf<PARISONS

1.6 Predicted Actual 1.4 1.2 1.0 0.8 0.6 0.4 0.2 BOTT H AXIAL NODE TOP FIGURE 5.2. Core Average Axial Power Distribution Comparisons for Nine Mile Point Unit 1, August 31, 1977

~ >1 1 IE 1 die ~~

Figure 5.3 CORE AVERAGE RADIAL POWER DISTRIBUTION

~Rin 'Actual 'Predicted Center 1 1. 012 1.002 2 0.927 0.922 3 1.123 1. 084 1.082 1.072 5 1.104 1.127 6 1.043 1.056 Edge 7 0. 824 0. 816

RECEIVEO DOCUHEHT PRGCESSI!IG UNIT