ML18038A737

From kanterella
Revision as of 03:21, 6 July 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards NMPNS - Unit 2 Semi-Annual Radioactive Effluent Release Rept for Jul-Dec 1992, & ODCM for Nmpns.
ML18038A737
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 03/01/1993
From: TERRY C D
NIAGARA MOHAWK POWER CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17056C296 List:
References
NMP2L-1371, NUDOCS 9303100368
Download: ML18038A737 (396)


Text

ACCEI ERA DOCUMENT DIST.BUTION SYSTEM REGULA INFORMATION DISTRIBUTIO YSTEM (RIDS)'g>.ACCESSION NBR:9303100368 DOC.DATE: 93/03/01 NOTARIZED:

NO DOCKET¹FACIL:50-410 Nine Mile Point Nuclear Station, Unit 2, Niagara Moha 05000410 AUTH.NAME AUTHOR AFFILIATION TERRY,C.D.

Niagara Mohawk Power Corp.RECIP.NAME RECIPIENT AFFILIATION Document Control Branch (Document Control Desk)

SUBJECT:

Forwards"NMPNS-Unit 2 Semi-Annual Radioactive Effluent Release Rept for Jul-Dec 1992." DISTRIBUTION CODE: IE48D COPIES RECEIVED:LTR ENCL SIZE: TITLE: 50.36a(a)(2)

Semiannual Effluent Release Reports NOTES: RECIPIENT ID CODE/NAME PDl-1 LA MENNINGiJ INTERNAL: ACRS REG FI 01 GN1 FILE 02 EXTERNAL BNL TICHLERi J03 NRC PDR COPIES LTTR ENCL 3 3 1 1 1 1 1 1 1 1 1 1 1 1 RECIPIENT'D CODE/NAME PD1-1 PD NRR/DRSS/PRPB11 RGN1 DRSS/RPB EGSG SIMPSON,F COPIES LTTR ENCL 1 1 2 2 2 2 2 2 NOTE TO ALL"RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTEI CONTACT THE DOCUMENT CONTROL DESK, ROOM P1-37 (EXT.504-2065)TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!TOTAL NUMBER OF COPIES REQUIRED: LTTR 16 ENCL 16 gyes r'~I la s Y I 4 I'I NIAGARA MOHAWK POWER CORPORATION/301 PLAINFIELD ROAD, SYRACUSE, N.Y.13212/TELEPHONE (315)474-1511 March 1, 1993 NMP2L 1371 U.S.Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 Re: Nine Mile Point Unit 2 Docket No.50-410 NPF-Gentlemen:

SUBJECT:

JULY-DECEMBER, 1992 SEMI-ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT In conformance with the Nine Mile Point Nuclear Station Unit 2 (NMP2)Technical Specifications, we are enclosing the Semi-Annual Radioactive Effluent Release Report (SARERR)for the reporting period July-December, 1992.Included in this report is a summary of gaseous, liquid, and solid effluents released from the station during the reporting period (Attachments 1-6), an update on any revision to the Off-Site Dose Calculation Manual and the Process Control Program (Attachments 7 and 8), and an explanation as to the cause and corrective actions regarding the inoperability of any station liquid and/or gaseous effluent monitoring instrumentation (Attachment 9).Attachments 10 and 11 provide a summary and assessment of radiation doses to members of the public within and outside the site boundary, respectively, from liquid and gaseous effluents as well as direct radiation.

In addition, Attachments 1, 5 (pages 1 and 2)and 6 (page 1)from the January-June 1992 SARERR are included in the"Updates to Previous Reports" section.These attachments present an update of data contained in the second quarter of the January-June 1991 report.The format used for the effluent data is outlined in Appendix B of Regulatory Guide 1.21, Rev.1.Dose assessments were made in accordance with the NMP2 Off-Site Dose Calculation Manual.Distribution of this report is in accordance with Regulatory Guide 10.1, 10CFR50.4(b)(1) and the Technical Specifications.

During the reporting period, from July-December 1992, NMP2 did not exceed any 10CFR20, 10CFR50, 40CFR190 or Technical Specification limits for gaseous and liquid effluents.

If you have any questions concerning the attached report, please contact Elizabeth D.Thomas, Chemistry and Radiation Protection Support, Salina Meadows, (315)428-7188.Very trul ours, yoo02V.Cc C.D.Terry Vice President-Nuclear Engineering EDT/sek 003535LL Att chment Attachment.

PDR ADOCK 05000410 R,,'.PDR xc: Regional Administratoi,"Region I Mr.W.L.Schmidt, Senior Resident Inspector Mr.R.A.Capra, Director, Project Directorate l-1, NRR Mr.J.E.Menning, Project Manager, NRR Records Management C

NINE MILE POINT NUCLEAR STATION NINE MILE POINT UNIT 2 OFF SITE DOSE CALCULATION MANUAL ODCM APPROVALS S IONATURE S DATE AND INITIALS REVISION 7 M.J.McCormick Plant Manager U 2 C.D.Terry V.P.Nuclear Engineering IAOARA MOHAWK POWER CORPORATION 002916LL".~-9303100368

Summa of Revisions evision 7 Effective 1-iiii 12 14i 18i28 31g34g 37 53'5 58i 60 82'7 89i 92 15 54 19 90-91,93-103 20-27,83-86 i-ii 1 llg16g32 33i35 36i59 100-102i106 i-viii Part I-added section Part ZI-2-19,21-25,28-31,33,35-53, 55 Part II-added Appendices pp.60-104 Part ZZ-added pages 77,78,88,94,99,102 May 1986 May 1987 May 1987 (TCN-1)June 1987 (TCN-2)February 1988 April 1988 November 1988 February 1990 June 1992 December 1992 002916LL

TABLE 0 CONTENTS List of Tables List of Figures Introduction PART I-RADIOLOGICAL EFFLUENT CONTROLS SECTION 1.0-DEFINITIONS SECTION 2'-RETAINED IN TECHNICAL SPECIFICATIONS SECTIONS 3.0 AND 4.0-CONTROLS AND SURVEILLANCE REQUIREMENTS vii viii I 1-0 I 3/4 0-0 3/4.0 3/4.3.7.3 3/4.3.7.9 3/4.3.7.10 3/4.11.1.1 3/4.11.1.2 3/4.11.1.3 3/4.11.1.4 3/4.11.2.1 3/4.11.2.2 3/4.11.2.3 3/4.11.2.4 3/F 11.2.5 3/4.11.2 6 3/4.11 2'3/4'11.2 8 3/4.11 3 3/4.11.4 3/4.12.1 3/4.12~2 3/4.12.3 Applicability Meteorological Monitoring Instrumentation Monitoring Instrumentation-Radioactive Liquid Effluent Radioactive Gaseous Effluent Monitoring Instrumentation Liquid Effluents-Concentration Liquid Effluents-Dose Liquid Effluents-Liquid Radwaste Treatment System Retained in RETS Gaseous Effluents Dose Rate Gaseous Effluents Dose-Noble Gases Gaseous Effluents Dose-Zodine-131, Zodine-133, Tritium, and Radioactive Material in Particulate Form Gaseous Effluents-Gaseous Radwaste Treatment System Gaseous Effluents-Ventilation Exhaust Treatment System Retained in RETS Retained in RETS Venting or Purging Retained in RETS Radioactive Effluents Total Dose Radiological Environmental Monitoring Program Land Use Census Interlaboratory Comparison Program I 3/4 0-1 I 3/4 3-74 I 3/4 3-92 I 3/4 3-97 I 3/4 11-1 I 3/4 11-5 I 3/4 11-6 I 3/4 11-8 I 3/4 11-12 I 3/4 11-13 I 3/4 11-14 I 3/4 11-15 I 3/4 11-18 I 3/4 11-21 I 3/4 12-1 I 3/4 12-14 I 3/4 12-16 002916LI

TABLE OF CONTENTS BASES I B 3/4 3-7 SECTION 5.0-DESIGN FEATURES I 5-0 5.1.3 Maps Defining Unrestricted Areas and Site Boundary For Radioactive Gaseous and Liquid Effluents I 5-1 SECTION 6.0-ADMINISTRATIVE CONTROLS I 6-0 6.9.1.7 6.9.1.8 6.14 6.15 Annual Radiological Environmental Operating Report Semiannual Radioactive Effluent Release Report Offsite Dose Calculation Manual Ma)or Changes to Liquid, Gaseous/and Solid Radwaste Treatment Systems I 6-19 I 6-20 I 6-26 I 6-27 002916LL

-TABLE OF CONTENTS SECTION Part II-Calculational Methodologies REC SECTION PAGE 1.0 1.1.1 1 1.2 1~1.2'1.1.2.2 1.1.2.3 1~2 1~3 1.4 1.5 2.0 2.1 2.1.1 2.1.2 2.1.2.1 2.1.2.2 2.1.2.3 2.2 2.2.1 2.2.2 2.2'2.2.4 2.3 LIQUID EFFLUENTS Liquid Effluent Monitor Alarm Setpoints Basis Setpoint Determination Methodology Liquid Radwaste Effluent Radiation Alarm Setpoint Contaminated Dilution Water Radwaste Effluent Monitor Alarm Setpoint Calculations Service Mater and Cooling Tower Blowdown Effluent Radiation Alarm Setpoint Liquid Effluent Concentration Calculation Liquid Effluent Dose Calculation Methodology Liquid Effluent Sampling Table'epresentativeness Liquid Radwaste System Operability GASEOUS EFFLUENTS Gaseous Effluent Monitor Alarm Setpoints Basis Setpoint Determination Methodology Discussion Stack Noble Gas Detector Alarm Setpoint Equation Vent Noble Gas Detector Alarm Setpoint Equation Offgas Pretreatment Noble Gas Detector Alarm Setpoint Equation Gaseous Effluent Dose Rate Calculation Methodology X/Q and W-Dispersion Parameters for Dose Rate, Table 3-23 Whole Body Dose Rate Due to Noble Gases Skin Dose Rate Due to Noble Gases an Dose Rate Due to I-131, I-133, tium and Particulates with half-lives greater than 8 days Gaseous Effluent Dose Calculation Methodology 3.11~1~1 3.3.7.9 3.11.1~1 4.11'1~2 3.11.1.2 4.11.1.2 4.11.1-1 note b 3.11.1~3 4.11.1.3.1 4.11.1~3'3:11.2'3.3.7.10 3.11.2'3.11.2.1.a 4.11.2.1.1 3.11.2.1.a 4.11~2o1.1 3.11.2.1.b 4.11'.1.2 3.11.2.2 3.11.2.3 3.11.2.5 10 10 10 10 11 12 13 14 14 15 15 16 17 002916LL

TABLE 0 CONTENTS SECTION REC SECTION 2~3~1 222.3.4 W, and W-Dispersion Parameters For Dose, Table 3-23 Gamma Air Dose Due to Noble Gases Beta Air Dose Due to Noble Gases Organ Dose Due to I-131, I-133, Tritium and Particulates with half-lives greater than 8 days.17 3.11.2.2.a./b.

18 4.11.2.2 3.11.2.2.a./b.

18 18 3'13.11.2.5 4.11.2.3 4.11.2.5.1 2.4 2.5 2.6 2.7 2.8 3.0 I-133 and I-135 Estimation Isokinetic Sampling Use of Concurrent Meteorological Data vs.Historical Data Gaseous Radwaste Treatment System Operation Ventilation Exhaust Treatment System Operation URANIUM FUEL CYCLE 3.113.11~2~5 3'1'19 19 19 19 19 20 3.1 3'3.3 3.4 4.0 4.1 4'4.3 Appendix A Appendix B Appendix C Appendix D Appendix E Evaluation of Doses From Liquid Effluents Evaluation of Doses From Gaseous Effluents Evaluation of Doses From Direct Radiation Doses to Members of the Public Within the Site Boundary ENVIRONMENTAL MONITORING PROGRAM Sampling Stations Interlaboratory Comparison Program Capabilities for Thermoluminescent Dosimeters Used for Environmental Measurements Liquid Dose Factor Derivation Plume Shine Dose Factor Derivation Dose Parameters for Iodine 131 and 133, Particulates and Tritium Diagrams of Liquid and Gaseous Radwaste Treatment Systems and Monitoring Systems Nine Mile Point On-Site and Off-Site Maps 4.11~4~1 4.11.4.1 4.11.4.2 6.9.1.8 3~12 4.12 3.12.1 4.12.1 4.12.3 21 22 22 23 25 25 25 25 60 63 67 77 102 002916LL iv

LIST 0 TABLES PART I RADIOLOGICAL EFFLUENT CONTROLS TABLE NO.T TLE 1~2 3.3+7.3-1 4-1 3'.7'-1 4'.7.9-1 3.3.7.10 1 4.3.7.10-1 4.11.1-1 4~11.2-1 3.12.1-1 3'2'-2 4'2'-1 Surveillance Frequency Notations Operational Conditions Meteorological Monitoring Instrumentation Meteorological Monitoring Instrumentation Surveillance Requirements Radioactive Liquid Effluent Monitoring Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements Radioactive Gaseous Effluent Monitoring Instrumentation Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements Radioactive Liquid Waste Sampling and Analysis Program Radioactive Gaseous Waste Sampling and Analysis Program Radiological.

Environmental Monitoring Program Reporting Levels for Radioactivity Concentrations in Environmental Samples Detection Capabilities for Environmental Sample Analyses (Lower Limit of Detection)

I 1-5 I 1-6 I 3/4 3-75 I 3/4 3-76 I 3/4 3-93 I 3/4 3-95 I 3/4 3-98 I 3/4,3-100 I 3/4 11-2 I 3/4 11 9 I 3/4 12>>3 I 3/4 12-10 I 3/4 12-11 002916LL

LIST OP TABLES PART II-CALCULATIONAL METHODOLOGIES TABLE NO.2-1 2-2 thru 2-5 3-1 3-2 3-3 3-4 thru 3-22 3-23 3-24 5.1 TITLE Liquid Effluent Detector Response A Values-Liquid Effluent Dose Factor Offgas Pretreatment Detector Response Finite Plume-Ground Level Dose Factors from an Elevated Release Immersion Dose Factors Dose And Dose Rate Factors, R;Dispersion Parameters at Controlling Locations, X/Q, Wand W, Values Parameters For the Evaluation of Doses to Real Members of the Public From Gaseous And Liquid Effluents Radiological Environmental Monitoring Program Sampling Locations PAGE ZI 27 ZI 28 ZI 32 II 33 II 34 II 35 ZI 54 IZ 55 ZI 56 002916LL vi

LIST 0 PIGURES TABLE NO~5~1.3-1 5.1-1 5.1-2 TITLE Site Boundaries Nine Mile Point On-Site Map Nine Mile Point Off-Site Map PAGE I 5-5 II 103 II 104 002916LL vii 45 INTRODUCTION The OFFSITE DOSE CALCULATION MANUAL (ODCM)is a suPporting document of the Technical Specifications.

The previous Limiting Conditions for Operation that were contained in the Radiological Effluent Technical Specifications are now transferred to the ODCM as Radiological Effluent Controls.The ODCM contains two parts'adiological Effluent Controls, Part I;and Calculational Methodologies, Part II.Radiological Effluent Controls, Part 1, includes the following:

(1)The Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by Technical Specification 6.8.4, (2)descriptions of the information that should be included in the Annual Radiological Environmental Operating and Semiannual Radioactive Effluent Release Reports required by Technical Specifications 6.9.1.3 and 6.9.1.4, and (3)Controls for Meteorological Monitoring Instrumentation.

Calculational Methodologies, Part II, describes the methodology and parameters to be used in the calculation of liquid and gaseous effluent monitoring instrumentation alarm/trip setpoints and the calculation of offsite doses due to radioactive liquid and gaseous effluents.

The ODCM also contains a list and graphical description of the specific sample locations for the radiological environmental monitoring program, and liquid and gaseous radwaste treatment system configurations.

The ODCM follows the methodology and models suggested by NUREG-0133 and Regulatory Guide 1.109, Revision 1.Simplifying assumptions have been applied in this manual where applicable to provide a more workable document for implementing the Radiological Effluent Control requirementsg this simplified approach will result in a more conservative dose evaluation for determining compliance with regulatory requirements.

The ODCM will be maintained by the Corporate Chemistry and Radiological Support Group for use as a reference and training document of accepted methodologies and calculations.

Changes to the calculation methods or parameters will be incorporated into the ODCM to assure that the ODCM represents the present methodology in all applicable areas.Any changes to the ODCM will be implemented.in accordance with Section 6.14 of the Technical Specif ications.Until the Unit 2 Technical Specifications are revised to delete the Radiological Effluent Technical Specifications, the ODCM Part I will be used as a reference only, and the Technical Specifications with LCO's and Surveillance requirements will remain the primary controlling document.002916LL viii

PART Z-RADZOLOOZCAL EFFLUENT CONTROLS 002916LL

PART I-RADIOLOOICAL EFFLUENT CONTROLS SECTION 1.0 DEFINITIONS 002916LL I 1-0

.0 DEFINITIO S The following terms are defined so that the speci.fications may be uniformly interpreted.

The defined terms appear in capitalized type throughout the controls.CT ON 1.1 ACTION shall be that part of a control which prescribes remedial measures required under designated conditions.

C C IB TION ls4 A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output so that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors.The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions, and shall include the CHANNEL FUNCTIONAL TEST.The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

C N CHEC ls5 A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation.

This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

C N U C O 1.6 A CHANNEL FUNCTIONAL TEST shall be: a.Analog channels-the injection of a simulated signal into the channel as close to the sensor as practicable to verify OPERABILITY including alarm and/or trip functions and channel failure trips.b.Bistable channels-the injection of a simulated signal into the sensor to verify OPERABILITY including alarm and/or trip functions.

The CHANNEL FUNCTIONAL TEST may be performed by any series of sequential overlapping or total channel steps so that the entire channel is tested.~CO QQJg The present Limiting Conditions for Operation or LCO's that are contained in the Radiological Effluent Technical Specifications are being transferred to tha atda)to nose oalooiation Mental and.being renassd to c~ont o s This.is to distinguish between those LCO's which are being retained in the Technical sgsoifiostions and those ico's or gaatrols that are being transferred to the Offsite Dose Calculation Manual.002916LL

U V 3 1'0 DOSE EQUIVALENT I-131 shall be that concentration of I-131, expressed in microcuries per gram, which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and 1>>135 actually present.The thyroid dose conversion factors used for this calculation shall be those listed in Table III of TID-14844,"Calculation of Distance Factors for Power and Test Reactor Sites." F UENCY NO TION 1.16 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.1.G SEOUS W S E TR A E SYST 1.17 A GASEOUS RADWASTE TREATMENT SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting offgases from the main condenser evacuation system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

BE S 0 PUBLIC 1.23 MEMBER(S)OF THE PUBLIC shall include all persons who are not occupationally associated with the Nine Mile Point Nuclear Station and James A.'itxPatrick Nuclear Power Plant.This category does not include employees of Niagara Mohawk Power Corporation, the Nine Mile Point Unit 2 co-tenants, the New York State Power Authority, their contractors or vendors.Also excluded from this category are persons who enter the site to service equipment or to make deliveries.

This category does include persons who use portions of the'site for recreational, occupational, or other purposes not associated with Nine Mi,le Point Nuclear Station and James A.Fit@Patrick Nuclear Power Plant.S G LOC ION~1.24 A MILK SAMPLING LOCATION is a location where 10 or more head of milk animals are available for collection of milk samples.0 SI DOS C CUL ON U 1.26 The OFFSITE DOSE CALCULATION MANUAL (ODCM)shall contain the current methodology and parameters used in the calculation of offsite doses that result from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the environmental radiological monitoring program.The ODCM shall also contains (1)the radioactive effluent controls and Radiological

~Environmental Monitoring Program required by Section 6.8.4 and, (2)descriptions of the information that should be included in the Annual Radiological Environmental Operating and Semiannual Radioactive Effluent Release Reports required by CONTROLS 6.9.1.7 and 6.9.1.8.002916LL I 1-2

BI TY 1.27 A system, subsystem, train, component, or device shall be opERABLE or have OPERABILITY when it is capable of performing its specified function(s) and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication, or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its-function(s) are also capable of performing their related support function(e).

0 TIONAL CONDITION-CONDITIO 1.28 An OPERATIONAL CONDITION, i.e., CONDITION, shall be any one inclusive combination of mode switch position and average reactor coolant temperature as specified in Table 1.2.P-URGING 1.33 PURGE and PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, concentration, or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

D ERMAL PO 1.34 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant of 3323 MWt.OTAEET 1.36 A REPORTABLE EVENT shall be any of those conditions specified in 10 CFR 50.73'OU D 1.40 THE SITE BOUNDARY shall be that line around the Nine Mile Point Nuclear Station beyond which the land is not owned, leased or otherwise controlled by the Niagara Mohawk Power, Corporation or the New York State Power Authority.

SE T CO OSI S LE (NOT FROM THE RETS)A REPRESENTATIVE COMPOSITE SAMPLE is that part of more than one liquid or gaseous streams or volumes that contains the same radioactive nuclides or materials in the same ratios as the whole streams or volumes, that is obtained over short-time intervals.

1.42 A SOURCE CHECK shall be the qua~ative assessment of channel response when the channel sensor is exposed to a source of'increased radioactivity.

0029 16LL I 1-3

1.44 THERHAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.UN STRI 1.47 An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY, access to which is not controlled by the Niagara Mohawk Power Corporation or the New York State Power Authority for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and/or recreational purposes.IL 0 AUST TR S S 1.48 A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment (such a system is not considered to have any effect on noble gas effluents).

Engineered safety features (ESP)atmospheric cleanup systems are not considered to be VENTZLATION EXHAUST TREATMENT SYSTEM components.

~~NG 1.49 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTZNG.Vent, used in system names, does not imply a VENTING process.002916LL I 1-4

TABLE 1.1 S VEILLANCE FRE UENCY NOTATIONS NoTATIoN 8/U NA FREQUENCY At least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> At least once er 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> At least once r 7 da s At least once per 31 days At least once per 92 days At least once r 184 da s At least once er 366 da s At least once per 18 months (550 days)Prior to each reactor startu Prior to each radioactive release Not applicable 002916LL I 1-5

TABLE.2 0 ERATION CONDITIONS CONDITION 1.Power 0 eration 2.Startup 3.Hot Shutdown 4.Cold Shutdown 5.Refuelingtt NODE SWITCH POSITION Run Startup/Hot Standby Shutdown*,**

Shutdown*,*+t Shutdown or Refuel*P AVERAGE REACTOR COOLANT TEMPERATURE An tern erature Any temperature

)2000F c 2000F 1404F NOTAT IONS The reactor mode switch may be placed in the Run or Startup/Hot Standby position to test the switch interlock functions provided that the control rods are verified to remain fully inserted by a second licensed operator or other technically qualified member of the unit technical staff.*+The reactor mode switch may be placed in the Refuel position while a single control rod is being recoupled provided that the one-rod-out interlock is OPERABLE.t The reactor mode switch may be placed in the Refuel position while a single control rod drive is being removed from the reactor pressure vessel per Technical Specification 3.9.10.l.tt Fuel in the reactor vessel with the vessel head closure bolts less than fully tensioned or with the head removed.See Technical Specification Special Test Exceptions 3.10.1 and 3.10.3.H 002916LL I 1-6

PART I-RADIOLOGICAL EFFLUENT CONTROLS SECTIONS 3'AND 4.0 CONTROLS SURVEILLANCE REQUIREMENTS 002916LL I 3/4 0-0

0 SURVEZL CE-RE UIREM NTS~.0 P CONTROLS LZ Y 3.0.1 Compliance with the CONTROLS is required during the OPERATIONAL CONDITIONS or other conditions specified therein;except that upon failure to meet the CONTROL, the associated ACTION requirements shall be met.3.0.2 Noncompliance with a CONTROL shall exist when the requirements of the CONTROL and associated ACTION requirements are not met within the specified time intervals.

If the CONTROL is restored prior to expiration of the specified time intervals, completion of the ACTION requirements is not required.3.0.3 When a CONTROL is not met, except as provided in the associated ACTION requirements, within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> action shall be initiated to place the unit in an OPERATIONAL CONDITION in which the CONTROL does not apply by placing it, as applicable, in: l.At least STARTUP within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, 2.At least HOT SHUTDOWN within the following 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, and 3.At least COLD SHUTDOWN within the subsequent 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.Where corrective measures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time limits as measured from the time of failure to meet the CONTROL.Exceptions to these requirements are stated in the individual CONTROLS.This CONTROL is not applicable in OPERATIONAL CONDITIONS 4 or 5.3.0.4 Entry into an OPERATIONAL CONDITION or other specified condition shall not be made unless the conditions for the CONTROL are met without reliance on provisions contained in the ACTION requirements.

This provision shall not prevent passage through or to OPERATIONAL CONDITIONS as required to comply with ACTION requirements.

Exceptions to these requirements are stated in the individual CONTROLS.002916LL I 3/4 0-1

S VE LLANC UZREMENTS 4.0.1 SURVEZLLANCE REQUIREMENTS shall be met during the OPERATIONAL CONDITIONS or other conditions specified for individual Controls unless otherwise stated in an individual Surveillance Requirement.

4.0.2 Each SURVEILLANCE RE{}UIREMENT shall be performed within the specified time interval with a maximum allowable extension not to exceed 25%of the surveillance interval.4.0.3 Failure to perform a SURVEZLLANCE REQUIREMENT within the allowed surveillance interval, defined by Specification 4.0.2, shall constitute noncompliance with the OPERABILITY requirements for a CONTROL.The time limits of the ACTION requirements are applicable at the time it is identified that a SURVEILLANCE RE{}UZREMENT has not been performed.

The ACTION requirements may be delayed for up to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to permit the completion of the surveillance when the allowable outage time limits of the ACTION requirements are less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.SURVEILLANCE REQUIREMENTS do not have to be performed on inoperable equipment.

4.0.4 Entry into an OPERATIONAL CONDITION or other specified applicable condition shall not be made unless the Surveillance Requirement(s) associated with the CONTROL have been performed within the applicable surveillance interval or as otherwise specified.

This provision shall not prevent passage through or to OPERATIONAL CONDZTIONS as required to comply with ACTION requirements.

002916LL I 3/4 0-2

N A ON OROL ON OR NG I STRUMENTA ION LIMITING CONDITIONS FOR OPERATION 3.3.7.3 The Meteorological Monitoring Instrumentation channels shown in Table 3.3.7.3-1 shall be OPERABLE.CAB (at all times)a.With one or more meteorological monitoring instrumentation channels inoperable for more than 7 days, in lieu of any other report required by Controls 6.9.1, prepare and submit a Special Report to the Commission pursuant to Controls 6.9.2 within the next 10 days outlining the cause of the malfunction and the plans for restoring the instrumentation to OPERABLE status.b.The provisions of Controls 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.3.7.3 Each of the above required Meteorological Monitoring Instrumentation channels shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.3-1~002916LL I 3/4 3-74

TABLE 3~3 7~3 HETEOROLOOICAL MONITORINO I STRUMENTAT ION INSTRUMENT 1.Wind S ed 2.Wind Direction 3.Air Temperature Dil.'ference ELEVATION 30/200 30/200 30/200 tt.MINIMUM INSTRUHENTS OPERABLE 002916LL I 3/4 3-75

TABLE 4~3~7.3 1 OROLOOICAL NONITORINO INSTRUNENTAT ION SURVEILLANCE UIREMENTS INSTRUMENT 1.Wind S ed 2.Wind Direction 3.Air Temperature Difference ELEVATION 30/200 30/200 30/200 CHANNEL CHECR D/D D/D D/D CHISEL CALI BRAT ION SA/SA SA/SA SA/SA 002916LL I 3/4 3-76

N 0 D EF UE T MONITORING INSTRUMENTATION CONTROLS 3.3.7.9 The radioactive liquid effluent monitoring instrumentation channels shown in Table 3.3.7.9-1 shall be OPERABLE with their Alarm/Trip Setpoints set to ensure that the limits of CONTROL 3.11.1.1 are not exceeded.The Alarm/Trip Setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in the OFFSITE DOSE CALCULATION MANUAL (ODCM)~a.With a radioactive liquid effluent monitoring instrumentation channel Alarm/Trip Setpoint less conservative than required by the above control, immediately suspend the release of radioactive liquid effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.

b.With the number of channels OPERABLE less than the Minimum Channels OPERABLE requirement, take the ACTION shown in Table 3.3.7.9-1.

Restore the instruments to OPERABLE status within 30 days and, if unsuccessful, explain in the next Semiannual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.c.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVE LLANCE RE UIREMENTS 4.3.7.9 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK@CHANNEL CALIBRATION AND CHANNEL FUNCTIONAL TEST at'the frequencies shown in Table 4.3.7.9-1.

002916LL I 3/4 3-92

TABLE 3.3.7~9-1 IOACTIVE LI UID EFFLUENT MONITORING INSTRUMENTATION INSTRUMENT 1.Radioactivity Monitors Providing Alarm and Automatic Termination of Release Liquid Radwaste Effluent Line 2.Radioactivity Monitors Providing Alarm but not Providing Automatic Termination of Release a.Service Water Effluent Line A b.Service Water Effluent Line B c.Cooling Tower Blowdown Line 3.Flow Rate Measurement Devices a.Liquid Radwaste Effluent Line b.Service Water Effluent Line A c.'Service Water Effluent Line B d.Coolin Tower Blowdown Line 4.Tank Level Indicating Devices*MINIMUM C1ULNNELS OPERABLE ACTION 128 130 130 130 131 131 131 131 132 Tanks included in this contxol are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and do not have tank overflows and surrounding area dxains connected to the liquid radwaste treatment system, such as temporary tanks.002916LL I 3/4 3-93

IO ABLE 3.3.7.9-(Continued)

I UI EP VENT ONITORINO INSTRUMENTAT 0 TABLE NOTATIONS ACTION 128 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue provided that before initiating a release: a.At least two independent samples are analyzed in accordance with Surveillance 4.11.1.1.1, and b.At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge line valving;Otherwise, suspend release of radioactive effluents via this pathway.ACTION 129-Not used.ACTION 130 ACTION 131 ACTION 132 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided that, at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, grab samples are collected and analyzed for radioactivity at a limit of detection of at least 5 x 10'icrocuries/ml.

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue, provided the flow rate is estimated at least once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> during actual releases.Pump performance curves generated in place may be used to estimate flow.-With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, liquid additions to this tank may continue provided the tank liquid level is estimated during all liquid additions to the tank.002916LL I 3/4 3-94

.7 9-NG NS UNENTATION S CE E UI INSTRUMENT 1.Radioactivity Monitors Providing Alarm and Automatic Termination of Release Li id Radwaate Effluent Line 2.Radioactivity Monitors Providing Alarm but not Providing Automatic Termination of Release a.Service Water Effluent Line A b.Service Water Effluent Line B c.Cooling Tower Blowdo n Line 3.Flow Rate Measurement Devices a.Liquid Radwaste Effluent Line b.Service Water Effluent Line A c.Service Water Effluent Line B d.Cooling Tower Blowdown Line 4.Tank Level Indicating Devices*CHANNEL CHECK D(d)D(d)D(d)D(d)D**SOURCE CHECK NA NA NA NA NA CHANNEL CALIBRATION R c R(c)R(c)R(c)CmLRXEL FUNCTIONAL TEST M(a b)SA(b)SA(b)SA(b)*Tanks included in this control are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system, such as temporary tanks.**During liquid additions to the tank.002916LL I 3/4 3-95

U FFL MON TORING INSTRUMENTATION SURVEILLANCE RE UIREMENTS TABLE NOTATIONS (a)The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation occurs if the instrument indicates measured levels above the Alarm/Trip Setpoint.(b)The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions existss (1.)Instrument indicates measured levels above the Alarm Setpoint, or (2.)Circuit failure, og (3.)Instrument indicatks a downscale failure, or (4.)Instrument controls not set in operate mode.(c)The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Bureau of Standards*(NBS), standards that are traceable to the NBS standards, or using actual samples of liquid effluents that have been analyzed on a system that has been calibrated with National Institute of Standards and Testing traceable sources.These standards shall permit calibrating the system over its intended range of energy and measurement.

For subsequent CHANNEL-CALIBRATION, sources that have been related to the initial calibration may be used.(d)CHANNEL CHECK shall consist of verifying indication of flow during periods of release.CHANNEL CHECK shall be made at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> on days on which continuous, periodic, or batch releases are made+*W en t e tec n cal specification change is complete to delete the procedural details that are being transferred to the ODCM, then the NBS will be changed to the correct NIST.002916LL I 3/4 3-96

UMEN ATIO OUS EFFLU NT MONITO ING INSTRUMENTATION CONTROLS 3.3.7.10 The radioactive gaseous effluent monitoring instrumentation channels shown in Table 3.3.7.10-1 shall be OPERABLE with their Alarm/Trip Setpoints set to ensure that the limits of CONTROL 3.11.2.1 are not exceeded.The Alarm/Trip Setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in the ODCM.hQ~O~a.With a radioactive gaseous effluent monitoring instrumentation channel Alarm/Trip Setpoint less conservative than required by the above control, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.

b.With the number of channels OPERABLE less than the Minimum Channels OPERABLE requirement, take the ACTION shown in Table 3.3.7.10-1.

Restore the instruments to OPERABLE status within 30 days and, if unsuccessful, explain in the next Semiannual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.c.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.3.7.10 Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3.7.10-1.

5 002916LL I 3/4 3-97

TABLE 3.3.7.10-1 RADIOACTIVE G SEOUS EFFLUENT MONITORING INSTRUMENTATION INSTRUMENT 1.Offgas System a.Noble Gas Activity Monitor-Providing Alarm and Automatic Termination of Release b.System Flow>>Rate Measuring Device c.Sampler Flow-Rate Measurin Device 2.Offgas System Explosive Gas Monitoring System-Retained in the RETS 3.Radwaste/Reactor Building Uent Effluent System a.Noble Gas Activity Monitort b.Zodine Sampler c.Particulate Sampler d.Flow-Rate Monitor e.Sam le Flow-Rate Monitor 4.Main Stack Effluent a.Noble Gas Activity Monitor t b.Iodine Sampler c.Particulate'Sampler d.Flow-Rate Monitor e.Sample Flow-Rate Monitor MINIMUM CHANNELS OPERABLE APPLICABILITY ACTION'135 136 136 139 138 138 136 136 139 138 138 136 136 002916LL I 3/4 3-98

LE 3.3.7.10-1 (Continued)

IOACTI OASEOUS EFFLUENT MONITORINO NSTRUMENTATIO TABLE A IONS*During offgas system operation.

t Includes high range noble gas monitoring capability.

tt At all times.ACTION 135-a.b.ACTIONS With the number of OPERABLE channels one less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue pzovided the inoperable channel is placed in the tripped condition within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.4 With the number of OPERABLE channels two less than required by the Minimum Channels OPERABLE zequirement, effluent releases via this pathway may continue provided grab samples are taken at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and these samples are analyzed for.gross activity within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.ACTION 136-With the number of channels OPERABLE less than zequired by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the flow rate for the inoperable channel(s) is estimated at least once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.ACTION 137-Retained in the RETS.ACTION 138-With the number of channels OPERABLE lese than required by the Minimum Channels OPERABLE requizement, effluent releases via this pathway may continue provided samples are continuously collected starting within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> of discovery, using auxiliary sampling equipment as required in Table 4.11.2-1.ACTION 139-a.With the number of channels OPERABLE less than requized by the Minimum Channels OPERABLE requirement, effluent zeleases via this pathway may continue provided grab samples are taken at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and these samples are analyzed for gross activity within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> for a radioactivity limit of detection of at least 1 x 10~microcurie/ml.

b.Restore the inoperable channel(s) to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or in lieu of another report, required by Technical Specification 6.9.1, prepare and submit a Special Report to the Commission pursuant to Technical Specification 6.9.2 within 14 days following the event outlining the action taken, the cause of the inoperability and the schedule for restoring the system to OPERABLE status.002916LL I 3/4 3-99

0 0 S OU UENT NON ABLE 4~3~7.10-NO INSTRUMENTATION SURVEI CE RE UIR19lENTS INSTRUMENT l.Offgas System a.Noble Gas Activity Monitor-Providing Alarm and Automatic Termination of Release b.System Flow-Rate Measuring Device c.Sample Flow-Rate Measuring Device 2.Offgas System Explosive Gas Monitoring System-Retained in RETS 3.Radwaste/Reactor Building Vent Effluent System a.Noble Gas Activity Monitort b.Iodine Sampler c.Particulate Sampler d.Flow-Rate Monitor CHA11NEL CHECK SOURCE CHECK NA NA NA NA NA CHANNEL CALIBRATION R(a,e)R(a)NA NA CHANNEL FUNCTIONAL TEST M(b,c)Q(c)NA NA MODES IX NHICH SURVEILLANCE REQUIRED e.Sample Flow-Rate Monitor NA 001916LL I 3/4 3-100

0 0 OU E ABLE 4.3.7.10-(Continued)

MON TORINO INSTRUMENTATION SURVEI CE RE UIREMENTS INSTRUMENT 4.Main Stack Effluent CHANNEL CHECK SOURCE CHECK CHANNEL CALIBRATION CHANNEL FUNCTIONAL TEST MODES IN WHICH SURmILLANCE REQUIRED a.Noble Gae Activity Monitort b.Iodine Sampler c.Particulate Sampler d.Flow-Rate Monitor e.Sample Flow-Rate Monitor NA NA NA NA R(a)NA NA Q(c)NA NA 001916LL I 3/4 3-101

0-(Continued)

INC NSTRUNENTATION SURVEILIJWCE RE U RENENTS ABLE OTATIONS*At all times.**During offgas system operation.

t Includes high range noble gas monitoring capability.(a)The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards.certified by the National Bureau of Standards (NBS)or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS, or using actual samples of gaseous effluents that hqve been analyzed on a system that has been calibrated with NBS traceable sources.These standard shall permit calibrating the system over its intended range of energy and measurement.

For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration may be used.(b)The CHANNEL FUNCTIONAL TEST shall also demonstrate the automatic isolation capability of this pathway and that control room alarm annunciation occurs if the instrument indicates measured levels above the Alarm/Trip Setpoint (each channel will be tested independently so as to not initiate isolation during operation).(c)The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists: (1.)Instrument indicates measured levels above the alarm setpoint.(2.)Circuit failure.(3.)Instrument indicates a downscale failure.(4.)Instrument controls not set in operate mode.(d)Retained in RETS.(e)The CHANNEL CALIBRATION shall also demonstrate that automatic isolation of this pathway occurs when the instrument channels indicate measured levels above the Trip Setpoint.001916I.I.

I 3/4 3-102

EFFLUENTS 3~~EFFLUENTS CO CENT CONTROLS 3.11.1.1 The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (see Figure 5.1.3-1)shall be limited to the concentrations specified in 10 CFR 20, Appendix B, Table II, Column 2, for radionuclides other than dissolved or entrained noble gases.For dissolved or entrained noble gases, the concentration shall be limited to 2 x 10 microcurie/ml total activity.~CT~O With the concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS exceeding the above limits, without delay restore the concentration to within the above limits.SURVEILLANCE RE UIREMENTS 4.11.1.1.1 Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 4.11.1-1.4.11.1.1.2 The results of the radioactivity analyses shall be used in accordance with the methodology and parameters in the ODCM to assure that the concentrations at the point of release are maintained within the limits of CONTROL 3, 11.1.1.002916LL I 3/4 11-1

TABLE 4.11.1-1 IOACTZVE LZ UID WASTE SAMPLING AND ANALYSIS PROGRAM LIQUID RELEASE TYPE SAMPLING FRE UENCY MINIMUM ANALYSIS FRE UENCY TYPE OF ACTIVITY ANALYSIS LOWER LIMIT OF DETECTION (LLD)(a)uCi ml Batch Waste Release Tanks(b)a.2LWS-TK4A b.2LWS-TK4B c.2LWS-TKSA d.2LWS-TK5B P Each Batch P One Batch/M P Principal Gamma Each Batch Em tte s c I-131 One Batch/M Dissolved and Entrained Gases (Gamma Emitters)5x10'x104 P Each Batch M Composite(d)

H-3 Gross Alpha 1x10 i P Each Batch Q Sr-89, Sr-90 Composite(d)

Fe<<55 5x104 1x10 2.Continuous Releases Grab Sample Grab Sample Principal Gamma M(e)M(e)Emitter s (c)Sx10'-131 lx10~a.Service Water Effluent A b.Service Water Effluent, B Dissolved and Entrained Gases (Ganesa Emitters)H-3 Gross Alpha 1x10'i lx10'x10'.

Cooling Tower Grab Sample Grab Sample Sr-89, Sr-90 B lowdown Q(~)Q(e)Fe-55 Sx10~1x10 d.Auxiliary Boiler Pump Seal and Sample Cooling Discharge (Service Water)Grab Sample M(f)Grab Sample Grab Sample M(f)Grab Sample Principal Gamma Emitters(c)

H-3 Sx10'x10 i 002916LL I 3/4 11-2

TMLE 4.11.1-1 (Continued)

IOA IVE LI UID WASTE SAMPLING AND ANALYSIS PROGRAM TABLE NOTATIONS (a)The LLD is defined, for purposes of these CONTROLS, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95%probability with only 5%probability of falsely concluding that a blank observation represents a"real" signal.For a particular measurement system, which may include radiochemical separation:

4~66 si LLD E V 2.22x10~Y exp(-4t)WhereJ LLD the before-the-fact lower limit of detection (microcurie per unit mass or volume), the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute), E the counting efficiency (counts per disintegration), V'the sample sire (units of mass or volume), 2.22x10~~the number of disintegrations per minute per microcurie, the fractional radiochemical yield, when applicable, dt the radioactive decay constant for the particular radionuclide (sec'), and A the elapsed time between the midpoint of sample collection and the time of counting (seconds).

Typical values of E, V, Y, and 4t should be used in the calculation.

It should be recognised that the LLD is defined as a before-the-fact limit representing the capability of a measurement system and not as an after-the-fact limit for a par t icu1 ar measurement.(b)A batch release is the discharge of liquid wastes of a discrete volume.Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed by a method described in the ODCM to assure representative sampling.002916LL I 3/4 11-3

TABLE 4.11.1-1 (Continued)

IOACTIVE LI UID WASTE SAMPLING AND ALYSIS OORAN TABLE NOTATIONS (c)The principal gamma emitters for which the LLD CONTROL applies include the following radionuclidess Mn-54, Fe-59, Co<<58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137 and Ce-141.Ce-144 shall also be measured, but with an LLD of 5 x 10~.This list does not mean that only these nuclides are to be considered.

Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report pursuant to CONTROL 6.9.1.8 in the format outlined in RG 1.21, Appendix B, Revision 1, June 1974'd)A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.(e)Zf the alarm setpoint of the effluent monitor, as determined by the method presented in the ODCM, is exceeded, the frequency of sampling shall be increased to daily until the condition no longer exists.Frequency of analysis shall be increased to daily for principal gamma emitters and an incident composite for H-3, gross alpha, Sr-89, Sr-90, and Pe-55.(f)Zf the alarm setpoint of Service Water Effluent Monitor A and/or 8, as determined by the method presente+in the ODCM, is exceeded, the frequency of sampling shall be increased to daily until the condition no longer exists.Frequency of analysis shall be increased to daily for principal gaama emitters and an incident composite for H-3, gross alpha, sr-89, Sr-90, and Fe-55..002916LL I 3/4 11-4

U N~DOS CONTROLS 3.11.1.2 The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each unit, to UNRESTRICTED AREAS (see Figure 5.1.3-1)shall be limiteds a.During any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and b.During any calendar year to less than or equal to 3 mrem to the~hole body and to less than or equal to 10 mrem to any organ.~C~O a.With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s)for exceeding the limit(s)and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.11.1.2 Cumulative dose contributions from liquid effluents for the current calendar quarter and the.current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.002916LL I 3/4 11-5

N S U D L ID CONTROLS TREATME T SYSTEM 3.11.1.3 The liquid radwaste treatment system shall be OPERABLE, and appropriate portions of the system shall be used to reduce releases of radioactivity when the projected doses due to the liquid effluent, from the unit, to UNRESTRICTED AREAS (see Figure 5.1.3-1)would exceed 0.06 mrem to the whole body or 0.2 mrem to any organ in a 31-day period.IC B c At all times.~Capt a.With radioactive liquid waste being discharged without treatment and in excess of the above limits and any portion of the liquid radwaste treatment system not in operation, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that includes the following information:

1.Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability, 2.Action(s)taken to restore the inoperable equipment to OPERABLE status, and 3.Summary description of action(s)taken to prevent a recurrence.

b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SU VE LLANCE RE UIREMENTS 4.11.1.3.1 Doses due to liquid releases, from each unit to UNRESTRICTED AREAS shall be projected at least once per 31 days in accordance with the methodology and parameters in the ODCM when liquid radwaste treatment systems are not being fully utilized.4.11.1.3.2 The installed liquid radwaste treatment system shall be considered OPERABLE by meeting CONTROLS 3.11.1.1 and 3.11.1.2.0029 16LL I 3/4 11-6

-2 C S FFLUE TS~DOSE EA CONTROLS 3.11.2.1 The dose rate from radioactive materials released in gaseous effluents from the site to areas at or beyond the"SITE BOUNDARY (see Figure 5.1.3-1)shall be limited to the following:

a.For noble gases: Less than or equal to 500 mrem/yr to the whole body and less than or equal to 3000 mrem/yr to the skin, and b.For iodine-131, for iodine-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrem/yr to any organ.~C~ON t With the dose rate(s)exceeding the above limits, immediately restore the release rate to within the above limit(s).SURVEILLANCE RE UIREMENTS 4.11.2.1.1 The dose rate from noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in the ODCM.4.11.2.1.2 The dose rate from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in the ODCM by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified'in Table 4.11.2-1.002916LL I 3/4 11-8

0 S OUS W 8 S I 0 AND jWALYSIS P 00 0 8 OU 8 E 1.Containment(b)

SAXPLINO C Each PURGE NININUN ANALYSIS UENCY Each PURGE TYPE OF ACTIVITY jWALYS S Principal Gamma Emitters(c)

H-3 (oxide), Principal Gamma Emitters(c)

LOWER LIMIT OF UETECTION (LLU)>>uCi al lxlO~lx10, lx10>>2.Hain Stack R(d)Radwaste/Reactor Building Vent Grab Sample M(e)Continuous(f)

Continuous(f)Continuous(f)

M(d)M(e)W(g)Charcoal Sample W(e)Particulate Sample 9 Composite Particulate Sam e Principal Gamma Emitters(c)

H-3 (oxide)I-131 Principal Gamma Emitters(c)

Gross Alpha Sr-89, Sr-90 lx10 lxlO lxlO lx10" lxlo" lxlo'02916LL T 3/4 11-9

OA GASEOUS HAS S INC AND ANALYSIS OOIVW ABLE OTATIONS (a)The LLD is defined, for purposes of these CONTROLS, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95%probability with only 5t probability of falsely concluding that a blank observation represents a"real" signal.For a particular measurement system, which may include radiochemical separation:

LLD 4.66 Sg E V 2.22x10~Y exp(-ht)Mhere: LLD s, The before-the-fact lower limit of detection (microcuries per unit mass or volume)the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute)E the counting efficiency (counts per disintegration)

V the sample size (units of mass or volume)2.22 x 10~~the number of disintegrations per minute per micro curie Y the fractional radiochemical yield, when applicable the radioactive decay constant for the particular radionuclide (sec')dt the elapsed time between the midpoint of sample collection and the time of counting (seconds)Typical values of E, V, Y, and dt should be used in the calculation.

It should be recognized that the LLD is defined as a before-the-fact limit representing the capability of a measurement system and not as an after-the-fact limit for a particular measurement.

002916LL I 3/4 11-10

TABLE 4.11.2-1 (Continued)

OACTI GASEOUS WASTE SAHPLINO AND ANALYSIS PROGRAH TABLE NOTATIONS (b)Sample and analysis before PURGE is used to determine permissible PURGE rates.Sample and analysis during actual PURGE is used for offsite dose calculations.(c)The principal gamma emitters for which the LLD CONTROL applies include the following radionuclidess Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 in noble gas releases and Mn-54, Fe-59, Co-58, Co-60,~Zn-65, Mo-99, I-131, Cs-134, Cs-137, Ce-141, and Ce-144 in iodine and particulate releases.This list does not mean that only these nuclides are to be considered.

Other gamma peaks that are identifiable, together with those of tge above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report pursuant to CONTROL 6'.1.8 in the format outlined in RG 1.21, Appendix 8, Revision 1, June 1974.(d)If the main stack or reactor/radwaste building isotopic monitor is not OPERABLE, sampling and analysis shall also be performed following shutdown, startup, or when there is an alarm on the offgas pretreatment monitor.(e)Tritium grab samples shall be taken weekly from the reactor/radwaste ventilation system when fuel is offloaded until stable tritium release levels can be demonstrated.(f)The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with CONTROLS 3.11.2.1.b and 3.11.2.3.(g)When the release rate of the main stack or reactor/radwaste building vent exceeds its alarm setpoint, the iodine and particulate device shall be removed and analyzed to determine the changes in iodine and particulate release rates.The analysis shall be done daily until the release no longer exceeds the alarm setpoint.When samples collected for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> are analyzed, the corresponding LLDs may be increased by a factor of 10.002916LL I 3/4 11-11

UNS G OU DOSE-NO CONTROLS SES 3.11.2.2 The air dose from noble gases released in gaseous effluents, from each unit, to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)shall be limited to the following:

a.During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or equal to 10 mrad for beta radiation, and b.During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20 mrad for beta radiation.

'a~b.With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s)for exceeding the limit(s)and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.11.2.2 Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.002916LL I 3/4 11-12

U NTS 0 OUS DOS-10 PARTICUL O 31 IODINE-133 TRITIU AND DIOACTIYE MATERI L IN CONTROLS 3.11.2.'3 The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radioactive material in particulate form with half-lives greater than 8 days in gaseous effluents released, from each unit, to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)shall be limited to the following:

a.During any calendar quarter: Less than or equal to 7.5 mrem to any organ and, b.During any calendar year: Less than or equal to 15 mrem to any organ.~C~O a~With the calculated dose from the release of iodine-131, iodine-133, tritium, and radioactive material in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s)for exceeding the limit(s)and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVE LLANCE RE UIREMENTS 4.11.2.3 Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, iodine-133, tritium and radioactive material in particulate form with half-lives greater than 8 days shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.002916LL I 3/4 11-13

S US GASEOUS CONTROLS E TREATMENT SYSTEM 3.11.2.4 The GASEOUS RADWASTE TREATMENT SYSTEM shall be in operation.

operation.

~C~O!With gaseous radwaste from the main condenser air ejector system being discharged without treatment for more than 7 days, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that includes the following information.

l.Identification of the inoperable equipment or subsystems and the reason for the inoperability, 2.Action(s)taken to restore the inoperable equipment to OPERABLE status, and 3.Summary description of action(s)taken to prevent a recurrence.

b.The provisions of, CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE UIREMENTS 4.11.2.4 The readings of the relevant instruments shall be checked every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> when the main condenser air ejector is in use to ensure that the gaseous radwaste treatment system is functioning.

002916LL I 3/4 11-14 Cl 0 FLU S G S OUS N ILATIO CONTROLS UST TRE TMENT SYSTEM 3.11.2.5 The VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE and appropriate portions of this system shall be used to reduce releases of radioactivity when the pro)ected doses in 31 days from iodine and particulate releases, from each unit, to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.~C~ION: a.With radioactive gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that includes the following information:

1.Identification of any inoperable equipment or subsystems, and the reason for the inoperability, 2.Action(s)taken to restore the inoperable equipment to OPERABLE status, and 3.Summary description of action(s)taken to prevent a recurrence.

b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.11.2.5.1 Doses from iodine and particulate releases from each unit to areas at or beyond the SITE BOUNDARY shall be pro)ected at least once per 31 days in accordance with the methodology and parameters in the ODCM when the VENTILATION EXHAUST TREATMENT SYSTEM is not being fully utilized.4.11.2.5.2 The installed VENTILATION EXHAUST TREATMENT SYSTEM shall be considered OPERABLE by meeting CONTROLS 3.11.2.1 or 3.11.2.3.002916LL I 3/4 11-15

U S G SEOUS E VE GO CONTROLS ING 3.11.2.8 VENTING or PURGING of the drywell and(or suppression chamber shall be through the standby gas treatment system.*~C~ON;a.With the requirements of the above CONTROL not satisfied, suspend all VENTING and PURGZNG of the drywell and/or suppression chamber.b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.11.2.8.1 The drywell and/or suppression chamber shall be determined to be aligned for VENTING or PURGING through the standby gas treatment system within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> before start of and at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> during VENTING or PURGING*See Technical Specification 3.6.5.3.002916LL I 3/4 11-18

IO UE S 3 OSE CONTROLS 3.11.4 The annual (calendar year)dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrem to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrem.a.With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of CONTROLS 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a, or 3.11.2.3.b, calculations shall be made including direct radiation contributions from the units (including outside storage tanks, etc.)to determine whether the above limits of CONTROL 3.11.4 have been exceeded.If such is the case, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule'for achieving conformance with the above limits.This Special Report, as defined in 10 CFR 20.405(c), shall include an analysis that estimates the radiation exposure (dose)to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report.It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations.

If the estimated dose(s)exceeds the above limits, and if the release condition resulting in violation of 40 CFR 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR 190.Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE U REMENTS 4.11.4.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with CONTROLS 4.11.1.2, 4.11.2.2, and 4.11.2.3, and in accordance with the methodology and parameters in the ODCM.4.11.4.2 Cmaulative dose contributions from direct radiation from the units (including yetside storage tanks, etc.)shall be determined in accordance with the methodoXogy and parameters in the ODCM.This requirement is applicable only under cimditions set forth in ACTION a of CONTROL 3.11.4.002916LL I 3/4 11-21

AL ENV RONMENTAL ON OR G 3 4..1 RI G PROG CONTROLS 3.12.1 The Radiological Environmental Monitoring Program shall be conducted as specified in Table 3.12.1-1.A AC'~IO t a.With the Radiological Environmental Monitoring Program not being conducted as specified in Table 3.12.1-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report required by CONTROL 6.9.1.7, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.

b.With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 3.12.1-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2, a Special Report that identifies the cause(s)for exceeding the limit(s)and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose+to a MEMBER OF THE PUBLIC is less than the calendar year limits of CONTROLS 3.11.1.2, 3.11.2.2, or 3.11.2.3.When more than one of the radionuclides in Table 3.12.1-2 are detected in the sampling medium, this report shall be submitted if: concentration 1+co ce tration 2+...>1.0 reporting level 1 reporting level 2 When radionuclides other than those in Table 3.12.1-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose*to a MEMBER OF THE PUBLIC from all radionuclides is equal to or greater than the calendar year limits of CONTROL 3.11.1.2, 3.11.2.2, or 3.11.2.3.This repor't is not required if the measured level of radioactivity was not the result of plant effluentsi however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report required by CONTROL 6.9.1.7.The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.001916LL I 3/4 12-1

0 OG RONMENTAL MONITORING 0 OR CONTROLS 3.12.1 (Continued)

~C~IO C~d~Mith milk or fresh leafy vegetation samples unavailable from one or more of the sample locations required by Table 3.12.1-1, identify specific locations for obtaining replacement samples and add them within 30 days to the Radiological Environmental Monitoring Program.The specific locations from which samples were unavailable may then be deleted from the monitoring program.Pursuant to CONTROL 6.9.1.8, submit in the next Semiannual Radioactive Effluent Release Report documentation for a change in the ODCM including a revised figure(s)and table for the ODCM reflecting the new location(s) with supporting information identifying the cause of the unavailability of samples and)ustifying the selection of the new location(s) for obtaining samples.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.12.1 The radiological environmental monitoring samples shall be collected pursuant to Table 3.12.1-1 from the specific locations given in the table and figure(s)in the ODCM, and shall be analysed pursuant to the requirements of Table 3.12.1-1 and the detection capabilities required by Table 4.12.1-1.001916LL I 3/4 12-2 i

OLOO RONNENTAL NONITORINO OORAN EXPOSURE PATHWAY 0 QSlRtR OF SANPLES AND OSa SAMPLINO AND COLLECTION FRE TYPE AND FREgu~CY CY OF ANALYS 1.Direct Radiation(b) 32 routine monitoring stations either with 2 or more dosimeters or with 1 instrument for measuring and recording dose rate continuously, placed as follows: An inner ring of stations, one in each meteorological sector in the general area of the SITE BOUNDARY Once per 3 months Gamma dose once per 3 months An outer ring of stations, one in each land base meteorological sector in the 4 to 5~mile*range from the site The balance of the stations should be placed in special interest areas such as population centers, nearby residences, schools, and in one or two areas to serve as control stations(c).

ht.this distance, 8 wandtose sect ors, (W, WNW, NW, NNW, N, NNE, NE, and ENE)are over Lake Ontario.nn~eirr r 3/4

TABLE 3.12.1-1 (Continued)

RADIOLOGI ENVIRONMENTAL MONITORING PROGRM4 EXPOSURE PATHWAY OR SAMP NUMBER OF SAMPLES AND 0 8 a SAMPLING AND COLLECTION FRE UENCY TYPE AND FREQUENCY OF ANALYSIS 2.Airborne Radio-i,odine and Particulates 3.Waterborne Samples from five locations:

3 samples from offsite loca-tions close to the site bound-ary (within one mile)in different sectors of the high-est calculated annual site average ground-level D/Q (based on all site licensed reactors)1 sample from the vicinity of an established year-round community having the highest calculated annual site average ground-level D/Q (based on all site licensed reactors)1 sample from a control location, at least 10 miles distant and in a least prevalent wind direction(c)

Continuous sampler oper-ation with sample collec-tion weekly, or more frequently if required by dust loading adioiodine Caniste I-131 analysis weekly Particulate Sam ler Gross beta radioactivi.ty analysis following filter change(d)and gamma isotopic analysis(e) of composite (by location)at least quarterly a.Surface(f) one sample upstream(c) g one sample from the site's downstream cooling water intake Composite sample over 1-month period(g)Gamma isotopic analysis(e) once/month; composite for tritium analysi.s once/3 months 002916LL I 3/4 12-4

0 AL NON TORING PROGRAX EZPOSURE PATHWAY S NUNBER OF SAXPLES AND ONS a SAHPLINO AND COLLECTION FRE UENCY TYPE AND FREQUENCY OF ANALYSIS 3.Waterborne (Continued) b.Ground Samples from one or two sources, only if ligly to be affected(h)

{}uarterly grab sample Gama isotopic(e) and tritium analysis quarterly c.Drinking 1 sample of each of one to three of the nearest water supplies that could be affected by its discharge(i)

Composite sample over a 2-week period(g)when I-131 analysis is performed; monthly composi.te otherwise I-131 analysis on each composite when the dose calculated for the consumption of the water is greater than 1 mrem per year.())Composite for gross beta and gamma isotopic analyses(e) monthly.Composite for tritium analysis quarterly d.Sediment from Shoreline 1 sample from a downstream area Twice per year with existing or potential recreational value Gamma isotopic analysis(e) nn2O16I.L I 3/4 12-5

0 CAL ENVIRONHENTAL MONITORING PROGRAM EZPOSURE PATHWAY 0 S NUNEER OF SAXPLES AND SANPLINQ AND COLLECTION FRE UENCY TYPE AND FRE{}UENCY OF ANALYSIS 4.Ingestion a.Milk b.Fish Samples from MILK SAMPLING LOCA-TIONS in three locations within 3.5 miles distance having the highest calculated site average D/{}(based on all licensed site reactors).

f If there are none, then 1 sample from MILK SAMPLING LOCATIONS in each of three areas 3.5-5.0 miles distant having the highest calculated site average D/{}(based on all licensed site reactors).

One sample from a MILK SAMPLING LOCATION at a control location 9-20 miles distant and in a least prevalent wind direction(c)

One sample each of two com-mercially or recreationally im-portant species in the vicinity of a plant discharge area(k)One sample of the same species in areas not influenced by station discharge(c)

Twice per month, April-December (samples will be collected January-March if I-131 is detected in November and December of the preceding year)Twice per year Gamma isotopic(e) and I-131 analysis twice/month when animals are on pasture (April-December)l once per month at other times (January-March if required)Gamma isotopic analysis(e) on edible portions twice per year nnoaorr r I

TABLE 3.12.1-1 (Continued) 0 ENV RONXENTAL XONITORINQ PROORAX EXPOSURE PATHWAY S NUXBER OF SAXPLES AND 8 OSa SAXPLING AND COLLECTION FRE UENCY TYPE AND FREQUENCY OF ANALYSIS 4.Ingestion (Continued) c.Food Products One sample of each principal class of fopd products from any area that is irrigated by water in which liquid plant wastes have been discharged(l)

Samples of three different kinds of broad leaf vegetation (such as vegetables) grown nearest to each of two different offsite locations of highest calculated site average D/Q (based on all licensed site reactors)At time of harvest(m)

Once per year during the harvest season Gamma isotopic(e) analysis of edible portions (isotopic to include I-131)Gamma isotopic(e) analysis of edible portions (isotopic to include I-131)One sample of each of the similar Once per year during broad leaf vegetation grown at the harvest season least 9.3 miles distant in a least prevalent wind direction Gamma isotopic(e) analysis of edible portions (isotopic to include I-131)nnoosrrr.

0 NITORING PROG NOTAT ONS (a)Specific parameters af distance and direction sector from the centerline of one reactor, and additional description where pertinent, shall be provided for each and every sample location in Table 3.12.1-1 in a table and figure(s)in the ODCM.Refer to NUREG-0133,"Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants,"October 1978, and to Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979.Deviations are permitted from the required sampling schedule if specimens are unobtainable because of such circumstances as hazardous conditions, seasonal unavailability,+

or malfunction of automatic sampling equipment.

If specimens are unobtainable because sampling equipment malfunctions, effort shall be made to complete corrective action before the end of the next sampling period.All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to CONTROL 6.9.1.7.It is recognized that, at times, it may not be possible or practical to continue to obtain samples of the media of choi'ce at the most desired location or time.In these instances, suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions may be made within 30 days in the Radiological Environmental Monitoring Program given in the ODCQ.Pursuant to CONTROL 6.9.1.8, submit in the next Semiannual Radioactive Effluent Release Report 8 revised figure(s)and table for the ODCM reflecting the new location(s) with supporting information identifying the cause of.the unavailability of samples for that pathway and)ustifying the selection of new location(s) for obtaining samples.(b)One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to integrating dosimeters.

For the purpose of this table, a thermoluminescent dosimeter (TLD)is considered to be one phosphor;two or more phosphors in a packet are considered as two or more dosimeters.

Film badges shall not be used as dosimeters for measuring direct radiation.(c)The purpose of these samples is to obtain background information.

If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites, which provide valid background data, may be substituted.(d)Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or more after sampling to allow for radon and thoron daughter decay.If gross beta activity in air particulate samples is greater than 10 times the previous yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.(e)Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.~Seasonal unavaalabality is meant to include theft and uncooperative

'residents.

0 I ENVIRONMENTAL MONITORINO PROORAX ABLE OTAT ION S (f)The"upstream" sample shall be taken at a distance beyond significant influence of the discharge.

The"downstream" sample shall be taken in an area beyond but near the mixing xone.(g)In this program, representative composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly)relative to the compositing period (e.g., monthly)in order to assure obtaining a representative sample (refer to the ODCM for definition of representative composite.sample).(h)Groundwater samples shalj be taken when this source is tapped for drinking or irrigation purposes in areas where the hydrauli.b gradient or recharge properties are suitable for contamination (see ODCM for discussion).(i)Drinking water samples shall be taken only when drinking water is a dose pathway (see ODCM for discussion).(j)Analysis for I-131 may be accomplished by Ge-Li analysis provided that the lower limit-of detection (LLD)for I-131 in water samples found on Table 4.12.1-1 can be met.Doses shall be calculated for the maximum organ and age groups using the methodology in the ODCM.(k)In the event two commercially or recreationally important species are not available, after three attempts of collection, then two samples of one species or other species not necessarily commercially or recreationally important may be utilized.(l)This CONTROL applies only to major irrigation projects within 9 miles of the site in the general"downcurrent" direction (see ODCM for discussion).(m)If harvest occurs more than once a year, sampling shall be performed during each discrete harvest.If harvest occurs continuously, sampling shall be taken monthly.Attention shall be paid to including samples of tuberous and root food products.002916LL I 3I4 12-9

hBLE 3.2.1-2 0 V CONCENTRhTIONS IN ENVIRO AL ShMPLES RhDIONUCLIDE hNhLYSIS H-3 Mn-54 Fe-59 Co-58 Co-60 Zn-65 Zr-95, Nb-95 I-131 Cs-134 Cs-137 Ba/La-140 NhTER (pCi/1)20,000*1 F 000 400 1,000 300 300 400 2k'0 50 200 hIRBORNE PhRTICULhTE OR O@SES (pCi/)0.9 10 20 FISH (pCi/1, wet)30,000 10,000 30,000 10,000 20,000 1, 000 2,000 MILK (pCi/kg, wet)60 70 300 FOOD PRODUCTS (pCi/kg, eeet)100 1,000 2,000 For drinking water samples.This is a 40 CFR 141 value.If no drinking water pathway exists, a value of 30,000 pCi/liter may be used.**If no drinking water pathway exists, a value of 20 pCi/liter may be used.

ab e 4.12.-1 S RONllENThL ShMPLE hÃhLYS S a b WER T OF DETECTIO c RhDIONJCLUDE hNhLYSIS Cross Beta 8-3 Mn-54 Fe-59 Co-58, 60 Zn-65 Zr-95, Nb-95 NhTER (pCi 1)2,000*15 30 15 30 15 hIRBORNE PhRTICULhTE OR OhSES (pCl/m')0.01 FISH (pCi/kg, wet)130 260 130 260 HILK FOOD PRODUCTS (pCi/1).(pCi/kg, wet)SEDINENT (pCi/kg, dry)I-131 Cs-134 Cs-137 Ba/La-140 lt*15 18 15 0.07 0.05 0.06 130 150 15 18 15 60 60 80 150 180*If no drinking water pathway exists, a value of 3000 pci/liter may be used.**If no drinking water pathway exists, a value of 15 pCi/liter may be used.

oN T ES ENVIRONNENTAL SANP hL S S-WER L NIT OF DETECTXO T OTA TONS (a)This list does not mean that only these nuclides are.to be considered.

Other peaks that are identifiable, together with those of the above nuclides, shall also be analyxed and reported in the Annual Radiological Environmental Operating Report pursuant to CONTROL 6.9.1.7.(b)Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in ANSI N-545, Section 4.3 1975.Allowable exceptions to ANSI N-545, Section 4.3 are contained in the Nine Mile Point Unit 2 ODCM.(c)The lower limit of detection (LLD)is defined, for purposes of these CONTROLS, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background,'hat will be detected with 95\probability with only 5\probability of falsely concluding that a blank observation represents a"real" signal.For a particular measurement system, which may include radiochemical separation:

t 4.66 s$LLD$s E V 2.22 Y exp(-dt)Where: Sg 2.22 the before-the-fact lower limit of detection (picocuries per unit mass or volume)the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (counts per minute)the counting efficiency (counts per disintegration) the sample size (units of mass or volume)the number of disintegrations per minute per picocurie the fractional radiochemical yield, when applicable the radioactive decay constant for the particular radionuclide (sec-')dt the elapsed time between environmental collection, or end of the sample collection period, and time of counting (seconds)Typical values of E, V, Y, and ht should be used in the calculation.

002916LL CS 0 AS I ES FOR ENV RONMENTAL SAMP AL S 8 WER LIMIT OF DETECTION TABLE NOTATIONS It should be recognixed that the LLD is defined as a before-the-fact limit representing the capability of a measurement system and not as an after-the-fact limit for a particular measurement.

Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions.

Occasionally background fluctuations, unavoidable small sample sixes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable.

In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to CONTROL 6.9-1.7 002916LL I 3/4 12-13

ONMEN MONITORING SE CENSU CONTROL 3.12.2 A land use census shall be conducted and shall identify within a distance of 5 miles the location in each of the 16 meteorological sectors of the nearest milk animal and the nearest residence, and the nearest garden+of greater than 500 square feet producing broad leaf vegetation.

For elevated releases as defined in RG 1.111, Revision 1, July 1977, the land use census shall also identify within a distance of 3 miles the locations in each of the 16 meteorological sectors of all milk animals and all gardens+greater than 500 square feet producing broad leaf vegetation.

MXXQE: a.With a land use census identifying a location(s) that yields a calculated dose, dose commitment, or D/Q value greater than the values currently being calculated in CONTROL 4.11.2.3, pursuant to CONTROL 6.9.1.8, identify the new location(s) in the next Semiannual Radioactive Effluent Release Report.b.'With a land use census identifying a location(s) that yields a calculated dose, dose commitment, or D/Q value (via the same exposure pathway)significantly greater (50%)than at a location from which samples are currently being obtained in accordance with CONTROL 3.12.1-1, add the new location(s) within 30 days to the Radiological Environmental Monitoring Program given in the ODCM.The sampling location(s), excluding the control station location, having the lowest calculated dose, dose commitment(s) or D/Q value, via the same exposure pathway, may be deleted from this monitoring program after (October 31)of the year in which this land use census was conducted.

Pursuant to CONTROL 6.9.1.8 submit in the next Semiannual Radioactive Effluent Release Report documentation for a change in the ODCM including a revised figure(s)and table(s)for the ODCM reflecting the new location(s) with information supporting the change in sampling locations.

c.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.12.2 The land use census shall be conducted during the growing season at least once every 12 months using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities.

The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to CONTROL 6 9 1 7~*Broad leaf vegetation sampling of at least three different kinds of vegetation, sqch as garden vegetables, may be performed at offsite locations in each of two different locations with the highest predicted D/Qs in lieu of the garden census.CONTROLS for broad leaf vegetation sampling in Table 3.12.1-1, Part 4.c, shall be followed, including analysis of CONTROL samples.002916LL I 3/4 12-14

0 I NVIRONMEN MONITORING 3~~3 BORATOR COMPARISON PROGRAM CONT OLS 3.12.3 Analyses shall be performed on all radioactive materials, supplied as part of an Interlaboratory Comparison Program that has been approved by the Commission, that correspond to samples required by Table 3.12.1-1.Participation in this program shall include media for which environmental samples are routinely collected and for which intercomparison samples are available.

~CT ION: a.With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to CONTROL 6.9.1.7.b.The provisions of CONTROLS 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE RE UIREMENTS 4.12.3 The Interlaboratory Comparison Program shall be described in the ODCM.A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to CONTROL 6.9.1.7.002916LL I 3/4 12-16

PART I-RADIOLOGICAL EFFLUENT CONTROLS BASES 002916LL I 3/4 12-17

BASES~3.7~0 CTI U D EFFLUENT MONITORING INSTRUMENTA ION The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents.

The alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur before exceeding the limits of 10 CFR 20.The OPERABILITY and use of this instrumentation is consistent with the requirements of GDC 60, 63, and 64 of Appendix A to 10 CFR 50.The purpose of tank level indicating devices is to assure the detection and control of leaks that if not controlled could potentially result in the transport of radioactive materials to UNRESTRICTED AREAS..3.7.0 0 CTIVE GASEOUS EFFLU NT MONITORING I STRUMENTATION The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents.

The alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur before exceeding the limits of 10 CFR 20.The range of the noble gas channels of the main stack and radwaste/reactor building vent effluent monitors is sufficiently large to envelope both normal and accident levels of noble gas activity.The capabilities of these instruments are consistent with the recommendations of Regulatory Guide 1.97,"Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident," December 1980 and NUREG-0737,"Clarification of the TMI Action Plan Requirements," November 1980.This instrumentation also includes provisions for monitoring and controlling the concentrations of potentially explosive gas mixtures in the offgas system.The OPERABILITY and use of this instrumentation is consistent with the requirements of GDC 60, 63, and 64 of Appendix A to 10 CFR SO.002916LL I B 3/4 3-7

0 F LU BAS S 3 4.1.EFFLUENTS 3 4.11.1.CONC NTRATION This CONTROL is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR 20, Appendix B, Table II, Column 2.This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within: (1)the Section II.A design ob)ectives of Appendix I to 10 CFR 50, to a MEMBER OF THE PUBLIC and (2)the limits of 10 CFR 20.106(e)to the population.

The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP)Publication 2.This CONTROL applies to the release of radioactive materials in liquid effluents from all units at the site.The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs).Detailed discussion of the LLD, and other detection limits can be found in L.A.Currie,"Lower Limit of Detection:

Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

3~~~DOS This CONTROL is provided to implement the requirements of Sections II.A, ZZI.A, and IV.A of Appendix I to 10 CFR 50.The CONTROL implements the guides set forth in Section II.A of Appendix I.The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materialS in liquid effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable.

Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result, in radionuclide concentrations in the potable drinking water that are in excess of the requirements of 40 CFR 141.The dose calculation methodology and parameters in the ODCM implement the requirements in Section IZZ.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, d5'hat the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimato4..

The equations specified in the ODCM for calculating the doses that result faa actual release rates of radioactive material in liquid off luents are consistent with the methodology provided in RG 1.109,"Calculatioa ot Annual Doses To Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," 002916LL I B 3/4 ll-l

ASES U D E~OS 3/4.11.1.2 (Continued)

Revision 1, October 1977 and R.G.1.113,"Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.This CONTROL applies to the release of radioactive materials in liquid effluents from each unit at the site.For units with shared radwaste treatment systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.3 U W E TREATMENT SYSTE The OPERABILITY of the liquid radwaste treatment system ensures that this system will be available for use whenever liquid effluents require treatment before release to the environment.

The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept as low as is reasonably achievable.

This CONTROL implements the requirements of 10 CFR 50.36a, GDC 60 of Appendix A to 10 CFR 50 and the design objective given in Section ZZ.D of Appendix I to 10 CFR 50.The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section IZ.A of Appendix I to 10 CFR 50 for liquid effluents.

This CONTROL applies to the release of radioactive materials in liquid effluents from each unit at the site.For units with shared radwaste treatment systems, the liquid effluents from the shared system are to be proportioned among the units sharing that system.G S OU EFF U S This CONTROL is provided to ensure that the dose rate at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR 20 to UNRESTRICTED AREAS.002916LL I B 3/4 11-2

UNS BASES G SEOUS DOSF~3/4.11.2.1 (Continued)

The annual dose limits are the doses associated with the concentrations of 10 CFR 20, Appendix B, Table II, Column 1.These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRZCTED AREA, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the limits specified in Appendix B, Table ZI of 10 CFR 20.106(b).

For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY.Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM.The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrem/year to the whole body or to less than or equal to 3000 mrem/year to the skin.These release rate limits also restrict, at=all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrem/year.

This CONTROL applies to the release of radioactive materials in gaseous effluents from all units at the site.The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs).Detailed discussion of the LLD, and other detection limits can be found in L.A.Currie,"Lower Limit of Detection:

Definition and Elaboration of a Proposed Position for Radiological Effluent and Environments Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

3..0-NO LE G SES This CONTROL is provided to implement the requirements of Section IZ.B, III.A, and IV.A of Appendix I to 10 CFR 50.The CONTROL implements the guides set forth in Section IZ.B of Appendix I.The ACTION statements provide the required operating flexibility and, at the same time, implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable.

The Surveillance Requirements implement the requirements in Section IZI.A of Appen81x I that conformance with the guidelines of Appendix I be shown by calculational procedures based on models and data so that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

The dose calculatioa'methodology and parameters established in the ODCM for calculating the doses 8raa the actual release rates of radioactive noble gases 002916LL I B 3/4 11-3

UEN S BASES G SEOUS DOSE-NOB GASES 3/4.11.2.2 (Continued) in gaseous effluents are consistent with the methodology provided in RG 1.109,"Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977, and RG 1.111,"Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1," July 1977.The ODCM equations provided for determining the air doses at or beyond the SITE BOUNDARY are based upon real-time meteorological conditions or the historical average atmospheric conditions.

This CONTROL applies to the release of radioactive material in gaseous effluents from each unit at the site.3 4.11.2.3 DOSE-IODINE-131 ZODZ E-133 T IT U AND RADIOACTIVE MATERIAL P TICU E FO This CONTROL is provided to implement the requirements of Sections II.C, ZII.A, and IV.A of Appendix I to 10 CFR 50.The CONTROL implements the guides set forth in Section II.C of Appendix I.The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept as low as is reasonably achievable.

The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, so that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated.

The ODCM calculational methodology and parameters for calculating the doses from the actual release rates of the sub)ect materials are consistent with the methodology provided in RG 1.109,"Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, October 1977, and RG 1.111,"Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July 1977.These equations also provide for determining the actual doses based upon the historical average atmospheric conditions.

The release rate CONTROLS for iodine-131, iodine-133, tritium, and radioactive material in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man, in the areas at or beyond the SITE BOUNDARY.The pathways that were examined in the developaent of these calculations were: (1)individual inhalation of airborne radioactive material, (2)deposition of radioactive material onto green leaff vegetation with subsequent consumption by man, (3)deposition onto grassy~where milk-producing animals and meat-producing animals graxe (human consumption of the milk and meat is assumed), and (4)deposition on the 002916LL I B 3/4 11-4

BASES G OUS S S CUL FO 3 ODINE-133 TRITIUM D RADIOACTIVE MATERIAL IN 3/4.11.2.3 (Continued) ground with subsequent exposure to man.This CONTROL applies to the release of radioactive materials in gaseous effluents from each unit at the site.For units with shared radwaste treatment systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.4 11..5 GAS OUS W S T E TM NT SYSTEM D IL ON S N SYST The OPERABILITY of the GASEOUS RADWASTE TREATMENT SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment before release to the environment.

The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept as low as is reasonably achievable.

This CONTROL implements the requirements of 10 CFR 50.36a, GDC 60 of Appendix A to 10 CFR 50, and the design objectives given in Section ZI.D of Appendix I to 10 CFR 50.Limits governing the use of appropriate portions of the system were specified as a suitable fraction of the dose design objectives set forth in Sections ZZ.B and ZI.C of Appendix I to 10 CFR 50, for gaseous effluents.

This CONTROL applies to the release of radioactive materials in gaseous effluents from each unit at the site.For units with shared radwaste treatment systems, the gaseous effluents from the shared system are proportional among the units sharing that system.0 G This CONTROL provides reasonable assurance that releases from drywell and/or suppression chamber purging operations will not exceed the annual dose limits of 10 CFR 20 for unrestricted areas.002916LL I B 3/4 11-5

BASES G U 3.1.4 AL DOSE This CONTROL is provided to meet the dose limitations of 40 CFR 190 that have been incorporated into 10 CFR 20 by 46~18525.The CONTROL requires the preparation and submittal of a Special Report whenever the calculated doses from releases of radioactivity and from radiation from uranium fuel cycle sources exceed 25 mrem to the whole body or any organ, except the thyroid (which shall be limited to less than or equal to 75 mrem).For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units including outside storage tanks, etc., are kept small.The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR 190 limits.For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 5 miles must be considered.

If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and 10 CFR 20.405c, is considered to be a timely request and fulfills the requirements of 40 CFR 190 until NRC staff action is completed.

The variance only relates to the limits of 40 CFR 190 and does not apply in any way to the other requirements for dose limitation of 10 CFR 20, as addressed in CONTROLS 3.11.1.1 and 3.11.2.1.An individual is not considered a MEMBER OF THE PUBLIC during any period in which the individual is engaged in carrying out any operation that is part of the nuclear fuel cycle.002916LL I B 3/4 11-6

0 NTAL MON TORING BAS S 1 G PR The Radiological Environmental Monitoring Program required by this CONTROL provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides'that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from the plant operation.

This monitoring program implementsSection IV.B.2 of Appendix I to 10 CFR 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways.Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring, Revision 1, November 1979.The initially specified monitoring program will be effective for at least the first 3 years of commercial operation.

After this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs).The LLDs required by Table 4.12.1-1 are considered optimum for routine environmental measurements in industrial laboratories.

It should be recognised that the LLD is defined as a before-the-fact limit representing the capability of a measurement system and not as an after-the-fact limit for a particular measurement.

Detailed discussion of the LLD, and other detection limits, can be found in L.A.Currie,"Lower Limit of Detection:

Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).US CE SU This CONTROL is provided to ensure that changes in the use of areas at or beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census.The best information, such as from a door-to-door survey, from an aerial survey, or from consulting with local agricultural authorities, shall be used.This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR 50.Restricting the census to gardens of greater than 500 square feet provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this sise is the minimum required to produce the quantity (26 kg/year)of leafy vegetabTes assumed in RG 1.109 for consumption by a child.To determine this minimum garden sise, the following assumptions were madet (k)20%of the garden was used for growing broad leaf vegetation (i.~., similar to lettuce and.cabbage)and (2)the vegetation yield was 2 kg/m.A MILK SAMPLING LOCATION, as defined in Section 1.0, requires that at least 10 milking cows are present at a designated milk sample location.It has been 002916LL I B 3/4 12-1 I

RON N MO ITO INC B SES USE 3/4.12.2 (Continued) found from past experience, and as a result of conferring with local farmers, that a minimum of 10 milking cows is necessary to guarantee an adequate supply of milk twice a month for analytical purposes.Locations with fewer than 10 milking cows are usually utilized for breeding purposes, eliminating a stable supply of milk for samples as a result of suckling calves and periods when the adult animals are dry..3 N BO OR COMPARISO The requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive materials in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR 50.002916LL.I B 3/4 12-2

PART I RADIOLOGICAL EFFLUENT CONTROLS SECTION 5.0 DESION FEATURES 002916LL I B 3/4 12-3

5 S G URES Sections 5.1.1, 5.1.2, 5.2, 5.3, 5.4, 5.6, and 5.7 are retained in the RETS.5'.3 G U S RICTED A E S AND SITE OUNDARY FOR IOACTIVE G S OUS UID FLUENTS.Information regarding radioactive gaseous and liquid effluents, which will allow identification of structures and release points as well as definition of UNRESTRICTED AREAS within the SITE BOUNDARY that are accessible to MEMBERS OF THE PUBLIC, shall be as shown in Figure 5-1.3-1~5.5 METEOROLOGICAL TOWER LOCATION The Meteorological Tower shall be located as shown on Figure 5.1.3-1.002916LL I 5-1

(4)~g E~~e)~(!)y (x)(S)(a)~0)gfktlSe~L~l%oCg (c))ieewatC 0f 4 gli41gj Ig)Nate%~OKAPI CRKlaailCN

+0+cR LUTle7a~tuTK tw ate soar 0 4 t (s)~4er 1oad TECHNIChL SPECIFICATIONS FiGURE 5.1.3-1 SITE BOVNOARIES NINE MILE POINT UNIT 2.

NOTES TO FIOURE 5~i+3 1 (a)'MP1 Stack (height is 350')(b)NMP2 Stack (height is 430')(c)JAFNPP Stack (height is 385')(d)NMP1 Radioactive Liquid Discharge (Lake Ontario, bottom)(e)NMP2 Radioactive Liquid Discharge (Lake Ontario, bottom)(f)JAFNPP Radioactive Liquid Discharge (Lake Ontario, bcttom)(g)Site Boundary (h)Lake Ontario Shoreline (i)Meteorological Tower (j)Training Center (k)Energy Information Center Additional In f ormat ion: NMP2 Reactor Building Vent is located 187 feet above ground level JAFNPP Reactor and Turbine Building Vents are located 173 feet above ground level JAFNPP Radwaste Building Vent is 112 feet above ground level The Energy Information Center and adjoining picnic area are UNRESTRZCTED AREAS within the Site BOUNDARY that are accessible to MEMBERS OF THE PUBLIC Lake Road, a private road, is an UNRESTRICTED AREA within the SITE BOUNDARY accessible to MEMBERS OF THE PUBLIC 0029 16LL I 5-6

PART I-RADIOLOGICAL EPPLUENT CONTROLS SECTION 6~0 AZWINI STRATI VE CONTROLS 0029 16LL

N S CO 0 S C NV RONMENTAL OPERATING REPORT>>6.9.1.7 Routine Annual Radiological Environmental Operating Reports covering the operation of the unit during the previous calendar year shall be submitted before May 1 of each year.The initial report shall be submitted before May 1 of the year after the plant achieves initial criticality.

The Annual Radiological Environmental Operating Report shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, operational controls, previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment.

The reports shall also include the results of the land use census required by CONTROL 3+12.2.The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the table and figures in the OFFSITE DOSE CALCULATION MANUAL, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979.In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results.The missing data shall be submitted as soon as possible in a supplemental

.report.The reports shall also include the following:

a summary description of the Radiological Environmental Monitoring Programp at least two legible maps+*covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactors the results of licensee participation in the Interlaboratory Comparison Program, required by CONTROL 3.12.3;discussion of all deviations from the Sampling Schedule of Table 3.12.1-1g and discussion of all analyses in which the LLD required by Table 4.12.1-1 was not achievable.

  • A single submittal may be made for a multiple unit site.The submittal should combine those sections that are coaaen to all units at the site.*~One map shall cover stations near the SITE BOUNDARY'second shall include the more distant stations.002916LL I 6-19

I LUENT RELE S REPORT**6.9.1.8 Routine Semiannual Radioactive Effluent Release Reports covering the operation of~the unit during the previous 6 months of operation shall be submitted wjthin 60 days after January 1 and July 1 of each year.The period of the first report shall begin with the date the plant achieves initial criticality.

A single submittal may be made for a multiple unit site.The submittal should combine those sections that are common to all units at the site;however, for units with separate radwaste systems, the submittal shall specify the releases oj radioactive material from each unit.002916LL I 6-20 i

AD INIST T VE CONTROLS S 0 CTIVE EFFLUENT RELEASE REPORT 6.9.1.8 (Coatinued)

The Semiannual Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21,"Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.For solid wastes, the format for Table 3 in Appendix B shall be supplemented with three additional categories; class of solid wastes (as defined by 10 CFR 61), type of container (e.g., LSA, Type A, Type B, Large Quantity), and SOLIDIFICATION agent or absorbent (e.g., cement, urea formaldehyde).

The Semiannual Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year.This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured)g or in the form of)oint frequency distribution of wind speed, wind direction, and atmospheric stability.*

This same report shall also include an assessment of the radiation doses from the radioactive liquid and gaseous effluents released from the unit during the previous calendar year.This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC from their activities inside the SITE BOUNDARY (Figure 5.1.3-1)during the report period.All assumptions used in making these assessments, i.e., specific activity, exposure time, and location, shall be included in these reports.The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the OFFSZTE DOSE CALCULATION MANUAL (ODCM).The Semiannual Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR 190,"Environmental Radiation Protection Standards for Nuclear Power Operation." Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in the ODCM.The Semiannual Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.*In lieu of submission with the Semiannual Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.002916LL I 6-21

NISTRA CON ROLS OA VE UENT RE EASE REPORT 6.9.1.8 (Coatinued)

The Semiannual Radioactive Effluent Release Reports shall include any changes made during the reporting period to the PROCESS CONTROL PROGRAM (PCP)and to the OFFSITE DOSE CALCULATION MANUAL (ODCM), pursuant to Technical Specification 6.13 and CONTROL 6.14, respectively, as well as any major change to liquid, gaseous, or solid radwaste treatment systems pursuant to CONTROL 6.15.It shall also include a listing of new locations for dose calculations and/or environmental monitoring identified by the land use census pursuant to CONTROL 3+12.2.The Semiannual Radioactive Effluent Release Reports shall also include the following!

an explanation of why the inoperability of liquid or gaseous effluent monitoring instrumentation was not corrected within the time specified in CONTROLS 3.3.7.9 or 3.3.7.10 respectively, and a description of the events leading to liquid holdup tanks exceeding the limits of Technical Specification 3.11.1.4.002916LL I 6-22

6 OF S C LA ION MANUAL 6.14.1 The OPPSITE DOSE CALCULATION MANUAL (ODCM)shall be approved by the Commission before implementation.

6.14.2 Licensee-initiated changes to the ODCM: a.Shall be submitted to the Commission in the Semiannual Radioactive Effluent Release Report for the period in which the change(s)was made effective.

This submittal shall contain: 1.Sufficiently detailed information to totally support the rationale for the change without benefit of additional or supplemental information.

Information submitted should consist of a package of those pages of the ODCM to be changed;each page should be numbered, dated, and marked with the revision number;appropriate analyses or evaluations justifying the change(s)should be included;2.A determination that the change will not reduce the accuracy or reliability of dose calculations or setpoint determinations; and 3.Documentation of the fact that the SORC has reviewed the change and found it acceptable.

b.Shall become effective upon review and acceptance by the SORC.002916LL I 6-26

0 G TO U D G OUS A SO D DWASTE NT S ST 6.15.1 Liceasee-initiated major changes to the radwaste treatment systems (liquidy gaseous i and solid): Shall be reported to the Commission in the Semiannual Radioactive Effluent Release Report for the period in which the evaluation was reviewed by the SORC.The discussion of each change shall contain: 1.A summary of the evaluation that led to the determination that the change could be made in accordance with 10 CFR 50.59.2.Sufficient detailed information to totally support the reason for the change without benefit of additional or supplemental informationg 3.A detailed description of the equipment, components, and processes involved and the interfaces with other plant systems;4.An evaluation of the change, which shows the predicted releases of radioactive materials in liquid and gaseous effluents and/or quantity of solid waste that differ from those previously predicted in the license application and amendments thereto;5.An evaluation of the change, which shows the expected maximum exposures to a MEMBER OF THE PUBLIC in the UNRESTRICTED AREA and to the general population that differ from those previously estimated in the license application and amendments thereto;6.A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents and in solid waste, to the actual releases for the period that precedes the time when the change is to be madei 7.An estimate of the exposure to plant operating personnel as a result of the change;and B.Documentation of the fact that the change was reviewed and found acceptable by the SORC.b.Shall become effective upon review and acceptance by the SORC.*Licensees may choose to submit the information called for in this CONTROL as part of the annual FSAR update.002916LL I 6-27

PART II-CALCULATIONAL METHODOLOGIES

1.0 UID EFFLUENTS Service Water A and B, Cooling Tower Blowdown and the Liquid Radioactive Waste Discharges comprise the Radioactive Liquid EffEuents at Unit 2.Presently there are no temporary outdoor tanks containing radioactive water capable of affecting the nearest known or future water supply in an unrestricted area.NUREG 0133 and Regulatory Guide 1.109, Rev.1 were followed in the development of this section.1~1.1 Liquid Effluent Monitor Alarm Setpoints Basis 1~1~2 1~1~2~1 The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (see Figure 5.1.3-1)shall be limited to the concentrations specified in 10 CFR 20, Appendix B, Table II, Column 2, for radionuclides other than dissolved or entrained noble gases.For dissolved or entrained nobles gases, the concentration shall be limited to 2E-04 uCi/ml total activity.Setpoint Determination Methodology Liquid Radwaste Effluent Radiation Alarm Setpoint The Liquid Radioactive Waste System Tanks are pumped to the discharge tunnel which in turn flows directly to Lake Ontario.At the end of the discharge tunnel in Lake Ontario, a diffuser structure has been installed.

Its purpose is to maintain surface water temperatures low enough to meet thermal pollution limits.However, it also assists in the near field dilution of any activity released.Service Water and the Cooling Tower Blowdown are also pumped to the discharge tunnel and will provide dilution.If the Service Water or the Cooling Tower Blowdown is found to be contaminated, then its activity will be accounted for when calculating the permissible radwaste effluent flow for a Liquid Radwaste discharge.

The Liquid Radwaste System Monitor provides alarm and automatic termination of release if radiation levels above its alarm setpoint are detected.The radiation detector is a sodium iodide crystal.It is a scintillation device.The crystal is sensitive to gamma and beta radiation.

However, because of the metal walls of the sample chamber and the absorption characteristics of water, the monitor is not particularly sensitive to beta radiation.

Actual detector response Z,(CG,/CF,), cpm, has been evaluated by placing a sample of typical radioactive waste into the monitor and recording the gross count rate, cpm.A calibration ratio was developed by dividing the noted detector response, Z,(CG,/CF,)

cpm, by total concentration of activity Z,(CG,), uCi/cc.The quantification of the gamma activity was completed with gamma spectrometry equipment whose calibration is traceable to NIST.This calibration ratio verified the mteafacturer's prototype calibration, and any subsequent transfer caXihrations performed.

The current calibration factor (expressed as'he reciprocal conversion factor, uCi/ml/cpm), will be used for subsequent setpoint calculations in the determination of detector response: Zi(CG(/CFi)

Zi(CGi/CF))

Where the factors are as defined above.003072LL II 2

For the calculation of RDF~Z MPC fraction~Z,(C,/MP+)

the contribution from non gamma emitting nuclides except tritium will be initially estimated based on the expected ratios to quantified nuclides as listed in the FSAR Table 11.2.5.Fe-55, Sr-89 and Sr-90 are 2.5, 0.25 and 0.02 times the concentration of Co-60.These values may be replaced by ratios calculated from analysis of composite samples.Tritium concentration is assumed to equal the latest concentration detected in the monthly tritium analysis (performed offsite)of liquid radioactive waste tanks discharged.

Nominal flow rates of the Liquid Radioactive Waste System Tanks discharged is<165 gpm while dilution flow from the Service Water Pumps, and Cooling Tower Blowdown cumulatively is typically over 10,200 gpm.Because of the large amount of dilution the alarm setpoint could be substantially greater than that which would correspond to the concentration actually in the tank.Potentially a discharge could continue even if the distribution of nuclides in the tank were substantially different from the grab sample obtained prior to discharge which was used to establish the detector alarm point.To avoid this possibility of"Non representative Sampling" resulting in erroneous assumptions about the discharge of a tank, the tank is recirculated for a minimum of 2.5 tank volumes prior to sampling.This monitor's setpoint takes into account the dilution of Radwaste Effluents provided by the Service Water and Cooling Tower Blowdown flows.Detector response for the nuclides to be discharged (cpm)is multiplied by the Actual Dilution Factor (dilution flow/waste stream flow)and divided by the Required Dilution Factor (total fraction of MPC in the waste stream).A safety factor is used to ensure that the limit is never exceeded.Service Water and Cooling Tower Blowdown are normally non-radioactive.

If they are found to be contaminated prior to a Liquid Radwaste discharge then an alternative equation is used to take into account the contamination.

If they become contaminated during a Radwaste discharge, then the discharge will be immediately terminated and the situation fully assessed.Normal Radwaste Effluent Alarm Setpoint Calculation:

Alarm Setpoint (0.8*TDF/PEF*TGC/CF+1/RDF+Background.

Where: Alarm Setpoint 0.8 m TDF CF)PEF MPC>Background The Radiation Detector Alarm Setpoint, cpm Safety Factor, unitless Nonradioactive dilution flow rate, gpm.Service Water Flow ranges from 30,000 to 58,000 gpm.Blowdown flow is typically 10,200 gpm Concentration of isotope i in Radwaste tank prior to dilution, uCi/ml (gamma+non-gamma emitters)Detector response for isotope i, net uCi/ml/cpm See Table 2-1 for a list of nominal values The permissible Radwaste Effluent Flow rate, gpm, 165 gpm is the maximum value used in this equation Concentration limit for isotope i from 10CFR20 Appendix B, Table II, Column 2, uCi/ml Detector response when sample chamber is filled with nonradioactive water, cpm 003072LL II 3

CF TGC>ZCG(Z (CGI/CFl)RDF~Z((C(/MPH)TGC/CF TDF/PEF Monitor Conversion Factor, uCi/ml/cpm, determined at each calibration of the effluent monitor Concentration of gamma emitting nuclide in Radwaste tank prior to dilution, uCi/ml Summation of all gamma emitting nuclides (which monitor will respond to)The total detector response when exposed to the concentration of nuclides in the Radwaste tank, cpm The total fraction of the 10CFR20, Appendix B, Table II, Column 2 limit that is in the Radwaste tank, unitless.This is also known as the Required Dilution Factor (RDF), and includes non-gamma emitters An approximation to Z,(CG,/CF<)

using CF determined at each calibration of the effluent monitor An approximation to (TDF+PEF)/PEF, the Actual Dilution Factor in effect during.a discharge.

Permissible effluent flow, PEF, shall be calculated to determine that MPC will not be exceeded in the discharge canal.PEF~Dilution Flow 1-Fraction Tem erin (RDF)1.5 Fraction Tempering~A diversion of some fraction of discharge flow to the intake canal for the purpose of temperature control.If Actual Dilution Factor is set equal to the Required Dilution Factor, then the alarm points required by the above equations correspond to a concentration of 80%of the Radwaste Tank concentration.

No discharge could occur, since the monitor would be in alarm as soon as the discharge commenced.

To avoid this situation, maximum allowable radwaste discharge flow is calculated using a multiple (usually 1.5 to 2)of the Required Dilution Factor, resulting in discharge canal concentration of 2/3 to 1/2 of MPC prior to alarm and termination of release.In performing the alarm calculation, the smaller of 165 gpm (the maximum possible flow)and PEF will be used.To ensure the alarm setpoint is not exceeded, an alert alarm is provided.The alert alarm will be set in accordance with the equation above using a safety factor of 0.5 (or lower)instead of 0.8~1.1.2.2 CoOtaminated Dilution Water Radwaste Effluent Monitor Alarm Setpoint Cefeulations r" Tge allowable discharge flow rate for a Radwaste tank, when one of the normal dilution streams (Service Water A, Service Water B, or Cooling Tower Blowdown)is contaminated, will be calculated by an iterative process.Using Radwaste tank concentrations with a total liquid effluent flow rate the resulting fraction of MPC in the discharge canal will be calculated.

FMPC Zs[Fo/Zo(Fo)

ZI(C4+MPCI))Then the permissible radwaste effluent flow rate is given by: PEF~Total Radwaste Effluent Flow FMPC 003072LL II 4

'll The corresponding Alarm Setpoint will then be calculated using the following equation, with PEF limited as above.TGC/CF Alaan Setpoint (0.8 FMPC+Background Where: Alarm Setpoint 0'F, Ci C.CF MPH PEF Background TGC/CF Zi (CGi/CF)E.(F,C~)Z,[F,]The Radiation Detector Alarm Setpoint, cpm Safety Factor, Unitless An Effluent flow rate for stream s, gpm Concentration of isotope i in Radwaste tank prior to dilution, uCi/ml Concentration of isotope i in Effluent stream s including the Radwaste Effluent tank undiluted, uCi/ml Average detector response for all isotopes in the waste stream, net uCi/ml/cpm Concentration limit for isotope i from 10CFR20 Appendix B, Table ZZ, Column 2, uCi/ml The permissible Radwaste Effluent Flow rate, gpm Detector response when sample chamber is filled with nonradioactive water, cpm The total detector response when exposed to the concentration of nuclides in the Radwaste tank, cpm The total activity of nuclide i in all Effluent streams, uCi-gpm/ml The total Liquid Effluent Flow rate, gpm (Service Water 6 CT Blowdown 6 Radwaste)1.1.2.3 Service Water and Cooling Tower Blowdown Effluent Alarm Setpoint These monitor setpoints do not take any credit for dilution of each respective effluent stream.Detector response for the distribution of nuclides potentially discharged is divided by the total MPC fraction of the radionuclides potentially in the respective stream.A safety factor is used to ensure that the limit is never exceeded.Service Water and Cooling Tower Blowdown are normally non-radioactive.

Zf they are found to be contaminated by statistically significant increase in detector response then grab samples will be obtained and analysis meeting the LLD requirements of Table 4.11.1-1 completed so that an estimate of offsite dose can be, made and the situation fully assessed.Sognrice Water A and B and the Cooling Tower Blowdown are pumped to the'ischarge tunnel which in turn flows directly to Lake Ontario.Normal flow rates for each Service Water Pump is 10,000 gpm while that for the Cooling Tower Blowdown may be as much as 10,200 gpm.Credit is.not taken for any dilution of these individual effluent streams.The radiation detector is a sodium iodide crystal.Zt is a scintillation device.The crystal is sensitive to gamma and beta radiation.

However, because of the metal walls in its sample chamber and the absorption.

characteristics of water, the monitor is not particularly sensitive to beta radiation.

003072LL II 5

Detector response E,(g/CF,)has been evaluated by placing a diluted sample of Reactor Coolant (after a two hour decay)in a representative monitor and noting its gross count rate.Reactor Ccggant was chosen because it represents the most likely contaminant of dition Waters.A 4r'hour decay was chosen by)udgement of the staff of Niagara Mohiirk Power Corporation.

Reactor Coolant with no decay contains a considerable amount of very energetic nuclides which would bias the detector response term high.However assuming a longer than 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> decay is not realistic as the most likely release mechanism is a leak through the Residual Heat Removal Heat Exchangers which would contain Reactor Coolant during shutdowns.

Service Water and Cooling Tower Blowdown Alarm Setpoint Equation: Alarm Setpoint c 0.8 1/CF Z, Q/[Z,(Q/MPC,))

+Background.

Where>Alarm Setpoint 0.8 C, CFi MPCi Background Z,(g/CF,)Z,(g/MPC,)

(1/CF)E<Q CF The Radiation Detector Alarm Setpoint, cpm Safety Factor, unitless Concentration of isotope i in potential contaminated stream, uCi/ml Detector response for isotope i, net uCi/ml/cpm See Table 2-1 for a list of nominal values Concentration limit for isotope i from 10CFR20 Appendix B, Table II, Column 2, uCi/ml Detector response when sample chamber is filled with nonradioactive water, cpm The total detector response when exposed to the concentration of nuclides in the potential contaminant, cpm The total fraction of the 10CFR20, Appendix Bg Table II, Column 2 limit that is in the potential contaminated stream, unitless.An approximation to Z,(Q/CF,), determined at each calibration of the effluent monitor Monitor Conversion Factor, uCi/ml/cpm 1.2 Liquid Effluent Concentration Calculation This calculation documents compliance with CONTROLS Section 3.11.alt".ccincentration of radioactive material released in liquid gents to UNRESTRICTED AREAS (see Figure 5.1.3-1)shall be to the concentrations specified in 10 CFR 20, Appendix B, II, Column 2, for radionuclides other than dissolved or entrained noble gases.For dissolved or entrained noble gases, the concentration shall be limited to 2E-04 microcurie/ml total activity.~The concentration of radioactivity from Liquid Radwaste, Service Water A and B and the Cooling Tower Blowdown are included in the calculation.

The calculation is performed for a specific period of time.No credit is taken for averaging.

The limiting concentration is calculated as followsc El(FI/El(FO)

El(CLŽ%))003072LL

Where c FMPC Cg F, MPCi Ei(+/MPQ)Es(Fo)The fraction of MPC, the ratio at the point of discharge of the actual concentration to the limiting concentration of 10 CFR 20, Appendix B, Table II, Column 2, for radionuclides other than dissolved or entrained noble gases, unitless The concentration of nuclide i in a particular effluent stream s, uCi/ml The flow rate of a particular effluent stream s, gpm The limiting concentration of a specific nuclide i from 10CFR20, Appendix b, Table II, Column 2 (for noble gases, the concentration shall be limited to 2E-4 microcurie/ml), uci/ml The MPC fraction of stream s prior to dilution by other streams The total flow rate of all effluent streams s, gpm 1.3 A value of less than one for MPC fraction is required for compliance.

Liquid Effluent Dose Calculation Methodology The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each unit, to UNRESTRICTED AREAS (see Figure 5.1.3-1)shall be limited: a.During any calendar quarter to less than or equal to 1.5 mrem to the whole body and to less than or equal to 5 mrem to any organ, and b.During any calendar year to less than or equal to 3 mrem to the whole body and to less than or equal to 10 mrem to any organ.Doses due to Liquid Effluents are calculated monthly for the fish and drinking water ingestion pathways and the external sediment exposure pathways from all detected nuclides in liquid effluents released to the unrestricted areas using the following expression from NUREG 0133, Section 4.3.Where<Di~El[At EL(dTICgFg)

)The cumulative dose commitment to the total body or any organ, t from the liquid effluents for the total time period Ez(dTI), mrem The length of the L th time period over which Cs.and Fare averaged for all liquid releases, hours~The average concentration of radionuclide, i, in undiluted liquid effluents during time period dTfrom any liquid release, uCi/ml The site related ingestion dose commitment factor for the maximum individual to the total body or any organ t for each identified principal gamma or beta emitter, mrem/hr per uCi/ml.Table 2-2.003072LL II 7

1.4 The near field average dilution factor for Cduring any liquid effluent release.Defined as the ratio of the maximum undiluted liquid waste flow during release to the product of the average flow from the site discharge structure to unrestricted receiving waters times 5.9.(5.9 is the site specific applicable factor for the mixing effect of the discharge structure.)

See the Nine Mile Point Unit 2 Environmental Report-Operating License Stage, Table 5.4-2 footnote l.Liquid Effluent Sampling Representativeness There are four tanks in the radwaste system designed to be discharged to the discharge canal.These tanks are labeled 4A, 4B, 5A, and SB.Liquid Radwaste Tank SA and 5B at Nine Mile Point Unit 2 contain a sparger spray ring which assists the mixing of the tank contents while it is being recirculated prior to sampling.This sparger effectively mixes the tank four times faster than simple recirculation.

Liquid Radwaste Tank 4A and 4B contain a mixing ring but no sparger.No credit is taken for the mixing effects of the ring.Normal recirculation flow is 150 gpm for tank SA and 5B, 110 gpm for tank 4A and 4B while each tank contains up to 25,000 gallons although the entire contents are not discharged.

To assure that the tanks are adequately mixed prior to sampling, it is a plant requirement that the tank be recirculated for the time required to pass 2.5 times the volume of the tank: Recirculation Time~2.5T/RM Where: Recirculation Time 2.5 Is the minimum time to recirculate the Tank, min Is the plant requirement, unitless Is the tank volume, gal Is the recirculation flow rate, gpm.Is the factor that takes into account the mixing of the sparger, unitless, four for tank SA and B, one for tank 4A and B.Additionally, the Alert Alarm setpoint of the Liquid Radwaste Effluent monitor is set at approximately 60%of the High alarm setpoint.This alarm wi.ll give indication of incomplete mixing with adequate margin to exceeding MPC.Service Water A and B and the Cooling Tower Blowdown are sampled f the radiation monitor on each respective stream.These rs continuously withdraw a sample and pump it back to the e nt stream.The length of tubing between the continuously ffting sample and the sample spigot contains less than 200 ml which is adequately purged by requiring a purge of at least 1 liter when grabbing a sample.003072LL II 8

1.5 Liquid Radwaste System Operability The Liquid Radwaste Treatment System shall be OPERABLE and used when pro)ected doses due to liquid radwaste effluents would exceed 0.06 mr~to the whole body or 0.2 mrem to any organ in a 31-day period.Cue41ative doses will be determined at least once per 31 days (as indicated in Section 1.3)and doses will also be pro)ected if the radwaste treatment systems are not being fully utilized.The system collection tanks are processed as follows')Low Conductivity (Waste Collector):

Radwaste Filter and Radwaste Demineralizer 2), High Conductivity (Floor Drains): Floor Drain Filter or Waste Evaporator or Advanced Liquid Processing System (ALPS)3)Regenerant Waste: Zf resin regeneration is used at NMP-2;the waste will be processed through the floor drain filter or waste evaporator.

EMOTE: Regenerant Evaporator and Waste Evaporator may be used interchangeably.

The dose pro)ection indicated above will be performed in accordance with the methodology of Section 1.3.$'r~-I 003072LL ZZ 9

2.0 US EFFLUENTS The gaseous effluent release points are the stack and the combined Radwaste/Reactor Building vent.The stack effluent point includes Turbine Building ventilation, main condenser offgas (after charcoal bed holdup), and Standby Gas Treatment System exhaust.NUREG 0133 and Regulatory Guide 1.109, Rev.1 were followed in the development of this section.2.1 2~1~1 Gaseous Effluent Monitor Alarm Setpoints Basis The dose rate from radioactive materials released in gaseous effluents from the site to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)shall be limited to the following:

a.For noble gases!Less than or equal to 500 mrem/yr to the whole body and less than or equal to 3000 mrem/yr to the skin, and b.For iodine-131, for iodine-133, for tritium, and for all radionuclides with half-lives greater than 8 days: Less than or equal to 1500 mrem/yr to any organ.The radioactivity rate of noble gases measured downstream of the recombiner shall be limited to less than or equal to 350,000 microcuries/second during offgas system operation.

2'~2 Setpoint Determination Methodology Discussion Nine Mile Point Unit 1 and the James A FitzPatrick nuclear plants occupy the same site as Nine Mile Point Unit 2.Because of the independence of these plants'afety systems, control rooms and operating staffs it is assumed that simultaneous accidents are not likely to occur at the different units.However, there are two release points at Unit 2.It is assumed that if an accident were to occur at Unit 2 that both release points could be involved.The alarm setpoint for Gaseous Effluent Noble Gas Monitors are based on a dose rate limit of 500 mRem/yr to the Whole Body.Since there are two release points at Unit 2, the dose rate limit of 500 mRem/yr is divided equally for each release point, but may be apportioned otherwise, if required.These monitors are sensitive to only noble gases.Because of this it is considered impractical to base their alarm setpoints on organ dose rates due to iodines or particulates.

Additionally skin dose rate is never significantly greater than the whole body dose rate.Thus the factor R which is the basis for the alarm setpoint calculation is nominally taken as equal to 250 mRem/yr.If there are significant releases from any gaseous release point on the site ()25 mRem/yr)for an extended period of time then the setpoint will be recalculated with an appropriately smaller value for R.T&.high alarm setpoint for the Offgas Noble Gas monitor is based on a limit of 350,000 uCi/sec.This is the release rate for which a FSAR accident analysis was completed.

At this rate the Offgas System charcoal beds will not contain enough activity so that their failure and subsequent release of activity will present a significant offsite dose assuming accident meteorology.

003072LL II 10

Initially, in accordance with CONTROL 4.3.7.10, the Germanium multichannel analysis systems of the stack and vent will be calibrated with gas standards (traceable to NIST)in accordance with Table 4.3.7.10-1, note (a).Subsequent calibrations may be performed with gas standards, or with related solid sources.The quarterly Channel Functional Test will include operability of the 30cc chamber and the dilution stages to confirm monitor high range capability.(Appendix D, Gaseous Effluent Monitoring System).The alert is set at a small multiple of current operating level.2.1.2.1 Stack Noble Gas Detector Alarm Setpoint Equation: The stack at Nine Mile Point Unit 2 receives the Offgas after charcoal bed delay, Turbine Building Ventilation and the Standby Gas Treatment system exhaust.The Standby Gas Treatment System Exhausts the primary containment during normal shutdowns and maintains a negative pressure on the Reactor Building to maintain secondary containment integrity.

The, Standby Gas Treatment will isolate on high radiation detected (by the SGTS monitor)during primary containment purges.The stack noble gas detector is made of germanium.

It is sensitive to only gamma radiation.

However, because it is a computer based multichannel analysis system it is able to accurately quantify the activity released in terms of uCi of specific nuclides.Only pure alpha and beta emitters are not detectable, of which there are no common noble gases.A distribution of Noble Gases corresponding to offgas is chosen for the nominal alarm setpoint calculation.

Offgas is chosen because it represents the most significant contaminant of gaseous activity in the plant.The release rate Q<<corresponds to offgas concentration expected with the plant design limit for fuel failure.The alarm setpoint may be recalculated if a significant release is encountered.

In that case the actual distribution of noble gases will be used in the calculation.

The following calculation will be used for the initial Alarm Setpoint.O.BR Alarm Setpoint, uCi/sec Z>(QV<)0.8 V)Ei(%%)Safety Factor, unitless Allocation Factor.Normally, 250 mrem/yry the value must be 500 mrem/yr or less depending upon the dose rate from other release points within the site such that the total dose rate corresponds to<500 mrem/yr The release rate of nuclide i, uCi/sec The constant for each identified noble gas nuclide accounting for the whole body dose from the elevated finite plume listed on Table 3-2, mrem/yr per uCi/sec The total release rate of noble gas nuclides in the stack effluent, uCi/sec The total of the product of each isotope release rate times its respective whole body plume constant, mrem/yr, uci/sec 003072LL II 11

The alert alarm is normally set at less than 10%of the high alarm.2.1.2.2 Vent Noble Gas Detector Alarm Setpoint Equations The vent contains the Reactor Building ventilation above and below the refuel floor and the Radwaste Building ventilation effluents.

The Reactor Building Ventilation will isolate when radiation monitors detect high levels of radiation (these are separate monitors, not otherwise discussed in the ODCM).Nominal flow rate for the vent is 2.37E5 CFM.This detector is made of germanium.

It is sensitive to only gamma radiation.

However, because it is a computer based multichannel analysis system it is able to accurately quantify the activity released in terms of uci of specific nuclides.Only puze alpha and beta emitters are not detectable, of which there are no common noble gases.A distribution of Noble Gases corresponding to that expected with the design limit for fuel failure offgas is chosen for the nominal alarm setpoint calculation.

Offgas is chosen because it represents the most significant contaminant of gaseous activity in the plant.The alarm setpoint may be recalculated if a significant release is encountered.

In that case the actual distribution of noble gases will be used in the calculation.

Alarm Setpoint, uCi/sec 0.8R Z (X/Q)Z;(Q;Q)Where: 0.8 Q((X/Q)Ei(Q~)Ei(QA)Safety Factor, unitless Allocation Factor.Normally, 250 mrem/yrg the value must be 500 mrem/yr or less depending upon the dose rate from other release points within the site such that the total rate corresponds to (500 mrem/yr The release rate of nuclide i, uCi/sec The highest annual average atmospheric dispersion coefficient at the site boundary as listed in the Final Environmental Statement, NUREG 1085, Table D-2, 2.0E-6 sec/m'he constant for each identified noble gas nuclide accounting for the whole body dose from the semi-infinite cloud, listed on Table 3-3g mzem/yr per uci/m~The total release rate of noble gas nuclides in the vent effluent, uCi/sec The total of the product of the each isotope release rate times its respective whole body immersion constant, mrem/yr per sec/m~003072LL II 12

The alert alarm is normally set at less than 10%of the high alarm.The Offgas system has a radiation detector downstream of the recombiners and before the charcoal decay beds.The offgas, after decay, is exhausted to the main stack.The system will automatically isolate if its pretreatment radiation monitor detects levels of radiation above the high alarm setpoint.The Radiation Detector is a sodium iodide crystal.It is a scintillation device and has a thin mylar window so that it is sensitive to both gamma and beta radiation.

Detector response Z<(C,/CF,)

has been evaluated fxom isotopic analysis of offgas analyzed on a multichannel analyzer, traceable to NIST.A distribution of offgas corresponding to that expected with the design limit for fuel failure is used to establish the initial setpoint.However, the alarm setpoint may be recalculated using an updated nuclide distribution based on actual plant process conditions.

The monitor nominal response values will be confirmed during periodic calibration using a Transfer Standard source traceable to the primary calibration performed by the vendor.Particulates and Iodines are not included in this calculation because this is a noble gas monitor.To pxovide an alarm in the event of failure of the offgas system flow instrumentation, the low flow alarm setpoint will be set at or above 10 scfm, (well below normal sy'tem flow)and the high flow alarm setpoint will be set at or below 110 scfm, which is well above expected steady-state flow rates with a tight condenser.

To provide an alarm for changing conditions, the alert alarm will normally be set at 10,000 uCi/sec above current operating level (15%of level if greater than 75,000 uCi/sec).This alert allo~s conformance with Technical Specifications 3.4.5 Specific Activity Actions.50E+05 2.E-03 Z C CF Alarm Setpoint, cpm<0.8 F~i(%)+Background 2.1.2.3 Offgas Pretreatment Noble Gas Detector Alarm Setpoint Equation: Where<Alarm Setpoint 0.8 350,000 2.128-03 The alarm setpoint for the offgas pretreatment Noble Gas Detector, cpm Safety Factor, unitless The Technical Specification Limit for Offgas Pretreatment, uCi/sec Unit conversion Factor, 60 sec/min/28317 cc/CF The concentration of nuclide, i, in the Offgas, uCi/cc The Detector response to nuclide i, uCi/cc/cpm; See Table 3-1 for a list of nominal values 003072LL II 13

=

Background===

El (9/CFI)Ei(Ci)The Offgas System Flow rate, CFM The detector response when its chamber is filled with nonradioactive air, cpm The summation of the nuclide concentration divided by the corresponding detector response, net cpm The summation of the concentration of nuclides in offgas, uCi/cc 2~2 Gaseous Effluents Dose Rate Calculation Dose rates will be calculated monthly at a minimum to demonstrate that the release of noble gases, tritium, iodines, and particulates with half lives greater than 8 days are within the dose rate limits specified in 10CFR20.These limits are as follows: The dose rate from radioactive materials released in gaseous effluents from the site to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)shall be limited per 10CFR20 to the following:

a.For noble gases: Less than or equal to 500 mrem/yr to the whole body and less than or equal to 3000 mrem/yr to the skin, and 2.2.1 b.For iodine-131, iodine-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrem/yr to any organ: X/Q and W-Dispersion Parameters for Dose Rate, Table 3-23 The dispersion parameters for the whole body and skin dose rate calculation correspond to the highest annual average dispersion parameters at or beyond the unrestricted area boundary.This is at the east site boundary.These values were obtained from the Nine Mile Point Unit 2 Final Environmental Statement, NUREG 1085 Table D>>2 for the vent and stack.These were calculated using the methodology of Regulatory Guide 1.111, Rev.1.The stack was modeled as an elevated release point because its height is more than 2.5 times any adjacent building height.The vent was modeled as a ground level release because even though it is higher than any adjacent building it is not more than 2.5 times the height.The NRC Final Environmental Statement values for the site boundary X/Q and D/Q terms were selected for use in calculating Effluent Monitor Alarm Points and compliance with Site Boundary Dose Rate specifications because they are conservative when compared with the corresponding NMPC Environmental Report values.In addition, the stack"intermittent release" X/Q was selected in lieu of the"continuous" value, since it is slightly larger, and also would allow not making a distinction between long term and short term releases.Tha'.dispersion parameters for the organ dose calculations were obtained from the Environmental Report, Figures 7B-4 (stack)and 7B-8 (vent)by locating values corresponding to currently existing (1985)pathways.It should be noted that the most conservative pathways do not all exist at the same location.It is conservative to assume that a single individual would actually be at each of the receptor locations.

003072LL II 14

2.2'Whole Body Dose Rate Due to Noble Gases The ground level gamma radiation dose from a noble gas stack release (elevated), referred to as plume shine, is calculated using the dose factors from Appendix B of this document.The ground level gamma radiation dose from a noble gas vent release accounts for the exposure from immersion in the semi-infinite cloud.The dispersion of the cloud from the point of release to the receptor at the east site boundary is factored into the plume shine dose factors for stack releases and through the use of X/Q in the equation for the immersion ground level dose rates for vent releases.The release rate is averaged over the period of concern.The factors are discussed in Appendix B.Whole body dose rate (DR)Y due to noble gases: (DR)y 3.17E-08 Z, (VQ+g (X/Q)Q.]

Where: DRY Vi Whole body dose rate (mrem/sec)

The constant accounting for the gamma whole body dose rate from the finite plume from the elevated stack releases for each identified noble gas nuclide, i.Listed on Table 3-2, mrem/yr per'ci/sec The constant accounting for the gamma whole body dose rate from immersion in the semi-infinite cloud for each identified noble gas nuclide, i.Listed in Table 3-3, mrem/yr per uCi/m'From Reg.Guide 1.109)X/QX/Q, The relative plume concentration at or beyond the land sector site boundary.Average meteorological data is used.Elevated X/Q values are used for the stack releases (s~stack);

ground X/Q values are used for the vent releases (v~vent).Listed on Table 3-23 Qsi Q~The release rate of each noble gas nuclide i, from the stack (s)or vent (v).Averaged over the time period of concern.(uCi/sec)23.17E-OB~Conversion Factor~the inverse of the number of seconds in one year.(yr/sec)Skin Dose Rate Due to Noble Gases There are two types of radiation from noble gas releases that contribute to the skin dose rate: beta and gamma.Pae stack releases this calculation takes into account the dose from beta radiation in a semi infinite cloud by using an immersion dose factor.Additionally, the dispersion of the released activity from the'stack to the receptor is taken into account by use of the factor (X/Q).The gamma radiation dose from the elevated stack release is taken into account by the dose factors in Appendix B.For vent releases the calculations also take into account the dose from the beta (I))and gamma (Y)radiation of the semi infinite cloud by using an immersion dose factor.Dispersion is taken into account by use of the factor (X/Q).003072LL II 15

The release rate is averaged over the period of concern.Skin dose rate (DR)~due to noble gases: (DR)~~~~3~17E 8 Z>[(L((X/{})~+1~1 1Bi){}~+(Lj+1~1 lg)'(X/Q)<<Q~)Where: (DR)~op L(Skin dose rate (mrem/sec)

The constant to account for the gamma and beta skin dose rates for each noble gas nuclide, i, from immersion in the semi-infinite cloud, mrem/yr per uCi/m', listed on Table 3-3 (from R.G.1.109)The constant to account for the air gamma dose rate for each noble gas nuclide, i, from immersion in the semi-infinite cloud, mrad/yr per uCi/m~, listed on Table 3-3 (from R.G.1.109)Bi (X/Q)(X/Q)Unit conversion constant, mrem/mrad The constant accounting for the air gamma dose rate from exposure to the overhead plume of elevated releases of each identified noble gas nuclide, i.Listed on Table 3-2, mrad/yr per uCi/sec.The relative plume concentration at or beyond the land sector site boundary.Average meteorological data is used.Elevated X/Q values are used for the stack releases (s"-stack);

ground X/Q values are used for the vent releases (v~vent).23.17E-B~Conversion Factor;the inverse of the number of seconds in a year;(yr/sec)The release rate of each noble gas nuclide i, from the stack(s)or vent (v)averaged over the time period of concern, uci/sec.Organ Dose Rate Due to I-131, I-133, Tritium, and Particulates with Half-lives greater than 8 days.The organ dose rate is calculated using the dose factors (g)from Appendix C.The factor g takes into account the dose rate received from the ground plane, inhalation and ingestion pathways.W, and Wtake into account the atmospheric dispersion from the release point to the location of the most conservative receptor for each of the respective pathways.The release rate is averaged over the period of concern.Organ dose rates (DR)due to iodine-131, iodine-133, tritium and all radionuelides in particulate form with half-lives greater than 8 days'here: (DR)(DR)N~3 17E 8 Z~[Zip~[Wan+WvQw))Organ dose rate (mrem/sec)

The factor that takes into account the dose from nuclide i through pathway)to an age group a, and individual organ t.Units for inhalation pathway, mrem/yr per uCi/m~.Units for ground and ingestion pathways;m~~rem/yr per uCi/sec.See Tables 3-4 through 3-22).003072LL II 16

WWDispersion parameter either X/Q (sec/m')or D/g (1/m~)depending on pathway and receptor location.Average meteorological data is used (Table 3-23).Elevated W, values are used for stack releases (s=stack);

ground Wvalues are used for vent releases (v=vent).~N~()H The release rates for nuclide i, from the stack (s)and vent (v)respectively, uCi/sec.When the release rate exceeds 0.75 uCi/sec from the stack or vent, the dose rate assessment shall, also, include JAF and NMP1 dose contributions.

The use of the 0.75'uCi/sec release rate threshold is conservative because it is based on the dose conversion factor (R;)for the Sr-90 child bone which is significantly higher than the dose factors for the other isotopes present in the stack or vent release.2'Gaseous Effluent Dose Calculation Methodology Doses will be calculated monthly at a minimum to demonstrate that doses resulting from the release of noble gases, tritium, iodines, and particulates with half lives greater than 8 days are within the limits specified in 10CFR.50.These limits are as follows: The air dose from noble gases released in gaseous effluents, from each unit, to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)shall be limited to the following.

a.During any calendar quarter: Less than or equal to 5 mrad for gamma radiation and less than or'equal to 10 mrad for beta radiation, and b.During any calendar year: Less than or equal to 10 mrad for gamma radiation and less than or equal to 20,mrad for beta radiation.

The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radioactive material in particulate form with half-lives greater than 8 days in gaseous effluents released, from each unit, to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1)shall be limited to the following:

a.During any calendar quarter: Less than or equal to 7.5 mrem to any organ and, b.During any calendar year: Less than or equal to 15 mrem to any organ.The VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE and appropriate portions of this system shall be used to reduce releases of radioactivity when the projected doses in 31 days from iodine and particulate releases, from each unit, to areas at or beyond the SITE BOUNDARX;(see Figure 5.1.3-1)would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.2.F 1 Wand W,-Dispersion Parameters for Dose, Table 3-23 The dispersion parameters for dose calculations were obtained chiefly from the Nine Rile Point Unit 2 Environmental Report Appendix 78.These were calculated using the methodology of Regulatory Guide 1.111 and NUREG 0324.The stack was modeled as an elevated release point because height is more than 2.5 times the height of any adjacent building.The vent was modeled as a combined elevated/ground level release because the vent's height is not more than 2.5 times the height of any adjacent building;Average meteorology over the appropriate time period was used.Dispersion parameters not available from the ER were obtained from C.T.Main Data report dated November, 1985, or the FES.003072LL II 17

2.3'Gamma Air Dose Due to Noble Gases Galena air dose from the stack or vent noble gas releases is calculated monthly.The gamma air dose equation is similar to the gamma dose rate equation except the receptor is air instead of the whole body or skin of whole body.Therefore, the stack noble gas releases use the finite plume air dose factors, and the vent noble gas releases.use semi-infinite cloud immersion dose factors.The factor X/Q takes into account the dispersion of vent releases to the most conservative location.The release activity is totaled over the period of concern.The finite plume factor is discussed in Appendix B.Gamma air dose due to noble gases: D D 3.17E-B Z,(M,(X/Q)Q+

B;Q)x t The gamma air dose for the period of concern, mrad 2.3.3 t The duration of the dose period of concern, sec Where all other parameters have been previously defined.Beta Air Dose Due to Noble Gases The beta air dose from the stack or vent noble gas releases is calculated using the semi-infinite cloud immersion dose factor in beta radiation.

The factor X/Q takes into account the dispersion of releases to the most conservative location.Beta air dose due to noble gases: Dp~3'7E 8 Z(Ni((X/Q)v Qw+(X/Q)s Qu)x D>~Beta air dose (mrad)for the period of concern N(The constant accounting for the beta air dose from immersion in the semi-infinite cloud for each identified noble gas nuclide, i.Listed on Table 3-3, mrad/yr per uCi/m'.(From'Reg.Guide 1.109).2.3.4 t~The duration of the dose period of concern, sec Where all other parameters have been previously defined.Organ Dose Due to I-131, I-133, Tritium and Particulates with half-lives greater than 8 days.The organ dose is based on the same equation as the dose rate equation except the dose is compared to the 10CFR50 dose limits.The factor g takes into account the dose received from the ground plane, inhalatien, food (cow milk, cow meat and vegetation) pathways.W, and Wtake'into account the atmospheric dispersion from the release point to the, location of the most conservative receptor for each of the respective pathways.The release is totaled over the period of concern.The g factors are discussed in Appendix C.Organ dose Ddue to iodine-131, iodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days'3~17E-8 Zj[Z(R;[Wg Q.+Wv Q)]x t 003072LL II 18

2.4 Where: D~Dose to the critical organ t, for age group a, mrem t~The duration of the dose period of concern, sec Where all other parameters have been previously defined in Section 2.2.4.I-133 and I-135 Estimation 2.5 2.6 2'2.8 Stack and vent effluent iodine cartridges are analyzed to a sensitivity of at least 1E-12 uCi/cc.If detected in excess of the LLD, the I-131 and I-133 analysis results will be reported directly from each cartridge analyzed.Periodically, (usually quarterly but on a monthly frequency if effluent iodines are routinely detected)a short-duration (12 to 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />)effluent sample is collected and analyzed to establish an I-135/I-131 ratio and an I-133/I-131 ratio, if each activity exceeds LLD.The short-duration ratio is used to confirm the routinely measured I-133 values.The short-duration I>>135/I-131 ratio (if determined) is used with the I-131 release to estimate the I-135 release.The short-duration I-133/I-131 ratio may be used with the I-131 release to estimate the I-133 release if the directly measured I-133 release appears non-conservative.

Isokinetic Sampling Sampling systems for the stack and vent effluent releases are designed to maintain isokinetic sample flow at normal ventilation flow rates.During periods of reduced ventilation flow, sample flow may be maintained at a minimum flow rate (above the calculated isokinetic rate)in order to sample line losses due to particulate deposition at low velocity.Use of Concurrent Meteorological Data vs.Historical Data It is the intent of NMPC to use dispersion parameters based on historical meteorological data to set alarm points and to determine or predict dose and dose rates in the environment due to gaseous effluents.

If effluent levels approach limiting values, meteorological conditions concurrent with the time of release may be used to determine gaseous pathway doses.Gaseous Radwaste Treatment System Operation CONTROL 3.11.2.4 requires the Gaseous Radwaste Treatment System to be in operation whenever the main condenser air e)ector system is in operation.

The system may be operated for short periods with the charcoal beds bypassed to facilitate transients.

The components of the system which normally should operate to treat offgas are the Preheater, Recombiner, Condenser, Dryer, Charcoal Adsorbers, HEPA Filter, and Vacuum Pump.(See Appendix D, Offgas System).P~VentilaCion Exhaust Treatment System Operation CONTROL 3.11.2.5 requires the Ventilation Exhaust Treatment System to be OPERABLE when pro)ected doses in 31 days due to iodine and particulate releases would exceed 0.3 mrem to any organ of a member of the public.The appropriate components, which affect iodine or particulate release, to be OPERABLE are: 1)HEPA Filter-Radwaste Decon Area 2)HEPA Filter-Radwaste Equipment Area 3)HEPA Filter-Radwaste General Area 003072LL II 19

Whenever one of these filters is not OPERABLE, iodine and particulate dose projections will be made for 31-day intervals starting with filter inoperability, and continuing as long as the filter remains inoperable, in accordance with Surveillance 4.11.2.5.1.

Predicted release rates will be used, along with the methodology of Section 2.3.4.(See Appendix D, Gaseous Radiation Monitoring.)

3'URANIUM FUEL CYCLE The"Uranium Fuel Cycle" is defined in 40 CFR Part 190.02 (b)as follows: "Uranium fuel cycle means the operations of milling of uranium ore chemical conversion of uranium, isotopic enrichment of uranium/fabrication of uranium fuel, generation of electricity by a light-water-cooled nuclear power plant using uranium fuel, and reprocessing of spent uranium fuel, to the extent that these directly support the production of electrical power for public use utilizing nuclear energy, but excludes mining operations, operations at waste disposal sites, transportation of any radioactive material in support of these operations, and the reuse of recovered non-uranium special nuclear and by-product materials from the cycle." Section 3/4.11.4 of the CONTROLS requires that when the calculated doses associated with the effluent releases exceed twice the applicable quarter or annual limits, the licensee shall evaluate the calendar year doses and, if required, submit a Special Report to the NRC and limit subsequent releases such that the dose commitment to a real individual from all uranium fuel cycle sources is limited to 25 mrem to the total body or any organ (except the thyroid, which is limited to 75 mrem).This report is to demonstrate that radiation exposures to all real individuals from all uranium fuel cycle sources (including all liquid and gaseous effluent pathways and direct radiation) are less than the limits in 40 CFR Part 190.If releases that result in doses exceeding the 40 CFR 190 limits have occurred, then a variance from the NRC to permit such releases will be requested and if possible, action will be taken to reduce subsequent releases.The report to the NRC shall contain: 1)Identification of all uranium fuel cycle facilities or operations within 5 miles of the nuclear power reactor units at the site, that contribute to the annual dose of the maximum exposed member of the public.2)Identification of the maximum exposed member of the public and a determination of the total annual dose to this person from all existing pathways and sources of radioactive effluents and direct radiation.

The total body and organ doses resulting from radioactive material in liquid.effluents from Nine Mile Point Unit 2 will be summed with the doses resulting from the releases of noble gases, radioiodines, and particulates.

The direct dose components will also be determined by either calculation or actual measurement.

Actual measurements will utilize envircnunental TLD dosimetry.

Calculated measurements will utilize engineering calculations to determine a projected direct dose component.

In the event calculations are used, the methodology will be detailed as required in Section 6.9.1.8 of the CONTROLS.The doses from Nine Mile Point Unit 2 will be added to the doses to the maximum exposed individual that are contributed from other uranium fuel cycle operations within 5 miles of the site.003072LL II 20

For the purpose of calculating doses, the results of the Environmental Monitoring Program may be included to provide more refined estimates of doses to a real maximum exposed individual.

Estimated doses, as calculated from station effluents, may be replaced by doses calculated from actual environmental sample results.3.1 Evaluation of Doses From Liquid Effluents For the evaluation of doses to real members of the public from liquid effluents, the fish consumption and shoreline sediment ground dose will be considered.

Since the doses from other aquatic pathways are insignificant, fish consumption and shoreline sediment are the only two pathways that will be considered.

The dose associated with fish consumption may be calculated using effluent data and Regulatory Guide 1.109 methodology or by calculating a dose to man based on actual fish sample analysis data.Because of the nature of the receptor location and the extensive fishing in the area, the critical individual may be a teenager or an adult.The dose associated with shoreline sediment is based on the assumption that the shoreline would be utilized as a recreational area.This dose may be derived from liquid effluent data and Regulatory Guide 1.109 methodology or from actual shoreline sediment sample analysis data.Equations used to evaluate fish and shoreline sediment samples are based on Regulatory Guide 1.109 methodology.

Because of the sample medium type and the half-lives of the radionuclides historically observed, the decay corrected portions of the equations are deleted.This does not reduce the conservatism of the calculated doses but increases the simplicity from an evaluation point of view.Table 3-24 presents the parameters used for calculating doses from liquid effluents.

The dose from fish sample media is calculated as: Where:~yj El (Cif (U)(Dllpj)f)(1E+3)I 1E+3 The total annual dose to organ$, of an individual of age group a, from nuclide i, via fish pathway p, in mrem per yearI ex.if calculating to the adult whole body, then~~~and D~D~The concentration of radionuclide i in fish samples in pCi/gram The consumption rate of fish Grams per kilogram (D~)The ingestion dose factor for age group a, nuclide i, fish pathway p, and organ$,.(Reg.Guide 1.109, Table E-ll)(mrem/pCi).

ex.when calculating to the adult whole body D~~D~The fractional portion of the year over which the dose is applicable The dose from shoreline sediment sample media is calculated as: Z((Cg (U)(4E+4)(0.3)(D~)f)003072LL ZI 21

Where: The total annual dose to organ), of an individual of age group a, from nuclide i, via the sediment pathway p, in mrem per year;ex.if calculating to the adult whole body, then R.=R~and D~~D;~The concentration of radionuclide i in shoreline sediment in pCi/gram U The usage factor, (hr/yr)(Reg.Guide 1.109)4E+4 0.3 The product of the assumed density of shoreline sediment (40 kilogram per square meter to a depth of 2.5 cm)times the number of grams per kilogram The shore width factor for a lake NOTE: The dose factor for age group a, nuclide i, sediment pathway s, and organ j.(Reg.Guide 1.109, Table E-6)(mrem/hr per pCi/m~);ex.when calculating to the adult whole body D~D;z The fractional portion of the year over which the dose is applicable Because of the nature of the receptor location and the extensive fishi,ng in the area, the critical individual may be a teenager or an adult..3'Evaluation of Doses From Gaseous Effluents For the evaluation of doses to real members of the public from gaseous effluents, the pathways contained in section 2 of the calculational methodologies section in the ODCM will be considered and include ground deposition, inhalation, cows milk, goats milk, meat, and food products (vegetation).

However, any updated field data may be utilized that concerns locations of real individuals, real time meteorological data, location of critical receptors, etc.Data from the most recent census and sample location surveys should be utilized.Doses may also be calculated from actual environmental sample media, as available.

Environmental sample media data such as TLD, air sample, milk sample and vegetable (food crop)sample data may be utilized in lieu of effluent calculational data.Doses to members of the public from the pathways considered in the ODCM section 2 as a result of gaseous effluents will be calculated using the methodology of Regulatory Guide 1.109 or the methodology of the ODCM, as applicable.

Doses calculated from environmental sample media will be based on methodologies found in Regulatory Guide 1.109.3.3 Evaluation of Doses From Direct Radiation The dote.contribution as a result of direct radiation shall be considered when evaluating whether the dose limitations of 40 CFR 190 have been exceeded.Direct radiation doses as a result of the reactor, turbine and radwaste buildings and outside radioactive storage tanks (as applicable) may be evaluated by engineering calculations or by evaluating environmental TLD results at critical receptor locations, site boundary or other special interest locations.

For the evaluation of direct radiation doses utilizing environmental TLDs, the critical receptor in question, such as the critical residence, etc., will be compared to the control locations.

The comparison involves the difference in environmental TLD results between the receptor location and the average control location result.003072LL II 22

3.4 Doses to Members of the Public Within the Site Boundary.The Semiannual Radioactive Effluent Release Report shall include an assessment of the radiation doses from radioactive liquid and gaseous effluente to members of the public due to their activities inside the site boundary as defined by Figure 5.1.3-1.A member of the public, would be represented by an individual who visits the sites'nergy Center for the purpose of observing the educational displays or for picnicking and associated activities.

Fishing is a major recreational activity in the area and on the Site as a result of the salmon and" trout populations in Lake Ontario.Fishermen have been observed fishing at the shoreline near the Energy Center from April through December in all weather conditions.

Thus, fishing is the major activity performed by members of the public within the site boundary.Based on the nature of the fishermen and undocumented observations, it is conservatively assumed that the maximum exposed individual spends an average of 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> per week fishing from the shoreline at a location between the Energy Center and the Unit 1 facility.This estimate is considered conservative but not necessarily excessive and accounts for occasions where individuals may fish more on weekends or on a few days in March of the year.The pathways considered for the evaluation include the inhalation pathway with the resultant lung dose, the ground dose pathway with the resultant whole body and skin dose and the direct radiation dose path~ay with the associated total body dose.The direct radiation dose pathway, in actuality, includes several pathways.These include: the direct radiation gamma dose to an individual from an overhead plume, a gamma submersion plume dose, possible direct radiation dose from the facility and a ground plane dose (deposition).

Because the location is in close proximity to the site, any beta plume submersion dose is felt to be insignificant.

Other pathways, such as the ingestion pathway, are not applicable.

In addition, pathways associated with water related recreational activities, other than fishing, are not applicable here.These include swimming, boating and wading which are prohibited at the facility.EMOTE s Where: The inhalation pathway is evaluated by identifying the applicable radionuclides (radioiodine, tritium and particulates) in the effluent for the appropriate time period.The radionuclide concentrations are then multiplied by the appropriate X/Q value, inhalation dose factor, air intake rate, and the fractional portion of the year in question.Thus, the inhalation pathway is evaluated using the following equation adapted from Regulatory Guide 1.109.Table 3-24 presents the reference for the parameters used in the following equation.The following equation is adapted from equations C-3 and C-4 of Regulatory Guide 1.109.Since many of the factors are in units of pCi/m~, m'/sec., etc., and since the radionuclide

~=, decay expressions have been deleted because of the short distance to the receptor location, the equation presented here is not identical to the Regulatory Guide equations.

Dp-~Zi[(C))F (X/{})(DFA)>>(BR)st)

Ci The maximum dose from all nuclides to the organ j and age group (a)in mrem/yr;ex.if calculating to the adult lung, then D~Dq and DFg~DF~The average concentration in the stack or vent release of nuclide i for the period in pCi/m~.003072LL II 23

Unit 2 average stack or vent flowrate in m'/sec.X/Q (DFA)tp The plume dispersion parameter for a location approximately 0.50 miles west of NMP-2 (The plume dispersion parameters are 9.6E-07 (stack)and 2.8E-06 (vent)and were obtained from the C.T.Main five year average annual X/Q tables.The vent X/Q (ground level)is ten times the listed 0.50 mile X/Q because the vent is approximately 0.3 miles from the receptor location.The stack (elevated)

X/Q is conservative when based on 0.50 miles because of the close proximity of the stack and the receptor location.the dose factor for nuclide i, organ j, and age group a in mrem per pCi (Reg.Guide 1.109, Table E-7);ex.if calculating to the adult lung the DFA;=DFA;g (BR),~annual air intake for individuals in age group a in M'er year (obtained from Table E-5 of Regulatory Guide 1.109).fractional portion of the year for which radionuclide i was detected and for which a dose is to be calculated (in years).The ground dose pathway (deposition) will be evaluated by obtaining at least one soil or shoreline sediment sample in the area where fishing occurs.The dose will then be calculated using the sample results, the time period in question, and the methodology based on Regulatory Guide 1.109 as presented in Section 2.1.The resultant dose may be adjusted for a background dose by subtracting the applicable off-site control soil or shoreline sediment sample radionuclide activities.

In the event it is noted that fishing is not performed from the shoreline but is instead performed in the water (i.e., the use of waders), then the ground dose pathway (deposition) will not be evaluated.

The direct radiation gamma dose pathway includes any gamma doses from an overhead plume, submersion in the plume, possible radiation from the facility and ground plane dose (deposition).

This general pathway will be evaluated by average environmental TLD readings.At least two environmental TLDs will be used at one location in the approximate area where fishing occurs.The TLDs will be placed in the field on approximately the beginning of each calendar quarter and removed approximately at the end of each calendar quarter (quarter 2, 3, and 4).The average TLD readings will be adjusted by the average control TLD readings.This is accomplished by subtracting the average quarterly control TLD value from the average fishing location TLD value.The applicable quarterly control TLD values will be used after adjusting for the.appropriate time period (as applicable).

In the event of loss or theft of the TLDs, results from a TLD or TLDs in a nearby area may be utilized.003072LL II 24 4

4.0 ENVIRON ENTAL MONITORING PROGRAM 4.1 Sampling Stations The current sampling locations are specified in Table 5-1 and Figures 5.1-1, 5.1-2.The meteorological tower location is shown on Figure 5.1-1.The location is shown as TLD location f17.The Environmental Monitoring Program is a joint effort between the Niagara Mohawk Power Corporation and the New York Power Authority, the owners and operators of the Nine Mile Point Units 1 and 2 and the James A.FitzPatrick Nuclear Power Plants, respectively.

Sampling locations are chosen on the basis of historical average dispersion or deposition parameters from both units.The environmental sampling location coordinates shown on Table 5-1 are based on the NMP-2 reactor centerline.

4.2 The average dispersion and deposition parameters for the three units have been calculated for a 5 year period, 1978 through 1982.The calculated dispersion or deposition parameters will be compared to the results of the annual land use census.Zf it is determined that a milk sampling location exists at a location that yields a significantly higher (e.g.50%)calculated D/Q rate, the new milk sampling location will be added to the monitoring program within 30 days.If a new location i.s added, the old location that yields the lowest calculated D/Q may be dropped from the program after October 31 of that year.Znterlaboratory Comparison Program Analyses shall be performed on samples containing known quantities of radioactive materials that are supplied as part of a Commission approved or sponsored Znterlaboratory Comparison Program, such as the EPA Crosscheck Program.Participation shall be only for those media/e.g., air, milk, water, etc., that are included in the Nine Mile Point Environmental Monitoring Program and for which cross check samples are available.

An attempt will be made to obtain a QC sample to program sample ratio of 5%or better.The Quality Control sample results shall be reported in the Annual Radiological Environmental Operating Report so that the Commission staff may evaluate the results.Specific sample media for which EPA Cross Check Program samples are available include the following:

gross beta in air particulate filters gamma emitters in air particulate filters gamma emitters in milk gamma emitters in water tritium in water I-131 in water 4.3 Capabilities for Thermoluminescent Dosimeters Used for Environmental Measureaents Required detection capabilities for thermoluminescent dosimeters used for environmental measurements required by the Technical Specifications are based on ANSI Standard N545, section 4.3.TLDs are defined as.phosphors packaged for field use.Zn regard to the detection capabilities for thermoluminescent dosimeters, only one determination is required to evaluate the above capabilities per type of TLD.Furthermore, the above capabilities may be determined by the vendor who supplies the TLDs.Required detection capabilities are as follows.003072LL ZI 25

4.3.1 Uniformity

shall be determined by giving TLDs from the same batch an exposure equal to that resulting from an exposure rate of 10 uR/hr during the field cycle.The responses obtained shall have a relative standard deviation of less than 7.5%.A total of at least 5 TLDs shall be evaluated.

4.3.2 Repzoducibility

shall be determined by giving TLDs repeated exposures equal to that resulting from an exposure rate of 10 uR/hr during the field cycle.The average of the relative standard deviations of the zesponses shall be less than 3.0%.A total of at least 4 TLDs shall be evaluated.

4Dependence of exposure interpretation on the length of a field cycle shall be examined by placing TLDs for a period equal to at least a field cycle and a period equal to half the same field cycle in an azea where the exposure rate is known to be constant.This test shall be conducted under approximate average winter temperatures and appzoximate average summer temperatures.

For these tests, the ratio of the response obtained in the field cycle to twice that obtained for half the field cycle shall not be less than 0.85.At least 6 TLDs shall be evaluated.

4.3.4 Energy dependence shall be evaluated by the response of TLDs to photons for sevezal energies between approximately 30 keV and 3 MeV.The response shall not differ from that obtained with the calibration source by more than 25%for photons with energies greater than 80 keV and shall not be enhanced by more than a factor of two for photons with energies less than 80 keV.A total of at least 8 TLDs shall be evaluated.

4.3.5 The directional dependence of the TLD response shall be determined by comparing the response of the TLD exposed in the routine orientation with respect to the calibration source with the response obtained for different orientations.

To accomplish this, the TLD shall be rotated through at least two perpendicular planes.The response averaged over all directions shall not differ from the response obtained in the standard calibration position by more than 10%.A total of at least 4 TLDs shall be evaluated.

4.3.6 Light dependence shall be determined by placing TLDs in the field for a period equal to the field cycle under the four conditions found in ANSI N545, section 4.3.6.The results obtained for the unwrapped TLDs shall not differ from those obtained for the.TLDs wrapped in aluminum foil by more than 10%.A total of at least 4 TLDs shall be evaluated for each of the four conditions.

4'.7 Moisture dependence shall be determined by placing TLDs (that is, the phosphors packaged foz field use)for a period equal to the field cycle in an azea where the exposure zate is known to be constant.The TLDs shall be exposed under two conditions:

(1)packaged in a thin, sealed plastic bag, and (2)packaged in a thin, sealed plastic bag with sufficient water to yield observable moisture throughout the field cycle.The TLD or phosphor, as appropriate, shall be dried before readout.The response of the TLD exposed in the plastic bag containing water shall not differ from that exposed in the regular plastic bag by more than 10%.A total of at least 4 TLDs shall be evaluated for each condition.

'.3.8 Self irradiation shall be determined by placing TLDs for a period equal to the field cycle in an area where the exposure rate is less than 10 uR/hr and the exposure during the field cycle is known.If necessary, corrections shall be applied for the dependence of exposure interpretation on the length of the field cycle (ANSI N545, section 4.3.3).The average exposure inferred from the responses of the TLDs shall not differ from the known exposure by more than an exposure equal to that resulting from an exposure rate of 10 uR/hr during the field cycle.A total of at least 3 TLDs shall be evaluated.

003072LL II 26

TABLE 2-1 LIQUID EFFLUENT DETECTORS RESPONSES+

NUCLIDE Sr 89 Sr 91 Sr 92 Y 91 Y 92 Zr 95 Nb 95 Mo 99 Tc 99m Te 132 Ba 140 Ce 144 Br 84 I 131 I 132 I 133 I 134 I 135 Cs 134 Cs 136 Cs 137 Cs 138 Mn 54 Mn 56 Fe 59 Co 58 Co 60 CPM Ci 611 X 10 0.78E-04 1.22 0.817 2.47 0.205 0.835 0.85 0.232 0.232 1.12 0.499 0.103 1~12 1~01 2.63 0.967 2'2 1.17 1.97 2.89 0.732 1.45 0.842 1.2 0.863 1.14 1.65 Values from SWEC purchase specification NMP2-P281F.

003072LL II 27

TABLE 2-2~VALUES-LIQUID'DULT g~e~m hr-uCi H 3 Cr 51 3.67E-l 1.26 3.67E-1 3'3E2 1.18E-2 NUCLIDE T BODY GI-TRACT BONE LIVER 3.67E-1 1.18E-2 KIDNEY 3.67E-l 2.86E-1 THYROID LUNG 3.67E-1 3.67E-l 7.56E-1 1.66 Cu 64 Mn 54 Fe 55 Fe 59 1.28 2.33E2 2'3 8.38E2 1.34E4 3.98 4.38E3 4.57E2 2.42E3 9.04E1 3.24E2 7.35E4 6+18E-5 1.07E2 9.28E2 2.62E2 8.06E3 1.81E3 4.93E3 6.62E2 1.03E3 1~07 2.01E2 6.36E2 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Mn 56 Mo 99 Na 24 I 131 I 132 I 133 Ni 65 Cs 134 Cs 136 Cs 137 Ba 140 Ce 141 Nb 95 La 140 Ce 144 Tc 99m Np 239 Te 132.Zr 97 Sr 92 W 187 Ag 110m Cal 1.1 6.47E1 3.32E4 6.38E2 4'3E4 3'7E3 2.31E4 2.22E4 1.36E5 1.60E4 5.55E5 7.59E-l 2.83E2 9.77E-1 7.88E-1 3.07E-2 5.52 1~73E-1 1.60E1 1.95E2 1.97E-3 8~42E1 1.34E2 1.34E2 1.34E2 1.34E2 2.03E2 1.16E2 5.36E1 1.42E2 4.34E-3 1.22E1 1.14E-2 5.79ES 8.42E4 3.42E5 1.37E1 3-79E-2 1.31E2 1.62E-2 3'3E 1 2.05E-2 2.33E-3 3.59E1 6.35E-1 1.24E4 1~33E4 1.01E4 4.30E2 8'1E1 4.64E-3 2.30E1 1.93E-1 2.98E5 2.96E4 3'2E5 2.09E2 6.93E-2 4.38E2 1.03E-1 1.24E-2 3.99E1 2.50E-2 7i08E5 1.17E5 5.22ES 3.04E-1 5.83E-2 2 44E2 5'6E-2 1~48E6 3+72E3 9.66E-1 1.61E-3 6.15E2 2.02 9'4E-01 5.71E-4 2.50E-1 3'2E2 4.94 4.42E-1 1.1883 5.97E4 1.95E3 1.26E3 5.0~3'9E2 5.44E-3 1.10E-3 1.44J~2 6.61 3.34E-l 4.31E1 4.04E4 1.48E2 1.23E2 1.09E1 3~94E2 1.14El 1~13E1 culated in accordance with NUREG 0133, Section 09, Regulatory position C, Section l.6.89 1.31E3 3.98 3.98 7.53E-1 2.55E2 7.53E-1 6.76E2 1.07 1.07 1~07 6.47E1 4.92E4 6.18E-5 6.47El 6.47E1 2.21 2.21 6.18E-S 6.18E-5 8.39E-1 2.20E-1 1.91E2 1.34E2 3.48E2 1.98E-2 6.97E1 6.99E-1 6.99E-1 1.97E-3 1.97E-3 1.34E2 1.34E2 6.65E4 2'7E-2 4.34E-1 5.87E3 2.29E5 6.51E4 l.77E5 l.31E-1 4.60E-2 2.41E2 2.83E-3 6'7E-1 2.45E-2 2.04E1 7.61E4 3.28E-1 8.92E3 3.10El 5.89E4 4.17E-2 1.92E-1 3.53E-2 3.53E-2 3.56E-1 3.56E-1 2.83E-3 2.83E-3 2'6E-1 2.06E-1 7.90E-4 1.22E4 1.66E-3 1.39E3 2.66E-3 7.11E-6 7.11E-6 4.43E-5 1.22El 4.3.1~and 4.43E-5 4.43E-5 1.04E1 1.04E1 Regulatory Guide 8.82E-01 5.95E-4 7'2E2 003072LL 28

TABLE 2-3~VALUES-LI{}UID'EEN

~mr m-ml hr-uCi NUCLIDE H 3 Cr 51 Cu 64 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Mn 56 Mo 99 Na 24 I 131 I 132 I 133 Ni 65 Cs 134 Cs 136 Cs 137 Ba 140 Ce 141 Nb 95 La 140 CQ 144 Tc 99m Np 239 Te 132 Zr 97 Sr 92 2.73E-1 1.35 1.35 8'5E2 1.15E2 9.59E2 2.10E2 9.44E2 3'0E4 6'2E2 1.14ES 3.96 3.22E-2 1~71E1 1.38E2 1.14E2 4.56E-3 1.28E1 1.21E-2 3.33E5 7.87E4 1.90ES 1.44E1 2.00E-1 1.17E2 2.97E-2 1.25 2.11E-2 4.63E-3 1.23B3 5~688M 4.28K-2 2.73E-1 2m16E2 2.23E2 8.84E3 2.13E2 5.85E3 1.23E3 3m73E3 3.08E4 2.88E3 1.30E4 2.10E2 1.19E1 1.60E2 1.38E2 4.21E1 5.54E-3 3.17E1 1.44 9.05E3 9.44E3 7.91E3 3.40E2 6.85E1 1~05E6 3.01E3 4.83E2 1.07 3.78E2 4.13E4 3.11E2 2.02E1 6.56E-2 2.22E1 6.93E2 1.06E3 5.98 3.61E2 2.10E4 2.42E4 4.62ES 4.19 1.10E-2 1.38E2 1.52E2 4.86E-3 2.47E1 2+08E-1 3.05E5 2.98E4 4.09ES 2'1E2 2.33E-1 4.43E2 1 22E-1 3.07 Sm84E-4 2.82E-2 2.06E3 5.84E-3 1~07 T BODY GI-TRACT BONE LIVER 2.73E-1 6.56E-2 2'7 4.32E3 4.91E2 2.48E3 9.47E1 6.20E2 7.28E4 3.45E-4 KIDNEY 2.73E-1 3.47E-l 7.27 1.31E3 4.20 5.98 4.20 5.98 3.61E2'.61E2 3.11E2 7.84E2 5.98 3.61E2 4 66E4 3.45E-4 1.24E1 1.24El 3.45E-4 3.99 4.03 3.90 3.90 1~81E-1 8.95E1 2.29E-l 2-OSE2 1~10E-2 l.10E-2 1~38E2 1.38E2 1.38E2 1.38E2 2.12E2 1.27E-2 4.19E1 2.66E-2 7'8ES 1~17ES 5.44E5 2.60E-1 2.21E-l 2.47E2 6.82E-2 3.66E2 2.00E-2 7.35E1 2.28ES 6.38E4'.85E5 3m25E-1 2.08E-1 2.39E2 1.58E-2 6.19E4 4.29E-1 5.85E3 1.55E-1 1.14E2 8.72E4 1.83 1.73E2 1.01E4 7.21E4 2.33E-1 4.15E-1 1.97E-1 1.97E-1 1.99 1.99 lm58E-2 1.58E-2 1.94 1.62 1.15 1.15 1.63E-3 5'7E-3 1,30E3 1.19E-3 2'3E-2 1.07E-2 1.25E4 1.78E-3 9.04E-4 3.32E-3 3.32E-3 1.37E3 1.48E-2 3.97E-S 3'7E-S THYROID LUNG 2.73E-1 2.73E-1 7.79E-1 1.90 2.22E1 2.22E1 W 187 4~SSE1 3'2E4 1~59E2 Ag 110m 5.85E1 3,17E2 5.89E1'alculated in accordance with NUREG 0133, Regulatory position C, Section l.1.30E2 5.88E1 2.47E-4 5'7E1 Section 4.3.1g and 2.47E-4 5.79E1 Regulatory 5.79E1 Guide 1.109, 003072LL 29

TABLE 2-4 A VALUES-LIQUID CHILD mrem-ml hr-uCi NUCLIDE H 3 Cr 51 Cu 64 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 T BODY GI-TRACT BONE 3.34E-1 3.34E-1 1.39'.29E1 1.37E-2 1.60 1.25E2 9.02E2 2.83E3 4.65 1.50E2 8 99E1 9.15E2 1 04E3 2.18E3 1.29E3 2.21E2 4.20E2 7.03E2 1.25E3 3.56E4 1.01E4 1.25 7.55E1 2.15E4 9.13E2 1.24E3 3.20E4 LIVER 3.34E-1 1.37E-2 2.65 3.37E3 4.85E2 2.09E3 7.30E1 2.88E2 5.73E4 KIDNEY 3 34E-1 2'2E-1 6.41 9.49E2 8.78E-1 1.25 7.55E1 3.61E4 4.65 4'5 2.74E2 8.78E-1 6.08E2 1.25 1.25 7.55E1 7.55E1 2.58 2.58 THYROID LUNG 3.34E-1 3.34E-1 7.76E-1 1~41 Sr 90 1.06E5 5.62E3 4~17E5 Zr 95 Mn 56 Mo 99 Na 24 I 131 I 132 I 133 Ni 65 Cs 134 Cs 136 Cs 137 Ba 140 Ce 141 Nb 95 La 140 Ce 144 Tc 99m Np 239 Te 132 Zr 97 Sr 92 8.95E-1 9.36E1 1.22 3.73E-2 2.22E1 2.39E1 7.42E1 1.51E2 1.51E2 2.30E-3 1.51E2 1.14E2 1.80E1 2.00E2 5.08E-3 1.30E-2 6.01E-3 1.51El 1.60E1 3.22E+1 1.46E-2 1.27E5 6.26E4 7.28E4 3'7 3.28E3 3.40E3 3.12E3 2.66E-1 3.68ES 3.52E4 5.15E5 1.87E1 1.62E2 3.19E2 4.61E-2 4.14E1 1.08E-1 1.45E2 3.75ES 5.21E2 1.93E-2 1.33E3 1.39E-1 4.31E-1 2.92E2 3.81 2.29E-2 7.87E-1 2.40E-3 1.38E3 1.79E2 1.15E4 6.99E 4 1.77E2 7.05E-4 3.44E-2 2.57E3 8.11E-3 1.8SE 2 8.73 4.61E-1 9.04E-1 1.65E-1 8.98E1 1.51E2 2.01E2 1.10E-2 3.98El 2'1E-2 6.04E5 9.67E4 4.93E5 3.28E-1 7.43E-2 2.03E2 5.09E-2 1.36 1 38E-3 3.12E-3 1.14E3 1.18E-3 9.43E-1 2.OOE-1 1.92E2 1.51E2 3.31E2 1.69E-2 6.64E1 1.87E5 5.15E4 1~61ES 1.40E-1 5.57E-2 1.91E2 3.30E-3 8.61E-1 2.01E-2 7.70E-3 1~06E4 1.69E-3 8.15E-1 8.15E-1 2.30E-3 2.30E-3 1.51E2 6.66E4 5.13E-1.7.40E3 1.51E2 3.23E-2 1.66E3 3.10E-3 8.29E-6 8.29E-6 2.38E1 6.72E4 3.82E-1 7.68E3 3.62E1 5.78E4 4.87E-2 2.15E-1 4.12E-2 4.12E-2 4 16E-1 4.16E-1 3.30E-3 3.30E-3 2 40E-1 2 40E-1 7'2E-4 6.94E-4 6.94E-4 W 187 5~37E1 1.68E4 2.02E2 Ag 110m 1.29E1 1.24E2 1.35E1'alculated in accordance with NUREG 0133, Regulatory position C, Section l.1.20E2 1.30E1 5.16E-5 1.39E1 5.16E-S 1.21E1 5.16E-5 1.21E1 Section 4.3.li and Regulatory Guide 1.109, 003072LL II 30

TABLE 2-5~VALUES-LI{}UID'NFANT prem-ml hr<<uCi NUCLIDE H 3 Cr 51 CQ 64 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Mn 56 Mo 99 Na 24 I 131 I 132 I 133 T BODY GI-TRACT BONE 1.87E-1 1.87E-1 8~21E-3 2.39E-1 1.96E-2 8.70E-1 2'3 4.42 1.45 6.91E-1 8.42 1.25E1 1.52E1 5.36 5.36 1.55E1 1.56E1 1.76E1 3.22E1 4.27E1 3.06E1 2.86E3 1.40E2 1.82E1 1.11E1 1.49E3 1.12E4 9e61E-1 9.61E-1 9.61E-l 9'8 7.94E-1 1.89E1 3.43E-6 7.80E-6 4.75E-6 8.26E-1 4.77E-1 1.94 2e12E-2 1.49E1 1.23E-1 1.81E-6 9.56E-4 2.65 4.48 LIVER 1.87E-1 4.24E-2 1~20E1 5'4 3.18E1 F 15 6.55 3.81E1 2.99E-2 1.05E-5 1.36E1 9.61E-l 2.22E1 9.63E-6 2.82 KIDNEY 1.87E-1 1.17E-3 7~17E-2 2.67 1.85E1 3.23E-2 9.05E-6 2'3E1 9'1E-1 2.60E1 1.07E-S 3.31 THYROID LUNG 1.87E-1 1.87E-1 5.36E-3 1.04E-2 2.66 9 41 9.61E-1 9.61E-1 7'1E3 4.52E-4 5.13E2 Ni 65 Cs 134 Cs 136 Cs 137 Ba 140 Ce 141 Nb 95 2.96E-6 4.96E-4 4.30E1 1.16 2'1E1 1.14 2.63El 1.16 4.88 2.33El 3.31E-3 1.45E1 5.87E-3 8.57 5.75E-5 2'8E2 2'6E1 3.17E2 9.48E1 4.61E-2 2.47E-2 La 140 6.52E-4 2.98E1 6.43E-3 Ce 144 1.01E-1 1.03E2 1.80 Tc 99m 3.17E-4 9.37E-3 1~19E-5 Np 239 Te 132 Zr 97 Sr 92 W 187 2.08E-4 4.08 1~385-4 1.56L45 1~06E1 1.62El 1 92E1 4.54E-3 4~13E-2 7~02 4.12E-3 8.83 1.76E-3 4.21E-4 1.72E-l Ag 110m 2~91E-1 2~28E1 6.02E-1'alculated in accordance with NUREG 0133, Regulatory position C, Section l.6.51E-6 4.26E2 7.53E1 3.71E2 9.48E-2 2.81E-2 1.02E-2 2.53E-3 7'7E-1 2.46E-S 3.68E-4 4.37 3.02E-4 1.10E2 3.00E1 9.95E1 2.25E-2 8.67E-3 7.28E-3 2.98E-1 2.64E-4 7.34E-4 2.74E1 3.04E-4 6.46 4.50E1 6.13 4.03E1 5.82E-2 1.28E-S 1.19E-1 4.39E-1 6.28E-1 Section 4.3.1g and Regulatory Guide 1.109, 003072LL 31

TABLE 3-1 OFFGAS PRETREATMENT*

DETECTOR RESPONSE NUCLIDE Kr 85 Kr 85m Kr 87 Kr 88 Xe 133 Xe 133m Xe 135 Xe 135m Xe 137 Xe 138 NET CPM Ci cc 4.30E+3 4.80E+3 8.00E+3 7.60E+3 1.75E+3 5.10E+3 8.10E+3 7.10E+3*Values from SWEC purchase specification NMP2-P281F 003072LL II 32

TABLE 3-2 PLUME SHINE PARAMETERS'UCLIDE Kr 83m Kr 85 Kr 85m Kr 87 Kr 88 Kr 89 Kr 90 Xe 131m Xe 133 Xe 133m Xe 135 Xe 135m Xe 137 Xe 138 Xe-127 Ar 41~Bmaad uCi/sec 9.01E-7 6.92E-7 5.09E-4 2'2E-3 7.23E-3 1.15E-2 6.57E-3 7.76E-6 7.46E-5 4.79E-S 7.82E-4 1.45E-3 6.25E-4 4'6E-3 1.96E-3 5'OE-3 V.mrem r uCi/sec 4~91E-4 2.57E-3 7.04E-3 1.13E-2 4.49E-3 6.42E-5 3.95E-5 7.44E-4 1.37E-3 5.98E-4 4.26E-3 1.31E-3 4.79E-3', and V, are calculated for critical site boundary locationg 1.6km in the easterly direction.

See Appendix B.Those values that show a dotted line were negligible because of high energy absorption coefficients.

003072LL II 33

TABLE 3-3 IMMERSION DOSE FACTORS'cl de Kr 83m Kr 85m Kr 85 Kr 87 Kr 88 Kr 89 Kr 90 Xe 131m Xe 133m Xe 133 Xe 135m Xe 135 Xe 137 Xe 138 Ar 41 g Jy-B~od 7.56E-02 l.17E3 1.61E1 5 92E3 l.47E4 l.66E4 1 56E4 9.15E1 2.51E2 2.94E2 3 12E3 1.81E3 1.42E3 8.83E3 8.84E3 Lakin 1.46E3 1.34E3 9.73E3 2.37E3 1.01E4 7.29E3 4.76E2 9.94E2 3.06E2 7.11E2 1.86E3 1.22E4 4.13E3 2.69E3 1.93E1 1.23E3 1.72E1 6.17E3 1.52E4 1.73E4 1.63E4 l.56E2 3.27E2 3.53E2 3.36E3 1.92E3 1.51E3 9.21E3 9.30E3 gQl-Ai~r'.88E2 1.97E3 1.95E3 1.03E4 2.93E3 1.06E4 7.83E3 1.11E3 1.48E3 1.05E3 7.39E2 2.46E3 1.27E4 4.75E3 3.28E3'From, Table B-l.Regulatory Guide 1.109 Rev.1'mrem/yr per uCi/m'.'mrad/yr per uCi/m'.003072LL II 34

TABLE 3-4 DOSE AND DOSE RATE VALUES-INHALATION

-INFANT'rem r Uci/m H 3+C 14+Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I-131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 2.65E4 1.97E4 1.36E4 1.93E4 3.98ES 4.09E7 1.15ES 1.57E4 3.79E4 1~32E4 3.96ES 5.49E5 5.60E4 5.05E2 2.77E4 3.19E6 7.94E3~UCL DE~BO LII~L, 6.47E2 5.31E3 2.53E4 1.17E4 2.35E4 1.22E3 8.02E3 6.26E4 2.79E4 6.43E3 1.65E2 4.44E4 1.92E4 7.03ES 6.12ES 5.60E1 2.00E2 1.67E4 1.21E6 8 13E3 BODY 6.47E2 5.31E3 8.95E1 4.98E3 3.33E3 9.48E3 1.82E3 1.18E4 3.11E4 1.14E4 2.59E6 2.03E4 3.78E3 3'3E1 1.96E4 5.60E3 7.45E4 4.55E4 2.90E3 5.15E1 1.99E3 1~76ES S.OOE2 THYROID 6.47E2 5.31E3 5.75E1 1.48E7 3.56E6 ID EY 6.47E2 5.31E3 1~32E1 4'8E3 3.25E4 3.11E4 4.72E3 2.65E2 5.18E4 2'4E4 1.90ES 1.72ES 1.34E1 5.25E3 5.38E5 3.15E3 LUNG 6.47E2 5.31E3 GI-LLI 6.47E2 5.31E3 1.28E4 3.57E2 1.00E6 7.06E3 8.69E4 1.09E3 1.02E6 2.48E4 7.77E5 1.11E4 6.47ES 5.14E4 2.03E6 6.40E4 1.12E7 1.31ES 1.75E6 2.17E4 4.79E5 1.35ES 7.97E4 7.13E4 1.27E4 4.87E4 1.06E3 2.16E3 1.33E3 1.33E3 1.60E6 3.84E4 1.68ES 5.17ES 9.84E6 3.22ES 8.48E4 2.16E4 1.48ES 3.12E4 4.51E6 3.19E4*mrem/yr per pCi/m~'This and following Q Tables Calculated in accordance with NUREG 0133, Section 5.3.1, except C 14 values in accordance with Regulatory Guide 1.109 Equation C-B.003072LL II 35

TABLE 3-5 DOSE AND DOSE RATE g VALUES-INHALATZON-mrem r uCi/m CHILD CLIDE H 3*C 14*Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 LR 140 Ce 141 Ce 144 Nd 147 BONE 3.59E4 4.74E4 2.07E4 4.26E4 5.99E5 1.01E8 1.90ES 2.35E4 4.81E4 1.66E4 6.51ES 9.07ES 7.40E4 6.44E2 3.92E4 6.77E6 1.08E4 LIVER 1.12E3 6.73E3 4.29E4 2.52E4 3.34E4 1.77E3 1.31E4 1.13ES 4.18E4 9.18E3 1.72E2 4'1E4 2.03E4 1.01E6 8.25E5 6.48E1 2.25E2 1.95E4 2.12E6 8.73E3 T.BODY 1.12E3 6.73E3 1.54E2 9.51E3 7 77E3 1.67E4 3.16E3 2.26E4 7.03E4 1.72E4 6.44E6 3.70E4 6'5E3 4'6E1 2.73E4 7.70E3 2.25E5 1.28E5 4.33E3 7.55E1 2.90E3 3.61ES 6.81E2 1.12E3 6.73E3 8.55E1 1.12E3 6.73E3 2.43E1 1.00E4 7.14E4 1.62E7 3.85E6 5.96E4 8.62E3 3.92E2 7.88E4 3.38E4 3.30ES 2.82ES 2.11E1 8.55E3 1.17E6 4.81E3 THYROID KIDNEY LUNG 1.12E3 6.73E3 1.70E4 GI-LLI 1.12E3 6.73E3 1.08E3 1.58E6 2.29E4 1.11ES 2.87E3 1.27E6 7.07E4 1.11E6 3.44E4 7.07E6 9.62E4 9.95E5 1.63E4 1~48E7 3.43ES 2.23E6 6.11E4 6.14ES 3.70E4 1.35ES 1.21ES 1.04ES 1.27ES 2.84E3 5.48E3 3.85E3 3.62E3 1.74E6 1.02ES 1.83E5 5.44E5 1.20E7 3.28E5 2.26ES 5.66E4 3.89ES 8~21E4 2.16E6 , lo67ES mrem/yr per pci/m'03072LL ZZ 36

TABLE 3-6 DOSE AND DOSE RATE g VALUES-INHALATION-mrem uci/m TEEN C 14*Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 2.60E4 3.34E4 1.59E4 3'6E4 4.34ES 1.08E8 1.46ES 1.86E4 3.54E4 1.22E4 5.02E5 6.70E5 5.47E4 4.79E2 2.84E4 4.89E6 7-86E3 QUCI~IE~O H 3*IVER 1.27E3 4.87E3 5.11E4 2.38E4 3.70E4 2.07E3 1.51E4 1.34ES 4.58E4 1.03E4 1.69E2 4 91E4 2.05E4 1.13E6 8.48E5 6.70E1 2.36E2 1.90E4 2'2E6 8.56E3 1.27E3 4.87E3 1.35E2 8.40E3 5.54E3 1.43E4 2.78E3 1.98E4 6.24E4 1.25E4 6.68E6 3.15E4 5.66E3 3.22E1 2.64E4 6.22E3 5.49ES 3.11E5 3.52E3 6.26E1 2.17E3 2.62E5 5.13E2 1.27E3 4.87E3 7.50E1 1.46E7 2.92E6 1.27E3 4.87E3 3.07E1 1.27E4 8.64E4 6.74E4 1.00E4 4~11E2 8.40E4 3.59E4 3.75ES 3.04ES 2.28E1 8.88E3 1.21E6 5.02E3 T.BODY~TROID KIDNEY LUNG 1.27E3 4.87E3 GI-LLI 1.27E3 4.87E3 2.10E4 3.00E3 1 98E6 6.68E4 1.24ES 1.53E6 1.34E6 6.39E3 1.78ES 9.52E4 8.72E6 2.59ES 1.24E6 4.66E4 2.42E6 3.71ES 1.65E7 7.65E5 2 14ES 6.14ES 1.34E7 3 72E5 4.87ES 1.26ES 8.64E5 1.82ES 2.69E6 1.49ES 7.51E5 9.68E4 1.54E5 2.69ES 6.49E3 1.03E4 1.46E5 9.76E3 1.21ES 8.48E3 2.03E6 2.29ES*mrem/yr per pci/m'03072LL II 37

TABLE 3-7 DOSE AND DOSE RATE R)VALUES-INHALATION mrem r uci/m ADULT Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 2.46E4 3.96E4 1.70E4 1.18E4 2.78E4 1.58E3 1.15E4 1.03ES 3.24E4 3.04ES 9.92E7 1.07ES 1.41E4 3.44E4 7.82E3 1.21E2 2.52E4 3.58E4 I 133 Cs 134 Cs 137 Ba=140 La 140 Ce 141 Ce 144 Nd 147 8.64E3 3.73ES 4.78ES 3.90E4 3'4E2 1 99E4 3.43E6 5.27E3 1.48E4 8.48ES 6.21ES 4.90E1 1.74E2 1.35E4 1.43E6 6.10E3 NUCLIDE BOY LIVER H 3*1.26E3 C 14*1.82E4 3.41E3 T.BODY 1.26E3 3.41E3 1.00E2 6.30E3 3.94E3 1.06E4 2.07E3 1.48E4 4.66E4 8.72E3 6.10E6 2.33E4 4'1E3 2.30E1 2.05E4 4.52E3 7.28ES 4.28ES 2.57E3 4.58E1 l.53E3 1.84E5 3.65E2 1.26E3 3.41E3 5.95E1 l.26E3 3.41E3 2.28E1 9-84E3 6.90E4 1.19E7 2.15E6 5.42E4 7.74E3 2-91E2 6.13E4 2.58E4 2.87ES 2.22E5 1~67E1 6.26E3 8.48ES 3.56E3 THYROID KIDNEY LUNG 1~26E3 GI-LLI 1~26E3 3.41E3 3.41E3 1.44E4 1~40E6 7.21E4 1.02E6 9.28ES 3-32E3 7.74E4 6.03E3 1.88ES 1.06ES 5.97E6 2.85E5 8.64ES 1.40E6 9.60E6 1.77E6 5.05ES 9.12E4 9.76E4 5.34E4 3.50E5 7.22E5 1.50ES 1.04ES 2.48ES 6'8E3 8.88E3 1.04E4 1.36E5 3.62E5 7.78E6 2.21ES 4.58ES 1.20ES 8.16E5 1.73E5 7.52E4 8.40E3 1~27E6 2.18E5*mrem/yr per pci/m'03072LL II 38

NUCLIDE H 3 C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 TABLE 3-8 DOSE AND DOSE RATE R;VALUES-GROUND PLANE ALL AGE GROUPS m'~mrem r uci/sec TOTAL'ODY 4.65E6 1.40E9 2.73E8 3.80EB 2.15E10 7.46EB 2.16E4 2.45EB 1.36EB 3.99E6 1.72E7 2.39E6 6.83E9 1.03E10 2'5E7 1.92E7 1.37E7 6.96E7 8.46E6~SKI 5.50E6 1.64E9 3.20E8 4.45EB 2.53E10 8.57E8 2.51E4 2.85EB 1.61EB 4.63E6 2.09E7 2.91E6 7.97E9 1.20E10 2.35E7 2.18E7 1.54E7 8.07E7 1.01E7 003072LL II 39

TABLE 3-9 DOSE AND DOSE RATE R;VALUES-COW MILK-INFANT m'~mr em r uCJ./sec NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI C 14 Cr 51 3.23E6 6.89ES Mn 54 2.51E7 Fe 55 8.43E7 5.44E7 Fe 59 Co 58 Co 60 Zn 65 Sr 89 1~22EB 2.13EB 3.53E9 6.93E9 1.39E7 5.90E7 1.21E10 Sr 90 8.19E10 9.39E2 1.64ES 1.04EB 8'2EB 1.24E7 3.85E3 4.21ES Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 Nd 147 6.81EB 8.52E6 2.41E10 4.49E10 3.47E10 4.06E10 1.21EB 1.21ES 7.99 1.39E4 6.10ES 4.55E2 La 140 2.03E1 Ce 141 2.28E4 Ce 144 1.49E6 4.43E2 H 3 2.38E3 2.38E3 6.89E5 8.35E4 5.68E6 1.45E7 8.38E7 3.46E7 1.39EB S.SBE9 1.99EB 2.09E10 6.66E2 1~17ES 2.03E7 3.53EB 3.63E6 4.54E9 2.88E9 6.22E6 2.06 1.64E3 8.34E4 2.79E1 2.38E3 6.89ES 5.45E4 2.64E11 2'6E9 2.38E3 6.89ES 1.19E4 5.56E6 2.38E3 2.38E3 6.89E5 6.89E5 1.06ES 2.43E6 9e21E6 6.91E6 1.02EB 3.46E7 1.40EB 1.02E10 1.42EB 1.02E9 4.68ES 3.03EB 3.43E7 2.86E7 2.10E6 1.22EB 1.27EB 2.97E7 9.39E4 7.18E6 8.54E7 2.89ES 2.66E7 6.29E7 5.87E9 1.01E3 1.54ES 1.55EB 9.37EB 1.46E7 2.87E4 7.42E4 4.28E3 2.46ES 1.76E2 1.16E10 4.74E9 1.09E10 4.41E9 mrem/yr per uci/mi.003072LL II 40

Rr TABLE 3-10 DOSE AND DOSE RATE VALUES-CON MILK-CHILD m~mr em uCi/sec NUCLIDE~BON H 3 C 14 1.65E6~LIVE 1.57E3 3.29ES Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Br 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 6.97E7 6.52E7 2.63E9 3.64E9 7.53E10 2.17E3 1.86E5 3.26ES 4.04E6 1.50E10 1.35E7 3.07E7 1.06EB 6.94E6 2.89E7 7.00E9 4.77E2'.03E4 4.07E7 3.28ES 4.99E6 2.45E10 5.87E7 9.70 1.15E4 5.14E4 3.39 5.73E3 1.04E6 3.26ES 2.24E2 1.81E2 2.17E10 2.08E10 T.BODY 1.57E3 3.29E5 5.27E4 3.59E6 1.15E7 5.26E7 2.13E7 8.52E7 4.35E9 1.04EB 1.91E10 4.25E2 5.69E4 1.01E7 1.86EB 1.89E6 5.18E9 3.07E9 3.43E6 1.14 8.51E2 S.SSE4 1.40E1 THYROID 1.57E3 3.29ES 2.93E4 1.08E11 9'7ES KIDNEY 1.57E3 3.29E5 7.99E3 3.78E6 4.41E9 6.83E2 1.00ES 8.69E7 5.39ES 8.32E6 7.61E9 6.78E9 1.67E4 2.51E3 1.80ES 9.94E1 LUNG 1.57E3 3.29ES GI-LLI 1.57E3 3.29ES 2.09E7 3.06E7 2.73E9 2.44E9 3'7E4'.13E7 6.85E6 1.10EB 4.05E7 1.60EB 1.23E9 1.41EB 1.01E9 4.98ES 4.42ES 3.37E7 2.92E7 2.01E6 1.32EB 1.30EB 2.97E7 9.45E4 7.15E6 8.49E7 2.87ES 5.34E4 2.80E6 mrem/yr per uCi/rrP.003072LL II 41

C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 6.70ES 2.78E7 2~81E7 1.34E9 1.47E9 4.45E10 9.34E2 1.86ES 1.34E8 1.66E6 6.49E9 9.02E9 2.43E7 F 05 4.67E3 4.22ES 9.12E1 NUCLIDE~BON H 3~LIVE 9.94E2 1.34ES 9.01E6 1.97E7 6.57E7 4.55E6 1.86E7 4.65E9 2.95E2 1.03E5 2.24E7 1.88E8 2.82E6 1.53E10 1.20E10 , 2.98E4 1.99 3.12E3 1.74ES 9.91E1 9.94E2 1.34E5 2'8E4 1.,79E6 4.59E6 2'4E7 1.05E7 4.19E7 2.17E9 4.21E7 1.10E10 2'3E2 5.69E4 4.27E6 1.01E8 8'9E5 7.08E9 4.18E9 1.57E6 5.30E-1 3.58E2 2.27E4 5.94EO 9.94E2 1.34ES 1.44E4 5.49E10 3.93E8 9.94E2 1.34ES 5.66E3 2.69E6 2.97E9 4.33E2 1.00E5 5.12E7 3'4E8 4.94E6 4.85E9 4.08E9 1.01E4 1.47E3 1.04E5 5.82E1 TABLE 3-11 DOSE AND DOSE RATE R(VALUES-COW MILK-TEEN m'mremlrr uCi/sec T.BODY THYROID KIDNEY LUNG 9.94E2 1.35E5 3'9E4 GI-LLI 9.94E2 1.34E5 4.34E6 1.85E7 2.07E7 1.85E9 1.59E9 2.00E4 1~SSEB 6.27E7 2'2E8 1.97E9 1.75EB 1~25E9 6 80ES 4.42E8 4.01E7 3.72E7 2~13E6 1.90EB 1~71E8 3.75E7 1.14ES 8.91E6 1.06E8 3.58ES 1.25E7 8.52E6 mrem/yr per uci/mi.003072LL II 42

TABLE 3-12 DOSE AND DOSE RATE R;VALUES-COW MILK-ADULT m~~mrem C uC1/sec EDCLIDE H 3 C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 3.63E5 1.57E7 1.61E7 8.71E8 7.99E8 3.15E10 5.34E2 1.09ES 7.41E7 9.09E5 3.74E9 4.97E9 1.35E7 2.26 2.54E3 2.29ES 4.74El IVER 7.63E2 7.26E4 5.41E6 1.08E7 3.79E7 2.70E6 1.10E7 2.77E9 1~71E2 6.07E4 1.24E7 1.06EB 1.58E6 8.89E9 6.80E9 1.69E4 l.14 1.72E3 9.58E4 5.48E1 7.63E2 7.26E4 1.48E4 1.03E6 2.52E6 1.45E7 6.05E6 2.42E7 1.25E9 2.29E7 7.74E9 1.16E2 3.27E4 2.36E6 6.08E7 4.82ES 7.27E9 4.46E9 8-83E5 3.01E-1 1.95E2 1.23E4 3.28EO 7.63E2 7.26E4 8.85E3 3.47E10 2.32EB T.BODY THYROID IDNE 7.63E2 7.26E4 3.26E3 1.61E6 1E85E9 2.69E2 6.00E4 2.81E7 1.82E8 2.76E6 2.88E9 2.31E9 5'5E3 7.99E2 5.68E4 3.20E1 LUNG 7.63E2 7.26E4 1.96E4 GI-LLI 7.63E2 7.26E4 3.72E6 l.66E7 6 04E6 6 21E6 1.06E7 9.55EB 1~26E8 5.47E7 2.06EB 1.75E9 1.28EB 9-11E8 5'3ES 3.69E8 2.87E7 2.80E7 1.42E6 1.56E8 7 68E8 1 32EB 9.69E3 2.77E7 8.35E4 6.58E6 7.74E7 2.63E5 mrem/yr per uci/m'.003072LL II 43

TABLE 3-13 DOSE AND DOSE RATE VALUES-GOAT MILK-INFANT m~mrem uci/sec Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 4.24E8 1.48E10 1.72E11 4.66E2 9.42E4 8.17EB 1.02E7 7.23E10 1.04E11 1.45E7 2.430 2.74E3 1.79ES 5.32E1 NUCLIDE BONE H 3 C 14 3.23E6 Cr 51 Mn 54 Fe 55 1.10E6 Fe 59 1.59E6 Co 58 Co 60 LIVER 6.33E3 6.89ES 3.01E6 7.08ES 2.78E6 1.67E6 7.08E6 1.45E9 1.13E2 3.88E4 1.27E7 9.63E8 1.49E7 1.35E11 1.22Ell 1.45E4 9.59E-1 1.67E3 7.32E4 5.47E1 T.BODY 6.33E3 6.89ES 1.00E4 6.82ES 1.89E5 1.09E6 4.16E6 1.67E7 6.70E8 4.24EB 4.38E10 8.04E1 2.24E4 2.47E6 4.23E8 4.36E6 1.36E10 8.63E9 7.48ES 2.47E-l 1.96E2 1.00E4 3'5EO THYROID KIDNEY 6.33E3 6.89ES 6.56E3 6.33E3 6.89ES l.43E3 6.67ES LUNG 6.33E3 6.89ES 1.28E4 GI-LLI 6.33E3 6.89E5 2.93E5 1~llE6 3.46ES 8.98E4 3.16Ell 2.71E9 7.04EB 1.22E2 2.78E4 1.89E7 1~12E9 1.75E7 8.21ES 1.33E6 4.16E6 1.68E7 1.23E9 3.04E8 2.15E9 5.65E4 3'7E7 4.17E6 3.44E7 2.52E6 3.27E10 3.44E3 5.14E2 2'6E4 2'1E1 1.32E10 3.81E8 8.91E3 3.56E6 1.13E4 8.62ES 1.03E7 3.46E4 3;47E10 1.42E10 3.66EB mrem/yr per uCi/m'.003072LL II 44

Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 3.15EB 7.77E9 1.58E11 2.62E2 5.05E4 3.91EB 4.84E6 4.49E10 LIVER 4.17E3 3.29ES 1.62E6 4.81ES 1.38E6 8.35E5 3.47E6 8.40EB 5.76E1 1.96E4 4.95E6 3.94EB 5.99E6 7.37E10Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 6.52E10 6.24E10 7.05E6 1.16 1.38E3 1.25E5 2.68E1 6.18E3 4.07E-1 6.88E2 3'1E4 2.17E1 r NUCLIDE BONE H 3'14 1~65E6 Cr 51 Mn 54'e 55 9.06ES Fe 59 8.52ES Co 58 T.BODY 4.17E3 3.29E5 6'4E3 4.31ES 1~49ES 6.86E5 2.56E6 1.02E7 5.23EB 2.22EB 4.01E10 5.13E1 1.40E4 1.22E6 2.24EB 2.27E6 1~55E10 9.21E9 4.12ES 1.37E-1 1.02E2 6.66E3 1.68EO THYROID 4.17E3 3.29E5 3.52E3 1.30E11 1.11E9 KIDNEY 4.17E3 3.29E5 9.62E2 4.54ES LUNG 4.17E3 GI-LLI 4.17E3 3.29ES 3.29ES 6.43E3 3.36E5 1.36E6 2.72ES 8.91E4 5.29EB 3.99ES 1.43E6 4.87E6 1.92E7 1.48EB 3.01EB 2.13E9 8.25E1 1.85E4 1~06E7 6.46EB 9.98E6 2'8E10 8.19E9 7.32E9 3.68E3 2.03E10 2.01E3 3.02E2 2.16E4.1~19E1 6.01E4 3.63E7 4.09E6 3.50E7 2.41E6 3.97EB 3.91EB 3.57E6 1.13E4 8.59E5 1.02E7 3.44E4 TABLE 3-14 DOSE AND DOSE RATE VALUES-GOAT MILK-CHILD m'-mre~/rr uCi/sec mrem/yr per uci/m'.003072LL II 45

TABLE 3-15 DOSE AND DOSE RATE RI VALUES-GOAT MILK m'-mrem/rrr uCi/sec TEEN NUCLIDE H 3 C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 BONE 6.70E5 LIVER 2.64E3 1'.34E5 3.61ES 3.67E5 1.61E8 3.14E9 9.36E10 1.13E2 2.23E4 1.61E8 1.99E6 1.08E6 2.56E5 8.57E5 5.46E5 2.23E6 5.58E8 3.56E1 1.24E4 2.72E6 2'6E8 3.38E6 2.92E6 4.86E-1 5.60E2 5.06E4 1.09E1 3.58E3 2.39E-1 3.74E2 2.09E4 1.19E1 1.95E10 4.58E10 2.71E10 3.60E10 T.BODY 2.64E3 1.34E5 3.11E3 2~15ES 5.97E4 3'1E5 1.26E6 5.03E6 2.60EB 8.99E7 2.31E10 2'5E1 6.82E3 5.19ES 1.21E8 1.03E6 2.13E10 1.25E10 1.88ES 6.36E-2 4.30E1 2.72E3 7.13E-1 T YROID 2.64E3 1.34ES 1.73E3 F KIDNEY 2.64E3 1.34ES 6.82E2 3.23ES 3.57E8 4.72E8 5.93E6 1.46E10 1.23E10 1.21E3 1.76E2 1.25E4 6.99EO 5.23E1 1.20E4 6.23E6 6.59E10'.89E8 LUNG GI-LLI 1.35ES 4.44E3 1.62ES 2'0ES 5.56E9 4.76E9 2.41E3 1.34ES 5.23E5 2.22E6 1.11E5 2.03E6 7.53E6 2.91E7 2.36EB 3.74E8 2.63E9 8.22E4 5.30E7 4.87E6 4.47E7 2.56E6 5.70EB 5.12E8 4.50E6 1.37E4 1~07E6 1.27E7 4.29E4 2.64E3 2.64E3 mrem/yr per uci/m'.003072LL II 46

TABLE 3-16 DOSE AND DOSE RATE RI VALUES-GOAT MILK-ADULT m'-mrem/rr uci/sec Fe 59 Co 58 Co 60 Zn 65 2.10E5 4.95E5 1.05EB 3.25E5 1.32E6 3.33EB Sr 89 1.70E9 Sr 90 6.62E10 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 6.45El 1.31E4 8.89E7 1.09E6 2.07E1 7.29E3 1.51E6 1.27EB 1.90E6 1~12E10 2'7E10 1.49E10 2.04E10 1.62E6 2.71E-l 3.06E2 2.75E4 5.69EO 2.03E3 l.36E-1 2.07E2 1.15E4 6.57EO NUCLIDE~BON LIVER H 3 2.03E3 C 14 3.63ES 7.26E4 Cr 51 Mn 54 6.50ES Fe 55 2.04E5 1.41E5 T.BODY 2.03E3 7.26E4 1~78E3 1.24E5 3.28E4 1.90ES 7.27ES 2.91E6 1.51EB 4.89E7 1.63E10 1.40E1 3.92E3 2.87ES 7.29E7 5.79ES 2.18E10 1.34E10 1.06ES 3.61E-2 2~34E1 1.48E3 3.93E-1 THYROID 2.03E3 7.26E4 1.06E3 KIDNEY 2.03E3.7.26E4 3.92E2 1.93ES 2.23EB 2'9EB 3.31E6 8.63E9 6.93E9 6.91E2 9.60E1 6.82E3 3.84EO 3.25E1 7.21E3 3.41E6 4.17E10 2.18ES LUNG 2.'03E3 7.26E4 2'6E3 GI-LLI 2.03E3 7.26E4 4.48ES 1.99E6 7.85E4 8.07E4 1.38ES 1.65E6 6.58E6 2.48E7 2.10EB 2.73ES 1.91E9 6.56E4 4.42E7 3.49E6 3.36E7 1.71E6 l.16E3 3.33E6 1.00E4 7.90ES 9.30E6 3.15E4 2.86E9 4.67EB 2.30E9 3.95EB mrem/yr per uci/m'.003072LL II 47

TABLE 3-17 DOSE AND DOSE RATE R)VALUES COW MEAT CHILD m'~Nrem r uCi/sec C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 5.29E5 2.89EB 2.04EB 2.38EB 2.65E8 7.01E9 1~51E6 4.10E6 4.15E6 9.38E-2 6.09E8 8.99E8 2.20E7 2.80E-2 1~17E4 1.48E6 5.93E3 NUCLIDE EBON H 3 LIVER 2.34E2 1.06ES 5.15E6 1.53E8 3.30EB 9.41E6 4.64E7 6.35EB 3.32ES 1.59E6 5.42E4 4.18E6 1~16E-1 1 OOE9 8.60E8 1.93E4 9.78E-3 5.82E3 4.65E5 4.80E3 T.BODY 2.34E2 1.06E5 4.55E3 1.37E6 4.74E7 1.65EB 2.88E7 1.37EB 3.95EB 7.57E6 1.78E9 2.95E5 l.14E6 1.34E4 2.37E6 4.39E-2 2.11E8 1.27EB 1.28E6 3.30E-3 8.64E2 7'1E4 3.72E2 2.34E2 1.06ES 2.52E3 2.34E2 1-06E5 6.90E2 1.44E6 4'OEB 1.38E9 2.15E1 4.75E5 1.50E6 1.16ES 6.86E6 1.93E-1 3.10E8 2.80E8 6.27E3 2.55E3 2.57ES 2.64E3 THYROID KIDNEY LUNG GI-LLI 2.34E2 2.34E2 1.06ES 1.06E5 9.58E7 3.44E8 5.49E7 2.57E8 1.12EB 1.03E7 9.,44E7 3.46EB 2.95E9 4.48E4 3.72ES 4.67E-2 1.11E8 5.39E6 1.01EB 5.39E6 1.15E4 1.11E7 2.73E2 7'6E6 1.21EB 7~61E6 4.61E3.2.41ES 4.32E6 8.66E7 2.84E7 mrem/yr per uci/m3.003072LL II 48

gUCL~D~BO H 3 C 14 2.81ES Cr 51 Mn 54 Fe 55 1.50EB Fe 59 Co 58 1.15EB Co 60 Zn 65 1.59EB Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs-134 Cs 137 Ba 140 1.40EB 5.42E9 8.50ES 2.37E6 2.24E6 5.05E-2 3.46EB 4.88EB 1.19E7 Nd 147 3.16E3 La 140 1.53E-2 Ce 141 6.19E3 Ce 144 7.87ES LIVER 1.94E2 5.62E4 4.50E6 1.07EB 2.69EB 8.05E6 3'0E7 5.52EB 2.68E5 1.32E6 3.90E4 3.13E6 8.57E-2 8.13EB 6.49EB 1.46E4 7.51E-3 4.14E3 3.26E5 3.44E3 T.BODY 1.94E2 5.62E4 2.93E3 8.93ES 2.49E7 1.04EB 1.86E7 8.80E7 2.57EB 4.01E6 1.34E9 1.84E5 7.24ES 7.43E3 1.68E6 2.61E-2 3.77EB 2.26EB 7.68ES 2.00E-3 4.75E2 4'3E4 2-06E2 T YROID 1.94E2 5.62E4 1~62E3 9.15EB 1.20E1 IDNEY 1.94E2 5'2E4 6.39E2 1.34E6 3.53EB 3.94E5 1.28E6 8.92E4 5.40E6 1.50E-1 2.58EB 2~21EB 4.95E3 1.95E3 1~94E5 2.02E3 TABLE 3-18 DOSE AND DOSE RATE R;VALUES-COW MEAT-TEEN m'~me em uCi/sec~LU G G-LLI 1.94E2 5.62E4 1.94E2 5.62E4 4.16E3 4.90ES 6.77E7 8.47E7 9.87E7 9.24E6 4.62E7 6.36EB 1.11EB 5.09EB 2.34EB 1.67E7 1.52EB 6.19EB 5.63E9 6.98E4 6.20ES 6.48E-2 1.01E7 9.81E3 1.84E7 4'1E2 1.18E7 1.98EB 1.24E7 8.58E7 9.24E6 mrem/yr per uci/m'.003072LL II 49

TABLE 3-19 DOSE AND DOSE RATE Ri VALUES-COW MEAT-ADULT m'-modem/rr uCi/sec C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 3.33E5 1.85E8 1.44E8 2.26E8 1.66E8 8.38E9 1.06E6 3.04E6 2.69E6 6.04E-2 4.35ES 5.88ES 1.44E7 1.86E-2 7.38E3 9.33ES 3.59E3 NUCLIDE BONE H 3 LIVER 3.25E2 6.66E4 5.90E6 1.28ES 3.39ES 1.04E7 5'3E7 7.19E8 3.40ES 1~69E6 4.71E4 3.85E6 1.05E-1 1.03E9 8.04ES 1.81E4 9.37E-3 4.99E3 3.90ES 4.15E3 T.BODY 3.25E2 6.66E4 3.65E3 1.13E6 2.98E7 1.30ES 2.34E7 1.11E8 3.25E8 4.76E6 2.06E9 2.30ES 9.08E5 8.97E3 2.21E6 3.20E-2 8.45ES 5.26E8 9.44ES 2.48E-3 5.66E2 5.01E4 2.48E2 THYROID 3.25E2 6.66E4 2.18E3 1.26E9 1.54E1 KIDNEY 3.25E2 6.66E4 8.03E2 1.76E6 4.81E8 5.34ES 1.67E6 1.07ES 6.61E6 1.83E-1 3.35ES 2'3E8 6.15E3 2.32E3 2.31ES 2.42E3 LUNG 3.25E2 6.66E4 4.84E3 7.14E7 9.46E7 1.11ES 9.07E7 GI-LLI 3.25E2 6.66E4 9.17E5 1.81E7 7.34E7 1.13E9 2~12E8 9.45E8 4.53E8 2.66E7 2.42ES 1-OSE9 1'3E10 1.09E5 1.02E6 9.44E-2 1~81E7 1.56E7 1 04E4 2 97E7 6.88E2 1'1E7 3.16E8 1.99E7 mrem/yr per uci/m'.003072LL II 50

R;TABLE 3-20 DOSE AND DOSE RATE VALUES-VEGETATION m'~masm r uci/sec CHILD NUCLIDE BONE H 3 C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 3.50E6 7.63E8 3.97EB 8'2E8 3.59E10 1~24E12 LIVER 4.01E3 7.01ES 6.65E8 4.05E8 6.42EB 6.45E7 3.78EB 2~16E9 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 3.86E6 , 8.50ES 1.02E6 7.16E7 1~69E6 3.99ES 7.70E6 7.20E7 2.09E6 2.77E8 3.25E3 6.56ES 1.27E8 7.23E4 2.43E5 1.13E3 3'7ES 3.98E7 5.86E4 1.60E10 2.63E10 2.39E10 2.29E10 T.BODY 4.01E3 7.01ES 1.17ES l.77E8 1.25E8 3.20EB 1.97E8 1.12E9 1.35E9 1.03E9 3.15E11 7.56ES 2.85ES 1.91E6 4'9E7 7.92ES 5.55E9 3.38E9 1.62E7 3.83E2 4.85E4 6'8E6 4.54E3 4.01E3 7.01E5 6.49E4 4.01E3 7'1E5 1.77E4 1.86E8 1.36E9 2.38E10 3.89EB 1.22E6 3.75ES 1.65E7 1.18E8 3.49E6 8.15E9 7.46E9 7.90E4 1.43ES 2.21E7 3'2E4 THYROID KIDNEY LUNG 4.01E3 7.01ES 1.18ES GI-LLI 4.01E3 7.01E5 6.20E6 5.58E8 2.68E9 1.45E5 1.43EB 1.40E8 3.16E7 4.08EB 1.04E10 9.28E7 2.29E8 7.50E7 1.86EB 6.69EB 3.76EB 2.10E9 3.80E8 1.39E9 1.67E10 8.86E8 7.37EB 6.37E6 6.41E6 8.44ES 2.93E9 1.42E8 mrem/yr per uci/m~.003072LL II 51

R;TABLE 3-21 DOSE AND DOSE RATE VALUES-VEGETATION m'~modem r uci/sec TEEN C 14 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 Cs 137 Ba 140 La 140 Ce 141 Ce 144 Nd 147 1.45E6 3 10E8 1.79E8 4.24EB 1.51E10 7.51E11 1.72E6 4.80ES 3'5E7 9.29ES 7.10E9 1.01E10 1.38E8 1.81E3 2.83ES 5.27E7 3.66E4 NUCLIDE.BOND H 3 LIVER 2.59E3 2.91ES 4.54EB 2.20E8 4.18EB 4.37E7 2.49E8 1.47E9 5.44E5 2.66E5 5.64E6 5.39E7 1.58E6 1.67E10 1.35E10 1.69ES 8.88E2 1.89ES 2.18E7 3.98E4 T.BODY 2.59E3 2.91ES 6.16E4 9.01E7 5.13E7 1.61EB 1.01E8 5.60EB 6.86E8 4.33EB 1.85E11 3.74ES 1.46ES 1.08E6 2.89E7 4.80E5 7.75E9 4'9E9 8.91E6 2.36E2 2.17E4 2.83E6 2.3863 2.59E3 2'1E5 3.42E4 2.59E3 2.91ES 1.35E4 1.36EB 9.41E8 7.99ES 2.58ES 1.29E7 1.57E10 9.28E7 2.20EB 2'6E6 5.31E9 4.59E9 5.74E4 8.89E4 1.30E7 2.34E4 THYROID KIDNEY LUNG GI-LLI 2.91ES 8.79E4 2.91E5 1.03E7 9.32EB 1.40E8 9'3E7 1.32E8 2.03E9 1.78E9 1'4ES 9.89E8 6.02E8 3.24E9 6.23EB 1.80E9 2.11E10 1.26E9 1~14E9 1.01E7 1.07E7 1.19E6 2.08EB 1.92EB 2.13E8 5'0E7 5.40E8 1.33E10 1~44EB 2.59E3 2.59E3 mrem/yr per uCi/m~003072LL II 52

TABLE 3-22 DOSE AND DOSE RATE VALUES-VEGETATION m'-modem/rr uci/sec ADULT Zn 65 Sr 89 Sr 90 Zr 95 Nb 95 Mo 99 I 131 I 133 Cs 134 CB 137 Ba 140 La 140 Ce 141 Ce 144'Nd 147 3.17EB 9.96E9 6'SE11 1.18E6 3.55ES 4.04E7 1.00E6 4.67E9 6.36E9 1.29EB 1.98E3 1.97ES 3.29E7 3.36E4~NDDLID~NON H 3 C 14 8.97E5 Cr 51 Mn 54 Fe 55 2.00EB Fe 59 1.26EB Co 58 Co 60 LIVER 2.26E3 1.79E5 3.13EB 1.38EB 2.96EB 3.08E7 1.67EB 1;01E9 3.77E5 1.98ES 6.14E6 5.78E7 1.74E6 1.11E10 8.70E9 1.61E5 9.97E2 1.33E5 1.38E7 3.88E4 T.BODY 2.26E3 1.79E5 4.64E4 5.97E7 3.22E7 1.13EB 6.90E7 3.69EB 4.56EB 2.86EB 1.48E11 2.55ES 1.06E5 1.17E6 3.31E7 5.30E5 9.08E9 5.70E9 8.42E6 2.63E2 1.51E4 1.77E6 2.32E3 THYROID KIDNEY LUNG GI-LLI 2.26E3 1.79ES 2.77E4 1.79ES 1.02E4 9.31E7 1.79ES 6.15E4 1 79E5 1.17E7 9.58EB 7.91E7 1.02E9 6.24EB 3.14E9 6'6EB 1.60E9 1.75E10 1.20E9 1.20E9 1.42E7 1.53E7 1.56E6 1.94EB 7.69E7 8.27E7 6.75EB 5.92ES 1.95ES 1.39E7 1.90E10 9 91E7 2.56EB 3.03E6 3.59E9 2.95E9 5.49E4 1.19E9 9.81EB 1.68EB 9.25E4 2.65EB 6.19E4 8.16E6 2.27E4 7.32E7 5.09EB 1.11E10 1.86EB 2.26E3 2.26E3 2.26E3 mrem/yr per uci/m~003072LL II 53

TABLE 3-23 DISPERSION PARAMETERS AT CONTROLLING LOCATIONS'XWand W VALUES~VEN Site Boundary~Inhalation and Ground Plane Cow Milk Goat Milk'eat Animal Vegetation

]gJglCT ZON E (104)ESE (1300)SE (1400)E (114)E (96o)DISTANCE 01 1,600 1,800 4,300 4,800 2,600 2,900 X sec m~F 00 E-6 1.42E-7 4.11E-B 3.56E-08 1~17E-7 1.04E-7 2.10E-9 2.90E-9 4.73E-10 5.32E-10 1.86E-9 1.50E-9 STACK Site Boundary~Inhalation and Ground Plane E (109)1, 600 1, 700 4.50E-B 8.48E-9 6.00E-9 1.34E-9 Cow Milk ESE (1350)Goat Milk'E (1400)Meat Animal E (114')Vegetation E (960)4,200 4,800 2,500 2,800 1.05E-8 2.90E-08 1'3E-8 1.38E-8 3.64E-10 5.71E-10 1.15E-9 9.42E-10 NOTE: Inhalation and Ground Plane are annual average values.Others are grazing season only.X/Q and D/Q values from NMP-2 ER-OLS.X/Q and D/Q from NMP-2 FES, NUREG-1085, May 1985, Table D-2.X/Q and D/Q from C.T.Main Data Report dated November 1985.003072LL II 54

TABLE 3-24 PARAMETERS FOR THE EVALUATION OF DOSES TO REAL MEMBERS OF THE PUBLIC FROM GASEOUS AND LIQUID EFFLUENTS~Pattwa Fish Parameter U (kg/yr)-adult Value 21 Reference Reg.Guide 1.109 Table E-5 Fish D,;(mrem/pCi)

Each Radionuclide Reg.Guide 1.109 Table E-11 Shoreline U (hr/yr)-adult-teen 67 67 Site Specific Site Specific Shoreline (mrem/hr per pCi/m-)Each Radionuclide Reg.Guide 1.109 Table E-6 Inhalation DFA;;, Each Radionuclide Reg.Guide 1.109 Table E-7 003072LL II 55

NINE MILE POINT NUCLEAR STATION RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SAMPLING LOCATIONS TABLE 5.1 Type of m I Radioiodine and Particulates (air)Radioiodine and Particulates (air)*Map Lo in II i n i Env.Pro ram No.Nine Mile Point Road North (R-1)Co.Rt.29&Lake Road (R-2)Loca i n 1.8 mi I 88o E 1.1 mi 5 104 ESE Radioiodine and Particulates (air)Radioiodine and Particulates (air)Radioiodine and Particulates (air)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)10 12 13 14 Direct Radiation (TLD)15 Direct Radiation (TLD)16 Direct Radiatiort'(TLD) 17 Direct Radiation (TLD)18 Co.Rt.29 (R-3)Village of Lycoming, NY (R-4)Montario Point Road (R-5)North Shoreline Area (75)North Shoreline Area (76)North Shoreline Area (77)North Shoreline Area (23)JAF East Boundary (78)Rt.29 (79)Ri.29 (80)Miner Road (81)Miner Road (82)Lakeview Road (83)Lakeview Road (84)Site Meteorological Tower (7)Energy Information Center (18)1 5mio132o SE 1.8 mi O 143'E 16.4 mi I 42o NE 0.1 mi O So N 0.1 mi Q 25o NNE 0.2 mi O 45o NE 0.8 mi O 70o ENE 1.0 mi O 90o E 1.1 mi O 115o ESE 1.4 mi O 133o SE 1.6 rni O 159o SSE 1.6 mi O 181 o S 1.2 rni 5 200o SSW 1.1 mi I 225o SW 0.7 mi O 250o WSW 0.4 mi O 265o W*Map=See Figures 5.1-1 and 5.1-2 003072LL IZ 56

NINE IVIILE POINT NUCLEAR STATION RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SAMPLING LOCATIONS TABLE 5.1 (Continued)

Type of m I*Map L i n C Ilec ion ite Env.Pro ram No.Loca i n Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation (TLD)Direct Radiation-(TLD)Surface Water Surface Water 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 North Shoreline (85)North Shoreline (86)North Shoreline (87)Hickory Grove (88)Leavitt Road (89)Rt.104 (90)Rt.51A (91)Maiden Lane Road (92)Co.Rt.53 (93)Co.Rt.1 (94)l.ake Shoreline (95)Phoenix, NY Control (49)S.W.Oswego, Control (14)Scribe, NY (96)Alcan Aluminum, Rt.1A (58)Lycoming, NY (97)New Haven, NY (56)W.Boundary, Bible Camp (15)Lake Road (98)OSS Inlet Canal (NA)JAFNPP Inlet Canal (NA)0.2 mi O 294 WNW 0.1 mi I 315'W 0.1 mi I 341 NNW 45mio97o E 4.1 rni I 111o ESE 4.2 mi I 135o SE 4.8 mi I 156 SSE 4.4 mi@183o S 4.4 mi 5 205 SSW 4.7 mi O 223o SW 4.1 mi I 237 WSW 19.8 mi@163o S 12.6 mi O 226 SW 3.6 mi O 199'SW 3.1 mi 5 220o,SW 1.8 mi O 143'E 5.3 mi I 123o ESE 0.9 mi O 237o WSW 1.2 mi e 101o E 7.6 mi I 235o SW 0.5mi O 70o ENE (NA)=Not applicable

  • Map=See Figures 5.1-1 and 5.1-2 003072LL Zj 57

NINE MILE POINT NUCLEAR STATION RADIOLOGICAL ENVIRONIVIENTAL MONITORING PROGRAM SAIVIPLING LOCATIONS TABLE 5.1 (Continued)

Type of am I*Map Loc ion Co!lee i n Si e Env.Pro ram No.Loca ion Shoreline Sediment Fish Fish Fish Milk Milk Milk Milk Milk Food Product Food Product Food Product Food Product Food Product Food Product Food Product (CR)40 41 42 43 44 45 46 47 64 65 66 48 49 50 51 53 54 Sunset Bay Shoreline (NA)NMP Site Discharge Area (NA)NMP Site Discharge Area (NA)Oswego Harbor Area (NA)Milk Location¹50 Milk Location¹7 Milk Location¹16 Milk Location¹65 Milk Location¹55 Milk Location¹60 Milk Location¹4 Produce Location¹6 (Bergenstock)(NA)Produce Location¹1 (Cuieton)(NA)Produce Location¹2 (Vitullo)(NA)Produce Location¹5 (C.S.Parkhurst)(NA)Produce Location¹3'C.Narewski)(NA)Produce Location¹4 (P.Parkhurst)(NA)Produce Location¹7 (Mc Millen)(NA)1.5 mi O 80o E 0.3 mi O 315o NW (and/or)06mi O 55o NE 6.2 mi O 235'W 82mio93o E 5.5 mi O 107o ESE 5.9 mi O 190o S 17.0 mi O 220 SW 90mi O 95o E 95mio90o E 7.8 mi O 113o ESE 1.9 mi O 141 o SE 1.7 mi O 96o E 1.9 mi O 101 o E 1.5 mi O 114 ESE 1.6 mi 5 84o E 2.1 mi O 110 ESE 15.0 mi O 223 SW*Map=See Figures 5.1-1 and 5.1-2++Food Product Samples need not necessarily be collected from all listed locations.

Collected samples will be of the highest calculated site average D/Q.(NA)=Not applicable CR=Control Result (location) 003072LL II 58

NINE MILE POINT NUCLEAR STATION RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SAMPLING LOCATIONS TABLE 5.1 (Continued)

Type of m I*Map Lo ion Coll ion Si Env.Pr ram No.L ca ion Food Product (CR)Food Product Food Product Food Product Food Product 55 56 57 58 59 Produce Location¹8'Denman)(NA)Produce Location¹9 (O'onnor)(NA)Produce Location¹10'C.Lawton)(NA)Produce Location¹11 (C.R.Parkhurst)(NA)Produce Location¹12 (Barton)(NA)12.6 mi O 2254 SW 1.6 mi O 171o S 2.2 mi O 123 ESE 2.0 mi 5 112o ESE 1.9 mi O 115 ESE Food Product (CR)60 Produce Location¹13 (Flack)(NA)15.6 mi 5 225 SW Food Product Food Product Food Product 61 62 63 Produce Location¹'14'Koeneke)(NA).Produce Location¹15 (Whaley)(NA)Produce Location¹16 (Murray)(NA)1.9 mi 5 95o E 1.7 mi 5 136o SE 1.2 mi 5 207 SSW*Map=See Figures 5.1-1 and 5.1-2++Food Product Samples need not necessarily be collected from all listed locations.

Collected samples will be of the highest calculated site average D/Q.(NA)=Not applicable CR=Control Result (location) 003072LL ZI 59

APPENDIX A LIQUID DOSE FACTOR DERIVATION 003072LL II 60

Appendix A Liquid Effluent Dose Factor Derivation, A~(mrem/hr per'Ci/ml) which embodies the dose conversion factors, pathway transfer fa~s (e.g., bioaccumulation factors), pathway usage factors, and dilution faars for the points of pathway origin takes into account the dose from ingest%5K of fish and drinking water and the sediment.The total body and organ do%i conversion factors for each radionuclide will be used from Table E-ll of-Regulatory Guide 1.109.To expedite time, the dose is calculated for a maximum individual instead of each age group.The maximum individual dose factor is a composite of the highest dose factor A of each nuclide i age group a, and organ t, hence Ai.It should be noted that the fish i,ngestion pathway is the most significant pathway for dose from liquid effluents.

The water consumption pathway is included for consistency with NUREG 0133.The equation for calculating dose contributions given in section 1.3 requires the use of the composite dose factor Afor each nuclide,.i.The dose factor equation for a fresh water site is:-X,t~D-X,t'ip,+69'U W e" (1 e)(DPS)>)(>.>(4)Where: Ko Is the dose factor for nuclide i, age group a, total body or organ t, for all appropriate pathways, (mrem/hr per uCi/ml)Is the unit conversion factor, 1.14E5=1E6pCi/uCi x 1E3 ml/kg-:-8760 hr/yr U Water consumption (1/yr)g from Table E-5 of Reg.Guide 1.109 Ug Fish consumption (Kg/yr)g from Table E-5 of Reg.Guide 1.109 U, Sediment Shoreline Usage (hr/yr);from Table E-5 of Reg.Guide 1.109 (BF)i (DFL)w (DFS)~.~D>>D, Bioaccumulation factor for nuclide, i, in fish, (pCi/kg per pCi/1), from Table A-1 of Reg.Guide 1.109 Dose conversion factor for age, nuclide, i, group a, total body or organ t, (mrem/pC1)g from Table E-11 of Reg.Guide 1.109 Dose conversion factor for nuclide i and total body, from standing on contaminated ground (mern/hr per pCi/m~)g from Table E-6 of Reg.Guide 1.109 Dilution factor from the near field area within one-quarter mile of the release point to the potable water intake for the adult water consumption.

This is the Metropolitan Water Board, Onondaga County intake structure located west of the City of Oswego.(Unitless)

Dilution factor from the near field area within one quarter mile of the release point to the shoreline deposit (taken at the same point where we take environmental samples 1.5 milesg unitless)003072LL II 61 0

Appendix A (Cont'd)69'conversion factor.693 x 100, 100~K, (L/kg-hr)+40*24 hr/day/.693 in L/m~-d, and K,~transfer coefficient from water to~ediment in L/kg per hour.Average transit time required for each nuclide to reach the point of exposure for internal dose, it is the total time elapsed from release of the nuclides to either ingestion for water (w)and fish (f)or shoreline deposit (s), (hr)Length of time the sediment is exposed to the contaminated water, nominally 15 yrs (approximate midpoint of facility operating life), (hrs).decay constant for nuclide i (hr')Shore width factor (unitless) from Table A-2 of Reg.Guide 1.109 Example Calculation For I-131 Thyroid Dose Factor for an Adult from a Radwaste liquid effluents releases (DFS)i (DFL)~BF)Ut D D, U, W t~t~tg U Ko 2.80E-9 mrem/hr per pCi/m~1.95E-3 mrem/pCi 15 pCi/Kg per pCi/L 21 Kg/yr 40 unitless 12 unitless 12 hr/yr 0.3 5.5 hrs (s~Shoreline Sediment)30 hrs.(w~water)24 hrs.(f~fish)1.314E5 hr (5.48E3 days)730 L/yr 1~14ES Ci uCi ml k (hr/yr)3.61E-3hr'hese values will yield an~Factor of 6.65E4 mrem-ml per uCi-hr as listed in Table 2-2.It should be noted that only a limited number of nuclides are listed on Tables 2-2 to 2-5.These are the most common nuclides encountered in effluents.

If a nuclide is detected for which a factor is not listed, then it will be calculated and included in a revision to the ODCM.In addition, not all dose factors are used for the dose calculations.

A maximum individual is used, which is a composite of the maximum dose factor of each age group for each organ as reflected in the applicable chemistry procedures.

003072LL II 62

APPENDIX B PLUME SHINE DOSE FACTOR DERIVATION 003072LL II 63

APPENDIX B For elevated releases the plume shine dose factors for gamma air (B,)and whole body (V,), are calculated using the finite plume model with an elevation above ground equal to the stack height.To calculate the plume shine factor for gamma whole body doses, the gamma air dose factor is adjusted for the attenuation of tissue, and the ratio of mass absorption coefficients between tissue and air.The equations are as follows:~Gamma Ak Bi~Z 8~E I Re V, Where: K'conversion factor (see below for actual value).p,~mass absorption coefficient (cm/g~air for B<<tissue for V,)E~Energy of gamma ray per disintegration (Mev)V,~average wind speed for each stability class (s), R~downwind distance (site boundary, m)e sector width (radians)s~subscript for stability class I, I function~I,+kIi for each stability class.(unitless, see Regulatory Guide 1.109)Fraction of the attenuated energy that is actually absorbed in air (see Regulatory Guide 1.109, see below for equation)~Wo~eLoOd', Pa%l.11S~B;e Where: t~tissue depth (g/cm)SF shielding factor from structures (unitless)

Ratio of mass absorption coefficients between tissue and air.Where all other parameters are defined above.'K~conversion factor 3.7 E10~ds Ci-sec 1293 g 1.6 E-6~ev 100~g-rad.46 ik~~PG Where: p~mass attenuation coefficient (cd/gi air for B<<tissue for V,)p,~defined above 003072LL II 64

APPENDIX 8 (Cont'd)There are seven stability classes, A thru F.The percentage of the year that each stability class occurs is taken from the U-2 FSAR.From this data, a plume shine dose factor is calculated for each stability class and each nuclide, multiplied by its respective fraction and then summed.The wind speeds corresponding to each stability class are, also, taken from the U-2 FSAR.To confirm the accuracy of these values, an average of the 12 month wind speeds for 1985, 1986, 1987 and 1988 was compared to the average of the FSAR values.The average wind speed of the actual data is equal to 6.78 m/s, which compared favorably to the FSAR average wind speed equal to 6.77 m/s.The average gamma energies were calculated using a weighted average of all gamma energies emitted from the nuclide.These energies were taken from the handbook"Radioactive Decay Data Tables", David C.Kocher.The mass absorption (p,)and attenuation (p)coefficients were calculated by multiplying the mass absorption (p,/p)and mass attenuation (p/p)coefficients given in the Radiation Health Handbook by the air density equal to 1.293 E-3 g/cc or the tissue density of 1 g/cc where applicable.

The tissue depth is Sg/cm~for the whole body.The downwind distance is the site boundary.003072LL II 65

S E CALCUL TION APPENDIX B (Cont'd)Ex.Kr-89 F STABILITY CLASS ONLY-Gamma Air-DATA E p p e c,~K~.46 VF=5.55 m/sec k~~~.871 Pa R~1600m 2.22MeV 2.943 E-3m'.5064E-3m'39 19m.......vertical plume spread taken from"Introduction to Nuclear Engineering", John R.LaMarsh-I Function Qc, a Ig m.11~3.4 I~+kIi~~3+(~871)(~4)~65 B)0.46 dis.C-sec ev e s 2.943E-3m'.22Mev

.65 (g/m)(erers)=(g-rad)(5.55 m/s)(.39)(1600m)3.18(-7)rad s 3600 s hr 24 h d 365 d 1E3mrad rad Ci/s (1E6uCi)Ci 1.00(-2)~mead uci/sec-(.0253 cm-/g)(Sg/cm')1.11 (.7)(lE-2)mrad r](e)pCi/secj 6.85 (-3)~radar pCi/sec Note: The above calculation is for the F stability class only.For Table 3-2 and procedure values, a weighted fraction of each stability class was used to determine the B;and V, values.003072LL II 66

APPENDIX C DOSE PARAMETERS FOR IODINE 131 and 133, PARTICULATES AND TRITIUM 003072LL II 67 i

APPENDIX C DOSE PARAMETERS FOR IODINE-131 AND-133'ARTICULATES AND TRITIUM lE This appendix contains the methodology which was used to calculate the organ dose factors for I-131, I-133, particulates, and tritium.The dose factor, was calculated using the methodology outlined in NUREG-0133.

The radioiodine and particulate Radiological Controls (Section 3.11.2)is applicable to the location in the unrestricted area where the combination of existing pathways and receptor age groups indicates the maximum potential exposure occurs, i.e., the critical receptor.Washout was calculated and determined to be negligible.

R;values have been calculated for the adult, teen, child and infant age groups for all pathways.However, for dose compliance calculations, a maximum individual is assumed that is a composite of highest dose factor of each age group for each organ and pathway.The methodology used to calculate these values follows: C.l n alation Pathwa Q(I)where: K'BR), (DFA)(~Q(I)dose factor for each identified radionuclide i of the organ of interest (units~mrem/yr per uCi/m~);K'constant of unit conversion, 1E6 pCi/uCi (BR), Breathing rate of the receptor of age group a, (units=m'/yr);(DFA)(~The inhalation dose factor for nuclide i, organ j and age group a, and organ t (units~mrem/pCi).The breathing rates (BR), for the various age groups, as given in Table E-5 of Regulatory Guide 1.109 Revision 1, are tabulated below.e Grou a Breathin Rate m~r Infant Child Teen Adult 1400 3700 8000 8000 Inhalation dose factors (DFA),for the various age groups are given in Tables E-7 through E-10 of Regulatory Guide 1~109 Revision 1.003072LL II 68

APPENDIX C (Cont'd)C.2 Q(G)Ground Plane Pathwa'KS DFG-lit 1-e Where: 5(G)Dose factor for the ground plane pathway for each identified radionuclide i for the organ of interest (units~m'-mrem/yr per uci/sec)K'A constant of unit conversion, 1E6 pCi/uCi A constant of unit conversion, 8760 hr/year The radiological decay constant for radionuclide i, (units~sec')t The exposure time, sec, 4.73EB sec (15 years)(DFG)i=The ground plane dose conversion factor for radionuclide i;(units~mrem/hr per pCi/m')SF The shielding factor (dimensionless)

A shielding factor of 0.7 is discussed in Table E-15 of Regulatory Guide 1.109 Revision 1.A tabulation of DFG<values is presented in Table E-6 of Regulatory Guide 1.109 Revision l.003072LL II 69

.

APPENDIX C (Cont'd)C.3 G ass Cow or Goat-Milk Pathwa R;(C)~K'F r DFL[~ff+(~l-f f)(e'e (li i 1)l Yp Y Where: Q(C)Dose factor for the.cow milk or goat milk pathway, for each identified radionuclide i for the organ of interest, (units~m2-mrem/yr per uCi/sec)K'constant of unit conversion, 1E6 pCi/uCi The cow's or goat's feed consumption rate, (units=Kg/day-wet weight)The receptor's milk consumption rate for age group a, (units~liters/yr)

Y, The agricultural productivity by unit area of pasture feed grass, (units~kg/m2)The agricultural productivity by unit area of stored feed, (units~kg/m2)(DFL)~The stable element transfer coefficients, (units~pci/liter per pCi/day)Fraction of deposited activity retained on cow's feed grass The ingestion dose factor for nuclide i, age group a, and total body or organ t (units=mrem/pCi)The radiological decay constant for radionuclide i, (units~sec

-1)The decay constant for removal of activity on leaf and plant surfaces by weathering equal to 5.73E-7 sec-1 (corresponding to a 14 day half-life)

The transport time from pasture to cow or goat, to milk, to receptor, (units~sec)The transport time from pasture, to harvest, to cow or goat, to milk, to receptor (units=sec)003072LL II 70

APPENDIX C (Cont'd)Fraction of the year that the cow or goat is on pasture (dimensionless)

Fraction of the cow feed that is pasture grass while the cow is on pasture (dimensionless)

Milk cattle and goats are considered to be fed from two potential sources, pasture grass and stored feeds.Following the development in Regulatory Guide 1.109 Revision 1, the value of f, is considered unity in lieu of site specific information.

The value of f, is 0.5 based on 6 month grazing period.This value for f~was obtained from the environmental group.Table C-1 contains the appropriate values and their source in Regulatory Guide 1.109 Revision 1.The concentration of tritium in milk is based on the airborne concentration rather than the deposition.

Therefore, the R~(C)is based on X/Q: Rp(C)~K'K~QP~(DFL)~

0.75(0.5/H)

Where>Rg(C)0.75 Dose factor for the cow or goat milk pathway for tritium for the organ of interest, (units=mrem/yr per uCi/m~)A constant of unit conversion, 1E3 g/kg Absolute humidity of the atmosphere, (units-"g/m~)The fraction of total feed that is water 0.5 The ratio of the specific activity of the feed grass water to the atmospheric water Other values are given previously.

A site specific value of H equal to 6.14 g/m~is used.This value was obtained from the environmental group using actual site data.003072LL II 71

C.4 Grass-Cow-Meat Pathwa APPENDIX C (Cont'd)@(C)~K, U F r DFL~[f~f~(I f~f)(e" e">t (1,+l)I Y, Q(M)Fg Dose factor for the meat ingestion pathway for radionuclide i for any organ of interest, (units=m-mrem/yr per uCi/sec)The stable element transfer coefficients, (units~pCi/kg per pci/day)The receptor's meat consumption rate for age group a, (units=kg/year)'h The transport time from harvest, to cow, to receptor, (units=sec)The transport time from pasture, to cow, to receptor, (units=sec)All other terms remain the same as defined for the milk pathway.Table C-2 contains the values which were used in calculating R,(M).The concentration of tritium in meat is based on airborne concentration rather than deposition.

Therefore, the Rz(M)is based on X/Q.Rz(M)~K K FQPap(DFL) gi (0~('H))Where: Rz(M)=Dose factor for the meat ingestion pathway for tritium for any organ of interest, (units~mrem/yr per uCi/m')All other terms are defined above.C.5 Ve etation Pathwa The integrated concentration in vegetation consumed by man follows the expression developed for milk.Man is considered to consume two types of vegetation (fresh and stored)that differ only in the time period between harvest and consumption, therefore:

Q(V)~K'l,t-l,t (DFL)U" Fe+U,F,e 003072LL II 72

APPENDIX C (Cont'd)Where'(V)K'l.Fg Dose.factor for vegetable pathway for radionuclide i for the organ of interest, (units~m-mrem/yr per uci/sec)A constant of unit conversion, 1E6 pCi/uCi The consumption rate of fresh leafy vegetation by the receptor in age group a, (units~kg/yr)The consumption rate of stored vegetation by the receptor in age group a (units~kg/yr)The fraction of the annual intake of fresh leafy vegetation grown locally Y, The fraction of the annual intake of stored vegetation grown locally The average time between harvest of leafy vegetation and its consumption, (units~sec)The average time between harvest of stored vegetation and its consumption, (units~sec)The vegetation areal P density, (units~kg/m')All other factors have been defined previously.

Table C-3 presents the appropriate parameter values and their source in Regulatory Guide 1.109 Revision l.In lieu of site-specific data, values for Fand F, of, 1.0 and 0.76, respectively, were used in the calculation.

These values were obtained from Table E-15 of Regulatory Guide 1.109 Revision l.The concentration of tritium in vegetation is based on the airborne concentration rather than the deposition.

Therefore, the Rz(V)is based on X/Q: Rz(V)~[K'Kia)fi+U a fa(DFL)>0 75 (0 5/H Where'z(V)

~dose factor for the vegetable pathway for tritium for any organ of interest, (units~mrem/yr per uci/m').All other terms are defined in preceeding sections.003072LL II 73 S

TABLE C-1 Parameters for Grass-(Cow or Goat)-Milk Pathways~aamea a:~Q, (kg/day)(DFL)>(mrem/pCi)

F (pCi/liter per pCi/day)YI (kg/m)Y~(kg/m~)t, (seconds)tf (seconds)U~(liters/yr)

Value 50 (cow)6 (goat)1.0 (radioiodines) 0.2 (particulates)

Each radionuclide Each stable element 2.0 0.7 7.78 x 10~(90 days)1.73 x 10'2 days)330 infant 330 child 400 teen 310 adult Reference e.Guide le109 Rev.1 Table E-3 Table E-3 Table E-15 Table E-15 Tables E-11 to E-14 Table E-l (cow)Table E-2 (goat)Table E-15 Table E>>15 Table E-15 Table E-15 Table E-S Table E-5 Table E-5 Table E-5 003072LL ZI 74

  • il TABLE C-2 Parameters for the Grass-Cow-Meat Pathway F, (pCi/Kg per pCi/day)U (Kg/yr)(DFL)>(mrem/pCi)

Y, (k Y, (kg/m~)t(seconds)t, (seconds)Qr (kg/day)~Va ue 1.0 (radioiodines) 0.2 (particulates)

Each stable element 0 infant 41 child 65 teen 110 adult Each radionuclide 0.7 2'7.78E6 (90 days)1.73E6 (20 days)50 Reference Re.Guide l.09 ev.Table E-15 Table E-15 Table E-1 Table E-5 Table E-5 Table E-S Table E-5 Tables E-ll to E-14 Table E-15 Table E-15 Table E-15 Table E-15 Table E-3 003072LL II 75

TABLE C-3 Parameters for the Vegetable Pathway ji~i~ete r (dimensionless)(DFL)>(mrem/pCi)

U"), (kg/yr)-infant child-teen-adult U'), (kg/yr)-infant-child-teen-adult t(seconds)t, (seconds)Y(kg/mi)Value 1.0 (radioiodines) 0.2 (particulates)

Each radionuclide 0 26 42 64 0 520 630 520 8.6E4 (1 day)5.18E6 (60 days)2.0 Reference Re.Guide 1.109 Rev.Table E-1 Table E-1 Tables E-il to E-14 Table E-5 Table E-5 Table E-S Table E-5 Table E-5 Table E-5 Table E-5 Table E-S Table E-15 Table E-15 Table E-15 003072LL II 76 l!4P APPENDIX D DIAGRAMS OF LIQUID AND GASEOUS TREATMENT SYSTEMS AND MONITORING SYSTEMS 003072LL IZ 77

Liquid Rad~aste Treatment System Diagrams 003072LL ZI 78 t~J I TABLE~VALUES 2-2-LIQUID'DULT

~e>~Q, hr-uci NUCLIDE H 3 Cr 51 CQ 64 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 Mn 56 Mo 99 Na 24 I 131 I 132 I 133 Ni 65 Cs 134 Cs 136 Cs 137 Ba 140 Ce 141 Nb 95 La 140 Ce 144 Tc 99m Np 239 Te 132 Zr 97 Sr 92 T BODY 3.67E-l 1.26 1.28 8.38E2 1.07E2 9'8E2 2.01E2 6.36E2 3.32E4 6'8E2 1.36E5 7.59E-1 3.07E-2 l.60E1 1~34E2 l.16E2 4,34E-3 lo22E1 1~14E-2 5.79ES 8'2E4 3.42ES 1.37E1 3.79E-2 1.31E2 1~62E-2 3.03E-1 2~OSE-2 2~SOE-1 1.18E3 5 08$W 1.44$2 GI-TRACT 3.67E-1 3.13E2 2.33E2 1.34E4 2.62E2 8.06E3 1.81E3 4.93E3 4.63E4 3.57E3 1'"60E4 2.83E2 5.52 1.95E2 l.34E2 5.36E1 2.33E-3 3.59E1 6.35E-1 1.24E4 1~33E4 1.01E4 4.30E2 8.81El 1.48E6 3.72E3 6.15E2 9.54E-01 3'2E2 5'7E4 3 39E2 6.61 BONE 1.18E-2 3.98 6.62E2 1.03E3 1~07 6.47E1 2.31E4 2.22E4 5'5E5 9.77E-1 1.97E-3 1~34E2 li42E2 4,64E-3 2.30E1 1~93E-1 2.98E5 2.96E4 3.82ES 2.09E2 6.93E-2 4.38E2 1.03E-1 2.02 5 71E-4 4 94 1.95E3 5.44E-3 3'4E-1 LIVER 3'7E-1 1.18E-2 2.73 4.38E3 4.57E2 2'2E3 9.04E1 3.24E2 7.35E4 6'8E-5 7.88E-1 1.73E-1 8.42E1 1.34E2 2.03E2 1~24E-2 3.99E1 2'0E-2 7.08E5 1, 17E5 5.22ES 3.04E-1 5.83E-2 2'4E2 5.36E-2 9,66E-1 1 61E-3 4.42E-1 1~26E3 1~10E-3 KIDNEY 3.67E-1 2.86E-1 6.89 1.31E3 7.53E-1 THYROID LUNG 3.67E-1 3.67E-1 7.56E-1 1.66 3.98 3.98 2.55E2 7.53E-1 6.76E2 1.07 1.07 1.07 6.47E1.6.47E1 6.47E1 4.92E4 6.18E-S 2.21 2~21 6.18E-5 6.18E-S 8 39E-1 2.20E-1 l.91E2 1.34E2 3.48E2 1.98E-2 6i97E1 6.99E-1 6.99E-1 1.97E-3 1.97E-3 1.34E2 lo34E2 6.65E4 2.77E-2 4.34E-1 5.87E3 2 29ES 6.51E4 1.77ES 1.31E-1 4.60E-2 2 41E2 2.83E-3 6.57E-1 2.45E 2 2.04El 7.61E4 3.28E-1 8.92E3 3.10E1 5.89E4 4.17E-2 1.92E-l 3.53E-2 3.53E-2 3.56E-1 3 o 56E-1 2.83E 3 2+83E-3 2+06E-1 2.06E-1 7.90E-4 1~22E4 1.66E-3 1.39E3 2.66E-3 7 llE-6 7~11E 6 8 82E-01 5.95E-4 7.92E2 W 187 4~31El 4.04E4 1.48E2 1.23E2 Ag 110m 1~09E1 3,94E2 l.14El l.13E1 Calculated in accordance with NUREG 0133, Section 1.109, Regulatory position C, Section 1.4.43E-5 1.22El 4.43E-S 4.43E-S 1~04E1 l.04El 4.3.1g and Regulatory Guide 003072LL II 28

H 3 Cr 51 Cu 64 Mn 54 Fe 55 Fe 59 Co 58 Co 60 Zn 65 Sr 89 Sr 90 Zr 95 2.73E-1 1.35 1.35 8.75E2 1.15E2 9.59E2 2~10E2 9'4E2 3.40E4 6.92E2 1.14E5 3.96 2.73E-1 2.16E2 2.23E2 8.84E3 2~13E2 5.85E3 1.23E3 3.73E3 3 OSE4 2.88E3 1.30E4 2~10E2 6 56E-2 2.22E1 6.93E2 1.06E3 5.98 3.61E2 2'0E4 2.42E4 4'2E5 4 19 Mn 56 Mo 99 3'2E-2 1.19El 1.71El 1.60E2 1.10E-2 Na 24 I 131 I 132 I 133 Ni 65 Cs 134 Cs 136 Cs 137 lo38E2 1 14E2 4 56E-3 1 28E1 1.21E-2 3.33ES 7.87E4 1.90E5 1.38E2 4.21E1 5.54E-3 3~17E1 1.44 9.05E3 9.44E3 7.91E3 1.38E2 1.52E2 4.86E-3 2.47E1 2.08E>>1 3'5E5 2.98E4 4 09ES Ba 140 1.44El 3.40E2 2~21E2 Ce 141 2.00E-l 6.85E1 2.33E-1 Nb 95 La 140 l.17E2 2.97E-2 1.05E6 3.01E3 4.43E2 1~22E-1 Ce 144 1.25 4.83E2 3.07 Tc 99m 2.11E-2 1.07 5.84E-4 Np 239 Te 132 4'3E-3 3'8E2 2 82E-2 1 23R3 4 13B4 2'6E3 Zr 97 Sr 92 5.685M 4.28E 2 3~11E2 2.02E1 5.84E-3 1~07 2 73E-1 6 56E-2 2+87 4.32E3 4.91E2 2.48E3 9.47E1 6.20E2 7.28E4 3.99 1.81E-l 8.95E1 1.38E2 2.12E2 1.27E-2 4.19E1 2.66E-2 7.18E5 1.17E5 5.44E5 2.60E-1 2.21E-1 2.47E2 6.82E-2 1.94 1.63E-3 5+67E-3 1.30E3 1.19E-3 2.73E-1 3.47E-1 7.27 1.31E3 4.20 5.98 3.61E2 4.66E4 4.03 2.29E-1 2.05E2 1.38E2 3 66E2 2.00E-2 7'5E1 2.28E5 6.38E4 1.85ES 3.25E-1 2.08E-1 2.39E2 1.58E-2 1.62 2.43E-2 1.07E-2 1.25E4 1.78E-3 TABLE 2-3~VALUES-LZ{}UID'EEN

~em-e hr-uCi NUCLIDE T BODY GI-TRACT BONE LIVER KIDNEY 2.22E1 2.22E1 4'0 5'8 3.11E2 7.84E2 5.98 3.61E2 3.61E2 lo24E1 1.24El 3,90 3,90 1.10E-2 1.10E-2 1.38E2 1.38E2 6.19E4 4'9E-1 5.85E3 1.55E-1 lo14E2 8.72E4 1~83 1.01E4 1.73E2 7.21E4 2.33E-1 4.15E-1 1.97E-1 1.97E-1 1.99 1.99 1.58E-2 1.58E-2 1.15 1.15 9.04E-4 3.32E 3 3.32E-3 1.37E3 1.48E-2 3.97E 5 3'7E-5 THYROID LUNG 2.73E-1 2.73E-1 7'9E-1 1 90 W 187 4.55E1 3.52E4 1.59E2 Ag 110m 5.85E1 3.17E2 5.89E1 Calculated in accordance with NUREG 0133, Regulatory position C, Section l.1.30E2 5.88E1 2.47E-4 5.97E1 2.47E-4 5~79E1 5~79E1 Section 4.3.lg and Regulatory Guide 1.109, 003072LL ZI 29

  • " A SPENT FRL PS%CSLIH6 FLON DRAN FILTER RAOWASTE OEtIIIKRALIKR REACTN WATER CLEANS SYSTEtl QE6EKRAHT EVARNATOR CONKIIATE OEtSKRALI2ERS REACTN SLNLDNB EQJIPtKHT ORANS PIIASE SEPARATN WASTE EVAPNATN I I I I I I I I I I I I I I I I I I I I I L AOV I TYPICAI OF 3 AOV 84 LT WASTE CaiECTm TAtK AOV 47 Pl TE Cf WASTE CO.LECTN PUFF I I I AOV 44 I I I I I I AvV 48I RADWASTE FILTERS FLON DRAIN FILTERRECOMRY SA&u ruaS MI&ILO8 EIIIIPKtlr ORAIts%$$UAL%AT AEtlOVAL SySTEtl RECOVERY SAt&f TAtII,S RADWASTE.FK TERS AOV 275 WASTE COLLECTOR SUROE TANK TK l8 AOV 277 P IBA PS WASTE COLLECTOR SURGE Puca S Pl Cf P IBB AOV 308 AOV 307 FLOOR DRAIN F II.TER RADWASTE FILTERS WASTE COLLECTION

~~~g I~ee I~~J WE I~~I~5 I'I'e~I~I~I~~II liI I I I I WE~I e'IS~,~8 I e~~~~IIe I'~I I'I 4~'e I~Q Pg eel I~~S~~~~I I~~~~I~I e~5 e I~S e~~I I~M~5 I Q a~~~I I~~S~I I SS I e~I~le II~I I I~

ttf-t WASTE SA&LE TKS RADWASTE DENH I I I I I I.I I I I I I L I I I I AOV2t I I I LT I I I RECOVERY SA&LE TAN(OlÃR P4 SUCTIN Ll%Pl P4 RECOVERY SAKI.E PS@TYPICAL OF 2 I I I I I WASTE CO.L)SURGE TAIL I I I AOV66 REGENEVAP DIST COOLER WASTE EVAP DIST COOLER FLOOR DRAIN FILTER RAOWASTE DEI1INERALIZER RADWASTE FILTERS OTKR P4 RECIRC I.INE I I I I I I I I csrs AOV 118 I WASTE CKL I TAWS AOV 314 L I , AOV29 I LT WASTE DISCHARGE SAtFLE TANK TKSA,B AOVBO OT%R P5 SUCTION LINE I C AOV33 TYPICAL OF 2 I I I I I I I rI I I I I I I I I I I I I I I J AOV76 Oll%R P5 RECIRC LINE NK-I WASTE SAKLE TKS WASTE AOV27S EVAP REGEN AOV279 EVAP SERVICE WATER DISCHARGE BAY AOV 142 FLON DRAIN CO.LECTOR TAILS HIGH RANGE FE 33O FV 331 LOW RANGE FE 331 RECOYERY SAMPLE SYSTEM and 6!'-I'4 ttt-I WASTE SAtSLE TKS AAtAfhSTE OEM'AOV2l I I I L I I I TYPICAL OF 2 RECOVERY SAKLE TAN I I I I I WASTE COLL I SURGE TAINT I I I REOEMEVAP DIST COOLER WASTE EVAP OIST CORER FLOOR DRAIN FILTER RAOWASTE OE11INERALllKR RADWASTE FILTE RS OTHER P4 RECIRC LINE L I I I TYPICAL OF 2 I , AOV29 WASTE DISCHARGE SAt%lE TAIILl TK SA.8 AOV80 I I I I" I I I I I I<'I I OT%R P5 RECIRC LINE I I I L Ol%R P4 SUCTION LINE Pl P4 RECOVERY I SANTE PIN'OV66 I I I I I I I csrs AOV 118 I I WASTE COLL I TANKS AOV 314 I L ftP-I WASTE SAtA.E TKS FV 330 OTKR P5'UCTIN LINE I C AOV 33 AOV 76 WASTE AOV 27S EVAP REM AOV279 EVAP SERVICE WATER DISCHARGE 8AY AOV I42 FLODR DRAIN COLLEC TN TAWS HIGH RANGE F E 33Q FV331 LOIIEt RANGE FE 331 RECOVERY SAMPLE SYSTEI1 and VASTE

WASTEEVAP REGENEVAP CST BLDG FLOORDRAIN RXBLDG SPENTRESIN AUXBOILER RWBLDG WASTE DISOI DST QNN DIST ClKW.ER DRAINS FILTER DRAINS TAtK BLDG~DRAINS RW FILTER TAILS WASTE RUT T$8 BLDG NN'-I FLON DRAIN TK DRAINS DRAINS COLLECTOR TA%FLONDR CM.TK2AP OT%R fl.OOR DRN SUCT LINE TYPICAL OF 2 ORNER P2 RECIRC llNE Pl CE TE OTIIER f L00R DRAIN COLL PRO AOV 738 WASTE EVAP RW FILTER FLOOR DRAIN COLL TK RFP AOV 73A FLOOR DRN f ILTER WASTE DISN SAttlE TKS flee DRAIN COLL SINGE TK t7 AOV 201 AOV90A OTKR FLNN DRAIN COLL TK Pl FLOOR INN FILTER FLOOR DRAIN COLL SURGE PNIPS Fl OOR DRAGON COLLECTlON C'l WASTE CRL QQGE TK FLONDRH COL QNK TX FLOOR DRAIN COLLECT(8 TKS KSEN WASTE TKS WASTE CRL TKS FV 122 AOV 2 AOV 271 FLAT BED FILTER AOV 236 SERVICE AIR COND MAKEUP AN)DRAW Of F l~l~csr SOY 251 BODY FEED TK HOPPER FEEDER AOV 257 SLUDGE TK AOV 451 EDUCTOR 800Y FFED PRO FILTER PRECOAT TALK I FL XR DRAIN FILTER PRECOAT P$%'27 CST FILTER EFFLKNT TAtK FILTER EFFLUENT PttP LV 231 AOV 214 REOEN WASTE P AOV'127 WASTE DISCH SAtA.E TK AOV 123 FLQN DRAIN CRL TK AOV 126 WASTE COLL TK Fl OOR DRAIN Fll TER SYSTEM

I g\i 0~~~~'I FLOOR ORhlN FILTER SEQUENCES

FLONORAN FI.TER CON 001IN K6MRATION RW FLOOR A%KMP ORANS RW FILlER BACK WASH Pt%5 01'E6EN WASTE RN r I I I I AOV54 I I I I I I r---I I I I RE6E%RANT WASTE TAN TK3 I I I I I I I I I I I L RE6EN WASTE IK PS%PSA35 TYPlCAL OF 2 AOV 69 I I I I I I I I I I I I I I I I I I I I I I L O'MR REGEKRAIIT WASTE TQK 1 AOV68, I QE6ENEVAP I AOV92 I WASTE EVAP I FLOOR ORAIM FILTER REGKNERANT HfASTE SYSTEM

~J I I'8 I I~Q~

1 Osseous Treatment System Diagrams 003072LL ZZ 88 l I

~VACUUM Dhf AA(4 arOTSC M Hv teC VACUUM enf AVER MOvse M Hv tee VACUUM Dnf AAE 4 MOVSA M HV tSA Aov lot MOv ISA M letvISA COrCX NSE 4 C Silencer COICE HSE h:8 HVISA COHOE NSE 4 IA AOV I OS PRECOOLEA Etc Pnf COOL(II ft*I AOM Tt/%WE GEM CLANO SEAL Aro feay~f$ff AM sov ISA Sf PAIIAIOA AIA AEIIOTAL~LAP'IO 01 IO MAVI COreX HSE 4 ltt Staee 4 i~S fee tot I Al fAOM TIAlfh I hf AI MENT STSffM Af CIAO~IAP'te I AOM AUI ILIAA T Sf f AM STSTE M Dt I ROM IVI 4IAAT STEAM STSIEM At fO MAII STACK Silencer$SOV lee Sf PAAAIOA PLAIP SEAL COOLER Aet AEMOvAL~PIA VIII ACONIXNSE 4 fee VII I ACONTXNSER ESA I AOM Off GAS STSTEM COKXNSE R DAAVI TArpr Af CAC PLAP PtA f AOM AVI4IAAT$1 f AM DI et I O IkAVI COrlOENSE 4 2nd Stree Air siecters I AOM AVIR.IAAT SfEAM Al At S IO MAVI CONTXHSE 4 SOY I ll lo orrcAS STSIE M CONDENSER AIR REMOVAL SYSTEM

AeVI~A rl r I INjl1 AI I I I(IAIr I SIC AIA Sr I CIA sr)vroA VVI IA IC IE IC IC H FE AOVI IA Of(yes IA Preheeler IA Off(fss IA Condenser IOCI CW Inoal C(WOE(IS(n

  • el HC lIOVA(STSICII (IKHAIC I I rl If AOV I A CA I A(T I IC n(CQAHlt go I AQVSA AOVSO CI7 IO UATI CQMOCI XII I L-(VTOA IO UAM c(vs(rrsc n IS SCC(VCI w(H 0 IP red~H2 IO Onr(HS rCT I I I S r nore SCHVCC AII Q7V I I7 STSfCII AOV IS IE IC FE I AOVI IH Offices IH Preheeler Offices IS Condenser IHQAI AUICIAHT SIEAII STSIEII SQVI(0 S SQV (IS S tVI IS~I Ce(AIYIlc flee omh Incr CI7 (V70O Title: OFFGAS REGOMBlNERS

AOVAA Ig AQVSA Dryer IA TIS.I AQVIII ICV GA LVTIA ICV TA ICV en IQ'A'ATIA+fRATQA STI IT AOV Sn I AOAI Of f CAS Oryer In IO CrrAACOAl AdSOAOTAS TIS I I I Ivtee ICv'I CV Te ICV~n AOvrC'IO n'ATTACTRAIOR SET IE Oryer Ic Alf IC LIS I TCV tc Lvtec CQrrHrt STOA IOCLCw IO Ir*H COICT IrSE 4 Alr IC Are TC Sreswrl TTTHCAT Qf Sl PCVGTC COuPAT SAR Alf tC COrroT RST 4 TBCLCw OFFGAS DRYERS V

I AON$1RVCS An SISIIu F liter IA IC IO~VI~A I IKW Off GAS DrtttiS CHAIICOAl AOSOIIIIIIS IA'8~IA ASA I I PI*Ovtt*I+PA fktt11$PI VACIAAA PIAAPS AOVSIS IO IH PIC AOv I OS Filter PV~en To Main Stack OFFGAS SYSTEM CHARCOAL ABSORBERS

IPVTA VII fbi ICACTOII CA.OV(O VTIITLATKH IIOV II I IIOVtA I L II IIOVI*STNCNY OA5 I LICIT Tll*f(A VII IIOVTA Fen Afl f(71 OCCAY ICAT COOL VIO H%WALL WYI SlACK I I fc fV 1 04 tOV IOt fM TYOTCC1 KXI M fCII DECAY I%AT COOLY(O AOV I 0 I I IKTYIO~5TAIOOY OAT TLTLII TIIAYI d I 11 I F~Id VST Vtl Vts gr~gTAICOY OAS'IKEATICNT (KW.OYIO OW5OE AYI STANDBY GAS TREATMENT SYSTEM A

Liquid Radiation Monitoring Diagrams 003072LL ZZ 94

ass 5ll'IICI 4LII~I~I 414 5IIIICI llIIl Ll I Lail~I Cll I 4a Cal I C 5at tNt 4a CLI I 5at hst Iaas sa5'SLSII~Iaas 115 51511~4a Caf I V'11 sfal ILCsa1fls 4a caI I lsl sf af ILCsasCI~I Cl Cal 0 I (.Ilite'i 44CLC4 0501 I s Il'Cll 5I5II~1 I4 C15 5ISII~I I 5 Ilsl lsl aaIIS.Ifa II%CCt KLIIL.IIL.II.IC 4a II44 414 Sflffl.Ial fsa CCS slaffa.IIL.I~.IC fsR Sflf tRlClal45 Ila.ll CL I Clf 0 Cll 0 (I aas)I DIScsaacI laf COILI14 Illf4 caa lac Ilal a444444 a salas 41 Cal II la (LLI~I5CsaaCI laa I LLL lf ill l ULUIII Iffaasf~LSCsaaCIS CI~Calll lsC lafl~hSPS aa L4LSIsaaLL mlaasal (Iaa J la Caf 0 UC 5I5II4 5tf sf I Sf I t44L 41 Cll I SIC taatS~I Cal ll 5IC Ilail~asl1$!5IC sfal ILCsa1CI1$

la CLI I CIQLIID RAOIATION MONITORING NIAGAAA MOHAWK pOWESS QORpOSLASION NINE MILE POINT-UNIT 2 FINAL.SAFETY ANALYSIS AFpOILS

~I I~g V~'I~~~'.'~aI~~I~aa I'~I I I~I 7~II I~Q'4 I~4I~~~~4 4 4 a~a~a~~a 4~a~4~4 4 4 a a~a~~

~FLOV S AMP!.E<'UTLET Pl FIB I I I I I I I I I I I PURGE/TESr CONNECTION LOW FLOw OATA ACOUISITION UNIT (DAUI OETFCTOR~CHECK SOURCE I I I I I PURGE CONTROL~S I I I I I PUMP CONTROL I I I S r" I I I I I I I I I I I I I I I 64MPLE INLET GRAB 54MA'R LIOU10 SAMPLER I PURGE OUTLET IO ORAIN (II PUMP CALIBR4TION TEST/VENT CONNECTION CALIBRATION/BRAIN CONNECTION OFFLINE L'OUIO MONITOR 2LWS-CAB2e6 L E GE IIO O PI PRESSURE INOIC4TOR O FIS FLOV INOICATING S'V.QS%LEHOIO OPERATEO SV.NOTES OI GLOBE V4LVE.ALL OTHER MANU4LLY OPER4TEO VALVES ARE BALL VALVES N704LLY CLOSED VALVE NORMALLY OPEN VAI.VE OFF-UNE LIQUID MONITOR NIAGARA MOHAWK POWER CORPORATION NINE NILE POINT-UNIT 2 UPDATED SAFETY ANALYSIS REPORT USAR REVISION 0 APRIL I 989

LOW FLOW/NORMAL FLOW~E OUTLET fUCK/TEST~CTIOI E OATA ACQ/ISITIOI IPOT SALD I I 81 I~l I I I I I I I I I I I s SA~E I I CS a]LIQ/LO~b CALibbA~TEST/VENT C~CTIQI ICITES a)cLOK YALYE.ALL OTIC IWlMLLY IPGIATKO VALVES AbK bALL VALVES CALI QRATlQI/DRAlH COHKCTIOH LECEID O l 1 MESSLNE M)ICATM FS-..FLOW SW.lÃFLl&LIISJIO HOGTIE 2$VPKA$2SA 25~CAR~25VACA$140A~CAbHbb QS QLENRO 8%RATED SV.ereeu.v CLDSm VALVE ICÃtOLLY KQI YALVK OFF-UNE UQUID MONITOR NIAGARA MOHAWK POHER CORPORATION NINE MILE POINT-UNIT 2 UPDATED SAFETY ANALYSIS REPORT aeaa asvzezos 3 OCTObER 1%%"

A I P Oaseous Effluent Monitoring Systea Diagrams 003072LL ZI 99

PARTICULATE COLLECTION STATION F LTER IOONE COLLECTION STATION FILTER NOBLE GAS MEASUAEMf NT STATION NEW PARTICU.LATE CAA'TRIO.GES NEW IOOINE CAAT RIG.GES STACK STACK~FRESH AIR FLTER P/P V FlOW COHTAOL (ISOKNETIC)

DETEC AMPLIFIER 1 AOC CHECK sou AcE AMPLIFIER 4 AOC FLOW SENSORS AMPLIF lf R SOORCE VALVES, ETC MULT)CHAINED ANALYZER (MCA)COMPUTE A V IDEO TERMNAL PANTER NDUST RIAL PROGRAMMABLE CONTAOLLE R HOST COMPUTER BLOCK DIAGRAM TYPICAL GASEOUS EFFLUENT MONITORING SYSTEM NIAGARA MOHAWK POWER CORPORATION NINE MILE POINT-UNlT 2'INAL SAFETY ANALYSIS REPORT

lllto fIIIIOC~Nit)SI(lfl CIN llN)$11 IUII I Ill N4$SCSN I IN UIOAIII 4 1 I I CSN Ilolt too CAN 44Ãlln SOIL~INC 2)I))CSN CIN.Alt l O(NIII A(I IN (IN OtlCIOO INIIOINC Allrl 4(SU(LINC SL44I t((IN)O$(CSIN OtlCIOI IU III INC ll(OO O(SUt(INC SLOOO AAOOA)lf 41)lll)N NPA IIII(l CIA(A)4 IIO IIIIA IILRI ifts fl(1(4~Oa a tNII(ILAIL.

~CS (t(N(I(II(ON I(I(A(ISO I~$45 I tAIIICULAI(')li CAO Of ACS I l(NIILOIION 15IIAIION) ilf))A)24)ILSOCIO AO I 514)IC(OIOC ll(l)(NI OA CAI n Illll$1(ItlC III OUILOINC f ANAUSI'I(NI Otf lIN(Isl'Iltlc ff(IU(NI I 1)lll CIN AO)OOII(l ON I)o)4$4)llllcfN ol clr naos clr t f OA clr n~AIN SIACA OFF-LIN(I SOIOS IC fff(UfNI NON)Ill Cls I.I(rssrl(I(s)(Ill cIAI WN)OA clr n 4A CAI fg I(CIICULAIION OO)(~a 5$4 Ieufa~Illl))ll CSN I 54'45)Sll CSN CNIA IN(NI tNC(Clo ACAI t~OA CAI n 5$1$Af Cls~Il)4)OO CI~Cl$4 o rslII COtl1('ll II'IIII IC(NILO INC I I Nr I (I I ION al CA(I&as Clr n al CAI n Clo JA Cll t 5)lt(f Ilt ill CIA SCIS IIIII C(O ACI CONIllNNLNI tUIC(as elf I, elean IIII IN(C(N(lllN CLAN stll a tlNAUst 511 AO OS f Cl$51$1(O Ot CNAN I Cl(IACUUN~Nt~I SCNAlct CL(AN SPAN Il I)A 5lNt(f Ilt IPIO IN(CLANO 5tl(CAS 4 Acf(4f SCAS~ISCNlIC(ISOLAIIN)I)~CNAICIAL Alslllfls OA CAI n CLAN St L CNO fl)I CIN SANtlf Ilt SLNSLt 1st-SAOSL('1st al CAI n ol clr n Nil Ill II~IN(As(fN CN'(Ill ISIS INIllf (($51)I SIICI~O(C Ill)SOCIO III)lt (OLSI)SIN(I5 f It((Is CAS+~If ACS(I)till ACII)lII ON)Ill'lf IC ACS(IIS$$$AC I Ill(ION)Cl5o~lt ACS~I toss AC I I)41 ION)Ill~A(l4 CAS~ACS(I)r)$5 lC((Ill(ON)

CON)(ALAI(I~4404,)Ill cto 44 CAI T 1)SICfN (ONIN)4 Solo (o)(llt(Acf~AUINAIIC CNIAOL INC)ION tlO~tost ACCIO(NI NNIIIO+~tilt(COLA)(I I COIN(SAN)LINC Cltllll III ClN>CONIINUOUS ill tOANf NN)144 4~Iofcro I%LA)SO ANON)ON GASEOUS RADIATION MONITORING NIAGARA MOHAWK POWER CORPORATION

'INE MILE POINT-UNIT 2 UPDATED SAFETY ANALYSIS REPORT U51(R REYISIOt(0~non enon

Appendix E Nine Nile Point On-Site and Off-Site Napa 003072LL ZI 102

  • I S~10~ci IS'4~'IS I4%0 0 at p A FIGURE 5.I-I Hlna Mila Point On Sile Map, aa~saaasW Iaaaaa SIN-mc~(hg-Saw~Na Iaaaa tate taaa aaa%l~~~%0%I.I a 0~I 7~4 IS 14 IS tS II 103

II e~NE 5.l-2 NINE MILE POINT PFF-SITE MAP (5/92)tv 6 NAlE OE ORC4 LCCLKND ao~oaoI 4oooNoo.~..........-.~

~UNS....,..........,......,..~

Cay~YOhae LOIN..................

Earlroao4oaool eoa4ylo Looolloa ONTARIO~IH E V 0 H O e I S I 0 A as~I~la44 1 0 II 104a

II 104b 4 AA A E.rr~rA I N Ir~xi l I C I I~~Pnyl: 4 Cif~I pre rrer~~rea rrea reerr 4~A M~0~e Cr aeer fe 0 a/C 0 N A N I A Caalral Oaaara I~~~'I ew&Mto er eel eM i Cqr e/o e M~e~e Ranee g Tr aier~Saws rara leer air s C~Cryrelaai,TIC Oalloaal~ianna Cherrer.arireeer aaia C QAw~\%r e octocovcCo oT ocaillcQoo CotTOI~rial OolCOO OCLCACC oviloaa Iifoo