ML17264A760

From kanterella
Revision as of 12:45, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Proposed Annual TS Bases
ML17264A760
Person / Time
Site: Ginna Constellation icon.png
Issue date: 12/16/1996
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17264A761 List:
References
NUDOCS 9612200087
Download: ML17264A760 (67)


Text

TABLEOFCONTENTS2.02.1.12.1.283.083.083.183.1.183.1.283.1.383.1.483.1.583.1.683.1.783.1.883.283.2.183.2.283.2.383.2.4SAFETYIIMITS{SLs')ReactorCoreSLs........ReactorCoolantSystem(RCS)PressureSL.....LIMITINGCONDITION FOROPERATION

{LCO)APPLICABILITY

.SURVEILLANCE REQUIREMENT (SR)APPLICABILITY REACTIVITY CONTROLSYSTEMS.....'.

SHUTDOWNMARGIN(SDM)CoveReactivity

.Moderator Temperature Coefficient (MTC)RodGroupAlignment Limits.......ShutdownBankInsertion LimitControlBankInsertion LimitsRodPositionIndication PHYSICSTESTSExceptions-MODE 2....POWERDISTRIBUTION LIMITSHeatFluxHotChannelFactor(F<(Z))NuclearEqthalpyRiseHotChannelNFacto'F~)o~~~~~~~~~~~AXIALFLUXDIFFERENCE (AFD)QUADRANTPOWERTILTRATIO(QPTR)82.0-182.0-182.0-83.0-13.0-12~83.1-"183.1-183.1-883.1-1583.1-2283.1-3483.1-4183.1-4983.1-5783.2-183.2-183.2-883.2-1783.2-2983.383.3.183.3.283.3.383.3.483.3.583.3.683.483.4.183.4.283.4.383.4.483.4.583.4.683.4.783.4.883.4.983.4.10INSTRUMENTATION ReactorTripSystem(RTS)Instrumentation Engineered SafetyFeatureActuation System(ESFAS)Instrumentation PostAccidentMonitoring

{PAN)Instrumentation LossofPower(LOP)DieselGenerator (DG)StartInstrumentation

...........Containment Ventilation Isolation Instrumentati ControlRoomEmergency AirTreatment System(CREATS)Actuation Instrumentation REACTORCOOLANTSYSTEM(RCS)RCSPressure, Temperature, andFlowDeparture fromNucleateBoiling(DNB)LimitsRCSMinimumTemperature forCriticality.

RCSPressureandTemperature (P/T)LimitsRCSLoops-MODE1>8.5%RTP.RCSLoops-NODES1s8.5/RTP,2,and3RCSLoops-MODE4RCSLoops-MODE5,loopsFilledRCSLoops-MODE5,LoopsNotFilledPressurizer Pressurizer SafetyValveson83.3-183.3-183.3-6483.3-10883.3-13083.3-,13883.3-14683.4-.183.4-183.4-883.4-1283.4-2083.4-2483.4-3183.4-3783.4-4383.4-4783.4-5396i2200087 96i2i6I'ORADOCK05000244PPDR(continued)

R.E.GinnaNuclearPowerPlantivRevision1 TABLEOFCONTENTS3.483.4.1183.4.1283.4.1383.4.1483.4.1583.4.1683.583.5.183.5.283.5.383.5.4REACTORCOOLANTSYSTEM(RCS)(continued)

Pressurizer PowerOperatedReliefValves(PORVs)LowTemperature Overpressure Protection (LTOP)SystemRCSOperational LEAKAGERCSPressureIsolation Valve(PIV)Leakage..RCSLeakageDetection Instrumentation RCSSpecificActivityEHERGENCY CORECOOLINGSYSTEMS(ECCS)Accumulators 0~~~~~~~~~~~~ECCS-NODES'1,2,and3ECCS-MODE 4.Refueling WaterStorageTank(RWST)~~~~~~~~~~83.4-5883.4-6883.4-8583.4-9283.4-10083.4-10883.5-183.5-183.5-1083.5-2583.5-2983.683.6.183.6.283.6.383.6.483.6.583.6.63.6.783.6-183.6-183.6-883.6-1883.6-3883.6-42CONTAINMENT SYSTEMSContainment Containment AirLocksContainment Isolation Boundaries

.........Containment PressureContainment AirTemperature Containment Spray(CS),Containment Recirculation FanCooler(CRFC),NaOH,andContainment Post-Accident CharcoalSystems...............83.6'-46HydrogenRecombiners

..............83.6-6683.783.7.183.7.23.7.383.7.483.7.583.7.683.7.783.7.883.7.983.7.1083.7.1183.7.1283.7.1383.7.14PLANTSYSTEMSHainSteamSafetyValves(HSSVs)....HainSteamIsolation Valves(MSIVs)andNon-Return CheckValves.....HainFeedwater Regulating Vhlves(HFRVs),Associated BypassValves,andMainFeedwater PumpDischarge Valves(MFPDVs)Atmospheric ReliefValves(ARVs)..Auxiliary Feedwater (AFW)System........Condensate StorageTanks(CSTs)Component CoolingWater(CCW)System......ServiceWater(SW)System~ControlRoomEmergency AirTreatment System(CREATS)...Auxiliary BuildingVentilation System(ABVS)SpentFuelPool(SFP)WaterLevelSpentFuelPool(SFP)BoronConcentration SpentFuelPool(SFP)StorageSecondary SpecificActivity3.7-13.7-183.7-683.7-1383.7-2283.7-2783.7-4283.7-4683.7-5583.7-6583.7-7583.7-8283.7-8683.7-9083.7-97(continued)

R.E.GinnaNuclearPowerPlantRevision TABLEOFCONTENTS83.883.8.183.8.283.8.383.8.483.8.583.8.683.8.783.8.883.8.983.8.1083.983.9.183.9.2l83.9383.9.483.9.583.9.6ELECTRICAL POWERSYSTEMS.ACSources-MODES1,2,3,and4...ACSources-MODES5and6DieselFuelOilDCSources-MODES1,2,3,and4....DCSources-MODES5and6BatteryCellParameters ACInstrument BusSources-HODES1,2,3,ACInstrument BusSources-MODES5and6Distribution Systems-MODES1,2,3,andDistribution Systems-MODES5and6REFUELING OPERATIONS

.BoronConcentration NuclearInstrumentation Containment Penetrations

.......-.ResidualHeatRemoval(RHR)andCoolantCirculation-Mater Levela23Ft'esidualHeatRemoval(RHR)andCoolantCirculation

-WaterLevel<23FtRefueling CavityWaterLevel~~0~~and4483.8-183.8-183.8-2483.8-3183.8-3683.8-4683.8-5283.8-5783.8-6483.8-7083.8-8383.9-183.9-183.9-683.9-1083.9-1683.9-2183.9-25R.E.GinnaNuclearPowerPlantviRevision1 RodGroupAlignment LimitsB3.1.4BASESACTIONSB.2B.3B.4B.5and8.6(continued)

Verifying that'Fo(Z) andF~arewithintherequiredlimits(i.e.,SR3.2.1.1andSR3.2.2.1)ensuresthatcurrentoperation't z75%RTPwitharodmisaligned isnotresulting inpowerdistributions thatmayinvalidate safetyanalysisassumptions atfullpower.TheCompletion Timeof72hoursallowssufficient timetoobtainfluxmapsofthecorepowerdistribution usingtheincorefluxmappingsystemandtocalculate Fo(Z)andF~.Oncecurrentconditions havebeenverifiedacceptable, timeisavailable toperformevaluations ofaccidentanalysistodetermine thatcorelimitswillnotbeexceededduringaDesignBasisAccidentforthedurationofoperation undertheseconditions.

Asam'inimum, thefollowing accidentanalysesshallbere-evaluated:

a~b.C.d.e.f.g.Rodinsertion characteristics; Rodmisalignment; Smallbreaklossofcoolantaccidents (LOCAs);Rodwithdrawal atfullpower;LargebreakLOCAs;Mainsteamline break;andRodejection.

ACompletion Timeof5daysissufficient timetoobtaintherequiredinputdataandtoperformtheanalysis.

C.1WhenRequiredActionsofCondition Bcannotbecompleted withintheirCompletion Time,theplantmustbebroughttoaMODEorCondition inwhichtheLCOrequirements arenotapplicable.

Toachievethisstatus,theplantmustbebroughttoatleastMODE2withK,<<<1.0within6hours,whichobviatesconcernsaboutthedevelopment ofundesirable xenonorpowerdistributions.

TheallowedCompletion Timeof6hoursisreasonable, basedonoperating experience, forreachingMODE2withK,<<<1.0fromfullpowerconditions inanorderl'ymannerandwithoutchallenging plantsystems.(continued)

R.E.GinnaNuclearPowerPlant83.I-30RevisionI BASESRTSInstrumentation B3.3.1ACTIONS(continued)

U.landU.2Condition UappliestotheRTBUndervoltage andShuntTripMechanisms (i.e.,diversetripfeatures) inMODES1and2.Condition UappliesonaRTBbasis.Thisallowsonediversetripfeaturetobeinoperable oneachRTB.However,withtwodiverse.tripfeaturesinoperable (i.e.,oneoneachoftwodifferent RTBs),atleastonediversetripfeaturemustberestoredtoOPERABLEstatuswithin1hour.TheCompletion Timeof1hourisreasonable considering thelowprobability ofaneventoccurring duringthistimeinterval.

Withonetripmechanism foroneRTBinoperable, itmustberestoredtoanOPERABLEstatuswithin4Shours.TheaffectedRTBshallnotbebypassedwhileoneofthediversetripfeaturesisinoperable exceptforthetimerequiredtoperformmaintenance tooneofthediversetripfeatures.

Theallowable timeforperforming maintenance ofthediversetripfeatures'is 6hoursforthereasonsstatedunderCondition T.TheCompletion Timeof48hoursforRequiredActionU.2isreasonable considering thatinthisCondition thereisoneremaining diversetripfeaturefortheaffectedRTB,andoneOPERABLERTBcapableofperforming thesafetyfunctionandgiventhelowprobability ofaneventoccurring duringthisinterval.

V.1IftheRequiredActionandAssociated Completion TimeofCondition R,S,T,orUisnotmet,theplantmustbeplacedinaNODEwheretheFunctions arenolongerrequiredtobeOPERABLE.

Toachievethisstatus,theplantmustbeplacedinNODE3withinthenext6hours.TheCompletion Timeof6hoursisreasonable, basedonoperating experience, toreachMODE3fromfullpowerconditions inanorderlymannerwithoutchallenging plantsystems.Itshouldbenotedthatforinoperable channelsofFunctions 16a,16b,16c,and16d,theMODEofApplicability willbeexitedbeforeRequiredActionV.1iscompleted.

Therefore, theplantshutdownmaybestoppeduponexitingtheNODEofApplicability perLCO3.0.2.(continued)

R.E.GinnaNuclearPowerPlantB3.3-50Revision1 00 BASESRTSInstrumentation B3.3.1ACTIONS(continued)

M.landW.2Condition Mappliestothefollowing reactortripFunctions inMODE3,4,or5withtheCRDSystemcapableofrodwithdrawal orallrodsnotfullyinserted:

~RTBs;~RTBUndervoltage andShuntTripMechanisms; and~Automatic TripLogic.Mithtwotripmechanisms irioperable, atleastonetripmechanism mustberestoredtoOPERABLEstatuswithin1hour.TheCompletion Timeof1hourisreasonable considering thelowprobability ofaneventoccurring duringthistimeihterval; Mithonetripmechanism ortraininoperable, theinoperable tripmechanism ortrainmustberestoredtoOPERABLEstatuswithin48hours.Forthetripmechanisms, Condition MappliesonaRTBbasis.Thisallowsonediversetripfeaturetobeinoperable oneachRTB.However,withtwodiversetripfeaturesinoperable (i.e.,oneoneachoftwodifferent RTBs),atleastonediversetripfeaturemustberestoredtoOPERABLEstatuswithin1hour.TheCompletion Timeisreasonable considering thatinthisCondition, theremaining OPERABLEtrainisadequatetoperformthesafetyfunction, andgiventhelowprobability ofaneventoccurring duringthisinterval.

X.landX.2IftheRequiredActionandAssociated Completion TimeofCondition Misnotmet,theplantmustbeplacedinaNODEwheretheFunctions arenolongerrequired.

Toachievethisstatus,actionbemustinitiated immediately tofullyinsertallrodsandtheCRDSystemmustbeincapable ofrodwithdrawal within1hour.TheseCompletion Timesarereasonable, basedonoperating experience toexittheMODEofApplicability inanorderlymanner.R.E.GinnaNuclearPowerPlantB3.3-51(continued)

~Revision1 ESFASInstrumentation B3.3.2BASESAPPLICABLE SAFETYANALYSES, LCO,andAPPLICABILITY (continued) e.AuxiliarFeedwater

-Undervolta e-BusllAandllBTheUndervoltage-BusllAand11BFunctiohmustbeOPERABLEinMODES1,2,and3toensurethattheSGsremaintheheatsinkforthereactor.InMODE4,AFWactuation isnotrequiredtobeOPERABLEbecauseeitherAFWorRHRwillalreadybeinoperation toremovedecayheatorsufficient timeisavailable tomanuallyplaceeithersysteminoperation.

ThisFunctionisnotrequiredtobeOPERABLEinMODES5and6becausethereisnotenoughheatbeinggenerated inthereactortorequire'he SGsasaheatsink.Alossofpowerto4160VBusllAand11Bwillbeacc'ompanied byalossofpowertobothMFWpumpsandthesubsequent needforsomemethodofdecayheatremoval.Thelossofoffsitepoweris'etectedbyavoltagedroponeachbus.LossofpowertobothbuseswillstarttheturbinedrivenAFWpumptoensurethatatleastoneSGcontainsenoughwatertoserveastheheatsinkforreactordecayheatandsensibleheatremovalfollowing thereactortrip.Eachbusisconsidered aseparateFunctionforthepurposeofthisLCO.IAuxiliarFeedwater-Tri OfBothHainFeedwater

~PumsATripofbothHFWpumpsisanindication ofalossofHFWandthesubsequent needforsomemethodofdecayheatandsensibleheatremoval.TheHFWpumpsareequippedwithabreakerpositionsensingdevice.Anopensupplybreakerindicates thatthepump.isnotrunning.TwoOPERABLEchannelsperHFWpumpsatisfyredundancy requirements withtwo-out-of-two logic.EachHFWpumpisconsidered aSeparateFunctionforthepurposeofthisLCO.AtripofbothHFWpumpsstartsbothmotordrivenAFW(HDAFW)pumpstoensurethatatleastoneSGisavailable withwatertoactastheheatsinkforthereactor.However,thisactuation oftheHDAFWpumpsi'snotcreditedinthemitigation ofanyaccident.

(continued)

R.E.GinnaNuclearPowerPlantB3.3-92Revision4 ESFASInstrumentation 83.3.2BASESAPPLICABLE SAFETYANALYSES, LCO,andAPPLICABILITY f.AuxiliarFeedwater-TriOfBothHainFeedwater

~Puns(continued)

DuringHODES1and2,theAFWpumpsmaybeproviding forremovalofdecayheatwiththeHFWpumpsremovedfromservice.Topreventanunnecessary actuation ofbothHDAFWpumpsundertheseconditions, aHFWpumpbreakermaybeplacedinthetestpositionprovideditiscapableofbeingtrippedonundervoltage andovercurrent conditions ontheassociated 4160Ybus.(continued)

R.E.GinnaNuclearPowerPlantB3.3-92aRevision4

ESFASInstrumentation B3.3.2BASESACTIONS(continued)

IftheRequiredActionsandCompletion TimesofCondition Larenotmet,theplantmustbebroughttoaMODEinwhichtheLCOdoesnotapply.Toachievethisstatus,theplantmustbebroughttoatleastMODE3within6hoursandpressurizer pressurereducedto<2000psigwithin12hours.TheallowedCompletion Timesarereasonable, basedon.operating experience, toreachtherequiredplantconditions fromfullpowerconditions inanorderlymannerandwithoutchallenging plantsystems.N.lCondition NappliesifaAFMManualInitiation channelisinoperable.

Ifamanualinitiation switchisinoperable, theassociated AFMorSAFMpumpmustbedeclaredinoperable andtheapplicable Conditions ofLCO3.7.5,"Auxiliary Feedwater (AFM)System"mustbeenteredimmediately.

EachAFMmanualinitiation switchcontrolsoneAFMorSAFWpump.Declaring theassociated pumpinoperable ensuresthatappropriate actionistakeninLCO3.7.5basedonthenumberandtypeofpumpsinvolved.

SURVEILLANCE RE(UIREHENTS TheSRsforeachESFASFunctionareidentified bytheSRscolumnofTable3.3.2-1.~Eachchannelofprocessprotection suppliesbothtrainsoftheESFAS.WhentestingChannel1,TrainAandTrain8mustbeexamined.

Similarly, TrainAandTrainBmustbeexaminedwhentestingChannel2,Channel3,andChannel4(ifapplicable).

TheCHANNELCALIBRATION andCOTsareperformed inamannerthatisconsistent withtheassumptions usedinanalytically calculating therequiredchannelaccuracies.

ANotehasbeenaddedtotheSRTabletoclarifythatTable3.3.2-1determines which.SRs applytowhichESFASFunctions.

{continued)

R.E.GinnaNuclearPowerPlant83.3-100Revision4 PAHInstrumentation B3.3.3BASESLCO19,20.AFMFlow(continued)

TheAFWSystemprovidesdecayheatremovalviatheSGsandiscomprised ofthepreferred AFMSystemandtheStandbyAFM(SAFM)System.Theuseofthepreferred AFMorSAFWSystemtoprovidethisdecayheatremoval.functionis.dependent uponthetypeofaccident.

AFWflowindication isrequiredfromthethreepumptrainswhichcomprisethepreferred AFWSystemsincethesepumpsautomatically startonvariousactuation signals.Thefailureofthepreferred AFWSystem(e.g.,duetoahighenergylinebreak(HELB)intheIntermediate Building)'s detectedbyAFMflowindication.

Atthispoint,theSAFMSystemismanuallyalignedtoprovidethedecayheatremovalfunction.

SAFMflowcanalsobeusedtoverifythatAFWflowisbeingdelivered totheSGs.However,theprimaryindication ofthisisprovidedbySGwaterlevel.Therefore, flowindication fromtheSAFWpumpsisnotrequired.

Eachofthethreepreferred AFWpumptrainshastworedundant transmitters; however,onlytheflowtransmitter suppliedpowerfromthesameelectrical trainastheAFMpumpisrequiredforthisLCO.Therefore, flowtransmitters FT-2001{HCBindicator FI-202lA) andFT-2006(HCBindicator FI-2023A) comprisethetworequiredchannelsforSGAandFT-2002(HCBindicator FI-'2022A) andFT-2007(HCBindicator FI-2024A) comprisethetworequiredchannelsforSGB.(continued)

R.E.GinnaNuclearPowerPlantB3.3-12lRevisionI

LOPDGStartInstrumentation B3.3.4BASESAPPLICABLE SAFETYANALYSESTheLOPDGstartinstrumentation isrequiredfortheESFSystemstofunctioninanyaccidentwithalossofoffsitepower.ItsdesignbasisisthatoftheESFActuation System(ESFAS).Undervoltage conditions whichoccurindependent ofanyaccidentconditions resultinthestartandbusconnection oftheassociated DG,butnoautomatic loadingoccurs.Accident"analyses credittheloadingoftheDGbasedonthe*lossofoffsitepowerduringaDesignBasisAccident(DBA).ThemostlimitingDBAofconcernisthelargebreaklossofcoolantaccident(LOCA)whichrequiresESFSystemsin'rdertomaintaincontainment int'egrity andprotectfuelcontained withinthereactorvessel(Ref.2).Thedetection andprocessing ofanundervoltage condition, andsubsequent DGloading,hasbeenincludedinthedelaytimeassumedforeachESFcomponent requiring DGsuppliedpowerfollowing aDBAandlossofoffsitepower.Thelossofoffsitepowerhasbeenassumedtooccureithercoincident withtheDBAoratalaterperiod(40to90secondsfollowing thereactortrip)duetoagriddisturbance causedbytheturbinegenerator trip.Ifthelossofoffsitepoweroccursatthesametimeasthesafetyinjection (SI)signalparameters arereached,theaccidentanalysesassumestheSIsignalwillactuatetheDGwithin2secondsandthattheDGwillconnecttotheaffectedsafeguards buswithinanadditional 10seconds(12secondstotaltime).IfthelossofoffsitepoweroccursbeforetheSIsignalparameters arereached,theaccidentanalysesassumestheLOPDGstartinstrumentation willactuatetheDGwithin2.75secondsandthattheDGwillconnectto.theaffectedsafeguards buswithinanadditional 10seconds(12:75secondstotaltime).IfthelossofoffsitepoweroccursaftertheSIsignalparameters arereached(griddisturbance),

theaccidentanalysesassumestheDGwillconnecttothebuswithin1.5secondsafterthefeederbreakertothebusi.sopened(DGwas'actuated bySIsignal).Thegriddisturbance hasbeenevaluated basedona140'Fpeakcladtemperature penaltyduringaLOCAanddemonstrated toresultinacceptable consequences.

(continued)

R.E.GinnaNuclearPowerPlant'3.3-131Revision1 Containment Ventilation Isolation Instrumentation B3.3.5BASESACTIONS(continued)

ANotehasbeenaddedtotheACTIONStoclarifytheapplication of.Completion Timerules.TheConditions ofthisSpecification maybeenteredindependently foreachFunctionlistedinTable3.3.5-1.TheCompletion Time(s)oftheinoperable channel(s)/train(s) ofaFunctionwillbetrackedseparately foreachFunctionstartingfromthetimetheCondition wasenteredforthatFunction.

A.lCondition Aappliestothefailureofonecontainment ventilation isolation radiation monitorchannel.Sincethetwocontainment radiation monitorsmeasuredifferent parameters, failureofasinglechannelmayresultinlossoftheradiation monitoring Functionforcertainevents.Consequently, thefailedchannelmustberestoredtoOPERABLEstatus.The4hourallowedtorestoretheaffectedchannelisjustified bythelowlikelihood ofeventsoccurring duringthisinterval, andrecognition thatoneormoreoftheremaining channelswillrespondtomostevents.8.1Condition BappliestoallContainment Ventilation Isolation Functions andaddresses thetrainorientation ofthesystemandthemasterandslaverelaysfortheseFunctions.

Italsoaddresses thefailureofmultipleradiation monitoring

channels, ortheinability torestoreasinglefailedchanneltoOPERABLEstatusinthetimeallowedforRequiredActionA.l.Ifatrainisinoperable, multiplechannelsareinoperable, ortheRequiredActionandassociated Completion TimeofCondition Aarenotmet,operation maycontinue-aslongastheRequiredActionfortheapplicable Conditions ofLCO3.6.3ismetforeachvalvemadeinoperable byfailureofisolation instrumentation.

ANoteisaddedstatingthatCondition Bisonlyapplicable inMOOEI,2,3,or4.(continued)

R.E.GinnaNuclearPowerPlantB3.3-142RevisionI

Containment Ventilation Isolation Instrumentation 83.3.5BASESACTIONS(continued)

C.landC.2Condition CappliestoallContainment Ventilation Isolation Functions andaddresses thetrainorientation ofthesystemandthemasterandslaverelaysfortheseFunctions.

Italsoaddresses thefailureofmultipleradiation monitoring

channels, ortheinability torestoreasinglefailedchanneltoOPERABLEstatusinthetimeallowedforRequiredActionA.l.Ifatrainisinoperable, multiplechannelsareinoperable, ortheRequiredActionandassociated Completion TimeofCondition Aarenotmet,operation maycontinueaslongastheRequiredActiontoplaceeachvalveinitsclosedpositionortheapplicable Conditions ofLCO3.9.3,"Containment Penetrations,"

aremetforeachvalvemadeinoperable byfailureofisolation instrumentation.

TheCompletion TimefortheseRequired'ActionsisImmediately.

ANotestatesthatCondition Cisapplicable duringCOREALTERATIONS andduringmovementofirradiated fuelassemblies withincontainment.

SURVEILLANCE REQUIREMENTS ANotehasbeenaddedtotheSRTabletoclarifythatTable3.3.5-1determines whichSRsapplytowhichContainment Ventilation Isolation Functions.

SR3.3.5.1Performance oftheCHANNELCHECKonceevery24hoursensuresthata.grossfailureofinstrumentation hasnotoccurredandtheinstrumentation continues tooperateproperlybetweeneachCHANNELCALIBRATION.

TheCHANNELCHECKagreement criteriaaredetermined bytheplantstaff,basedonacombination ofthechannelinstrument uncertainties, including indication andreadability.

Ifachannelisoutsidethecriteria, itmaybeanindication thatthesensororthesignalprocessing equipment hasdriftedoutsideitslimit.(continued)

R.E.GinnaNuclearPowerPlantB3.3-143RevisionI Containment Ventilation Isolation Instrumentation B3.3.5BASESSURVEILLANCE REqUIRENENTS SR3.3.5.1(continued)

TheFrequency isbasedonoperating experience thatdemonstrates channelfailureisrare.TheCHANNELCHECKsupplements lessformal,butmorefrequent, checksofchannelsduringnormaloperational useofthedisplaysassociated withtheLCOrequiredchannels..

SR3.3.5.2ACOTisperformed every92daysoneachrequiredchanneltoensuretheentirechannelwillperformtheintendedFunction.

TheFrequency isbasedonthestaffrecommendation forincreasing theavailability ofradiation monitorsaccording toNUREG-1366 (Ref.2).Thistestverifiesthecapability oftheinstrumentation toprovidethecontainment ventilation systemisolation.

Thesetpointshallbeleftconsistent withthecurrentplantspecificcalibration procedure tolerance.

SR3.3.5.3ThisSRistheperformance ofanACTUATION LOGICTEST.Allpossiblelogiccombinations, withandwithoutapplicable permissives, aretestedforeachprotection function.

Inaddition, themasterrelayistestedforcontinuity.

ThisverifiesthatthelogicmodulesareOPERABLEandthereisan.intactvoltagesignalpath,tothemasterrelaycoils.Thistestisperformed'very 24months.TheSurveillance intervalisacceptable basedoninstrument reliability andindustryoperating experience.

(continued)

R.E.GinnaNuclearPowerPlantB3.3-144RevisionI

Containment Ventilation Isolation Instrumentation B3.3.5BASESSURVEILLANCE REQUIREMENTS (continued)

SR3.3.5.4ACHANNELCALIBRATION isperformed every24months,orapproximately ateveryrefueling.

CHANNEL'ALIBRATION isacompletecheckoftheinstrument loop,including thesensor.Thetestverifiesthatthechannelrespondstoameasuredparameter withinthenecessary rangeandaccuracy.

TheFrequency isbasedonoperating experience andisconsistent withthetypicalindustryrefueling cycle.REFERENCES 1.10CFR100.11.2.NUREG-1366.

R.E.GinnaNuclearPowerPlantB3.3-145Revision1

RCSPressure, Temperature, andFlowDNBLimitsB3.4.1BASES(continued)

APPLICABLE SAFETYANALYSESTherequirements ofthisLCOrepresent theinitialconditions forDNBlimitedtransients analyzedintheplantsafetyanalyses(Ref.1).Thesafetyanalyseshaveshownthattransients initiated fromthelimitsofthisLCOwillresultinmeetingtheDNBdesigncriterion.

Thisistheacceptance limitfortheRCSDNBparameters.

,Changestotheplantthatcouldimpacttheseparameters mustbeassessedfortheirimpactontheDNBdesigncriterion.

Thetransients analyzedincludelossofcoolantfloweventsanddroppedorstuckrodevents.Akeyassumption fortheanalysisof.theseeventsisthatthecorepowerdistribution iswithinthelimitsofLCO3:1.6,"ControlBankInsertion Limits";LCO3.2.3,"AXIALFLUXDIFFERENCE (AFD)";andLCO3.2.4,"QUADRANT POWERTILTRATIO(QPTR)."Thelimitforpressurizer pressureisbasedona+30psiginstrument uncertainty.

Theaccidentanalysesassumethatnominalpressureismaintained at2235psig.ByReference 2,minorfluctuations areacceptable providedthatthetimeaveragedpressureis2235psig.TheRCScoolantaveragetemperature limitisbasedona+4'Finstrument uncertainty whichincludesa+1.5Fdeadband.

ItisassumedthatnominalT.,ismaintained within+1.5FofthenominalT.,specified intheCOLR.ByReference 2,minorfluctuations areacceptable providedthatthetimeaveragedtemperature iswithin1.5Fofnominal.ThelimitforRCSflowrateisbasedonthenominalT.andSGpluggingcriterialimit.Additional marginofapproximately 3%isthenaddedforconservatism.

TheRCSDNBparameters satisfyCriterion 2oftheNRCPolicyStatement.

LCOThisLCOspecifies limitsonthemonitored processvariables

-pressurizer

pressure, RCSaveragetemperature, andRCStotalflowrate-toensurethecoreoperateswithinthelimitsassumedinthesafetyanalyses.

OpetatingwithintheselimitswillresultinmeetingtheDNBdesigncriterion intheeventofaDNBlimitedtransient.

(continued)

'.E.GinnaNuclearPowerPlantB3.4-3Revision4 RCSLoops-MODE 5,LoopsFilledB3.4.7BASES(continued)

APPLICABILITY InMODE5withRCSloopsfilled,thisLCOrequiresforcedcirculation ofthereactorcoolanttoremovedecayheatfromthecoreandtoprovideproperboronmixing.TheRCSloopsareconsidered filleduntiltheisolation valvesareopenedtofacilitate drainingoftheRCS.Theloopsarealsoconsidered filledfollowing thecompletion offillingandventingtheRCS.However,inbothcases,loopsfilledisbasedontheabilitytouseaSGasabackup.TobeabletotakecreditfortheuseofoneSGtheabilitytopressurize to50psigandcontrolpre'ssure intheRCSmustbeavailable.

Thisistopreventflashingandvoidformation atthetopoftheSGtubeswhichmaydegradeorinterrupt thenaturalcirculation flowpath(Ref.2).OneloopofRHRprovidessufficient ci'rculation forthesepurposes.

However,oneadditional RHRloopisrequiredtobeOPERABLE, orthesecondary sidewaterlevelofatleastoneSGisrequiredtobea16%.Operation ILC0,3.4.4, LCO3.4.5,LCO3.4.6,LCO3.4.8,LCO3.9.4,LCO3.9.5,inother'MODES iscoveredby:"RCSLoops-MODE1>8.5%RTP";"RCSLoops-'MODES1s8.5%RTPy2yAND3"RCSLoops-MODE4";"RCSLoops-MODE5,LoopsNotFilled";"Residual HeatRemoval(RHR)andCoolantCirculation

-WaterLevel~23Ft"(MODE6);and"Residual HeatRemoval(RHR)andCoolantCirculation

-MaterLevel<23Ft"(MODE6).ACTIONSA.landA.2IfoneRHRloopisinoperable andbothSGshavesecondary sidewaterlevels<16%,redundancy forheatremovalislost.Actionmustbeinitiated immediately torestoreasecondRHRlooptoOPERABLEstatusortorestoreatleastoneSGsecondary sidewaterlevel.EitherRequiredActionA.1orRequiredActionA.2willrestoreredundant heatremovalpaths.Theimmediate Completion Timereflectstheimportance ofmaintaining theavailability oftwopathsforheatremoval.TheactiontorestoremustcontinueuntilanRHRloopisrestoredtoOPERABLEstatusorSGsecondary sidewaterlevelisrestored.

(continued)

R.E.GinnaNuclearPowerPlantB3.4-40Revision1 RCSLoops-NODE5,LoopsFilled83.4.7BASESSURVEILLANCE REQUIREMENTS (continued)

SR3.4.7.3Verification thatasecondRHRpumpisOPERABLEensuresthatanadditional pumpcanbeplacedinoperation, ifneeded,tomaintaindecayheatremovalandreactorcoolantcirculation.

Verification isperformed byverifying properbreakeralignment andpoweravailable tothestandbyRHRpump.Ifsecondary sidewaterlevelisz16%inatleastoneSG,this;Surveillance isnotneeded.TheFrequency of7daysisconsidered reasonable inviewofotheradministrative controlsavailable and'hasbeenshowntobeacceptable byoperating experience.

REFERENCES 1.UFSAR,Section14.6.1.2.6 2.NRCInformation Notice95-35.R.E.GinnaNuclearPowerPlant83.4-42Revision1

CS,CRFC,NaOH,andContainment'Post-Accident CharcoalSystemsB3.6.6BASESAPPLICABLE SAFETYANALYSIS(continued)

Theanalysisandevaluation showthatundertheworstcasescenario, thehighestpeakcontainment pressureis59.8psigandthepeakcontainment temperature is374F(bothexperienced duringanSLB).Bothresultsmeettheintentofthedesignbasis.(SeetheBasesforLCO3.6.4,"Containment Pressure,"

andLCO3.6.5,"Containment Temperature,"

foradetaileddiscussion.)

Theanalysesandevaluations assumeaplantspecificpowerlevelof102%,oneCStrainandonecontainment coolingtrainoperating, andinitial(pre-accident) containment conditions of120Fand1.0psig..Theanalysesalsoassumearesponsetimedelayedinitiation toprovideconservative peakcalculated containment pressureandtemperature responses.

Forcertainaspectsoftransient accidentanalyses, maximizing thecalculated containment pressureisnotconservative.

Inparticular, theeffectiveness oftheEmergency CoreCoolingSystemduringthecorerefloodphaseofaLOCAanalysisincreases withincreasingcontainment backpressure.

Forthesecalculations, thecontainment backpressure iscalculated inamannerdesignedtoconservatively

minimize, ratherthanmaximize, thecontainment pressureresponseinaccordance with10CFR50,AppendixK(Ref.7).Theeffectofaninadvertent CSactuation isnotconsidered sincethereisnosinglefailure,including thelossofoffsitepower,whichresultsinaspuriousCSactuation.

ThemodeledCSSystemactuation forthecontainment analysis's basedonaresponsetimeassociated withexceeding thecontainment Hi-Hipressuresetpointtoachieving fullflowthroughtheCSnozzles.ToincreasetheresponseoftheCSSystem,theinjection linestothesprayheadersaremaintained filledwithwater.TheCSSystemtotalresponsetimeis28.5secondsforonepumptotheuppersprayheaderand26.5secondsfor.twopumps(averagetimebetweenupper,andlowersprayheaders).

Thesetotalresponsetimes(assuming thecontainment Hi-Hipressureisreachedattimezero)includesopeningofthemotoroperatedisolation valves,containment spraypumpstartup,andspraylinefilling(Ref.8).(continued)

R.E.GinnaNuclearPowerPlantB3.6-51Revision1 CS,CRFC,NaOH,andContainment Post-Accident CharcoalSystemsB3.6.6IyIllRUNS1ty010LcScndtTltcRtVSTandanociatcd cotnmonlincbsddtcatcd bytA3033'SPumpTrainNaonSystem-Notaddrcslcd byLCD3.6.6CVCSIIQ4044orIultratlon onRNRIcyItIIIIIIIIN~ONI~otII011~fk",IISlII450ACSfteoteAIII~eloectoIIISdottotaaIIatyA~IIotlat4410IVIOeeOoedooeet SteerlyetaIIONotetoetettoChoetodrdtotA~CheteoelIutet4~+410AQayca44lc4114Cootoeooeet aeterICeaQ9ItotdeclCSIteea0FigureB3.6.6-1Containment SprayandNaOHSystemsR.E.GinnaNuclearPowerPlantB3.6-64Revision1' CS,CRFC,NaOH,andContainment Post-Accident CharcoalSystemsB3.6.6//Containment Recirculating FanCoolingUnitA/->QP/Containment Recirculating FanCoolingUnitB/Containmcnt Recirculating FanCoolingUnitC58I5873(FO)(FC)5875(FC)586(FO)PostAccidCharcoalFilterUnitA587(FO)5874(FO)PostAccidentCharcoalFilterUnitB/Containmcn Recirculating

,FanCoolingUnitD5877(FO)VVariousSupplyPointsForillustration onlyNotes:1.Dampers5871and5872areassociated withPostAccidentCharcoalFilterUnitA2.Dampers5874and5876areassociated withPostAccidentCharcoalFilterUnitB3.Damper5873isassoicated withbothCRFCUnitAandPostAccidentCharcoalFilterUnitA4.Damper5875isassociated withbothCRFCUnitCandPostAccidentCharcoalFilterUnitBFigureB3.6.6-2CRFCandContainment Post-Accident CharcoalSystemsR.E.GinnaNuclearPowerPlantB3.6-65Revision1 WFRYBypassYalvc421l-39t399l3995A3993SGAStputpo.PA3973Fccdeatcr HeaterSAMptCY39~39SSA3NSA3Ãt39StgSN93933A3933Oe2tt)CS2OsC23CBCUthCaaCh~tttsChFtoraCoadeosatc BoosterbmpsMFWLcadlog EdScTtaosdoccr g3NO398039133932A3N2hWVPotapB39F4MFPDY3926Fccdwctcr HeaterSB4.LCO3.7.3Condition 8enteredwhenanyeombinalion ofvalveinopcrabilities resultsinanuniso!able ftowpathfromlhecondensate boosterpumpstooncormoreSGs.Notes:1.LCO3.7.3Condition AenteredwhenMFPDV3976and/or3977isinoperable.

2.LCO3.7.3CondiuonBenteredcvhenMFlCV4269and/or4270isinoperable.

3.LCO3.7.3Condition CenteredwhenMFRVBypassValve4271and/or4272isinoperable.

MAYBypassYalw422239SSS934MHCY3N63992422039S4A39'SdhorustraonoY3994lSOBOcnC5.(cnChC5DDCay~NO~(CayCh

AFWSystemB3.7.5B3.7PLANTSYSTEHSB3.7.5Auxiliary Feedwater (AFW)SystemBASESBACKGROUND TheAFWSystemsuppliesfeedwater tothesteamgenerators (SGs)toremovedecayheatfromtheReactorCoolantSystem(RCS)uponthe.lossofnormalfeedwater

.supply.TheSGsfunctionasaheatsinkforcoredecayheat.Theheatloadisdissipated byreleasing steamtotheatmosphere fromtheSGsviathemainsteamsafetyvalves(HSSVs)oratmospheric reliefvalves(ARVs).Ifthemaincondenser isavailable, steammaybereleasedviathesteamdumpvalves.TheAFWSystemiscomprised oftwo'separate systems,apreferred AFMSystemandaStandbyAFW(SAFM)System(Ref.1).~AFMSstemThepreferred AFWSystemconsistsoftwo,motordrivenAFM(HDAFW)pumpsandoneturbinedrivenAFW(TDAFM)pumpconfigured intothreeseparatetrainswhicharealllocatedin.theIntermediate Building(seeFigureB3.7.5-1).

EachHDAFMtrainprovides100%ofAFMflowcapacity, andtheTDAFWpump~provides 200%of,therequiredcapacitytotheSGs,asassumedintheaccidentanalysis.

Thepumpsareequippedwithindependent recirculation linestothecondensate storagetanks(CSTs).EachHDAFWtrainispoweredfromani.ndependent ClasslEpowersupplyandfeedsoneSG,althougheachpumphasthecapability toberealigned fromthecontrolroomtofeedtheother.SGviacross-tie linescontaining normallyclosedmotoroperate'd valves(4000Aand4000B).ThetwoHDAFMtrainswillactuateautomatically onalow-lowlevelsignalineitherSG,openingofthemainfeedwater (HFW)pumpbreakers, asafetyinjection (SI)signal,ortheATWSmitigation systemactuati'on circuitry (AHSAC).Thepumpscan.alsobemanuallystartedfromthecontrolroom.(continued)

R.E.GinnaNuclearPowerPlantB3.7-27Revision5

AFMSystemB3.7.5BASESBACKGROUND (continued)

TheSAFWPumpBuildingenvironment iscontrolled byroomcoolerswhicharesuppliedbythesameSWheaderasthepumptrains.Thesecoolersarerequiredwhentheoutsideairtempe}atureisa80FtoensuretheSAFMPumpBuildingremainss120Fduringaccidentconditions.

TheAFMSystemisdesignedtosupplysufficient watertotheSG(s)toremovedecayheatwithSGpressureatthelowestHSSVsetpressureplusl%%d.Subsequently, theAFWSystemsuppliessufficient watertocooltheplanttoRHRentryconditions, withsteamreleasedthroughtheARVs.APPLICABLE SAFETYANALYSESThedesignbasisoftheAFMSystemis,tosupplywatertotheSG(s)toremovedecayheatandotherresidualheatbydelivering atleasttheminimumrequiredflowratetotheSGsatpressures corresponding tothelowestHSSVsetpressureplus1/.TheAFMSystemmitigates theconsequences'f

.anyeventwiththelossofnormalfeedwater.

ThelimitingDesignBasisAccidents (DBAs)andtransients fortheAFWSystemareasfollows(Ref.2):a.Feedwater LineBreak(FWLB);b.LossofHFM(withandwithoutoffsitepower);c.SteamLineBreak(SLB);d.Smallbreaklossofcoolantaccident(LOCA);e.Steamgenerator tuberupture(SGTR);andf.Externalevents(tornados andseismicevents).AFMisalsousedtomitigatetheeffectsofanATWSeventwhichisabeyonddesignbasiseventnotaddressed bythisLCO.(continued)

R.E.GinnaNuclearPowerPlantB3.7-29Revision5 AFWSystem83.7.5,BASESAPPLICABLE SAFETYANALYSES(continued)

TheAFMSystemdesignissuchthatanyoftheaboveOBAscanbemitigated usingthepreferred AFMSystemorSAFMSystem.FortheFWLB,SLB,andexternaleventsOBAs{itemsa,c,andf),theworstcasescenarioisthelossofallthreepreferred AFWtrainsduetoaHELBintheIntermediate orTurbineBuilding, orafailureoftheIntermediate Buildingblockwalls.Forthesethreeevents,theuseoftheSAFWSystemwithin10minutesisassumedbytheaccidentanalyses.

SinceasinglefailuremustalsobeassumedinadditiontotheHELBorexternalevent,thecapability oftheSAFWSystemtosupplyflowtoanintactSG,couldbecompromised iftheSAFWcross-tie isnot,available.

ForHELBswithincontainment, useofeithertheSAFMSystemortheAFMSystemtotheintactSGisassumedwithin10minutes.(FortheSGTRevents(iteme),theaccidentanalysesassumethatoneAFWtrainisavailable uponaSIsignalorlow-lowSGlevelsignal.Additional inventory isbeingaddedtotherupturedSGasaresultoftheSGTRsuchthatAFWflowisnotacriticalfeatureforthisOBA.ThelossofMFW'(item b)isaCondition 2event(Ref.3)whichplaceslimitsontheresponseoftheRCSfromthetransient (e.g.,nochallenge tothepressurizer poweroperatedreliefvalvesisallowed).

Thisanalysishasbeenperformed assumingnoAFMflowisavailable until10minuteswithacceptable results.ThemostlimitingsmallbreakLOCA(itemd)analysishasalsobeenperformed assumingnoAFWflowwithnoadverseimpactonpeakcladdingtemperature.

Insummary,alllimitingOBAsandtransients havebeenanalyzedassuminga10minutedelayforactuation offlow.(continued)

R.E.GinnaNuclearPowerPlantB3.7-30Revision5 AFWSystemB3.7.5BASESAPPLICABLE SAFETYANALYSES(continued)

IInadditiontoitsaccidentmitigation

function, theenergyandmassadditioncapability oftheAFWSystemisalsoconsideredwithrespecttoHELBswithincontainment.

ForSLBsandFWLBswithincontainment, maximumpumpflowfromallthreeAFWpumpsisassumedfor10minutesuntiloperations canisolatetheflowbytrippingtheAFMpumpsorbyclosingtherespective pumpdischarge flowpath(s).Therefore, themotoroperateddischarge isolation valvesforthemotorHDAFMpumptrains(4007and4008)aredesignedtolimitflowtoz230gpmtolimittheenergyandmassadditionsothatcontainment remainswithindesignlimitsforitemsaandc.TheTDAFMtrainisassumedtobeatrunoutconditions (i.e.,600gpm).TheAFWSystemsatisfies therequirements ofCriterion 3oftheNRCPolicyStatement.

LCOThisLCOprovidesassurance thattheAFWSystemwillperformitsdesignsafetyfunctiontomitigatetheconsequences ofaccidents thatcouldresultinoverpressurization ofthereactorcoolantpressureboundaryorcontainment.

TheAFWSystemiscomprised oftwosystemswhichareconfigured intofivetrains.TheAFWSystemisconsidered OPERABLEwhenthecomponents andflowpathsrequiredtoprovideredundant AFWflowtotheSGsareOPERABLE(seeFiguresB3.7.5-1and3.7.5-2).

Thisrequiresthatthefollowing beOPERABLE:

a.Two'DAFWtrainstakingsuctionfromtheCSTsasrequiredbyLCO3.7.6(andcapableoftakingsuctionfromtheSWsystemwithin10minutes),

andcapableofsupplying theirrespective SGwitha200gpmwithin10minutesands230gpmtotalflowuponAFMactuation; b.TheTDAFMtraintakingsuctionfromtheCSTsasrequiredbyLCO3.7.6(andcapableoftakingsuctionfromtheSWsystemwithin'10minutes),

providedsteamisavailable frombothmainsteamlinesupstreamoftheHSIVs,andcapableofsupplying bothSGswitha200gpmeachwithin10minutes;and(continued)

R.E.GinnaNuclearPowerPlantB3.7-31Revision5 AFWSystem83.7.5BASESLCO(continued) c.TwomotordrivenSAFWtrainscapableofbeinginitiated eitherlocallyorfromthecontrolroomwithin10minutes,takingsuctionfromtheSWSystem,andsupplying theirrespective SGandtheoppositeSGthroughtheSAFWcross-tie linewithz200gpm.Thepiping,valves,instrumentation, andcontrolsintherequiredflowpathsarealsorequiredtobeOPERABLE.

TheTDAFWtrainiscomprised ofacommonpumpandtwoflowpaths.ATDAFWtrainflowpathisdefinedasthesteamsupplylineandtheSGinjection linefrom/tothesameSG.ThefailureofthepumporbothflowpathsrenderstheTDAFWtraininoperable.

Thecross-tie lineforthepreferred HDAFMpumpsisnotrequiredforthisLCO.However,sincetheaccidentanalyseshavebeenperformed assuminga10minutedelayforAFM,andtherearetwoseparatesystems,theuseofthiscross-tie lineisallowedinMODES1,2,and3.Also,providedthattheAFWandSAFWdischarge valvesaresettoprovidetheminimumrequiredflow,the.recirculation linesforthepreferred AFMsystemandSAFWsystempumpsarenotcreditedintheaccidentanalysis.

Therecirculation linesarealsonotrequiredtobeOPERABLEforthisLCOsincetheHSSYsmaintaintheSGpressurebelowthepump'sshutoffhead.TheSAFWPumpBuildingroomcoolersarerequiredtobeOPERABLEwhentheoutsideairtemperature isz80F.Ifoneroomcoolerisinoperable, theassociated SAFWtrainisinoperable.

APPLICABILITY InMODES1,2,and3,theAFWSystemisrequiredtobeOPERABLEintheeventthatitiscalledupontofunctionwhentheHFWSystemislost.Inaddition, theAFWSystemisrequiredtosupplyenoughmakeupwater'toreplacethelostSGsecondary inventory astheplantcoolstoHODE4conditions.

InHODE4,5,or6,theSGsarenotnormallyusedforheatremoval,andtheAFWSystemisnotrequired.

(continued)

R.E.GinnaNuclearPowerPlantB3.7-32Revision5 m44S2001OID5IIIIT2022TDTD5tltDCCI555ID63.CQrl4A5tab~CVlV)ItDCSTA4025LI-----------IlIIa-IX~I40154014Forillustration only4Ols4016Note-t.I'-200l,tI'-2002,Fl'-2006andFf-2007 alsoaddressed byLCO3.3.3.43444026SerriceWaterSctviccWaicr4013SctariccWaictLabeOilCooler36529SISBtubeOinCoolerMDAFIYB4291rIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII403140324310<<5laniM8SteamGcnctamtA43524000AQ4000B4356SIILmGcactamtB3505AI3505BCpI--Mt-++--

=-;II7IToMSlVI3512IIITo<<MSWISSI6IICPI3504B3504ALEGEND:-FlowpathnotrequiredforLCO----Addressed inLCO3.7.6------TDAFWflovvpath AFWTrain(N<<ia

-TDAFWtrainincludesbothsteamandbothinjection Qovvpaths)

LubeOilCoolct014431443CQ~th~IDUlQ ScM9626A6A9629ASAFWPumpC01A4084A9702A970A9706ASteamGenera'or AOtDSVOcD8toChMt<<2<<5CZ'1MtD~4JcnmlhVlIcDSAFWPumpRoomCoolingUnit1BSAFWPumpRoomCoolingUnit1B9708AIf9707AIIII9728IICondenteteTettTank9710A9703BServiceWater1I622B9627B9629B$9707BIII9708BISAFWPumpD9710B9701B4085¹69704B9702B9705B9706BStcamGenerator BcDOLegend:-----Flowpathnot'retluired forLCOSAFWTrainForillustration GnlTlCQ<i'~\h~rDUlB CCWSystem83.7.7BASESBACKGROUND (continued)

Theprincipal safetyrelatedfunctionoftheCCWSystemis'theremovalofdecayheatfromthereactorviatheResidualHeatRemoval(RHR)System.SincetheremovalofdecayheatviatheRHRSystemisonlyperformed duringtherecirculation phaseofanaccident, theCCWpumpsdonotreceiveanautomatic startsignal.Following thegeneration ofasafetyinjection signal,thenormallyoperating CCWpumpwillremaininserviceunlessanundervoltage signalis'.presentoneitherClasslEelectrical Bus14orBus16atwhichtimethepumpisstrippedfromitsrespective bus.ACCWpumpcanthenbemanuallyplacedintoservicepriortoswitching torecirculation operations whichwouldnotberequireduntilaminimumof22.4minutesfollowing anaccident.

APPLICABLE SAFETYANALYSESThedesignbasisoftheCCWSystemisforoneCCWtrainandoneCCWheatexchanger toremovethelossofcoolantaccident(LOCA)heatloadfromthecontainment sumpduringtherecirculation phase.TheEmergency CoreCoolingSystem(ECCS)andcontainment modelsforaLOCAeachconsidertheminimumperformance oftheCCWSystem.Thenormaltemperature oftheCCWiss100F,and,duringLOCAconditions, amaximumtemperature of120Fisassumed.ThispreventstheCCWSystemfromexceeding itsdesigntemperature limitof200F,andprovidesforagradualreduction inthetemperature ofcontainment sumpfluidasitisrecirculated totheReactorCoolantSystem(RCS)bytheECCSpumps.TheCCWSystemisdesignedtoperformitsfunctionwithasinglefailureofanyactivecomponent, assumingacoincident lossofoffsitepower.TheCCWtrains,heatexchangers, andloopheadersaremanuallyplacedintoservicepriortotherecirculation phaseofanaccident(i.e.,22.4minutesfollowing alargebreakLOCA).(continued)

R.E.GinnaNuclearPowerPlantB3.7-47Revision1 717L777FSlPUMPASlPUMP8777M7775iltQhChgLrlCQtrr4rJrDIReturnLineFromNon.Accident LoadsIIIII,IIII~$728I122AI'IIICCW'2&APumpACCWPump8IAIIIIIForiHustration onlyLEGENDIIIIIIIIIIICCWLoopHeaderIICCWTrainIICCWheatexchanger,'

IIIIIIIIToNonAeeldantyLoadsZ725CCWHX8724AIII7338II7348IIIIIIILJJ~OOLIICCWHXAIIII-'l0-IrR-'248133AII134AI~QQi%%&7778777J777N777HSlPUMPC777K777R777G771P777CCSPUMP8777D164CIIIIIIIIIIII764DIIIII73&AHRLOOPA780A741AAHRLOOPARHRLOOP8RHRt.OOPS73887078817707ARHRPUMP18RHRPUMP1A780814187697088708A14&A750AACPA15&A62A74987508742A743813RCP8Excess~tdownHXRxSupportCool~rs75987628qFC7457428814815ACSPVMPA7778777A'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIhG7trltrJLL~th~rD SWSystemB3.7.8BASESAPPLICABLE SAFETYANALYSES(continued)

TheS'Wtrainsandloopheaderareassumedtosupplytofollowing components following anaccident:

a.TheCRFCs,DGsandsafetyinjection pumpbearinghousingcoolersimmediately following asafetyinjection signal(i.e.,aftertheloopheaderbecomesrefilled);

b.Thepreferred AFWandSAFWpumpswithin10minutesfollowing receiptofalowSGlevelsignal;andc.TheCCWheatexchangers within22.4minutesfollowing asafetyinjection signal.TheSWsystem,inconjunction withtheCCMSystem,canalsocooltheplantfromresidualheatremoval(RHR)entryconditions (T.,<350F)toMODE5(T.,<200F)duringnormaloperations.

Thetimerequiredtocoolfrom350F,to200FisafunctionofthenumberofCCWandRHRSystemtrains.thatareoperating.

SinceSWiscomprised ofalargeloopheader,a.passive failurecanbepostulated duringthiscooldownperiodwhichresultsinfailingtheSWSystemtopotentially multiplesafetyrelatedfunctions.

TheSWsystemhasbeenevaluated todemonstrate thecapability tomeetcoolingneedswithanassumed500galleak.TheSMSystemisalsovulnerable toexternaleventssuchastornados.

Theplanthasbeenevaluated forthelossofSWundertheseconditions withtheuseofalternate coolingmechanisms (e.g.,providing fornaturalcirculation usingtheatmospheric reliefvalvesandtheAFMSystems)withacceptable results(Ref.I).Thetemperature ofthefluidsuppliedbytheSWSystemisalsoa.consideration intheaccidentanalyses.

Ifthecoolingwatersupplytothecontainment recirculation fancoolersandCCWheatexchangers istoowarm,theaccidentanalyseswithrespecttocontainment pressureresponsefollowing aSLBandthecontainment sumpfluidtemperature following aLOCAmaynolongerbebounding.

Ifthecoolingwatersupplyistoocold,thecontainment heatremovalsystemsmaybemoreefficient thanassumedintheaccidentanalysis.

Thiscausesthebackpressure incontainment tobereducedwhichpotentially resultsinincreased peakcladtemperatures.

(continued)

R.E.GinnaNuclearPowerPlantB3.7-57RevisionI rr7ToCireuiatmg SVatcrPumpsAndTravelling Screens3rDt/)Cc3~GJtrtJ~4609StVPumpA~47309rSWPumpB46024606IIX46124613StVPumpCIprI202SIS'tVPumpD604460Legend:~StVPumpTrain(one pumpl'romeachclcctricat vainfaired)--~SWLoopHeaderToSlpumps(LCD3')andSafetyRelatedPumpRoomCoolers4623413941394640tToMotor&vanAFWPumps(LCD3.78)II4'7334790ToSlpumps(LCO382) andSafetyRelatedPumpRoomCoolersII4663P~ToNonSafetys~610i~l~ReiatedLoads I(StationAir)LIToDirectM&0Ih4667(LCD3.g.l)III$4559IIIIToDieselcj~WOcncrator B(LCO3.S.I)466SBToSAFWPumpCToCCWHXAandSAFWRootn (LCO3.7.7)andCoolerA(LCO3.7S)SpentFuelPoolHXAA4N27h~4133IN26AIIsIIIIh.A4616IIIIIt$4670ToSAFWpumpDand.SAFWRoomCoo!caB9d27B47799626BIs0-P'473446ISToCCtVHXB(LCD3.7.7)andSpentFociPoolHXBToHonSafetyRclatcdLoads(thCom>>store)

IIToTDAFWPump(LCD3.73)IIIIIToCRFCUnitA0.CO3.tL6)IIIIToCRFCUnitB(LCO35.6)"------.Mw IIIIIIg4736IIIIg4639IIToCRFCsUnitC(LCO366)IIIToCRFCsUnitD(LCD3.6.6)Ir-MIIIIIIII4663eIDP4733yToXonSafetyRcbtcdLoads(Killers)

CQLhtas<~th~rDCO6Forillustration only II ACSources-HODES.1,2,3,and4B3.8.1BASESAPPLICABLE SAFETYANALYSES(continued)

DGLoadDGATime480Vsafeguards busesandCSpumps10SIpumpAand'B10SIpumpC15Residualheatremovalpump20Selectedservicewaterpump25Firstcontainment recirculatio'n fancooler30Secondcontainment recirculation fancooler35Hotor'riven auxiliary feedwater pump40Thepumpsandfansareassumedtoberunningwithin5secondsfollowing breakerclosure.DGBTime1010172227323742SincetheDGsmuststartandbeginloadingwithin10seconds,onlyoneairstartmustbeavailable intheairreceivers asassumedintheaccidentanalyses.

Thelongtermoperation oftheDGs(untiloffsitepowerisrestored) isdiscussed inLCO3.8.3,"DieselFuelOil."TheACsourcessatisfyCriterion 3ofNRCPolicyStatement.

LCOOnequalified independent offsitepowercircuitconnected betweentheoffsitetransmission networkandtheonsite480Vsafeguards busesandseparateandindependent DGsforeachtrainensureavailability oftherequiredpowertoshutdownthereactorandmaintainitinasafeshutdowncondition afteranAOOorapostulated DBA.AnOPERABLEqualified independent offsitepowercircuitisonethatiscapableofmaintaining ratedvoltage,andaccepting requiredloadsduringanaccident, whileconnected tothe,480Vsafeguards busesrequiredbyLCO3.8.9,"Distribution Subsystems

-HODES1,2,3,and4."Powerfromeitheroffsitepowercircuit751or767satisfies thisrequirement.

(continued)

R.E.GinnaNuclearPowerPlantB3.8-7Revision1 BASESACSources&ODES 1,2,3,and483.8.1LCO'continued)

ADGisconsidered OPERABLEwhen:'a~TheDGiscapableofstarting, accelerating toratedspeedandvoltage,andconnecting toitsrespective 480Vsafeguards busesondetection ofbusundervoltage within10seconds;(c'ontinued)

R.E.GinnaNuclearPowerPlant83.8-7aRevision1 ACSources-NODES1,2,3,and4B3.8.1BASESLCO(continued) b.Allloadsoneach480Vsafeguards busexceptforthesafetyrelatedmotorcontrolcenters,CCWpump,andCSpumparecapableofbeingtrippedonanundervoltage signal(CCWpumpmustbecapableofbeingtrippedoncoincident SIandundervoltage signal);C.TheDGiscapableofaccepting requiredloadsbothmanuallyandwithintheassumedloadingsequenceintervals following acoincident SIandundervoltage signal,andcontinuetooperateuntiloffsitepowercanberestoredtothesafeguards bus(i.e.,40hours);d.TheDGdaytankisavailable toprovidefueloilfora1hourat110/designloads;e.Thefueloiltransferpumpfromthefueloilstoragetanktotheassociated daytankisOPERABLEincluding allrequiredpiping,valves,andinstrumentation (long-term fueloilsuppliesareaddressed byLCO3.8.3,"DieselFuelOil");andf.Aventilation trainconsisting ofatleastoneoftwofansandtheassociated ductworkanddampersisOPERABLE.

g.Theservicewater(SW)~pthroughthedieselgenerator heatexchangers is<31psidwithtwoSWpumpsoperating and<44psidwiththreeSWpumpsoperating.

TheACsourcesinonetrainmustbeseparateandindependent oftheACsourcesintheothertrain.FortheDGs,separation andindependence mustbecompleteassumingasingleactivefailure.Fortheindependent offsitepowersource,separation andindependence aretotheextentpractical (i.e.,operationispreferred inthe50/50mode,butmayalsoexistinthe100/0or0/100mode).APPLICABILITY TheACsourcesarerequiredtobeOPERABLEinNODES1,2,3,and4toensurethat:(continued)

R.E.GinnaNuclearPowerPlantB3.8-8Revision1 iACSources-NODES1,2,3,and4B3.8.1BASESAPPLICABILITY a.Acceptable fueldesignlimitsandreactorcoolant(continued) pressureboundary, limitsarenotexceededasaresultofAOOsorabnormaltransients; and(continued)

R.E.GinnaNuclearPowerPlantB3.8-8aRevision1

\

ACSources-NODES5and6B3.8.2BASESLCO(continued)

ADGisconsidered OPERABLEwhen:a~b.C.d.e.TheDGiscapableofstarting, accelerating toratedspeedandvoltage,andconnecting toitsrespective 480Vsafeguards busesondetection ofbusundervoltage within10seconds;Allloadsoneach480Vsafeguards busexceptforthesafetyrelated'motor controlcenters,component coolingwater(CCW)pump,andcontainment spray(CS)pumparecapableofbeingtrippedonanundervoltage signal(CCWpumpmustbecapableofbeingtrippedoncoincident safetyinje'ction (SI)andundervoltage signal);TheDGiscapableofaccepting requiredloadsmanually.

Sincemostequipment whichreceivesaSIsignalareisolatedintheseMODESduetomaintenance orlowtemperature overpressureprotection

concerns, andtheDBAofconcern(i.e.,afuelhandlingaccident) wouldnotgenerateaSIsignal,manualloadingoftheDGswillmostlikelyberequired.

TheseloadsmustbecapableofbeingaddedtotheOPERABLEDGwithin10minutes;TheDGdaytankisavailable toprovidefueloilforz1hourat110%designloads;Thefueloiltransferpumpfromthefueloilstoragetanktotheassociated daytankisOPERABLEincluding allrequiredpiping,valves,andinstrumentation (long-term fueloilsuppliesareaddressed byLCO3.8;3,"DieselFuelOil");andAventilation trainconsisting ofatleastoneoftwofansandtheassociated ductworkanddampersisOPERABLE.

g,Theservicewater(SW)~pthroughthedieselgenerator heatexchanger is<31psidwithtwoSWpumpsoperating and<44psidwiththreeSWpumpsoperating.

R.E.GinnaNuclearPowerPlantB3.8-27(continued)

Revision1

Til4100VBUS12A4180VBUS12B)STATIONSERViCETRANSFORMEA NO.IaSTATIONSERVICE'TRANSFORMER NO.18480VBUSIaDQAT.S.C.VITALBAiTEAYDQBBUS18TlCO(DCO4JCJ1ODIIBATTERYiiiCHARGEIIAIIMCCCBATIEAYCHARGERIADIST.PANELAINVERT.A125.VBATTERYARISECABINETAABAiT.OISCON.iSWITCHiBBAiT.T.S.C.DISCOH.BATTEAYDISCONNECT SWITCHT.S.C.125VVITALBATT.BATTERYMANUALBTHAOWOVER SWITCHFUSECABINETBBATTERYCHARGEA1BDIST.PANELBINVERTSBIBATTERYCHARGER1S1IMCCBMCCAEM&.INSTILTRANSFORMEA 78KVA120VOLTAUTOSTATICTRANSFERA7.5KVA110VOLTCONST.VOLTAGE1RINSFDAMEII A)AUTOLSTAilCTRANSFERB7SKVA110VOLTCONST.VOLTAGETRANSFORMER BIDOINSTR.BUSA+NORMAILYOPEH WHENTavy>>200FINSTR.BUSeDCSOUACEtDCDIST.SYSTEMSga'DCELEC.POWERSOURCESINSTR.BUSCINSTTLBUSDINST>>BUSPOWERSOURCESGJguCOCL Distribution Systems-MODES5and6B3.8.10BASES(continued)

LCOVariouscombinations ofAC,DC,andACinstrument buselectrical powerdistribution subsystems, trainswithinthesesubsystems, andequipment andcomponents within.thesetrainsarerequiredOPERABLEbyotherLCOs,depending onthespecificplantcondition.

Implicitinthoserequirements istherequiredOPERABILITY ofnecessary supportfeatu}es.ThisLCOexplicitly requiresenergization oftheportionsof.theelectrical distribution systemnecessary tosupportOPERABILITY ofrequiredsystems,equipment, andcomponents-allspecifically addressed ineachLCOandimplicitly requiredviathedefinition ofOPERABILITY.

TheLCOswhichapplywhentheReactorCoolantSystemiss200'Fandwhichmayrequireasourceofelectrical powerare:LCO3.1.1LCO3.3.1LCO3.3.4LCO3.3.5LCO3.3.6LCO3.4.7LCO3.4.8LCO3.4.12LCO3.7.9LCO3.9.2LCO3.9.4LCO3.9.5SHUTDOWNMARGIN(SDM)ReactorTripSystem(RTS)Instrumentation LossofPower(LOP)DieselGenerator (DG)StartInstrumentation Containment Ventilation Isolation Instrumentation ControlRoomEmer'gency AirTreatment System(CREATS)Actuation RCSLoops-MODE5,LoopsfilledRCSLoops-MODE5,LoopsNotFilledLowTemperature Overpressure Protection (LTOP)SystemControlRoomEmergency AirTreatment System(CREATS)NuclearInstrumentation ResidualHeatRemoval(RHR)andCoolantCirculation

-WaterLevelz23FtResidualHeatRemoval(RHR)andCoolantCirculation

-WaterLevel.<23FtMaintaining thenecessary trainsoftheAC,DC,andACinstrument buselectrical powerdistribution subsystems energized ensurestheavailability ofsufficient powertooperatetheplantinasafemannertomitigatetheconsequences ofpostulated eventsduringshutdown(e.g.,fuelhandlingaccidents).

(continued)

R.E.GinnaNuclearPowerPlantB3.8-86Revision3 l1 Distribution Systems-MODES 5and6B3.8.10BASESLCO(continued)

Bus-tiebreakersrequiredtobeopenduringMODES1,2,3,and4perSR3.8.9.1maybeclosedduringMODES5and6providedthatthedistribution systemalignment continues

.to'-supportsystemsnecessary tomitigatethepostulated eventsassumingeitheralossofalloffsitepower,lossofallonsiteDGpower,oraworstcasesinglefailure.Thepostulated eventsduringMODES5and6includeaborondilutioneventandfuelhandlingaccident.

Examplesofallowedconfigurations areasfollows(notethatotherconfigurations areacceptable providedthattheymeettheabovecriteria):

'a~b.Bus-TieBreakers16-15.and14-13(andtheirassociated "dummy"breakersonnon-safeguards Buses13and15)providethecapability tocross-tie thesafeguards andnon-safeguards 480Vbuses.Closureofthesebus-tiesisallowedprovidedthattheOPERABLEDGperLCO3.8.2canacceptallloadswhichwouldbeautomatically loadedfromthesafeguards andnon-safeguards buses,andacceptthoseloadswhichmustbemanuallyloadedtomitigatetheaccident.

Bus-TieBreakers14-16,16-14,and17-18providethecapability tocross-tie thetwosafeguard electrical trains.Closureofthesebus-tiesisallowedprovidedthattheOPERABLEDGperLCO3.8.2canacceptallloadswhichwouldbeautomatically loaded,andacceptthoseloadswhichmustbemanuallyloadedtomitigatetheaccident.

Inaddition, theautomatic triplogicofthebus-tiesduetoanundervoltage signalfromeitherofthetwocross-tied busesmustbeOPERABLE.

Thistriplogicensuresthatuponafaultofeither480Vsafeguards busasthesinglefailure,theredundant busiscapableofmitigating theaccidentusingeithertheDGoroffsitepower.R.E.GinnaNuclearPowerPlantB3.8-87(continued)

Revision3 Distribution Systems-MODES5and6B3.8.10BASES(continued)

APPLICABILITY TheAC,DC,andACinstrument buselectrical powerdistribution subsystems requiredtobeOPERABLEinMODES5and6provideassurance thatsystemsrequiredtomitigatetheeffectsofapostulated eventandmaintaintheplantinthecoldshutdownorrefueling condition areavailable.

TheAC,DC,andACinstrument buselectrical powerdistribution subsystems requirements forMODES1,2,3,and4arecoveredinLCO3.8.9,"Distribution Systems-MODES1,2,3,and4."ACTIONSA.lAlthoughredundant requiredfeaturesmayrequireredundant trainsofelectrical powerdistribution subsystems tobeOPERABLE, oneOPERABLEdistribution subsystem trainmaybecapableofsupporting sufficient requiredfeaturestoallowcontinuation ofCOREALTERATIONS andoperations involving positivereactivity additions.

Byallowingtheoptiontodeclarerequiredfeaturesassociated withaninoperable distribution subsystem ortraininoperable, appropriate restrictions areimplemented inaccordance withtheLCOACTIONSoftheaffectedrequiredfeatures.

A.2.1A.2.2A.2.3A.2.4andA.2.5Withoneormorerequiredelectrical powerdistribution subsystems ortrainsinoperable, theoptionexiststodeclareallrequiredfeaturesinoperable perRequiredActionA.l.Sincethisoptionmayinvolveundesired administrative efforts,theallowance forsufficiently conservative actionsismade.Therefore, immediate suspension ofCOREALTERATIONS, movementofirradiated fuelassemblies, andoperations involving p'ositive reactivity additions isanacceptable optiontoRequiredActionA.l.Performance ofRequiredActionsA.2.1,A.2.2,andA.2.3shallnotprecludecompletion ofmovementofacomponent toasafepositionor'ormalco'oldown ofthecoolantvolumeforthepurposeofsystemtemperature controlwithinestablished procedures.

(continued)

'.E.GinnaNuclearPowerPlantB3.8-88Revision3 Distribution Systems-MODES5and6B3.8.10BASESACTIONSA.2.1A.2.2A.2.3A.2.4andA.2.5(continued)

Itisfurtherrequiredtoimmediately initiateactiontorestoretherequiredAC,OC,andACinstrument buselectrical powerdistribution subsystems andtocontinuethisactionuntilrestoration isaccomplished inordertoprovidethenecessary powertotheplantsafetysystems.Inadditiontoperformance oftheaboveconservative RequiredActions,arequiredresidualheatremoval(RHR)loopmaybeinoperable.

Inthiscase,RequiredActionsA.2.1,A.2.2,A.23,andA.2.4donotadequately addresstheconcernsrelatingtocoolantcirculation andheatremoval.PursuanttoLCO3.0.6,theRHRACTIONSwouldnotbeentered.Therefore, RequiredActionA.2.5requiresdeclaring RHRinoperable, whichresultsintakingtheappropriate RHRactions.TheCompletion Timeofimmediately isconsistent withtherequiredtimesforactionsrequiring promptattention.

Therestoration oftherequireddistribution subsystems shouldbecompleted asquicklyaspossibleinordertominimizethetimetheplantsafetysystemsmaybewithoutpower.R.E.GinnaNuclearPowerPlantB3.8-89(continued)

Revision3

'i0 Distribution Systems-NODES5and6B3.8.10BASES(continued)

SURVEILLANCE RE(UIREHENTS SR3.8.10.1ThisSurveillance verifiesthattheelectrical powerdistribution trainsarefunctioning

properly, withalltherequiredpowersour'cecircuitbreakersclosed,requiredtie-breakersopen,andtherequiredbusesenergized fromtheirallowable powersources.RequiredvoltagefortheACpowerdistribution electrical subsystem isz420VAC,fortheDCpowerdistribution electrical subsystem a108.6VDC,andforACinstrument buspowerdistribution electrical subsystem isbetween113VACand123VAC.Requiredvoltageforthetwincopanelssuppliedbythe120VACinstrument busesisbetween115.6VACand120.4.VAC.Theverification ofpropervoltageavailability onthebusesensuresthattherequiredpowerisreadilyavailable formotiveaswellascontrolfunctions forcriticalsystemloadsconnected tothesebuses.TheFrequency of7daystakesintoaccountthecapability oftheAC,DC,andACinstrument buselectrical

.powerdistribution subsystems, andotherindications available inthecontrolroomthatalerttheoperatortosubsystem malfunctions.

REFERENCES None.R.E.GinnaNuclearPowerPlantB3.8-90Revision3 NuclearInstrumentation B3.9.2BASES(continued)

LCOThisLCOrequirestwosourcerangeneutronfluxmonitorsbeOPERABLEtoensureredundant monitoring capability isavailable todetectchangesincorereactivity.

Tobe'PERABLE, eachmonitormustprovidevisualindication andatleastoneofthetwomonitorsmustprovideanaudiblecountratefunctioninthecontrolroom.Miththedischarge offuelfromcorepositions adjacenttosourcerangedetectorlocations, countsdecreasing tozeroistheexpectedresponse.

Basedonthisindication alone,sourcerangedetection shouldnotbeconsidered inoperable.

Following afullcoredischarge, sourcerangeresponseisverifiedwiththeinitialfuelassemblies reloaded.

APPLICABILITY InMODE6,thesourcerangeneutronfluxmonitorsmustbeOPERABLEtodetermine changesincorereactivity.

Therearenootherdirectmeansavailable tocheckcorereactivity conditions inthisMODE.InMODES2,3,4,and5,thesesameinstalled source'rangedetectors andcircuitry arealsorequiredtobeOPERABLEbyLCO3.3.1,"ReactorTripSystem(RTS)Instrumentation."

ACTIONSA.landA.2MithonlyonesourcerangeneutronfluxmonitorOPERABLE, redundancy hasbeenlost.Sincetheseinstruments aretheonlydirectmeansofmonitoring corereactivity conditions, COREALTERATIONS andpositivereactivity additions mustbesuspended immediately.

Performance ofRequiredActionsA.landA.2shallnotprecludecompletion ofmovementofacomponent toasafeposition(i.e.,otherthannormalcooldownofthecoolantvolumeforthepurposeofsystemtemperature controlwithinestablished procedures).

(continued)

R.E.GinnaNuclearPowerPlant83.9-7Revision1

\\0 iepNuclearInstrumentation B3.9.2BASESACTIONS(continued)

B.landB.2MithnosourcerangeneutronfluxmonitorOPERABLEtherearenodirectmeansofdetecting changesincovereactivity.

Therefore, actionstorestoreamonitortoOPERABLEstatusshallbeinitiated immedi'ately andcontinueuntilasourcerangeneutronfluxmonitorisrestoredtoOPERABLEstatus.(continued)

R.E.GinnaNuclearPowerPlantB3.9-7aRevisionI NuclearInstrumentation 83.9.2BASES(continued)

SURVEILLANCE REQUIREMENTS SR3.9.2.1ThisSRistheperformance ofaCHANNELCHECK,whichisacomparison oftheparameter indicated ononemonitortoasimilarparameter onanothermonitor.Itisbasedontheassumption thatthetwoindication channelsshouldbeconsistent withcoreconditions.

Changesinfuelloadingandcoregeometrycanresultinsignificant differences betweensourcerangemonitors, buteachmonitorshouldbeconsistent withitslocalconditions.

Theinoperability ofonesourcerangeneutronfluxchannelpreventsperformance ofaCHANNELCHECKfortheoperablechannel.However,theRequiredActionsfortheinoperable channelrequiressuspension ofCOREALTERATIONS andpositivereactivity additionsuchthattheCHANNELCHECKoftheoperablechannelcanconsistofensuringconsistency withknowncoreconditions.

TheFrequency of12hoursisconsistent withtheCHANNELCHECKFrequency specified similarly forthesameinstruments inLCO3.3.1,"ReactorTripSystem(RTS)Instrumentation."

SR3.9.2.2ThisSRistheperformance ofaCHANNELCALIBRATION every24months.ThisSRismodifiedbyaNotestatingthatneutrondetectors areexcludedfromtheCHANNELCALIBRATION.

TheCHANNELCALIBRATION forthesourcerangeneutronfluxmonitorsconsistsofobtaining thedetectorplateauorpreampdiscriminator curves,evaluating thosecurves,andcomparing thecurvestobaselinedata.The24monthFrequency isbasedontheneedtoperformthisSurveillance

.unde}theconditions thatapplyduringaplantoutage.Operating experience hasshownthesecomponents usuallypasstheSurveillance whenperformed atthe24monthFrequency.

REFERENCES l.UFSAR,.Section7.7.3.2.2.AtomicIndustrial Forum(AIF)GDC13and19,IssuedforCommentJuly10,1967.R.E.GinnaNuclearPowerPlantB3.9-9FRevision1 Containment Penetrations B3.9.3B3.9REFUELING OPERATIONS B3.9.3Containment Penetrations BASESBACKGROUND DuringCOREALTERATIONS ormovementofirradiated fuelassemblies withincontainment, areleaseoffissionproductradioactivity withincontainment willberestricted from.escapingtotheenvironment whentheLCOrequirements aremet.InMODESI,2,3,and4,thisisaccomplished bymaintaining containment OPERABLEasdescribed inLCO3.6.1,"Containment."

InMODE5,therearenoaccidents ofconcernwhichrequirecontainment.

-InMODE6,thepotential forcontainment pressurization asaresultofanaccidentisnotlikely;therefore, requirements toisolatethecontainment fromtheoutsideatmosphere canbelessstringent.

TheLCOrequirements arereferredtoas"containment closure"ratherthan"containment OPERABILITY."

Containment closuremeansthatallpotential escapepathsareclosedorcapableofbeingclosed.Sincethereisnopotential forcontainment pressurization, theAppendixJleakagecriteriaandtestsarenotrequired.

Thecontainment servestocontainfissionproductradioactivity thatmaybereleasedfromthereactorcorefollowing anaccident, suchthatoffsiteradiation exposures aremaintained withintherequirements of'10CFR100.Additionally, thecontainment providesradiation shielding fromthefissionproductsthatmaybepresentinthecontainment atmosphere following accidentconditions.

Thecontainment equipment hatch,whichispartofthecontainment pressureboundary, providesa=meansformovinglargeequipment andcomponents intoandoutofcontainment.

DuringCOREALTERATIONS orm'ovement ofirradiated fuelassemblies withincontainment, theequipment hatchmustbeboltedinplace.Goodengineering practicedictatesthat.aminimumof4boltsbeusedtoholdtheequipment hatchinplaceandthattheboltsbeapproximately equallyspaced.Asanalternative, theequipment hatchopeningcanbeisolatedbyaclosureplatethatrestricts airflowfromcontainment orbyaninstalled rollupdoorandenclosure building.

(continued)

R.E.GinnaNuclearPowerPlantB3.9-l0Revision2 Containment Penetrations 83.9.3BASESBACKGROUND (continued)

Thecontainment equipment andpersonnel airlocks,whicharealsopartofthecontainment pressureboundary, provideameansforpersonnel accessduringMODESI,2,3,and4inaccordance withLCO3.6.2,"Containment AirLocks."Eachairlockhasadooratbothends.Thedoorsarenormallyinterlocked topreventsimultaneous openingwhencontainment OPERABILITY isrequired.

Duringperiodsofplantshutdownwhencontainment closureisnotrequired, thedoorinterlockmechanism maybedisabled, allowingbothdoorsofanairlocktoremainopenforextendedperiodswhenfrequentcontainment entryisnecessary.

DuringCOREALTERATIONS ormovementofirradiated fuelassemblies withincontainment, containment closureisrequired; therefore, thedoorinterlock mechanism mayremaindisabled, butoneairlockdoormustalwaysremainclosedinthepersonnel andequipment hatch(unlesstheequipment hatchisisolatedbyaclosureplateortherollupdoorandassociated enclosure building).

Therequirements forcontainment penetration closureensurethatareleaseoffissionproductradioactivity withincontainment willberestricted fromescapingtotheenvironment.

Theclosurerestrictions aresufficient torestrictfissionproductradioactivity releasefromcontainment duetoafuelhandlingaccidentduringrefueling.

TheContainment PurgeandExhaustSystemincludestwosubsystems.

TheShutdownPurgeSystemincludesa36inchpurgepenetration anda36inchexhaustpenetration.

Thesecondsubsystem, aMini-Purge System,includesa6inchpurgepenetration anda6inchexhaustpenetration.

DuringMODESI,2,3,and4,theshutdownpurgeandexhaustpenetrations areisolatedbyablindflangewithtwo0-ringsthatprovidethenecessary boundary.

Thetwoairoperatedvalvesineachofthetwomini-purge penetrations canbeopenedintermittently, butareclosedautomatically bytheContainment Ventilation Isolation Instrumentation System.Neitherofthesubsystems issubjecttoaSpecification inMODE5.(continued)

R.E.GinnaNuclearPowerPlantB3.9-11Revision2 e

Containment Penetrations B3.9.3BASES(continued)

LCOThisLCOlimitstheconsequences ofafuelhandlingaccidentincontainment bylimitingthepotential escapepathsforfissionproductradioactivity releasedwithincontainment.

TheLCOrequiresanypenetration providing directaccessfromthecontainment atmosphere totheoutsideatmosphere tobeclosedexceptfortheOPERABLEcontainment purgeandexhaustpenetrations.FortheOPERABLEcontainment purgeandexhaustpenetrations, thisLCOensuresthatatleastonevalveineachofthesepenetrations is'solable bytheContainment Ventilation Isolation System.APPLICABILITY Thecontainment penetration'equirements areapplicable duringCOREALTERATIONS ormovementofirradiated fuelassemblies withincontainment becausethisiswhenthereisapotential forafuelhandlingaccident.

InMODESI,2,3,and4,containment penetration requirements areaddressed byLCO3.6.1.InMODES5and6,whenCOREALTERATIONS ormovementofirradiated fuelassemblies withincontainment.

arenotbeingconducted, thepotential forafuelhandlingaccidentdoesnotexist.Therefore, undertheseconditions, norequirements areplacedoncontainment penetration status.ACTIONSA.landA.2Ifthecontainment equipment hatch(oritsclosureplateorro11updoorandassociated enclosure building),

airlockdoors,orany'ontainment penetration thatprovidesdirectaccessfromthecontainment atmosphere totheoutsideatmosphere isnotintherequiredstatus,including theContainment Ventilation Isolation Systemnotcapableofautomatic actuation whenthepurgeandexhaustvalvesareopen,theplantmustbeplacedinacondition wheretheisolation functionisnotneeded.Thisisaccomplished byimmediately suspending COREALTERATIONS andmovementofirradiated fuelassemblies withincontainment.

Performance oftheseactionsshallnotprecludecompletion ofmovementofacomponent toasafeposition.

'.E.GinnaNuclealPowerPlantB3.9-13(continued)

Revision2 CW'PI