ML15119A327

From kanterella
Jump to navigation Jump to search

NRR E-mail Capture - FW: Revised White Paper for Next Week Public Meeting
ML15119A327
Person / Time
Site: South Texas  STP Nuclear Operating Company icon.png
Issue date: 04/29/2015
From: Harrison A
South Texas
To: Lisa Regner
Plant Licensing Branch IV
References
TAC MF2400, TAC MF2401
Download: ML15119A327 (181)


Text

NRR-PMDAPEm Resource From: Harrison Albon [awharrison@STPEGS.COM]

Sent: Wednesday, April 29, 2015 9:35 AM To: Watford, Margaret; Regner, Lisa Cc: Stang, John; Kee, Ernie; Blossom, Steven

Subject:

FW: Revised white paper for next week public meeting Attachments: white paper.pdf Follow Up Flag: Follow up Flag Status: Flagged Maggie, Lisa, For talking points for our public call next week I am forwarding an updated RoverD description that includes additional detail on the debris generation and transport per our conversation in the previous public call. Note that we have not yet revised the LERF description. As Ernie says, it is quite large (173 pages), but by far the largest part of that is the computer files, so it is not as daunting as it looks. Changes are marked with change bars and we added line numbers (which wont be in the supplement version). I do not believe there is any sensitive or proprietary information in the attachment.

Regards, Wayne Harrison STP Licensing (979) 292-6413 1

Hearing Identifier: NRR_PMDA Email Number: 2029 Mail Envelope Properties (8C918BCF8596FB49BD20A610FA5920CF0228A02B)

Subject:

FW: Revised white paper for next week public meeting Sent Date: 4/29/2015 9:35:12 AM Received Date: 4/29/2015 9:35:46 AM From: Harrison Albon Created By: awharrison@STPEGS.COM Recipients:

"Stang, John" <John.Stang@nrc.gov>

Tracking Status: None "Kee, Ernie" <keeej@STPEGS.COM>

Tracking Status: None "Blossom, Steven" <sdblossom@STPEGS.COM>

Tracking Status: None "Watford, Margaret" <Margaret.Watford@nrc.gov>

Tracking Status: None "Regner, Lisa" <Lisa.Regner@nrc.gov>

Tracking Status: None Post Office: CEXMBX01.CORP.STPEGS.NET Files Size Date & Time MESSAGE 710 4/29/2015 9:35:46 AM white paper.pdf 3592136 Options Priority: Standard Return Notification: No Reply Requested: No Sensitivity: Normal Expiration Date:

Recipients Received: Follow up

1 RoverD:

2 Use of Test Data in GSI-191 Risk Assessment 3

List of contributors and aliation Edition date, time - Wednesday 29th April, 2015, 07:45 ints Contributor(s)

Steve Blossom Ernie Kee Affiliation STPNOC STPNOC Contribution po Project Manager, GSI-191 project Author & RoverD concept, STPNOC technical lead Alex Zolan and John the University of Texas at LOCA frequency, strainer penetration review and anal-Hasenbein Fatma Yilmaz Wayne Harrison and Drew Richards Austin STPNOC STPNOC ysis g

LOCA Frequency review in Regulatory compliance review Rodolfo Vaghetto Texas A&M University RCS Thermal-Hydraulics Phil Grissom David Imbaratto Bruce Letellier and Southern Nuclear Co.

Paci"c Gas & Electric lk Alion Science and Technology RoverD impact on Option 2b plants RoverD impact on Option 2b plants CASA Grande results for real size and location Jeremy Tejada Dominic Munoz Seyed Reihani ta Alion Science and Technology University of Illinois Urbana-Champaign at CASA Debris Generation & Transport description Oversight review A

Vera Moisetytseva FT YK.risk, LLC Oversight Review R

D

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment ii of 173 pages 4 Contents 5 Contents ii 6 1 Introduction 1 7 2 RoverD risk quanti"cation summary 3 8 3 Reactor containment building debris generation and transport 4 4 LOCA frequencies 24 9

10 5 RCS Thermal-hydraulics ints 30 11 6 Core performance metrics 31 12 7 Application po 32 13 8 Weld list 33 14 9 Acronyms in g 66 15 10 LDFG mass conservation solution implementation 67 16 lk 11 Top-down LOCA frequency solution implementation 84 17 ta 12 FIDOE sensitivity study, "xed "ltration 105 18 19 20 List of Figures 1

AFT The two basic elements of RoverD are separating scenarios into risk-informed or deterministic categories and then subsequently evaluating the risk. . . . . 2 21 2 Flow paths through the containment and reactor vessel following the start 22 of ECCS recirculation showing where "ber mass (m) is conserved (ECCS 23 24 3 R

strainers, ECCS sump, and the reactor core) . . . . . . . . . . . . . . . . .

Simpli"ed arrangement of the reactor system, ECCS and CSS with "ow di-4 25 26 27 D rections shown during normal operation for the intact plant and "ows in the emergency systems when demanded. The arrangement has been distorted so the "ows and equipment can be seen. Shown as well are "ow paths from 28 hypothesized breaks out to the ECCS sump. . . . . . . . . . . . . . . . . . . 5 29 4 Illustration of insulation discretization on piping. The discretization is de-30 "ned in input as shown in the input fragment in Table 1 . . . . . . . . . . . 8 Wednesday 29th April, 2015, 07:45 ii corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment iii of 173 pages 31 5 Schematic representation of the transport logic tree used to obtain the mass 32 of "ber "nes transported to the RCB sump. . . . . . . . . . . . . . . . . . . 11 33 6 Flow network for the three STP ECCS and CSS trains showing the three 34 places debris is caught: the pool, the strainer, and the core during a CLB 35 scenario. Shown as well are the various "ow splits that take place between 36 the places debris is caught. The "ow split is de"ned by the amount of "ow 37 demanded by the core to remove decay heat. . . . . . . . . . . . . . . . . . 14 38 7 Filtration eciency "ts as a function of mass compared to measured data 39 for the STP ECCS strainer modules. Eciency "ts obtained for the upper, 40 central, and lower limits of the measurements are compared to the measured 41 42 43 8

9 in data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ts default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparison of bounding cases for core LDFG accumulation after start of 16 19 44 ECCS recirculation. The mass accumulation should be divided by 193 to 45 46 47 10 po obtain gm/FA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The top down approach assigns equally-weighted frequency in intervals be-tween pipe diameter extents. As Dismall becomes larger, the total number of 21 48 49 50 11 g

welds in successive categories decreases. . . . . . . . . . . . . . . . . . . . .

Using linear interpolation or log-linear interpolation of NUREG 1829 data in (Tregoning et al., 2008) produce dierent inter-point interpolation behaviors 24 51 on dierent graph formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 52 53 12 lk Process for establishing risk thresholds depending on whether an acceptable test has been previously performed or if one should be designed to achieve 54 ta a speci"c risk goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 55 List of Tables 56 57 1 AFT Pipe Extract insulation data "le example. The data include three header records and pipe work point data in columns: Inventor Ipart (.ipt Name),

58 work point ID (Point), Cartesian coordinates (X, Y, and Z), bend radii 59 (Rad), inner insulation shell diameter (ID), outer insulation shell diameter 60 61 2 R (OD), and work point type (WP). . . . . . . . . . . . . . . . . . . . . . . .

Summary of the ZOIs for "ber-producing insulation . . . . . . . . . . . . .

6 10 62 63 64 3

4 D Erosion modes and erosion percentages summary of smalls and large pieces eroded to "nes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example of the "rst few "ows that would result from a decay heat load in a 13 65 40K MWd/MTU exposure assuming 3853 MW operation history. Note that 66 the time is not shifted to account for delay to start of recirculation following 67 LLOCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Wednesday 29th April, 2015, 07:45 iii corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment iv of 173 pages 68 5 Core mass accumulation for bounding cases of initial ECCS sump pool "ber 69 concentration Cp (t = 0) and upper and lower bounds of "lter eciency. . . 21 70 6 Sensitivity study of core "ber loading, Mc (t = 400min), using "xed "ltration 71 at three initial pool concentration (Cp (0)) levels: Normal = 0.17 gmgal , Low gm gm 72 = 0.11 gal , and High = 0.39 gal (full block design) . . . . . . . . . . . . . . 23 73 7 NUREG-1829 (Tregoning et al., 2008, Table 7.19) for the mean, median, 5th 74 percentile, and 95th percentile exceedence frequency values for current-day 75 estimates STP PRA break sizes for small, medium and large LOCA are, less 76 than 2 in (small), 2 in to 6 in (medium), greater than 6 in (large). . . . . . 26 8 Case 1 and Case 2 results for geometric (GM) and arithmetic (AM) aggre-77 78 79 in gations of Tregoning et al. (2008, Tables 7.11 and 7.19) data. Frequencies ts are in events/yr. Also shown are the results for a DEGB-only model for the 80 locations that go to failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 81 9 LERF evaluation for geometric and arithmetic means of the Continuum 82 83 10 po and DEG-only models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Summary of boundary conditions and assumptions of the STP core blockage 84 analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 85 86 87 11 12 in g Results of blockage scenarios showing scenarios that had PCT less than 800°F (Pass) and those that exceeded 800°F (Fail). . . . . . . . . . . . . . . 31 Data for weld locations in the risk-informed category listing the ith weld 88 number, mass of "ber in the sump for the scenario (lbm), location name 89 90 lk (ID), Break size (Size), scenario frequency, fi (mean quantile, geometric aggregation), Category, and NUREG 1829 data category . . . . . . . . . . . 34 91 92 93 13 ta DEGB data (largest break size) for weld locations in the deterministic cate-gory showing listing the ith weld number, the margin to the mass of "ber in the sump produced to the tested amount (lbm), location name, Break size 94 95 96 14 A

(Size), scenario DEGB frequency, fi (mean quantile, geometric aggregation),

and NUREG 1829 data category . . . . . . . . . . . . . . . . . . . . . . . . 35 FT Single train data for weld locations in the risk-informed category listing the 97 ith weld number, mass of "ber in the sump for the scenario (lbm), loca-98 tion name (ID), Break size (Size), scenario frequency, fi (mean quantile, 99 geometric aggregation), and NUREG 1829 data category . . . . . . . . . . . 48 100 15 R Single train DEGB data (largest break size) for weld locations in the de-terministic category showing listing the ith weld number, the margin to the 101 102 103 D mass of "ber in the sump produced to the tested amount (lbm), location name, Break size (Size), scenario DEGB frequency, fi (mean quantile, geo-104 metric aggregation), and NUREG 1829 data category . . . . . . . . . . . . 50 105 16 ECCS and CSS train "ow rates assumed for the low, normal, and high 106 sensitivities in FIDOE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Wednesday 29th April, 2015, 07:45 iv corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment v of 173 pages 107 Listings 108 1 Input fragment for de"ning piping insulation discretization . . . . . . . . . 8 109 2 Source listing for (1c) solution, Alex Zolan, UT Austin, 02 March, 2015 . . 68 110 3 Mass conservation solver, time-dependent inputs . . . . . . . . . . . . . . . 79 111 4 Input listing for the mass conservation solver: constants for High Pool Con-112 centration, High Filtration Eciency . . . . . . . . . . . . . . . . . . . . . . 80 113 5 Input listing for the mass conservation solver: constants for High Pool Con-114 centration, Low Filtration Eciency . . . . . . . . . . . . . . . . . . . . . . 81 115 6 Input listing for the mass conservation solver: constants for Low Pool Con-116 117 118 7

in centration, Low Filtration Eciency . . . . . . . . . . . . . . . . . . . . . .

ts Input listing for the mass conservation solver: constants for Low Pool Con-centration, Low Filtration Eciency . . . . . . . . . . . . . . . . . . . . . .

82 83 119 8 Source listing for (5) solution, Alex Zolan, UT Austin, 27 February, 2015 . . 84 120 121 122 9

10 po Input listing for the Arithmetic Means quantiles. Taken from NUREG-1829, Table 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input listing for the Geometric Means quantiles. Taken from NUREG-1829, 87 123 Table 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 124 125 11 12 in g Input listing for the welds in the scope of GSI-191 . . . . . . . . . . . . . .

Input listing from the RoverD fetch stage for the welds in the scope of 88 126 GSI-191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 127 128 13 14 lk Source listing for (1c) solution, Alex Zolan, UT Austin, 02 March, 2015 . .

Low ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

105 117 129 130 131 15 16 17 ta Low ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

Low ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

Low ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

118 120 121 132 133 134 135 18 19 20 21 A

Normal ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . .

Normal ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . .

FT Normal ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . .

Low ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

123 124 125 126 136 22 High ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 128 137 23 High ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 129 138 139 24 25 R

High ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

High ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

131 132 140 141 142 D

26 27 28 Low ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

Low ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

Low ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . .

134 136 137 143 29 Low ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 139 144 30 Normal ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . 140 145 31 Normal ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . . 142 146 32 Normal ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . . 143 Wednesday 29th April, 2015, 07:45 v corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment vi of 173 pages 147 33 Normal ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . 145 148 34 High ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 146 149 35 High ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 148 150 36 High ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 149 151 37 High ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 151 152 38 Low ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 153 153 39 Low ECCS "ow, 0.5 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 154 154 40 Low ECCS "ow, 0.6 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 156 155 41 Low ECCS "ow, 0.7 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 158 156 42 Normal ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . 160 157 158 159 43 44 45 Normal ECCS "ow, 0.5 "ltration Normal ECCS "ow, 0.6 "ltration Normal ECCS "ow, 0.7 "ltration in ts.

162 163 165 160 46 High ECCS "ow, 0.4 "ltration . . . . . . . . . . . . . . . . . . . . . . . . . . 167 161 162 163 47 48 49 High ECCS "ow, 0.5 "ltration . .

High ECCS "ow, 0.6 "ltration . .

High ECCS "ow, 0.7 "ltration . .

po 169 170 172 in g lk ta AFT R

D Wednesday 29th April, 2015, 07:45 vi corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 1 of 173 pages 164 1 Introduction 165 RoverD is a method that follows the guidance of NRC (2011) to assess the risk associated 166 with concerns raised in GSI-191. RoverD uses test data and NRC (2011) guidance to 167 evaluate the magnitude of LOCAs required to exceed a performance threshold that is 168 established by testing for eects again associated with concerns raised in GSI-191. The 169 performance threshold is set low, set to underestimate the true level where functionality 170 may be lost, so that risk for strainer failure is overestimated. Even when adopting a low 171 performance threshold, the risk is shown to be very small (NRC, 2011).

172 RoverD separates the risk estimate into two categories of scenarios designated as de-173 174 175 in terministic and risk-informed as illustrated in Figure 1a. The deterministic scenarios are ts those in which the LDFG "ber "nes estimated to arrive in the ECCS sump following LOCA are equal to, or less than, the amount of "nes used in acceptable strainer testing. The limit 176 is set using testing methods intended to determine the maximum ECCS strainer head loss 177 178 179 po for the tested condition. For example, single failure criteria are adopted in combination with conditions known to overestimate head loss such as chemical quantities and morphol-ogy, strainer "ow rate, and particulate amounts that includes mechanical processing of 180 "ber. If the strainer performance test shows a LOCA scenario will not cause any strainer 181 182 in g performance requirements to be exceeded, then that scenario will not result in failure and is categorized as deterministic as shown in Figure 1a.

183 The term acceptable testing refers to so-called deterministic tests performed under 184 185 lk circumstances that would not be realized in a design basis accident as mentioned above.

Such tests can be used to establish a bounding envelope of performance (low performance 186 187 188 ta threshold) for the realistic scenarios realized or hypothesized. Using test data that includes unrealizable circumstances may result in scenarios that would fall outside the bounding envelope de"ned by such test data. The risk for any such scenarios is required to meet a 189 190 191 192 A

very small threshold as shown in Figure 1b.

In the following, the various analyses required to complete a RoverD assessment are FT summarized. The steps required to complete a RoverD analysis are summarized in Sec-tion 2. Section 3 summarizes the way RoverD "ber generation, transport, erosion, and 193 latent "ber quantity are established. Section 4 summarizes the LOCA frequency deter-194 mination for scenarios in the risk-informed category. The basic approach uses top-down 195 196 R

frequency partitioning. In-vessel analyses are described in Section 5 including blockage analyses for HLB and CLB (scenario success criteria), fuel "ber limits, boric acid pre-197 198 D

cipitation. Core performance metrics must be met in addition to strainer performance.

Section 6 summarizes evaluation of core performance metrics.

Wednesday 29th April, 2015, 07:45 1 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 2 of 173 pages ints po (a) RoverD separates those scenarios that go to success deterministically from those that are assumed to go to failure and require risk-informed analysis in g lk ta AFT R

D (b) Flow chart showing the RoverD evaluation process following categorization of scenarios to determine risk acceptability. In this depiction, the frequency, fi , of break at any location is determined by the diameter as determined in NUREG 1829.

Figure 1: The two basic elements of RoverD are separating scenarios into risk-informed or deterministic categories and then subsequently evaluating the risk.

Wednesday 29th April, 2015, 07:45 2 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 3 of 173 pages 199 2 RoverD risk quanti"cation summary 200 RoverD involves the following steps to assess the risk associated with the concerns raised 201 in GSI-191:

202 1. Perform a test that has some margin to failure following accepted protocols (see 203 AREVA, 2008) 204 Note the amount of "ne tested (in this case, 191.78 lbm) as well as the con"gura-205 tion (in this case, two ECCS trains). The plant con"guration is important to ensure 206 whether the test bounds other plant states. Fine "ber is used because it is the trans-207 208 209 portable form of the LDFG created in the break scenario ints Note that the test results must be applied to strainer performance criteria to ensure they are met using deterministic analysis requirements (e.g., vortexing, structural 210 margin, "ashing, etc.)

211 212 itation) must be met under the conditions tested po

2. In-vessel performance criteria (core cooling, including "ber eects, boric acid precip-213 214 in g
3. Run CASA Grande to itemize all break locations, break sizes, and amount of LDFG "nes in the sump (including erosion and latent "ber) 215 4. Compare the amount of "ber "nes in each break scenario to the tested amount 216 217 (AREVA, 2008) lk If the amount is equal to or less than the tested amount, categorize the scenario 218 219 deterministic. ta If the amount exceeds (that is, over) the tested amount, categorize the scenario risk-informed 220 221 222 A
5. Evaluate the risk contribution (including in-vessel) of scenarios in the risk-informed FT category against the Regulatory Guide 1.174 quantitative criteria for {CDF,CDF},

223 {LERF,LERF}

224 Assign change in core damage frequency to the frequency from (5) 225 226 R

Check {CDF,CDF} against the quantitative requirement of Regulatory Guide 1.174, Region III 227 228 D Check {LERF,LERF} against the quantitative requirement of Regulatory Guide 1.174, Region III 229 Verify other requirements (for example, safety margin, defense in depth) of Regula-230 tory Guide 1.174 are met 231 6. If all requirements are met for the risk-informed category, the performance is accept-232 able Wednesday 29th April, 2015, 07:45 3 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 4 of 173 pages (a) Fiber "ow paths for a three train plant (trains A, B, and C) in containment af-ter ECCS recirculation show-(b) Fiber "ow paths through the reactor vessel following in (c) Conceptual illustration of ts three zones of destruction poten-tial within the ZOI showing how ing "ow splits, , between ECCS recirculation showing the the debris distribution shifts to-total ECCS injection and ECCS additional "ow split () to the core and the break po wards larger sizes further from the break Figure 2: Flow paths through the containment and reactor vessel following the start of ECCS recirculation showing where "ber mass (m) is conserved (ECCS strainers, ECCS sump, and the reactor core) in g 233 3 Reactor containment building debris generation and 234 transport lk NEI (2004) documented an acceptable methodology for determining the amount of debris 235 236 237 ta generated in a LOCA of any particular size by de"ning a ZOI. Within the ZOI, speci"c size distributions of LDFG particles can be estimated using acceptable methods (Figure 2c).

238 The amount and type of each debris species transported to the ECCS sump is gov-239 240 241 A

erned by logic trees developed to estimate the amounts captured and sequestered, and FT the amounts that would continue to transport (for example see NEI, 2004, ppg 3-45, 3-53).

RoverD uses a worst case set of assumptions in development of the STP debris transport 242 logic tree.

243 The "ow paths through the RCB with the water "owing out of the breach in the RCS as 244 245 R

well as with water from sources such as ECCS and CSS during the recirculation phase are shown in Figures 2a and 2b. CASA Grande performs mass conservation of debris species 246 247 248 D

in the containment pool (Mp ), on the ECCS strainers, (Ms ) and in the reactor core, (Mc ),

(Figure 6). Although dierent size particles are created from partially destroyed "berglass insulation strands within the ZOI (Figure 2c), the smallest particles that transport readily 249 through the RCB are "nes. Larger and partially destroyed LDFG insulation either do not 250 transport or quickly sink in the ECCS sump and remain there. Over time, water "owing 251 through the RCB tends to erode some of the larger particles captured outside of the ECCS 252 sump into "ne particles. Besides LDFG either destroyed or eroded into "ne particles, "ne Wednesday 29th April, 2015, 07:45 4 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 5 of 173 pages 253 particles from tramp dust and dirt need to be taken into account.

254 A break size and location de"ne a scenario from which is derived the amount of LDFG 255 "nes that arrive in the ECCS sumps. The methodology for examining many thousands 256 of possible break sizes, orientations, truncation of ZOIs, transport of "nes, and erosion of 257 LDFG requires a computational framework implemented on a computer.

ints po in g lk ta Figure 3: Simpli"ed arrangement of the reactor system, ECCS and CSS with "ow directions shown during normal operation for the intact plant and "ows in the emergency systems when demanded. The arrangement has been distorted so the "ows and equipment can be seen. Shown as well are "ow paths from hypothesized breaks out to the ECCS sump.

258 3.1 AFT Computer implementation of debris generation & transport 259 As mentioned previously, generation, transport and erosion of LDFG "nes requires a com-putational framework implemented on a computer. Alion Science & Technology (2015) 260 261 R has developed a generalized computer implementation inside of CASA Grande that uses a STP plant-speci"c CAD model of the RCB. The methodology used to obtain the amount of 262 263 264 D

LDFG "nes generated and transported to the STP RCB recirculation pool for each postu-lated break is described in the following sections. This automated calculation of "berglass 265 debris is consistent with the steps used to calculate the amount of "ne "ber introduced to 266 the test "ume (AREVA, 2008).

Wednesday 29th April, 2015, 07:45 5 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 6 of 173 pages 267 The computational framework for calculating "brous debris generation inside of 268 CASA Grande can be summarized in three items:

269 1. Importing CAD geometry, 270 2. Line of sight grouping of voxels that can be seen by each weld location that are not 271 shadowed by concrete, and 272 3. Insulation debris generation for each weld location based on scenario speci"c break 273 size.

274 275 3.1.1 Import of CAD geometry There are three types of geometry "les that are imported into a CASA Grande simulation ints 276 for use in the insulation debris generation routines:

277 1. pipe extract insulation data "les, po 278 2. equipment insulation text "les, and 279 3. concrete STL "les.

in g 280 These three types of geometry "les and descriptions of how they are imported and used 281 lk in the CASA Grande debris generation routines are described below.

282 283 284 ta Pipe extract insulation data Pipe data are extracted from the piping assembly in the 3D containment CAD model using a proprietary AutoDesk Inventor add-in (created by AutoDesk for Alion). The data include all information about piping and piping insula-285 286 287 A

tion needed to rebuild the piping insulation geometry numerically inside of CASA Grande.

Speci"cally, pipe extract insulation data includes pipe segment lengths, pipe names, pipe in-FT sulation types, Cartesian coordinates of extracted points on pipe centerlines (Work-Point),

288 bend radii of extracted Work-Points, inner and outer diameters of insulation shells, and 289 Work-Point types (i.e. valve, hangar, weld, etc.). An example of a pipe segment in a pipe 290 extract insulation input "le is Table 1.

R Table 1: Pipe Extract insulation data "le example. The data include three header records and pipe work D

point data in columns: Inventor Ipart (.ipt Name), work point ID (Point), Cartesian coordinates (X, Y, and Z), bend radii (Rad), inner insulation shell diameter (ID), outer insulation shell diameter (OD), and work point type (WP).

extracted data 12-11-26 South Texas Plant.iam Number of Points = 26. Number of Straights = 9. Unit of Length = Inches.

.ipt Name Point X Y Z Rad ID OD WP 30MS-1002-GA2 [NUKON]:1 0 -137.14 369.14 1404.88 0 32.75 38.75 30MS-1002-GA2 [NUKON]:1 1 -137.14 369.14 1441.89 0 32.75 38.75 WELD 30MS-1002-GA2 [NUKON]:1 2 -137.14 369.14 1496.75 49.12 32.75 38.75 30MS-1002-GA2 [NUKON]:1 3 -193.84 367.73 1496.75 0 32.75 38.75 FW0060 continued next page . . .

Wednesday 29th April, 2015, 07:45 6 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 7 of 173 pages

. . . continued extracted data 30MS-1002-GA2 [NUKON]:1 4 -301.05 365.07 1496.75 49.12 32.75 38.75 30MS-1002-GA2 [NUKON]:1 5 -301.05 365.07 1420.97 0 32.75 38.75 WELD1 30MS-1002-GA2 [NUKON]:1 6 -301.05 365.07 1271.75 0 32.75 38.75 FW0002 30MS-1002-GA2 [NUKON]:1 7 -301.05 365.07 1202.25 0 32.75 38.75 HL5016 30MS-1002-GA2 [NUKON]:1 8 -301.05 365.07 1173.99 0 32.75 38.75 HL5015 30MS-1002-GA2 [NUKON]:1 9 -301.05 365.07 1148.88 0 32.75 38.75 HL5009 30MS-1002-GA2 [NUKON]:1 10 -301.05 365.07 1047 49.12 32.75 38.75 30MS-1002-GA2 [NUKON]:1 11 -343.48 407.5 1047 0 32.75 38.75 HL5008 30MS-1002-GA2 [NUKON]:1 12 -386.54 450.55 1047 0 32.75 38.75 WELD2 30MS-1002-GA2 [NUKON]:1 13 -417.99 482.01 1047 49.12 32.75 38.75 30MS-1002-GA2 [NUKON]:1 14 -461.28 438.72 1047 0 32.75 38.75 WELD3 30MS-1002-GA2 [NUKON]:1 15 -489.05 410.95 1047 0 32.75 38.75 HL5006 30MS-1002-GA2 [NUKON]:1 16 -613.41 286.59 1047 0 32.75 38.75 FW0004 30MS-1002-GA2 [NUKON]:1 17 -660 240 1047 49.12 32.75 38.75 30MS-1002-GA2 [NUKON]:1 18 -660 120 1047 49.12 32.75 38.75 30MS-1002-GA2 [NUKON]:1 19 -660 120 986.02 0 32.75 38.75 HL5001 30MS-1002-GA2 [NUKON]:1 20 -660 120 964.3 0 32.75 38.75 HL5002 30MS-1002-GA2 [NUKON]:1 30MS-1002-GA2 [NUKON]:1 30MS-1002-GA2 [NUKON]:1 30MS-1002-GA2 [NUKON]:1 30MS-1002-GA2 [NUKON]:1 Point to Point Length: 1748.53 21 22 23 24 25

-660

-721.12

-834.94

-849.94

-957.94 120 120 120 120 120 801 801 801 801 801 49.12 0

0 0

0 in 32.75 32.75 ts 32.75 32.75 32.75 38.75 38.75 38.75 38.75 38.75 FW005A FW0006 291 292 po The data from each pipe segment in the Pipe Extract insulation "le are read into CASA Grande and used to create a numerical reconstruction of the piping insulation with 293 volume elements called voxels; where each voxels volume is modeled to reside at its center 294 295 in g point. The user can specify the numerical resolution of the piping insulation reconstruction (with voxels) in the CASA Grande simulation by de"ning linear resolution and number of 296 azimuthal bins in the simulation input deck (Listing 1).

lk ta AFT R

D Wednesday 29th April, 2015, 07:45 7 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 8 of 173 pages ints po in the input fragment in Table 1 in g Figure 4: Illustration of insulation discretization on piping. The discretization is de"ned in input as shown lk Listing 1: Input fragment for de"ning piping insulation discretization 297 298 299 ta Spatial Resolution for Discretizing Insulation 300  % -------------------------------------------------------------------------------

301 302 303 A

% (must repeat weld target sort if these are changed)

FT

% (delete all master "les and rerun with new delL and Nangbin) 304  % Linear Resolution (inches) 305 6 306 307 R

% Azimuthal Bins in 2 Pi Radians on Pipes 308 309 310 12 D

311 \% -------------------------------------------------------------------------------

312 An example of how the piping discretization works for a straight pipe is illustrated in 313 Figure 4. The illustration shows how the insulation is discretized on the pipe. Also shown 314 is the way the ZOI interacts with the voxels de"ned by azimuthal and linear parameters.

Wednesday 29th April, 2015, 07:45 8 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 9 of 173 pages 315 The pipe actually appears transparent in the ZOI (spherical or hemispherical) and if the 316 center-point of the voxel is within the ZOI the entire insulation volume within the voxel is 317 assumed destroyed.

318 Equipment extract data Equipment insulation voxels are de"ned dierently than the 319 piping because equipment shapes may be fairly arbitrary as compared to pipes. Therefore, 320 equipment voxels are de"ned in "les with X, Y, Z coordinates de"ning the center of a voxel 321 having volume, V and insulation type (as appropriate).

322 The simplicity of the equipment insulation de"nition "les allow them to be created text "le or spreadsheet. The STP equipment de"nitions were created from high-resolution STL 323 324 325 to supply the necessary Cartesian coordinate data.

in exports of equipment insulation from the CAD software. The STL "les were pre-processed ts Concrete STL "le The concrete input "le is a STL data "le containing all CAD-de"ned 326 327 328 po plant concrete structure geometry and is used to represent robust barriers (insulation shield-ing) in the insulation destruction computations. The STL data "le is interpreted as a col-329 lection of surface triangle faces (facets) and respective unit surface normal direction vectors 330 331 g

in three-space such that the line-of-sight can be de"ned from the ZOI point of origin. The CAD generated STL "les resolve detailed features such as door casings and cylindrical pipe in 332 penetrations. All surfaces de"ned as robust barriers in the concrete input "le are used to 333 truncate ZOIs centered on weld locations. Insulation shielding by large equipment such as 334 335 calculation.

lk the steam generators and RCPs is not credited in the STP CASA Grande debris generation 336 3.1.2 Line of sight calculations ta 337 338 339 340 A

Before debris generation is calculated for varying break sizes at each weld location, a line of sight grouping of insulation not shadowed by concrete is performed. These computations FT analyze each weld location and save the insulation voxels that are not shadowed by concrete along with their associated spatial location and volume information in a voxel packet 341 speci"c to each weld. This step organizes visible (non-shadowed) voxels into weld speci"c 342 voxel packets that make ZOI calculations of destroyed insulation faster during simulations 343 R over all weld locations in containment 344 345 D

3.1.3 Weld location based debris generation After CAD geometry is imported and line of sight voxel computations are performed, weld 346 location-based insulation debris generation can be calculated for scenario speci"c break 347 sizes. Each scenario speci"c break is numerically represented by either a spherical ZOI for 348 double-ended guillotine breaks (DEGB) or by a hemispherical ZOI for partial breaks. For 349 both spherical and hemispherical breaks, the individual voxel center point locations from Wednesday 29th April, 2015, 07:45 9 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 10 of 173 pages 350 the voxel packet (Section 3.1.2) for the scenario-speci"c weld location are compared to the 351 spherical or hemispherical ZOI centered on the current weld location for interference. Any 352 insulation voxel with a centerpoint voxel from the weld speci"c voxel packet that is inside 353 the ZOI is counted as destroyed, and all destroyed voxels are summed for each insulation 354 debris type to yield total insulation generation for the analyzed break scenario. User-de"ned 355 ZOI sizes for each insulation type are properly applied during the debris generation process.

356 3.2 Fine "ber debris sources 357 There are four sources of "ne "ber debris that must be considered for each break scenario 358 359 360 in modeled for STP: Nukon, Thermal-Wrap, Microtherm (Alion Science & Technology, ts 2014b) and latent "ber (Alion Science & Technology, 2008). Note that the "xed amount of latent "ber speci"ed as input for the plant is applied to every break scenario and that 361 Nukon, Thermal-Wrap and Microtherm generation is scenario speci"c. The ZOI sizes 362 363 modeled "ber type at STP are described in this section.

po and insulation debris size distributions used for the CASA Grande computations of each 364 Insulation speci"c ZOIs Each of the three insulation types, mentioned in Section 3.2 365 366 in g analyzed for "ber "ne destruction in the STP RoverD methodology, have individually de"ned ZOIs based on jet testing. The maximum ZOIs used for each of the STP "ber-367 producing insulation types are summarized below in Table 2 and are based on the standard 368 lk deterministic approach promulgated by NEI (2004, Volume 1 and 2).

Table 2: Summary of the ZOIs for "ber-producing insulation Insulation Type ta ZOI



radius breakdiameter



Reference Nukon 17.0 (NEI, 2004)

AFT Thermal-Wrap Microtherm 17.0 28.6 (NEI, 2004)

(NEI, 2004) 369 In the way previously illustrated in Figure 2c, the ZOIs for Nukon and Thermal-370 Wrap insulation are shells with dierent percentages of debris sizes created within each 371 372 R

shell. Along with "ber "nes produced, debris sizes are calculated from each shell for small pieces, large pieces, and intact blankets (Alion Science & Technology, 2009). The propri-373 374 D

etary ZOI size distributions of LDFG (percent each of small pieces, large pieces, and intact blankets) destroyed by a postulated ZOI are consistent with the NRC (2008) report.

375 Fibrous latent debris sources The bounding latent debris mass of 200 lbm as sug-376 gested by NEI (2004, Volume 1), was used as the latent debris source for the STP evaluation.

377 "fteen percent (30 lbm) of the 200 lbm latent debris was introduced as "ber "nes based Wednesday 29th April, 2015, 07:45 10 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 11 of 173 pages 378 on the safety evaluation report promulgated by NEI (2004, Volume 2) (15% "ber and 85%

379 particulate by mass).

380 Destroyed volume mass All destroyed insulation volume was converted to mass using 381 the manufactured densities :

382

  • Nukon 2.4 lbm f t3 (NEI, 2004, Volume 1) 383
  • Thermal-Wrap 2.4 lbm f t3 (NEI, 2004, Volume 1) 384
  • Microtherm 15 lbm f t3 (Alion Science & Technology, 2014b) ints po in g lk ta AFT Figure 5: Schematic representation of the transport logic tree used to obtain the mass of "ber "nes transported to the RCB sump.

385 3.2.1 R Fiber "nes debris transport 386 387 388 D

Once the amounts and distributions of "ber types are known, a transport logic tree, Fig-ure 5, is used to arrive at the amount of "ber distributed to various areas of the RCB. Only "ber "nes generated from the break are analyzed this way, the other two sources of "ber 389 "nes, latent "ber and eroded "ber, are transported directly to the sump. The transport 390 fractions are representative of a break in the Steam Generator compartment, which bound 391 transport fractions that would represent other possible break locations in the RCB.

Wednesday 29th April, 2015, 07:45 11 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 12 of 173 pages 392 Fiber "nes from the ZOI The majority of "ber "nes (98.5%) destroyed from insula-393 tion in the ZOI are transported to the containment pool. The other 1.5% of debris not 394 transported to the RCB sump is trapped in inactive cavities during pool "ll. The transport 395 modes and their contributing fractions to the RCB sump for ZOI-generated "ber "nes are 396 described below.

397 Blowdown Fiber "nes were initially calculated to be blown to upper and lower con-398 tainment at 30% and 70%, respectively (Alion Science & Technology, 2014a). The 399 percentages blown to upper and lower containment were calculated as volume frac-400 tions taken as ratios of the open containment volume in upper containment and 401 402 403 in lower containment compared to the total open containment volume. This proportion ts of "brous "nes transport was assumed (Alion Science & Technology, 2014a) to be reasonable because "ne debris generated by the LOCA jet would be easily entrained 404 and carried with blow down "ow.

405 406 po Wash Down All (100%) of the "ber "nes blown to upper containment is washed down and homogenized in the containment pool. Note that wash down fractions from upper 407 containment were split between the Inside Secondary Shield Wall and Annulus 408 409 in g compartments; because both of these compartments are at the pool level, and because "ne debris was assumed homogenized, these fraction are inconsequential except for 410 their combined total which is 100%.

411 412 lk Pool Fill 5% of the "ber "nes transported to lower containment during blow down is trapped in inactive cavities. This pool "ll transport fraction of 5% is less than the 413 414 ta NEI (2004) SER suggested maximum inactive cavity pool "ll transport fraction of 15%. Although 6% of the debris blown to lower containment was calculated to arrive 415 on strainers early as a function of initial sheeting "ow, this only aects debris arrival 416 417 418 A

timing in a full CASA Grande calculation and does not aect the total fraction that can reach the strainers. The RoverD methodology depends only on the amount of FT "ne "ber introduced to the containment pool.

419 Recirculation All "brous "nes were assigned a conservative recirculation transport frac-420 tion of 100%. CFD calculations were not used to predict the amount of "nes that may 421 422 R

settle on the pool "oor. One hundred percent transportability preserves the match between "ne "ber introduced to the containment pool for each analyzed break sce-423 424 Dnario and the amount of "ne "ber introduced by AREVA (2008) in the "ume test.

Credit for realistic settling is an inherent part of the test conditions.

425 Eroded "nes Three types of erosion were considered for small and large pieces of "brous 426 debris held up on containment structures:

427 1. CSS spray "ow Wednesday 29th April, 2015, 07:45 12 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 13 of 173 pages 428 2. Break "ow 429 3. Pool recirculation (Alion Science & Technology, 2014a) 430 The percentage of small and large "brous insulation pieces eroded into "nes as a result 431 of CSS "ow is assigned the maximum value of 1% as found by Rao et al. (1998). The 432 percentage of small and large pieces eroded into "nes by break "ow is negligible in the 433 STP RCB since debris is blown away from the break location. Based on Alion Science 434 & Technology (2011) testing that shows a maximum of 7% of small and large "brous 435 insulation pieces erode to "ber "nes in 30 days of testing "brous erosion by recirculation 436 437 438 in "ow, 7% are eroded to "nes. Total fractions of small and large "brous debris held up on containment structures, their corresponding erosion fractions and resulting total "ber "nes ts transport fractions homogenized in the containment pool have been provided in Table 3.

Table 3: Erosion modes and erosion percentages summary of smalls and large pieces eroded to "nes.

Insulation Size Small Pieces Erosion Mode Spray Held Up Fraction 36.5% 1.0%

po Erosion Fraction Total Fines from Pieces 0.4%

Recirculation 23.8% 7.0% 1.7%

Large Pieces Sprayed Recirculation 100.0%

0.0%

1.0%

in 7.0%

g 1.0%

0.0%

439 3.3 Fiber collection in the ECCS lk 440 441 ta A "ow network that approximates the transport and capture of debris in containment in a CLB is shown in Figure 6. The primitive data for this system are: (1) time-dependent 442 "ows Qs (*) and Qc (*), (2) scalars Vp , Mp (0), and . The "ows are time-dependent due 443 444 445 A

to the in"uence of Qc on . Qc as a function of time is obtained from a table and is FT governed by the decay heat level. Table 4 lists the "rst few entries in the table. Given these model primitives, an analysis of the time-dependent accumulation of debris on the 446 strainer, core, and in the pool can be performed. These functions are governed by a set of 447 non-linear dierential equations. The non-linearity arises due to the "ltration function, as 448 R

shall become apparent in the following.

449 450 3.4 DMass conservation The transportable debris from the hypothesized LOCA moves down into the containment 451 emergency sump forming a pool of water (Figure 3). The initial concentration of debris in M (0) 452 the containment emergency sump water pool is Cp (0) = Vpp . At the start of the ECCS 453 recirculation phase, we assume all the transportable debris is in the pool. Hence, there is 454 none on the strainer or the core (Ms (0) = 0 and Mc (0) = 0). The rate of accumulation of 455 the debris on the strainer and the core is almost entirely governed by the amount by the Wednesday 29th April, 2015, 07:45 13 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 14 of 173 pages ints po in g lk ta AFT Figure 6: Flow network for the three STP ECCS and CSS trains showing the three places debris is caught:

the pool, the strainer, and the core during a CLB scenario. Shown as well are the various "ow splits that take place between the places debris is caught. The "ow split is de"ned by the amount of "ow demanded by the core to remove decay heat.

R D

Wednesday 29th April, 2015, 07:45 14 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 15 of 173 pages Table 4: Example of the "rst few "ows that would result from a decay heat load in a 40K MWd/MTU exposure assuming 3853 MW operation history. Note that the time is not shifted to account for delay to start of recirculation following LLOCA Hour Flow Hour Flow (gpm) (gpm) 0 2141.1 0.0125 1467.4 0.0025 2141.1 0.015 1401.1 0.005 1964.3 0.0175 1352.5 0.0075 1718.6 0.02 1314.1 0.01 1564.8 0.0225 1281.8 ints 456 457 a result of the core "ow rate. The governing conservation equations are: po amount of "ber that penetrates the strainer and is subsequently transported to the core as d k M (t) =Qks (t)Cp (t)f (Msk (t)),

dt s

  in g   

(1a) d k 1 f (Msk (t)) 1 k Qks (t)

Mc (t) =Qc (t)Cp (t)  , (1b) dt d

lk d  k d k [(1 k )Qks (t)]

0=

dt ta Mp (t) +

dt k Ms (t) + Mc (t),

dt (1c) 458 where k is the strainer index. Wherever k appears the index is taken over all the values in 459 460 A

{A, B, C}, i.e., the three strainers. The initial conditions and boundary conditions are:

FT

1. f (Ms ) is a fraction between 0 and 1 Figure 7, dependent on the amount of mass on 461 the strainer (Ogden et al., 2013, Figure 13)1 ,

462 2. Qs (*) should be treated generally as a function of time to model pumps turning on 463 R

and o (discrete tabular function),

464 465 D

3. Qc (*) is a known function of time (discrete tabular function based on decay heat demand),

466 4. Vp is a given constant value for any particular scenario, 1

Ogden et al. (2013) used test data from measurements performed on one of the 20 strainer modules in each STP ECCS train. As a consequence, the data must be scaled to the full strainer area (scaled by a factor of 20) when applied to the full plant.

Wednesday 29th April, 2015, 07:45 15 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 16 of 173 pages 467 5. The initial mass on the core is Mc (0) = 0, 468 6. The initial mass in the pool, Mp (0), is given, 469 7. And Cp (t) = Mp (t)/Vp .

ints po in g lk Figure 7: Filtration eciency "ts as a function of mass compared to measured data for the STP ECCS ta strainer modules. Eciency "ts obtained for the upper, central, and lower limits of the measurements are compared to the measured data.

470 3.5 AFT Implementation 471 FIDOE is a Python script developed at the University of Texas at Austin under STP grant 472 BO4425 and is implemented on OS X for production. Apple distributes OS X (Release 10.10) with Python; however, Python was updated to a later version (Version 3.4.2) to 473 474 R run FIDOE. The open-source PANDAS library (http://pandas.pydata.org/) is used in the FIDOE implementation.

475 476 477 D

The mass conservation equations and implementation in Python are described in ML15091A440 (Powell, 2015, Attachment 7) and again in this document (Section 3.4).

478 Validation of the conservation equations took place over about a two month period 479 during which time period some changes were made to the original proposed formulation.

480 Validation and veri"cation of the software was performed by the University of Texas at 481 Austin and STP. Veri"cation and validation was independently performed by STP GSI-191 482 Oversight personnel. YK.risk, LLC also performed validation.

Wednesday 29th April, 2015, 07:45 16 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 17 of 173 pages 483 FIDOE is densely commented and the source code is self-explanatory. In this section, 484 the elements of the Python module are described in more detail.

485 3.5.1 Input/Output Format 486 The inputs are in the form of two "at "les, which are read via the function ReadParams, 487 using Pythons pandas library (http://pandas.pydata.org/). The "rst "at "le is indexed 488 on time and takes on the following form as an example:

489 490 t,Q_s_a,Q_s_b,Q_s_c,Q_c 491 492 493 0,9600,9600,9600,2000 5,0,9600,9600,1500 ints 494 495 496 497 po The header t represents the time index for any time series of inputs (in minutes), while the headers Q_s_a, Q_s_b, Q_s_c, and Q_c represent the "ow rates through the three strainers and the core, respectively. It is assumed that the "ow rates in gallons per minute (gpm) through the strainers are known as an explicit function of time. These "ow rates 498 499 500 in g include the ECCS and CSS "ows through each strainer. In the example above, the "ow rate through the "rst strainer (A) would be 9600 gpm over the "rst 5 minutes, and 0 thereafter.

501 The second "at "le consists of inputs that are constant over time and takes on the 502 503 following form as an example: lk 504 505 506 Initial Mass:

M_p_0,87000 M_s_a_0,0 ta 507 508 509 M_s_a_0,0 M_s_c_0,0 M_c_0,0 AFT 510 .

511 512 513 R This describes the initial mass (in grams) of debris in the pool, the three trains, and on the core, respectively, at the start of the simulation. Additional inputs speci"ed in this 514 515 516 D

input "le include the pool volume, strainer recirculation rates, the function type used to describe the relationship between debris on a strainer and the "ltration fraction of that strainer, and parameters associated with that function type.

517 The output consists of a single time series "at "le and a plot of debris on the strainers 518 and the core over time, up to a given threshold. The output "at "le takes on the following 519 form:

520 Wednesday 29th April, 2015, 07:45 17 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 18 of 173 pages 521 t,M_s_a,M_s_b,M_s_c,M_c 522 0,9600,9600,9600,2000 523 5,0,9600,9600,1500 524 .

525 526 3.5.2 Class MassCalculator 527 The FIDOE module contains a single class, MassCalculator. The following tasks are com-528 pleted in MassCalculator on initialization, with parameters as given by the function Read-529 530 Params as input: ints

  • Read or set default pool volume (gallons) and initial mass in pool (grams)
  • Read or set default initial mass on strainers 531 532
  • Read or set default initial mass on core po 533
  • Read or set default gamma, the percentage of water "owing back to the strainers 534
  • Read or set default strainer "ow rates, in gpm in g 535
  • Read or set default core "ow rate, in gpm 536 strainer) lk
  • Read or set default "ltration rate for any strainer (as a function of mass on the 537 538 ta
  • Alert the user of any default values that are used, due to a lack of speci"ed inputs 539 540 3.5.3 A

Within this class, there are several accessors FT Strainer and core "ow rate retrieval 541 Strainer "ow rates are obtained from three functions, getFlowRateStrainerA, getFlowRat-542 eStrainerB, and getFlowRateStrainerC. The core "ow rate is obtained using the procedure 543 544 R

getFlowRateCore. All four procedures take the time period as a single input, and return the "ow rate out of the three ECCS strainers, in gallons per minute. Time-dependent "ows 545 546 D

are used as read from values stored in the class at initialization.

3.5.4 Filtration Function by Strainer 547 The function getFiltrationRate receives a single input, the mass on the strainer, and 548 returns the fraction of debris that will attach to the strainer (rather than pass through) 549 given that mass. We assume that this "ltration rate includes any potential losses due to 550 shedding, as that is embedded in the equations calculated by Ogden et al. (2013). The Wednesday 29th April, 2015, 07:45 18 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 19 of 173 pages 551 "ltration function given in (Ogden et al., 2013) is a function of the mass on a strainer 552 module, and there are 20 modules on each strainer, so we divide the mass input by 20 to 553 arrive at the "ltration function.

ints po in g lk Figure 8: default 554 ta Rates of changes of debris by location The functions getDeltaMassStrainerA, get-555 556 557 558 A

DeltaMassStrainerA, and getDeltaMassStrainerC take the time (in minutes) and an input vector of the masses in the strainers, core and containment pool as inputs, and returns the FT rate of advection through strainers A, B, and C, respectively, using (1a). The function getDeltaMassCore takes the same set of inputs and returns the rate of advection through 559 the core, as described in (1b); this calls on the function getNetPassThroughRate, which 560 calculates the sum of A , B , and C at the bottom of Figure 8. Finally, the function get-561 562 R

DeltaMassPool takes the same set of inputs and returns the rate of change of debris in the pool, as given in (1c). These functions are aggregated through the function getAllDeltas.

563 D

ODE Solver The function SolveForCoreMass takes the time period as an input, and 564 numerically solves the system of functions as given in getAllDeltas by calling the LSODA 565 solver, which is the default solver in Python and part of the ODEPACK suite of dierential 566 equation solvers Hindmarsh (1983).

Wednesday 29th April, 2015, 07:45 19 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 20 of 173 pages 567 3.5.5 Interface 568 After calling the module through a Python interpreter, the following procedure takes place:

569

  • The user is prompted to enter the name or "lepath of the time-indexed and constant 570 inputs "le, the maximum timespan to solve (in minutes), and the desired name of 571 the results output.

572

  • The input "les are read via the function ReadParams.

573

  • The class MassCalculator is initialized. Any missing inputs to the class are noted in 574 575 the console output as are the default values used in their place.

ints

  • For 1000 points between zero minutes and the timespan given as input, the system 576 of ODEs given in SolveForCoreMass.

577 578 are saved under the "lename given as input.

po

  • Plots of mass on each strainer and on the core are created, and a table of these values 579 580 3.6 Results in g (1a) to (1c) were integrated in an application that uses well-known ordinary dierential 581 equation solvers2 implemented in a Python application to obtain Mc (t) (Listing 13). The 582 583 lk application is designed to provide solutions for dierent initial conditions and boundary conditions supplied in simple text "les. The application is fully described in Section 10 584 585 with code listing and input "les. ta The amount of "ber bypassed to the core is primarily dependent on the initial sump 586 pool concentration, Cp (t = 0), the "ltration eciency, f (*), and the decay heat demand, 587 588 589 A

Qc (t) which is a "xed function of time. The pool concentration is de"ned by the amount of LDFG arriving in the ECCS sump pool for each Dismall and the pool volume. The "ltration FT eciency is based on data with uncertainty (Figure 7).

590 Uncertainty associated with the variables, Cp (t = 0) and f (*) is evaluated by looking 591 at lower and upper bound values for the variables. The threshold amount of LDFG "nes in all the risk-informed scenarios (Table 12)is approximately 192 lbm (the amount tested).

592 593 R Assuming the total amount of LDFG transported to the sump is double the amount of 594 595 596 D

"nes, an upper bound for "ber mass in the pool for risk-informed scenarios would be about 550 lbm (note that smalls dont fully transport to the strainer). A reasonable upper pool volume limit is approximately 550,000 gal and reasonable lower limit is approximately 597 300,000 gal.

2 lsoda from the class, scipy.integrate.ode, is implemented. From the scipy.integrate.ode documenta-tion: Real-valued Variable-coecient Ordinary Dierential Equation solver, with "xed-leading-coecient implementation. It provides automatic method switching between implicit Adams method (for non-sti problems) and a method based on backward dierentiation formulas (BDF) (for sti problems).

Wednesday 29th April, 2015, 07:45 20 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 21 of 173 pages Table 5: Core mass accumulation for bounding cases of initial ECCS sump pool "ber concentration Cp (t =

0) and upper and lower bounds of "lter eciency.

Cp (t = 0) gm/GAL lower:f (Msk (t = 150 min.)) upper:f (Msk (t = 150 min.))

High (0.832) 441 247 Low (0.158) 400 241 ints po in g lk ta AFT R

D Figure 9: Comparison of bounding cases for core LDFG accumulation after start of ECCS recirculation.

The mass accumulation should be divided by 193 to obtain gm/FA.

Wednesday 29th April, 2015, 07:45 21 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 22 of 173 pages 598 3.7 Sensitivity studies for "xed penetration fraction 599 Previous investigators have used, or are familiar with, a so-called "xed "ltration constant 600 to estimate core "ber loading (Andreychek and McNamee, 2014, for example) and (for ex-601 ample ACRS, 2015, discussions on pages 209 and 210). To relate results of a "xed "ltration 602 constant approach to a "t of the measured data to the accumulated mass (as explained in 603 Section 3.4) a version of FIDOE was created to investigate "xed "ber penetration values.

604 The updated version of FIDOE uses (1) for mass conservation but f () is a constant value 605 set by the user in input. The updated version of FIDOE is provided in ?? along with input 606 and output "les.

607 608 609 in Four levels of "xed "ltration, 0.4, 0.5 0.6, and 0.7 were applied at three levels of to-ts tal strainer "ow (5063 gpm, 6750 gpm, and 8438 gpm), and three levels of starting pool "ber concentration (0.11 gm/gal, 0.17 gm/gal, and 0.39 gm/gal). Note that the minimum 610 measured "ltration for STP ECCS strainers as shown in Figure 7 is roughly 0.65. Results 611 612 613 po of the "xed "ltration study are summarized in Table 6. Although the accumulation under this assumption ("xed "ltration) will clearly be more than for the measured behavior, the sensitivities help con"rm that the accumulated "ber on the core with 192 lbm in the sump 614 will be less than 15 gm/FA.

in g lk ta AFT R

D Wednesday 29th April, 2015, 07:45 22 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 23 of 173 pages Table 6: Sensitivity study of core "ber loading, Mc (t = 400min), using "xed "ltration at three initial pool concentration (Cp (0)) levels: Normal = 0.17 gm gal

, Low = 0.11 gm gal

, and High = 0.39 gm gal (full block design)

Normal Concentration Mc (gm/FA) at strainer "ow of:

Filtration 6750 gpm 8438 gpm 5063 gpm 0.4 18.1 28.3 15.0 0.5 13.0 16.0 10.4 0.6 8.8 10.9 7.3 0.7 5.7 7.3 Low Concentration 4.7 Mc (gm/FA) at strainer "ow of:

ints Filtration 6750 gpm 8438 gpm 5063 gpm 0.4 0.5 0.6 13.5 9.8 6.7 16.8 11.9 8.3 11.4 7.8 5.4 po 0.7 4.4 6.03 3.6 High Concentration in g Mc (gm/FA) at strainer "ow of:

Filtration 6750 gpm 8438 gpm 5063 gpm 0.4 0.5 25.9 17.6 lk 31.6 22.8 20.7 14.0 0.6 0.7 7.8 ta 11.9 15.5 10.4 9.8 6.5 AFT R

D Wednesday 29th April, 2015, 07:45 23 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 24 of 173 pages 615 4 LOCA frequencies 616 In general, the ECCS strainer may operate under several dierent plant states. Most of the 617 plant states tested will be congruent with deterministic assumptions on train availability 618 (plant states). In the risk-informed category of RoverD, scenarios associated with plant 619 states not tested would be relegated to failure, or could be assessed for risk based on their 620 risk contribution in a way similar to the states tested. Because dierent plant states may 621 need to be evaluated, depending on details associated with the test used in the RoverD 622 assessment, an additional step may need to be taken to account for plant states not tested.

ints po in g lk ta AFT Figure 10: The top down approach assigns equally-weighted frequency in intervals between pipe diameter extents. As Dismall becomes larger, the total number of welds in successive categories decreases.

4.1 R

CDF frequency determination 623 624 625 D

A fundamental goal of the RoverD approach is to determine the total frequency of breaks that fall into the risk-informed category. In a preprocessing step known as RoverDs fetch 626 stage, CASA Grande runs are performed to identify all weld locations, with corresponding 627 break sizes, which produce more than the allowable amount of "ber "nes.

628 With fetch completed, RoverD has data that can be thought of as ordered pairs 629 consisting of a weld index and a break size. For now, assume that I weld locations are Wednesday 29th April, 2015, 07:45 24 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 25 of 173 pages 630 in the risk-informed category and these locations are indexed by i = 1, . . . , I. Each weld 631 location i then has a corresponding break size Dismall which caused it to be placed in the 632 risk-informed category. It is possible that for a single weld, multiple break scenarios caused 633 it to be put in this category. If so, de"ne Dismall to be the smallest such break size.

634 Now, recall that the goal is to determine the overall frequency of events that generate 635 too many "ber "nes. Two primary principles are adhered to in order to obtain the top-down 636 frequency:

637 1. In the limiting case for which every weld and every break above x is considered bad 638 (that is, at that break size, more "nes come to the sump than were tested), should 639 640 equal to f (x), the NUREG 1829 exceedence frequency at x,

2. In the top-down method, RoverD should depend on the number of welds in the ints 641 RoverD fetch "le, for any ("xed) plant. In particular, should increase if welds are 642 added to the set of bad welds.

po For each weld i in the risk-informed category the goal is to determine the frequency of breaks that exceed Dismall . This is called F (Dismall ) and is the frequency of unacceptable g

events caused by that particular weld. Then, the overall frequency of unacceptable events caused by breaks in the risk-informed category is simply the sum of these frequencies:

in



I

= F (Dismall ).

lk i=1 643 644 645 ta In general, as shown in Figure 10, interpolation is required to obtain frequencies at break sizes, Dsmall , and pipe diameters other than the data in Table 7. Because the Tregoning et al. frequency data fall o so quickly as break size increases, two methods are reviewed, 646 647 648 649 A

linear-linear and log-linear (Figure 11).

The log-linear method interpolates for the frequency at break size x in the interval a FT and b with the log of the frequencies, a and b which appears to be a more natural "t in a log-linear presentation (Figure 11a):

xa x = 10log10 a +(log10 b log10 a ) ba . (2) 650 R

The linear-linear method is interpolates frequency (x ) linearly at x (break size) val-651 652 D

ues. Of course, it appears to be a natural "t between data in a linear-linear presentation (Figure 11b):

(x a) x = a + (b a ) . (3)

(b a) 653 To explain the calculations, we "rst focus on a particular weld from Figure 10. In 654 particular, we examine Weld 5 in a pipe of category 1, which is denoted by D1 . To determine 655 F (D5small ), the goal is to be consistent with NUREG-1829. Any particular quantile value in Wednesday 29th April, 2015, 07:45 25 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 26 of 173 pages ints (a) Example data at the upper NUREG 1829 (b) Example data at the upper NUREG 1829 break sizes shown in a linear plot format (linear- break sizes shown in a log-linear plot format (log-linear interpolation data form a straight line be-tween data points) po linear interpolation data form a straight line be-tween data points)

Figure 11: Using linear interpolation or log-linear interpolation of NUREG 1829 data (Tregoning et al.,

g 2008) produce dierent inter-point interpolation behaviors on dierent graph formats.

in lk ta Table 7: NUREG-1829 (Tregoning et al., 2008, Table 7.19) for the mean, median, 5th percentile, and 95th A

percentile exceedence frequency values for current-day estimates STP PRA break sizes for small, medium and large LOCA are, less than 2 in (small), 2 in to 6 in (medium), greater than 6 in (large).

FT NUREG-1829 Values Category Break Size (in) 5th Median Mean 95th 1

cat1 cat2 R 2 1 58 6.80E-05 5.00E-06 6.30E-04 8.90E-05 1.90E-03 4.20E-04 7.10E-03 1.60E-03 cat3 cat4 cat5 D 3 7

14 2.14E-07 1.4E-08 4.1E-10 3.4E-06 3.1E-07 1.2E-08 1.6E-05 1.6E-06 2.0E-07 6.1E-05 6.1E-06 5.8E-07 cat6 31 3.5E-11 1.19E-09 2.9E-08 8.00E-08 Wednesday 29th April, 2015, 07:45 26 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 27 of 173 pages 656 Table 7 may be used as the basis. For example, the PRA LOCA initiating event frequencies 657 are based on the mean value. Let f (D5small ) be the exceedance frequency for a break of size 658 D5small as implied by a selected quantile value in Table 7. In general, such a quantity must 659 be interpolated from the values in the NUREG-1829 categories.

Plant-wide, the frequency of breaks of size D5small and larger is f (D5small ).

660 Shown down the right side of Figure 10 are categories de"ned by increasing pipe sizes.

661 We de"ne Cat(Dismall ) as 0 < D1 < D2 < . . . < Dj1 < Dismall < Dj . . . < Dn1 < Dn ,

662 663 to the overall frequency. Hence, it is deduced that: in Cat(Dismall ) = j. Every weld that can experience a break of size D5small or larger contributes ts f (D5small )

F (D5small ) = ,

T W1 664 po where T Wn for pipe size n is the total number of welds in pipes of this category or larger.

For a pipe in category 2, the calculation is similar. However, it should be noted that the denominator in the equation above depends only on the size of the break and not the in g category of pipe in which the weld resides. So, for Weld 7 in pipe category 2, D7small is smaller than D1 . In this case, the frequency of a break of size D7small is f (D7small )

lk F (D7small ) =

T W1 For Weld 11, it is ta small F (D11 )=

small )

f (D11 T W2 665 666 can be written: A Now for any weld i in pipe category n with a smallest break size Dismall a general formula FT f (Dismall )

F (Dismall ) = . (4)

T WCat(Dsmall )

i 667 668 R

Cat(Dismall ) is the pipe category corresponding to Dismall . For example, if Category 1 is 1-inch pipes and category 2 is 2-inch pipes, then for a break of 1.75in, Cat(1.75in) = 2.

D Now, let Rn be the set of all welds which are in the risk-informed category and are associated with pipes of category n. Then, the frequency of unacceptable events due to weld breaks in pipes of category n can be written as:



F (Dismall ).

iRn 669 Finally, the overall frequency of events in the risk-informed category is given by:

Wednesday 29th April, 2015, 07:45 27 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 28 of 173 pages



NP 

I

= F (Dismall ). (5) n=1 iRn 670 4.2 Plant states not tested 671 Single ECCS/CSS train operation is not assumed in a deterministic STP LOCA evaluation.

672 However, in a risk-based assessment, single train operation is possible and for certain 673 scenarios, single train operation is assessed to go to success in the PRA. In the STP 674 ECCS design, single train operation would result in twice the debris load on the operating 675 676 677 tested (two-train operation) debris load.

in strainer. Therefore, the breaks that could be tolerated would be those with one half the ts The break frequency description above would apply in the same way to the single train 678 operation, but would clearly result in higher frequencies due to the increased debris load.

679 680 681 po To account for the increased risk, (5) could be assessed for the cases where two or three trains are operating (cases either tested or bounded by the test) and assessed again for the untested case (single train operation) with the higher frequency. For example, if f2 is the success frequency for two or more trains operating and f1 is the success frequency for 682 683 684 both operating states: in g single train operation, (5) can be rewritten to accommodate the total frequency, , for wj = 

fj j fj lk

j = 1, 2, (6a) ta j =wj



NP 

I F (Dismall ), (6b)

AFT =



j n=1 iRn j . (6c) 685 4.3 LERF frequency 686 687 R

Because the STP RCFC are independent of the concerns raised in GSI-191, and because their design can remove decay and maintain contamination RCB limits within design, 688 689 690 D

concerns raised in GSI-191 would not result in containment failure. The RCFC design allows for simpli"cation of LERF. That is, for the STP design, the change in early release frequency could be assumed directly proportional to the change in core damage frequency:



CDF LERF = LERFM OR (7)

CDFM OR Wednesday 29th April, 2015, 07:45 28 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 29 of 173 pages 691 4.4 Results 692 STP has two Cases (Case 1 and Case 2) other than the condition tested (AREVA, 2008) 693 that are bounding for "ne "ber amounts. The tested deterministic case assumed two of the 694 three STP ECCS strainers in operation (single failure criterion). Case 1 is the most likely 695 case when all three strainers are in operation. In this case, far less "ber will accumulate on 696 each strainer than for the tested case. Therefore, Case 1 is bounded by the tested case.

697 However, Case 2 corresponds to a case where only one train of the three STP ECCS 698 strainers are in operation. Although this case is beyond design basis, it needs to be consid-699 ered in the risk analysis since at least twice as much "ber would accumulate on the single 700 701 amount of "ne "ber can be assumed to be tolerated. in strainer than when two or more strainers are in operation. In this case, only 1/2 the tested ts 702 4.5 CDF results 703 704 po When all cases are considered using (6), a slightly higher CDF is estimated than when only one strainer is in operation. Table 8 summarizes the CDF estimate for geometric 705 and arithmetic averages from Tregoning et al. (2008). The frequencies for the bounding 706 cases are f2 = 3.32E 6yr1 (Case 1) and f1 = 4.34E 8yr1 (Case 2). As shown, the g

median CDF is within Region III of the Regulatory Guide 1.174 evaluation ( 1.0E06).

707 708 in Interpolation of Table 7 is done using the linear-linear method, (3).

lk Table 8: Case 1 and Case 2 results for geometric (GM) and arithmetic (AM) aggregations of Tregoning et al. (2008, Tables 7.11 and 7.19) data. Frequencies are in events/yr. Also shown are the results for a ta DEGB-only model for the locations that go to failure.

Continuum Break Model Quantile 5th 50th A

Case 1 GM FT 2.64E-10 7.50E-09 Case 1 AM Case 2 GM Case 2 AM 6.47E-09 1.68E-07 3.68E-09 8.30E-08 2.36E-08 4.92E-07 (GM) 3.08E-10 8.47E-09 (AM) 6.69E-09 1.72E-07 95th 3.43E-07 4.79E-06 1.81E-06 1.24E-05 3.62E-07 4.89E-06 Mean 1.17E-07 1.56E-06 5.10E-07 3.93E-06 1.22E-07 1.59E-06 5th R 9.83E-11 DEGB-Only Model 8.18E-09 1.14E-09 1.66E-08 1.12E-10 8.29E-09 50th 95th D 2.86E-09 1.47E-07 2.07E-07 7.06E-06 2.64E-08 6.85E-07 3.90E-07 1.21E-05 3.16E-09 1.54E-07 2.09E-07 7.13E-06 Mean 5.12E-08 2.06E-06 2.03E-07 3.61E-06 5.32E-08 2.08E-06 709 As shown in Table 8, only the 95th percentile of the arithmetic mean estimate exceeded 710 the Region III criterion in (NRC, 2011). As described in the letter to the NRC dated May Wednesday 29th April, 2015, 07:45 29 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 30 of 173 pages Table 9: LERF evaluation for geometric and arithmetic means of the Continuum and DEG-only models.

Model LERF using (GM) LERF using (AM)

Continuum break model 7.67E-09 9.99E-08 DEGB-only model 3.34E-09 1.31E-07 711 22, 2014 (ML14149A434), the geometric method of aggregation is the most appropriate 712 713 estimator of LOCA frequency from (Tregoning et al., 2008).

4.6 LERF results ints Due to independence of RCB integrity from the concerns raised in GSI-191, LERF is 714 715 716 po very small. Using (7), LERF values were calculated based on baseline CDF and LERF values of 9.2E-06 (CDF) and 5.78E-07 (LERF). The results are summarized in Table 9.

717 5 RCS Thermal-hydraulics in g 718 Vaghetto and Hassan (2013) studied the behavior of the RCS for scenarios where the fuel 719 720 lk channels and the core bypass "ow paths were fully blocked. They showed that, unless the LOCA was large and located on the cooling water return side (cold leg) of the RCS, then debris blockage is not a concern. Simulations were conducted using the STP RELAP5 721 722 723 ta model to analyze the reactor system response under hypothetical core blockage scenarios during selected LOCAs. The purpose of these calculations was to identify the scenarios 724 which may produce an increase in the PCT and, subsequently, a potential core damage 725 726 A

among selected LOCAs of dierent break sizes and locations under full core and core bypass FT blockage. The simulations performed are listed below:

727 1. SLOCA in Cold Leg 728 2. SLOCA in Hot Leg 729 730 R

3. MLOCA in Cold Leg
4. MLOCA in Hot Leg 731 732 D
5. DEGB in Cold Leg
6. DEGB in Hot Leg 733 Table 10 summarizes the basic assumptions and boundary conditions for the simulations.

734 The simulations were designed to create a theoretically worst-case condition by blocking 735 the core when the decay load is maximum. Both core and core bypass (bae "ow) were 736 assumed to be instantaneously blocked after the sump switchover at the inlet. PCT was Wednesday 29th April, 2015, 07:45 30 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 31 of 173 pages 737 used as "gure of merit to determine the success or failure of the scenario simulated. All 738 the cases which produced a PCT less than 800°F were assumed to be successful. The cases 739 where the maximum PCT was found to diverge after the core blockage time (exceeding 740 the limiting temperature of 800°F) were considered failing cases which may lead to core 741 damage. Table 11 summarizes the results obtained.

Table 10: Summary of boundary conditions and assumptions of the STP core blockage analyses Parameter Simulation Condition ECCS Break location Core blockage simulation 3 Trains Cold leg B (bottom) ints Instantaneous k-loss increase at sump switchover Reactor power (MWt) 3853 Axial power shape Double peak (0.15 and 0.8 core height)

Actinides Decay heat RELAP5-3D default model ANS73 po RWST temperature 85°F ECCS "ow Nominal (realistic) in g lk Table 11: Results of blockage scenarios showing scenarios that had PCT less than 800°F (Pass) and those that exceeded 800°F (Fail).

ta Break location Break Size Cold leg Hot leg AFT Small Medium Large Pass Fail Fail Pass Pass Pass 742 6 R

Core performance metrics 743 744 D

In addition to satisfying the strainer performance metrics, certain core performance must be acceptable with the amount of LDFG "nes tested as well. There are two metrics, separately 745 evaluated but ultimately having the same consequence, that must be found acceptable to 746 categorize a scenario as deterministic. Decay heat removal considering LDFG blockage 747 of the core cooling channels and freedom from boric acid precipitation must be found 748 acceptable.

Wednesday 29th April, 2015, 07:45 31 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 32 of 173 pages 749 Ogden et al. (2013) have shown that the amount of "ber penetrating through the ECCS 750 sump screen is a function of ECCS LDFG loading. In order for the screen performance 751 metrics as tested (again AREVA, 2008, for example) to serve as the worst case condition 752 for deterministic characterization, the amount of "ber passing through the ECCS strainers 753 needs to be less than that tested by the PWROG as acceptable.

754 6.1 Core cooling 755 The PWROG (2011) has tested performance of the reactor core fuel assemblies under 756 deterministically challenging conditions, and developed a performance metric in terms of 757 758 759 in the allowable amount of LDFG "ber accumulation on the reactor fuel assemblies. The ts currently accepted allowable amount of "ber accumulation for STP cores is 15 grams of "ber per FA. The PWROG fuel assembly testing was performed to investigate heat removal 760 with particulate, chemical precipitates, and LDFG "ber present in the fuel assemblies but 761 762 763 po boric acid precipitation was not a consideration in the PWROG testing. As shown in the uncertainty analysis in Section 3 (Table 5), the maximum total "ber captured in the core in a CLB is calculated to be 441 gm. The STP cores use 193 FAs, resulting in a high estimate 764 of "ber loading of less than 3 gm/FA.

765 766 in g As described in Section 5, HLB scenarios (as well as small break scenarios) can succeed regardless of the "ber amounts transported to the core. The analysis in Section 5 show full 767 blockage of all "ow into the core during SLOCA and HLB will not cause loss of adequate 768 cooling.

lk 769 770 6.2 Boric acid precipitation ta In addition to heat removal, the reactor core must remain below the precipitation limit for 771 boric acid during the "rst few hours of the hypothesized LOCA. As a consequence of the 772 773 774 A

presence of LDFG "ber transported to the fuel assemblies, boric acid buildup may be more FT than with the fuel assemblies clear of obstructions. Boric acid precipitation is a second core performance metric that must be evaluated as acceptable with the fraction of the tested 775 amount of LDFG "bers passing through the ECCS strainers to the core (Section 3). The 776 time required to reach HLSO time must be acceptable with no lower plenum mixing since 777 778 R

it has not been determined how much "ber would allow lower plenum mixing to reduce boric acid concentration. Therefore, the deterministic STP HLSO time does not rely on 779 780 7 D

lower plenum mixing.

Application 781 The RoverD method may be interesting to utility investigators who would want to screen 782 their plant risk against the concerns raised in GSI-191. The RoverD method could be used 783 to design a test (or test series) having the objective to obtain a prede"ned risk margin.

Wednesday 29th April, 2015, 07:45 32 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 33 of 173 pages 784 That is, one could sequentially test starting with "ber amounts that would just meet the 785 Regulatory Guide 1.174 Region III requirements and subsequently lesser amounts (down 786 to that amount which just creates a "ber covering on the ECCS screen) to demonstrate 787 margin. Alternatively, perhaps preferably, one would perform simulation to design a test 788 that would help ensure suciently low risk (risk in Region III of Regulatory Guide 1.174) 789 would be realized.

ints po Figure 12: Process for establishing risk thresholds depending on whether an acceptable test has been previously performed or if one should be designed to achieve a speci"c risk goal.

790 in g Figure 12 shows a simple "ow path that would accomplish this process. With an existing 791 acceptable test, analysis would be performed to understand if it provides sucient margin 792 793 lk or not. If not, or absent an existing acceptable test, one would "rst simulate their plant to "nd the amount of "nes transported to the sump for all possible pipe breaks. The 794 795 ta scenarios from such a simulation could then be used to design a test (for example using CASA Grande) that would meet acceptable deterministic testing criteria. A test could be 796 then performed and the results compared to the simulation to ensure the design is met, 797 798 799 A

otherwise, a re"nement to the test design could be made based on lessons learned.

Utility investigators could directly derive (Table 7), the risk margin margin desired.

FT As indicated in Figure 12, inaccuracies in the simulation may result in a test that doesnt 800 provide sucient margin. At this point, another test could be designed based on lessons 801 learned to converge on an acceptable result. If the test demonstrates acceptable ECCS and core performance metrics for the deterministic classi"cations and the risk is acceptable, 802 803 R then low risk can be asserted for the concerns raised in GSI-191 for the particular plant.

804 8 DWeld list 805 In the following, tables summarize the STP scenarios in the RoverD assessment. Table 12 806 summarizes the STP RoverD risk-informed scenarios. For these scenarios, the minimum 807 amount of "ber (the amount associated with smallest Di ) at each location is listed in the 808 Amount column.

Wednesday 29th April, 2015, 07:45 33 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 34 of 173 pages 809 Table 13 summarizes the STP RoverD scenarios associated with locations that dont 810 exceed the tested amount of "ber at the maximum possible (DEGB) break size. For these 811 scenarios, the column Margin corresponds to the additional amount of "ber required at 812 the location that would be need to exceed the tested amount. The fi column also is the 813 associated DEGB frequency.

814 Similar data are provided in Table 14 and Table 15 for the single train cases studied.

815 In this case, there are more locations that have Dismall that exceed the criterion because 816 the acceptance quantity of "ber "nes is one half the tested amount (due to half the surface 817 area available for capture).

in Table 12: Data for weld locations in the risk-informed category listing the ith weld number, mass of "ber in the sump for the scenario (lbm), location name (ID), Break size (Size), scenario frequency, fi (mean quantile, geometric aggregation), Category, and NUREG 1829 data category ts No. Amount (lbm) Location Size (in) fi NUREG 1829 Cat.

1 2

3 207.16 191.78 191.95 16-RC-1412-NSS-8 29-RC-1101-NSS-RSG-1A-IN-SE 29-RC-1101-NSS-5.1 12.814 13.922 13.939 po 4.37E-07 2.16E-07 2.12E-07 Cat. 4 Cat. 4 Cat. 4 4 192.23 29-RC-1201-NSS-5.1 14.120 1.99E-07 Cat. 5 5

6 7

192.60 195.55 196.62 29-RC-1201-RSG-1B-IN-SE 29-RC-1301-RSG-1C-IN-SE 29-RC-1301-NSS-5.1 in g14.127 14.342 14.405 1.99E-07 1.97E-07 1.96E-07 Cat. 5 Cat. 5 Cat. 5 8 196.03 29-RC-1401-NSS-RSG-1D-IN-SE 14.620 1.94E-07 Cat. 5 9

10 11 196.51 192.74 192.05 29-RC-1401-NSS-4.1 29-RC-1101-NSS-4 29-RC-1301-NSS-4 lk 14.650 14.721 14.948 1.93E-07 1.93E-07 1.90E-07 Cat. 5 Cat. 5 Cat. 5 12 13 14 191.87 194.24 193.97 ta 29-RC-1201-NSS-4 29-RC-1401-NSS-3 31-RC-1102-NSS-2 14.953 15.172 16.525 1.90E-07 1.88E-07 1.75E-07 Cat. 5 Cat. 5 Cat. 5 15 194.36 31-RC-1202-NSS-RSG-1B-ON-SE 16.724 1.73E-07 Cat. 5 16 17 18 19 195.82 201.09 191.78 192.64 AFT 31-RC-1102-NSS-RSG-1A-ON-SE 31-RC-1202-NSS-2 31-RC-1202-NSS-3 31-RC-1302-NSS-2 16.760 16.819 17.020 17.209 1.72E-07 1.72E-07 1.70E-07 1.68E-07 Cat. 5 Cat. 5 Cat. 5 Cat. 5 20 201.67 31-RC-1202-NSS-1.1 17.279 1.67E-07 Cat. 5 21 194.24 31-RC-1102-NSS-3 17.338 1.66E-07 Cat. 5 22 23 24 R

192.56 193.22 192.46 31-RC-1302-NSS-1.1 31-RC-1302-NSS-RSG-1C-ON-SE 31-RC-1202-NSS-4 17.593 17.659 17.665 1.64E-07 1.63E-07 1.63E-07 Cat. 5 Cat. 5 Cat. 5 25 26 27 D193.39 211.20 193.53 31-RC-1302-NSS-3 31-RC-1102-NSS-1.1 31-RC-1402-NSS-RSG-1D-ON-SE 17.674 17.793 17.876 1.63E-07 1.62E-07 1.61E-07 Cat. 5 Cat. 5 Cat. 5 28 196.61 31-RC-1102-NSS-4 18.126 1.58E-07 Cat. 5 29 197.10 31-RC-1402-NSS-1.1 18.140 1.58E-07 Cat. 5 30 191.86 31-RC-1402-NSS-2 18.233 1.57E-07 Cat. 5 31 192.24 31-RC-1302-NSS-4 18.367 1.56E-07 Cat. 5 32 192.93 31-RC-1402-NSS-3 19.246 1.47E-07 Cat. 5 continued next page . . .

Wednesday 29th April, 2015, 07:45 34 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 35 of 173 pages

. . . continued No. Amount (lbm) Location Size (in) fi NUREG 1829 Cat.

33 192.77 31-RC-1202-NSS-8 19.297 1.47E-07 Cat. 5 34 191.93 27.5-RC-1103-NSS-1 19.454 1.45E-07 Cat. 5 35 192.02 31-RC-1102-NSS-8 19.547 1.44E-07 Cat. 5 36 192.16 27.5-RC-1203-NSS-1 19.584 1.44E-07 Cat. 5 37 192.23 31-RC-1402-NSS-4 20.225 1.37E-07 Cat. 5 38 192.27 31-RC-1302-NSS-8 20.367 1.36E-07 Cat. 5 39 191.80 27.5-RC-1303-NSS-1 21.007 1.30E-07 Cat. 5 40 192.07 31-RC-1202-NSS-9 21.114 1.28E-07 Cat. 5 41 192.04 31-RC-1102-NSS-9 21.255 1.27E-07 Cat. 5 42 43 44 45 192.16 191.94 191.79 191.96 27.5-RC-1403-NSS-1 31-RC-1402-NSS-8 31-RC-1302-NSS-9 31-RC-1402-NSS-9 22.068 22.155 23.040 25.303 in 1.19E-07 1.18E-07 ts 1.09E-07 8.63E-08 Cat.

Cat.

Cat.

Cat.

5 5

5 5

po Table 13: DEGB data (largest break size) for weld locations in the deterministic category showing listing the ith weld number, the margin to the mass of "ber in the sump produced to the tested amount (lbm),

location name, Break size (Size), scenario DEGB frequency, fi (mean quantile, geometric aggregation), and NUREG 1829 data category No. Margin (lbm) Location in gDEGB Size (in) fi NUREG 1829 Cat.

46 163.2 0.75-CV-1122-BB1-1 0.614 1.75E-03 Cat. 1 47 48 163.2 163.3 0.75-CV-1122-BB1-2 0.75-CV-1124-BB1-1 lk 0.614 0.614 1.75E-03 1.75E-03 Cat. 1 Cat. 1 49 50 51 52 163.3 163.3 163.1 163.3 ta 0.75-CV-1124-BB1-2 0.75-CV-1126-BB1-1 0.75-CV-1126-BB1-2 0.75-CV-1128-BB1-1 0.614 0.614 0.614 0.614 1.75E-03 1.75E-03 1.75E-03 1.75E-03 Cat. 1 Cat. 1 Cat. 1 Cat. 1 53 54 55 56 163.3 163.1 163.0 163.0 AFT 0.75-CV-1128-BB1-2 0.75-RC-1001-BB1-1 0.75-RC-1002-BB2-1 0.75-RC-1112-BB1-1 0.614 0.614 0.614 0.614 1.75E-03 1.75E-03 1.75E-03 1.75E-03 Cat. 1 Cat. 1 Cat. 1 Cat. 1 57 162.9 0.75-RC-1114-BB1-1 0.614 1.75E-03 Cat. 1 58 163.0 0.75-RC-1125-BB1-1 0.614 1.75E-03 Cat. 1 59 162.9 0.75-RC-1125-BB1-2 0.614 1.75E-03 Cat. 1 60 61 R 163.0 163.0 0.75-RC-1126-BB1-1 0.75-RC-1212-BB1-1 0.614 0.614 1.75E-03 1.75E-03 Cat. 1 Cat. 1 62 63 64 65 D162.9 163.0 163.0 163.0 0.75-RC-1214-BB1-1 0.75-RC-1221-BB1-1 0.75-RC-1221-BB1-2 0.75-RC-1312-BB1-1 0.614 0.614 0.614 0.614 1.75E-03 1.75E-03 1.75E-03 1.75E-03 Cat. 1 Cat. 1 Cat. 1 Cat. 1 66 162.9 0.75-RC-1324-BB1-1 0.614 1.75E-03 Cat. 1 67 163.0 0.75-RC-1423-BB1-1 0.614 1.75E-03 Cat. 1 68 163.1 0.75-SI-1130-BB2-1 0.614 1.75E-03 Cat. 1 69 163.1 0.75-SI-1132-BB1-1 0.614 1.75E-03 Cat. 1 70 163.1 0.75-SI-1218-BB1-1 0.614 1.75E-03 Cat. 1 continued next page . . .

Wednesday 29th April, 2015, 07:45 35 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 36 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 71 163.1 0.75-SI-1223-BB2-1 0.614 1.75E-03 Cat. 1 72 162.9 0.75-SI-1315-BB1-1 0.614 1.75E-03 Cat. 1 73 163.2 0.75-SI-1323-BB1-1 0.614 1.75E-03 Cat. 1 74 163.1 0.75-SI-1327-BB1-1 0.614 1.75E-03 Cat. 1 75 163.1 0.75-SI-1327-BB1-2 0.614 1.75E-03 Cat. 1 76 163.1 0.75-SI-1327-BB1-3 0.614 1.75E-03 Cat. 1 77 163.1 0.75-SI-1328-BB2-1 0.614 1.75E-03 Cat. 1 78 162.7 1-RC-1003-BB1-1 0.815 1.49E-03 Cat. 1 79 80 81 82 163.0 162.9 161.6 163.2 1-RC-1123-BB1-1 1-RC-1422-BB1-1 1.5-RC-1412-NSS-1 2(1.5)-CV-1122-BB1-1 0.815 0.815 1.338 1.338 in 1.49E-03 1.49E-03 ts 7.98E-04 7.98E-04 Cat. 1 Cat. 1 Cat. 1 Cat. 1 83 163.0 2(1.5)-CV-1122-BB1-2 1.338 7.98E-04 Cat. 1 84 163.2 2(1.5)-CV-1124-BB1-1 1.338 7.98E-04 Cat. 1 85 86 87 162.9 162.7 162.8 2(1.5)-CV-1124-BB1-2 2(1.5)-CV-1126-BB1-1 2(1.5)-CV-1126-BB1-2 1.338 1.338 1.338 po 7.98E-04 7.98E-04 7.98E-04 Cat. 1 Cat. 1 Cat. 1 88 163.0 2(1.5)-CV-1128-BB1-1 1.338 7.98E-04 Cat. 1 89 90 91 162.8 163.0 162.8 2(1.5)-CV-1128-BB1-2 2-CV-1121-BB1-1 2-CV-1121-BB1-2 in g 1.338 1.689 1.689 7.98E-04 4.01E-04 4.01E-04 Cat. 1 Cat. 2 Cat. 2 92 162.7 2-CV-1121-BB1-3 1.689 4.01E-04 Cat. 2 93 94 95 162.5 162.6 162.6 2-CV-1122-BB1-1 2-CV-1122-BB1-2 2-CV-1122-BB1-3 lk 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 96 97 98 162.6 162.6 162.8 ta 2-CV-1122-BB1-4 2-CV-1122-BB1-5 2-CV-1122-BB1-6 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 99 162.6 2-CV-1124-BB1-1 1.689 4.01E-04 Cat. 2 100 101 102 103 162.5 162.5 163.0 162.9 AFT 2-CV-1124-BB1-10 2-CV-1124-BB1-11 2-CV-1124-BB1-12 2-CV-1124-BB1-13 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 104 162.6 2-CV-1124-BB1-2 1.689 4.01E-04 Cat. 2 105 162.6 2-CV-1124-BB1-3 1.689 4.01E-04 Cat. 2 106 162.5 2-CV-1124-BB1-4 1.689 4.01E-04 Cat. 2 107 108 R

162.5 162.5 2-CV-1124-BB1-5 2-CV-1124-BB1-6 1.689 1.689 4.01E-04 4.01E-04 Cat. 2 Cat. 2 109 110 111 112 D 162.7 162.6 162.5 163.1 2-CV-1124-BB1-7 2-CV-1124-BB1-8 2-CV-1124-BB1-9 2-CV-1126-BB1-1 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 113 162.4 2-CV-1126-BB1-10 1.689 4.01E-04 Cat. 2 114 162.5 2-CV-1126-BB1-11 1.689 4.01E-04 Cat. 2 115 163.1 2-CV-1126-BB1-2 1.689 4.01E-04 Cat. 2 116 163.0 2-CV-1126-BB1-3 1.689 4.01E-04 Cat. 2 continued next page . . .

Wednesday 29th April, 2015, 07:45 36 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 37 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 117 162.9 2-CV-1126-BB1-4 1.689 4.01E-04 Cat. 2 118 162.9 2-CV-1126-BB1-5 1.689 4.01E-04 Cat. 2 119 162.9 2-CV-1126-BB1-6 1.689 4.01E-04 Cat. 2 120 162.8 2-CV-1126-BB1-7 1.689 4.01E-04 Cat. 2 121 161.9 2-CV-1126-BB1-8 1.689 4.01E-04 Cat. 2 122 161.8 2-CV-1126-BB1-9 1.689 4.01E-04 Cat. 2 123 163.3 2-CV-1128-BB1-1 1.689 4.01E-04 Cat. 2 124 163.1 2-CV-1128-BB1-2 1.689 4.01E-04 Cat. 2 125 126 127 128 163.0 163.0 162.9 162.9 2-CV-1128-BB1-3 2-CV-1128-BB1-3A 2-CV-1128-BB1-3B 2-CV-1128-BB1-4 1.689 1.689 1.689 1.689 in 4.01E-04 4.01E-04 ts 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 129 162.9 2-CV-1128-BB1-5 1.689 4.01E-04 Cat. 2 130 162.9 2-CV-1128-BB1-6 1.689 4.01E-04 Cat. 2 131 132 133 162.8 162.8 162.9 2-CV-1128-BB1-7 2-CV-1141-BB1-1 2-CV-1141-BB1-2 1.689 1.689 1.689 po 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 134 162.7 2-RC-1003-BB1-1 1.689 4.01E-04 Cat. 2 135 136 137 162.4 162.0 162.2 2-RC-1003-BB1-2 2-RC-1120-BB1-1 2-RC-1120-BB1-2 in g 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 138 161.6 2-RC-1121-BB1-1 1.689 4.01E-04 Cat. 2 139 140 141 162.7 162.7 162.7 2-RC-1121-BB1-2 2-RC-1121-BB1-3 2-RC-1121-BB1-3A lk 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 142 143 144 162.8 162.9 161.9 ta 2-RC-1121-BB1-3B 2-RC-1121-BB1-4 2-RC-1219-BB1-1 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 145 162.1 2-RC-1219-BB1-2 1.689 4.01E-04 Cat. 2 146 147 148 149 161.6 162.8 162.8 162.9 AFT 2-RC-1220-BB1-1 2-RC-1220-BB1-2 2-RC-1220-BB1-3 2-RC-1220-BB1-4 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 150 161.8 2-RC-1319-BB1-1 1.689 4.01E-04 Cat. 2 151 162.2 2-RC-1319-BB1-2 1.689 4.01E-04 Cat. 2 152 162.2 2-RC-1321-BB1-1 1.689 4.01E-04 Cat. 2 153 154 R

162.4 162.4 2-RC-1321-BB1-4 2-RC-1321-BB1-5 1.689 1.689 4.01E-04 4.01E-04 Cat. 2 Cat. 2 155 156 157 158 D 162.5 162.0 162.1 161.6 2-RC-1321-BB1-6 2-RC-1417-BB1-1 2-RC-1417-BB1-2 2-RC-1418-BB1-1 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 159 162.2 2-RC-1418-BB1-2 1.689 4.01E-04 Cat. 2 160 162.2 2-RC-1418-BB1-3 1.689 4.01E-04 Cat. 2 161 162.3 2-RC-1418-BB1-4 1.689 4.01E-04 Cat. 2 162 162.4 2-RC-1418-BB1-5 1.689 4.01E-04 Cat. 2 continued next page . . .

Wednesday 29th April, 2015, 07:45 37 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 38 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 163 162.6 2-RC-1418-BB1-6 1.689 4.01E-04 Cat. 2 164 162.3 2-RC-1419-BB1-1 1.689 4.01E-04 Cat. 2 165 162.5 2-RC-1419-BB1-2 1.689 4.01E-04 Cat. 2 166 162.5 2-RC-1419-BB1-3 1.689 4.01E-04 Cat. 2 167 162.8 2-RC-1419-BB1-4 1.689 4.01E-04 Cat. 2 168 161.8 31-RC-1102-NSS-5 1.689 4.01E-04 Cat. 2 169 161.5 31-RC-1102-NSS-6 1.689 4.01E-04 Cat. 2 170 161.8 31-RC-1202-NSS-5 1.689 4.01E-04 Cat. 2 171 172 173 174 161.4 161.7 161.8 161.4 31-RC-1202-NSS-7 31-RC-1302-NSS-5 31-RC-1402-NSS-5 31-RC-1402-NSS-7 1.689 1.689 1.689 1.689 in 4.01E-04 4.01E-04 ts 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 175 161.3 2.5-RC-1003-BB1-1 2.125 2.73E-04 Cat. 2 176 161.5 2.5-RC-1003-BB1-2 2.125 2.73E-04 Cat. 2 177 178 179 161.6 161.6 161.6 2.5-RC-1003-BB1-3 2.5-RC-1003-BB1-4 2.5-RC-1003-BB1-5 2.125 2.125 2.125 po 2.73E-04 2.73E-04 2.73E-04 Cat. 2 Cat. 2 Cat. 2 180 161.6 2.5-RC-1003-BB1-6 2.125 2.73E-04 Cat. 2 181 182 183 158.9 158.9 158.9 31-RC-1102-NSS-7 31-RC-1202-NSS-6 31-RC-1302-NSS-6 in g 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 184 158.9 31-RC-1402-NSS-6 2.626 1.26E-04 Cat. 2 185 186 187 161.1 161.2 161.2 3-RC-1003-BB1-1 3-RC-1003-BB1-2 3-RC-1015-NSS-1 lk 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 188 189 190 160.6 160.7 161.2 ta 3-RC-1015-NSS-10 3-RC-1015-NSS-11 3-RC-1015-NSS-12 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 191 161.9 3-RC-1015-NSS-13 2.626 1.26E-04 Cat. 2 192 193 194 195 163.0 163.1 162.1 161.4 AFT 3-RC-1015-NSS-14 3-RC-1015-NSS-15 3-RC-1015-NSS-16 3-RC-1015-NSS-2 2.626 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 196 161.6 3-RC-1015-NSS-3 2.626 1.26E-04 Cat. 2 197 162.2 3-RC-1015-NSS-4 2.626 1.26E-04 Cat. 2 198 162.7 3-RC-1015-NSS-5 2.626 1.26E-04 Cat. 2 199 200 R

163.2 163.3 3-RC-1015-NSS-6 3-RC-1015-NSS-7 2.626 2.626 1.26E-04 1.26E-04 Cat. 2 Cat. 2 201 202 203 204 D 163.3 160.6 159.6 159.6 3-RC-1015-NSS-8 3-RC-1015-NSS-9 3-RC-1106-BB1-25 3-RC-1206-BB1-28 2.626 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 205 159.6 3-RC-1306-BB1-28 2.626 1.26E-04 Cat. 2 206 159.7 3-RC-1406-BB1-25 2.626 1.26E-04 Cat. 2 207 153.8 27.5-RC-1103-NSS-3 3.438 1.44E-05 Cat. 3 208 155.6 27.5-RC-1103-NSS-5 3.438 1.44E-05 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 38 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 39 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 209 156.2 27.5-RC-1303-NSS-4 3.438 1.44E-05 Cat. 3 210 155.2 27.5-RC-1403-NSS-3 3.438 1.44E-05 Cat. 3 211 155.4 27.5-RC-1403-NSS-4 3.438 1.44E-05 Cat. 3 212 155.2 31-RC-1302-NSS-7 3.438 1.44E-05 Cat. 3 213 161.8 4-CV-1001-BB1-1 3.438 1.44E-05 Cat. 3 214 162.3 4-CV-1001-BB1-2 3.438 1.44E-05 Cat. 3 215 162.3 4-CV-1118-BB1-1 3.438 1.44E-05 Cat. 3 216 161.5 4-CV-1118-BB1-2 3.438 1.44E-05 Cat. 3 217 218 219 220 160.3 159.9 159.0 159.7 4-CV-1120-BB1-1 4-CV-1120-BB1-2 4-RC-1000-BB1-1 4-RC-1000-BB1-2 3.438 3.438 3.438 3.438 in 1.44E-05 1.44E-05 ts 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 221 159.7 4-RC-1000-BB1-3 3.438 1.44E-05 Cat. 3 222 160.1 4-RC-1000-BB1-4 3.438 1.44E-05 Cat. 3 223 224 225 160.1 159.9 159.8 4-RC-1000-BB1-5 4-RC-1000-BB1-6 4-RC-1000-BB1-7 3.438 3.438 3.438 po 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 226 158.6 4-RC-1000-BB1-8 3.438 1.44E-05 Cat. 3 227 228 229 159.1 159.2 159.1 4-RC-1003-BB1-1 4-RC-1003-BB1-2 4-RC-1003-BB1-3 in g 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 230 158.6 4-RC-1003-BB1-4 3.438 1.44E-05 Cat. 3 231 232 233 154.3 160.6 161.4 4-RC-1123-BB1-1 4-RC-1123-BB1-10 4-RC-1123-BB1-11 lk 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 234 235 236 161.8 161.8 162.0 ta 4-RC-1123-BB1-12 4-RC-1123-BB1-13 4-RC-1123-BB1-14 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 237 161.8 4-RC-1123-BB1-15 3.438 1.44E-05 Cat. 3 238 239 240 241 159.8 159.1 157.7 157.7 AFT 4-RC-1123-BB1-16 4-RC-1123-BB1-17 4-RC-1123-BB1-18 4-RC-1123-BB1-19 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 242 161.8 4-RC-1123-BB1-2 3.438 1.44E-05 Cat. 3 243 158.7 4-RC-1123-BB1-20 3.438 1.44E-05 Cat. 3 244 161.8 4-RC-1123-BB1-3 3.438 1.44E-05 Cat. 3 245 246 R

161.8 161.9 4-RC-1123-BB1-4 4-RC-1123-BB1-5 3.438 3.438 1.44E-05 1.44E-05 Cat. 3 Cat. 3 247 248 249 250 D 161.9 161.8 161.8 160.1 4-RC-1123-BB1-6 4-RC-1123-BB1-7 4-RC-1123-BB1-8 4-RC-1123-BB1-9 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 251 161.2 4-RC-1126-BB1-1 3.438 1.44E-05 Cat. 3 252 160.2 4-RC-1126-BB1-2 3.438 1.44E-05 Cat. 3 253 159.9 4-RC-1126-BB1-3 3.438 1.44E-05 Cat. 3 254 160.0 4-RC-1126-BB1-4 3.438 1.44E-05 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 39 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 40 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 255 159.3 4-RC-1126-BB1-5 3.438 1.44E-05 Cat. 3 256 156.0 4-RC-1126-BB1-6 3.438 1.44E-05 Cat. 3 257 155.4 4-RC-1320-BB1-1 3.438 1.44E-05 Cat. 3 258 161.4 4-RC-1320-BB1-10 3.438 1.44E-05 Cat. 3 259 161.5 4-RC-1320-BB1-11 3.438 1.44E-05 Cat. 3 260 161.5 4-RC-1320-BB1-12 3.438 1.44E-05 Cat. 3 261 156.0 4-RC-1320-BB1-2 3.438 1.44E-05 Cat. 3 262 156.6 4-RC-1320-BB1-3 3.438 1.44E-05 Cat. 3 263 264 265 266 158.8 159.2 159.6 159.9 4-RC-1320-BB1-4 4-RC-1320-BB1-5 4-RC-1320-BB1-6 4-RC-1320-BB1-7 3.438 3.438 3.438 3.438 in 1.44E-05 1.44E-05 ts 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 267 160.2 4-RC-1320-BB1-8 3.438 1.44E-05 Cat. 3 268 161.1 4-RC-1320-BB1-9 3.438 1.44E-05 Cat. 3 269 270 271 160.8 161.0 161.5 4-RC-1323-BB1-1 4-RC-1323-BB1-2 4-RC-1323-BB1-3 3.438 3.438 3.438 po 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 272 156.6 4-RC-1323-BB1-4 3.438 1.44E-05 Cat. 3 273 274 275 156.1 155.8 161.8 4-RC-1420-BB1-1 4-RC-1422-BB1-1 4-RC-1422-BB1-10 in g 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 276 161.8 4-RC-1422-BB1-11 3.438 1.44E-05 Cat. 3 277 278 279 159.8 160.6 160.8 4-RC-1422-BB1-12 4-RC-1422-BB1-13 4-RC-1422-BB1-14 lk 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 280 281 282 161.2 161.7 162.0 ta 4-RC-1422-BB1-15 4-RC-1422-BB1-16 4-RC-1422-BB1-17 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 283 161.8 4-RC-1422-BB1-18 3.438 1.44E-05 Cat. 3 284 285 286 287 162.0 156.7 162.1 160.3 AFT 4-RC-1422-BB1-19 4-RC-1422-BB1-2 4-RC-1422-BB1-20 4-RC-1422-BB1-21 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 288 159.8 4-RC-1422-BB1-22 3.438 1.44E-05 Cat. 3 289 159.6 4-RC-1422-BB1-23 3.438 1.44E-05 Cat. 3 290 157.4 4-RC-1422-BB1-3 3.438 1.44E-05 Cat. 3 291 292 R

156.8 157.4 4-RC-1422-BB1-4 4-RC-1422-BB1-5 3.438 3.438 1.44E-05 1.44E-05 Cat. 3 Cat. 3 293 294 295 296 D 161.6 161.6 161.6 161.6 4-RC-1422-BB1-6 4-RC-1422-BB1-7 4-RC-1422-BB1-8 4-RC-1422-BB1-9 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 297 148.9 6-RC-1003-BB1-1 5.189 8.12E-06 Cat. 3 298 150.4 6-RC-1003-BB1-10 5.189 8.12E-06 Cat. 3 299 150.2 6-RC-1003-BB1-11 5.189 8.12E-06 Cat. 3 300 147.6 6-RC-1003-BB1-11A 5.189 8.12E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 40 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 41 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 301 145.9 6-RC-1003-BB1-11B 5.189 8.12E-06 Cat. 3 302 142.6 6-RC-1003-BB1-12 5.189 8.12E-06 Cat. 3 303 138.7 6-RC-1003-BB1-13 5.189 8.12E-06 Cat. 3 304 133.7 6-RC-1003-BB1-13A 5.189 8.12E-06 Cat. 3 305 129.6 6-RC-1003-BB1-14 5.189 8.12E-06 Cat. 3 306 148.9 6-RC-1003-BB1-2 5.189 8.12E-06 Cat. 3 307 148.9 6-RC-1003-BB1-3 5.189 8.12E-06 Cat. 3 308 149.1 6-RC-1003-BB1-4 5.189 8.12E-06 Cat. 3 309 310 311 312 149.4 150.0 148.3 144.4 6-RC-1003-BB1-5 6-RC-1003-BB1-6 6-RC-1003-BB1-7 6-RC-1003-BB1-8 5.189 5.189 5.189 5.189 in 8.12E-06 8.12E-06 ts 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 313 143.9 6-RC-1003-BB1-9 5.189 8.12E-06 Cat. 3 314 143.9 6-RC-1003-BB1-9A 5.189 8.12E-06 Cat. 3 315 316 317 143.9 129.7 136.5 6-RC-1003-BB1-9B 6-RC-1003-BB1-PRZ-1-N2-SE 6-RC-1004-NSS-1 5.189 5.189 5.189 po 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 318 138.5 6-RC-1004-NSS-2 5.189 8.12E-06 Cat. 3 319 320 321 142.1 137.3 136.1 6-RC-1004-NSS-3 6-RC-1004-NSS-4 6-RC-1004-NSS-5 in g 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 322 142.9 6-RC-1004-NSS-6 5.189 8.12E-06 Cat. 3 323 324 325 145.3 136.5 134.4 6-RC-1004-NSS-7 lk 6-RC-1004-NSS-PRZ-1-N3-SE 6-RC-1009-NSS-1 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 326 327 328 136.1 140.7 136.8 ta 6-RC-1009-NSS-2 6-RC-1009-NSS-3 6-RC-1009-NSS-4 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 329 133.7 6-RC-1009-NSS-5 5.189 8.12E-06 Cat. 3 330 331 332 333 132.6 134.1 137.3 140.0 AFT 6-RC-1009-NSS-6 6-RC-1009-NSS-7 6-RC-1009-NSS-8 6-RC-1009-NSS-9 5.189 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 334 134.6 6-RC-1009-NSS-PRZ-1-N4C-SE 5.189 8.12E-06 Cat. 3 335 131.5 6-RC-1012-NSS-1 5.189 8.12E-06 Cat. 3 336 139.0 6-RC-1012-NSS-10 5.189 8.12E-06 Cat. 3 337 338 R

139.6 133.0 6-RC-1012-NSS-11 6-RC-1012-NSS-2 5.189 5.189 8.12E-06 8.12E-06 Cat. 3 Cat. 3 339 340 341 342 D 134.0 134.3 136.9 137.7 6-RC-1012-NSS-3 6-RC-1012-NSS-4 6-RC-1012-NSS-5 6-RC-1012-NSS-6 5.189 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 343 139.0 6-RC-1012-NSS-7 5.189 8.12E-06 Cat. 3 344 138.5 6-RC-1012-NSS-8 5.189 8.12E-06 Cat. 3 345 135.8 6-RC-1012-NSS-9 5.189 8.12E-06 Cat. 3 346 131.4 6-RC-1012-NSS-PRZ-1-N4B-SE 5.189 8.12E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 41 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 42 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 347 132.1 6-RC-1015-NSS-1 5.189 8.12E-06 Cat. 3 348 139.7 6-RC-1015-NSS-10 5.189 8.12E-06 Cat. 3 349 150.6 6-RC-1015-NSS-11 5.189 8.12E-06 Cat. 3 350 152.5 6-RC-1015-NSS-12 5.189 8.12E-06 Cat. 3 351 152.8 6-RC-1015-NSS-13 5.189 8.12E-06 Cat. 3 352 151.9 6-RC-1015-NSS-14 5.189 8.12E-06 Cat. 3 353 151.8 6-RC-1015-NSS-15 5.189 8.12E-06 Cat. 3 354 134.0 6-RC-1015-NSS-2 5.189 8.12E-06 Cat. 3 355 356 357 358 135.3 134.2 132.0 131.3 6-RC-1015-NSS-3 6-RC-1015-NSS-4 6-RC-1015-NSS-5 6-RC-1015-NSS-6 5.189 5.189 5.189 5.189 in 8.12E-06 8.12E-06 ts 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 359 131.2 6-RC-1015-NSS-7 5.189 8.12E-06 Cat. 3 360 134.1 6-RC-1015-NSS-8 5.189 8.12E-06 Cat. 3 361 362 363 136.5 162.7 162.6 6-RC-1015-NSS-9 6-SI-1108-BB1-1 6-SI-1108-BB1-2 5.189 5.189 5.189 po 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 364 162.0 6-SI-1108-BB1-3 5.189 8.12E-06 Cat. 3 365 366 367 154.6 159.9 159.8 6-SI-1108-BB1-4 6-SI-1111-BB1-1 6-SI-1111-BB1-2 in g 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 368 162.7 6-SI-1208-BB1-1 5.189 8.12E-06 Cat. 3 369 370 371 162.7 162.0 155.6 6-SI-1208-BB1-2 6-SI-1208-BB1-3 6-SI-1208-BB1-4 lk 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 372 373 374 160.6 160.4 159.7 ta 6-SI-1211-BB1-1 6-SI-1211-BB1-2 6-SI-1308-BB1-1 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 375 160.9 6-SI-1308-BB1-2 5.189 8.12E-06 Cat. 3 376 377 378 379 161.2 160.1 149.0 149.5 AFT 6-SI-1308-BB1-3 6-SI-1308-BB1-4 6-SI-1327-BB1-1 6-SI-1327-BB1-2 5.189 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 380 150.0 6-SI-1327-BB1-3 5.189 8.12E-06 Cat. 3 381 149.5 6-SI-1327-BB1-4 5.189 8.12E-06 Cat. 3 382 150.4 6-SI-1327-BB1-5 5.189 8.12E-06 Cat. 3 383 384 R

151.2 152.2 6-SI-1327-BB1-6 6-SI-1327-BB1-7 5.189 5.189 8.12E-06 8.12E-06 Cat. 3 Cat. 3 385 386 387 388 D 131.8 131.9 131.4 142.1 29-RC-1101-NSS-2 29-RC-1201-NSS-2 29-RC-1301-NSS-2 8-RC-1114-BB1-1 6.813 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 389 143.6 8-RC-1114-BB1-2 6.813 2.27E-06 Cat. 3 390 142.1 8-RC-1114-BB1-3 6.813 2.27E-06 Cat. 3 391 139.2 8-RC-1114-BB1-4 6.813 2.27E-06 Cat. 3 392 135.5 8-RC-1114-BB1-5 6.813 2.27E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 42 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 43 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 393 132.2 8-RC-1114-BB1-6 6.813 2.27E-06 Cat. 3 394 142.4 8-RC-1214-BB1-1 6.813 2.27E-06 Cat. 3 395 143.9 8-RC-1214-BB1-2 6.813 2.27E-06 Cat. 3 396 142.6 8-RC-1214-BB1-3 6.813 2.27E-06 Cat. 3 397 139.6 8-RC-1214-BB1-4 6.813 2.27E-06 Cat. 3 398 136.0 8-RC-1214-BB1-5 6.813 2.27E-06 Cat. 3 399 132.9 8-RC-1214-BB1-6 6.813 2.27E-06 Cat. 3 400 140.9 8-RC-1324-BB1-1 6.813 2.27E-06 Cat. 3 401 402 403 404 142.5 141.5 140.4 136.2 8-RC-1324-BB1-2 8-RC-1324-BB1-3 8-RC-1324-BB1-4 8-RC-1324-BB1-5 6.813 6.813 6.813 6.813 in 2.27E-06 2.27E-06 ts 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 405 132.9 8-RC-1324-BB1-6 6.813 2.27E-06 Cat. 3 406 159.1 8-RH-1108-BB1-1 6.813 2.27E-06 Cat. 3 407 408 409 158.8 141.7 143.2 8-RH-1108-BB1-2 8-RH-1112-BB1-1 8-RH-1112-BB1-1A 6.813 6.813 6.813 po 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 410 142.8 8-RH-1112-BB1-2 6.813 2.27E-06 Cat. 3 411 412 413 160.0 159.8 141.0 8-RH-1208-BB1-1 8-RH-1208-BB1-2 8-RH-1212-BB1-1 in g 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 414 144.0 8-RH-1212-BB1-2 6.813 2.27E-06 Cat. 3 415 416 417 153.1 154.8 142.8 8-RH-1308-BB1-1 8-RH-1308-BB1-2 8-RH-1315-BB1-1 lk 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 418 419 420 147.9 144.7 141.0 ta 8-SI-1108-BB1-1 8-SI-1108-BB1-2 8-SI-1108-BB1-3 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 421 137.1 8-SI-1108-BB1-4 6.813 2.27E-06 Cat. 3 422 423 424 425 139.8 148.3 146.4 141.8 AFT 8-SI-1108-BB1-5 8-SI-1208-BB1-1 8-SI-1208-BB1-2 8-SI-1208-BB1-3 6.813 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 426 137.8 8-SI-1208-BB1-3A 6.813 2.27E-06 Cat. 3 427 140.9 8-SI-1208-BB1-4 6.813 2.27E-06 Cat. 3 428 144.1 8-SI-1327-BB1-1 6.813 2.27E-06 Cat. 3 429 430 R

131.3 137.0 8-SI-1327-BB1-10 8-SI-1327-BB1-11 6.813 6.813 2.27E-06 2.27E-06 Cat. 3 Cat. 3 431 432 433 434 D 144.7 145.0 145.8 147.5 8-SI-1327-BB1-2 8-SI-1327-BB1-3 8-SI-1327-BB1-4 8-SI-1327-BB1-5 6.813 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 435 145.6 8-SI-1327-BB1-6 6.813 2.27E-06 Cat. 3 436 141.0 8-SI-1327-BB1-7 6.813 2.27E-06 Cat. 3 437 136.2 8-SI-1327-BB1-8 6.813 2.27E-06 Cat. 3 438 134.9 8-SI-1327-BB1-9 6.813 2.27E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 43 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 44 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 439 157.3 10-RH-1108-BB1-1 8.500 1.30E-06 Cat. 4 440 145.6 10-RH-1108-BB1-10 8.500 1.30E-06 Cat. 4 441 157.0 10-RH-1108-BB1-1A 8.500 1.30E-06 Cat. 4 442 156.9 10-RH-1108-BB1-2 8.500 1.30E-06 Cat. 4 443 156.8 10-RH-1108-BB1-3 8.500 1.30E-06 Cat. 4 444 156.6 10-RH-1108-BB1-4 8.500 1.30E-06 Cat. 4 445 156.6 10-RH-1108-BB1-5 8.500 1.30E-06 Cat. 4 446 156.7 10-RH-1108-BB1-6 8.500 1.30E-06 Cat. 4 447 448 449 450 156.1 144.8 145.1 158.4 10-RH-1108-BB1-7 10-RH-1108-BB1-8 10-RH-1108-BB1-9 10-RH-1208-BB1-1 8.500 8.500 8.500 8.500 in 1.30E-06 1.30E-06 ts 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 Cat. 4 451 147.0 10-RH-1208-BB1-10 8.500 1.30E-06 Cat. 4 452 147.9 10-RH-1208-BB1-11 8.500 1.30E-06 Cat. 4 453 454 455 158.2 158.1 157.5 10-RH-1208-BB1-2 10-RH-1208-BB1-3 10-RH-1208-BB1-4 8.500 8.500 8.500 po 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 456 157.2 10-RH-1208-BB1-5 8.500 1.30E-06 Cat. 4 457 458 459 157.3 156.5 146.8 10-RH-1208-BB1-6 10-RH-1208-BB1-7 10-RH-1208-BB1-8 in g 8.500 8.500 8.500 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 460 146.5 10-RH-1208-BB1-9 8.500 1.30E-06 Cat. 4 461 462 463 152.9 158.4 158.5 10-RH-1308-BB1-1 10-RH-1308-BB1-2 10-RH-1308-BB1-3 lk 8.500 8.500 8.500 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 464 465 466 158.4 158.6 157.8 ta 10-RH-1308-BB1-4 10-RH-1308-BB1-5 10-RH-1308-BB1-6 8.500 8.500 8.500 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 467 157.7 10-RH-1308-BB1-7 8.500 1.30E-06 Cat. 4 468 469 470 471 157.3 94.8 126.3 126.1 AFT 10-RH-1308-BB1-8 12-RC-1112-BB1-1 12-RC-1112-BB1-10 12-RC-1112-BB1-11 8.500 10.126 10.126 10.126 1.30E-06 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 472 105.5 12-RC-1112-BB1-2 10.126 9.75E-07 Cat. 4 473 112.0 12-RC-1112-BB1-3 10.126 9.75E-07 Cat. 4 474 116.1 12-RC-1112-BB1-4 10.126 9.75E-07 Cat. 4 475 476 R

118.2 114.8 12-RC-1112-BB1-5 12-RC-1112-BB1-6 10.126 10.126 9.75E-07 9.75E-07 Cat. 4 Cat. 4 477 478 479 480 D 112.5 113.5 123.3 143.3 12-RC-1112-BB1-7 12-RC-1112-BB1-8 12-RC-1112-BB1-9 12-RC-1125-BB1-1 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 481 63.4 12-RC-1125-BB1-10 10.126 9.75E-07 Cat. 4 482 60.1 12-RC-1125-BB1-11 10.126 9.75E-07 Cat. 4 483 65.9 12-RC-1125-BB1-12 10.126 9.75E-07 Cat. 4 484 90.7 12-RC-1125-BB1-13 10.126 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 44 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 45 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 485 144.6 12-RC-1125-BB1-2 10.126 9.75E-07 Cat. 4 486 144.8 12-RC-1125-BB1-3 10.126 9.75E-07 Cat. 4 487 145.1 12-RC-1125-BB1-4 10.126 9.75E-07 Cat. 4 488 145.1 12-RC-1125-BB1-5 10.126 9.75E-07 Cat. 4 489 142.4 12-RC-1125-BB1-6 10.126 9.75E-07 Cat. 4 490 140.8 12-RC-1125-BB1-7 10.126 9.75E-07 Cat. 4 491 95.7 12-RC-1125-BB1-8 10.126 9.75E-07 Cat. 4 492 67.7 12-RC-1125-BB1-9 10.126 9.75E-07 Cat. 4 493 494 495 496 100.2 108.6 112.9 118.6 12-RC-1212-BB1-1 12-RC-1212-BB1-2 12-RC-1212-BB1-3 12-RC-1212-BB1-4 10.126 10.126 10.126 10.126 in 9.75E-07 9.75E-07 ts 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 497 120.0 12-RC-1212-BB1-5 10.126 9.75E-07 Cat. 4 498 115.5 12-RC-1212-BB1-6 10.126 9.75E-07 Cat. 4 499 500 501 113.6 107.8 146.4 12-RC-1212-BB1-7 12-RC-1212-BB1-8 12-RC-1221-BB1-1 10.126 10.126 10.126 po 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 502 64.1 12-RC-1221-BB1-10 10.126 9.75E-07 Cat. 4 503 504 505 54.5 62.7 68.5 12-RC-1221-BB1-11 12-RC-1221-BB1-12 12-RC-1221-BB1-13 in g 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 506 94.2 12-RC-1221-BB1-14 10.126 9.75E-07 Cat. 4 507 508 509 147.3 146.9 145.8 12-RC-1221-BB1-2 12-RC-1221-BB1-3 12-RC-1221-BB1-4 lk 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 510 511 512 144.3 142.3 141.0 ta 12-RC-1221-BB1-5 12-RC-1221-BB1-6 12-RC-1221-BB1-7 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 513 100.5 12-RC-1221-BB1-8 10.126 9.75E-07 Cat. 4 514 515 516 517 67.8 99.9 119.3 120.0 AFT 12-RC-1221-BB1-9 12-RC-1312-BB1-1 12-RC-1312-BB1-10 12-RC-1312-BB1-11 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 518 108.1 12-RC-1312-BB1-2 10.126 9.75E-07 Cat. 4 519 112.5 12-RC-1312-BB1-3 10.126 9.75E-07 Cat. 4 520 118.1 12-RC-1312-BB1-4 10.126 9.75E-07 Cat. 4 521 522 R

119.6 115.0 12-RC-1312-BB1-5 12-RC-1312-BB1-6 10.126 10.126 9.75E-07 9.75E-07 Cat. 4 Cat. 4 523 524 525 526 D 113.4 103.4 117.5 61.0 12-RC-1312-BB1-7 12-RC-1312-BB1-8 12-RC-1312-BB1-9 12-RC-1322-BB1-1 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 527 61.1 12-RC-1322-BB1-1A 10.126 9.75E-07 Cat. 4 528 65.4 12-RC-1322-BB1-2 10.126 9.75E-07 Cat. 4 529 70.3 12-RC-1322-BB1-3 10.126 9.75E-07 Cat. 4 530 94.6 12-RC-1322-BB1-4 10.126 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 45 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 46 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 531 125.4 12-RH-1101-BB1-1 10.126 9.75E-07 Cat. 4 532 147.3 12-RH-1101-BB1-10 10.126 9.75E-07 Cat. 4 533 148.4 12-RH-1101-BB1-11 10.126 9.75E-07 Cat. 4 534 152.6 12-RH-1101-BB1-12 10.126 9.75E-07 Cat. 4 535 148.8 12-RH-1101-BB1-13 10.126 9.75E-07 Cat. 4 536 151.7 12-RH-1101-BB1-14 10.126 9.75E-07 Cat. 4 537 151.9 12-RH-1101-BB1-15 10.126 9.75E-07 Cat. 4 538 150.9 12-RH-1101-BB1-16 10.126 9.75E-07 Cat. 4 539 540 541 542 128.7 127.5 109.5 112.3 12-RH-1101-BB1-2 12-RH-1101-BB1-3 12-RH-1101-BB1-3A 12-RH-1101-BB1-4 10.126 10.126 10.126 10.126 in 9.75E-07 9.75E-07 ts 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 543 121.2 12-RH-1101-BB1-5 10.126 9.75E-07 Cat. 4 544 122.0 12-RH-1101-BB1-6 10.126 9.75E-07 Cat. 4 545 546 547 121.5 127.8 148.7 12-RH-1101-BB1-7 12-RH-1101-BB1-8 12-RH-1101-BB1-9 10.126 10.126 10.126 po 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 548 113.8 12-RH-1201-BB1-1 10.126 9.75E-07 Cat. 4 549 550 551 124.0 145.9 147.7 12-RH-1201-BB1-10 12-RH-1201-BB1-11 12-RH-1201-BB1-12 in g 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 552 148.1 12-RH-1201-BB1-13 10.126 9.75E-07 Cat. 4 553 554 555 151.0 153.7 153.4 12-RH-1201-BB1-14 12-RH-1201-BB1-15 12-RH-1201-BB1-16 lk 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 556 557 558 152.8 118.7 122.5 ta 12-RH-1201-BB1-17 12-RH-1201-BB1-2 12-RH-1201-BB1-3 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 559 123.1 12-RH-1201-BB1-4 10.126 9.75E-07 Cat. 4 560 561 562 563 122.6 108.3 117.8 118.5 AFT 12-RH-1201-BB1-5 12-RH-1201-BB1-6 12-RH-1201-BB1-7 12-RH-1201-BB1-8 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 564 117.3 12-RH-1201-BB1-9 10.126 9.75E-07 Cat. 4 565 123.3 12-RH-1301-BB1-1 10.126 9.75E-07 Cat. 4 566 150.8 12-RH-1301-BB1-10 10.126 9.75E-07 Cat. 4 567 568 R

125.6 125.8 12-RH-1301-BB1-2 12-RH-1301-BB1-3 10.126 10.126 9.75E-07 9.75E-07 Cat. 4 Cat. 4 569 570 571 572 D 123.5 127.4 149.1 148.8 12-RH-1301-BB1-4 12-RH-1301-BB1-5 12-RH-1301-BB1-5A 12-RH-1301-BB1-6 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 573 148.9 12-RH-1301-BB1-7 10.126 9.75E-07 Cat. 4 574 150.4 12-RH-1301-BB1-8 10.126 9.75E-07 Cat. 4 575 150.8 12-RH-1301-BB1-9 10.126 9.75E-07 Cat. 4 576 146.8 12-SI-1125-BB1-1 10.126 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 46 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 47 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 577 144.5 12-SI-1125-BB1-2 10.126 9.75E-07 Cat. 4 578 144.0 12-SI-1125-BB1-3 10.126 9.75E-07 Cat. 4 579 143.9 12-SI-1125-BB1-4 10.126 9.75E-07 Cat. 4 580 149.3 12-SI-1218-BB1-1 10.126 9.75E-07 Cat. 4 581 147.2 12-SI-1218-BB1-2 10.126 9.75E-07 Cat. 4 582 146.6 12-SI-1218-BB1-3 10.126 9.75E-07 Cat. 4 583 146.4 12-SI-1218-BB1-4 10.126 9.75E-07 Cat. 4 584 156.3 12-SI-1315-BB1-1 10.126 9.75E-07 Cat. 4 585 586 587 588 70.7 155.8 155.2 155.3 12-SI-1315-BB1-10 12-SI-1315-BB1-2 12-SI-1315-BB1-3 12-SI-1315-BB1-4 10.126 10.126 10.126 10.126 in 9.75E-07 9.75E-07 ts 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 589 155.5 12-SI-1315-BB1-5 10.126 9.75E-07 Cat. 4 590 117.8 12-SI-1315-BB1-6 10.126 9.75E-07 Cat. 4 591 592 593 91.1 79.2 74.7 12-SI-1315-BB1-7 12-SI-1315-BB1-8 12-SI-1315-BB1-9 10.126 10.126 10.126 po 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 594 116.2 27.5-RC-1103-NSS-4 10.126 9.75E-07 Cat. 4 595 596 597 105.5 104.6 93.4 27.5-RC-1203-NSS-3 27.5-RC-1303-NSS-3 29-RC-1101-NSS-3 in g 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 598 95.8 29-RC-1201-NSS-3 10.126 9.75E-07 Cat. 4 599 600 601 96.4 97.4 147.9 29-RC-1301-NSS-3 16-RC-1412-NSS-1 16-RC-1412-NSS-3 lk 10.126 12.814 12.814 9.75E-07 4.37E-07 4.37E-07 Cat. 4 Cat. 4 Cat. 4 602 603 604 150.9 77.8 59.0 ta 16-RC-1412-NSS-4 16-RC-1412-NSS-5 16-RC-1412-NSS-6 12.814 12.814 12.814 4.37E-07 4.37E-07 4.37E-07 Cat. 4 Cat. 4 Cat. 4 605 48.3 16-RC-1412-NSS-7 12.814 4.37E-07 Cat. 4 606 607 608 609 21.4 96.5 22.6 49.4 AFT 16-RC-1412-NSS-9 16-RC-1412-NSS-PRZ-1-N1-SE 29-RC-1401-NSS-2 27.5-RC-1103-NSS-6 12.814 12.814 12.814 27.500 4.37E-07 4.37E-07 4.37E-07 6.42E-08 Cat. 4 Cat. 4 Cat. 4 Cat. 5 610 50.4 27.5-RC-1103-NSS-7 27.500 6.42E-08 Cat. 5 611 48.3 27.5-RC-1103-NSS-RPV1-N2ASE 27.500 6.42E-08 Cat. 5 612 50.6 27.5-RC-1203-NSS-4 27.500 6.42E-08 Cat. 5 613 614 R

51.1 50.5 27.5-RC-1203-NSS-5 27.5-RC-1203-NSS-RPV1-N2BSE 27.500 27.500 6.42E-08 6.42E-08 Cat. 5 Cat. 5 615 616 617 618 D 67.0 64.2 63.6 74.3 27.5-RC-1303-NSS-5 27.5-RC-1303-NSS-6 27.5-RC-1303-NSS-RPV1-N2CSE 27.5-RC-1403-NSS-5 27.500 27.500 27.500 27.500 6.42E-08 6.42E-08 6.42E-08 6.42E-08 Cat. 5 Cat. 5 Cat. 5 Cat. 5 619 69.4 27.5-RC-1403-NSS-6 27.500 6.42E-08 Cat. 5 620 68.3 27.5-RC-1403-NSS-RPV1-N2DSE 27.500 6.42E-08 Cat. 5 621 25.2 29-RC-1101-NSS-1 29.000 4.91E-08 Cat. 5 622 23.6 29-RC-1101-NSS-RPV1-N1ASE 29.000 4.91E-08 Cat. 5 continued next page . . .

Wednesday 29th April, 2015, 07:45 47 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 48 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 623 22.3 29-RC-1201-NSS-1 29.000 4.91E-08 Cat. 5 624 19.3 29-RC-1201-RPV1-N1BSE 29.000 4.91E-08 Cat. 5 625 23.8 29-RC-1301-NSS-1 29.000 4.91E-08 Cat. 5 626 21.5 29-RC-1301-RPV1-N1CSE 29.000 4.91E-08 Cat. 5 627 23.8 29-RC-1401-NSS-1 29.000 4.91E-08 Cat. 5 628 20.9 29-RC-1401-NSS-RPV1-N1DSE 29.000 4.91E-08 Cat. 5 Table 14: Single train data for weld locations in the risk-informed category listing the ith weld number, fi (mean quantile, geometric aggregation), and NUREG 1829 data category in mass of "ber in the sump for the scenario (lbm), location name (ID), Break size (Size), scenario frequency, ts No. Amount (lbm) Location Size (in) fi NUREG 1829 Cat.

1 2

3 95.96 96.13 96.83 29-RC-1301-RSG-1C-IN-SE 29-RC-1101-NSS-5.1 29-RC-1101-NSS-RSG-1A-IN-SE 9.28 9.31 9.33 po 1.14E-06 1.14E-06 1.13E-06 Cat. 4 Cat. 4 Cat. 4 4 96.17 29-RC-1201-RSG-1B-IN-SE 9.35 1.13E-06 Cat. 4 5

6 7

96.74 95.99 96.34 29-RC-1301-NSS-5.1 29-RC-1201-NSS-5.1 29-RC-1401-NSS-RSG-1D-IN-SE in g9.35 9.35 9.38 1.13E-06 1.13E-06 1.12E-06 Cat. 4 Cat. 4 Cat. 4 8 96.55 29-RC-1401-NSS-4.1 9.41 1.12E-06 Cat. 4 9 95.96 31-RC-1102-NSS-RSG-1A-ON-SE 9.81 1.04E-06 Cat. 4 10 11 96.35 96.66 31-RC-1202-NSS-1.1 31-RC-1102-NSS-1.1 lk 9.86 9.86 1.03E-06 1.03E-06 Cat. 4 Cat. 4 12 13 14 15 96.48 96.13 95.97 96.07 ta 31-RC-1202-NSS-RSG-1B-ON-SE 31-RC-1202-NSS-2 31-RC-1302-NSS-1.1 31-RC-1302-NSS-RSG-1C-ON-SE 9.87 10.03 10.10 10.11 1.03E-06 9.94E-07 9.80E-07 9.79E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 17 18 19 20 96.26 96.96 128.39 131.64 AFT 12-RC-1112-BB1-1 12-RC-1125-BB1-10 12-RC-1125-BB1-11 12-RC-1125-BB1-12 10.13 10.13 10.13 10.13 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 21 125.93 12-RC-1125-BB1-13 10.13 9.75E-07 Cat. 4 22 101.10 12-RC-1125-BB1-8 10.13 9.75E-07 Cat. 4 23 96.07 12-RC-1125-BB1-9 10.13 9.75E-07 Cat. 4 24 25 R 124.08 127.70 12-RC-1221-BB1-10 12-RC-1221-BB1-11 10.13 10.13 9.75E-07 9.75E-07 Cat. 4 Cat. 4 26 27 28 29 D 137.30 129.09 123.32 97.57 12-RC-1221-BB1-12 12-RC-1221-BB1-13 12-RC-1221-BB1-14 12-RC-1221-BB1-9 10.13 10.13 10.13 10.13 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 30 123.96 12-RC-1322-BB1-1 10.13 9.75E-07 Cat. 4 31 130.82 12-RC-1322-BB1-1A 10.13 9.75E-07 Cat. 4 32 130.73 12-RC-1322-BB1-2 10.13 9.75E-07 Cat. 4 33 126.33 12-RC-1322-BB1-3 10.13 9.75E-07 Cat. 4 34 121.46 12-RC-1322-BB1-4 10.13 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 48 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 49 of 173 pages

. . . continued No. Amount (lbm) Location Size (in) fi NUREG 1829 Cat.

35 97.21 12-SI-1315-BB1-10 10.13 9.75E-07 Cat. 4 36 121.12 12-SI-1315-BB1-7 10.13 9.75E-07 Cat. 4 37 100.67 12-SI-1315-BB1-8 10.13 9.75E-07 Cat. 4 38 112.56 12-SI-1315-BB1-9 10.13 9.75E-07 Cat. 4 39 117.11 29-RC-1101-NSS-3 10.13 9.75E-07 Cat. 4 40 98.43 29-RC-1201-NSS-3 10.13 9.75E-07 Cat. 4 16 96.01 31-RC-1102-NSS-2 10.13 9.75E-07 Cat. 4 41 96.35 16-RC-1412-NSS-8 10.21 9.59E-07 Cat. 4 42 96.44 31-RC-1302-NSS-2 10.30 9.40E-07 Cat. 4 43 44 45 46 95.90 96.00 96.14 96.07 29-RC-1101-NSS-4 31-RC-1402-NSS-1.1 31-RC-1402-NSS-RSG-1D-ON-SE 29-RC-1401-NSS-3 10.45 10.50 10.51 10.63 in 9.10E-07 9.00E-07 ts 8.98E-07 8.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 47 96.14 29-RC-1301-NSS-4 10.63 8.74E-07 Cat. 4 48 96.38 29-RC-1201-NSS-4 10.67 8.67E-07 Cat. 4 49 50 51 96.05 95.97 96.37 31-RC-1402-NSS-2 31-RC-1202-NSS-3 16-RC-1412-NSS-9 11.08 11.15 11.17 po 7.83E-07 7.71E-07 7.66E-07 Cat. 4 Cat. 4 Cat. 4 52 95.99 29-RC-1401-NSS-2 11.17 7.66E-07 Cat. 4 53 54 55 95.90 96.15 95.98 31-RC-1302-NSS-3 31-RC-1102-NSS-3 31-RC-1202-NSS-4 in g 11.31 11.39 11.50 7.38E-07 7.22E-07 7.00E-07 Cat. 4 Cat. 4 Cat. 4 56 95.90 31-RC-1102-NSS-4 11.62 6.76E-07 Cat. 4 57 58 59 95.93 96.08 95.91 31-RC-1302-NSS-4 31-RC-1202-NSS-8 31-RC-1102-NSS-8 lk 11.74 11.76 11.90 6.52E-07 6.49E-07 6.19E-07 Cat. 4 Cat. 4 Cat. 4 60 61 62 95.92 96.05 95.92 ta 31-RC-1302-NSS-8 31-RC-1402-NSS-3 31-RC-1202-NSS-9 12.30 12.43 12.56 5.40E-07 5.14E-07 4.88E-07 Cat. 4 Cat. 4 Cat. 4 63 95.95 27.5-RC-1103-NSS-1 12.75 4.50E-07 Cat. 4 64 65 66 67 113.96 132.76 143.52 95.90 AFT 16-RC-1412-NSS-5 16-RC-1412-NSS-6 16-RC-1412-NSS-7 27.5-RC-1203-NSS-1 12.81 12.81 12.81 12.82 4.37E-07 4.37E-07 4.37E-07 4.36E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 68 95.94 31-RC-1102-NSS-9 12.83 4.34E-07 Cat. 4 69 96.03 31-RC-1402-NSS-4 13.26 3.48E-07 Cat. 4 70 95.95 27.5-RC-1303-NSS-1 13.68 2.64E-07 Cat. 4 71 72 R

95.93 97.33 31-RC-1302-NSS-9 31-RC-1402-NSS-8 13.95 14.45 2.10E-07 1.10E-07 Cat. 4 Cat. 4 73 74 75 76 D96.02 97.16 142.33 141.38 27.5-RC-1403-NSS-1 31-RC-1402-NSS-9 27.5-RC-1103-NSS-6 27.5-RC-1103-NSS-7 14.72 16.33 27.50 27.50 5.62E-08 1.77E-07 6.42E-08 6.42E-08 Cat. 4 Cat. 5 Cat. 5 Cat. 5 77 143.44 27.5-RC-1103-NSS-RPV1-N2ASE 27.50 6.42E-08 Cat. 5 78 141.23 27.5-RC-1203-NSS-4 27.50 6.42E-08 Cat. 5 79 140.65 27.5-RC-1203-NSS-5 27.50 6.42E-08 Cat. 5 80 141.24 27.5-RC-1203-NSS-RPV1-N2BSE 27.50 6.42E-08 Cat. 5 continued next page . . .

Wednesday 29th April, 2015, 07:45 49 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 50 of 173 pages

. . . continued No. Amount (lbm) Location Size (in) fi NUREG 1829 Cat.

81 124.75 27.5-RC-1303-NSS-5 27.50 6.42E-08 Cat. 5 82 127.56 27.5-RC-1303-NSS-6 27.50 6.42E-08 Cat. 5 83 128.16 27.5-RC-1303-NSS-RPV1-N2CSE 27.50 6.42E-08 Cat. 5 84 117.48 27.5-RC-1403-NSS-5 27.50 6.42E-08 Cat. 5 85 122.40 27.5-RC-1403-NSS-6 27.50 6.42E-08 Cat. 5 86 123.45 27.5-RC-1403-NSS-RPV1-N2DSE 27.50 6.42E-08 Cat. 5 87 166.58 29-RC-1101-NSS-1 29.00 4.91E-08 Cat. 5 88 168.16 29-RC-1101-NSS-RPV1-N1ASE 29.00 4.91E-08 Cat. 5 89 169.49 29-RC-1201-NSS-1 29.00 4.91E-08 Cat. 5 90 91 92 93 172.48 167.99 170.23 168.01 29-RC-1201-RPV1-N1BSE 29-RC-1301-NSS-1 29-RC-1301-RPV1-N1CSE 29-RC-1401-NSS-1 29.00 29.00 29.00 29.00 in 4.91E-08 4.91E-08 ts 4.91E-08 4.91E-08 Cat.

Cat.

Cat.

Cat.

5 5

5 5

94 170.85 29-RC-1401-NSS-RPV1-N1DSE 29.00 4.91E-08 Cat. 5 po Table 15: Single train DEGB data (largest break size) for weld locations in the deterministic category showing listing the ith weld number, the margin to the mass of "ber in the sump produced to the tested amount (lbm), location name, Break size (Size), scenario DEGB frequency, fi (mean quantile, geometric aggregation), and NUREG 1829 data category No. Margin (lbm) Location in gDEGB fi NUREG 1829 Cat.

Size (in) 95 96 67.3 67.3 0.75-CV-1122-BB1-1 0.75-CV-1122-BB1-2 lk 0.614 0.614 1.75E-03 1.75E-03 Cat. 1 Cat. 1 97 98 99 100 67.4 67.4 67.4 67.2 ta 0.75-CV-1124-BB1-1 0.75-CV-1124-BB1-2 0.75-CV-1126-BB1-1 0.75-CV-1126-BB1-2 0.614 0.614 0.614 0.614 1.75E-03 1.75E-03 1.75E-03 1.75E-03 Cat. 1 Cat. 1 Cat. 1 Cat. 1 101 102 103 104 67.4 67.4 67.2 67.1 AFT 0.75-CV-1128-BB1-1 0.75-CV-1128-BB1-2 0.75-RC-1001-BB1-1 0.75-RC-1002-BB2-1 0.614 0.614 0.614 0.614 1.75E-03 1.75E-03 1.75E-03 1.75E-03 Cat. 1 Cat. 1 Cat. 1 Cat. 1 105 67.1 0.75-RC-1112-BB1-1 0.614 1.75E-03 Cat. 1 106 67.0 0.75-RC-1114-BB1-1 0.614 1.75E-03 Cat. 1 107 67.1 0.75-RC-1125-BB1-1 0.614 1.75E-03 Cat. 1 108 109 R 67.0 67.1 0.75-RC-1125-BB1-2 0.75-RC-1126-BB1-1 0.614 0.614 1.75E-03 1.75E-03 Cat. 1 Cat. 1 110 111 112 113 D67.1 67.0 67.1 67.1 0.75-RC-1212-BB1-1 0.75-RC-1214-BB1-1 0.75-RC-1221-BB1-1 0.75-RC-1221-BB1-2 0.614 0.614 0.614 0.614 1.75E-03 1.75E-03 1.75E-03 1.75E-03 Cat. 1 Cat. 1 Cat. 1 Cat. 1 114 67.1 0.75-RC-1312-BB1-1 0.614 1.75E-03 Cat. 1 115 67.0 0.75-RC-1324-BB1-1 0.614 1.75E-03 Cat. 1 116 67.1 0.75-RC-1423-BB1-1 0.614 1.75E-03 Cat. 1 117 67.2 0.75-SI-1130-BB2-1 0.614 1.75E-03 Cat. 1 118 67.2 0.75-SI-1132-BB1-1 0.614 1.75E-03 Cat. 1 continued next page . . .

Wednesday 29th April, 2015, 07:45 50 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 51 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 119 67.2 0.75-SI-1218-BB1-1 0.614 1.75E-03 Cat. 1 120 67.2 0.75-SI-1223-BB2-1 0.614 1.75E-03 Cat. 1 121 67.0 0.75-SI-1315-BB1-1 0.614 1.75E-03 Cat. 1 122 67.3 0.75-SI-1323-BB1-1 0.614 1.75E-03 Cat. 1 123 67.2 0.75-SI-1327-BB1-1 0.614 1.75E-03 Cat. 1 124 67.2 0.75-SI-1327-BB1-2 0.614 1.75E-03 Cat. 1 125 67.2 0.75-SI-1327-BB1-3 0.614 1.75E-03 Cat. 1 126 67.2 0.75-SI-1328-BB2-1 0.614 1.75E-03 Cat. 1 127 128 129 130 66.8 67.1 67.0 65.7 1-RC-1003-BB1-1 1-RC-1123-BB1-1 1-RC-1422-BB1-1 1.5-RC-1412-NSS-1 0.815 0.815 0.815 1.338 in 1.49E-03 1.49E-03 ts 1.49E-03 7.98E-04 Cat. 1 Cat. 1 Cat. 1 Cat. 1 131 67.3 2(1.5)-CV-1122-BB1-1 1.338 7.98E-04 Cat. 1 132 67.1 2(1.5)-CV-1122-BB1-2 1.338 7.98E-04 Cat. 1 133 134 135 67.3 67.0 66.9 2(1.5)-CV-1124-BB1-1 2(1.5)-CV-1124-BB1-2 2(1.5)-CV-1126-BB1-1 1.338 1.338 1.338 po 7.98E-04 7.98E-04 7.98E-04 Cat. 1 Cat. 1 Cat. 1 136 66.9 2(1.5)-CV-1126-BB1-2 1.338 7.98E-04 Cat. 1 137 138 139 67.1 66.9 67.2 2(1.5)-CV-1128-BB1-1 2(1.5)-CV-1128-BB1-2 2-CV-1121-BB1-1 in g 1.338 1.338 1.689 7.98E-04 7.98E-04 4.01E-04 Cat. 1 Cat. 1 Cat. 2 140 66.9 2-CV-1121-BB1-2 1.689 4.01E-04 Cat. 2 141 142 143 66.8 66.6 66.7 2-CV-1121-BB1-3 2-CV-1122-BB1-1 2-CV-1122-BB1-2 lk 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 144 145 146 66.7 66.7 66.7 ta 2-CV-1122-BB1-3 2-CV-1122-BB1-4 2-CV-1122-BB1-5 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 147 67.0 2-CV-1122-BB1-6 1.689 4.01E-04 Cat. 2 148 149 150 151 66.7 66.6 66.6 67.1 AFT 2-CV-1124-BB1-1 2-CV-1124-BB1-10 2-CV-1124-BB1-11 2-CV-1124-BB1-12 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 152 67.0 2-CV-1124-BB1-13 1.689 4.01E-04 Cat. 2 153 66.7 2-CV-1124-BB1-2 1.689 4.01E-04 Cat. 2 154 66.7 2-CV-1124-BB1-3 1.689 4.01E-04 Cat. 2 155 156 R

66.6 66.6 2-CV-1124-BB1-4 2-CV-1124-BB1-5 1.689 1.689 4.01E-04 4.01E-04 Cat. 2 Cat. 2 157 158 159 160 D 66.7 66.8 66.7 66.7 2-CV-1124-BB1-6 2-CV-1124-BB1-7 2-CV-1124-BB1-8 2-CV-1124-BB1-9 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 161 67.2 2-CV-1126-BB1-1 1.689 4.01E-04 Cat. 2 162 66.5 2-CV-1126-BB1-10 1.689 4.01E-04 Cat. 2 163 66.6 2-CV-1126-BB1-11 1.689 4.01E-04 Cat. 2 164 67.2 2-CV-1126-BB1-2 1.689 4.01E-04 Cat. 2 continued next page . . .

Wednesday 29th April, 2015, 07:45 51 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 52 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 165 67.1 2-CV-1126-BB1-3 1.689 4.01E-04 Cat. 2 166 67.0 2-CV-1126-BB1-4 1.689 4.01E-04 Cat. 2 167 67.0 2-CV-1126-BB1-5 1.689 4.01E-04 Cat. 2 168 67.0 2-CV-1126-BB1-6 1.689 4.01E-04 Cat. 2 169 66.9 2-CV-1126-BB1-7 1.689 4.01E-04 Cat. 2 170 66.0 2-CV-1126-BB1-8 1.689 4.01E-04 Cat. 2 171 65.9 2-CV-1126-BB1-9 1.689 4.01E-04 Cat. 2 172 67.4 2-CV-1128-BB1-1 1.689 4.01E-04 Cat. 2 173 174 175 176 67.2 67.1 67.1 67.0 2-CV-1128-BB1-2 2-CV-1128-BB1-3 2-CV-1128-BB1-3A 2-CV-1128-BB1-3B 1.689 1.689 1.689 1.689 in 4.01E-04 4.01E-04 ts 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 177 67.0 2-CV-1128-BB1-4 1.689 4.01E-04 Cat. 2 178 67.0 2-CV-1128-BB1-5 1.689 4.01E-04 Cat. 2 179 180 181 67.1 66.9 66.9 2-CV-1128-BB1-6 2-CV-1128-BB1-7 2-CV-1141-BB1-1 1.689 1.689 1.689 po 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 182 67.1 2-CV-1141-BB1-2 1.689 4.01E-04 Cat. 2 183 184 185 66.8 66.5 66.1 2-RC-1003-BB1-1 2-RC-1003-BB1-2 2-RC-1120-BB1-1 in g 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 186 66.3 2-RC-1120-BB1-2 1.689 4.01E-04 Cat. 2 187 188 189 65.7 66.8 66.8 2-RC-1121-BB1-1 2-RC-1121-BB1-2 2-RC-1121-BB1-3 lk 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 190 191 192 66.8 66.9 67.0 ta 2-RC-1121-BB1-3A 2-RC-1121-BB1-3B 2-RC-1121-BB1-4 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 193 66.0 2-RC-1219-BB1-1 1.689 4.01E-04 Cat. 2 194 195 196 197 66.2 65.7 66.9 66.9 AFT 2-RC-1219-BB1-2 2-RC-1220-BB1-1 2-RC-1220-BB1-2 2-RC-1220-BB1-3 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 198 67.0 2-RC-1220-BB1-4 1.689 4.01E-04 Cat. 2 199 65.9 2-RC-1319-BB1-1 1.689 4.01E-04 Cat. 2 200 66.3 2-RC-1319-BB1-2 1.689 4.01E-04 Cat. 2 201 202 R

66.3 66.5 2-RC-1321-BB1-1 2-RC-1321-BB1-4 1.689 1.689 4.01E-04 4.01E-04 Cat. 2 Cat. 2 203 204 205 206 D 66.5 66.6 66.1 66.3 2-RC-1321-BB1-5 2-RC-1321-BB1-6 2-RC-1417-BB1-1 2-RC-1417-BB1-2 1.689 1.689 1.689 1.689 4.01E-04 4.01E-04 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 207 65.7 2-RC-1418-BB1-1 1.689 4.01E-04 Cat. 2 208 66.3 2-RC-1418-BB1-2 1.689 4.01E-04 Cat. 2 209 66.4 2-RC-1418-BB1-3 1.689 4.01E-04 Cat. 2 210 66.4 2-RC-1418-BB1-4 1.689 4.01E-04 Cat. 2 continued next page . . .

Wednesday 29th April, 2015, 07:45 52 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 53 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 211 66.6 2-RC-1418-BB1-5 1.689 4.01E-04 Cat. 2 212 66.7 2-RC-1418-BB1-6 1.689 4.01E-04 Cat. 2 213 66.4 2-RC-1419-BB1-1 1.689 4.01E-04 Cat. 2 214 66.6 2-RC-1419-BB1-2 1.689 4.01E-04 Cat. 2 215 66.6 2-RC-1419-BB1-3 1.689 4.01E-04 Cat. 2 216 66.9 2-RC-1419-BB1-4 1.689 4.01E-04 Cat. 2 217 65.9 31-RC-1102-NSS-5 1.689 4.01E-04 Cat. 2 218 65.6 31-RC-1102-NSS-6 1.689 4.01E-04 Cat. 2 219 220 221 222 65.9 65.5 65.8 65.9 31-RC-1202-NSS-5 31-RC-1202-NSS-7 31-RC-1302-NSS-5 31-RC-1402-NSS-5 1.689 1.689 1.689 1.689 in 4.01E-04 4.01E-04 ts 4.01E-04 4.01E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 223 65.6 31-RC-1402-NSS-7 1.689 4.01E-04 Cat. 2 224 65.5 2.5-RC-1003-BB1-1 2.125 2.73E-04 Cat. 2 225 226 227 65.6 65.7 65.7 2.5-RC-1003-BB1-2 2.5-RC-1003-BB1-3 2.5-RC-1003-BB1-4 2.125 2.125 2.125 po 2.73E-04 2.73E-04 2.73E-04 Cat. 2 Cat. 2 Cat. 2 228 65.7 2.5-RC-1003-BB1-5 2.125 2.73E-04 Cat. 2 229 230 231 65.8 63.0 63.0 2.5-RC-1003-BB1-6 31-RC-1102-NSS-7 31-RC-1202-NSS-6 in g 2.125 2.626 2.626 2.73E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 232 63.0 31-RC-1302-NSS-6 2.626 1.26E-04 Cat. 2 233 234 235 63.0 65.2 65.3 31-RC-1402-NSS-6 3-RC-1003-BB1-1 3-RC-1003-BB1-2 lk 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 236 237 238 65.3 64.7 64.8 ta 3-RC-1015-NSS-1 3-RC-1015-NSS-10 3-RC-1015-NSS-11 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 239 65.3 3-RC-1015-NSS-12 2.626 1.26E-04 Cat. 2 240 241 242 243 66.0 67.1 67.2 66.2 AFT 3-RC-1015-NSS-13 3-RC-1015-NSS-14 3-RC-1015-NSS-15 3-RC-1015-NSS-16 2.626 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 244 65.5 3-RC-1015-NSS-2 2.626 1.26E-04 Cat. 2 245 65.7 3-RC-1015-NSS-3 2.626 1.26E-04 Cat. 2 246 66.3 3-RC-1015-NSS-4 2.626 1.26E-04 Cat. 2 247 248 R

66.8 67.3 3-RC-1015-NSS-5 3-RC-1015-NSS-6 2.626 2.626 1.26E-04 1.26E-04 Cat. 2 Cat. 2 249 250 251 252 D 67.4 67.4 64.7 63.7 3-RC-1015-NSS-7 3-RC-1015-NSS-8 3-RC-1015-NSS-9 3-RC-1106-BB1-25 2.626 2.626 2.626 2.626 1.26E-04 1.26E-04 1.26E-04 1.26E-04 Cat. 2 Cat. 2 Cat. 2 Cat. 2 253 63.7 3-RC-1206-BB1-28 2.626 1.26E-04 Cat. 2 254 63.7 3-RC-1306-BB1-28 2.626 1.26E-04 Cat. 2 255 63.8 3-RC-1406-BB1-25 2.626 1.26E-04 Cat. 2 256 57.9 27.5-RC-1103-NSS-3 3.438 1.44E-05 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 53 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 54 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 257 59.7 27.5-RC-1103-NSS-5 3.438 1.44E-05 Cat. 3 258 60.3 27.5-RC-1303-NSS-4 3.438 1.44E-05 Cat. 3 259 59.3 27.5-RC-1403-NSS-3 3.438 1.44E-05 Cat. 3 260 59.6 27.5-RC-1403-NSS-4 3.438 1.44E-05 Cat. 3 261 59.3 31-RC-1302-NSS-7 3.438 1.44E-05 Cat. 3 262 65.9 4-CV-1001-BB1-1 3.438 1.44E-05 Cat. 3 263 66.4 4-CV-1001-BB1-2 3.438 1.44E-05 Cat. 3 264 66.4 4-CV-1118-BB1-1 3.438 1.44E-05 Cat. 3 265 266 267 268 65.6 64.4 64.0 63.1 4-CV-1118-BB1-2 4-CV-1120-BB1-1 4-CV-1120-BB1-2 4-RC-1000-BB1-1 3.438 3.438 3.438 3.438 in 1.44E-05 1.44E-05 ts 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 269 63.8 4-RC-1000-BB1-2 3.438 1.44E-05 Cat. 3 270 63.8 4-RC-1000-BB1-3 3.438 1.44E-05 Cat. 3 271 272 273 64.2 64.2 64.0 4-RC-1000-BB1-4 4-RC-1000-BB1-5 4-RC-1000-BB1-6 3.438 3.438 3.438 po 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 274 63.9 4-RC-1000-BB1-7 3.438 1.44E-05 Cat. 3 275 276 277 62.7 63.2 63.3 4-RC-1000-BB1-8 4-RC-1003-BB1-1 4-RC-1003-BB1-2 in g 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 278 63.2 4-RC-1003-BB1-3 3.438 1.44E-05 Cat. 3 279 280 281 62.8 58.4 64.7 4-RC-1003-BB1-4 4-RC-1123-BB1-1 4-RC-1123-BB1-10 lk 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 282 283 284 65.6 65.9 65.9 ta 4-RC-1123-BB1-11 4-RC-1123-BB1-12 4-RC-1123-BB1-13 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 285 66.1 4-RC-1123-BB1-14 3.438 1.44E-05 Cat. 3 286 287 288 289 65.9 63.9 63.2 61.8 AFT 4-RC-1123-BB1-15 4-RC-1123-BB1-16 4-RC-1123-BB1-17 4-RC-1123-BB1-18 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 290 61.9 4-RC-1123-BB1-19 3.438 1.44E-05 Cat. 3 291 65.9 4-RC-1123-BB1-2 3.438 1.44E-05 Cat. 3 292 62.8 4-RC-1123-BB1-20 3.438 1.44E-05 Cat. 3 293 294 R

65.9 65.9 4-RC-1123-BB1-3 4-RC-1123-BB1-4 3.438 3.438 1.44E-05 1.44E-05 Cat. 3 Cat. 3 295 296 297 298 D 66.0 66.0 65.9 66.0 4-RC-1123-BB1-5 4-RC-1123-BB1-6 4-RC-1123-BB1-7 4-RC-1123-BB1-8 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 299 64.2 4-RC-1123-BB1-9 3.438 1.44E-05 Cat. 3 300 65.3 4-RC-1126-BB1-1 3.438 1.44E-05 Cat. 3 301 64.3 4-RC-1126-BB1-2 3.438 1.44E-05 Cat. 3 302 64.0 4-RC-1126-BB1-3 3.438 1.44E-05 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 54 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 55 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 303 64.1 4-RC-1126-BB1-4 3.438 1.44E-05 Cat. 3 304 63.4 4-RC-1126-BB1-5 3.438 1.44E-05 Cat. 3 305 60.1 4-RC-1126-BB1-6 3.438 1.44E-05 Cat. 3 306 59.5 4-RC-1320-BB1-1 3.438 1.44E-05 Cat. 3 307 65.5 4-RC-1320-BB1-10 3.438 1.44E-05 Cat. 3 308 65.6 4-RC-1320-BB1-11 3.438 1.44E-05 Cat. 3 309 65.6 4-RC-1320-BB1-12 3.438 1.44E-05 Cat. 3 310 60.1 4-RC-1320-BB1-2 3.438 1.44E-05 Cat. 3 311 312 313 314 60.8 62.9 63.4 63.7 4-RC-1320-BB1-3 4-RC-1320-BB1-4 4-RC-1320-BB1-5 4-RC-1320-BB1-6 3.438 3.438 3.438 3.438 in 1.44E-05 1.44E-05 ts 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 315 64.0 4-RC-1320-BB1-7 3.438 1.44E-05 Cat. 3 316 64.4 4-RC-1320-BB1-8 3.438 1.44E-05 Cat. 3 317 318 319 65.2 64.9 65.1 4-RC-1320-BB1-9 4-RC-1323-BB1-1 4-RC-1323-BB1-2 3.438 3.438 3.438 po 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 320 65.6 4-RC-1323-BB1-3 3.438 1.44E-05 Cat. 3 321 322 323 60.7 60.2 60.0 4-RC-1323-BB1-4 4-RC-1420-BB1-1 4-RC-1422-BB1-1 in g 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 324 65.9 4-RC-1422-BB1-10 3.438 1.44E-05 Cat. 3 325 326 327 65.9 63.9 64.7 4-RC-1422-BB1-11 4-RC-1422-BB1-12 4-RC-1422-BB1-13 lk 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 328 329 330 64.9 65.3 65.9 ta 4-RC-1422-BB1-14 4-RC-1422-BB1-15 4-RC-1422-BB1-16 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 331 66.1 4-RC-1422-BB1-17 3.438 1.44E-05 Cat. 3 332 333 334 335 65.9 66.1 60.8 66.2 AFT 4-RC-1422-BB1-18 4-RC-1422-BB1-19 4-RC-1422-BB1-2 4-RC-1422-BB1-20 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 336 64.4 4-RC-1422-BB1-21 3.438 1.44E-05 Cat. 3 337 63.9 4-RC-1422-BB1-22 3.438 1.44E-05 Cat. 3 338 63.7 4-RC-1422-BB1-23 3.438 1.44E-05 Cat. 3 339 340 R

61.5 61.0 4-RC-1422-BB1-3 4-RC-1422-BB1-4 3.438 3.438 1.44E-05 1.44E-05 Cat. 3 Cat. 3 341 342 343 344 D 61.5 65.7 65.7 65.7 4-RC-1422-BB1-5 4-RC-1422-BB1-6 4-RC-1422-BB1-7 4-RC-1422-BB1-8 3.438 3.438 3.438 3.438 1.44E-05 1.44E-05 1.44E-05 1.44E-05 Cat. 3 Cat. 3 Cat. 3 Cat. 3 345 65.7 4-RC-1422-BB1-9 3.438 1.44E-05 Cat. 3 346 53.1 6-RC-1003-BB1-1 5.189 8.12E-06 Cat. 3 347 54.5 6-RC-1003-BB1-10 5.189 8.12E-06 Cat. 3 348 54.3 6-RC-1003-BB1-11 5.189 8.12E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 55 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 56 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 349 51.7 6-RC-1003-BB1-11A 5.189 8.12E-06 Cat. 3 350 50.1 6-RC-1003-BB1-11B 5.189 8.12E-06 Cat. 3 351 46.7 6-RC-1003-BB1-12 5.189 8.12E-06 Cat. 3 352 42.9 6-RC-1003-BB1-13 5.189 8.12E-06 Cat. 3 353 37.8 6-RC-1003-BB1-13A 5.189 8.12E-06 Cat. 3 354 33.7 6-RC-1003-BB1-14 5.189 8.12E-06 Cat. 3 355 53.0 6-RC-1003-BB1-2 5.189 8.12E-06 Cat. 3 356 53.0 6-RC-1003-BB1-3 5.189 8.12E-06 Cat. 3 357 358 359 360 53.3 53.5 54.1 52.4 6-RC-1003-BB1-4 6-RC-1003-BB1-5 6-RC-1003-BB1-6 6-RC-1003-BB1-7 5.189 5.189 5.189 5.189 in 8.12E-06 8.12E-06 ts 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 361 48.5 6-RC-1003-BB1-8 5.189 8.12E-06 Cat. 3 362 48.1 6-RC-1003-BB1-9 5.189 8.12E-06 Cat. 3 363 364 365 48.0 48.0 33.8 6-RC-1003-BB1-9A 6-RC-1003-BB1-9B 6-RC-1003-BB1-PRZ-1-N2-SE 5.189 5.189 5.189 po 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 366 40.7 6-RC-1004-NSS-1 5.189 8.12E-06 Cat. 3 367 368 369 42.6 46.2 41.4 6-RC-1004-NSS-2 6-RC-1004-NSS-3 6-RC-1004-NSS-4 in g 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 370 40.2 6-RC-1004-NSS-5 5.189 8.12E-06 Cat. 3 371 372 373 47.0 49.4 40.7 6-RC-1004-NSS-6 6-RC-1004-NSS-7 lk 6-RC-1004-NSS-PRZ-1-N3-SE 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 374 375 376 38.5 40.2 44.8 ta 6-RC-1009-NSS-1 6-RC-1009-NSS-2 6-RC-1009-NSS-3 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 377 40.9 6-RC-1009-NSS-4 5.189 8.12E-06 Cat. 3 378 379 380 381 37.8 36.7 38.3 41.4 AFT 6-RC-1009-NSS-5 6-RC-1009-NSS-6 6-RC-1009-NSS-7 6-RC-1009-NSS-8 5.189 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 382 44.1 6-RC-1009-NSS-9 5.189 8.12E-06 Cat. 3 383 38.7 6-RC-1009-NSS-PRZ-1-N4C-SE 5.189 8.12E-06 Cat. 3 384 35.6 6-RC-1012-NSS-1 5.189 8.12E-06 Cat. 3 385 386 R

43.2 43.7 6-RC-1012-NSS-10 6-RC-1012-NSS-11 5.189 5.189 8.12E-06 8.12E-06 Cat. 3 Cat. 3 387 388 389 390 D 37.1 38.1 38.4 41.0 6-RC-1012-NSS-2 6-RC-1012-NSS-3 6-RC-1012-NSS-4 6-RC-1012-NSS-5 5.189 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 391 41.8 6-RC-1012-NSS-6 5.189 8.12E-06 Cat. 3 392 43.1 6-RC-1012-NSS-7 5.189 8.12E-06 Cat. 3 393 42.6 6-RC-1012-NSS-8 5.189 8.12E-06 Cat. 3 394 39.9 6-RC-1012-NSS-9 5.189 8.12E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 56 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 57 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 395 35.5 6-RC-1012-NSS-PRZ-1-N4B-SE 5.189 8.12E-06 Cat. 3 396 36.2 6-RC-1015-NSS-1 5.189 8.12E-06 Cat. 3 397 43.8 6-RC-1015-NSS-10 5.189 8.12E-06 Cat. 3 398 54.8 6-RC-1015-NSS-11 5.189 8.12E-06 Cat. 3 399 56.7 6-RC-1015-NSS-12 5.189 8.12E-06 Cat. 3 400 56.9 6-RC-1015-NSS-13 5.189 8.12E-06 Cat. 3 401 56.0 6-RC-1015-NSS-14 5.189 8.12E-06 Cat. 3 402 56.0 6-RC-1015-NSS-15 5.189 8.12E-06 Cat. 3 403 404 405 406 38.1 39.4 38.3 36.2 6-RC-1015-NSS-2 6-RC-1015-NSS-3 6-RC-1015-NSS-4 6-RC-1015-NSS-5 5.189 5.189 5.189 5.189 in 8.12E-06 8.12E-06 ts 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 407 35.4 6-RC-1015-NSS-6 5.189 8.12E-06 Cat. 3 408 35.3 6-RC-1015-NSS-7 5.189 8.12E-06 Cat. 3 409 410 411 38.3 40.7 66.8 6-RC-1015-NSS-8 6-RC-1015-NSS-9 6-SI-1108-BB1-1 5.189 5.189 5.189 po 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 412 66.7 6-SI-1108-BB1-2 5.189 8.12E-06 Cat. 3 413 414 415 66.1 58.7 64.0 6-SI-1108-BB1-3 6-SI-1108-BB1-4 6-SI-1111-BB1-1 in g 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 416 63.9 6-SI-1111-BB1-2 5.189 8.12E-06 Cat. 3 417 418 419 66.9 66.8 66.1 6-SI-1208-BB1-1 6-SI-1208-BB1-2 6-SI-1208-BB1-3 lk 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 420 421 422 59.8 64.7 64.5 ta 6-SI-1208-BB1-4 6-SI-1211-BB1-1 6-SI-1211-BB1-2 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 423 63.8 6-SI-1308-BB1-1 5.189 8.12E-06 Cat. 3 424 425 426 427 65.0 65.3 64.2 53.1 AFT 6-SI-1308-BB1-2 6-SI-1308-BB1-3 6-SI-1308-BB1-4 6-SI-1327-BB1-1 5.189 5.189 5.189 5.189 8.12E-06 8.12E-06 8.12E-06 8.12E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 428 53.6 6-SI-1327-BB1-2 5.189 8.12E-06 Cat. 3 429 54.1 6-SI-1327-BB1-3 5.189 8.12E-06 Cat. 3 430 53.6 6-SI-1327-BB1-4 5.189 8.12E-06 Cat. 3 431 432 R

54.5 55.3 6-SI-1327-BB1-5 6-SI-1327-BB1-6 5.189 5.189 8.12E-06 8.12E-06 Cat. 3 Cat. 3 433 434 435 436 D 56.3 35.9 36.0 35.5 6-SI-1327-BB1-7 29-RC-1101-NSS-2 29-RC-1201-NSS-2 29-RC-1301-NSS-2 5.189 6.813 6.813 6.813 8.12E-06 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 437 46.2 8-RC-1114-BB1-1 6.813 2.27E-06 Cat. 3 438 47.8 8-RC-1114-BB1-2 6.813 2.27E-06 Cat. 3 439 46.2 8-RC-1114-BB1-3 6.813 2.27E-06 Cat. 3 440 43.3 8-RC-1114-BB1-4 6.813 2.27E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 57 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 58 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 441 39.6 8-RC-1114-BB1-5 6.813 2.27E-06 Cat. 3 442 36.3 8-RC-1114-BB1-6 6.813 2.27E-06 Cat. 3 443 46.5 8-RC-1214-BB1-1 6.813 2.27E-06 Cat. 3 444 48.0 8-RC-1214-BB1-2 6.813 2.27E-06 Cat. 3 445 46.7 8-RC-1214-BB1-3 6.813 2.27E-06 Cat. 3 446 43.7 8-RC-1214-BB1-4 6.813 2.27E-06 Cat. 3 447 40.1 8-RC-1214-BB1-5 6.813 2.27E-06 Cat. 3 448 37.1 8-RC-1214-BB1-6 6.813 2.27E-06 Cat. 3 449 450 451 452 45.0 46.6 45.6 44.5 8-RC-1324-BB1-1 8-RC-1324-BB1-2 8-RC-1324-BB1-3 8-RC-1324-BB1-4 6.813 6.813 6.813 6.813 in 2.27E-06 2.27E-06 ts 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 453 40.3 8-RC-1324-BB1-5 6.813 2.27E-06 Cat. 3 454 37.0 8-RC-1324-BB1-6 6.813 2.27E-06 Cat. 3 455 456 457 63.2 62.9 45.8 8-RH-1108-BB1-1 8-RH-1108-BB1-2 8-RH-1112-BB1-1 6.813 6.813 6.813 po 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 458 47.3 8-RH-1112-BB1-1A 6.813 2.27E-06 Cat. 3 459 460 461 46.9 64.2 63.9 8-RH-1112-BB1-2 8-RH-1208-BB1-1 8-RH-1208-BB1-2 in g 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 462 45.1 8-RH-1212-BB1-1 6.813 2.27E-06 Cat. 3 463 464 465 48.1 57.2 58.9 8-RH-1212-BB1-2 8-RH-1308-BB1-1 8-RH-1308-BB1-2 lk 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 466 467 468 46.9 52.1 48.8 ta 8-RH-1315-BB1-1 8-SI-1108-BB1-1 8-SI-1108-BB1-2 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 469 45.1 8-SI-1108-BB1-3 6.813 2.27E-06 Cat. 3 470 471 472 473 41.2 43.9 52.4 50.5 AFT 8-SI-1108-BB1-4 8-SI-1108-BB1-5 8-SI-1208-BB1-1 8-SI-1208-BB1-2 6.813 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 474 45.9 8-SI-1208-BB1-3 6.813 2.27E-06 Cat. 3 475 41.9 8-SI-1208-BB1-3A 6.813 2.27E-06 Cat. 3 476 45.0 8-SI-1208-BB1-4 6.813 2.27E-06 Cat. 3 477 478 R

48.2 35.4 8-SI-1327-BB1-1 8-SI-1327-BB1-10 6.813 6.813 2.27E-06 2.27E-06 Cat. 3 Cat. 3 479 480 481 482 D 41.1 48.8 49.2 49.9 8-SI-1327-BB1-11 8-SI-1327-BB1-2 8-SI-1327-BB1-3 8-SI-1327-BB1-4 6.813 6.813 6.813 6.813 2.27E-06 2.27E-06 2.27E-06 2.27E-06 Cat. 3 Cat. 3 Cat. 3 Cat. 3 483 51.6 8-SI-1327-BB1-5 6.813 2.27E-06 Cat. 3 484 49.7 8-SI-1327-BB1-6 6.813 2.27E-06 Cat. 3 485 45.1 8-SI-1327-BB1-7 6.813 2.27E-06 Cat. 3 486 40.3 8-SI-1327-BB1-8 6.813 2.27E-06 Cat. 3 continued next page . . .

Wednesday 29th April, 2015, 07:45 58 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 59 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 487 39.0 8-SI-1327-BB1-9 6.813 2.27E-06 Cat. 3 488 61.4 10-RH-1108-BB1-1 8.5 1.30E-06 Cat. 4 489 49.7 10-RH-1108-BB1-10 8.5 1.30E-06 Cat. 4 490 61.1 10-RH-1108-BB1-1A 8.5 1.30E-06 Cat. 4 491 61.0 10-RH-1108-BB1-2 8.5 1.30E-06 Cat. 4 492 60.9 10-RH-1108-BB1-3 8.5 1.30E-06 Cat. 4 493 60.7 10-RH-1108-BB1-4 8.5 1.30E-06 Cat. 4 494 60.7 10-RH-1108-BB1-5 8.5 1.30E-06 Cat. 4 495 496 497 498 60.8 60.2 49.0 49.2 10-RH-1108-BB1-6 10-RH-1108-BB1-7 10-RH-1108-BB1-8 10-RH-1108-BB1-9 8.5 8.5 8.5 8.5 in 1.30E-06 1.30E-06 ts 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 Cat. 4 499 62.6 10-RH-1208-BB1-1 8.5 1.30E-06 Cat. 4 500 51.1 10-RH-1208-BB1-10 8.5 1.30E-06 Cat. 4 501 502 503 52.0 62.3 62.2 10-RH-1208-BB1-11 10-RH-1208-BB1-2 10-RH-1208-BB1-3 8.5 8.5 8.5 po 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 504 61.6 10-RH-1208-BB1-4 8.5 1.30E-06 Cat. 4 505 506 507 61.3 61.4 60.6 10-RH-1208-BB1-5 10-RH-1208-BB1-6 10-RH-1208-BB1-7 in g 8.5 8.5 8.5 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 508 50.9 10-RH-1208-BB1-8 8.5 1.30E-06 Cat. 4 509 510 511 50.6 57.0 62.5 10-RH-1208-BB1-9 10-RH-1308-BB1-1 10-RH-1308-BB1-2 lk 8.5 8.5 8.5 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 512 513 514 62.6 62.5 62.8 ta 10-RH-1308-BB1-3 10-RH-1308-BB1-4 10-RH-1308-BB1-5 8.5 8.5 8.5 1.30E-06 1.30E-06 1.30E-06 Cat. 4 Cat. 4 Cat. 4 515 61.9 10-RH-1308-BB1-6 8.5 1.30E-06 Cat. 4 516 517 518 519 61.8 61.4 30.4 30.3 AFT 10-RH-1308-BB1-7 10-RH-1308-BB1-8 12-RC-1112-BB1-10 12-RC-1112-BB1-11 8.5 8.5 10.126 10.126 1.30E-06 1.30E-06 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 520 9.6 12-RC-1112-BB1-2 10.126 9.75E-07 Cat. 4 521 16.1 12-RC-1112-BB1-3 10.126 9.75E-07 Cat. 4 522 20.2 12-RC-1112-BB1-4 10.126 9.75E-07 Cat. 4 523 524 R

22.3 18.9 12-RC-1112-BB1-5 12-RC-1112-BB1-6 10.126 10.126 9.75E-07 9.75E-07 Cat. 4 Cat. 4 525 526 527 528 D 16.6 17.6 27.4 47.4 12-RC-1112-BB1-7 12-RC-1112-BB1-8 12-RC-1112-BB1-9 12-RC-1125-BB1-1 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 529 48.7 12-RC-1125-BB1-2 10.126 9.75E-07 Cat. 4 530 48.9 12-RC-1125-BB1-3 10.126 9.75E-07 Cat. 4 531 49.2 12-RC-1125-BB1-4 10.126 9.75E-07 Cat. 4 532 49.2 12-RC-1125-BB1-5 10.126 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 59 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 60 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 533 46.5 12-RC-1125-BB1-6 10.126 9.75E-07 Cat. 4 534 44.9 12-RC-1125-BB1-7 10.126 9.75E-07 Cat. 4 535 4.4 12-RC-1212-BB1-1 10.126 9.75E-07 Cat. 4 536 12.7 12-RC-1212-BB1-2 10.126 9.75E-07 Cat. 4 537 17.0 12-RC-1212-BB1-3 10.126 9.75E-07 Cat. 4 538 22.7 12-RC-1212-BB1-4 10.126 9.75E-07 Cat. 4 539 24.1 12-RC-1212-BB1-5 10.126 9.75E-07 Cat. 4 540 19.6 12-RC-1212-BB1-6 10.126 9.75E-07 Cat. 4 541 542 543 544 17.7 11.9 50.5 51.4 12-RC-1212-BB1-7 12-RC-1212-BB1-8 12-RC-1221-BB1-1 12-RC-1221-BB1-2 10.126 10.126 10.126 10.126 in 9.75E-07 9.75E-07 ts 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 545 51.0 12-RC-1221-BB1-3 10.126 9.75E-07 Cat. 4 546 49.9 12-RC-1221-BB1-4 10.126 9.75E-07 Cat. 4 547 548 549 48.4 46.4 45.1 12-RC-1221-BB1-5 12-RC-1221-BB1-6 12-RC-1221-BB1-7 10.126 10.126 10.126 po 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 550 4.6 12-RC-1221-BB1-8 10.126 9.75E-07 Cat. 4 551 552 553 4.0 23.4 24.1 12-RC-1312-BB1-1 12-RC-1312-BB1-10 12-RC-1312-BB1-11 in g 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 554 12.2 12-RC-1312-BB1-2 10.126 9.75E-07 Cat. 4 555 556 557 16.6 22.2 23.7 12-RC-1312-BB1-3 12-RC-1312-BB1-4 12-RC-1312-BB1-5 lk 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 558 559 560 19.1 17.5 7.5 ta 12-RC-1312-BB1-6 12-RC-1312-BB1-7 12-RC-1312-BB1-8 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 561 21.6 12-RC-1312-BB1-9 10.126 9.75E-07 Cat. 4 562 563 564 565 29.5 51.4 52.5 56.7 AFT 12-RH-1101-BB1-1 12-RH-1101-BB1-10 12-RH-1101-BB1-11 12-RH-1101-BB1-12 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 566 52.9 12-RH-1101-BB1-13 10.126 9.75E-07 Cat. 4 567 55.8 12-RH-1101-BB1-14 10.126 9.75E-07 Cat. 4 568 56.0 12-RH-1101-BB1-15 10.126 9.75E-07 Cat. 4 569 570 R

55.0 32.8 12-RH-1101-BB1-16 12-RH-1101-BB1-2 10.126 10.126 9.75E-07 9.75E-07 Cat. 4 Cat. 4 571 572 573 574 D 31.6 13.6 16.4 25.3 12-RH-1101-BB1-3 12-RH-1101-BB1-3A 12-RH-1101-BB1-4 12-RH-1101-BB1-5 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 575 26.1 12-RH-1101-BB1-6 10.126 9.75E-07 Cat. 4 576 25.7 12-RH-1101-BB1-7 10.126 9.75E-07 Cat. 4 577 32.0 12-RH-1101-BB1-8 10.126 9.75E-07 Cat. 4 578 52.8 12-RH-1101-BB1-9 10.126 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 60 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 61 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 579 17.9 12-RH-1201-BB1-1 10.126 9.75E-07 Cat. 4 580 28.1 12-RH-1201-BB1-10 10.126 9.75E-07 Cat. 4 581 50.0 12-RH-1201-BB1-11 10.126 9.75E-07 Cat. 4 582 51.8 12-RH-1201-BB1-12 10.126 9.75E-07 Cat. 4 583 52.2 12-RH-1201-BB1-13 10.126 9.75E-07 Cat. 4 584 55.2 12-RH-1201-BB1-14 10.126 9.75E-07 Cat. 4 585 57.8 12-RH-1201-BB1-15 10.126 9.75E-07 Cat. 4 586 57.5 12-RH-1201-BB1-16 10.126 9.75E-07 Cat. 4 587 588 589 590 56.9 22.8 26.6 27.2 12-RH-1201-BB1-17 12-RH-1201-BB1-2 12-RH-1201-BB1-3 12-RH-1201-BB1-4 10.126 10.126 10.126 10.126 in 9.75E-07 9.75E-07 ts 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 591 26.7 12-RH-1201-BB1-5 10.126 9.75E-07 Cat. 4 592 12.4 12-RH-1201-BB1-6 10.126 9.75E-07 Cat. 4 593 594 595 21.9 22.6 21.5 12-RH-1201-BB1-7 12-RH-1201-BB1-8 12-RH-1201-BB1-9 10.126 10.126 10.126 po 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 596 27.4 12-RH-1301-BB1-1 10.126 9.75E-07 Cat. 4 597 598 599 54.9 29.8 29.9 12-RH-1301-BB1-10 12-RH-1301-BB1-2 12-RH-1301-BB1-3 in g 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 600 27.6 12-RH-1301-BB1-4 10.126 9.75E-07 Cat. 4 601 602 603 31.5 53.2 52.9 12-RH-1301-BB1-5 12-RH-1301-BB1-5A 12-RH-1301-BB1-6 lk 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 604 605 606 53.0 54.5 55.0 ta 12-RH-1301-BB1-7 12-RH-1301-BB1-8 12-RH-1301-BB1-9 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 607 50.9 12-SI-1125-BB1-1 10.126 9.75E-07 Cat. 4 608 609 610 611 48.6 48.1 48.0 53.5 AFT 12-SI-1125-BB1-2 12-SI-1125-BB1-3 12-SI-1125-BB1-4 12-SI-1218-BB1-1 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 612 51.3 12-SI-1218-BB1-2 10.126 9.75E-07 Cat. 4 613 50.7 12-SI-1218-BB1-3 10.126 9.75E-07 Cat. 4 614 50.5 12-SI-1218-BB1-4 10.126 9.75E-07 Cat. 4 615 616 R

60.4 59.9 12-SI-1315-BB1-1 12-SI-1315-BB1-2 10.126 10.126 9.75E-07 9.75E-07 Cat. 4 Cat. 4 617 618 619 620 D 59.3 59.4 59.6 21.9 12-SI-1315-BB1-3 12-SI-1315-BB1-4 12-SI-1315-BB1-5 12-SI-1315-BB1-6 10.126 10.126 10.126 10.126 9.75E-07 9.75E-07 9.75E-07 9.75E-07 Cat. 4 Cat. 4 Cat. 4 Cat. 4 621 20.3 27.5-RC-1103-NSS-4 10.126 9.75E-07 Cat. 4 622 9.6 27.5-RC-1203-NSS-3 10.126 9.75E-07 Cat. 4 623 8.7 27.5-RC-1303-NSS-3 10.126 9.75E-07 Cat. 4 624 0.5 29-RC-1301-NSS-3 10.126 9.75E-07 Cat. 4 continued next page . . .

Wednesday 29th April, 2015, 07:45 61 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 62 of 173 pages

. . . continued No. Margin (lbm) Location DEGB fi NUREG 1829 Cat.

Size (in) 625 1.5 16-RC-1412-NSS-1 12.814 4.37E-07 Cat. 4 626 52.1 16-RC-1412-NSS-3 12.814 4.37E-07 Cat. 4 627 55.0 16-RC-1412-NSS-4 12.814 4.37E-07 Cat. 4 628 0.6 16-RC-1412-NSS-PRZ-1-N1-SE 12.814 4.37E-07 Cat. 4 ints po in g lk ta AFT R

D Wednesday 29th April, 2015, 07:45 62 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 63 of 173 pages 818 Acknowledgements and primary contributions 819 Work presented in this article was developed by YK.risk, LLC funded by STPNOC contract 820 BO5657, Revision 0 and Revision 1, and by Alion Science and Technology through con-821 tract BO4461, Revision 5. Reduction of CASA Grande results was performed by Jeremy 822 Tejada under the direction of John Hasenbein and funded by STPNOC grant BO4425.

823 Development of the strainer mass conservation equations was supported by Alex Zolan 824 under the direction of John Hasenbein and funded by STPNOC grant BO4425, Revision 4.

825 Seyed Reihani contributed to developing the mass conservation equations at UIUC under 826 STPNOC grant BO5270, Revision 3. The top down frequency methodology was originally 827 828 829 in developed by Elmira Popova at UT Austin, funded by STPNOC grant BO4425, Revision ts

0. Further development for implementation RoverD was supported by David Johnson and Don Wake"eld at ABS Consulting under STPNOC contract BO5760, Revision 1 and 830 Bruce Letellier at Alionscience and Technology under STPNOC contract BO4461, Revision 831 832 BO5657, Revision 1.

po

6. Work contributed by Ernie Kee is funded by STPNOC under YK.risk, LLC contract in g lk ta AFT R

D Wednesday 29th April, 2015, 07:45 63 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 64 of 173 pages 833 References 834 ACRS (2015, March 18). Advisory Committee on Reactor Safeguards Thermal Hydraulic 835 Phenomena and Reliability and Probabilistic Risk Assessment. ML15092A840 Work 836 Order Number NRC-1451, pages 1-302, Nuclear Regulatory Commission, Rockville, MA.

837 Alion Science & Technology (2008). GSI-191 Containment Recirculation Sump Evalua-838 tion: Debris Generation. ALION-CAL-STPEGS 2916-002, Revision 3, Alion Science &

839 Technology, Albuquerque, NM.

Alion Science & Technology (2009). Insulation Debris Size Distribution for Use in GSI-840 841 842 Albuquerque, NM.

in 191 Resolution. ALION-REP-ALION 2806-01, Revision 4, Alion Science & Technology, ts 843 Alion Science & Technology (2011). Erosion Testing of Small Pieces of Low Density Fiber-844 845 Technology, Albuquerque, NM.

po glass Debris - Test Report. ALION-REP-ALION 1006-04, Revision 1, Alion Science &

846 Alion Science & Technology (2014a). Risk-Informed GSI-191 Debris Transport Calculation.

847 848 in g ALION-CAL-STP 8511-08, Revision 3, Alion Science & Technology, Albuquerque, NM.

Alion Science & Technology (2014b). South Texas Reactor Building CAD Model For Use in 849 GSI-191 Analysis. ALION-SUM-WEST 2916-01, Revision 4, Alion Science & Technology, 850 Albuquerque, NM. lk 851 852 ta Alion Science & Technology (2015, April). CASA Grande Theory Manual. ALION-SPP ALION-I009-10, Alion Science & Technology, Albuquerque, NM.

853 Andreychek, T. S. and K. F. McNamee (2014, December). Comprehensive Analysis and 854 855 856 A

Test Program for GSI-191 Closure (PA-SEE-1090) - Cold Leg Break (CLB) Evalua-FT tion Method for GSI-191 Long-Term Cooling. WCAP 17788-NP, Volume 3, Revision 0, Westinghouse PWROG, Cranberry Township, PA.

857 AREVA (2008, August). South Texas Project Test Report for ECCS Strainer Testing.

AREVA NP Document 66-9088089-000, AREVA NP, 7207 IBM Drive, Charlotte, NC 858 859 28262. R 860 861 D

Hindmarsh, A. C. (1983). ODEPACK, A Systematized Collection of ODE Solvers. Vol-ume 1, pp. 55-64. North-Holland, Amsterdam (1983).

862 NEI (2004, May). Pressurized Water Reactor Sump Performance Evaluation Methodology.

863 Technical Report 04-07, Nuclear Energy Institute, 1776 I Street, Washington, DC.

864 NRC (2008). Indian Point Energy Center Corrective Actions for Generic Letter 2004-02.

865 ML082050433, Nuclear Regulatory Commission, Washington, DC.

Wednesday 29th April, 2015, 07:45 64 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 65 of 173 pages 866 NRC (2011). Regulatory Guide 1.174: An Approach for Using Probabilistic Risk As-867 sessment In Risk-Informed Decisions On Plant-Speci"c Changes to the Licensing Basis, 868 Revision 2, Nuclear Regulatory Commission, Washington, DC.

869 Ogden, N., D. Morton, and J. Tejada (2013, June). South Texas Project Risk-Informed 870 GSI-191 Evaluation: Filtration as a Function of Debris Mass on the Strainer: Fitting a 871 Parametric Physics-Based Model. Technical report, STP-RIGSI191-V03.06, The Uni-872 versity of Texas at Austin, Austin, TX.

873 Powell, G. T. (2015, March). Responses to Round 2 Requests for Additional Information 874 875 876 from Gerald T. Powell to the USNRC Document Control Desk. in Regarding STP Risk-Informed GSI-191 Licensing Application. ML15091A440, Letter ts PWROG (2011, October). Evaluation of Long - Term Cooling Considering Particulate, 877 Fibrous and Chemical Debris in the Recirculating Fluid. WCAP 16793, Pressurized 878 879 Water Reactor Owners Group, Pittsburgh, PA. po Rao, D., C. Shaer, and E. Haskin (1998, February). Drywell Debris Transport Study.

880 NUREG/CR 6369, USNRC, Washington, DC.

881 in g Tregoning, R., L. Abramson, and P. Scott (2008, April). Estimating Loss-of-Coolant Acci-882 dent (LOCA) Frequencies Through the Elicitation Process. NUREG/CR 1829, Nuclear Regulatory Commission, Washngton, DC.

883 884 lk Vaghetto, R. and Y. A. Hassan (2013). Study of debris-generated core blockage scenar-885 886 sign 261 (0), 144 - 155.

ta ios during loss of coolant accidents using RELAP5-3D. Nuclear Engineering and De-AFT R

D Wednesday 29th April, 2015, 07:45 65 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 66 of 173 pages 887 9 Acronyms 925 SLOCA Small Break Loss of Coolant Accident 926 STP South Texas Project 888 CAD Computer Aided Design 927 STL stereolithography "le format 889 CASA Grande Containment Accident Stochastic 890 Analysis (CASA) Grande 928 ZOI Zone of In"uence 891 CDF Core Damage Frequency 929 Di The break size at any particular location 930 (locations indexed by i = 1, 2, . . . , N )

892 CFD Computational "uid dynamics 893 CDF Change in core damage frequency above a 931 Dismall corresponds to the smallest break size at any 894 baseline level 932 particular location that produces more "nes 933 in the ECCS sump than the tested amount 934 895 LERF Change in large early release frequency above 896 897 898 CLB CSS a baseline level Cold Leg Break Containment Spray System ints 899 900 901 DEGB ECCS FA Double-Ended Guillotine Break Emergency Core Cooling System Fuel Assembly. Several fuel assemblies are po 902 loaded in the reactor vessel to form the 903 reactor core 904 905 906 FIDOE FIber Diusion Operations Engine; application that solves "ber mass conservation in g 907 GSI-191 Generic Safety Issue 191 - the NRC Generic 908 909 HLB Safety Issue number 191 Hot Leg Break lk 910 911 HLSO LDFG Hot Leg Switch Over ta Low Density Fiberglass (such as NUKONTM )

912 913 914 LERF A

Large Early Release Frequency FT LLOCA Large Break Loss of Coolant Accident LOCA Loss of Coolant Accident 915 916 MLOCA Medium Break Loss of Coolant Accident 917 PCT Peak Cladding Temperature 918 PRA R Probabilistic Risk Assessment 919 920 RCB D

PWROG Pressurized Water Reactor Owners Group Reactor Containment Building 921 RCFC The Reactor Containment Fan Coolers 922 RCP Reactor Coolant Pump 923 RCS Reactor Coolant System 924 RoverD Risk-informed Over Deterministic Wednesday 29th April, 2015, 07:45 66 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 67 of 173 pages 10 LDFG mass conservation solution implementation The following listings are Python source code and the inputs used to generate the results in Section 3.6. Five input "les are required for the analysis performed summarized in Table 5.

The input "les are in the .CSV text format (comma separated variables) and can be imported into (for example) the Microsoft application, EXCEL for ease of editing.

The Python source code is in Listing 13. The following lists the inputs used in the mass conservation study summarized in Section 3.6:

1. The time-dependent "ow inputs are listed in Listing 3.

in

2. Constants for high pool concentration, high "ltration eciency are listed in Listing 4.

ts

3. Constants for high pool concentration, low "ltration eciency are listed in Listing 5.

po

4. Constants for low pool concentration, low "ltration eciency are listed in Listing 6.
5. Constants for low pool concentration, high "ltration eciency are listed in Listing 7.

in g lk ta AFT R

D Wednesday 29th April, 2015, 07:45 67 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 68 of 173 pages Listing 2: Source listing for (1c) solution, Alex Zolan, UT Austin, 02 March, 2015 Recirculation / Core Debris Tracking Tool System of Dierential Equations Solver Alex Zolan Updated March 2, 2015 The purpose of the program is to simulate debris moving through a recirculating pool from which strainers can "lter out some debris, and some of the debris that passes through the strainers may attach itself to the core.

ints import time import scipy po import scipy.integrate import matplotlib matplotlib.use(Agg) in g import matplotlib.pyplot as plt import pandas import csv lk class MassCalculator(object): ta

"""Note that in initialization, we allow for inputs to be left out of the input "le and still allow the program to run using A

default values in their place. When a default value is used, FT a note is printed to the console to inform the user."""

def __init__(self, params):

  1. pool volume (gallons) and initial mass in pool (grams) if "M_p_0" in params.keys(): self.M_p_0 = params["M_p_0"]

R else:

self.M_p_0 = 3000.0 D print "M_p_0notininputs.Defaultvalueof3000used."

if "V_p" in params.keys(): self.V_p = params["V_p"]

else:

self.V_p = 50000.0 print "V_pnotininputs.Defaultvalueof50000used."

  1. Initial mass on strainers Wednesday 29th April, 2015, 07:45 68 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 69 of 173 pages if "M_s_a_0" in params.keys(): self.M_s_a_0 = params["M_s_a_0"]

else:

self.M_s_a_0 = 0.0 print "M_s_a_0notininputs.Defaultvalueof0used."

if "M_s_b_0" in params.keys(): self.M_s_b_0 = params["M_s_b_0"]

else:

self.M_s_b_0 = 0.0 print "M_s_b_0notininputs.Defaultvalueof0used."

if "M_s_c_0" in params.keys(): self.M_s_c_0 = params["M_s_c_0"]

else:

self.M_s_c_0 = 0.0 ints print "M_s_c_0notininputs.Defaultvalueof0used."

  1. initial mass on core if "M_c_0" in params.keys(): self.M_c_0 = params["M_c_0"]

else:

self.M_c_0 = 0.0 po print "M_c_0notininputs.Defaultvalueof0.0used."

in g

  1. gamma, the percentage of water "owing back to the strainers if "gamma_a" in params.keys(): self.gamma_a = params["gamma_a"]

else:

self.gamma_a = 0.0 lk print "gamma_anotininputs.Defaultvalueof0.0used."

else:

self.gamma_b = 0.0 ta if "gamma_b" in params.keys(): self.gamma_b = params["gamma_b"]

else:

A print "gamma_bnotininputs.Defaultvalueof0.0used."

if "gamma_c" in params.keys(): self.gamma_c = params["gamma_c"]

FT self.gamma_c = 0.0 print "gamma_cnotininputs.Defaultvalueof0.0used."

R

  1. strainer "ow rates in gallons per minute (gpm) if "Q_s_a" in params.keys(): self.Q_s_a = params["Q_s_a"]

D else:

self.Q_s_a = 1000.0 print "Q_s_anotininputs.Defaultvalueof1000.0used."

if "Q_s_b" in params.keys(): self.Q_s_b = params["Q_s_b"]

else:

self.Q_s_b = 1000.0 print "Q_s_bnotininputs.Defaultvalueof1000.0used."

Wednesday 29th April, 2015, 07:45 69 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 70 of 173 pages if "Q_s_c" in params.keys(): self.Q_s_c = params["Q_s_c"]

else:

self.Q_s_c = 1000.0 print "Q_s_cnotininputs.Defaultvalueof1000.0used."

  1. core "ow rate in gpm if "Q_c" in params.keys(): self.Q_c = params["Q_c"]

else:

self.Q_c = 1600.0 print "Q_cnotininputs.Defaultvalueof1600.0used."

  1. "ltration rate (function of mass) if "m" in params.keys(): self.m = params["m"]

ints else:

self.m = 0.0003391 #lower envelope po print "m("ltrationfunction)notininputs.Defaultof0.0003391 used."

else:

in self.b = 0.6560 #lower envelope g

if "b" in params.keys(): self.b = params["b"]

print "b("ltrationfunction)notininputs.Defaultof0.6560used."

lk if "M_c" in params.keys(): self.threshold = params["M_c"]

else:

ta self.threshold = 880 #lower envelope print "M_c("ltrationfunction)notininputs.Defaultof880used."

if "delta" in params.keys(): self.delta = params["delta"]

else:

A self.delta = 0.0013 #lower envelope FT print "delta("ltrationfunction)notininputs.Defaultof0.0013 used."

if "a" in params.keys(): self.a = params["a"]

else:

R self.a = 1.0 #lower envelope

  1. this upper bound is not expected to be used in most cases, so it is not D #called out in the console.,
  1. print "a ("ltration function) not in inputs. Default of 1.0 used."

def getFlowRateStrainerA(self,t):

"""returns the "ow rate out of strainer A, in gallons per minute.

This function is assumed to be known with respect to time, but currently has only a constant."""

Wednesday 29th April, 2015, 07:45 70 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 71 of 173 pages if type(self.Q_s_a) == "oat: return self.Q_s_a else:

  1. if not a constant, use the "ow rate just before the time
  1. period that exceeds the input t. otherwise, use the
  1. last "ow rate given if self.Q_s_a["t"][0] > t: return 0 for i in range(1,len(self.Q_s_a["t"])):

if self.Q_s_a["t"][i] > t:

return self.Q_s_a["vals"][i-1]

return self.Q_s_a["vals"][-1]

def getFlowRateStrainerB(self,t):

ints

"""returns the "ow rate out of strainer B, in gallons per minute.

This function is assumed to be known with respect to time, but currently has only a constant.""" po if type(self.Q_s_b) == "oat: return self.Q_s_b #if the input is a constant, just report that.

else: g

  1. if not a constant, use the "ow rate just before the time in
  1. period that exceeds the input t. otherwise, use the
  1. last "ow rate given lk if self.Q_s_b["t"][0] > t: return 0 for i in range(1,len(self.Q_s_b["t"])):

ta if self.Q_s_b["t"][i] > t:

return self.Q_s_b["vals"][i-1]

return self.Q_s_b["vals"][-1]

A def getFlowRateStrainerC(self,t):

FT

"""returns the "ow rate out of strainer C, in gallons per minute.

This function is assumed to be known with respect to time, but currently has only a constant."""

if type(self.Q_s_c) == "oat: return self.Q_s_c R

else:

  1. if not a constant, use the "ow rate just before the time D #period that exceeds the input t. otherwise, use the
  1. last "ow rate given if self.Q_s_c["t"][0] > t: return 0 for i in range(1,len(self.Q_s_c["t"])):

if self.Q_s_c["t"][i] > t:

return self.Q_s_c["vals"][i-1]

return self.Q_s_c["vals"][-1]

Wednesday 29th April, 2015, 07:45 71 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 72 of 173 pages def getFlowRateCore(self, t):

"""returns the "ow rate through the core, in gallons per minute.

This function is assumed to be known with respect to time."""

if type(self.Q_c) == "oat: return self.Q_c else:

  1. if not a constant, use the "ow rate just before the time
  1. period that exceeds the input t. otherwise, use the
  1. last "ow rate given if self.Q_c["t"][0] > t: return 0 for i in range(1,len(self.Q_c["t"])):

if self.Q_c["t"][i] > t:

return self.Q_c["vals"][i-1]

ints return self.Q_c["vals"][-1]

def getFiltrationRate(self,mass):

po g

"""returns the "ltration rate (fraction between 0 and 1) of debris through the strainer. (Note the mass is total for in a strainer, and there are 20 modules, with the "ltration function relating to the per module mass - so we divide lk by 20 to get the per-module mass.

mass -- amount of debris currently on the strainer (grams) ta retval - fraction between 0 and 1 indicating how the proportion of mass that is caught and added to the strainer else:

A if (mass/20.0) <= self.threshold:

return (mass/20.0)*self.m + self.b FT return (self.threshold*self.m + self.b) + (self.a - self.threshold*self.m -

self.b) * (1-scipy.exp(-self.delta * ((mass/20.0)-self.threshold) ) )

R def getDeltaMassStrainerA(self, masses, t):

"""Calculates the rate of change of mass on strainer A.

D masses -- mass of debris in the dierent parts of the recirculation system:

masses[0] = Pool (M_p) masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B) masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c)

Wednesday 29th April, 2015, 07:45 72 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 73 of 173 pages t -- time retval -- rate of change of mass on Strainer A."""

return self.getFlowRateStrainerA(t) * (masses[0] / self.V_p)

  • self.

getFiltrationRate(masses[1])

def getDeltaMassStrainerB(self, masses, t):

"""Calculates the rate of change of mass on strainer B.

masses -- mass of debris in the dierent parts of the recirculation system:

masses[0] = Pool (M_p) masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B) masses[3] = Strainer C (M_s_C) ints masses[4] = Core (M_c) t -- time po retval -- rate of change of mass on Strainer B."""

return self.getFlowRateStrainerB(t) * (masses[0] / self.V_p)

  • self.

getFiltrationRate(masses[2])

in def getDeltaMassStrainerC(self, masses, t):

g

"""Calculates the rate of change of mass on strainer C.

lk masses -- mass of debris in the dierent parts of the recirculation system:

masses[0] = Pool (M_p) ta masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B)

A masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c) t -- time FT retval -- rate of change of mass on Strainer C."""

return self.getFlowRateStrainerC(t) * (masses[0] / self.V_p)

  • self.

getFiltrationRate(masses[3])

R def getNetPassThroughRate(self,masses,t):

D """Calculates the weighted average pass-through rate of debris through the strainers and to the core.

result is weighted by "ow rate to the core (given by the gamma term and "ow rate).

masses -- mass of debris in the dierent parts of the system:

recirculation system:

masses[0] = Pool (M_p)

Wednesday 29th April, 2015, 07:45 73 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 74 of 173 pages masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B) masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c) t -- time retval -- weighted average of debris "ltered by the strainers"""

if self.getFlowRateStrainerA(t) + self.getFlowRateStrainerB(t) + self.

getFlowRateStrainerC(t) == 0: return 1.0 else: return ( self.getFlowRateStrainerA(t) * (1-self.getFiltrationRate(masses

[1])) * (1-self.gamma_a)

[2])) * (1-self.gamma_b) in

+ self.getFlowRateStrainerB(t) * (1-self.getFiltrationRate(masses ts

+ self.getFlowRateStrainerC(t) * (1-self.getFiltrationRate(masses

[3])) * (1-self.gamma_c) ) / \

po

( self.getFlowRateStrainerA(t) * (1-self.gamma_a) +

self.getFlowRateStrainerB(t) * (1-self.gamma_b) +

self.getFlowRateStrainerC(t) * (1-self.gamma_c) )

def getDeltaMassCore(self, masses, t):

in g

"""Calculates the rate of change of debris on the core."""

return self.getFlowRateCore(t) * (masses[0] / self.V_p) * (self.

lk getNetPassThroughRate(masses,t))

ta def getDeltaMassPool(self,masses,t):

"""Calculates the rate of change of debris in the pool."""

return -1.0*( self.getDeltaMassCore(masses,t)

AFT

+ self.getDeltaMassStrainerA(masses, t)

+ self.getDeltaMassStrainerB(masses, t)

+ self.getDeltaMassStrainerC(masses, t) )

def getAllDeltas(self, masses, t):

"""Gets the rate of change of debris in all locations."""

R return scipy.array( [ self.getDeltaMassPool(masses,t),

self.getDeltaMassStrainerA(masses,t),

D self.getDeltaMassStrainerB(masses,t),

self.getDeltaMassStrainerC(masses,t),

self.getDeltaMassCore(masses,t) ] )

def solveForCoreMass(self, t):

"""Runs the ODE integrator from Pythons ODE library, Wednesday 29th April, 2015, 07:45 74 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 75 of 173 pages with the delta functions and initial values arranged in order: pool, strainer A, B, C, and Core.

Note: We use the librarys default solver, LSODA, for this set of dierential equations."""

return scipy.integrate.odeint(self.getAllDeltas, scipy.array([self.M_p_0, self.M_s_a_0, self.M_s_b_0, self.M_s_c_0, self.M_c_0]

),

t, mxstep=10000000 )

ints def printEchoIn(self,"lename = "echoin.csv"):

and I/O checking."""

out"le = open("lename,w) po

"""Prints all model parameters to "le. Used for debugging out"le.write("Modelparametersused:\n\n")g out"le.write("FiltrationFunctionParameterValues:\n")

out"le.write("m,%s\n" % self.m) in out"le.write("b,%s\n" % self.b) lk out"le.write("M_c,%s\n" % self.threshold) out"le.write("delta,%s\n" % self.delta) ta out"le.write("a,%s\n\n" % self.a) out"le.write("InitialMassesandStrainerValues:\n")

out"le.write("M_p_0,%s\n" % self.M_p_0)

A out"le.write("V_p,%s\n" % self.V_p) out"le.write("M_s_a_0,%s\n" % self.M_s_a_0)

FT out"le.write("M_s_b_0,%s\n" % self.M_s_b_0) out"le.write("M_s_c_0,%s\n" % self.M_s_c_0) out"le.write("FlowRatesovertime:\n")

if type(self.Q_s_a) == "oat: out"le.write("Q_s_a,%s\n" % self.Q_s_a)

R else:

out"le.write("t,Q_s_a\n")

D for idx in range(len(self.Q_s_a["t"])):

out"le.write("%s,%s\n" % (self.Q_s_a["t"][idx],self.Q_s_a["vals"][

idx]))

out"le.write("\n")

if type(self.Q_s_b) == "oat: out"le.write("Q_s_b,%s\n" % self.Q_s_b) else:

out"le.write("t,Q_s_b\n")

Wednesday 29th April, 2015, 07:45 75 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 76 of 173 pages for idx in range(len(self.Q_s_b["t"])):

out"le.write("%s,%s\n" % (self.Q_s_b["t"][idx],self.Q_s_b["vals"][

idx]))

out"le.write("\n")

if type(self.Q_s_c) == "oat: out"le.write("Q_s_c,%s\n" % self.Q_s_c) else:

out"le.write("t,Q_s_c\n")

for idx in range(len(self.Q_s_c["t"])):

out"le.write("%s,%s\n" % (self.Q_s_c["t"][idx],self.Q_s_c["vals"][

idx]))

out"le.write("\n") ints if type(self.Q_c) == "oat: out"le.write("Q_c,%s\n" % self.Q_c) else:

out"le.write("t,Q_c\n")

for idx in range(len(self.Q_c["t"])): po out"le.write("%s,%s\n" % (self.Q_c["t"][idx],self.Q_c["vals"][idx]))

out"le.write("\n")

def ReadParams(time_"lename, initials_"lename):

in g

"""Serves as the input reader for this model. Assumes there is one "le that reads as a table of time-based inputs and lk another "le with initial and model values. the output is a dictionary that is used to initialize the MassCalculator class.

params = {}

ta

  1. read in initials and constants "le A

initials_"le = csv.reader(open(initials_"lename, rU))

for line in initials_"le:

FT if len(line) > 1:

try: params[line[0)) = "oat(line[1])

except ValueError: pass

  1. read in time-based inputs "le R

time_df = pandas.read_csv(time_"lename)

  1. print time_df D

params["Q_s_a"] = {}

params["Q_s_a"]["t"] = time_df.t.values params["Q_s_a"]["vals"] = time_df.Q_s_a.values params["Q_s_b"] = {}

params["Q_s_b"]["t"] = time_df.t.values params["Q_s_b"]["vals"] = time_df.Q_s_b.values params["Q_s_c"] = {}

Wednesday 29th April, 2015, 07:45 76 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 77 of 173 pages params["Q_s_c"]["t"] = time_df.t.values params["Q_s_c"]["vals"] = time_df.Q_s_c.values params["Q_c"] = {}

params["Q_c"]["t"] = time_df.t.values params["Q_c"]["vals"] = time_df.Q_c.values return params if __name__ == "__main__":

time_"lename = raw_input("Pleaseenterthenameofthetime-indexed inputs"le:")

  1. time_"lename = "time.csv" ints initials_"lename = raw_input("Pleaseenterthenameoftheconstantinputs "le:")
  1. initials_"lename = "const.csv" po solver = MassCalculator(ReadParams(time_"lename, initials_"lename))

timespan = "oat(raw_input("Pleaseenterthedesiredtimespan(minutes):"))

  1. timespan = 1000 g out"le = raw_input("Pleaseentertheresults"lename(noextension):")
  1. out"le = "DEMO" in
  1. create_png = raw_input("Create graph summary of output (y/n)? ")

clock = time.time() lk t = scipy.linspace(0,timespan,1001) elapsed = time.time() - clock ta sol = solver.solveForCoreMass(t).T print "Calculationscompletedin"+str(elapsed)+"seconds.Creatingoutput "les."

A

  1. Creating csv table FT output = open(out"le+".csv",w) output.write("t,M_p,M_s_a,M_s_b,M_s_c,M_c\n")

for idx in range(len(sol[0])):

output.write(str(t[idx])+","+str(sol[0][idx])+","+str(sol[1][idx])+","+str(sol R [2][idx])+","+str(sol[3][idx])+","+str(sol[4][idx])+"\n")

output.close()

D

  1. Creating 2x2 "gure of plots of debris levels over time.
  1. If plotting cant be done here, skip this step.

try:

"g, axes = plt.subplots(2,2) axes[0, 0].plot(t,sol[1])

axes[0, 0].set_title(DebrisonstrainerAovertime) axes[0, 1].plot(t,sol[2])

Wednesday 29th April, 2015, 07:45 77 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 78 of 173 pages axes[0, 1].set_title(DebrisonstrainerBovertime) axes[1, 0].plot(t,sol[3])

axes[1, 0].set_title(DebrisonstrainerCovertime) axes[1, 1].plot(t,sol[4])

axes[1, 1].set_title(Debrisoncoreovertime) plt.save"g(out"le+".png")

except TypeError: pass

  1. print model parameters solver.printEchoIn()

ints po in g lk ta AFT R

D Wednesday 29th April, 2015, 07:45 78 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 79 of 173 pages Listing 3: Mass conservation solver, time-dependent inputs t,Q_s_a,Q_s_b,Q_s_c,Q_c 0.00,7200,7200,7200,610.00 8.33,7200,7200,7200,565.81 41.67,7200,7200,7200,520.19 75.00,7200,7200,7200,419.82 108.33,7200,7200,7200,370.37 141.67,7200,7200,7200,340.83 225.00,7200,7200,7200,319.87 308.33,7200,7200,7200,286.78 641.67,7200,7200,7200,265.56 ints 975.00,7200,7200,7200,220.91 1308.33,7200,7200,7200,197.62 1641.67,7200,7200,7200,182.46 2475.00,7200,7200,7200,171.01 po 6641.67,7200,7200,7200,151.19 9975.00,7200,7200,7200,107.08 13308.33,7200,7200,7200,90.92 in g 16641.67,7200,7200,7200,80.49 lk ta AFT R

D Wednesday 29th April, 2015, 07:45 79 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 80 of 173 pages Listing 4: Input listing for the mass conservation solver: constants for High Pool Concentration, High Filtration Eciency Initial Mass:

M_p_0,249700 M_s_a_0,0 M_s_b_0,0 M_s_c_0,0 M_c_0,0 Pool Volume:

V_p,300000 Strainer Recirculation Rates::

gamma_a,0 ints gamma_b,0.33 gamma_c,0.33 po Filtration Function Parameters (see Ogden Tejada and Morton STP-RIGSI1913V03

.06):

m,0.0003723 b,0.7059 M_c,790 in g delta,0.0318 lk ta AFT R

D Wednesday 29th April, 2015, 07:45 80 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 81 of 173 pages Listing 5: Input listing for the mass conservation solver: constants for High Pool Concentration, Low Filtration Eciency Initial Mass:

M_p_0,249700 M_s_a_0,0 M_s_b_0,0 M_s_c_0,0 M_c_0,0 Pool Volume:

V_p,300000,,,,

Strainer Recirculation Rates::

gamma_a,0 ints gamma_b,0.33 gamma_c,0.33 po Filtration Function Parameters (see Ogden Tejada and Morton STP-RIGSI1913V03

.06):

m,0.0003391 b,0.656 M_c,880 in g delta,0.0013 lk ta AFT R

D Wednesday 29th April, 2015, 07:45 81 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 82 of 173 pages Listing 6: Input listing for the mass conservation solver: constants for Low Pool Concentration, Low Filtration Eciency Initial Mass:

M_p_0,87068.12 M_s_a_0,0 M_s_b_0,0 M_s_c_0,0 M_c_0,0 Pool Volume:

V_p,550000 Strainer Recirculation Rates::

gamma_a,0 ints gamma_b,0.33 gamma_c,0.33 po Filtration Function Parameters (see Ogden Tejada and Morton STP-RIGSI1913V03

.06):

m,0.0003391 b,0.656 M_c,880 in g delta,0.0013 lk ta AFT R

D Wednesday 29th April, 2015, 07:45 82 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 83 of 173 pages Listing 7: Input listing for the mass conservation solver: constants for Low Pool Concentration, Low Filtration Eciency Initial Mass:

M_p_0,87068.12 M_s_a_0,0 M_s_b_0,0 M_s_c_0,0 M_c_0,0 Pool Volume:

V_p,550000 Strainer Recirculation Rates::

gamma_a,0 ints gamma_b,0.33 gamma_c,0.33 po Filtration Function Parameters (see Ogden Tejada and Morton STP-RIGSI1913V03

.06):

m,0.0003723 b,0.7059 M_c,790 in g delta,0.0318 lk ta AFT R

D Wednesday 29th April, 2015, 07:45 83 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 84 of 173 pages 11 Top-down LOCA frequency solution implementation The following listings are Python source code and the inputs used to generate the results in Section 4.4 (Results). The output of the frequency application is directed to the screen via a print statement (see last four lines of Listing 8). Input "les are required for the exceedence frequency quantiles at dierent break sizes, a weld list that has the number and inside diameter of welds in the plant within the GSI-191 scope, and a list of the Dismall from the RoverD f etch stage. The input "les are in the .CSV text format (comma separated variables) and can be imported into (for example) the Microsoft application, EXCEL for ease of editing.

in NOTE: The frequency results in Table 12, Table 13, Table 14, and Table 15 were not from ts the Python application but rather a spreadsheet implementation of the top-down method.

In the following, input "les for computing the results shown in Table 8 are listed:

po

1. The arithmetic mean frequency table (from Tregoning et al. (2008)) input is Listing 9.
2. The geometric mean frequency table (from Tregoning et al. (2008)) input is Listing 10.
3. The weld list (ID and count) input is shown in Listing 11.

g

4. The pipe break table from RoverD fetch is listed in Listing 12.

in lk Listing 8: Source listing for (5) solution, Alex Zolan, UT Austin, 27 February, 2015 LOCA Frequency Calculator Alex Zolan Updated February 27, 2015 ta A

The purpose of the program is to estimate the frequency of critical FT breaks that can occur We assume that any pipe that has a diameter as large or larger than any critical break size could experience such a break, and that each possible pipe has the same chance of having such a break.

""" R import pandas D

import scipy class NUREG_1829_Freqs(object):

"""This class manages the NUREG-1829 frequencies as given by an input "le, which has the the break size, mean, and 5th, 50th and 95th exceedance break frequencies for a set number of categories."""

Wednesday 29th April, 2015, 07:45 84 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 85 of 173 pages def __init__(self,nureg_"le):

We start with a dataframe and take the break sizes and each sumimary statistic as their own independent list.

df = pandas.read_csv(nureg_"le)

  1. self.categories = df.Category.values self.sizes = df.Break_Size.values self.means = df.Mean.values self.P5 = df.P5.values self.P50 = df.P50.values self.P95 = df.P95.values ints def "ndFirstExceedingIndex(self,size):

"""Finds the index of the "rst size that is larger than the given size.

po size -- break size, in inches retval - index from sizes object"""

in g assert size >= self.sizes[0], "SizeoutsideofNUREGfound.Aborting."

for idx, s in enumerate(self.sizes):

if s >= size: return idx return -1 lk ta def getFrequency(self,size,stat):

"""Returns the exceedance frequency of a given break size uses NUREG 1829 values and linear interpolation to "nd A

the best .

FT size -- break size, in inches stat -- desired summary statistic retval - summary statistic frequency for break size"""

idx = self."ndFirstExceedingIndex(size)

R assert idx >= 0, "SizeoutsideofNUREGFound.Aborting."

if idx == 0: return self.getStat(0,stat)

D lower = self.getStat(idx-1,stat) upper = self.getStat(idx,stat) frac = (size-self.sizes[idx-1])/(self.sizes[idx]-self.sizes[idx-1])

  1. print "Frac Calc",size,lower,upper,self.sizes[idx-1],self.sizes[idx]

return lower + (upper-lower)*frac def getStat(self,idx,stat):

Wednesday 29th April, 2015, 07:45 85 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 86 of 173 pages

"""Returns a summary statistic based on the object desired.

idx -- index of the desire list to return stat -- desired summary statistic retval - summary statistic frequency from NUREG-1829"""

if stat == "P5": return self.P5[idx]

if stat == "P50": return self.P50[idx]

if stat == "P95": return self.P95[idx]

if stat == "Mean": return self.means[idx]

class LOCAEventCalculator(object): ints

"""This class acts as the calculator for LOCA Events. It calls frequencies from the NUREG_1829_Freqs object, and determines the probability of a particular pipe breaking by "nding the number of pipes that could handle such a break. po breaksFile -- location of the "le that contains all pipes and g

the weld break sizes that would cause a signi"cant event weldsFile -- location of the "le that contains a summary of the number of welds of each size/type in lk def __init__(self,breaksFile,weldsFile):

self.breaks_df = pandas.read_csv(breaksFile) ta self.welds_df = pandas.read_csv(weldsFile) def getPipesOfExceedingSize(self,breakSize):

"""returns the number of pipes in from the welds dataframe A

that have a diameter that meets or exceeds a given break size, given the input breakSize."""

FT return scipy.sum(self.welds_df[self.welds_df.pipe_type

>= breakSize].number_of_welds.values) def getSumOfAllBreaks(self,stat,nuregFile):

"""calculates the expected frequency of LOCA events based R

on calculating the exceedance frequency of the break size and then dividing by the number of pipes that could have D a break of that size in the plant (as given by the welds "le). This term is calculated for each pipe in the pipebreaks "le (when a nonzero break size is included) and then summed to get the result.

nuregFile -- table of NUREG-1829 frequencies.

retval -- expected frequency of LOCA events/CY."""

Wednesday 29th April, 2015, 07:45 86 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 87 of 173 pages nureg = NUREG_1829_Freqs(nuregFile) sum_freqs = 0.0 for i,rowdata in self.breaks_df.iterrows():

if self.breaks_df.Break_size[i] == 0: continue breakFreq = nureg.getFrequency(self.breaks_df.Break_size[i],stat) numPipes = self.getPipesOfExceedingSize(self.breaks_df.Break_size[i])

sum_freqs += breakFreq / numPipes

  1. print self.breaks_df.Break_size[i],breakFreq,numPipes return sum_freqs if __name__ == "__main__": ints weldsFile = raw_input("Pleaseenterthenameoftheweldsinputs"le:")
  1. weldsFile = "welds.csv" breaksFile = raw_input("Pleaseenterthenameofthepipe/breaksizes"le:

")

  1. breaksFile = "pipebreaks.csv" po nuregFile = raw_input("PleaseenterthenameoftheNUREGfrequencies"le
")
  1. nuregFile = "NUREG_GM.csv" in locas = LOCAEventCalculator(breaksFile,weldsFile) g
  1. print locas.breaks_df[locas.breaks_df.Break_size > 0]
  1. print locas.welds_df lk P5Freq = locas.getSumOfAllBreaks("P5",nuregFile) ta P50Freq = locas.getSumOfAllBreaks("P50",nuregFile)

P95Freq = locas.getSumOfAllBreaks("P95",nuregFile) meanFreq = locas.getSumOfAllBreaks("Mean",nuregFile)

A print "TotalexpectedfrequencyofeventsatP5:"+str(P5Freq)+"events/CY FT print "TotalexpectedfrequencyofeventsatP50:"+str(P50Freq)+"events/

CY" print "TotalexpectedfrequencyofeventsatP95:"+str(P95Freq)+"events/

CY" R

print "TotalexpectedfrequencyofeventsatMean:"+str(meanFreq)+"

events/CY" D

Listing 9: Input listing for the Arithmetic Means quantiles. Taken from NUREG-1829, Table 13 Category,Break_Size,P5,P50,Mean,P95 Cat1,0.5,8.10E-04,4.80E-03,1.00E-02,3.60E-02 Cat2,1.625,4.20E-05,7.00E-04,3.00E-03,1.20E-02 Wednesday 29th April, 2015, 07:45 87 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 88 of 173 pages Cat3,3,1.30E-06,1.90E-05,7.30E-05,2.90E-04 Cat4,7,6.90E-08,1.30E-06,9.40E-06,3.00E-05 Cat5,14,9.90E-09,2.60E-07,2.40E-06,7.20E-06 Cat6,31,5.90E-09,1.50E-07,1.50E-06,5.20E-06 Listing 10: Input listing for the Geometric Means quantiles. Taken from NUREG-1829, Table 19 Category,Break_Size,P5,P50,P95,Mean Cat1,0.5,6.80E-05,6.30E-04,7.10E-03,1.90E-03 Cat2,1.625,5.00E-06,8.90E-05,1.60E-03,4.20E-04 Cat3,3,2.14E-07,3.40E-06,6.10E-05,1.60E-05 Cat4,7,1.40E-08,3.10E-07,6.10E-06,1.60E-06 ints Cat5,14,4.10E-10,1.20E-08,5.80E-07,2.00E-07 Cat6,31,3.49E-11,1.19E-09,8.00E-08,2.90E-08 po Listing 11: Input listing for the welds in the scope of GSI-191 0.612,32,,0.75, in g pipe_type,number_of_welds,,Pipe size (stainless schedule 160),

0.815,3,,1, 1.338,9,,1.5, 1.687,85,,2, lk 2.125,6,,2.5, 2.624,26,,3, 3.438,90,,4, ta 5.187,88,,6, 6.813,54,,8, 8.5,30,,10, 10.126,131,,12, AFT 12.814,10,,16, 27.5,16,,27.5,Spool/forged R

29,20,,29,Spool/forged 31,28,,31,Spool/forged D Listing 12: Input listing from the RoverD fetch stage for the welds in the scope of GSI-191 Number,Line_Number,Location_Name,System,Category,Pipe_ID,Break_size 1,2-CV-1122-BB1,0.75-CV-1122-BB1-1,CV Small Bore,6B-1,0.614,0 2,2-CV-1122-BB1,0.75-CV-1122-BB1-2,CV Small Bore,6B-1,0.614,0 3,2-CV-1124-BB1,0.75-CV-1124-BB1-1,CV Small Bore,6B-1,0.614,0 Wednesday 29th April, 2015, 07:45 88 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 89 of 173 pages 4,2-CV-1124-BB1,0.75-CV-1124-BB1-2,CV Small Bore,6B-1,0.614,0 5,2-CV-1126-BB1,0.75-CV-1126-BB1-1,CV Small Bore,6B-1,0.614,0 6,2-CV-1126-BB1,0.75-CV-1126-BB1-2,CV Small Bore,6B-1,0.614,0 7,2-CV-1128-BB1,0.75-CV-1128-BB1-1,CV Small Bore,6B-1,0.614,0 8,2-CV-1128-BB1,0.75-CV-1128-BB1-2,CV Small Bore,6B-1,0.614,0 9,4-RC-1003-BB1,0.75-RC-1001-BB1-1,RC Small Bore,6B-1,0.614,0 10,4-RC-1000-BB1,0.75-RC-1002-BB2-1,RC Small Bore,6B-1,0.614,0 11,12-RC-1112-BB1,0.75-RC-1112-BB1-1,RC Small Bore,6B-1,0.614,0 12,8-RC-1114-BB1,0.75-RC-1114-BB1-1,RC Small Bore,6B-1,0.614,0 13,12-RC-1125-BB1,0.75-RC-1125-BB1-1,SI-ACC-CL1 Small Bore,6B-1,0.614,0 in 14,12-RC-1125-BB1,0.75-RC-1125-BB1-2,SI-ACC-CL1 Small Bore,6B-1,0.614,0 15,4-RC-1126-BB1,0.75-RC-1126-BB1-1,RC Small Bore,6B-1,0.614,0 ts 16,12-RC-1212-BB1,0.75-RC-1212-BB1-1,RC Small Bore,6B-1,0.614,0 17,8-RC-1214-BB1,0.75-RC-1214-BB1-1,RC Small Bore,6B-1,0.614,0 po 18,12-RC-1221-BB1,0.75-RC-1221-BB1-1,SI-ACC-CL2 Small Bore,6B-1,0.614,0 19,12-RC-1221-BB1,0.75-RC-1221-BB1-2,SI-ACC-CL2 Small Bore,6B-1,0.614,0 20,12-RC-1312-BB1,0.75-RC-1312-BB1-1,RC Small Bore,6B-1,0.614,0 g

21,8-RC-1324-BB1,0.75-RC-1324-BB1-1,RC Small Bore,6B-1,0.614,0 22,4-RC-1422-BB1,0.75-RC-1423-BB1-1,RC Small Bore,6B-1,0.614,0 in 23,8-SI-1108-BB1,0.75-SI-1130-BB2-1,RC Small Bore,6B-1,0.614,0 24,12-SI-1125-BB1,0.75-SI-1132-BB1-1,RC Small Bore,6B-1,0.614,0 lk 25,12-SI-1218-BB1,0.75-SI-1218-BB1-1,SI Small Bore,6B-1,0.614,0 26,8-SI-1208-BB1,0.75-SI-1223-BB2-1,RC Small Bore,6B-1,0.614,0 ta 27,12-SI-1315-BB1,0.75-SI-1315-BB1-1,SI-ACC Small Bore,6B-1,0.614,0 28,12-SI-1315-BB1,0.75-SI-1323-BB1-1,SI-ACC Small Bore,6B-1,0.614,0 29,6-SI-1327-BB1,0.75-SI-1327-BB1-1,SI Small Bore,6B-1,0.614,0 A

30,8-SI-1327-BB1,0.75-SI-1327-BB1-2,SI Small Bore,6B-1,0.614,0 31,8-SI-1327-BB1,0.75-SI-1327-BB1-3,SI Small Bore,6B-1,0.614,0 FT 32,8-SI-1327-BB1,0.75-SI-1328-BB2-1,SI Small Bore,6B-1,0.614,0 33,6-RC-1003-BB1,1-RC-1003-BB1-1,RC Small Bore,6B-2,0.815,0 34,4-RC-1123-BB1,1-RC-1123-BB1-1,RC Small Bore,6B-2,0.815,0 35,4-RC-1422-BB1,1-RC-1422-BB1-1,RC Small Bore,6B-2,0.815,0 R

36,16-RC-1412-NSS,1.5-RC-1412-NSS-1,RC,6A-1,1.338,0 37,2(1.5)-CV-1122-BB1,2(1.5)-CV-1122-BB1-1,CV - RCP1A,8C-1,1.338,0 D

38,2(1.5)-CV-1122-BB1,2(1.5)-CV-1122-BB1-2,CV - RCP1A,8C-1,1.338,0 39,2(1.5)-CV-1124-BB1,2(1.5)-CV-1124-BB1-1,CV - RCP1B,8C-1,1.338,0 40,2(1.5)-CV-1124-BB1,2(1.5)-CV-1124-BB1-2,CV - RCP1B,8C-1,1.338,0 41,2(1.5)-CV-1126-BB1,2(1.5)-CV-1126-BB1-1,CV - RCP1C,8C-1,1.338,0 42,2(1.5)-CV-1126-BB1,2(1.5)-CV-1126-BB1-2,CV - RCP1C,8C-1,1.338,0 43,2(1.5)-CV-1128-BB1,2(1.5)-CV-1128-BB1-1,CV - RCP1D,8C-1,1.338,0 44,2(1.5)-CV-1128-BB1,2(1.5)-CV-1128-BB1-2,CV - RCP1D,8C-1,1.338,0 Wednesday 29th April, 2015, 07:45 89 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 90 of 173 pages 45,2-CV-1121-BB1,2-CV-1121-BB1-1,CV - PZR Auxiliary Spray Line,8A,1.689,0 46,2-CV-1121-BB1,2-CV-1121-BB1-2,CV - PZR Auxiliary Spray Line,8A,1.689,0 47,2-CV-1121-BB1,2-CV-1121-BB1-3,CV - PZR Auxiliary Spray Line,8A,1.689,0 48,2-CV-1122-BB1,2-CV-1122-BB1-1,CV - RCP1A,8C-2,1.689,0 49,2-CV-1122-BB1,2-CV-1122-BB1-2,CV - RCP1A,8C-2,1.689,0 50,2-CV-1122-BB1,2-CV-1122-BB1-3,CV - RCP1A,8C-2,1.689,0 51,2-CV-1122-BB1,2-CV-1122-BB1-4,CV - RCP1A,8C-2,1.689,0 52,2-CV-1122-BB1,2-CV-1122-BB1-5,CV - RCP1A,8C-2,1.689,0 53,2-CV-1122-BB1,2-CV-1122-BB1-6,CV - RCP1A,8C-2,1.689,0 54,2-CV-1124-BB1,2-CV-1124-BB1-1,CV - RCP1B,8C-2,1.689,0 55,2-CV-1124-BB1,2-CV-1124-BB1-2,CV - RCP1B,8C-2,1.689,0 56,2-CV-1124-BB1,2-CV-1124-BB1-3,CV - RCP1B,8C-2,1.689,0 57,2-CV-1124-BB1,2-CV-1124-BB1-4,CV - RCP1B,8C-2,1.689,0 ints 58,2-CV-1124-BB1,2-CV-1124-BB1-5,CV - RCP1B,8C-2,1.689,0 po 59,2-CV-1124-BB1,2-CV-1124-BB1-6,CV - RCP1B,8C-2,1.689,0 60,2-CV-1124-BB1,2-CV-1124-BB1-7,CV - RCP1B,8C-2,1.689,0 61,2-CV-1124-BB1,2-CV-1124-BB1-8,CV - RCP1B,8C-2,1.689,0 g

62,2-CV-1124-BB1,2-CV-1124-BB1-9,CV - RCP1B,8C-2,1.689,0 63,2-CV-1124-BB1,2-CV-1124-BB1-10,CV - RCP1B,8C-2,1.689,0 in 64,2-CV-1124-BB1,2-CV-1124-BB1-11,CV - RCP1B,8C-2,1.689,0 65,2-CV-1124-BB1,2-CV-1124-BB1-12,CV - RCP1B,8C-2,1.689,0 lk 66,2-CV-1124-BB1,2-CV-1124-BB1-13,CV - RCP1B,8C-2,1.689,0 67,2-CV-1126-BB1,2-CV-1126-BB1-1,CV - RCP1C,8C-2,1.689,0 ta 68,2-CV-1126-BB1,2-CV-1126-BB1-2,CV - RCP1C,8C-2,1.689,0 69,2-CV-1126-BB1,2-CV-1126-BB1-3,CV - RCP1C,8C-2,1.689,0 70,2-CV-1126-BB1,2-CV-1126-BB1-4,CV - RCP1C,8C-2,1.689,0 A

71,2-CV-1126-BB1,2-CV-1126-BB1-5,CV - RCP1C,8C-2,1.689,0 72,2-CV-1126-BB1,2-CV-1126-BB1-6,CV - RCP1C,8C-2,1.689,0 FT 73,2-CV-1126-BB1,2-CV-1126-BB1-7,CV - RCP1C,8C-2,1.689,0 74,2-CV-1126-BB1,2-CV-1126-BB1-8,CV - RCP1C,8C-2,1.689,0 75,2-CV-1126-BB1,2-CV-1126-BB1-9,CV - RCP1C,8C-2,1.689,0 76,2-CV-1126-BB1,2-CV-1126-BB1-10,CV - RCP1C,8C-2,1.689,0 R

77,2-CV-1126-BB1,2-CV-1126-BB1-11,CV - RCP1C,8C-2,1.689,0 78,2-CV-1128-BB1,2-CV-1128-BB1-1,CV - RCP1D,8C-2,1.689,0 D

79,2-CV-1128-BB1,2-CV-1128-BB1-2,CV - RCP1D,8C-2,1.689,0 80,2-CV-1128-BB1,2-CV-1128-BB1-3,CV - RCP1D,8C-2,1.689,0 81,2-CV-1128-BB1,2-CV-1128-BB1-3A,CV - RCP1D,8C-2,1.689,0 82,2-CV-1128-BB1,2-CV-1128-BB1-3B,CV - RCP1D,8C-2,1.689,0 83,2-CV-1128-BB1,2-CV-1128-BB1-4,CV - RCP1D,8C-2,1.689,0 84,2-CV-1128-BB1,2-CV-1128-BB1-5,CV - RCP1D,8C-2,1.689,0 85,2-CV-1128-BB1,2-CV-1128-BB1-6,CV - RCP1D,8C-2,1.689,0 Wednesday 29th April, 2015, 07:45 90 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 91 of 173 pages 86,2-CV-1128-BB1,2-CV-1128-BB1-7,CV - RCP1D,8C-2,1.689,0 87,2-CV-1141-BB1,2-CV-1141-BB1-1,CV - RC Crossover-4,8A,1.689,0 88,2-CV-1141-BB1,2-CV-1141-BB1-2,CV - RC Crossover-4,8A,1.689,0 89,2-RC-1003-BB1,2-RC-1003-BB1-1,PZR Auxiliary Spray Line,5J,1.689,0 90,2-RC-1003-BB1,2-RC-1003-BB1-2,PZR Auxiliary Spray Line,5J,1.689,0 91,2-RC-1120-BB1,2-RC-1120-BB1-1,RC,7K,1.689,0 92,2-RC-1120-BB1,2-RC-1120-BB1-2,RC,6A-2,1.689,0 93,2-RC-1121-BB1,2-RC-1121-BB1-1,RC,6A-2,1.689,0 94,2-RC-1121-BB1,2-RC-1121-BB1-2,RC,6A-2,1.689,0 95,2-RC-1121-BB1,2-RC-1121-BB1-3,RC,6A-2,1.689,0 96,2-RC-1121-BB1,2-RC-1121-BB1-3A,RC Drain,6A-2,1.689,0 97,2-RC-1121-BB1,2-RC-1121-BB1-3B,RC Drain,6A-2,1.689,0 98,2-RC-1121-BB1,2-RC-1121-BB1-4,RC,6A-2,1.689,0 ints 99,2-RC-1219-BB1,2-RC-1219-BB1-1,RC,7K,1.689,0 100,2-RC-1219-BB1,2-RC-1219-BB1-2,RC,6A-2,1.689,0 101,2-RC-1220-BB1,2-RC-1220-BB1-1,RC,6A-2,1.689,0 102,2-RC-1220-BB1,2-RC-1220-BB1-2,RC,6A-2,1.689,0 po g

103,2-RC-1220-BB1,2-RC-1220-BB1-3,RC,6A-2,1.689,0 104,2-RC-1220-BB1,2-RC-1220-BB1-4,RC,6A-2,1.689,0 in 105,2-RC-1319-BB1,2-RC-1319-BB1-1,RC,7K,1.689,0 106,2-RC-1319-BB1,2-RC-1319-BB1-2,RC,6A-2,1.689,0 lk 107,2-RC-1321-BB1,2-RC-1321-BB1-1,RC,6A-2,1.689,0 108,2-RC-1321-BB1,2-RC-1321-BB1-4,RC,6A-2,1.689,0 ta 109,2-RC-1321-BB1,2-RC-1321-BB1-5,RC,6A-2,1.689,0 110,2-RC-1321-BB1,2-RC-1321-BB1-6,RC,6A-2,1.689,0 111,2-RC-1417-BB1,2-RC-1417-BB1-1,RC,7K,1.689,0 A

112,2-RC-1417-BB1,2-RC-1417-BB1-2,RC,6A-2,1.689,0 113,2-RC-1418-BB1,2-RC-1418-BB1-1,RC,6A-2,1.689,0 FT 114,2-RC-1418-BB1,2-RC-1418-BB1-2,CV - RC Crossover-4,8A,1.689,0 115,2-RC-1418-BB1,2-RC-1418-BB1-3,CV - RC Crossover-4,8A,1.689,0 116,2-RC-1418-BB1,2-RC-1418-BB1-4,RC,6A-2,1.689,0 117,2-RC-1418-BB1,2-RC-1418-BB1-5,RC,6A-2,1.689,0 R

118,2-RC-1418-BB1,2-RC-1418-BB1-6,RC,6A-2,1.689,0 119,2-RC-1419-BB1,2-RC-1419-BB1-1,CV - RC Crossover-4,8A,1.689,0 D

120,2-RC-1419-BB1,2-RC-1419-BB1-2,CV - RC Crossover-4,8A,1.689,0 121,2-RC-1419-BB1,2-RC-1419-BB1-3,CV - RC Crossover-4,8A,1.689,0 122,2-RC-1419-BB1,2-RC-1419-BB1-4,RC,6A-2,1.689,0 123,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-5,RC,7K,1.689,0 124,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-6,RC,7K,1.689,0 125,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-5,RC,7K,1.689,0 126,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-7,RC,7K,1.689,0 Wednesday 29th April, 2015, 07:45 91 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 92 of 173 pages 127,31-RC-1302-NSS - LOOP 3,31-RC-1302-NSS-5,RC,7K,1.689,0 128,31-RC-1402-NSS - LOOP 4,31-RC-1402-NSS-5,RC,7K,1.689,0 129,31-RC-1402-NSS - LOOP 4,31-RC-1402-NSS-7,RC,7K,1.689,0 130,2.5-RC-1003-BB1,2.5-RC-1003-BB1-1,Pressurizer Surge Line,4D,2.125,0 131,2.5-RC-1003-BB1,2.5-RC-1003-BB1-2,Pressurizer Surge Line,4D,2.125,0 132,2.5-RC-1003-BB1,2.5-RC-1003-BB1-3,Pressurizer Surge Line,4D,2.125,0 133,2.5-RC-1003-BB1,2.5-RC-1003-BB1-4,Pressurizer Surge Line,4D,2.125,0 134,2.5-RC-1003-BB1,2.5-RC-1003-BB1-5,Pressurizer Surge Line,4D,2.125,0 135,2.5-RC-1003-BB1,2.5-RC-1003-BB1-6,Pressurizer Surge Line,4D,2.125,0 136,3-RC-1003-BB1,3-RC-1003-BB1-1,PZR Auxiliary Spray Line,5B,2.626,0 in 137,3-RC-1003-BB1,3-RC-1003-BB1-2,PZR Auxiliary Spray Line,5B,2.626,0 ts 138,3-RC-1015-NSS,3-RC-1015-NSS-1,Pressurizer PORV Line,5D,2.626,0 139,3-RC-1015-NSS,3-RC-1015-NSS-2,Pressurizer PORV Line,5D,2.626,0 140,3-RC-1015-NSS,3-RC-1015-NSS-3,Pressurizer PORV Line,5B,2.626,0 po 141,3-RC-1015-NSS,3-RC-1015-NSS-4,Pressurizer PORV Line,5B,2.626,0 142,3-RC-1015-NSS,3-RC-1015-NSS-5,Pressurizer PORV Line,5B,2.626,0 143,3-RC-1015-NSS,3-RC-1015-NSS-6,Pressurizer PORV Line,5B,2.626,0 g

144,3-RC-1015-NSS,3-RC-1015-NSS-7,Pressurizer PORV Line,5B,2.626,0 145,3-RC-1015-NSS,3-RC-1015-NSS-8,Pressurizer PORV Line,5B,2.626,0 in 146,3-RC-1015-NSS,3-RC-1015-NSS-9,Pressurizer PORV Line,5D,2.626,0 147,3-RC-1015-NSS,3-RC-1015-NSS-10,Pressurizer PORV Line,5D,2.626,0 lk 148,3-RC-1015-NSS,3-RC-1015-NSS-11,Pressurizer PORV Line,5B,2.626,0 149,3-RC-1015-NSS,3-RC-1015-NSS-12,Pressurizer PORV Line,5B,2.626,0 ta 150,3-RC-1015-NSS,3-RC-1015-NSS-13,Pressurizer PORV Line,5B,2.626,0 151,3-RC-1015-NSS,3-RC-1015-NSS-14,Pressurizer PORV Line,5B,2.626,0 152,3-RC-1015-NSS,3-RC-1015-NSS-15,Pressurizer PORV Line,5B,2.626,0 A

153,3-RC-1015-NSS,3-RC-1015-NSS-16,Pressurizer PORV Line,5B,2.626,0 154,3-RC-1106-BB1,3-RC-1106-BB1-25,SI - Capped,7J,2.626,0 FT 155,3-RC-1206-BB1,3-RC-1206-BB1-28,SI - Capped,7J,2.626,0 156,3-RC-1306-BB1,3-RC-1306-BB1-28,SI - Capped,7J,2.626,0 157,3-RC-1406-BB1,3-RC-1406-BB1-25,SI - Capped,7J,2.626,0 158,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-7,RC,7J,2.626,0 R

159,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-6,RC,7J,2.626,0 160,31-RC-1302-NSS - LOOP 3,31-RC-1302-NSS-6,RC,7J,2.626,0 D

161,31-RC-1402-NSS - LOOP 4,31-RC-1402-NSS-6,RC,7J,2.626,0 162,4-CV-1001-BB1,4-CV-1001-BB1-1,CV - RC Crossover-3,8B,3.438,0 163,4-CV-1001-BB1,4-CV-1001-BB1-2,CV - RC Crossover-3,8B,3.438,0 164,4-CV-1118-BB1,4-CV-1118-BB1-1,CV - RC Coldleg 1,8B,3.438,0 165,4-CV-1118-BB1,4-CV-1118-BB1-2,CV - RC Coldleg 1,8B,3.438,0 166,4-CV-1120-BB1,4-CV-1120-BB1-1,CV - RC Coldleg 3,8B,3.438,0 167,4-CV-1120-BB1,4-CV-1120-BB1-2,CV - RC Coldleg 3,8B,3.438,0 Wednesday 29th April, 2015, 07:45 92 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 93 of 173 pages 168,4-RC-1000-BB1,4-RC-1000-BB1-1,Pressurizer Spray,5C,3.438,0 169,4-RC-1000-BB1,4-RC-1000-BB1-2,Pressurizer Spray,5C,3.438,0 170,4-RC-1000-BB1,4-RC-1000-BB1-3,Pressurizer Spray,5C,3.438,0 171,4-RC-1000-BB1,4-RC-1000-BB1-4,Pressurizer Spray,5C,3.438,0 172,4-RC-1000-BB1,4-RC-1000-BB1-5,Pressurizer Spray,5C,3.438,0 173,4-RC-1000-BB1,4-RC-1000-BB1-6,Pressurizer Spray,5C,3.438,0 174,4-RC-1000-BB1,4-RC-1000-BB1-7,Pressurizer Spray,5C,3.438,0 175,4-RC-1000-BB1,4-RC-1000-BB1-8,Pressurizer Spray,5C,3.438,0 176,4-RC-1003-BB1,4-RC-1003-BB1-1,Pressurizer Spray,5C,3.438,0 177,4-RC-1003-BB1,4-RC-1003-BB1-2,Pressurizer Spray,5C,3.438,0 in 178,4-RC-1003-BB1,4-RC-1003-BB1-3,Pressurizer Spray,5C,3.438,0 179,4-RC-1003-BB1,4-RC-1003-BB1-4,Pressurizer Spray,5C,3.438,0 180,4-RC-1123-BB1,4-RC-1123-BB1-1,Pressurizer Spray,5I,3.438,0 ts 181,4-RC-1123-BB1,4-RC-1123-BB1-2,Pressurizer Spray,5C,3.438,0 po 182,4-RC-1123-BB1,4-RC-1123-BB1-3,Pressurizer Spray,5C,3.438,0 183,4-RC-1123-BB1,4-RC-1123-BB1-4,Pressurizer Spray,5C,3.438,0 184,4-RC-1123-BB1,4-RC-1123-BB1-5,Pressurizer Spray,5C,3.438,0 g

185,4-RC-1123-BB1,4-RC-1123-BB1-6,Pressurizer Spray,5C,3.438,0 186,4-RC-1123-BB1,4-RC-1123-BB1-7,Pressurizer Spray,5C,3.438,0 in 187,4-RC-1123-BB1,4-RC-1123-BB1-8,Pressurizer Spray,5C,3.438,0 188,4-RC-1123-BB1,4-RC-1123-BB1-9,Pressurizer Spray,5C,3.438,0 lk 189,4-RC-1123-BB1,4-RC-1123-BB1-10,Pressurizer Spray,5C,3.438,0 190,4-RC-1123-BB1,4-RC-1123-BB1-11,Pressurizer Spray,5C,3.438,0 ta 191,4-RC-1123-BB1,4-RC-1123-BB1-12,Pressurizer Spray,5C,3.438,0 192,4-RC-1123-BB1,4-RC-1123-BB1-13,Pressurizer Spray,5C,3.438,0 193,4-RC-1123-BB1,4-RC-1123-BB1-14,Pressurizer Spray,5C,3.438,0 A

194,4-RC-1123-BB1,4-RC-1123-BB1-15,Pressurizer Spray,5C,3.438,0 195,4-RC-1123-BB1,4-RC-1123-BB1-16,Pressurizer Spray,5C,3.438,0 FT 196,4-RC-1123-BB1,4-RC-1123-BB1-17,Pressurizer Spray,5C,3.438,0 197,4-RC-1123-BB1,4-RC-1123-BB1-18,Pressurizer Spray,5C,3.438,0 198,4-RC-1123-BB1,4-RC-1123-BB1-19,Pressurizer Spray,5C,3.438,0 199,4-RC-1123-BB1,4-RC-1123-BB1-20,Pressurizer Spray,5C,3.438,0 R

200,4-RC-1126-BB1,4-RC-1126-BB1-1,CV - RC Coldleg 1,8B,3.438,0 201,4-RC-1126-BB1,4-RC-1126-BB1-2,CV - RC Coldleg 1,8B,3.438,0 D

202,4-RC-1126-BB1,4-RC-1126-BB1-3,CV - RC Coldleg 1,8B,3.438,0 203,4-RC-1126-BB1,4-RC-1126-BB1-4,CV - RC Coldleg 1,8B,3.438,0 204,4-RC-1126-BB1,4-RC-1126-BB1-5,CV - RC Coldleg 1,8B,3.438,0 205,4-RC-1126-BB1,4-RC-1126-BB1-6,CV - RC Coldleg 1,8E,3.438,0 206,4-RC-1320-BB1,4-RC-1320-BB1-1,CV - RC Crossover-3,8F,3.438,0 207,4-RC-1320-BB1,4-RC-1320-BB1-2,CV - RC Crossover-3,8D,3.438,0 208,4-RC-1320-BB1,4-RC-1320-BB1-3,CV - RC Crossover-3,8D,3.438,0 Wednesday 29th April, 2015, 07:45 93 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 94 of 173 pages 209,4-RC-1320-BB1,4-RC-1320-BB1-4,CV - RC Crossover-3,8D,3.438,0 210,4-RC-1320-BB1,4-RC-1320-BB1-5,CV - RC Crossover-3,8D,3.438,0 211,4-RC-1320-BB1,4-RC-1320-BB1-6,CV - RC Crossover-3,8D,3.438,0 212,4-RC-1320-BB1,4-RC-1320-BB1-7,CV - RC Crossover-3,8D,3.438,0 213,4-RC-1320-BB1,4-RC-1320-BB1-8,CV - RC Crossover-3,8B,3.438,0 214,4-RC-1320-BB1,4-RC-1320-BB1-9,CV - RC Crossover-3,8B,3.438,0 215,4-RC-1320-BB1,4-RC-1320-BB1-10,CV - RC Crossover-3,8B,3.438,0 216,4-RC-1320-BB1,4-RC-1320-BB1-11,CV - RC Crossover-3,8B,3.438,0 217,4-RC-1320-BB1,4-RC-1320-BB1-12,CV - RC Crossover-3,8B,3.438,0 218,4-RC-1323-BB1,4-RC-1323-BB1-1,CV - RC Coldleg 3,8B,3.438,0 in 219,4-RC-1323-BB1,4-RC-1323-BB1-2,CV - RC Coldleg 3,8B,3.438,0 220,4-RC-1323-BB1,4-RC-1323-BB1-3,CV - RC Coldleg 3,8B,3.438,0 221,4-RC-1323-BB1,4-RC-1323-BB1-4,CV - RC Coldleg 3,8E,3.438,0 ts 222,4-RC-1420-BB1,4-RC-1420-BB1-1,SI,7I,3.438,0 po 223,4-RC-1422-BB1,4-RC-1422-BB1-1,Pressurizer Spray,5I,3.438,0 224,4-RC-1422-BB1,4-RC-1422-BB1-2,Pressurizer Spray,5C,3.438,0 225,4-RC-1422-BB1,4-RC-1422-BB1-3,Pressurizer Spray,5C,3.438,0 g

226,4-RC-1422-BB1,4-RC-1422-BB1-4,Pressurizer Spray,5C,3.438,0 227,4-RC-1422-BB1,4-RC-1422-BB1-5,Pressurizer Spray,5C,3.438,0 in 228,4-RC-1422-BB1,4-RC-1422-BB1-6,Pressurizer Spray,5C,3.438,0 229,4-RC-1422-BB1,4-RC-1422-BB1-7,Pressurizer Spray,5C,3.438,0 lk 230,4-RC-1422-BB1,4-RC-1422-BB1-8,Pressurizer Spray,5C,3.438,0 231,4-RC-1422-BB1,4-RC-1422-BB1-9,Pressurizer Spray,5C,3.438,0 ta 232,4-RC-1422-BB1,4-RC-1422-BB1-10,Pressurizer Spray,5C,3.438,0 233,4-RC-1422-BB1,4-RC-1422-BB1-11,Pressurizer Spray,5C,3.438,0 234,4-RC-1422-BB1,4-RC-1422-BB1-12,Pressurizer Spray,5C,3.438,0 A

235,4-RC-1422-BB1,4-RC-1422-BB1-13,Pressurizer Spray,5C,3.438,0 236,4-RC-1422-BB1,4-RC-1422-BB1-14,Pressurizer Spray,5C,3.438,0 FT 237,4-RC-1422-BB1,4-RC-1422-BB1-15,Pressurizer Spray,5C,3.438,0 238,4-RC-1422-BB1,4-RC-1422-BB1-16,Pressurizer Spray,5C,3.438,0 239,4-RC-1422-BB1,4-RC-1422-BB1-17,Pressurizer Spray,5C,3.438,0 240,4-RC-1422-BB1,4-RC-1422-BB1-18,Pressurizer Spray,5C,3.438,0 R

241,4-RC-1422-BB1,4-RC-1422-BB1-19,Pressurizer Spray,5C,3.438,0 242,4-RC-1422-BB1,4-RC-1422-BB1-20,Pressurizer Spray,5C,3.438,0 D

243,4-RC-1422-BB1,4-RC-1422-BB1-21,Pressurizer Spray,5C,3.438,0 244,4-RC-1422-BB1,4-RC-1422-BB1-22,Pressurizer Spray,5C,3.438,0 245,4-RC-1422-BB1,4-RC-1422-BB1-23,Pressurizer Spray,5C,3.438,0 246,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-3,RC,7I,3.438,0 247,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-5,CV,8E,3.438,0 248,27.5-RC-1303-NSS - LOOP 3,27.5-RC-1303-NSS-4,CV,8E,3.438,0 249,27.5-RC-1403-NSS - LOOP 4,27.5-RC-1403-NSS-3,RC,7I,3.438,0 Wednesday 29th April, 2015, 07:45 94 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 95 of 173 pages 250,27.5-RC-1403-NSS - LOOP 4,27.5-RC-1403-NSS-4,RC,7I,3.438,0 251,31-RC-1302-NSS - LOOP 3,31-RC-1302-NSS-7,RC,7I,3.438,0 252,6-RC-1003-BB1,6-RC-1003-BB1-1,Pressurizer Spray,5E,5.189,0 253,6-RC-1003-BB1,6-RC-1003-BB1-2,Pressurizer Spray,5E,5.189,0 254,6-RC-1003-BB1,6-RC-1003-BB1-3,Pressurizer Spray,5E,5.189,0 255,6-RC-1003-BB1,6-RC-1003-BB1-4,Pressurizer Spray,5A,5.189,0 256,6-RC-1003-BB1,6-RC-1003-BB1-5,Pressurizer Spray,5A,5.189,0 257,6-RC-1003-BB1,6-RC-1003-BB1-6,Pressurizer Spray,5A,5.189,0 258,6-RC-1003-BB1,6-RC-1003-BB1-7,Pressurizer Spray,5A,5.189,0 259,6-RC-1003-BB1,6-RC-1003-BB1-8,Pressurizer Spray,5A,5.189,0 in 260,6-RC-1003-BB1,6-RC-1003-BB1-9,Pressurizer Spray,5A,5.189,0 ts 261,6-RC-1003-BB1,6-RC-1003-BB1-9A,Pressurizer Spray,5A,5.189,0 262,6-RC-1003-BB1,6-RC-1003-BB1-9B,Pressurizer Spray,5A,5.189,0 263,6-RC-1003-BB1,6-RC-1003-BB1-10,Pressurizer Spray,5A,5.189,0 po 264,6-RC-1003-BB1,6-RC-1003-BB1-11,Pressurizer Spray,5A,5.189,0 265,6-RC-1003-BB1,6-RC-1003-BB1-11A,Pressurizer Spray,5A,5.189,0 266,6-RC-1003-BB1,6-RC-1003-BB1-11B,Pressurizer Spray,5A,5.189,0 g

267,6-RC-1003-BB1,6-RC-1003-BB1-12,Pressurizer Spray,5A,5.189,0 268,6-RC-1003-BB1,6-RC-1003-BB1-13,Pressurizer Spray,5A,5.189,0 in 269,6-RC-1003-BB1,6-RC-1003-BB1-13A,Pressurizer Spray,5A,5.189,0 270,6-RC-1003-BB1,6-RC-1003-BB1-14,Pressurizer Spray,5H,5.189,0 lk 271,6-RC-1003-BB1,6-RC-1003-BB1-PRZ-1-N2-SE,Pressurizer Spray,5F,5.189,0 272,6-RC-1004-NSS,6-RC-1004-NSS-1,Pressurizer SRV Line,5H,5.189,0 ta 273,6-RC-1004-NSS,6-RC-1004-NSS-2,Pressurizer SRV Line,5E,5.189,0 274,6-RC-1004-NSS,6-RC-1004-NSS-3,Pressurizer SRV Line,5E,5.189,0 275,6-RC-1004-NSS,6-RC-1004-NSS-4,Pressurizer SRV Line,5E,5.189,0 A

276,6-RC-1004-NSS,6-RC-1004-NSS-5,Pressurizer SRV Line,5A,5.189,0 277,6-RC-1004-NSS,6-RC-1004-NSS-6,Pressurizer SRV Line,5A,5.189,0 FT 278,6-RC-1004-NSS,6-RC-1004-NSS-7,Pressurizer SRV Line,5A,5.189,0 279,6-RC-1004-NSS,6-RC-1004-NSS-PRZ-1-N3-SE,Pressurizer SRV Line,5F,5.189,0 280,6-RC-1009-NSS,6-RC-1009-NSS-1,Pressurizer SRV Line,5H,5.189,0 281,6-RC-1009-NSS,6-RC-1009-NSS-2,Pressurizer SRV Line,5E,5.189,0 R

282,6-RC-1009-NSS,6-RC-1009-NSS-3,Pressurizer SRV Line,5E,5.189,0 283,6-RC-1009-NSS,6-RC-1009-NSS-4,Pressurizer SRV Line,5E,5.189,0 D

284,6-RC-1009-NSS,6-RC-1009-NSS-5,Pressurizer SRV Line,5A,5.189,0 285,6-RC-1009-NSS,6-RC-1009-NSS-6,Pressurizer SRV Line,5A,5.189,0 286,6-RC-1009-NSS,6-RC-1009-NSS-7,Pressurizer SRV Line,5A,5.189,0 287,6-RC-1009-NSS,6-RC-1009-NSS-8,Pressurizer SRV Line,5A,5.189,0 288,6-RC-1009-NSS,6-RC-1009-NSS-9,Pressurizer SRV Line,5A,5.189,0 289,6-RC-1009-NSS,6-RC-1009-NSS-PRZ-1-N4C-SE,Pressurizer SRV Line,5F,5.189,0 290,6-RC-1012-NSS,6-RC-1012-NSS-1,Pressurizer SRV Line,5H,5.189,0 Wednesday 29th April, 2015, 07:45 95 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 96 of 173 pages 291,6-RC-1012-NSS,6-RC-1012-NSS-2,Pressurizer SRV Line,5E,5.189,0 292,6-RC-1012-NSS,6-RC-1012-NSS-3,Pressurizer SRV Line,5E,5.189,0 293,6-RC-1012-NSS,6-RC-1012-NSS-4,Pressurizer SRV Line,5E,5.189,0 294,6-RC-1012-NSS,6-RC-1012-NSS-5,Pressurizer SRV Line,5E,5.189,0 295,6-RC-1012-NSS,6-RC-1012-NSS-6,Pressurizer SRV Line,5E,5.189,0 296,6-RC-1012-NSS,6-RC-1012-NSS-7,Pressurizer SRV Line,5A,5.189,0 297,6-RC-1012-NSS,6-RC-1012-NSS-8,Pressurizer SRV Line,5A,5.189,0 298,6-RC-1012-NSS,6-RC-1012-NSS-9,Pressurizer SRV Line,5A,5.189,0 299,6-RC-1012-NSS,6-RC-1012-NSS-10,Pressurizer SRV Line,5A,5.189,0 300,6-RC-1012-NSS,6-RC-1012-NSS-11,Pressurizer SRV Line,5A,5.189,0 in 301,6-RC-1012-NSS,6-RC-1012-NSS-PRZ-1-N4B-SE,Pressurizer SRV Line,5F,5.189,0 ts 302,6-RC-1015-NSS,6-RC-1015-NSS-1,Pressurizer PORV Line,5E,5.189,0 303,6-RC-1015-NSS,6-RC-1015-NSS-2,Pressurizer PORV Line,5E,5.189,0 304,6-RC-1015-NSS,6-RC-1015-NSS-3,Pressurizer PORV Line,5E,5.189,0 po 305,6-RC-1015-NSS,6-RC-1015-NSS-4,Pressurizer PORV Line,5E,5.189,0 306,6-RC-1015-NSS,6-RC-1015-NSS-5,Pressurizer PORV Line,5E,5.189,0 307,6-RC-1015-NSS,6-RC-1015-NSS-6,Pressurizer PORV Line,5E,5.189,0 g

308,6-RC-1015-NSS,6-RC-1015-NSS-7,Pressurizer PORV Line,5E,5.189,0 309,6-RC-1015-NSS,6-RC-1015-NSS-8,Pressurizer PORV Line,5E,5.189,0 in 310,6-RC-1015-NSS,6-RC-1015-NSS-9,Pressurizer PORV Line,5E,5.189,0 311,6-RC-1015-NSS,6-RC-1015-NSS-10,Pressurizer PORV Line,5E,5.189,0 lk 312,6-RC-1015-NSS,6-RC-1015-NSS-11,Pressurizer PORV Line,5E,5.189,0 313,6-RC-1015-NSS,6-RC-1015-NSS-12,Pressurizer PORV Line,5E,5.189,0 ta 314,6-RC-1015-NSS,6-RC-1015-NSS-13,Pressurizer PORV Line,5E,5.189,0 315,6-RC-1015-NSS,6-RC-1015-NSS-14,Pressurizer PORV Line,5E,5.189,0 316,6-RC-1015-NSS,6-RC-1015-NSS-15,Pressurizer PORV Line,5E,5.189,0 A

317,6-SI-1108-BB1,6-SI-1108-BB1-1,SI,7H,5.189,0 318,6-SI-1108-BB1,6-SI-1108-BB1-2,SI,7H,5.189,0 FT 319,6-SI-1108-BB1,6-SI-1108-BB1-3,SI,7H,5.189,0 320,6-SI-1108-BB1,6-SI-1108-BB1-4,SI,7H,5.189,0 321,6-SI-1111-BB1,6-SI-1111-BB1-1,SI,7H,5.189,0 322,6-SI-1111-BB1,6-SI-1111-BB1-2,SI,7H,5.189,0 R

323,6-SI-1208-BB1,6-SI-1208-BB1-1,SI,7H,5.189,0 324,6-SI-1208-BB1,6-SI-1208-BB1-2,SI,7H,5.189,0 D

325,6-SI-1208-BB1,6-SI-1208-BB1-3,SI,7H,5.189,0 326,6-SI-1208-BB1,6-SI-1208-BB1-4,SI,7H,5.189,0 327,6-SI-1211-BB1,6-SI-1211-BB1-1,SI,7H,5.189,0 328,6-SI-1211-BB1,6-SI-1211-BB1-2,SI,7H,5.189,0 329,6-SI-1308-BB1,6-SI-1308-BB1-1,RH,7H,5.189,0 330,6-SI-1308-BB1,6-SI-1308-BB1-2,RH,7H,5.189,0 331,6-SI-1308-BB1,6-SI-1308-BB1-3,RH,7H,5.189,0 Wednesday 29th April, 2015, 07:45 96 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 97 of 173 pages 332,6-SI-1308-BB1,6-SI-1308-BB1-4,RH,7H,5.189,0 333,6-SI-1327-BB1,6-SI-1327-BB1-1,SI,7H,5.189,0 334,6-SI-1327-BB1,6-SI-1327-BB1-2,SI,7H,5.189,0 335,6-SI-1327-BB1,6-SI-1327-BB1-3,SI,7H,5.189,0 336,6-SI-1327-BB1,6-SI-1327-BB1-4,SI,7H,5.189,0 337,6-SI-1327-BB1,6-SI-1327-BB1-5,SI,7H,5.189,0 338,6-SI-1327-BB1,6-SI-1327-BB1-6,SI,7H,5.189,0 339,6-SI-1327-BB1,6-SI-1327-BB1-7,SI,7H,5.189,0 340,8-RC-1114-BB1,8-RC-1114-BB1-1,SI,7B,6.813,0 341,8-RC-1114-BB1,8-RC-1114-BB1-2,SI,7B,6.813,0 342,8-RC-1114-BB1,8-RC-1114-BB1-3,SI,7B,6.813,0 343,8-RC-1114-BB1,8-RC-1114-BB1-4,SI,7G,6.813,0 344,8-RC-1114-BB1,8-RC-1114-BB1-5,SI,7G,6.813,0 ints 345,8-RC-1114-BB1,8-RC-1114-BB1-6,SI,7G,6.813,0 346,8-RC-1214-BB1,8-RC-1214-BB1-1,SI,7B,6.813,0 347,8-RC-1214-BB1,8-RC-1214-BB1-2,SI,7B,6.813,0 348,8-RC-1214-BB1,8-RC-1214-BB1-3,SI,7B,6.813,0 po g

349,8-RC-1214-BB1,8-RC-1214-BB1-4,SI,7G,6.813,0 350,8-RC-1214-BB1,8-RC-1214-BB1-5,SI,7G,6.813,0 in 351,8-RC-1214-BB1,8-RC-1214-BB1-6,SI,7G,6.813,0 352,8-RC-1324-BB1,8-RC-1324-BB1-1,SI,7B,6.813,0 lk 353,8-RC-1324-BB1,8-RC-1324-BB1-2,SI,7B,6.813,0 354,8-RC-1324-BB1,8-RC-1324-BB1-3,SI,7B,6.813,0 ta 355,8-RC-1324-BB1,8-RC-1324-BB1-4,SI,7G,6.813,0 356,8-RC-1324-BB1,8-RC-1324-BB1-5,SI,7G,6.813,0 357,8-RC-1324-BB1,8-RC-1324-BB1-6,SI,7G,6.813,0 A

358,8-RH-1108-BB1,8-RH-1108-BB1-1,RH,7G,6.813,0 359,8-RH-1108-BB1,8-RH-1108-BB1-2,RH,7G,6.813,0 FT 360,8-RH-1112-BB1,8-RH-1112-BB1-1,RH,7G,6.813,0 361,8-RH-1112-BB1,8-RH-1112-BB1-1A,RH,7G,6.813,0 362,8-RH-1112-BB1,8-RH-1112-BB1-2,RH,7G,6.813,0 363,8-RH-1208-BB1,8-RH-1208-BB1-1,RH,7G,6.813,0 R

364,8-RH-1208-BB1,8-RH-1208-BB1-2,RH,7G,6.813,0 365,8-RH-1212-BB1,8-RH-1212-BB1-1,RH,7G,6.813,0 D

366,8-RH-1212-BB1,8-RH-1212-BB1-2,RH,7G,6.813,0 367,8-RH-1308-BB1,8-RH-1308-BB1-1,RH,7G,6.813,0 368,8-RH-1308-BB1,8-RH-1308-BB1-2,RH,7G,6.813,0 369,8-RH-1315-BB1,8-RH-1315-BB1-1,RH,7G,6.813,0 370,8-SI-1108-BB1,8-SI-1108-BB1-1,SI,7G,6.813,0 371,8-SI-1108-BB1,8-SI-1108-BB1-2,SI,7G,6.813,0 372,8-SI-1108-BB1,8-SI-1108-BB1-3,SI,7G,6.813,0 Wednesday 29th April, 2015, 07:45 97 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 98 of 173 pages 373,8-SI-1108-BB1,8-SI-1108-BB1-4,SI,7G,6.813,0 374,8-SI-1108-BB1,8-SI-1108-BB1-5,SI,7C,6.813,0 375,8-SI-1208-BB1,8-SI-1208-BB1-1,SI,7G,6.813,0 376,8-SI-1208-BB1,8-SI-1208-BB1-2,SI,7G,6.813,0 377,8-SI-1208-BB1,8-SI-1208-BB1-3,SI,7G,6.813,0 378,8-SI-1208-BB1,8-SI-1208-BB1-3A,SI,7G,6.813,0 379,8-SI-1208-BB1,8-SI-1208-BB1-4,SI,7C,6.813,0 380,8-SI-1327-BB1,8-SI-1327-BB1-1,SI,7G,6.813,0 381,8-SI-1327-BB1,8-SI-1327-BB1-2,SI,7G,6.813,0 382,8-SI-1327-BB1,8-SI-1327-BB1-3,SI,7G,6.813,0 383,8-SI-1327-BB1,8-SI-1327-BB1-4,SI,7G,6.813,0 384,8-SI-1327-BB1,8-SI-1327-BB1-5,SI,7G,6.813,0 385,8-SI-1327-BB1,8-SI-1327-BB1-6,SI,7G,6.813,0 ints 386,8-SI-1327-BB1,8-SI-1327-BB1-7,SI,7G,6.813,0 387,8-SI-1327-BB1,8-SI-1327-BB1-8,SI,7G,6.813,0 388,8-SI-1327-BB1,8-SI-1327-BB1-9,SI,7G,6.813,0 389,8-SI-1327-BB1,8-SI-1327-BB1-10,SI,7G,6.813,0 po g

390,8-SI-1327-BB1,8-SI-1327-BB1-11,SI,7C,6.813,0 391,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-2,SI,7G,6.813,0 in 392,29-RC-1201-NSS - LOOP 2,29-RC-1201-NSS-2,SI,7G,6.813,0 393,29-RC-1301-NSS - LOOP 3,29-RC-1301-NSS-2,SI,7G,6.813,0 lk 394,10-RH-1108-BB1,10-RH-1108-BB1-1,RH,7F,8.5,0 395,10-RH-1108-BB1,10-RH-1108-BB1-1A,RH,7F,8.5,0 ta 396,10-RH-1108-BB1,10-RH-1108-BB1-2,RH,7F,8.5,0 397,10-RH-1108-BB1,10-RH-1108-BB1-3,RH,7F,8.5,0 398,10-RH-1108-BB1,10-RH-1108-BB1-4,RH,7F,8.5,0 A

399,10-RH-1108-BB1,10-RH-1108-BB1-5,RH,7F,8.5,0 400,10-RH-1108-BB1,10-RH-1108-BB1-6,RH,7F,8.5,0 FT 401,10-RH-1108-BB1,10-RH-1108-BB1-7,RH,7F,8.5,0 402,10-RH-1108-BB1,10-RH-1108-BB1-8,RH,7F,8.5,0 403,10-RH-1108-BB1,10-RH-1108-BB1-9,RH,7F,8.5,0 404,10-RH-1108-BB1,10-RH-1108-BB1-10,RH,7F,8.5,0 R

405,10-RH-1208-BB1,10-RH-1208-BB1-1,RH,7F,8.5,0 406,10-RH-1208-BB1,10-RH-1208-BB1-2,RH,7F,8.5,0 D

407,10-RH-1208-BB1,10-RH-1208-BB1-3,RH,7F,8.5,0 408,10-RH-1208-BB1,10-RH-1208-BB1-4,RH,7F,8.5,0 409,10-RH-1208-BB1,10-RH-1208-BB1-5,RH,7F,8.5,0 410,10-RH-1208-BB1,10-RH-1208-BB1-6,RH,7F,8.5,0 411,10-RH-1208-BB1,10-RH-1208-BB1-7,RH,7F,8.5,0 412,10-RH-1208-BB1,10-RH-1208-BB1-8,RH,7F,8.5,0 413,10-RH-1208-BB1,10-RH-1208-BB1-9,RH,7F,8.5,0 Wednesday 29th April, 2015, 07:45 98 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 99 of 173 pages 414,10-RH-1208-BB1,10-RH-1208-BB1-10,RH,7F,8.5,0 415,10-RH-1208-BB1,10-RH-1208-BB1-11,RH,7F,8.5,0 416,10-RH-1308-BB1,10-RH-1308-BB1-1,RH,7F,8.5,0 417,10-RH-1308-BB1,10-RH-1308-BB1-2,RH,7F,8.5,0 418,10-RH-1308-BB1,10-RH-1308-BB1-3,RH,7F,8.5,0 419,10-RH-1308-BB1,10-RH-1308-BB1-4,RH,7F,8.5,0 420,10-RH-1308-BB1,10-RH-1308-BB1-5,RH,7F,8.5,0 421,10-RH-1308-BB1,10-RH-1308-BB1-6,RH,7F,8.5,0 422,10-RH-1308-BB1,10-RH-1308-BB1-7,RH,7F,8.5,0 423,10-RH-1308-BB1,10-RH-1308-BB1-8,RH,7F,8.5,0 424,12-RC-1112-BB1,12-RC-1112-BB1-1,RHR-Suction,7E,10.126,0 425,12-RC-1112-BB1,12-RC-1112-BB1-2,RHR-Suction,7A,10.126,0 426,12-RC-1112-BB1,12-RC-1112-BB1-3,RHR-Suction,7A,10.126,0 ints 427,12-RC-1112-BB1,12-RC-1112-BB1-4,RHR-Suction,7A,10.126,0 po 428,12-RC-1112-BB1,12-RC-1112-BB1-5,RHR-Suction,7A,10.126,0 429,12-RC-1112-BB1,12-RC-1112-BB1-6,RHR-Suction,7A,10.126,0 430,12-RC-1112-BB1,12-RC-1112-BB1-7,RHR-Suction,7A,10.126,0 g

431,12-RC-1112-BB1,12-RC-1112-BB1-8,RHR-Suction,7A,10.126,0 432,12-RC-1112-BB1,12-RC-1112-BB1-9,RHR-Suction,7E,10.126,0 in 433,12-RC-1112-BB1,12-RC-1112-BB1-10,RHR-Suction,7E,10.126,0 434,12-RC-1112-BB1,12-RC-1112-BB1-11,RHR-Suction,7E,10.126,0 lk 435,12-RC-1125-BB1,12-RC-1125-BB1-1,SI-ACC-CL1,7N,10.126,0 436,12-RC-1125-BB1,12-RC-1125-BB1-2,SI-ACC-CL1,7N,10.126,0 ta 437,12-RC-1125-BB1,12-RC-1125-BB1-3,SI-ACC-CL1,7N,10.126,0 438,12-RC-1125-BB1,12-RC-1125-BB1-4,SI-ACC-CL1,7N,10.126,0 439,12-RC-1125-BB1,12-RC-1125-BB1-5,SI-ACC-CL1,7N,10.126,0 A

440,12-RC-1125-BB1,12-RC-1125-BB1-6,SI-ACC-CL1,7N,10.126,0 441,12-RC-1125-BB1,12-RC-1125-BB1-7,SI-ACC-CL1,7N,10.126,0 FT 442,12-RC-1125-BB1,12-RC-1125-BB1-8,SI-ACC-CL1,7N,10.126,0 443,12-RC-1125-BB1,12-RC-1125-BB1-9,SI-ACC-CL1,7N,10.126,0 444,12-RC-1125-BB1,12-RC-1125-BB1-10,SI-ACC-CL1,7N,10.126,0 445,12-RC-1125-BB1,12-RC-1125-BB1-11,SI-ACC-CL1,7N,10.126,0 R

446,12-RC-1125-BB1,12-RC-1125-BB1-12,SI-ACC-CL1,7N,10.126,0 447,12-RC-1125-BB1,12-RC-1125-BB1-13,SI-ACC-CL1,7N,10.126,0 D

448,12-RC-1212-BB1,12-RC-1212-BB1-1,RHR-Suction,7E,10.126,0 449,12-RC-1212-BB1,12-RC-1212-BB1-2,RHR-Suction,7A,10.126,0 450,12-RC-1212-BB1,12-RC-1212-BB1-3,RHR-Suction,7A,10.126,0 451,12-RC-1212-BB1,12-RC-1212-BB1-4,RHR-Suction,7A,10.126,0 452,12-RC-1212-BB1,12-RC-1212-BB1-5,RHR-Suction,7A,10.126,0 453,12-RC-1212-BB1,12-RC-1212-BB1-6,RHR-Suction,7A,10.126,0 454,12-RC-1212-BB1,12-RC-1212-BB1-7,RHR-Suction,7A,10.126,0 Wednesday 29th April, 2015, 07:45 99 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 100 of 173 pages 455,12-RC-1212-BB1,12-RC-1212-BB1-8,RHR-Suction,7A,10.126,0 456,12-RC-1221-BB1,12-RC-1221-BB1-1,SI-ACC-CL2,7N,10.126,0 457,12-RC-1221-BB1,12-RC-1221-BB1-2,SI-ACC-CL2,7N,10.126,0 458,12-RC-1221-BB1,12-RC-1221-BB1-3,SI-ACC-CL2,7N,10.126,0 459,12-RC-1221-BB1,12-RC-1221-BB1-4,SI-ACC-CL2,7N,10.126,0 460,12-RC-1221-BB1,12-RC-1221-BB1-5,SI-ACC-CL2,7N,10.126,0 461,12-RC-1221-BB1,12-RC-1221-BB1-6,SI-ACC-CL2,7N,10.126,0 462,12-RC-1221-BB1,12-RC-1221-BB1-7,SI-ACC-CL2,7N,10.126,0 463,12-RC-1221-BB1,12-RC-1221-BB1-8,SI-ACC-CL2,7N,10.126,0 464,12-RC-1221-BB1,12-RC-1221-BB1-9,SI-ACC-CL2,7N,10.126,0 465,12-RC-1221-BB1,12-RC-1221-BB1-10,SI-ACC-CL2,7N,10.126,0 466,12-RC-1221-BB1,12-RC-1221-BB1-11,SI-ACC-CL2,7N,10.126,0 467,12-RC-1221-BB1,12-RC-1221-BB1-12,SI-ACC-CL2,7N,10.126,0 ints 468,12-RC-1221-BB1,12-RC-1221-BB1-13,SI-ACC-CL2,7N,10.126,0 470,12-RC-1312-BB1,12-RC-1312-BB1-1,RH,7E,10.126,0 471,12-RC-1312-BB1,12-RC-1312-BB1-2,RH,7A,10.126,0 po 469,12-RC-1221-BB1,12-RC-1221-BB1-14,SI-ACC-CL2,7N,10.126,0 g

472,12-RC-1312-BB1,12-RC-1312-BB1-3,RH,7A,10.126,0 473,12-RC-1312-BB1,12-RC-1312-BB1-4,RH,7A,10.126,0 in 474,12-RC-1312-BB1,12-RC-1312-BB1-5,RH,7A,10.126,0 475,12-RC-1312-BB1,12-RC-1312-BB1-6,RH,7A,10.126,0 lk 476,12-RC-1312-BB1,12-RC-1312-BB1-7,RH,7A,10.126,0 477,12-RC-1312-BB1,12-RC-1312-BB1-8,RH,7A,10.126,0 ta 478,12-RC-1312-BB1,12-RC-1312-BB1-9,RH,7E,10.126,0 479,12-RC-1312-BB1,12-RC-1312-BB1-10,RH,7E,10.126,0 480,12-RC-1312-BB1,12-RC-1312-BB1-11,RH,7E,10.126,0 A

481,12-RC-1322-BB1,12-RC-1322-BB1-1,SI-ACC-CL3,7N,10.126,0 482,12-RC-1322-BB1,12-RC-1322-BB1-1A,SI-ACC-CL3,7N,10.126,0 FT 483,12-RC-1322-BB1,12-RC-1322-BB1-2,SI-ACC-CL3,7N,10.126,0 484,12-RC-1322-BB1,12-RC-1322-BB1-3,SI-ACC-CL3,7N,10.126,0 485,12-RC-1322-BB1,12-RC-1322-BB1-4,SI-ACC-CL3,7N,10.126,0 486,12-RH-1101-BB1,12-RH-1101-BB1-1,RH,7E,10.126,0 R

487,12-RH-1101-BB1,12-RH-1101-BB1-2,RH,7E,10.126,0 488,12-RH-1101-BB1,12-RH-1101-BB1-3,RH,7E,10.126,0 D

489,12-RH-1101-BB1,12-RH-1101-BB1-3A,RH,7E,10.126,0 490,12-RH-1101-BB1,12-RH-1101-BB1-4,RH,7E,10.126,0 491,12-RH-1101-BB1,12-RH-1101-BB1-5,RH,7E,10.126,0 492,12-RH-1101-BB1,12-RH-1101-BB1-6,RH,7E,10.126,0 493,12-RH-1101-BB1,12-RH-1101-BB1-7,RH,7E,10.126,0 494,12-RH-1101-BB1,12-RH-1101-BB1-8,RH,7E,10.126,0 495,12-RH-1101-BB1,12-RH-1101-BB1-9,RH,7E,10.126,0 Wednesday 29th April, 2015, 07:45 100 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 101 of 173 pages 496,12-RH-1101-BB1,12-RH-1101-BB1-10,RH,7E,10.126,0 497,12-RH-1101-BB1,12-RH-1101-BB1-11,RH,7E,10.126,0 498,12-RH-1101-BB1,12-RH-1101-BB1-12,RH,7E,10.126,0 499,12-RH-1101-BB1,12-RH-1101-BB1-13,RH,7E,10.126,0 500,12-RH-1101-BB1,12-RH-1101-BB1-14,RH,7E,10.126,0 501,12-RH-1101-BB1,12-RH-1101-BB1-15,RH,7E,10.126,0 502,12-RH-1101-BB1,12-RH-1101-BB1-16,RH,7E,10.126,0 503,12-RH-1201-BB1,12-RH-1201-BB1-1,RH,7E,10.126,0 504,12-RH-1201-BB1,12-RH-1201-BB1-2,RH,7E,10.126,0 505,12-RH-1201-BB1,12-RH-1201-BB1-3,RH,7E,10.126,0 506,12-RH-1201-BB1,12-RH-1201-BB1-4,RH,7E,10.126,0 507,12-RH-1201-BB1,12-RH-1201-BB1-5,RH,7E,10.126,0 508,12-RH-1201-BB1,12-RH-1201-BB1-6,RH,7E,10.126,0 ints 509,12-RH-1201-BB1,12-RH-1201-BB1-7,RH,7E,10.126,0 510,12-RH-1201-BB1,12-RH-1201-BB1-8,RH,7E,10.126,0 511,12-RH-1201-BB1,12-RH-1201-BB1-9,RH,7E,10.126,0 512,12-RH-1201-BB1,12-RH-1201-BB1-10,RH,7E,10.126,0 po g

513,12-RH-1201-BB1,12-RH-1201-BB1-11,RH,7E,10.126,0 514,12-RH-1201-BB1,12-RH-1201-BB1-12,RH,7E,10.126,0 in 515,12-RH-1201-BB1,12-RH-1201-BB1-13,RH,7E,10.126,0 516,12-RH-1201-BB1,12-RH-1201-BB1-14,RH,7E,10.126,0 lk 517,12-RH-1201-BB1,12-RH-1201-BB1-15,RH,7E,10.126,0 518,12-RH-1201-BB1,12-RH-1201-BB1-16,RH,7E,10.126,0 ta 519,12-RH-1201-BB1,12-RH-1201-BB1-17,RH,7E,10.126,0 520,12-RH-1301-BB1,12-RH-1301-BB1-1,RH,7E,10.126,0 521,12-RH-1301-BB1,12-RH-1301-BB1-2,RH,7E,10.126,0 A

522,12-RH-1301-BB1,12-RH-1301-BB1-3,RH,7E,10.126,0 523,12-RH-1301-BB1,12-RH-1301-BB1-4,RH,7E,10.126,0 FT 524,12-RH-1301-BB1,12-RH-1301-BB1-5,RH,7E,10.126,0 525,12-RH-1301-BB1,12-RH-1301-BB1-5A,RH,7E,10.126,0 526,12-RH-1301-BB1,12-RH-1301-BB1-6,RH,7E,10.126,0 527,12-RH-1301-BB1,12-RH-1301-BB1-7,RH,7E,10.126,0 R

528,12-RH-1301-BB1,12-RH-1301-BB1-8,RH,7E,10.126,0 529,12-RH-1301-BB1,12-RH-1301-BB1-9,RH,7E,10.126,0 D

530,12-RH-1301-BB1,12-RH-1301-BB1-10,RH,7E,10.126,0 531,12-SI-1125-BB1,12-SI-1125-BB1-1,SI-ACC-CL1,7O,10.126,0 532,12-SI-1125-BB1,12-SI-1125-BB1-2,SI-ACC-CL1,7O,10.126,0 533,12-SI-1125-BB1,12-SI-1125-BB1-3,SI-ACC-CL1,7O,10.126,0 534,12-SI-1125-BB1,12-SI-1125-BB1-4,SI-ACC-CL1,7O,10.126,0 535,12-SI-1218-BB1,12-SI-1218-BB1-1,SI-ACC-CL2,7O,10.126,0 536,12-SI-1218-BB1,12-SI-1218-BB1-2,SI-ACC-CL2,7O,10.126,0 Wednesday 29th April, 2015, 07:45 101 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 102 of 173 pages 537,12-SI-1218-BB1,12-SI-1218-BB1-3,SI-ACC-CL2,7O,10.126,0 538,12-SI-1218-BB1,12-SI-1218-BB1-4,SI-ACC-CL2,7O,10.126,0 539,12-SI-1315-BB1,12-SI-1315-BB1-1,SI-ACC-CL4,7O,10.126,0 540,12-SI-1315-BB1,12-SI-1315-BB1-2,SI-ACC-CL4,7O,10.126,0 541,12-SI-1315-BB1,12-SI-1315-BB1-3,SI-ACC-CL4,7O,10.126,0 542,12-SI-1315-BB1,12-SI-1315-BB1-4,SI-ACC-CL4,7O,10.126,0 543,12-SI-1315-BB1,12-SI-1315-BB1-5,SI-ACC-CL1,7O,10.126,0 544,12-SI-1315-BB1,12-SI-1315-BB1-6,SI-ACC-CL4,7O,10.126,0 545,12-SI-1315-BB1,12-SI-1315-BB1-7,SI-ACC-CL4,7O,10.126,0 546,12-SI-1315-BB1,12-SI-1315-BB1-8,SI-ACC-CL4,7D,10.126,0 547,12-SI-1315-BB1,12-SI-1315-BB1-9,SI-ACC-CL4,7D,10.126,0 548,12-SI-1315-BB1,12-SI-1315-BB1-10,SI-ACC-CL4,7D,10.126,0 ints 549,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-4,SI-ACC-CL1,7N,10.126,0 550,27.5-RC-1203-NSS - LOOP 2,27.5-RC-1203-NSS-3,SI-ACC-CL2,7N,10.126,0 po 551,27.5-RC-1303-NSS - LOOP 3,27.5-RC-1303-NSS-3,SI-ACC-CL3,7N,10.126,0 552,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-3,RHR-Suction,7E,10.126,0 553,29-RC-1201-NSS - LOOP 2,29-RC-1201-NSS-3,RC,7E,10.126,0 g

554,29-RC-1301-NSS - LOOP 3,29-RC-1301-NSS-3,RC,7E,10.126,0 555,16-RC-1412-NSS,16-RC-1412-NSS-1,Pressurizer Surge Line,4B,12.814,12.814 in 556,16-RC-1412-NSS,16-RC-1412-NSS-3,Pressurizer Surge Line,4B,12.814,0 557,16-RC-1412-NSS,16-RC-1412-NSS-4,Pressurizer Surge Line,4B,12.814,0 lk 558,16-RC-1412-NSS,16-RC-1412-NSS-5,Pressurizer Surge Line,4B,12.814,0 559,16-RC-1412-NSS,16-RC-1412-NSS-6,Pressurizer Surge Line,4B,12.814,0 ta 560,16-RC-1412-NSS,16-RC-1412-NSS-7,Pressurizer Surge Line,4B,12.814,0 561,16-RC-1412-NSS,16-RC-1412-NSS-8,Pressurizer Surge Line,4B,12.814,0 562,16-RC-1412-NSS,16-RC-1412-NSS-9,Pressurizer Surge Line,4C,12.814,0 A

563,16-RC-1412-NSS,16-RC-1412-NSS-PRZ-1-N1-SE,Pressurizer Surge Line,4A

,12.814,0 FT 564,29-RC-1401-NSS - LOOP 4,29-RC-1401-NSS-2,Pressurizer Surge Line,4C

,12.814,0 565,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-1,RC Cold Leg 1,3C

,27.5,19.4606 R

566,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-6,RC Cold Leg 1,3C

,27.5,19.5657 D

567,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-7,RC Cold Leg 1,3C

,27.5,21.0532 568,27.5-RC-1103-NSS - LOOP 1,27.5-RC-1103-NSS-RPV1-N2ASE,RC Cold Leg 1,3 A,27.5,22.047 569,27.5-RC-1203-NSS - LOOP 2,27.5-RC-1203-NSS-1,RC Cold Leg 2,3C,27.5,0 570,27.5-RC-1203-NSS - LOOP 2,27.5-RC-1203-NSS-4,RC Cold Leg 2,3C,27.5,0 571,27.5-RC-1203-NSS - LOOP 2,27.5-RC-1203-NSS-5,RC Cold Leg 2,3C,27.5,0 Wednesday 29th April, 2015, 07:45 102 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 103 of 173 pages 572,27.5-RC-1203-NSS - LOOP 2,27.5-RC-1203-NSS-RPV1-N2BSE,RC Cold Leg 2,3 A,27.5,0 573,27.5-RC-1303-NSS - LOOP 3,27.5-RC-1303-NSS-1,RC Cold Leg 3,3C,27.5,0 574,27.5-RC-1303-NSS - LOOP 3,27.5-RC-1303-NSS-5,RC Cold Leg 3,3C,27.5,0 575,27.5-RC-1303-NSS - LOOP 3,27.5-RC-1303-NSS-6,RC Cold Leg 3,3C,27.5,0 576,27.5-RC-1303-NSS - LOOP 3,27.5-RC-1303-NSS-RPV1-N2CSE,RC Cold Leg 3,3 A,27.5,0 577,27.5-RC-1403-NSS - LOOP 4,27.5-RC-1403-NSS-1,RC Cold Leg 4,3C,27.5,0 578,27.5-RC-1403-NSS - LOOP 4,27.5-RC-1403-NSS-5,RC Cold Leg 4,3C,27.5,0 579,27.5-RC-1403-NSS - LOOP 4,27.5-RC-1403-NSS-6,RC Cold Leg 4,3C,27.5,0 A,27.5,0 in 580,27.5-RC-1403-NSS - LOOP 4,27.5-RC-1403-NSS-RPV1-N2DSE,RC Cold Leg 4,3 ts 581,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-1,RC-Hot Leg 1,1B,29,13.9236 582,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-4,RC-Hot Leg 1,1B,29,13.9411 po 583,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-5.1,RC-Hot Leg 1,1B,29,14.3682 584,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-RPV1-N1ASE,RC-Hot Leg 1,1A

,29,14.404 1,2,29,14.4278 in g 585,29-RC-1101-NSS - LOOP 1,29-RC-1101-NSS-RSG-1A-IN-SE,RC-Hot Leg 586,29-RC-1201-NSS - LOOP 2,29-RC-1201-NSS-1,RC-Hot Leg 2,1B,29,14.4279 587,29-RC-1201-NSS - LOOP 2,29-RC-1201-NSS-4,RC-Hot Leg 2,1B,29,14.4336 lk 588,29-RC-1201-NSS - LOOP 2,29-RC-1201-NSS-5.1,RC-Hot Leg 2,1B,29,14.5424 589,29-RC-1201-NSS - LOOP 2,29-RC-1201-RPV1-N1BSE,RC-Hot Leg 2,1A

,29,15.0515 ta 590,29-RC-1201-NSS - LOOP 2,29-RC-1201-RSG-1B-IN-SE,RC-Hot Leg 2,2,29,15.0866 A

591,29-RC-1301-NSS - LOOP 3,29-RC-1301-NSS-1,RC-Hot Leg 3,1B,29,15.2938 592,29-RC-1301-NSS - LOOP 3,29-RC-1301-NSS-4,RC-Hot Leg 3,1B,29,15.4956 FT 593,29-RC-1301-NSS - LOOP 3,29-RC-1301-NSS-5.1,RC-Hot Leg 3,1B,29,0 594,29-RC-1301-NSS - LOOP 3,29-RC-1301-RPV1-N1CSE,RC-Hot Leg 3,1A,29,0 595,29-RC-1301-NSS - LOOP 3,29-RC-1301-RSG-1C-IN-SE,RC-Hot Leg 3,2,29,0 596,29-RC-1401-NSS - LOOP 4,29-RC-1401-NSS-1,RC-Hot Leg 4,1B,29,0 R

597,29-RC-1401-NSS - LOOP 4,29-RC-1401-NSS-3,RC-Hot Leg 4,1C,29,0 598,29-RC-1401-NSS - LOOP 4,29-RC-1401-NSS-4.1,RC-Hot Leg 4,1B,29,0 D

599,29-RC-1401-NSS - LOOP 4,29-RC-1401-NSS-RPV1-N1DSE,RC-Hot Leg 4,1A

,29,0 600,29-RC-1401-NSS - LOOP 4,29-RC-1401-NSS-RSG-1D-IN-SE,RC-Hot Leg 4,2,29,0 601,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-1.1,RC Cold Leg 1,3D,31,19.6171 602,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-2,RC Cold Leg 1,3D,31,20.2358 603,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-3,RC Cold Leg 1,3D,31,20.35 604,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-4,RC Cold Leg 1,3D,31,21.1162 Wednesday 29th April, 2015, 07:45 103 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 104 of 173 pages 605,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-8,RC Cold Leg 1,3D,31,21.2781 606,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-9,RC Cold Leg 1,3D,31,22.174 607,31-RC-1102-NSS - LOOP 1,31-RC-1102-NSS-RSG-1A-ON-SE,RC Cold Leg 1,3B

,31,23.169 608,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-1.1,RC Cold Leg 2,3D,31,25.3351 609,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-2,RC Cold Leg 2,3D,31,16.4079 610,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-3,RC Cold Leg 2,3D,31,16.7765 611,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-4,RC Cold Leg 2,3D,31,16.9282 612,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-8,RC Cold Leg 2,3D,31,16.9813 613,31-RC-1202-NSS - LOOP 2,31-RC-1202-NSS-9,RC Cold Leg 2,3D,31,17.0714 614,31-RC-1202-NSS

,31,17.2001 615,31-RC-1302-NSS LOOP LOOP in 2,31-RC-1202-NSS-RSG-1B-ON-SE,RC Cold Leg 2,3B ts 3,31-RC-1302-NSS-1.1,RC Cold Leg 3,3D,31,17.2398 616,31-RC-1302-NSS - LOOP 3,31-RC-1302-NSS-2,RC Cold Leg 3,3D,31,17.3454 617,31-RC-1302-NSS 618,31-RC-1302-NSS 619,31-RC-1302-NSS LOOP LOOP LOOP po 3,31-RC-1302-NSS-3,RC Cold Leg 3,3D,31,17.3737 3,31-RC-1302-NSS-4,RC Cold Leg 3,3D,31,17.6362 3,31-RC-1302-NSS-8,RC Cold Leg 3,3D,31,17.8428 620,31-RC-1302-NSS 621,31-RC-1302-NSS

,31,18.1077 LOOP LOOP g

3,31-RC-1302-NSS-9,RC Cold Leg 3,3D,31,17.9194 3,31-RC-1302-NSS-RSG-1C-ON-SE,RC Cold Leg 3,3B in 622,31-RC-1402-NSS - LOOP 4,31-RC-1402-NSS-1.1,RC Cold Leg 4,3D,31,18.1367 623,31-RC-1402-NSS 624,31-RC-1402-NSS LOOP LOOP lk 4,31-RC-1402-NSS-2,RC Cold Leg 4,3D,31,18.1794 4,31-RC-1402-NSS-3,RC Cold Leg 4,3D,31,18.1976 625,31-RC-1402-NSS 626,31-RC-1402-NSS 627,31-RC-1402-NSS LOOP LOOP LOOP ta 4,31-RC-1402-NSS-4,RC Cold Leg 4,3D,31,18.3113 4,31-RC-1402-NSS-8,RC Cold Leg 4,3D,31,18.3429 4,31-RC-1402-NSS-9,RC Cold Leg 4,3D,31,19.235

,31,19.2473 A 628,31-RC-1402-NSS FT

- LOOP 4,31-RC-1402-NSS-RSG-1D-ON-SE,RC Cold Leg 4,3B R

D Wednesday 29th April, 2015, 07:45 104 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 105 of 173 pages 12 FIDOE sensitivity study, "xed "ltration A sensitivity study using "xed "ltration values is performed in a updated version of FIDOE designed to accommodate a linear (increase rate, constant rate). The update is eected in the class MassCalculator. In the update, a "xed "ltration can can be obtained by adding the appropriate keyword in the input "le (the c "le) with a zero slope parameter. If a non-zero slope parameter is entered, the "ltration will increase linearly until 1.0 is reached.

The default "ltration "t function will be used in all other cases.

Several cases were developed and run in FIDOE for low, normal, and high initial pool concentrations and low, normal, and high "ows. The assumed "ow levels for the sensitivity "ltration, 0.4, 0.5, 0.6 and 0.7.

in are summarized in Table 16. Each of these cases is further examined at four levels of ts When a FIDOE calculation is executed, the "rst "le generated is an echo in "le which is a print out of each of the parameters read into memory. Note that at the end of the "ow po input, there are entries that read nan. nan refers to additional rows that are blank lines that are additional rows in the MS EXCEL .csv "le (not visible during input development).

Table 16: ECCS and CSS train "ow rates assumed for the low, normal, and high sensitivities in FIDOE.

Train Low in Normal g High A 3300 4400 5500 B

C lk 5062.5 5062.5 6750 6750 8437.5 8437.5 ta Listing 13: Source listing for (1c) solution, Alex Zolan, UT Austin, 02 March, 2015

""" AFT Fiber Diusion Operations Engine (FIDOE)

System of Dierential Equations Solver Alex Zolan Updated March 24, 2015 R

The purpose of the program is to simulate debris moving through D

a recirculating pool from which strainers can "lter out some debris, and some of the debris that passes through the strainers may attach itself to the core.

import time import scipy Wednesday 29th April, 2015, 07:45 105 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 106 of 173 pages import scipy.integrate import matplotlib matplotlib.use(Agg) import matplotlib.pyplot as plt import pandas import csv class MassCalculator(object):

"""Note that in initialization, we allow for inputs to be left out of the input "le and still allow the program to run using a note is printed to the console to inform the user."""

def __init__(self, params):

in default values in their place. When a default value is used, ts

  1. pool volume (gallons) and initial mass in pool (grams) else:

self.M_p_0 = 3000.0 po if "M_p_0" in params.keys(): self.M_p_0 = params["M_p_0"]

g print "M_p_0notininputs.Defaultvalueof3000used."

if "V_p" in params.keys(): self.V_p = params["V_p"]

else: in self.V_p = 50000.0 lk print "V_pnotininputs.Defaultvalueof50000used."

  1. Initial mass on strainers ta if "M_s_a_0" in params.keys(): self.M_s_a_0 = params["M_s_a_0"]

else:

A self.M_s_a_0 = 0.0 print "M_s_a_0notininputs.Defaultvalueof0used."

FT if "M_s_b_0" in params.keys(): self.M_s_b_0 = params["M_s_b_0"]

else:

self.M_s_b_0 = 0.0 print "M_s_b_0notininputs.Defaultvalueof0used."

R if "M_s_c_0" in params.keys(): self.M_s_c_0 = params["M_s_c_0"]

else:

D self.M_s_c_0 = 0.0 print "M_s_c_0notininputs.Defaultvalueof0used."

  1. initial mass on core if "M_c_0" in params.keys(): self.M_c_0 = params["M_c_0"]

else:

self.M_c_0 = 0.0 print "M_c_0notininputs.Defaultvalueof0.0used."

Wednesday 29th April, 2015, 07:45 106 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 107 of 173 pages

  1. gamma, the percentage of water "owing back to the strainers if "gamma_a" in params.keys(): self.gamma_a = params["gamma_a"]

else:

self.gamma_a = 0.0 print "gamma_anotininputs.Defaultvalueof0.0used."

if "gamma_b" in params.keys(): self.gamma_b = params["gamma_b"]

else:

self.gamma_b = 0.0 print "gamma_bnotininputs.Defaultvalueof0.0used."

else:

self.gamma_c = 0.0 in if "gamma_c" in params.keys(): self.gamma_c = params["gamma_c"]

ts print "gamma_cnotininputs.Defaultvalueof0.0used."

po

  1. strainer "ow rates in gallons per minute (gpm) if "Q_s_a" in params.keys(): self.Q_s_a = params["Q_s_a"]

else:

self.Q_s_a = 1000.0 in g print "Q_s_anotininputs.Defaultvalueof1000.0used."

if "Q_s_b" in params.keys(): self.Q_s_b = params["Q_s_b"]

else:

self.Q_s_b = 1000.0 lk ta print "Q_s_bnotininputs.Defaultvalueof1000.0used."

if "Q_s_c" in params.keys(): self.Q_s_c = params["Q_s_c"]

else:

A self.Q_s_c = 1000.0 print "Q_s_cnotininputs.Defaultvalueof1000.0used."

FT

  1. core "ow rate in gpm if "Q_c" in params.keys(): self.Q_c = params["Q_c"]

else:

R self.Q_c = 1600.0 print "Q_cnotininputs.Defaultvalueof1600.0used."

D #"ltration function type de"nition = hybrid or linear function if "function_type" in params.keys(): self."ltration_function = params["

function_type"]

else:

print "Filtrationfunctiontypenotspeci"ed.Defaultofhybrid equationused."

Wednesday 29th April, 2015, 07:45 107 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 108 of 173 pages self."ltration_function = "hybrid"

  1. for a linear function, read in the slope and intercept.
  1. if none provided, assume constant "ltration factor of 0.75.

if self."ltration_function == "linear":

if "slope" in params.keys(): self.slope = params["slope"]

else:

self.slope = 0.0 print "slope("ltrationfunction)notininputs.Defaultof0.0 used."

else:

self.intercept = 0.75 in if "intercept" in params.keys(): self.intercept = params["intercept"]

ts print "intercept("ltrationfunction)notininputs.Defaultof 0.75used."

self.m = "N/A" self.b = "N/A" po self.threshold = "N/A" self.delta = "N/A" self.a = "N/A" in g lk

  1. We assume the hybrid function if theres anything else speci"ed,
  1. whether its "hybrid" or anything not "linear" or "hybrid".

else: ta if self."ltration_function != "hybrid":

print "Functionnotspeci"edashybridorlinear.Defaultof AFT hybridused."

  1. "ltration rate (function of mass)b if "m" in params.keys(): self.m = params["m"]

else:

self.m = 0.007741 #lower envelope print "m("ltrationfunction)notininputs.Defaultof0.007741 R used."

if "b" in params.keys(): self.b = params["b"]

D else:

self.b = 0.6560 #lower envelope print "b("ltrationfunction)notininputs.Defaultof0.6560 used."

if "M_c" in params.keys(): self.threshold = params["M_c"]

else:

self.threshold = 38.5 #lower envelope Wednesday 29th April, 2015, 07:45 108 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 109 of 173 pages print "M_c("ltrationfunction)notininputs.Defaultof38.5 used."

if "delta" in params.keys(): self.delta = params["delta"]

else:

self.delta = 0.02968 #lower envelope print "delta("ltrationfunction)notininputs.Defaultof 0.02968used."

if "a" in params.keys(): self.a = params["a"]

else:

self.a = 1.0 #lower envelope not

  1. called out in the console.,

in

  1. this upper bound is not expected to be used in most cases, so it is ts
  1. print "a ("ltration function) not in inputs. Default of 1.0 used."

self.slope = "N/A" self.intercept = "N/A" po def getFlowRateStrainerA(self,t): g

"""returns the "ow rate out of strainer A, in gallons per minute.

in This function is assumed to be known with respect to time, but currently has only a constant."""

lk if type(self.Q_s_a) == "oat: return self.Q_s_a else:

ta

  1. if not a constant, use the "ow rate just before the time
  1. period that exceeds the input t. otherwise, use the
  1. last "ow rate given A

if self.Q_s_a["t"][0] > t: return 0 for i in range(1,len(self.Q_s_a["t"])):

FT if self.Q_s_a["t"][i] > t:

return self.Q_s_a["vals"][i-1]

return self.Q_s_a["vals"][-1]

R def getFlowRateStrainerB(self,t):

"""returns the "ow rate out of strainer B, in gallons per minute.

D This function is assumed to be known with respect to time, but currently has only a constant."""

if type(self.Q_s_b) == "oat: return self.Q_s_b #if the input is a constant, just report that.

else:

  1. if not a constant, use the "ow rate just before the time
  1. period that exceeds the input t. otherwise, use the Wednesday 29th April, 2015, 07:45 109 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 110 of 173 pages

  1. last "ow rate given if self.Q_s_b["t"][0] > t: return 0 for i in range(1,len(self.Q_s_b["t"])):

if self.Q_s_b["t"][i] > t:

return self.Q_s_b["vals"][i-1]

return self.Q_s_b["vals"][-1]

def getFlowRateStrainerC(self,t):

"""returns the "ow rate out of strainer C, in gallons per minute.

This function is assumed to be known with respect to time, but currently has only a constant."""

if type(self.Q_s_c) == "oat: return self.Q_s_c else:

ints

  1. if not a constant, use the "ow rate just before the time
  1. last "ow rate given if self.Q_s_c["t"][0] > t: return 0 po
  1. period that exceeds the input t. otherwise, use the for i in range(1,len(self.Q_s_c["t"])):

if self.Q_s_c["t"][i] > t:

in return self.Q_s_c["vals"][i-1]

g return self.Q_s_c["vals"][-1]

def getFlowRateCore(self, t):

lk ta

"""returns the "ow rate through the core, in gallons per minute.

This function is assumed to be known with respect to time."""

if type(self.Q_c) == "oat: return self.Q_c else:

A

  1. if not a constant, use the "ow rate just before the time FT
  1. period that exceeds the input t. otherwise, use the
  1. last "ow rate given if self.Q_c["t"][0] > t: return 0 for i in range(1,len(self.Q_c["t"])):

R if self.Q_c["t"][i] > t:

return self.Q_c["vals"][i-1]

D return self.Q_c["vals"][-1]

def getFiltrationRate(self,mass):

"""returns the "ltration rate (fraction between 0 and 1) of debris through the strainer. (Note the mass is total for a strainer, and there are 20 modules, with the "ltration function relating to the per module mass - so we divide Wednesday 29th April, 2015, 07:45 110 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 111 of 173 pages by 20 to get the per-module mass.

mass -- amount of debris currently on the strainer (grams) retval - fraction between 0 and 1 indicating how the proportion of mass that is caught and added to the strainer if self."ltration_function == "hybrid":

if (mass/20.0) <= self.threshold:

return (mass/20.0)*self.m + self.b else:

return (self.threshold*self.m + self.b) + (self.a - self.threshold*self.m else:

))

in

- self.b) * (1-scipy.exp(-self.delta * ((mass/20.0)-self.threshold) ts return min(1.0,(mass/20.0)*self.slope + self.intercept) def getDeltaMassStrainerA(self, masses, t):

po

"""Calculates the rate of change of mass on strainer A.

recirculation system:

masses[0] = Pool (M_p) in g masses -- mass of debris in the dierent parts of the masses[1] = Strainer A (M_s_A) lk masses[2] = Strainer B (M_s_B) masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c) t -- time ta retval -- rate of change of mass on Strainer A."""

A return self.getFlowRateStrainerA(t) * (masses[0] / self.V_p)

  • self.

getFiltrationRate(masses[1])

FT def getDeltaMassStrainerB(self, masses, t):

"""Calculates the rate of change of mass on strainer B.

masses -- mass of debris in the dierent parts of the R

recirculation system:

masses[0] = Pool (M_p)

D masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B) masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c) t -- time retval -- rate of change of mass on Strainer B."""

return self.getFlowRateStrainerB(t) * (masses[0] / self.V_p)

  • self.

Wednesday 29th April, 2015, 07:45 111 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 112 of 173 pages getFiltrationRate(masses[2])

def getDeltaMassStrainerC(self, masses, t):

"""Calculates the rate of change of mass on strainer C.

masses -- mass of debris in the dierent parts of the recirculation system:

masses[0] = Pool (M_p) masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B) masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c) t -- time retval -- rate of change of mass on Strainer C."""

ints return self.getFlowRateStrainerC(t) * (masses[0] / self.V_p)

  • self.

getFiltrationRate(masses[3])

def getNetPassThroughRate(self,masses,t):

po strainers and to the core.

in g

"""Calculates the weighted average pass-through rate of debris through the result is weighted by "ow rate to the core (given by the gamma term and "ow rate).

lk masses -- mass of debris in the dierent parts of the system:

recirculation system:

masses[0] = Pool (M_p) ta masses[1] = Strainer A (M_s_A) masses[2] = Strainer B (M_s_B)

A masses[3] = Strainer C (M_s_C) masses[4] = Core (M_c) t -- time FT retval -- weighted average of debris "ltered by the strainers"""

if self.getFlowRateStrainerA(t) + self.getFlowRateStrainerB(t) + self.

getFlowRateStrainerC(t) == 0: return 1.0 R

else: return ( self.getFlowRateStrainerA(t) * (1-self.getFiltrationRate(masses

[1])) * (1-self.gamma_a)

D + self.getFlowRateStrainerB(t) * (1-self.getFiltrationRate(masses

[2])) * (1-self.gamma_b)

+ self.getFlowRateStrainerC(t) * (1-self.getFiltrationRate(masses

[3])) * (1-self.gamma_c) ) / \

( self.getFlowRateStrainerA(t) * (1-self.gamma_a) +

self.getFlowRateStrainerB(t) * (1-self.gamma_b) +

self.getFlowRateStrainerC(t) * (1-self.gamma_c) )

Wednesday 29th April, 2015, 07:45 112 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 113 of 173 pages def getDeltaMassCore(self, masses, t):

"""Calculates the rate of change of debris on the core."""

return self.getFlowRateCore(t) * (masses[0] / self.V_p) * (self.

getNetPassThroughRate(masses,t))

def getDeltaMassPool(self,masses,t):

"""Calculates the rate of change of debris in the pool."""

return -1.0*( self.getDeltaMassCore(masses,t)

+ self.getDeltaMassStrainerA(masses, t)

+ self.getDeltaMassStrainerB(masses, t)

+ self.getDeltaMassStrainerC(masses, t) )

ints def getAllDeltas(self, masses, t):

po

"""Gets the rate of change of debris in all locations."""

return scipy.array( [ self.getDeltaMassPool(masses,t),

self.getDeltaMassStrainerA(masses,t),

g self.getDeltaMassStrainerB(masses,t),

self.getDeltaMassStrainerC(masses,t),

in self.getDeltaMassCore(masses,t) ] )

def solveForCoreMass(self, t):

lk ta

"""Runs the ODE integrator from Pythons ODE library, with the delta functions and initial values arranged in order: pool, strainer A, B, C, and Core.

A Note: We use the librarys default solver, LSODA, for this set of dierential equations."""

FT return scipy.integrate.odeint(self.getAllDeltas, scipy.array([self.M_p_0, self.M_s_a_0, self.M_s_b_0, R self.M_s_c_0, self.M_c_0]

D ),

t, mxstep=10000000 )

def printEchoIn(self,"lename = "echoin.csv"):

"""Prints all model parameters to "le. Used for debugging and I/O checking."""

out"le = open("lename,w)

Wednesday 29th April, 2015, 07:45 113 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 114 of 173 pages out"le.write("Modelparametersused:\n\n")

out"le.write("FiltrationFunctionType:%s\n" % self."ltration_function) out"le.write("FiltrationFunctionParameterValues:\n")

out"le.write("m,%s\n" % self.m) out"le.write("b,%s\n" % self.b) out"le.write("M_c,%s\n" % self.threshold) out"le.write("delta,%s\n" % self.delta) out"le.write("a,%s\n\n" % self.a) out"le.write("slope,%s\n\n" % self.slope) out"le.write("intercept,%s\n\n" % self.intercept) out"le.write("InitialMassesandStrainerValues:\n")

out"le.write("M_p_0,%s\n" % self.M_p_0) out"le.write("V_p,%s\n" % self.V_p) ints out"le.write("M_s_a_0,%s\n" % self.M_s_a_0) out"le.write("M_s_b_0,%s\n" % self.M_s_b_0) out"le.write("M_s_c_0,%s\n" % self.M_s_c_0) out"le.write("FlowRatesovertime:\n")

po else:

out"le.write("t,Q_s_a\n") in g if type(self.Q_s_a) == "oat: out"le.write("Q_s_a,%s\n" % self.Q_s_a) for idx in range(len(self.Q_s_a["t"])):

lk out"le.write("%s,%s\n" % (self.Q_s_a["t"][idx],self.Q_s_a["vals"][

idx]))

out"le.write("\n") ta if type(self.Q_s_b) == "oat: out"le.write("Q_s_b,%s\n" % self.Q_s_b) else:

A out"le.write("t,Q_s_b\n")

for idx in range(len(self.Q_s_b["t"])):

FTout"le.write("%s,%s\n" % (self.Q_s_b["t"][idx],self.Q_s_b["vals"][

idx]))

out"le.write("\n")

if type(self.Q_s_c) == "oat: out"le.write("Q_s_c,%s\n" % self.Q_s_c)

R else:

out"le.write("t,Q_s_c\n")

D for idx in range(len(self.Q_s_c["t"])):

out"le.write("%s,%s\n" % (self.Q_s_c["t"][idx],self.Q_s_c["vals"][

idx]))

out"le.write("\n")

if type(self.Q_c) == "oat: out"le.write("Q_c,%s\n" % self.Q_c) else:

out"le.write("t,Q_c\n")

Wednesday 29th April, 2015, 07:45 114 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 115 of 173 pages for idx in range(len(self.Q_c["t"])):

out"le.write("%s,%s\n" % (self.Q_c["t"][idx],self.Q_c["vals"][idx]))

out"le.write("\n")

def ReadParams(time_"lename, initials_"lename):

"""Serves as the input reader for this model. Assumes there is one "le that reads as a table of time-based inputs and another "le with initial and model values. the output is a dictionary that is used to initialize the MassCalculator class.

params = {}

  1. read in initials and constants "le initials_"le = csv.reader(open(initials_"lename, rU))

ints for line in initials_"le:

if len(line) > 1:

try: params[line[0)) = "oat(line[1])

po except ValueError: params[line[0)) = line[1]

  1. read in time-based inputs "le time_df = pandas.read_csv(time_"lename)
  1. print time_df in g params["Q_s_a"] = {}

lk params["Q_s_a"]["t"] = time_df.t.values params["Q_s_a"]["vals"] = time_df.Q_s_a.values params["Q_s_b"] = {} ta params["Q_s_b"]["t"] = time_df.t.values params["Q_s_b"]["vals"] = time_df.Q_s_b.values A

params["Q_s_c"] = {}

params["Q_s_c"]["t"] = time_df.t.values FT params["Q_s_c"]["vals"] = time_df.Q_s_c.values params["Q_c"] = {}

params["Q_c"]["t"] = time_df.t.values params["Q_c"]["vals"] = time_df.Q_c.values R

return params D

if __name__ == "__main__":

time_"lename = raw_input("Pleaseenterthenameofthetime-indexed inputs"le:")

initials_"lename = raw_input("Pleaseenterthenameoftheconstantinputs "le:")

Wednesday 29th April, 2015, 07:45 115 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 116 of 173 pages timespan = "oat(raw_input("Pleaseenterthedesiredtimespan(minutes):"))

out"le = raw_input("Pleaseentertheresults"lename(noextension):")

time_"lename = "time.csv" initials_"lename = "const.csv" timespan = 1000 out"le = "DEMO"

  1. create_png = raw_input("Create graph summary of output (y/n)? ")

solver = MassCalculator(ReadParams(time_"lename, initials_"lename))

clock = time.time()

t = scipy.linspace(0,timespan,1001) sol = solver.solveForCoreMass(t).T ints elapsed = time.time() - clock "les."

  1. Creating csv table po print "Calculationscompletedin"+str(elapsed)+"seconds.Creatingoutput output = open(out"le+".csv",w) output.write("t,M_p,M_s_a,M_s_b,M_s_c,M_c\n")

for idx in range(len(sol[0])): in g output.write(str(t[idx])+","+str(sol[0][idx])+","+str(sol[1][idx])+","+str(sol lk

[2][idx])+","+str(sol[3][idx])+","+str(sol[4][idx])+"\n")

output.close()

ta

  1. Creating 2x2 "gure of plots of debris levels over time.
  1. If plotting cant be done here, skip this step.

try:

A "g, axes = plt.subplots(2,2) axes[0, 0].plot(t,sol[1])

FT axes[0, 0].set_title(DebrisonstrainerAovertime) axes[0, 1].plot(t,sol[2])

axes[0, 1].set_title(DebrisonstrainerBovertime) axes[1, 0].plot(t,sol[3])

R axes[1, 0].set_title(DebrisonstrainerCovertime) axes[1, 1].plot(t,sol[4])

D axes[1, 1].set_title(Debrisoncoreovertime) plt.save"g(out"le+".png")

except TypeError: pass

  1. print model parameters solver.printEchoIn()

Wednesday 29th April, 2015, 07:45 116 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 117 of 173 pages 12.1 Low pool concentration 141.67,3300.0 225.0,3300.0 Low pool concentration is de"ned by an ini-308.33,3300.0 tial debris mass of 68181.8 gm and water 641.67,3300.0 volume of 600,000 gal. The category of low 975.0,3300.0 pool concentration includes the four levels 1308.33,3300.0 of "ltration and three levels of "ow. The fol-1641.67,3300.0 lowing listings correspond to the low pool 2475.0,3300.0 concentration sensitivities.

6641.67,3300.0 9975.0,3300.0 12.1.1 Low ECCS "ow Listing 14: Low ECCS "ow, 0.4 "ltration 13308.33,3300.0 16641.67,3300.0 nan,nan ints nan,nan Model parameters used: nan,nan nan,nan nan,nan po Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A b,N/A g

nan,nan nan,nan in M_c,N/A t,Q_s_b delta,N/A a,N/A lk 0.0,5062.5 8.33,5062.5 slope,0.0 ta 41.67,5062.5 75.0,5062.5 108.33,5062.5 intercept,0.4 AFT Initial Masses and Strainer Values:

141.67,5062.5 225.0,5062.5 308.33,5062.5 641.67,5062.5 M_p_0,68181.82 V_p,600000.0 975.0,5062.5 M_s_a_0,0.0 1308.33,5062.5 M_s_b_0,0.0 M_s_c_0,0.0 R 1641.67,5062.5 2475.0,5062.5 D

Flow Rates over time:

t,Q_s_a 6641.67,5062.5 9975.0,5062.5 0.0,3300.0 13308.33,5062.5 8.33,3300.0 16641.67,5062.5 41.67,3300.0 nan,nan 75.0,3300.0 nan,nan 108.33,3300.0 nan,nan Wednesday 29th April, 2015, 07:45 117 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 118 of 173 pages nan,nan 975.0,220.91 nan,nan 1308.33,197.62 nan,nan 1641.67,182.46 nan,nan 2475.0,171.01 6641.67,151.19 t,Q_s_c 9975.0,107.08 0.0,5062.5 13308.33,90.92 8.33,5062.5 16641.67,80.49 41.67,5062.5 nan,nan 75.0,5062.5 nan,nan 108.33,5062.5 141.67,5062.5 225.0,5062.5 nan,nan nan,nan nan,nan ints 308.33,5062.5 nan,nan 641.67,5062.5 975.0,5062.5 1308.33,5062.5 nan,nan po Listing 15: Low ECCS "ow, 0.5 "ltration 1641.67,5062.5 2475.0,5062.5 6641.67,5062.5 g

Model parameters used:

in 9975.0,5062.5 Filtration Function Type: linear 13308.33,5062.5 16641.67,5062.5 lk Filtration Function Parameter Values:

m,N/A nan,nan nan,nan nan,nan ta b,N/A M_c,N/A delta,N/A nan,nan nan,nan nan,nan nan,nan AFT a,N/A slope,0.0 intercept,0.5 t,Q_c 0.0,610.0 R 8.33,565.81 Initial Masses and Strainer Values:

D 41.67,520.19 75.0,419.82 M_p_0,68181.82 V_p,600000.0 M_s_a_0,0.0 108.33,370.37 M_s_b_0,0.0 141.67,340.83 M_s_c_0,0.0 225.0,319.87 Flow Rates over time:

308.33,286.78 t,Q_s_a 641.67,265.56 0.0,3300.0 Wednesday 29th April, 2015, 07:45 118 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 119 of 173 pages 8.33,3300.0 16641.67,5062.5 41.67,3300.0 nan,nan 75.0,3300.0 nan,nan 108.33,3300.0 nan,nan 141.67,3300.0 nan,nan 225.0,3300.0 nan,nan 308.33,3300.0 nan,nan 641.67,3300.0 nan,nan 975.0,3300.0 1308.33,3300.0 t,Q_s_c 1641.67,3300.0 2475.0,3300.0 6641.67,3300.0 0.0,5062.5 8.33,5062.5 41.67,5062.5 ints 9975.0,3300.0 75.0,5062.5 13308.33,3300.0 16641.67,3300.0 nan,nan po 108.33,5062.5 141.67,5062.5 225.0,5062.5 nan,nan nan,nan nan,nan g

308.33,5062.5 641.67,5062.5 in 975.0,5062.5 nan,nan 1308.33,5062.5 nan,nan nan,nan lk 1641.67,5062.5 2475.0,5062.5 t,Q_s_b 0.0,5062.5 ta 6641.67,5062.5 9975.0,5062.5 13308.33,5062.5 8.33,5062.5 41.67,5062.5 75.0,5062.5 108.33,5062.5 AFT 16641.67,5062.5 nan,nan nan,nan nan,nan 141.67,5062.5 nan,nan 225.0,5062.5 nan,nan R

308.33,5062.5 641.67,5062.5 nan,nan nan,nan D

975.0,5062.5 1308.33,5062.5 t,Q_c 1641.67,5062.5 0.0,610.0 2475.0,5062.5 8.33,565.81 6641.67,5062.5 41.67,520.19 9975.0,5062.5 75.0,419.82 13308.33,5062.5 108.33,370.37 Wednesday 29th April, 2015, 07:45 119 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 120 of 173 pages 141.67,340.83 M_s_c_0,0.0 225.0,319.87 Flow Rates over time:

308.33,286.78 t,Q_s_a 641.67,265.56 0.0,3300.0 975.0,220.91 8.33,3300.0 1308.33,197.62 41.67,3300.0 1641.67,182.46 75.0,3300.0 2475.0,171.01 108.33,3300.0 6641.67,151.19 141.67,3300.0 9975.0,107.08 225.0,3300.0 13308.33,90.92 16641.67,80.49 nan,nan 308.33,3300.0 641.67,3300.0 975.0,3300.0 ints nan,nan 1308.33,3300.0 nan,nan nan,nan nan,nan po 1641.67,3300.0 2475.0,3300.0 6641.67,3300.0 nan,nan nan,nan g

9975.0,3300.0 13308.33,3300.0 in 16641.67,3300.0 Listing 16: Low ECCS "ow, 0.6 "ltration nan,nan Model parameters used:

lk nan,nan nan,nan Filtration Function Type: linear ta Filtration Function Parameter Values:

nan,nan nan,nan nan,nan m,N/A b,N/A M_c,N/A AFT nan,nan t,Q_s_b 0.0,5062.5 delta,N/A a,N/A 8.33,5062.5 41.67,5062.5 slope,0.0 R 75.0,5062.5 108.33,5062.5 D

intercept,0.6 141.67,5062.5 225.0,5062.5 Initial Masses and Strainer Values: 308.33,5062.5 M_p_0,68181.82 641.67,5062.5 V_p,600000.0 975.0,5062.5 M_s_a_0,0.0 1308.33,5062.5 M_s_b_0,0.0 1641.67,5062.5 Wednesday 29th April, 2015, 07:45 120 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 121 of 173 pages 2475.0,5062.5 8.33,565.81 6641.67,5062.5 41.67,520.19 9975.0,5062.5 75.0,419.82 13308.33,5062.5 108.33,370.37 16641.67,5062.5 141.67,340.83 nan,nan 225.0,319.87 nan,nan 308.33,286.78 nan,nan 641.67,265.56 nan,nan 975.0,220.91 nan,nan 1308.33,197.62 nan,nan nan,nan 1641.67,182.46 2475.0,171.01 6641.67,151.19 ints t,Q_s_c 9975.0,107.08 0.0,5062.5 8.33,5062.5 41.67,5062.5 po 13308.33,90.92 16641.67,80.49 nan,nan 75.0,5062.5 108.33,5062.5 141.67,5062.5 g

nan,nan nan,nan in nan,nan 225.0,5062.5 nan,nan 308.33,5062.5 641.67,5062.5 lk nan,nan nan,nan 975.0,5062.5 1308.33,5062.5 1641.67,5062.5 ta Listing 17: Low ECCS "ow, 0.7 "ltration 2475.0,5062.5 6641.67,5062.5 9975.0,5062.5 13308.33,5062.5 AFT Model parameters used:

Filtration Function Type: linear Filtration Function Parameter Values:

16641.67,5062.5 m,N/A nan,nan b,N/A nan,nan nan,nan R M_c,N/A D

nan,nan nan,nan delta,N/A a,N/A nan,nan slope,0.0 nan,nan intercept,0.7 t,Q_c 0.0,610.0 Initial Masses and Strainer Values:

Wednesday 29th April, 2015, 07:45 121 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 122 of 173 pages M_p_0,68181.82 641.67,5062.5 V_p,600000.0 975.0,5062.5 M_s_a_0,0.0 1308.33,5062.5 M_s_b_0,0.0 1641.67,5062.5 M_s_c_0,0.0 2475.0,5062.5 Flow Rates over time: 6641.67,5062.5 t,Q_s_a 9975.0,5062.5 0.0,3300.0 13308.33,5062.5 8.33,3300.0 16641.67,5062.5 41.67,3300.0 nan,nan 75.0,3300.0 108.33,3300.0 141.67,3300.0 nan,nan nan,nan nan,nan ints 225.0,3300.0 nan,nan 308.33,3300.0 641.67,3300.0 975.0,3300.0 nan,nan nan,nan po 1308.33,3300.0 1641.67,3300.0 2475.0,3300.0 g

t,Q_s_c 0.0,5062.5 in 8.33,5062.5 6641.67,3300.0 41.67,5062.5 9975.0,3300.0 13308.33,3300.0 lk 75.0,5062.5 108.33,5062.5 16641.67,3300.0 nan,nan nan,nan ta 141.67,5062.5 225.0,5062.5 308.33,5062.5 nan,nan nan,nan nan,nan nan,nan AFT 641.67,5062.5 975.0,5062.5 1308.33,5062.5 1641.67,5062.5 nan,nan 2475.0,5062.5 6641.67,5062.5 t,Q_s_b 0.0,5062.5 R 9975.0,5062.5 13308.33,5062.5 D

8.33,5062.5 41.67,5062.5 16641.67,5062.5 nan,nan 75.0,5062.5 nan,nan 108.33,5062.5 nan,nan 141.67,5062.5 nan,nan 225.0,5062.5 nan,nan 308.33,5062.5 nan,nan Wednesday 29th April, 2015, 07:45 122 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 123 of 173 pages nan,nan slope,0.0 t,Q_c 0.0,610.0 intercept,0.4 8.33,565.81 41.67,520.19 Initial Masses and Strainer Values:

75.0,419.82 M_p_0,68181.82 108.33,370.37 V_p,600000.0 141.67,340.83 M_s_a_0,0.0 225.0,319.87 M_s_b_0,0.0 308.33,286.78 641.67,265.56 975.0,220.91 M_s_c_0,0.0 in Flow Rates over time:

t,Q_s_a ts 1308.33,197.62 0.0,4400 1641.67,182.46 2475.0,171.01 6641.67,151.19 8.33,4400 41.67,4400 75.0,4400 po 9975.0,107.08 13308.33,90.92 16641.67,80.49 g

108.33,4400 141.67,4400 in 225.0,4400 nan,nan 308.33,4400 nan,nan nan,nan lk 641.67,4400 975.0,4400 nan,nan nan,nan nan,nan ta 1308.33,4400 1641.67,4400 2475.0,4400 nan,nan 12.1.2 AFT Normal ECCS "ow 6641.67,4400 9975.0,4400 13308.33,4400 16641.67,4400 Listing 18: Normal ECCS "ow, 0.4 "ltration t,Q_s_b R

Model parameters used: 0.0,6750 8.33,6750 D

Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A 41.67,6750 75.0,6750 108.33,6750 b,N/A 141.67,6750 M_c,N/A 225.0,6750 delta,N/A 308.33,6750 a,N/A 641.67,6750 Wednesday 29th April, 2015, 07:45 123 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 124 of 173 pages 975.0,6750 2475.0,171.01 1308.33,6750 6641.67,151.19 1641.67,6750 9975.0,107.08 2475.0,6750 13308.33,90.92 6641.67,6750 16641.67,80.49 9975.0,6750 13308.33,6750 Listing 19: Normal ECCS "ow, 0.5 "ltration 16641.67,6750 Model parameters used:

t,Q_s_c 0.0,6750 8.33,6750 41.67,6750 in Filtration Function Type: linear ts Filtration Function Parameter Values:

m,N/A 75.0,6750 b,N/A 108.33,6750 141.67,6750 225.0,6750 M_c,N/A delta,N/A po a,N/A 308.33,6750 641.67,6750 975.0,6750 g

slope,0.0 in 1308.33,6750 intercept,0.5 1641.67,6750 2475.0,6750 lk Initial Masses and Strainer Values:

6641.67,6750 9975.0,6750 13308.33,6750 ta M_p_0,68181.82 V_p,600000.0 M_s_a_0,0.0 16641.67,6750 t,Q_c 0.0,610.0 AFT M_s_b_0,0.0 M_s_c_0,0.0 Flow Rates over time:

t,Q_s_a 8.33,565.81 0.0,4400 41.67,520.19 8.33,4400 R

75.0,419.82 108.33,370.37 41.67,4400 D

141.67,340.83 225.0,319.87 75.0,4400 108.33,4400 141.67,4400 308.33,286.78 225.0,4400 641.67,265.56 308.33,4400 975.0,220.91 641.67,4400 1308.33,197.62 975.0,4400 1641.67,182.46 1308.33,4400 Wednesday 29th April, 2015, 07:45 124 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 125 of 173 pages 1641.67,4400 9975.0,6750 2475.0,4400 13308.33,6750 6641.67,4400 16641.67,6750 9975.0,4400 13308.33,4400 t,Q_c 16641.67,4400 0.0,610.0 8.33,565.81 t,Q_s_b 41.67,520.19 0.0,6750 75.0,419.82 8.33,6750 108.33,370.37 41.67,6750 75.0,6750 108.33,6750 141.67,340.83 225.0,319.87 308.33,286.78 ints 141.67,6750 641.67,265.56 225.0,6750 308.33,6750 641.67,6750 975.0,220.91po 1308.33,197.62 1641.67,182.46 975.0,6750 1308.33,6750 1641.67,6750 g

2475.0,171.01 6641.67,151.19 in 9975.0,107.08 2475.0,6750 13308.33,90.92 6641.67,6750 9975.0,6750 lk 16641.67,80.49 13308.33,6750 16641.67,6750 ta Listing 20: Normal ECCS "ow, 0.6 "ltration Model parameters used:

t,Q_s_c 0.0,6750 8.33,6750 41.67,6750 AFT Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A 75.0,6750 b,N/A 108.33,6750 M_c,N/A 225.0,6750 R

141.67,6750 delta,N/A D

308.33,6750 641.67,6750 a,N/A slope,0.0 975.0,6750 1308.33,6750 intercept,0.6 1641.67,6750 2475.0,6750 Initial Masses and Strainer Values:

6641.67,6750 M_p_0,68181.82 Wednesday 29th April, 2015, 07:45 125 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 126 of 173 pages V_p,600000.0 16641.67,6750 M_s_a_0,0.0 M_s_b_0,0.0 t,Q_s_c M_s_c_0,0.0 0.0,6750 Flow Rates over time: 8.33,6750 t,Q_s_a 41.67,6750 0.0,4400 75.0,6750 8.33,4400 108.33,6750 41.67,4400 141.67,6750 75.0,4400 225.0,6750 108.33,4400 141.67,4400 225.0,4400 308.33,6750 641.67,6750 975.0,6750 ints 308.33,4400 1308.33,6750 641.67,4400 975.0,4400 1308.33,4400 2475.0,6750 po 1641.67,6750 6641.67,6750 1641.67,4400 2475.0,4400 6641.67,4400 g

9975.0,6750 13308.33,6750 in 16641.67,6750 9975.0,4400 13308.33,4400 16641.67,4400 lk t,Q_c 0.0,610.0 t,Q_s_b 0.0,6750 ta 8.33,565.81 41.67,520.19 75.0,419.82 8.33,6750 41.67,6750 75.0,6750 108.33,6750 AFT 108.33,370.37 141.67,340.83 225.0,319.87 308.33,286.78 141.67,6750 641.67,265.56 225.0,6750 975.0,220.91 R

308.33,6750 641.67,6750 1308.33,197.62 1641.67,182.46 D

975.0,6750 1308.33,6750 2475.0,171.01 6641.67,151.19 1641.67,6750 9975.0,107.08 2475.0,6750 13308.33,90.92 6641.67,6750 16641.67,80.49 9975.0,6750 13308.33,6750 Listing 21: Low ECCS "ow, 0.7 "ltration Wednesday 29th April, 2015, 07:45 126 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 127 of 173 pages t,Q_s_b Model parameters used: 0.0,6750 8.33,6750 Filtration Function Type: linear 41.67,6750 Filtration Function Parameter Values: 75.0,6750 m,N/A 108.33,6750 b,N/A 141.67,6750 M_c,N/A 225.0,6750 delta,N/A 308.33,6750 a,N/A 641.67,6750 slope,0.0 975.0,6750 1308.33,6750 1641.67,6750 ints intercept,0.7 2475.0,6750 Initial Masses and Strainer Values:

M_p_0,68181.82 6641.67,6750 9975.0,6750 13308.33,6750 po V_p,600000.0 M_s_a_0,0.0 M_s_b_0,0.0 in g 16641.67,6750 t,Q_s_c M_s_c_0,0.0 0.0,6750 Flow Rates over time:

t,Q_s_a lk 8.33,6750 41.67,6750 0.0,4400 8.33,4400 41.67,4400 ta 75.0,6750 108.33,6750 141.67,6750 75.0,4400 108.33,4400 141.67,4400 225.0,4400 AFT 225.0,6750 308.33,6750 641.67,6750 975.0,6750 308.33,4400 1308.33,6750 641.67,4400 1641.67,6750 975.0,4400 1308.33,4400 R 2475.0,6750 6641.67,6750 D

1641.67,4400 2475.0,4400 9975.0,6750 13308.33,6750 6641.67,4400 16641.67,6750 9975.0,4400 13308.33,4400 t,Q_c 16641.67,4400 0.0,610.0 8.33,565.81 Wednesday 29th April, 2015, 07:45 127 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 128 of 173 pages 41.67,520.19 t,Q_s_a 75.0,419.82 0.0,5500.0 108.33,370.37 8.33,5500.0 141.67,340.83 41.67,5500.0 225.0,319.87 75.0,5500.0 308.33,286.78 108.33,5500.0 641.67,265.56 141.67,5500.0 975.0,220.91 225.0,5500.0 1308.33,197.62 308.33,5500.0 1641.67,182.46 641.67,5500.0 2475.0,171.01 6641.67,151.19 9975.0,107.08 975.0,5500.0 1308.33,5500.0 1641.67,5500.0 ints 13308.33,90.92 2475.0,5500.0 16641.67,80.49 12.1.3 High ECCS "ow po 6641.67,5500.0 9975.0,5500.0 13308.33,5500.0 Listing 22: High ECCS "ow, 0.4 "ltration g 16641.67,5500.0 nan,nan in nan,nan Model parameters used: nan,nan Filtration Function Type: linear lk nan,nan nan,nan m,N/A b,N/A ta Filtration Function Parameter Values: nan,nan nan,nan M_c,N/A delta,N/A a,N/A AFT t,Q_s_b 0.0,8437.5 8.33,8437.5 41.67,8437.5 slope,0.0 75.0,8437.5 108.33,8437.5 R

intercept,0.4 141.67,8437.5 225.0,8437.5 D

Initial Masses and Strainer Values:

M_p_0,68181.82 V_p,600000.0 308.33,8437.5 641.67,8437.5 975.0,8437.5 M_s_a_0,0.0 1308.33,8437.5 M_s_b_0,0.0 1641.67,8437.5 M_s_c_0,0.0 2475.0,8437.5 Flow Rates over time: 6641.67,8437.5 Wednesday 29th April, 2015, 07:45 128 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 129 of 173 pages 9975.0,8437.5 75.0,419.82 13308.33,8437.5 108.33,370.37 16641.67,8437.5 141.67,340.83 nan,nan 225.0,319.87 nan,nan 308.33,286.78 nan,nan 641.67,265.56 nan,nan 975.0,220.91 nan,nan 1308.33,197.62 nan,nan 1641.67,182.46 nan,nan 2475.0,171.01 t,Q_s_c 0.0,8437.5 6641.67,151.19 9975.0,107.08 13308.33,90.92 ints 8.33,8437.5 16641.67,80.49 41.67,8437.5 75.0,8437.5 108.33,8437.5 nan,nan nan,nan nan,nan po 141.67,8437.5 225.0,8437.5 308.33,8437.5 g

nan,nan nan,nan in nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 1308.33,8437.5 lk Listing 23: High ECCS "ow, 0.5 "ltration 1641.67,8437.5 2475.0,8437.5 6641.67,8437.5 ta Model parameters used:

9975.0,8437.5 13308.33,8437.5 16641.67,8437.5 nan,nan AFT Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A b,N/A nan,nan M_c,N/A nan,nan delta,N/A nan,nan nan,nan R a,N/A D

nan,nan nan,nan slope,0.0 intercept,0.5 t,Q_c 0.0,610.0 Initial Masses and Strainer Values:

8.33,565.81 M_p_0,68181.82 41.67,520.19 V_p,600000.0 Wednesday 29th April, 2015, 07:45 129 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 130 of 173 pages M_s_a_0,0.0 1308.33,8437.5 M_s_b_0,0.0 1641.67,8437.5 M_s_c_0,0.0 2475.0,8437.5 Flow Rates over time: 6641.67,8437.5 t,Q_s_a 9975.0,8437.5 0.0,5500.0 13308.33,8437.5 8.33,5500.0 16641.67,8437.5 41.67,5500.0 nan,nan 75.0,5500.0 nan,nan 108.33,5500.0 nan,nan 141.67,5500.0 225.0,5500.0 308.33,5500.0 nan,nan nan,nan nan,nan ints 641.67,5500.0 nan,nan 975.0,5500.0 1308.33,5500.0 1641.67,5500.0 t,Q_s_c 0.0,8437.5 po 2475.0,5500.0 6641.67,5500.0 9975.0,5500.0 g

8.33,8437.5 41.67,8437.5 in 75.0,8437.5 13308.33,5500.0 108.33,8437.5 16641.67,5500.0 nan,nan lk 141.67,8437.5 225.0,8437.5 nan,nan nan,nan nan,nan ta 308.33,8437.5 641.67,8437.5 975.0,8437.5 nan,nan nan,nan nan,nan AFT 1308.33,8437.5 1641.67,8437.5 2475.0,8437.5 6641.67,8437.5 t,Q_s_b 9975.0,8437.5 0.0,8437.5 13308.33,8437.5 R

8.33,8437.5 41.67,8437.5 16641.67,8437.5 nan,nan D

75.0,8437.5 108.33,8437.5 nan,nan nan,nan 141.67,8437.5 nan,nan 225.0,8437.5 nan,nan 308.33,8437.5 nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 Wednesday 29th April, 2015, 07:45 130 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 131 of 173 pages t,Q_c 0.0,610.0 Initial Masses and Strainer Values:

8.33,565.81 M_p_0,68181.82 41.67,520.19 V_p,600000.0 75.0,419.82 M_s_a_0,0.0 108.33,370.37 M_s_b_0,0.0 141.67,340.83 M_s_c_0,0.0 225.0,319.87 Flow Rates over time:

308.33,286.78 t,Q_s_a 641.67,265.56 0.0,5500.0 975.0,220.91 1308.33,197.62 1641.67,182.46 8.33,5500.0 41.67,5500.0 75.0,5500.0 ints 2475.0,171.01 108.33,5500.0 6641.67,151.19 9975.0,107.08 13308.33,90.92 po 141.67,5500.0 225.0,5500.0 308.33,5500.0 16641.67,80.49 nan,nan nan,nan g

641.67,5500.0 975.0,5500.0 in 1308.33,5500.0 nan,nan 1641.67,5500.0 nan,nan nan,nan lk 2475.0,5500.0 6641.67,5500.0 nan,nan nan,nan ta 9975.0,5500.0 13308.33,5500.0 16641.67,5500.0 A

Listing 24: High ECCS "ow, 0.6 "ltration FT Model parameters used:

nan,nan nan,nan nan,nan nan,nan Filtration Function Type: linear nan,nan Filtration Function Parameter Values: nan,nan m,N/A R nan,nan D

b,N/A M_c,N/A delta,N/A t,Q_s_b 0.0,8437.5 a,N/A 8.33,8437.5 41.67,8437.5 slope,0.0 75.0,8437.5 108.33,8437.5 intercept,0.6 141.67,8437.5 Wednesday 29th April, 2015, 07:45 131 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 132 of 173 pages 225.0,8437.5 nan,nan 308.33,8437.5 nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 1308.33,8437.5 t,Q_c 1641.67,8437.5 0.0,610.0 2475.0,8437.5 8.33,565.81 6641.67,8437.5 41.67,520.19 9975.0,8437.5 75.0,419.82 13308.33,8437.5 108.33,370.37 16641.67,8437.5 nan,nan nan,nan 141.67,340.83 225.0,319.87 308.33,286.78 ints nan,nan 641.67,265.56 nan,nan nan,nan nan,nan po 975.0,220.91 1308.33,197.62 1641.67,182.46 nan,nan t,Q_s_c g

2475.0,171.01 6641.67,151.19 in 9975.0,107.08 0.0,8437.5 13308.33,90.92 8.33,8437.5 41.67,8437.5 lk 16641.67,80.49 nan,nan 75.0,8437.5 108.33,8437.5 141.67,8437.5 ta nan,nan nan,nan nan,nan 225.0,8437.5 308.33,8437.5 641.67,8437.5 975.0,8437.5 AFT nan,nan nan,nan nan,nan 1308.33,8437.5 Listing 25: High ECCS "ow, 0.7 "ltration 1641.67,8437.5 R

2475.0,8437.5 6641.67,8437.5 Model parameters used:

D 9975.0,8437.5 13308.33,8437.5 Filtration Function Type: linear Filtration Function Parameter Values:

16641.67,8437.5 m,N/A nan,nan b,N/A nan,nan M_c,N/A nan,nan delta,N/A nan,nan a,N/A Wednesday 29th April, 2015, 07:45 132 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 133 of 173 pages 41.67,8437.5 slope,0.0 75.0,8437.5 108.33,8437.5 intercept,0.7 141.67,8437.5 225.0,8437.5 Initial Masses and Strainer Values: 308.33,8437.5 M_p_0,68181.82 641.67,8437.5 V_p,600000.0 975.0,8437.5 M_s_a_0,0.0 1308.33,8437.5 M_s_b_0,0.0 1641.67,8437.5 M_s_c_0,0.0 Flow Rates over time:

t,Q_s_a 2475.0,8437.5 6641.67,8437.5 9975.0,8437.5 ints 0.0,5500.0 13308.33,8437.5 8.33,5500.0 41.67,5500.0 75.0,5500.0 nan,nan nan,nan po 16641.67,8437.5 108.33,5500.0 141.67,5500.0 225.0,5500.0 g

nan,nan nan,nan in nan,nan 308.33,5500.0 nan,nan 641.67,5500.0 975.0,5500.0 lk nan,nan 1308.33,5500.0 1641.67,5500.0 2475.0,5500.0 ta t,Q_s_c 0.0,8437.5 8.33,8437.5 6641.67,5500.0 9975.0,5500.0 13308.33,5500.0 16641.67,5500.0 AFT 41.67,8437.5 75.0,8437.5 108.33,8437.5 141.67,8437.5 nan,nan 225.0,8437.5 nan,nan 308.33,8437.5 nan,nan nan,nan R 641.67,8437.5 975.0,8437.5 D

nan,nan nan,nan 1308.33,8437.5 1641.67,8437.5 nan,nan 2475.0,8437.5 6641.67,8437.5 t,Q_s_b 9975.0,8437.5 0.0,8437.5 13308.33,8437.5 8.33,8437.5 16641.67,8437.5 Wednesday 29th April, 2015, 07:45 133 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 134 of 173 pages nan,nan mal pool concentration sensitivities.

nan,nan nan,nan 12.2.1 Low ECCS "ow nan,nan nan,nan Listing 26: Low ECCS "ow, 0.4 "ltration nan,nan nan,nan Model parameters used:

t,Q_c Filtration Function Type: linear 0.0,610.0 8.33,565.81 41.67,520.19 75.0,419.82 m,N/A b,N/A in Filtration Function Parameter Values:

ts M_c,N/A 108.33,370.37 141.67,340.83 225.0,319.87 308.33,286.78 delta,N/A a,N/A po slope,0.0 641.67,265.56 975.0,220.91 1308.33,197.62 in g intercept,0.4 1641.67,182.46 2475.0,171.01 6641.67,151.19 lk Initial Masses and Strainer Values:

M_p_0,87272.73 9975.0,107.08 13308.33,90.92 16641.67,80.49 ta V_p,500000.0 M_s_a_0,0.0 M_s_b_0,0.0 M_s_c_0,0.0 nan,nan nan,nan nan,nan nan,nan AFT Flow Rates over time:

t,Q_s_a 0.0,3300.0 8.33,3300.0 nan,nan 41.67,3300.0 nan,nan nan,nan R 75.0,3300.0 108.33,3300.0 12.2 D Normal pool concentration Normal pool concentration is de"ned by an 141.67,3300.0 225.0,3300.0 308.33,3300.0 initial debris mass of 87273 gm and water 641.67,3300.0 volume of 500,000 gal. Within the category 975.0,3300.0 of normal pool concentration are the four 1308.33,3300.0 levels of "ltration and three levels of "ow.

1641.67,3300.0 The following listings correspond to the nor-Wednesday 29th April, 2015, 07:45 134 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 135 of 173 pages 2475.0,3300.0 8.33,5062.5 6641.67,3300.0 41.67,5062.5 9975.0,3300.0 75.0,5062.5 13308.33,3300.0 108.33,5062.5 16641.67,3300.0 141.67,5062.5 nan,nan 225.0,5062.5 nan,nan 308.33,5062.5 nan,nan 641.67,5062.5 nan,nan 975.0,5062.5 nan,nan 1308.33,5062.5 nan,nan nan,nan 1641.67,5062.5 2475.0,5062.5 6641.67,5062.5 ints t,Q_s_b 9975.0,5062.5 0.0,5062.5 8.33,5062.5 41.67,5062.5 po 13308.33,5062.5 16641.67,5062.5 nan,nan 75.0,5062.5 108.33,5062.5 141.67,5062.5 g

nan,nan nan,nan in nan,nan 225.0,5062.5 nan,nan 308.33,5062.5 641.67,5062.5 lk nan,nan nan,nan 975.0,5062.5 1308.33,5062.5 1641.67,5062.5 ta t,Q_c 0.0,610.0 2475.0,5062.5 6641.67,5062.5 9975.0,5062.5 13308.33,5062.5 AFT 8.33,565.81 41.67,520.19 75.0,419.82 108.33,370.37 16641.67,5062.5 141.67,340.83 nan,nan 225.0,319.87 nan,nan nan,nan R 308.33,286.78 641.67,265.56 D

nan,nan nan,nan 975.0,220.91 1308.33,197.62 nan,nan 1641.67,182.46 nan,nan 2475.0,171.01 6641.67,151.19 t,Q_s_c 9975.0,107.08 0.0,5062.5 13308.33,90.92 Wednesday 29th April, 2015, 07:45 135 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 136 of 173 pages 16641.67,80.49 641.67,3300.0 nan,nan 975.0,3300.0 nan,nan 1308.33,3300.0 nan,nan 1641.67,3300.0 nan,nan 2475.0,3300.0 nan,nan 6641.67,3300.0 nan,nan 9975.0,3300.0 nan,nan 13308.33,3300.0 16641.67,3300.0 Listing 27: Low ECCS "ow, 0.5 "ltration nan,nan Model parameters used:

nan,nan nan,nan nan,nan ints Filtration Function Type: linear nan,nan Filtration Function Parameter Values:

m,N/A nan,nan nan,nan po b,N/A M_c,N/A delta,N/A a,N/A in g t,Q_s_b 0.0,5062.5 8.33,5062.5 41.67,5062.5 slope,0.0 lk 75.0,5062.5 108.33,5062.5 intercept,0.5 Initial Masses and Strainer Values:

ta 141.67,5062.5 225.0,5062.5 308.33,5062.5 M_p_0,87272.73 V_p,500000.0 M_s_a_0,0.0 AFT 641.67,5062.5 975.0,5062.5 1308.33,5062.5 1641.67,5062.5 M_s_b_0,0.0 M_s_c_0,0.0 2475.0,5062.5 Flow Rates over time: 6641.67,5062.5 t,Q_s_a R 9975.0,5062.5 13308.33,5062.5 D

0.0,3300.0 8.33,3300.0 41.67,3300.0 16641.67,5062.5 nan,nan 75.0,3300.0 nan,nan 108.33,3300.0 nan,nan 141.67,3300.0 nan,nan 225.0,3300.0 nan,nan 308.33,3300.0 nan,nan Wednesday 29th April, 2015, 07:45 136 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 137 of 173 pages nan,nan 2475.0,171.01 6641.67,151.19 t,Q_s_c 9975.0,107.08 0.0,5062.5 13308.33,90.92 8.33,5062.5 16641.67,80.49 41.67,5062.5 nan,nan 75.0,5062.5 nan,nan 108.33,5062.5 nan,nan 141.67,5062.5 nan,nan 225.0,5062.5 nan,nan 308.33,5062.5 641.67,5062.5 975.0,5062.5 nan,nan nan,nan ints 1308.33,5062.5 Listing 28: Low ECCS "ow, 0.6 "ltration 1641.67,5062.5 2475.0,5062.5 6641.67,5062.5 po Model parameters used:

9975.0,5062.5 13308.33,5062.5 16641.67,5062.5 g

Filtration Function Type: linear Filtration Function Parameter Values:

in m,N/A nan,nan b,N/A nan,nan nan,nan lk M_c,N/A delta,N/A nan,nan nan,nan nan,nan ta a,N/A slope,0.0 nan,nan t,Q_c 0.0,610.0 AFT intercept,0.6 Initial Masses and Strainer Values:

8.33,565.81 M_p_0,87272.73 41.67,520.19 V_p,500000.0 R

75.0,419.82 108.33,370.37 M_s_a_0,0.0 D

141.67,340.83 225.0,319.87 M_s_b_0,0.0 M_s_c_0,0.0 Flow Rates over time:

308.33,286.78 t,Q_s_a 641.67,265.56 0.0,3300.0 975.0,220.91 8.33,3300.0 1308.33,197.62 41.67,3300.0 1641.67,182.46 75.0,3300.0 Wednesday 29th April, 2015, 07:45 137 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 138 of 173 pages 108.33,3300.0 nan,nan 141.67,3300.0 nan,nan 225.0,3300.0 nan,nan 308.33,3300.0 nan,nan 641.67,3300.0 nan,nan 975.0,3300.0 1308.33,3300.0 t,Q_s_c 1641.67,3300.0 0.0,5062.5 2475.0,3300.0 8.33,5062.5 6641.67,3300.0 41.67,5062.5 9975.0,3300.0 13308.33,3300.0 16641.67,3300.0 75.0,5062.5 108.33,5062.5 141.67,5062.5 ints nan,nan 225.0,5062.5 nan,nan nan,nan nan,nan po 308.33,5062.5 641.67,5062.5 975.0,5062.5 nan,nan nan,nan nan,nan g

1308.33,5062.5 1641.67,5062.5 in 2475.0,5062.5 6641.67,5062.5 t,Q_s_b 0.0,5062.5 lk 9975.0,5062.5 13308.33,5062.5 8.33,5062.5 41.67,5062.5 75.0,5062.5 ta 16641.67,5062.5 nan,nan nan,nan 108.33,5062.5 141.67,5062.5 225.0,5062.5 308.33,5062.5 AFT nan,nan nan,nan nan,nan nan,nan 641.67,5062.5 nan,nan 975.0,5062.5 R

1308.33,5062.5 1641.67,5062.5 t,Q_c 0.0,610.0 D

2475.0,5062.5 6641.67,5062.5 8.33,565.81 41.67,520.19 9975.0,5062.5 75.0,419.82 13308.33,5062.5 108.33,370.37 16641.67,5062.5 141.67,340.83 nan,nan 225.0,319.87 nan,nan 308.33,286.78 Wednesday 29th April, 2015, 07:45 138 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 139 of 173 pages 641.67,265.56 0.0,3300.0 975.0,220.91 8.33,3300.0 1308.33,197.62 41.67,3300.0 1641.67,182.46 75.0,3300.0 2475.0,171.01 108.33,3300.0 6641.67,151.19 141.67,3300.0 9975.0,107.08 225.0,3300.0 13308.33,90.92 308.33,3300.0 16641.67,80.49 641.67,3300.0 nan,nan 975.0,3300.0 nan,nan nan,nan nan,nan 1308.33,3300.0 1641.67,3300.0 2475.0,3300.0 ints nan,nan 6641.67,3300.0 nan,nan nan,nan po 9975.0,3300.0 13308.33,3300.0 16641.67,3300.0 Listing 29: Low ECCS "ow, 0.7 "ltration Model parameters used: in g nan,nan nan,nan nan,nan nan,nan Filtration Function Type: linear Filtration Function Parameter Values:

lk nan,nan nan,nan m,N/A b,N/A M_c,N/A ta nan,nan t,Q_s_b delta,N/A a,N/A AFT 0.0,5062.5 8.33,5062.5 41.67,5062.5 75.0,5062.5 slope,0.0 108.33,5062.5 intercept,0.7 141.67,5062.5 R 225.0,5062.5 308.33,5062.5 D

Initial Masses and Strainer Values:

M_p_0,87272.73 V_p,500000.0 641.67,5062.5 975.0,5062.5 M_s_a_0,0.0 1308.33,5062.5 M_s_b_0,0.0 1641.67,5062.5 M_s_c_0,0.0 2475.0,5062.5 Flow Rates over time: 6641.67,5062.5 t,Q_s_a 9975.0,5062.5 Wednesday 29th April, 2015, 07:45 139 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 140 of 173 pages 13308.33,5062.5 108.33,370.37 16641.67,5062.5 141.67,340.83 nan,nan 225.0,319.87 nan,nan 308.33,286.78 nan,nan 641.67,265.56 nan,nan 975.0,220.91 nan,nan 1308.33,197.62 nan,nan 1641.67,182.46 nan,nan 2475.0,171.01 6641.67,151.19 t,Q_s_c 0.0,5062.5 8.33,5062.5 9975.0,107.08 13308.33,90.92 16641.67,80.49 ints 41.67,5062.5 nan,nan 75.0,5062.5 108.33,5062.5 141.67,5062.5 nan,nan nan,nan nan,nan po 225.0,5062.5 308.33,5062.5 641.67,5062.5 g

nan,nan nan,nan in nan,nan 975.0,5062.5 12.2.2 Normal ECCS "ow 1308.33,5062.5 1641.67,5062.5 lk 2475.0,5062.5 6641.67,5062.5 9975.0,5062.5 ta Listing 30: Normal ECCS "ow, 0.4 "ltration Model parameters used:

13308.33,5062.5 16641.67,5062.5 nan,nan nan,nan AFT Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A nan,nan b,N/A nan,nan M_c,N/A nan,nan nan,nan R delta,N/A a,N/A D

nan,nan slope,0.0 t,Q_c 0.0,610.0 intercept,0.4 8.33,565.81 41.67,520.19 Initial Masses and Strainer Values:

75.0,419.82 M_p_0,87272.73 Wednesday 29th April, 2015, 07:45 140 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 141 of 173 pages V_p,500000.0 2475.0,6750.0 M_s_a_0,0.0 6641.67,6750.0 M_s_b_0,0.0 9975.0,6750.0 M_s_c_0,0.0 13308.33,6750.0 Flow Rates over time: 16641.67,6750.0 t,Q_s_a nan,nan 0.0,4400.0 nan,nan 8.33,4400.0 nan,nan 41.67,4400.0 nan,nan 75.0,4400.0 108.33,4400.0 141.67,4400.0 225.0,4400.0 t,Q_s_c 0.0,6750.0 8.33,6750.0 ints 308.33,4400.0 41.67,6750.0 641.67,4400.0 975.0,4400.0 1308.33,4400.0 po 75.0,6750.0 108.33,6750.0 141.67,6750.0 1641.67,4400.0 2475.0,4400.0 6641.67,4400.0 g

225.0,6750.0 308.33,6750.0 in 641.67,6750.0 9975.0,4400.0 975.0,6750.0 13308.33,4400.0 16641.67,4400.0 lk 1308.33,6750.0 1641.67,6750.0 nan,nan nan,nan nan,nan ta 2475.0,6750.0 6641.67,6750.0 9975.0,6750.0 nan,nan t,Q_s_b 0.0,6750.0 AFT 13308.33,6750.0 16641.67,6750.0 nan,nan nan,nan 8.33,6750.0 nan,nan 41.67,6750.0 nan,nan R

75.0,6750.0 108.33,6750.0 t,Q_c D

141.67,6750.0 225.0,6750.0 0.0,610.0 8.33,565.81 308.33,6750.0 41.67,520.19 641.67,6750.0 75.0,419.82 975.0,6750.0 108.33,370.37 1308.33,6750.0 141.67,340.83 1641.67,6750.0 225.0,319.87 Wednesday 29th April, 2015, 07:45 141 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 142 of 173 pages 308.33,286.78 41.67,4400.0 641.67,265.56 75.0,4400.0 975.0,220.91 108.33,4400.0 1308.33,197.62 141.67,4400.0 1641.67,182.46 225.0,4400.0 2475.0,171.01 308.33,4400.0 6641.67,151.19 641.67,4400.0 9975.0,107.08 975.0,4400.0 13308.33,90.92 1308.33,4400.0 16641.67,80.49 1641.67,4400.0 nan,nan nan,nan nan,nan 2475.0,4400.0 6641.67,4400.0 9975.0,4400.0 ints nan,nan 13308.33,4400.0 Listing 31: Normal ECCS "ow, 0.5 "ltration nan,nan nan,nan po 16641.67,4400.0 Model parameters used:

Filtration Function Type: linear g

nan,nan nan,nan in Filtration Function Parameter Values: t,Q_s_b m,N/A b,N/A lk 0.0,6750.0 8.33,6750.0 M_c,N/A delta,N/A a,N/A ta 41.67,6750.0 75.0,6750.0 108.33,6750.0 slope,0.0 AFT 141.67,6750.0 225.0,6750.0 308.33,6750.0 641.67,6750.0 intercept,0.5 975.0,6750.0 Initial Masses and Strainer Values: 1308.33,6750.0 R

M_p_0,87272.73 1641.67,6750.0 2475.0,6750.0 D

V_p,500000.0 M_s_a_0,0.0 M_s_b_0,0.0 6641.67,6750.0 9975.0,6750.0 M_s_c_0,0.0 13308.33,6750.0 Flow Rates over time: 16641.67,6750.0 t,Q_s_a nan,nan 0.0,4400.0 nan,nan 8.33,4400.0 nan,nan Wednesday 29th April, 2015, 07:45 142 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 143 of 173 pages nan,nan 13308.33,90.92 16641.67,80.49 t,Q_s_c nan,nan 0.0,6750.0 nan,nan 8.33,6750.0 nan,nan 41.67,6750.0 nan,nan 75.0,6750.0 108.33,6750.0 Listing 32: Normal ECCS "ow, 0.6 "ltration 141.67,6750.0 225.0,6750.0 308.33,6750.0 641.67,6750.0 975.0,6750.0 in Model parameters used:

ts Filtration Function Type: linear Filtration Function Parameter Values:

1308.33,6750.0 m,N/A 1641.67,6750.0 2475.0,6750.0 6641.67,6750.0 b,N/A M_c,N/A po delta,N/A 9975.0,6750.0 13308.33,6750.0 16641.67,6750.0 a,N/A in g slope,0.0 nan,nan nan,nan nan,nan lk intercept,0.6 nan,nan t,Q_c ta Initial Masses and Strainer Values:

M_p_0,87272.73 V_p,500000.0 0.0,610.0 8.33,565.81 41.67,520.19 75.0,419.82 AFT M_s_a_0,0.0 M_s_b_0,0.0 M_s_c_0,0.0 Flow Rates over time:

108.33,370.37 t,Q_s_a 141.67,340.83 0.0,4400.0 R

225.0,319.87 308.33,286.78 8.33,4400.0 D

641.67,265.56 975.0,220.91 41.67,4400.0 75.0,4400.0 108.33,4400.0 1308.33,197.62 141.67,4400.0 1641.67,182.46 225.0,4400.0 2475.0,171.01 308.33,4400.0 6641.67,151.19 641.67,4400.0 9975.0,107.08 975.0,4400.0 Wednesday 29th April, 2015, 07:45 143 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 144 of 173 pages 1308.33,4400.0 t,Q_s_c 1641.67,4400.0 0.0,6750.0 2475.0,4400.0 8.33,6750.0 6641.67,4400.0 41.67,6750.0 9975.0,4400.0 75.0,6750.0 13308.33,4400.0 108.33,6750.0 16641.67,4400.0 141.67,6750.0 nan,nan 225.0,6750.0 nan,nan 308.33,6750.0 nan,nan 641.67,6750.0 nan,nan nan,nan nan,nan 975.0,6750.0 1308.33,6750.0 1641.67,6750.0 ints nan,nan 2475.0,6750.0 t,Q_s_b 0.0,6750.0 po 6641.67,6750.0 9975.0,6750.0 13308.33,6750.0 8.33,6750.0 41.67,6750.0 75.0,6750.0 g

16641.67,6750.0 nan,nan in nan,nan 108.33,6750.0 nan,nan 141.67,6750.0 225.0,6750.0 lk nan,nan nan,nan 308.33,6750.0 641.67,6750.0 975.0,6750.0 ta nan,nan nan,nan 1308.33,6750.0 1641.67,6750.0 2475.0,6750.0 6641.67,6750.0 AFT t,Q_c 0.0,610.0 8.33,565.81 41.67,520.19 9975.0,6750.0 75.0,419.82 13308.33,6750.0 108.33,370.37 nan,nan R

16641.67,6750.0 141.67,340.83 225.0,319.87 D

nan,nan nan,nan 308.33,286.78 641.67,265.56 nan,nan 975.0,220.91 nan,nan 1308.33,197.62 nan,nan 1641.67,182.46 nan,nan 2475.0,171.01 6641.67,151.19 Wednesday 29th April, 2015, 07:45 144 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 145 of 173 pages 9975.0,107.08 225.0,4400.0 13308.33,90.92 308.33,4400.0 16641.67,80.49 641.67,4400.0 nan,nan 975.0,4400.0 nan,nan 1308.33,4400.0 nan,nan 1641.67,4400.0 nan,nan 2475.0,4400.0 nan,nan 6641.67,4400.0 nan,nan 9975.0,4400.0 nan,nan 13308.33,4400.0 Listing 33: Normal ECCS "ow, 0.7 "ltration 16641.67,4400.0 nan,nan nan,nan ints Model parameters used: nan,nan Filtration Function Type: linear nan,nan nan,nan nan,nan po Filtration Function Parameter Values:

m,N/A b,N/A M_c,N/A in g nan,nan t,Q_s_b delta,N/A 0.0,6750.0 a,N/A lk 8.33,6750.0 41.67,6750.0 slope,0.0 intercept,0.7 ta 75.0,6750.0 108.33,6750.0 141.67,6750.0 M_p_0,87272.73 A

Initial Masses and Strainer Values:

FT 225.0,6750.0 308.33,6750.0 641.67,6750.0 975.0,6750.0 V_p,500000.0 M_s_a_0,0.0 1308.33,6750.0 M_s_b_0,0.0 1641.67,6750.0 M_s_c_0,0.0 R 2475.0,6750.0 6641.67,6750.0 D

Flow Rates over time:

t,Q_s_a 0.0,4400.0 9975.0,6750.0 13308.33,6750.0 8.33,4400.0 16641.67,6750.0 41.67,4400.0 nan,nan 75.0,4400.0 nan,nan 108.33,4400.0 nan,nan 141.67,4400.0 nan,nan Wednesday 29th April, 2015, 07:45 145 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 146 of 173 pages nan,nan 1308.33,197.62 nan,nan 1641.67,182.46 nan,nan 2475.0,171.01 6641.67,151.19 t,Q_s_c 9975.0,107.08 0.0,6750.0 13308.33,90.92 8.33,6750.0 16641.67,80.49 41.67,6750.0 nan,nan 75.0,6750.0 nan,nan 108.33,6750.0 nan,nan 141.67,6750.0 225.0,6750.0 308.33,6750.0 nan,nan nan,nan nan,nan ints 641.67,6750.0 nan,nan 975.0,6750.0 1308.33,6750.0 1641.67,6750.0 12.2.3 po High ECCS "ow Listing 34: High ECCS "ow, 0.4 "ltration 2475.0,6750.0 6641.67,6750.0 9975.0,6750.0 in g Model parameters used:

13308.33,6750.0 16641.67,6750.0 nan,nan lk Filtration Function Type: linear Filtration Function Parameter Values:

nan,nan nan,nan nan,nan ta m,N/A b,N/A M_c,N/A nan,nan nan,nan nan,nan AFT delta,N/A a,N/A slope,0.0 t,Q_c 0.0,610.0 intercept,0.4 R

8.33,565.81 41.67,520.19 Initial Masses and Strainer Values:

D 75.0,419.82 108.33,370.37 M_p_0,87272.73 V_p,500000.0 M_s_a_0,0.0 141.67,340.83 225.0,319.87 M_s_b_0,0.0 308.33,286.78 M_s_c_0,0.0 641.67,265.56 Flow Rates over time:

975.0,220.91 t,Q_s_a Wednesday 29th April, 2015, 07:45 146 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 147 of 173 pages 0.0,5500.0 13308.33,8437.5 8.33,5500.0 16641.67,8437.5 41.67,5500.0 nan,nan 75.0,5500.0 nan,nan 108.33,5500.0 nan,nan 141.67,5500.0 nan,nan 225.0,5500.0 nan,nan 308.33,5500.0 nan,nan 641.67,5500.0 nan,nan 975.0,5500.0 1308.33,5500.0 1641.67,5500.0 2475.0,5500.0 t,Q_s_c 0.0,8437.5 8.33,8437.5 ints 6641.67,5500.0 41.67,8437.5 9975.0,5500.0 13308.33,5500.0 16641.67,5500.0 75.0,8437.5po 108.33,8437.5 141.67,8437.5 nan,nan nan,nan nan,nan g

225.0,8437.5 308.33,8437.5 in 641.67,8437.5 nan,nan 975.0,8437.5 nan,nan nan,nan lk 1308.33,8437.5 1641.67,8437.5 nan,nan t,Q_s_b ta 2475.0,8437.5 6641.67,8437.5 9975.0,8437.5 0.0,8437.5 8.33,8437.5 41.67,8437.5 75.0,8437.5 AFT 13308.33,8437.5 16641.67,8437.5 nan,nan nan,nan 108.33,8437.5 nan,nan 141.67,8437.5 nan,nan R

225.0,8437.5 308.33,8437.5 nan,nan nan,nan D

641.67,8437.5 975.0,8437.5 nan,nan 1308.33,8437.5 t,Q_c 1641.67,8437.5 0.0,610.0 2475.0,8437.5 8.33,565.81 6641.67,8437.5 41.67,520.19 9975.0,8437.5 75.0,419.82 Wednesday 29th April, 2015, 07:45 147 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 148 of 173 pages 108.33,370.37 M_s_b_0,0.0 141.67,340.83 M_s_c_0,0.0 225.0,319.87 Flow Rates over time:

308.33,286.78 t,Q_s_a 641.67,265.56 0.0,5500.0 975.0,220.91 8.33,5500.0 1308.33,197.62 41.67,5500.0 1641.67,182.46 75.0,5500.0 2475.0,171.01 108.33,5500.0 6641.67,151.19 141.67,5500.0 9975.0,107.08 13308.33,90.92 16641.67,80.49 225.0,5500.0 308.33,5500.0 641.67,5500.0 ints nan,nan 975.0,5500.0 nan,nan nan,nan nan,nan po 1308.33,5500.0 1641.67,5500.0 2475.0,5500.0 nan,nan nan,nan nan,nan g

6641.67,5500.0 9975.0,5500.0 in 13308.33,5500.0 16641.67,5500.0 lk Listing 35: High ECCS "ow, 0.5 "ltration nan,nan nan,nan Model parameters used:

Filtration Function Type: linear ta nan,nan nan,nan nan,nan m,N/A b,N/A A

Filtration Function Parameter Values:

FT nan,nan nan,nan t,Q_s_b M_c,N/A delta,N/A 0.0,8437.5 a,N/A 8.33,8437.5 R 41.67,8437.5 75.0,8437.5 D

slope,0.0 intercept,0.5 108.33,8437.5 141.67,8437.5 225.0,8437.5 Initial Masses and Strainer Values: 308.33,8437.5 M_p_0,87272.73 641.67,8437.5 V_p,500000.0 975.0,8437.5 M_s_a_0,0.0 1308.33,8437.5 Wednesday 29th April, 2015, 07:45 148 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 149 of 173 pages 1641.67,8437.5 0.0,610.0 2475.0,8437.5 8.33,565.81 6641.67,8437.5 41.67,520.19 9975.0,8437.5 75.0,419.82 13308.33,8437.5 108.33,370.37 16641.67,8437.5 141.67,340.83 nan,nan 225.0,319.87 nan,nan 308.33,286.78 nan,nan 641.67,265.56 nan,nan 975.0,220.91 nan,nan nan,nan nan,nan 1308.33,197.62 1641.67,182.46 2475.0,171.01 ints 6641.67,151.19 t,Q_s_c 0.0,8437.5 8.33,8437.5 po 9975.0,107.08 13308.33,90.92 16641.67,80.49 41.67,8437.5 75.0,8437.5 108.33,8437.5 g

nan,nan nan,nan in nan,nan 141.67,8437.5 nan,nan 225.0,8437.5 308.33,8437.5 lk nan,nan nan,nan 641.67,8437.5 975.0,8437.5 1308.33,8437.5 ta nan,nan Listing 36: High ECCS "ow, 0.6 "ltration 1641.67,8437.5 2475.0,8437.5 6641.67,8437.5 9975.0,8437.5 AFT Model parameters used:

Filtration Function Type: linear 13308.33,8437.5 Filtration Function Parameter Values:

16641.67,8437.5 m,N/A nan,nan nan,nan R b,N/A D

nan,nan nan,nan M_c,N/A delta,N/A a,N/A nan,nan nan,nan slope,0.0 nan,nan intercept,0.6 t,Q_c Wednesday 29th April, 2015, 07:45 149 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 150 of 173 pages Initial Masses and Strainer Values: 308.33,8437.5 M_p_0,87272.73 641.67,8437.5 V_p,500000.0 975.0,8437.5 M_s_a_0,0.0 1308.33,8437.5 M_s_b_0,0.0 1641.67,8437.5 M_s_c_0,0.0 2475.0,8437.5 Flow Rates over time: 6641.67,8437.5 t,Q_s_a 9975.0,8437.5 0.0,5500.0 13308.33,8437.5 8.33,5500.0 16641.67,8437.5 41.67,5500.0 75.0,5500.0 108.33,5500.0 nan,nan nan,nan nan,nan ints 141.67,5500.0 nan,nan 225.0,5500.0 308.33,5500.0 641.67,5500.0 nan,nan nan,nan nan,nan po 975.0,5500.0 1308.33,5500.0 1641.67,5500.0 g

t,Q_s_c in 0.0,8437.5 2475.0,5500.0 8.33,8437.5 6641.67,5500.0 9975.0,5500.0 lk 41.67,8437.5 75.0,8437.5 13308.33,5500.0 16641.67,5500.0 nan,nan ta 108.33,8437.5 141.67,8437.5 225.0,8437.5 nan,nan nan,nan nan,nan nan,nan AFT 308.33,8437.5 641.67,8437.5 975.0,8437.5 1308.33,8437.5 nan,nan 1641.67,8437.5 nan,nan 2475.0,8437.5 t,Q_s_b R 6641.67,8437.5 9975.0,8437.5 D

0.0,8437.5 8.33,8437.5 13308.33,8437.5 16641.67,8437.5 41.67,8437.5 nan,nan 75.0,8437.5 nan,nan 108.33,8437.5 nan,nan 141.67,8437.5 nan,nan 225.0,8437.5 nan,nan Wednesday 29th April, 2015, 07:45 150 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 151 of 173 pages nan,nan slope,0.0 nan,nan intercept,0.7 t,Q_c 0.0,610.0 Initial Masses and Strainer Values:

8.33,565.81 M_p_0,87272.73 41.67,520.19 V_p,500000.0 75.0,419.82 M_s_a_0,0.0 108.33,370.37 M_s_b_0,0.0 141.67,340.83 M_s_c_0,0.0 225.0,319.87 308.33,286.78 641.67,265.56 t,Q_s_a 0.0,5500.0 in Flow Rates over time:

ts 975.0,220.91 8.33,5500.0 1308.33,197.62 1641.67,182.46 2475.0,171.01 41.67,5500.0 75.0,5500.0 po 108.33,5500.0 6641.67,151.19 9975.0,107.08 13308.33,90.92 in g 141.67,5500.0 225.0,5500.0 308.33,5500.0 16641.67,80.49 641.67,5500.0 nan,nan nan,nan lk 975.0,5500.0 1308.33,5500.0 nan,nan nan,nan nan,nan ta 1641.67,5500.0 2475.0,5500.0 6641.67,5500.0 nan,nan nan,nan AFT Listing 37: High ECCS "ow, 0.7 "ltration 9975.0,5500.0 13308.33,5500.0 16641.67,5500.0 nan,nan nan,nan Model parameters used: nan,nan R nan,nan nan,nan D

Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A nan,nan nan,nan b,N/A M_c,N/A t,Q_s_b delta,N/A 0.0,8437.5 a,N/A 8.33,8437.5 41.67,8437.5 Wednesday 29th April, 2015, 07:45 151 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 152 of 173 pages 75.0,8437.5 nan,nan 108.33,8437.5 nan,nan 141.67,8437.5 nan,nan 225.0,8437.5 nan,nan 308.33,8437.5 nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 1308.33,8437.5 t,Q_c 1641.67,8437.5 0.0,610.0 2475.0,8437.5 8.33,565.81 6641.67,8437.5 9975.0,8437.5 13308.33,8437.5 41.67,520.19 75.0,419.82 108.33,370.37 ints 16641.67,8437.5 141.67,340.83 nan,nan nan,nan nan,nan po 225.0,319.87 308.33,286.78 641.67,265.56 nan,nan nan,nan nan,nan g

975.0,220.91 1308.33,197.62 in 1641.67,182.46 nan,nan 2475.0,171.01 t,Q_s_c lk 6641.67,151.19 9975.0,107.08 0.0,8437.5 8.33,8437.5 41.67,8437.5 ta 13308.33,90.92 16641.67,80.49 nan,nan 75.0,8437.5 108.33,8437.5 141.67,8437.5 225.0,8437.5 AFT nan,nan nan,nan nan,nan nan,nan 308.33,8437.5 nan,nan 641.67,8437.5 nan,nan R

975.0,8437.5 1308.33,8437.5 D

1641.67,8437.5 2475.0,8437.5 6641.67,8437.5 9975.0,8437.5 13308.33,8437.5 16641.67,8437.5 nan,nan Wednesday 29th April, 2015, 07:45 152 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 153 of 173 pages 12.3 High pool concentration 108.33,3300.0 sensitivity input 141.67,3300.0 225.0,3300.0 High pool concentration is de"ned by an ini-308.33,3300.0 tial debris mass of 113636 gm and water vol-641.67,3300.0 ume of 300,000 gal. The category of high 975.0,3300.0 pool concentration includes the four levels 1308.33,3300.0 of "ltration and three levels of "ow. The fol-1641.67,3300.0 lowing listings correspond to the low pool 2475.0,3300.0 concentration sensitivities.

6641.67,3300.0 12.3.1 Low ECCS "ow 9975.0,3300.0 13308.33,3300.0 16641.67,3300.0 ints Listing 38: Low ECCS "ow, 0.4 "ltration nan,nan Model parameters used:

nan,nan nan,nan nan,nan po Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A in g nan,nan nan,nan nan,nan b,N/A nan,nan M_c,N/A delta,N/A lk nan,nan nan,nan a,N/A slope,0.0 ta nan,nan nan,nan intercept,0.4 AFT t,Q_s_b 0.0,5062.5 8.33,5062.5 41.67,5062.5 Initial Masses and Strainer Values:

M_p_0,113636.36 75.0,5062.5 V_p,300000.0 108.33,5062.5 M_s_a_0,0.0 R 141.67,5062.5 225.0,5062.5 D

M_s_b_0,0.0 M_s_c_0,0.0 Flow Rates over time:

308.33,5062.5 641.67,5062.5 t,Q_s_a 975.0,5062.5 0.0,3300.0 1308.33,5062.5 8.33,3300.0 1641.67,5062.5 41.67,3300.0 2475.0,5062.5 75.0,3300.0 6641.67,5062.5 Wednesday 29th April, 2015, 07:45 153 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 154 of 173 pages 9975.0,5062.5 nan,nan 13308.33,5062.5 nan,nan 16641.67,5062.5 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_c nan,nan 0.0,610.0 nan,nan 8.33,565.81 nan,nan 41.67,520.19 nan,nan nan,nan nan,nan 75.0,419.82 108.33,370.37 141.67,340.83 ints nan,nan 225.0,319.87 nan,nan t,Q_s_c po 308.33,286.78 641.67,265.56 975.0,220.91 0.0,5062.5 8.33,5062.5 41.67,5062.5 g

1308.33,197.62 1641.67,182.46 in 2475.0,171.01 75.0,5062.5 6641.67,151.19 108.33,5062.5 141.67,5062.5 lk 9975.0,107.08 13308.33,90.92 225.0,5062.5 308.33,5062.5 641.67,5062.5 ta 16641.67,80.49 nan,nan nan,nan 975.0,5062.5 1308.33,5062.5 1641.67,5062.5 2475.0,5062.5 AFT nan,nan nan,nan nan,nan nan,nan 6641.67,5062.5 nan,nan 9975.0,5062.5 nan,nan R

13308.33,5062.5 16641.67,5062.5 nan,nan nan,nan D

nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan Listing 39: Low ECCS "ow, 0.5 "ltration nan,nan nan,nan Model parameters used:

nan,nan Wednesday 29th April, 2015, 07:45 154 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 155 of 173 pages Filtration Function Type: linear nan,nan Filtration Function Parameter Values: nan,nan m,N/A nan,nan b,N/A nan,nan M_c,N/A nan,nan delta,N/A nan,nan a,N/A nan,nan nan,nan slope,0.0 t,Q_s_b intercept,0.5 Initial Masses and Strainer Values:

0.0,5062.5 8.33,5062.5 41.67,5062.5 ints M_p_0,113636.36 75.0,5062.5 V_p,300000.0 M_s_a_0,0.0 M_s_b_0,0.0 po 108.33,5062.5 141.67,5062.5 225.0,5062.5 M_s_c_0,0.0 Flow Rates over time:

t,Q_s_a g

308.33,5062.5 641.67,5062.5 in 975.0,5062.5 0.0,3300.0 1308.33,5062.5 8.33,3300.0 41.67,3300.0 lk 1641.67,5062.5 2475.0,5062.5 75.0,3300.0 108.33,3300.0 141.67,3300.0 ta 6641.67,5062.5 9975.0,5062.5 13308.33,5062.5 225.0,3300.0 308.33,3300.0 641.67,3300.0 975.0,3300.0 AFT 16641.67,5062.5 nan,nan nan,nan nan,nan 1308.33,3300.0 nan,nan 1641.67,3300.0 nan,nan R

2475.0,3300.0 6641.67,3300.0 nan,nan nan,nan D

9975.0,3300.0 13308.33,3300.0 nan,nan nan,nan 16641.67,3300.0 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_s_c Wednesday 29th April, 2015, 07:45 155 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 156 of 173 pages 0.0,5062.5 1308.33,197.62 8.33,5062.5 1641.67,182.46 41.67,5062.5 2475.0,171.01 75.0,5062.5 6641.67,151.19 108.33,5062.5 9975.0,107.08 141.67,5062.5 13308.33,90.92 225.0,5062.5 16641.67,80.49 308.33,5062.5 nan,nan 641.67,5062.5 nan,nan 975.0,5062.5 nan,nan 1308.33,5062.5 1641.67,5062.5 2475.0,5062.5 nan,nan nan,nan nan,nan ints 6641.67,5062.5 nan,nan 9975.0,5062.5 13308.33,5062.5 16641.67,5062.5 nan,nan nan,nan nan,nan po nan,nan nan,nan nan,nan g

nan,nan nan,nan in nan,nan Listing 40: Low ECCS "ow, 0.6 "ltration nan,nan nan,nan lk Model parameters used:

nan,nan nan,nan nan,nan ta Filtration Function Type: linear Filtration Function Parameter Values:

nan,nan nan,nan nan,nan AFT m,N/A b,N/A M_c,N/A delta,N/A t,Q_c a,N/A 0.0,610.0 R

8.33,565.81 41.67,520.19 slope,0.0 D

75.0,419.82 108.33,370.37 intercept,0.6 141.67,340.83 Initial Masses and Strainer Values:

225.0,319.87 M_p_0,113636.36 308.33,286.78 V_p,300000.0 641.67,265.56 M_s_a_0,0.0 975.0,220.91 M_s_b_0,0.0 Wednesday 29th April, 2015, 07:45 156 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 157 of 173 pages M_s_c_0,0.0 308.33,5062.5 Flow Rates over time: 641.67,5062.5 t,Q_s_a 975.0,5062.5 0.0,3300.0 1308.33,5062.5 8.33,3300.0 1641.67,5062.5 41.67,3300.0 2475.0,5062.5 75.0,3300.0 6641.67,5062.5 108.33,3300.0 9975.0,5062.5 141.67,3300.0 13308.33,5062.5 225.0,3300.0 16641.67,5062.5 308.33,3300.0 641.67,3300.0 975.0,3300.0 nan,nan nan,nan nan,nan ints 1308.33,3300.0 nan,nan 1641.67,3300.0 2475.0,3300.0 6641.67,3300.0 nan,nan nan,nan nan,nan po 9975.0,3300.0 13308.33,3300.0 16641.67,3300.0 g

nan,nan nan,nan in nan,nan nan,nan nan,nan nan,nan nan,nan lk nan,nan nan,nan nan,nan nan,nan ta t,Q_s_c 0.0,5062.5 8.33,5062.5 nan,nan nan,nan nan,nan nan,nan AFT 41.67,5062.5 75.0,5062.5 108.33,5062.5 141.67,5062.5 nan,nan 225.0,5062.5 nan,nan 308.33,5062.5 t,Q_s_b R 641.67,5062.5 975.0,5062.5 D

0.0,5062.5 8.33,5062.5 1308.33,5062.5 1641.67,5062.5 41.67,5062.5 2475.0,5062.5 75.0,5062.5 6641.67,5062.5 108.33,5062.5 9975.0,5062.5 141.67,5062.5 13308.33,5062.5 225.0,5062.5 16641.67,5062.5 Wednesday 29th April, 2015, 07:45 157 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 158 of 173 pages nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan Listing 41: Low ECCS "ow, 0.7 "ltration nan,nan nan,nan Model parameters used:

nan,nan nan,nan Filtration Function Type: linear nan,nan Filtration Function Parameter Values:

nan,nan nan,nan nan,nan m,N/A b,N/A M_c,N/A ints delta,N/A t,Q_c a,N/A 0.0,610.0 8.33,565.81 41.67,520.19 slope,0.0 po 75.0,419.82 108.33,370.37 141.67,340.83 in g intercept,0.7 Initial Masses and Strainer Values:

225.0,319.87 M_p_0,113636.36 308.33,286.78 641.67,265.56 lk V_p,300000.0 M_s_a_0,0.0 975.0,220.91 1308.33,197.62 1641.67,182.46 ta M_s_b_0,0.0 M_s_c_0,0.0 Flow Rates over time:

2475.0,171.01 6641.67,151.19 9975.0,107.08 13308.33,90.92 AFT t,Q_s_a 0.0,3300.0 8.33,3300.0 41.67,3300.0 16641.67,80.49 75.0,3300.0 nan,nan 108.33,3300.0 nan,nan nan,nan R 141.67,3300.0 D

nan,nan nan,nan 225.0,3300.0 308.33,3300.0 641.67,3300.0 nan,nan 975.0,3300.0 nan,nan 1308.33,3300.0 nan,nan 1641.67,3300.0 nan,nan 2475.0,3300.0 nan,nan 6641.67,3300.0 Wednesday 29th April, 2015, 07:45 158 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 159 of 173 pages 9975.0,3300.0 nan,nan 13308.33,3300.0 nan,nan 16641.67,3300.0 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_s_c nan,nan 0.0,5062.5 nan,nan 8.33,5062.5 nan,nan 41.67,5062.5 nan,nan nan,nan nan,nan 75.0,5062.5 108.33,5062.5 141.67,5062.5 ints nan,nan 225.0,5062.5 nan,nan t,Q_s_b po 308.33,5062.5 641.67,5062.5 975.0,5062.5 0.0,5062.5 8.33,5062.5 41.67,5062.5 g

1308.33,5062.5 1641.67,5062.5 in 2475.0,5062.5 75.0,5062.5 6641.67,5062.5 108.33,5062.5 141.67,5062.5 lk 9975.0,5062.5 13308.33,5062.5 225.0,5062.5 308.33,5062.5 641.67,5062.5 ta 16641.67,5062.5 nan,nan nan,nan 975.0,5062.5 1308.33,5062.5 1641.67,5062.5 2475.0,5062.5 AFT nan,nan nan,nan nan,nan nan,nan 6641.67,5062.5 nan,nan 9975.0,5062.5 nan,nan R

13308.33,5062.5 16641.67,5062.5 nan,nan nan,nan D

nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_c nan,nan 0.0,610.0 nan,nan 8.33,565.81 nan,nan 41.67,520.19 Wednesday 29th April, 2015, 07:45 159 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 160 of 173 pages 75.0,419.82 slope,0.0 108.33,370.37 141.67,340.83 intercept,0.4 225.0,319.87 308.33,286.78 Initial Masses and Strainer Values:

641.67,265.56 M_p_0,113636.36 975.0,220.91 V_p,300000.0 1308.33,197.62 M_s_a_0,0.0 1641.67,182.46 M_s_b_0,0.0 2475.0,171.01 M_s_c_0,0.0 6641.67,151.19 9975.0,107.08 13308.33,90.92 t,Q_s_a 0.0,4400.0 in Flow Rates over time:

ts 16641.67,80.49 8.33,4400.0 nan,nan nan,nan nan,nan 41.67,4400.0 75.0,4400.0 po 108.33,4400.0 nan,nan nan,nan nan,nan g

141.67,4400.0 225.0,4400.0 in 308.33,4400.0 nan,nan 641.67,4400.0 nan,nan nan,nan lk 975.0,4400.0 1308.33,4400.0 nan,nan nan,nan nan,nan ta 1641.67,4400.0 2475.0,4400.0 6641.67,4400.0 12.3.2 A

Normal ECCS "ow FT Listing 42: Normal ECCS "ow, 0.4 "ltration 9975.0,4400.0 13308.33,4400.0 16641.67,4400.0 nan,nan nan,nan Model parameters used: nan,nan R

Filtration Function Type: linear nan,nan nan,nan D

Filtration Function Parameter Values:

m,N/A b,N/A nan,nan nan,nan nan,nan M_c,N/A nan,nan delta,N/A nan,nan a,N/A nan,nan nan,nan Wednesday 29th April, 2015, 07:45 160 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 161 of 173 pages 641.67,6750.0 t,Q_s_b 975.0,6750.0 0.0,6750.0 1308.33,6750.0 8.33,6750.0 1641.67,6750.0 41.67,6750.0 2475.0,6750.0 75.0,6750.0 6641.67,6750.0 108.33,6750.0 9975.0,6750.0 141.67,6750.0 13308.33,6750.0 225.0,6750.0 16641.67,6750.0 308.33,6750.0 nan,nan 641.67,6750.0 975.0,6750.0 1308.33,6750.0 nan,nan nan,nan nan,nan ints 1641.67,6750.0 nan,nan 2475.0,6750.0 6641.67,6750.0 9975.0,6750.0 nan,nan nan,nan nan,nan po 13308.33,6750.0 16641.67,6750.0 nan,nan g

nan,nan nan,nan in nan,nan nan,nan nan,nan nan,nan nan,nan lk t,Q_c nan,nan nan,nan nan,nan ta 0.0,610.0 8.33,565.81 41.67,520.19 nan,nan nan,nan nan,nan nan,nan AFT 75.0,419.82 108.33,370.37 141.67,340.83 225.0,319.87 nan,nan 308.33,286.78 641.67,265.56 t,Q_s_c 0.0,6750.0 R 975.0,220.91 1308.33,197.62 D

8.33,6750.0 41.67,6750.0 1641.67,182.46 2475.0,171.01 75.0,6750.0 6641.67,151.19 108.33,6750.0 9975.0,107.08 141.67,6750.0 13308.33,90.92 225.0,6750.0 16641.67,80.49 308.33,6750.0 nan,nan Wednesday 29th April, 2015, 07:45 161 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 162 of 173 pages nan,nan 141.67,4400.0 nan,nan 225.0,4400.0 nan,nan 308.33,4400.0 nan,nan 641.67,4400.0 nan,nan 975.0,4400.0 nan,nan 1308.33,4400.0 nan,nan 1641.67,4400.0 nan,nan 2475.0,4400.0 nan,nan 6641.67,4400.0 nan,nan 9975.0,4400.0 nan,nan Listing 43: Normal ECCS "ow, 0.5 "ltration 13308.33,4400.0 16641.67,4400.0 nan,nan ints nan,nan Model parameters used: nan,nan nan,nan nan,nan po Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A b,N/A in g nan,nan nan,nan nan,nan M_c,N/A nan,nan delta,N/A a,N/A lk nan,nan nan,nan slope,0.0 ta nan,nan t,Q_s_b intercept,0.5 AFT Initial Masses and Strainer Values:

0.0,6750.0 8.33,6750.0 41.67,6750.0 75.0,6750.0 M_p_0,113636.36 V_p,300000.0 108.33,6750.0 M_s_a_0,0.0 141.67,6750.0 M_s_b_0,0.0 R 225.0,6750.0 308.33,6750.0 D

M_s_c_0,0.0 Flow Rates over time:

t,Q_s_a 641.67,6750.0 975.0,6750.0 0.0,4400.0 1308.33,6750.0 8.33,4400.0 1641.67,6750.0 41.67,4400.0 2475.0,6750.0 75.0,4400.0 6641.67,6750.0 108.33,4400.0 9975.0,6750.0 Wednesday 29th April, 2015, 07:45 162 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 163 of 173 pages 13308.33,6750.0 nan,nan 16641.67,6750.0 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_c nan,nan 0.0,610.0 nan,nan 8.33,565.81 nan,nan 41.67,520.19 nan,nan 75.0,419.82 nan,nan nan,nan nan,nan 108.33,370.37 141.67,340.83 225.0,319.87 ints nan,nan 308.33,286.78 t,Q_s_c 0.0,6750.0 975.0,220.91 po 641.67,265.56 1308.33,197.62 8.33,6750.0 41.67,6750.0 75.0,6750.0 g

1641.67,182.46 2475.0,171.01 in 6641.67,151.19 108.33,6750.0 9975.0,107.08 141.67,6750.0 225.0,6750.0 lk 13308.33,90.92 16641.67,80.49 308.33,6750.0 641.67,6750.0 975.0,6750.0 ta nan,nan nan,nan nan,nan 1308.33,6750.0 1641.67,6750.0 2475.0,6750.0 6641.67,6750.0 AFT nan,nan nan,nan nan,nan nan,nan 9975.0,6750.0 nan,nan 13308.33,6750.0 nan,nan nan,nan R

16641.67,6750.0 nan,nan nan,nan D

nan,nan nan,nan nan,nan Listing 44: Normal ECCS "ow, 0.6 "ltration nan,nan nan,nan nan,nan Model parameters used:

nan,nan nan,nan Filtration Function Type: linear Wednesday 29th April, 2015, 07:45 163 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 164 of 173 pages Filtration Function Parameter Values: nan,nan m,N/A nan,nan b,N/A nan,nan M_c,N/A nan,nan delta,N/A nan,nan a,N/A nan,nan nan,nan slope,0.0 t,Q_s_b intercept,0.6 0.0,6750.0 Initial Masses and Strainer Values:

M_p_0,113636.36 8.33,6750.0 41.67,6750.0 75.0,6750.0 ints V_p,300000.0 108.33,6750.0 M_s_a_0,0.0 M_s_b_0,0.0 M_s_c_0,0.0 141.67,6750.0 225.0,6750.0 308.33,6750.0 po Flow Rates over time:

t,Q_s_a 0.0,4400.0 g

641.67,6750.0 975.0,6750.0 in 1308.33,6750.0 8.33,4400.0 1641.67,6750.0 41.67,4400.0 75.0,4400.0 lk 2475.0,6750.0 6641.67,6750.0 108.33,4400.0 141.67,4400.0 225.0,4400.0 ta 9975.0,6750.0 13308.33,6750.0 16641.67,6750.0 308.33,4400.0 641.67,4400.0 975.0,4400.0 1308.33,4400.0 AFT nan,nan nan,nan nan,nan nan,nan 1641.67,4400.0 nan,nan 2475.0,4400.0 nan,nan R

6641.67,4400.0 9975.0,4400.0 nan,nan nan,nan D

13308.33,4400.0 16641.67,4400.0 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_s_c nan,nan 0.0,6750.0 Wednesday 29th April, 2015, 07:45 164 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 165 of 173 pages 8.33,6750.0 1641.67,182.46 41.67,6750.0 2475.0,171.01 75.0,6750.0 6641.67,151.19 108.33,6750.0 9975.0,107.08 141.67,6750.0 13308.33,90.92 225.0,6750.0 16641.67,80.49 308.33,6750.0 nan,nan 641.67,6750.0 nan,nan 975.0,6750.0 nan,nan 1308.33,6750.0 nan,nan 1641.67,6750.0 2475.0,6750.0 6641.67,6750.0 nan,nan nan,nan nan,nan ints 9975.0,6750.0 nan,nan 13308.33,6750.0 16641.67,6750.0 nan,nan nan,nan nan,nan nan,nan po nan,nan nan,nan nan,nan in g nan,nan Listing 45: Normal ECCS "ow, 0.7 "ltration nan,nan nan,nan nan,nan lk Model parameters used:

nan,nan nan,nan nan,nan ta Filtration Function Type: linear Filtration Function Parameter Values:

m,N/A nan,nan nan,nan t,Q_c AFT b,N/A M_c,N/A delta,N/A a,N/A 0.0,610.0 8.33,565.81 slope,0.0 R

41.67,520.19 75.0,419.82 D

108.33,370.37 141.67,340.83 intercept,0.7 Initial Masses and Strainer Values:

225.0,319.87 M_p_0,113636.36 308.33,286.78 V_p,300000.0 641.67,265.56 M_s_a_0,0.0 975.0,220.91 M_s_b_0,0.0 1308.33,197.62 M_s_c_0,0.0 Wednesday 29th April, 2015, 07:45 165 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 166 of 173 pages Flow Rates over time: 641.67,6750.0 t,Q_s_a 975.0,6750.0 0.0,4400.0 1308.33,6750.0 8.33,4400.0 1641.67,6750.0 41.67,4400.0 2475.0,6750.0 75.0,4400.0 6641.67,6750.0 108.33,4400.0 9975.0,6750.0 141.67,4400.0 13308.33,6750.0 225.0,4400.0 16641.67,6750.0 308.33,4400.0 nan,nan 641.67,4400.0 975.0,4400.0 1308.33,4400.0 nan,nan nan,nan nan,nan ints 1641.67,4400.0 nan,nan 2475.0,4400.0 6641.67,4400.0 9975.0,4400.0 nan,nan nan,nan nan,nan po 13308.33,4400.0 16641.67,4400.0 nan,nan g

nan,nan nan,nan in nan,nan nan,nan nan,nan nan,nan nan,nan lk t,Q_s_c nan,nan nan,nan nan,nan ta 0.0,6750.0 8.33,6750.0 41.67,6750.0 nan,nan nan,nan nan,nan nan,nan AFT 75.0,6750.0 108.33,6750.0 141.67,6750.0 225.0,6750.0 nan,nan 308.33,6750.0 641.67,6750.0 t,Q_s_b 0.0,6750.0 R 975.0,6750.0 1308.33,6750.0 D

8.33,6750.0 41.67,6750.0 1641.67,6750.0 2475.0,6750.0 75.0,6750.0 6641.67,6750.0 108.33,6750.0 9975.0,6750.0 141.67,6750.0 13308.33,6750.0 225.0,6750.0 16641.67,6750.0 308.33,6750.0 nan,nan Wednesday 29th April, 2015, 07:45 166 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 167 of 173 pages nan,nan nan,nan nan,nan 12.3.3 High ECCS "ow nan,nan nan,nan Listing 46: High ECCS "ow, 0.4 "ltration nan,nan nan,nan nan,nan Model parameters used:

nan,nan nan,nan Filtration Function Type: linear nan,nan Filtration Function Parameter Values:

nan,nan t,Q_c m,N/A b,N/A M_c,N/A ints 0.0,610.0 delta,N/A 8.33,565.81 41.67,520.19 75.0,419.82 a,N/A slope,0.0 po 108.33,370.37 141.67,340.83 225.0,319.87 in g intercept,0.4 308.33,286.78 Initial Masses and Strainer Values:

641.67,265.56 975.0,220.91 lk M_p_0,113636.36 V_p,300000.0 1308.33,197.62 1641.67,182.46 2475.0,171.01 ta M_s_a_0,0.0 M_s_b_0,0.0 M_s_c_0,0.0 6641.67,151.19 9975.0,107.08 13308.33,90.92 16641.67,80.49 AFT Flow Rates over time:

t,Q_s_a 0.0,5500.0 8.33,5500.0 nan,nan 41.67,5500.0 nan,nan 75.0,5500.0 nan,nan nan,nan R 108.33,5500.0 141.67,5500.0 D

nan,nan nan,nan 225.0,5500.0 308.33,5500.0 641.67,5500.0 nan,nan nan,nan 975.0,5500.0 nan,nan 1308.33,5500.0 nan,nan 1641.67,5500.0 nan,nan 2475.0,5500.0 Wednesday 29th April, 2015, 07:45 167 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 168 of 173 pages 6641.67,5500.0 nan,nan 9975.0,5500.0 nan,nan 13308.33,5500.0 nan,nan 16641.67,5500.0 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_s_c nan,nan 0.0,8437.5 nan,nan 8.33,8437.5 nan,nan nan,nan nan,nan 41.67,8437.5 75.0,8437.5 108.33,8437.5 ints nan,nan 141.67,8437.5 nan,nan nan,nan 225.0,8437.5 308.33,8437.5 641.67,8437.5 po t,Q_s_b 0.0,8437.5 8.33,8437.5 g

975.0,8437.5 1308.33,8437.5 in 1641.67,8437.5 41.67,8437.5 2475.0,8437.5 75.0,8437.5 108.33,8437.5 lk 6641.67,8437.5 9975.0,8437.5 141.67,8437.5 225.0,8437.5 308.33,8437.5 ta 13308.33,8437.5 16641.67,8437.5 nan,nan 641.67,8437.5 975.0,8437.5 1308.33,8437.5 1641.67,8437.5 AFT nan,nan nan,nan nan,nan nan,nan 2475.0,8437.5 nan,nan 6641.67,8437.5 nan,nan R

9975.0,8437.5 13308.33,8437.5 nan,nan nan,nan D

16641.67,8437.5 nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan nan,nan t,Q_c nan,nan 0.0,610.0 nan,nan 8.33,565.81 Wednesday 29th April, 2015, 07:45 168 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 169 of 173 pages 41.67,520.19 75.0,419.82 intercept,0.5 108.33,370.37 141.67,340.83 Initial Masses and Strainer Values:

225.0,319.87 M_p_0,68181.82 308.33,286.78 V_p,600000.0 641.67,265.56 M_s_a_0,0.0 975.0,220.91 M_s_b_0,0.0 1308.33,197.62 M_s_c_0,0.0 1641.67,182.46 Flow Rates over time:

2475.0,171.01 6641.67,151.19 9975.0,107.08 t,Q_s_a 0.0,5500.0 8.33,5500.0 ints 13308.33,90.92 41.67,5500.0 16641.67,80.49 nan,nan nan,nan 75.0,5500.0po 108.33,5500.0 141.67,5500.0 nan,nan nan,nan nan,nan g

225.0,5500.0 308.33,5500.0 in 641.67,5500.0 nan,nan 975.0,5500.0 nan,nan nan,nan lk 1308.33,5500.0 1641.67,5500.0 nan,nan nan,nan nan,nan ta 2475.0,5500.0 6641.67,5500.0 9975.0,5500.0 nan,nan AFT Listing 47: High ECCS "ow, 0.5 "ltration 13308.33,5500.0 16641.67,5500.0 nan,nan nan,nan Model parameters used: nan,nan nan,nan R

Filtration Function Type: linear nan,nan nan,nan D

Filtration Function Parameter Values:

m,N/A b,N/A nan,nan M_c,N/A t,Q_s_b delta,N/A 0.0,8437.5 a,N/A 8.33,8437.5 41.67,8437.5 slope,0.0 75.0,8437.5 Wednesday 29th April, 2015, 07:45 169 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 170 of 173 pages 108.33,8437.5 nan,nan 141.67,8437.5 nan,nan 225.0,8437.5 nan,nan 308.33,8437.5 nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 1308.33,8437.5 t,Q_c 1641.67,8437.5 0.0,610.0 2475.0,8437.5 8.33,565.81 6641.67,8437.5 41.67,520.19 9975.0,8437.5 13308.33,8437.5 16641.67,8437.5 75.0,419.82 108.33,370.37 141.67,340.83 ints nan,nan 225.0,319.87 nan,nan nan,nan nan,nan po 308.33,286.78 641.67,265.56 975.0,220.91 nan,nan nan,nan nan,nan g

1308.33,197.62 1641.67,182.46 in 2475.0,171.01 6641.67,151.19 t,Q_s_c 0.0,8437.5 lk 9975.0,107.08 13308.33,90.92 8.33,8437.5 41.67,8437.5 75.0,8437.5 ta 16641.67,80.49 nan,nan nan,nan 108.33,8437.5 141.67,8437.5 225.0,8437.5 308.33,8437.5 AFT nan,nan nan,nan nan,nan nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 R

1308.33,8437.5 1641.67,8437.5 Listing 48: High ECCS "ow, 0.6 "ltration D

2475.0,8437.5 6641.67,8437.5 Model parameters used:

9975.0,8437.5 Filtration Function Type: linear 13308.33,8437.5 Filtration Function Parameter Values:

16641.67,8437.5 m,N/A nan,nan b,N/A nan,nan M_c,N/A Wednesday 29th April, 2015, 07:45 170 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 171 of 173 pages delta,N/A 0.0,8437.5 a,N/A 8.33,8437.5 41.67,8437.5 slope,0.0 75.0,8437.5 108.33,8437.5 intercept,0.6 141.67,8437.5 225.0,8437.5 Initial Masses and Strainer Values: 308.33,8437.5 M_p_0,68181.82 641.67,8437.5 V_p,600000.0 975.0,8437.5 M_s_a_0,0.0 M_s_b_0,0.0 M_s_c_0,0.0 1308.33,8437.5 1641.67,8437.5 2475.0,8437.5 ints Flow Rates over time: 6641.67,8437.5 t,Q_s_a 0.0,5500.0 8.33,5500.0 po 9975.0,8437.5 13308.33,8437.5 16641.67,8437.5 41.67,5500.0 75.0,5500.0 108.33,5500.0 g

nan,nan nan,nan in nan,nan 141.67,5500.0 nan,nan 225.0,5500.0 308.33,5500.0 lk nan,nan nan,nan 641.67,5500.0 975.0,5500.0 1308.33,5500.0 ta nan,nan t,Q_s_c 1641.67,5500.0 2475.0,5500.0 6641.67,5500.0 9975.0,5500.0 AFT 0.0,8437.5 8.33,8437.5 41.67,8437.5 75.0,8437.5 13308.33,5500.0 108.33,8437.5 16641.67,5500.0 141.67,8437.5 nan,nan nan,nan R 225.0,8437.5 308.33,8437.5 D

nan,nan nan,nan 641.67,8437.5 975.0,8437.5 nan,nan 1308.33,8437.5 nan,nan 1641.67,8437.5 nan,nan 2475.0,8437.5 6641.67,8437.5 t,Q_s_b 9975.0,8437.5 Wednesday 29th April, 2015, 07:45 171 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 172 of 173 pages 13308.33,8437.5 Filtration Function Parameter Values:

16641.67,8437.5 m,N/A nan,nan b,N/A nan,nan M_c,N/A nan,nan delta,N/A nan,nan a,N/A nan,nan nan,nan slope,0.0 nan,nan intercept,0.7 t,Q_c 0.0,610.0 8.33,565.81 ints Initial Masses and Strainer Values:

M_p_0,68181.82 41.67,520.19 V_p,600000.0 75.0,419.82 108.33,370.37 141.67,340.83 M_s_a_0,0.0 M_s_b_0,0.0 M_s_c_0,0.0 po 225.0,319.87 308.33,286.78 641.67,265.56 g

Flow Rates over time:

t,Q_s_a in 0.0,5500.0 975.0,220.91 8.33,5500.0 1308.33,197.62 1641.67,182.46 lk 41.67,5500.0 75.0,5500.0 2475.0,171.01 6641.67,151.19 9975.0,107.08 ta 108.33,5500.0 141.67,5500.0 225.0,5500.0 13308.33,90.92 16641.67,80.49 nan,nan nan,nan AFT 308.33,5500.0 641.67,5500.0 975.0,5500.0 1308.33,5500.0 nan,nan 1641.67,5500.0 nan,nan 2475.0,5500.0 nan,nan nan,nan R 6641.67,5500.0 9975.0,5500.0 D

nan,nan Listing 49: High ECCS "ow, 0.7 "ltration 13308.33,5500.0 16641.67,5500.0 nan,nan nan,nan Model parameters used: nan,nan nan,nan Filtration Function Type: linear nan,nan Wednesday 29th April, 2015, 07:45 172 corresponding: keeej@stpegs.com

STPNOC RoverD: Risk over Deterministic GSI-191 Assessment 173 of 173 pages nan,nan 1641.67,8437.5 nan,nan 2475.0,8437.5 6641.67,8437.5 t,Q_s_b 9975.0,8437.5 0.0,8437.5 13308.33,8437.5 8.33,8437.5 16641.67,8437.5 41.67,8437.5 nan,nan 75.0,8437.5 nan,nan 108.33,8437.5 nan,nan 141.67,8437.5 nan,nan 225.0,8437.5 308.33,8437.5 641.67,8437.5 nan,nan nan,nan nan,nan ints 975.0,8437.5 1308.33,8437.5 1641.67,8437.5 2475.0,8437.5 t,Q_c 0.0,610.0 po 8.33,565.81 6641.67,8437.5 9975.0,8437.5 13308.33,8437.5 in g 41.67,520.19 75.0,419.82 108.33,370.37 16641.67,8437.5 141.67,340.83 nan,nan nan,nan lk 225.0,319.87 308.33,286.78 nan,nan nan,nan nan,nan ta 641.67,265.56 975.0,220.91 1308.33,197.62 nan,nan nan,nan t,Q_s_c AFT 1641.67,182.46 2475.0,171.01 6641.67,151.19 9975.0,107.08 0.0,8437.5 13308.33,90.92 8.33,8437.5 16641.67,80.49 R

41.67,8437.5 75.0,8437.5 nan,nan nan,nan D

108.33,8437.5 141.67,8437.5 nan,nan nan,nan 225.0,8437.5 nan,nan 308.33,8437.5 nan,nan 641.67,8437.5 nan,nan 975.0,8437.5 1308.33,8437.5 Wednesday 29th April, 2015, 07:45 173 corresponding: keeej@stpegs.com