ML17266A488
ML17266A488 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 08/11/1981 |
From: | UHRIG R E FLORIDA POWER & LIGHT CO. |
To: | EISENHUT D G Office of Nuclear Reactor Regulation |
References | |
L-81-348, NUDOCS 8108240256 | |
Download: ML17266A488 (495) | |
Text
REGULATORY FORMATION DISTRIBUTION SEM(RIDS)ACCESSION'BR;8108240256'OC DATEi'!81/08/11NOTARIZED NOFACILC50389S).Lucie'lant~
Unit2<,Florida-PowerttL'ightCo;,'AUTH",
NAME-'UTHOR AFFILIATION UHRIGpR",E'FloridaPowerLLight>>Co~RKCIPsNAMEIRECIPIENT AFFILIAT!ION<
EISENHUT'rDOG, DivisionofLicensing, DOCKEiTIg'5000389
SUBJECT:
"
Forwards'ddi info.aresponse's toNRC'uestions Responses willbeincorporated intofuture.FSARDISTRIBUTION CODEt:BOOlSCOPIESRECEilVED'LiTR
'ENCl.!$'ITLELPSAR/FSAR AMDTSandRe>>iatedCorrespondence NOTES'."foriSER'o.IaNehd'o.IZE'IIsIsIRECIPIENT'DCODE/NAME; ACTIONiEA/O'ICENSNG.
L>>ICIBR"¹3<LAINTERNAL>>eACC'IDK>>VAL'R26'HEMENGBRffsCORKPKRF,BR10.EMRGPRP.DEV35>>EQUIPQUALBR13GKOSCIKNCES 28HYD/GEO.BR30.ILKl06'lICIQUALBR32'ECH'NG BR18OEl.DPOAKRSYSBR19QABR'1REACSYSBR23iSIT'NAL<BR24COPIESLTTRENCLr10011'111111332222311111"0111i.111RECIPIENT";IDCODE/NAMEi L<ICBR¹3BCNKRSESgV~"04AUXSYS'R27.CONTSYSBR09EFFTRSYSBR12'MRGPRPLIC36'EMAREPDIV39"HUMFACTIENG40,,IEC'YS'R~
16'>>IC'UID BR33MATLrENGBR"17MPAOP'"LICBRi34"PROC/TST'EV 20'AD'"BR22'ILEUM.01'R25<'OP!IES'>>TTRtENCL<1'.1f<11111<3i11'~1f~111<1101111f<f>>f>>,EXTERNAL%
ACRS41>>NRC<POR02'.NT'IS9;Ar:M~161111LPDR>NSIC>>03<05>>11!I!AUG,381S8]>>>>"TOTALNUMBEROFCOPIES"REQUIRED'TTR 62!ENCL.<57' hPhhRaIPR.vPhIPh)Ihh)Ihl~'hRPI'lit4PPV)
P.O.BOX529100MIAMI,FL33152lyyk)lliyFLORIDAPOWER&LIGHTCOMPANYAugust11,1981L-81-348OfficeofNuclearReactorRegulation Attention:
Mr.DarrellG.Eisenhut, DirectorDivisionofLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555
DearMr.Eisenhut:
Re:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsForAdditional Information I,Q/AttachedareFloridaPower8LightCompany(FPL)responses toNRCstaffrequestsforadditional information whichhavenotbeenformallysubmitted ontheSt.LucieUnit2docket.Theseresponses willbeincorporated intotheSt.LucieUnit2FSARinafutureamendment.
Verytrulyyours,RobertE.UhrigVicePresident AdvancedSystems5Technology REU/TCG/ah Attachments cc:J.P.O'Reilly,
- Director, RegionII(w/oattachments)
HaroldF.Reis,Esquire(w/oattachments) go~>'gcj7)d)Z4&@t~p8108240256 8108iilP..DRPDRADOCK05000389PEOPLE...
SERVINGPEOPLE
Attachment toL-81-348A.Responses toAuxiliary SystemsBranchdraftSERopenitems.B.Revisedresponsetoquestion451.08C.DraftFSARwriteupandsupporting documentation forunderground cablequalification.
D.ControlWiringDiagramsuppliedinsupportoftheresponsetoChapter8.3openSERitemonpowerlockouttoMOV's.E.ResponsetoChapter8.3,.open,;SER:.
itemonisolation devices.ResponsetoChapter8.3openSERitemonGDC18G.ResponsetoChapter8.3openSERitemonMOVThermalOverloadBypass.H.Responses toopenitemsfrom8/11/81meetingonPostAccidentSamplingSystem.I.Revisedresponseto.question410.19J.DraftEnvironmental ReportsectionsontheuseofTBTO.K.Tables1.9B-3and1.9B-4,Evaluation ofICCDetection Instrumenta-tion.L.Responses toContainment SystemsBranchquestions.
M.Responsetoquestion492.10N.Revisedresponses toquestion440.25,440.28.440.38,440.39,440.41,440.44,440.51,440.54$440.58,440.59,440.61,440.620.Confirmation onMSIVbonnetandseatthickness conservations from,Rockwell International.
P.ResponsetoopenitemNo.1fromtheStructural Engineering Branchdesignaudit.gl08240256
',
RESPONSES TOAUXILIARY SYSTEMSBRANCHREQUESTSFORINFORMATION TOCOMPLETETHEASBDRAFTSER..
Section3.5.2Structures, Sstems,andComponents tobeProtected fromExternall Generated tlissi1es Theapplicant hasverballycommitted toproviding missileprotection lfortheauxiliary feedwater cross-over pipingbetweenthesteamtrestles'andoutsideofthemissilebarriers; however,documentation hasnotbeenprovided.
Mewillreportresolution ofthisiteminasupplement tothisSER.ThisitemalsoimpactsSections10.3.1and10.4.9ofthis,SER.~ResenseSeeattachedamendedresponse:-to Question410.25.
().SL2PSARestionNo.410.25(10.3,10)a)VerifythatthemainsteamtrestleisdesignedtoseismicCategoryIandmaximumtornadoloadrequirements.
.Qithregardtothemainsteamtrestle,providethefollowing:
Provideacompletedescription, including arrangement
- drawings, ofthemainsteamtrestleareawhich.illustrates how'hefollowing itemsareprotected fromturbineandtornadomissiles.(1)MainSteamIsqlation Valve(MSIVs)(2)HainSteamSafetyValves(3)Atmospheric DumpValves(4)MainSteamPipinguptotheHSIVs(5)Safety-related portionsofthemainfeedwater piping.c)Providedetailedlayoutsoftheauxiliary feedwater pumpandpipingareastodemonstrate howthemainsteamtrestleprovidessupport"formissileprotection enclosing theAuxiliary Feedwater Pumprooms"(FSARSubsection 3.8.4.1.9) anditsprotection fromhighenergylinebreaks(eg.meinsteamormainfeedwater pipe.breaks)andmoderateenergypipecracks~ResoeseThemainsteamtrestleisprovidedtohousethesafety-related components oftheMainSteam,Feedwater, andAuxiliary Feedwater System.ThetrestleisdesignedtoseismicCategoryIrequirements andiscapableofwithstanding themaximumtornadoloadingsoutlinedinFSARSection3.5.Theloadingcombinations forthemainsteamtrestleareprovidedinFSARSubsection 3.8.4.3.b)Themainsteamtrestliscomprised oftwocompartment pFIVSygtesCC~ialii'IiilocatedatthewestendoftheReactorBuiingThetwotrestlecompartments aretwototalyencosestructures whicharephysically separated fromeachother.Eachtrestlecompartment housesthefollowing equipment:
(1)OnemainsteamLine(2)Onemainsteamisolation valve(MSIV)(3)Eightmainsteamsafetyvalves(4)Onemainfeedwater line(5)Twomainfeedwater isolation valves(HFIV's)(6)Twoatmospheric dumpvalves(ADV's)(7)Twomotordrivenaux.feedwater pumpsoronesteamdrivenaux.feedwater pump(withassociated pipingandvalves)~QPSRggy~PSCPjP/MgIg+MC/sSS+g SR's.aC6P'sR~i-~C'is410,25-1Amendment No.4,(6/81)e 00 SL2PSAREachofthetwocompartments ofthetestleisapproximately 31Eeetwide,45feetlongandextendsvertically fromgradeleveltoElevation 62'W".Threesidesofthemainsteamtrestlearecompletely enclosedwithaoneinchsteelplatealongtheentireverticalrunwithanineinchopeningleft.onthebaseperimeter toprovidefornaturalventilation-Thefourthsideutilizesthecontainment structure asamissilebarrierandisrecessedseveralfeetfromthecontainment inordertoprovideadequateventilation.
Theroofofthetrestlestructure utilizesasteelgrating(severalinches.thick)formissileprotection purposes.
TheopeningsinthisgratinghavebeendesignedtoinhibitthesmallestmissileprovidedinFSARSection3.5andtoprovidesufficient mainsteamMassand'Energy blowdownareatoaccommodate amainsteamlinebreakoutsidethecontainment.
c)DetailedlayoutsoftheAuxiliary Feedwater Pumpandpipingarrangements areprovidedinFSARFigures10.4-14,15and16.Themotordrivenauxiliary feedwater pumpsarephysically separated fromtheturbinedrivenpumpbytwoone'(1)inchsteelplates.Theseplatesprovideadequateprotection againstthedynamiceffects.ofahighenergylinebreak.Thedynamiceffectsassociated withpiperuptureandjetimpingement isprovidedinFSARSection3.6i410.25-2Amendment No.4,(6/81) 0
~~2.Section3.6.1Plan~tOesfnforProtection AainstPostu1ated PiinailuresinFuidSstemsOutsideContainment sTheapplicant hasnotprovidedsufficient information necessary todemonstrate thata-postulated highenergypipebreakormoderateenergypipecrackwillnotcausealossoffunctionofanysafetyrelatedsystem.Theapplicant hasnotprovidedsufficient information toadequately demonstrate thatf1oodingduetofailureofnon-seismic CategoryItankswillnotadversely affectsafetyrelatedequipment.
Mewillreportresolution ofthisiteminasupplement tothisSER.ThisitemalsoimpactsSections9.3.3,10.3.1,10.4.5,10.4.7,and10.4.9ofthisSER.~ResonseFP&Lhasformallysubmitted theaboveinputvialetterdatedL-81-334datedAugust4,1981.~P 00 3.Section9.1.3SentFuelPoolCoolinandCleanuSstem'heapplicant hasverballycommitted totheinstallation ofasecondspentfuelpoolcoolingsystemheatexchanger bythefirstrefueling ofUnit2.Documentation toconfirmtheverbalcommitment isrequired.
)lewillreportresolution ofthisiteminasupplement tothisSER.ResponseSeeattachedamendedFSARpage9.1-10addingthe"commitment fortheapplicant toadda,secondfuelpoolheatexchanger.
(~SL2"FSARlatedbythefuelpoolpumpsthroughthefuelpoolheatexchanger whereheatisrejectedtotheComponent CoolingWaterSystem.Fromtheoutletofthefuelpoolheatexchanger, thecooledfuelpoolwaterisreturnedtothebottomofthefuelpoolviaadistribution header.Thecoolingsystemiscontrolled manuallyfromalocalcontrolpanel.Controlroomalarmsforhighfuelpooltemperature, highandlowwaterlevelinthefuelpool,lowfuelpoolpumpdischarge pressureand,asdiscussed inSubsection 9.1.2,ahighradiation inthefuelpoolarea,areprovidedtoalerttheoperatortoabnormalcircumstances.
Radiation monitoring forspentfuelpoolareaandFuelHandlingBuildingstackisdiscussed inSection11.5.Thecomponents andpipingareQualityGroupC,seismicCategoryI.9.1.3.2.2 FuelPoolPurification Theclarityandpurityofthewaterinthefuelpool,refueling cavityandrefueling watertankaremaintained bythepurification portionofthefuelpoolsystem.Thepurification loopconsistsofafuelpoolpurification pump,fuelpoolfilter,fuelpoolpurification pumpsuctionstrainer, fuelpoolionexchanger, fuelpoolskimmer,fuelpoolionexchanger
- strainer, associated valves,andpiping.Mostofthepurification flowisdrawndirectlyfromthefuelpool.Asmallfractionofthepurification flowisdrawnthroughthefuelpoolskimmer.Astrainerisprovidedinthepurifi-cationlinetothefuelpoolpurification pumpsuctiontoremoveparticu-latematterbefore,thefuelpoolwaterispumpedthroughthefuelpoolfilterandthefuelpoolionexchanger.
Thefuelpoolwateriscirculated bythefuelpoolpurification pumpthroughthefuelpoolfilter,whichre-movesparticulates largerthanfivemicronsize,thenthroughthefuelpoolionexchanger toremoveionicmaterial, andfinallythrougha"Y"typefuelpoolstrainer.
Connections totherefueling watertankprovidemakeuptothefuelpoolthroughthepurification loop.Inadditiontopurifying thefuelpoolwater,therefueling watertankandtherefueling transfercanalarecleanedthroughconnections tothepurification loop.Fuelpoolwaterchemistry isgiveninTable9.1-4.Thepurification loopcomponents andmainprocesspipingareQualityGroupC,non-seismic.
9.1.3.2.3 Component Description Themajorcompnents oftheFuelPoolSystemaredescribed inthissection.Theprincipal component datasummaryisgiveninTable9.1-6.a)FuelPoolHeatExchanger Thefuelpoolheatexchanger isahorizontal shellandtubedesignwithatwq-passtubeside.Aslightpitch,threedegreesabovethehorizontal, isprovidedforcompletedrainingofthefuelpoolheatexchanger.
Thecomponent coolingwatercirculates throughtheshellside,andfuelpoolwatercirculates throughthetubeside.Thein-ternalwettedsurface(tubeside)isstainless steel.f4~p(t>'c~~
g<<,,peg+<<Skig<<'<~i<<~4$Ay(g~+tan/gy~5;~+peg.<<Q'g~9.1-10 0
4.Section9.1e4FuelHandlinSstemMerequirethattheapplicant implement theinLerimactionsidentified inEnclosure 2ofthegenericNRCletterdatedDecember22,1980,con-concerning NUREG-0612
'!Control ofHeavyLoadsatNuclearPowerPlants"priortoreceiptofanoperating licenseandpriortofullimplementa-tionofNUREG-0612.
Theapplicant indicated thatthebulkheadgates(onebetweenthecaskpoolandthespentfuelpoolandtheotherbetweenthespentfuelpoolandthefueltransfercanal)areseismicCategoryI.Documentation toconfirmtheverbalcomitment isrequired.
atewillreportresolution oftheseitemsinasupplement tothisSER.~ResenseThesixmonthresponsetotheNRCDecember22,1980letterwasissuedtotheNRCviaFPGLletterL-81-338datedAugust6,1981(UhrigtoEisenhut).
SeeattachedamendedFSARpage9.1-6addingthefactthatthe.removable bulkheads inthespentfuelstoragepoolaredesignedtoseismicCategoryIrequirements.
SL2-FSARkineticenergyassociated withthedroppedfuelassemblyis29,000in-lb.Thisenergyisconservatively assumed,tobetotallyabsorbedbyonerackmodule.Structural deformations oftheracksarelimitedtoprecludeanypossibility ofcriticality.
I0Thestructural designalsoprecludes thepossibility ofafuelassemblybeingplacedinthespacesbetweenthefuelcavities.
Adequateclearance isprovidedbetweenthetopofthestoredfuelassemblyandthetopoftheracktoprecludecriticality intheeventafuelas-semblyisdroppedandlandsinthehorizontal positiononthetop.Rackdesignalsoensuresadequateconvection coolingofafuelassemblylyinghorizontally acrossthetopoftheracks.0,Thespentfuelstorageracksaredesignedinaccordance withtheAISCSpecifications andtheloadcombinations andallowable stressesspecified I0inSubsection 3.8.4.3forseismicCategoryIsteelstructures.
Thedirectdoserateatthepoolsurfacewhennotrefueling islessthan2-5mrem/hr.Thisdoserateisbasedonthemostactivefuelassemblytwodaysaftershutdown.
Duringrefueling thelimitswitchespreventthespentfuelhandlingmachinefrorrrraisingthespentfuelassemblyaboveaheightwherelessthannineft.ofwaterprovidesminimumradiation shielding-Iftheinterlock shouldfailandiftherewerenooperatoraction,thefuelhandlingmachinecannotraisetheassemblyaboveanineft-water-to-active-fuel-length height'becauseofthedesigngeometry.
Underthecondi-tionsdescribed above,thedoserateatthesurfaceofthewaterabovetheassemblywouldbestilllessthan2.5mrem/hr.Thegrappling toolonthespentfuelhandlingrnachineisdesignedsothatafuelassemblycannotbereleasedaccidentally.
Theshielding providedintheFuelHandlingBuild-ingisdiscussed inSubsection 12-1.2.4~I0Aconcretewallto,elevation 62ft.separates thecaskstorageareafromthespentfuelstoragearea.Thewallpreventsthewaterlevelfromuncovering thespentfuelassemblies evenifadroppedfuelcaskcausesdamagetothepoolorpoollinerinthecaskstoragear6'eh.@~I/:~~ps~~c.w.%rŽr~"IrsCD~cm~c~e~sE~)~I~~cc4.~<<p~~<~<~rg&i"y~~rstartrLI M)'are.cled)i6S~Ss'cC5gcry'pv~j~$ihefueenrichment, seectedfordetera7ination ofthesafegeometryis3.7percent-Thisissubstantially higherthantheenrichment fortheinitialandfuturecores.Intheanalysistodetermine allowable edge-to-edge spacing,infinitearraysoffuelassemblies areay~Itmed.
+~analysisofthespentfuelstoragerackdesignusestheCHEETAH-P~
/PDQ-7~rradelasthebasicengineering tool.CHEETAH-P isthePMRlatticeversionof0NuclearAssociates International (NA/)CHEETAHcodewhichisamodifiedvers)g~oftheoriginalLEOPARDcodeandusesamodifiedENDP/.B-IIcrosssectionlibrary.ThePDQ-7programisthewell-known few-groupspatialdiffusion
'theorycodewidelyusedbytheindustry.
TheCHEETAH"P/PDQ-7 modelhasbeenextensively testedbyNAIbymeansofbench-markingcalculations forseveralexistingoperating powerreactors.
CHEETAH-P determines amultigroup neutronspectrumforagivenhomogeneous mixtureofmaterials andusesthisspectrumtoweighthecrosssectionsandprovideaveragefewgroupcrosssections.
PDQ-7usesasinputthecross9.1-6Amendment No.0,(12/80)
5.Section10.4.7Condensate andFeedwater SstemsTheapplicant hasnotcommitted toperforming awaterhammertestinaccordance withBranchTechnical PositionASB10-2.Werequire,thewaterhammertest.Wewillreportresolution ofthisiteminasupple-menttothisSER.ThisitemalsoappliestoSection10.4.9ofthisSER.~ResonseAnumberofparagraphs wereinadvertently omittedfromtheresponsetoPSARquestion410.27.Seeattachedpageforamendedresponse.
Inaddition, PPGLletterL-81-318datedJuly27,1981(UhrigtoEisenhut) pro-videdjustification fortheapplicant's positionthatsteamgenerator waterhammertestingneednotbeper-formedonStLucieUnit2(letterattached).
SL2-FSAR'estionNo.410.27(10.4.7)StatehowBranchTechnical positionASB10-2,"DesignGuidelines forWaterHammersinSteamGenerators withTopFeedingDesigns"ismet'iscuss thedesignfeaturestominimizewaterhammerandtheconfirmatory teststobeperformed.
ResponseThefeedwater pipingandfeedringhavebeendesignedtoeliminate orminimizethecauseandeffectsofpossiblewaterhammerinthe"feedwater system.Feedwater entersthesteamgenerator throughthefeedwater nozzlewhereitisdistributed viaafeedwater distribution ring.Thefeedwater ringhasbeenconstructed toincludedischarge nozzlescalled"J"tubeswhichareweldedtothetopofthering(seeFigures5.4-6,16:;and17oftheFSAR).'hisconstruction reducestherateatwhichthefeedwater ringdrains,helpingtoprovide"assurance thattheringremainsfullofwater.Thus,the'robability ofsignificant amountsofsteamenteringthefeedringisgreatlyreduced,therebyminimizing thecondition whichcanleadtowaterhammer.Inaddition, thelengthofhorizontal feedwater pipingimmediately
'xternaltothesteamgenerator whichcouldpocketsteamisminimized (21/2feet).Thisshortlengthofhorizontal pipinghasadownwardsloping90elbowfollowedbyapproximately 32feetofverticalfeedwater piping.Thispipingarrangement minimizes thedrainable volumeoffeedpipe.
Hence,whenthefeedrCngandpipingaredrainedandsteamentersthisregion,theexposedsurfaceofsubcooled watertosaturated steamisminimized.
Theminimization oftheexposedsurfaceofsubcooled watertothesaturated steamreducesthedepressurization ofthesteamspacebyslowingtherateofsteamcondensation onthesubcooled water.Thepressurepulsesgenerated byawatersluginthepipingareinitiated bysteam-water interaction whichcausesrippleformation atthesteam-water interface.
Thisresultsintheformation ofawaterslugwhichisolatesthesteaminthefeedpipeAstheisolatedsteamcondenses, pressures intheregionfallsandthewater.slugaccelerates towardsit.Thekineticenergyintheslugkeepsincreasing untilthesteambubbleiscollapsed.
Atthismoment,thewaterslugimpactswiththewaterfillingtheupstreamsideofthepipeandpressurepulsesaregenerated.
410.27-1Amendment No.4,(6/81)
I/os'w~TAlsonote,that.sinceonlyasmallamountofsteamcanbetrappedina90degreeelbow,asteambubblewillcollapsebeforethewatersluggainssignificant kineticenergyduxingasteam-water interaction.
Consequently, byintroducing thecombination ofashortlengthofhorizontal pipingandthe"J"tubedesignonthetopofthefeed-ring,theintensity ofthepressurepulsesgenerated (waterhammer)isreducedtonegligible levels.St.LucieUnit1hasconducted extensive feedwatei.
hammertesting.AreviewoftheFeedwater PipingdrawingandSteamGenerator internalindicates thatStLucieUnit1andStLucieUnit2arevirtually assembly.
Basedonthisreviewandthetestingperformed onStLucieUnit1,theapplicant concludes thatadditional feed-waterhammertestingisnotrequiredforStLucieUnit2.Section10.4.9oftheFSARhasbeenrevisedtoincludetheaboveresponsealongwithrevisions forautomatic initiation ofthe*Auxiliary Feedwater System.
P.o.BOX529100MIAh11,FL33152~'r.7.P..".;.'::::::
OfficeofNuclearReactorRegulatVbn"'ttention:
Hr.D.G.Eisenhut, DirectorDivisionofLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555
DearHr.Eisenhut:
FLORIDAPOY/ER6LIGHTCOMPANYJuly27,1981L-81-318Re:St.LucieUnit2DocketNo.50-389SteamGenerator MaterHammerTestinAtaJune17,1981meetingwithOlanParretal,FloridaPower8LightCompany{FPL)agreedtoprovidejustification forourpositionthatsteamgenerator waterhammertestingneednotbeperformed onSt.LucieUnit2.Asteamgenerator waterhammertestprogramwasconducted onSt.LucieUnit1.withnowaterhammerobserved.
TheNRC,inaSafetyEvaluatio'n.Report issuedFebruary7,1980,concluded thatsteamgenerator waterhammerwasnotlikelytooccuratthatfacility.
TheSt.LucieUnit1and2pipingarrangements areessentially identical.
Isometric drawingsofbothunitswerecompared, anddimensional differences weremeasurable infractions (e.g.,thehorizontal sectionsofpipingenteringthesteamgenerator, whicharethesectionsofpipingmostlikelytoexperience waterhammer,areallequalinlength(twofeetlong),withonesectiononUnit13/8inchshorterthanonUnit2).Thepreoperational testprogramwillverifytheadequacyofthedesign.Pre-operational testprocedures 2-0700091, "Auxiliary Feedwater Pumps2A,2B,and2CInitialRun",and2-0700081, "Auxiliary Feedwater SystemFunctional andEndurance Test",willverifythatthepumpsmeetorexceedthemanufacturers head/flow curvesandassociated manualcontrolsandalarmsfunctionasrequired, andalsoverifyautomatic operation ofthesystemfollowing anactuation signal.Thefunctional testwillbeperformed priortohotfunctional testingoftheunit.FPLintendstostationanoperatorinsidecontainmeB; Vi7rVng'he
><~initiaIinjection phasetomonitorforwaterhammer.Also,FPMMQfiihe" hs.""--:n'rc""
vibration monitoring programduringtheSt.LucieUnit2startup,andpipingsI.-vibration wi11bemeasured.
LTFPLisreviewing theSanOnofresteamgenerator feedringcollapse;-indd5t andwillinformyouifanychangeinourpositiononsteamgenerh'ter-mat~
hammertestingforSt.LucieUnit2isrequired.
L'ZZVery--truly yours,IPHD1oQtE.UhrigVicePresident AdvancedSystems&Technology rjREU/TCG/ah
~.rgr1.4cc:J.P.O'Reilly,
- Director, RegionIIPEOLE.~.~kU~er~1A0D[smaCar[~[eaase~asnt-r-VIMQIIFOP[~
6.Section10.4.9.AuxiliarFeedwater Sstem&PostTHITaskII.E.1.1Thefollowing itemspertaintoSection10.4.9oftheSER,"Auxiliary Feedwater System,"forwhichdocumentation isrequiredasindicated foritemsa,b,andc.a.TheUnit2condensate storagetankincludesadedicated watervolumeforUnit2auxiliary feedwater systemintheeventoftornadomissiledamagetotheUnit1condensate storagetank.Therearelockedclosedvalvesintheparallelconnecting lines.Theapplicant hasnotprovidedtheprocedures delineating whentheselockedvalveswillbeopened.b.Theapplicant hasnotprovidedtheresultsofananalysisoftheeffectsofapotential failureoftheUnit1condensate storagetankandthemostseverefailureoroperatorerroronUnit1or2resulting indrainingtheUnit2condensate storagetankbelowtheUnit2dedicated volume.c.Additional ShortTermRecommendation 2-Theapplicant hasnotcommitted toproviding acopyofthepumpendurance testresultsspecified inthisrecommendation.
Merequirethattheseresultsbeprovided.
d.Ourreviewisnotcompletewithrespecttotheminimumdedicated, watersupplyfortheauxiliary feedwater system,theminimumflow.requirements, andthereliability analysis.
e.Additional ShortTermRecommendation 3-Thedesignforemergency feedwater flowindication isun'derreviewbytheInstrumentation andControlSystemsBranchaspartofitemII.E.1.2ofNUREG-0737 andwillbereportedinaseparateevaluation.
f.LonTermRecommendation GL-5-Thedesignforemergency feedwater automatic
.-initiation isunderreviewby'theInstrumentation andControlSystemsBranchaspartofItemII.E.1.2ofNUREG-0737 and'willbereportedinaseparateevaluagion.
Responsea,bandc:SeeattachedrevisedFSARpages.d,eandf:NRCAction.
0 A)FPLintendstoperformtheAuxiliary Feedwater Endurance TestaspartofPreoperational TestNo.2-0700081, "Auxiliary Feedwater SystemFunctional andEndurance Test."B)FPLwillmodifytheSt.LucieUnit2FSAR,Section10.4.9.4toreflectEndurance TestingandSection14.2.12.1.4E toaddressthespecifics ofRef.(a).AttachedpleasefindcopiesoftheproposedFSARmodifica-tions.C)FPLwillprovidetheNRC(aftercompletion
.ofPreoperational TestNo.2-0700081 resultsreview),asummaryoftheEndurance Test.consist-ingofthefollowing:
1)Description ofthetest.2)Plotsofbearingtemperature
-vs-time.3)PlotsofPumpRoomTemperature (Environment)
-vs-Time.4)Astatement confirming thatpumpvibration didnotexceedallowable limits.5)Plotofobservedpumpperformance (pumpflow,head,speed,andstemtemperature) onthevendorsuppliedspecificequipment performance curves.Equipment is"Qualified" for100%humiditytherefore humiditywillnotbermnitored.
00k C.'SL2-FSARTABLE10.4.9A-4 (Cont'd)ACCEPTANCE CRITERIACOMPLIANCE Recommendation
-Thelicenseeshouldperforma72hourendur-ancetestonallAFWsystempumps,ifsuchatestorcontinu-ousperiodofoperation hasnotbeenaccomplished todate.Following the72hourpumprun,thepumpsshouldbeshutdownandcooleddownandthenrestarted andrunforonehour.Testacceptance criteriashouldincludedemonstrating thatthepumpsremainwithindesignlimitswithrespecttobearing/bearingoiltemperatures andvibration andthatpumproomambientconditions (temperature, humidity) donotexceeden-vironmental qualification limitsforsafetyrelatedequipment intheroom.A48hourendurance testwillbeperformed onthcAuxiliary Feedwater pumps.Iq~g~5~illhvzS~$~;P~HopPC.-11).5.3.3Indication ofAFWFlowtotheSteamGenerators Concern-Indication o!AFWflowtothesteamgenerators isconsidered important tothemanualregulation ofAFWflowtomaintaintherequiredsteamgenerator waterlevel.Thisconcernisidentical toItem2.1.7.bofNUREG-0578.
cpI~vpRecocmdendation
-Thelicenseeshouldimplement thefollow-ingrequirements asspecified byItem2.1.7.bonpageA-32ofNUREG&578:
(1)Safety-grade indication ofAFWflowtoeachsteamgenerator shouldbeprovidedinthecontrolroom.(2)TheAFWflowinstrument channelsshouldbepoweredfromtheemergency busesconsistent withsatisfy-ingtheemergency powerdiversity requirements fortheAFWsystemsetforthinAuxiliary SystemsBranchTechnical Position10-1oftheStandardReviewPlan,Section10.4.9.SafetygradeAuxiliary Feedwater flowindication andsafetygrade,redundant steamgenerator levelindication isavailable totheoperatorinthecontrolroom.Theseinstrument loopsarepoweredbythe120VacClassIEpowersource.12)5.3.4AFWSystemAvailability DuringPeriodicSurveillance Testingoop,toeer-doeplantsretireloselsstreal(aentodvalvestoeodatprddispopostedttanoetesteononsAFWsystemtrain.Whensuchplantsareinthistestmodeandthereisonlyoneremaining AFWsystemtrainavailable torespondtoademandforinitiation ofAFWsystemopera-tion,theAFWsystemredundancy andabilitytowithstand asinglefailurearelost.Recomm'endation
-Licensees withplantswhichrequirelocalmanualrealignment ofvalvestoconductperiodictestsononeAFWsystemtrainandwhichhaveonlyoneremaining AFWtrainavailable foroperation shouldproposeTechnical Notapplicable.
Localmanualre-alignment ofvalvestoconductperiodicpumpsurveillance testsonAFStrainsisnotrequired, 0
SL2-FSAR)TheAFkSisdesignedtowithstand piperuptureeffects(seeSection3.6).10.4.92SstemDescritionDuringnormaloperation, feedwater issuppliedtothesteamgenerators bytheFeedwater System.TheAuxiliary Feedwater System(AP4S)isutilizedduringnormalplantstartup,hotstandby,andcooldown.
Duringplantstartupandhotstandby,thesystemprovidesasourceofwaterinventory forthesteamgenerators.
Duringcooldown, theAFMSprovidesameansofheatremovaltobringtheReactorCoolantSystemtotheshutdowncoolingsystemactivation temperature.
brithoffsitepowerandthemaincondenser available, thecondenser willbeusedasaheatsink.TheAFRSsystemisnotutilizedduringfullpoweroperation.
Themajoractivecomponents ofthesystemconsistofonesteamdrivenpumpwithgreaterthaniullflowcapacityandtwofullflowcapacitymotordrivenauxiliary feedwater pumps.Bothelectrical andsteamdrivenAFbiSpumpsarecentrifugal unitswithhorizontal splitcasingsandaredesignedinaccord-ancewithAShECode,SectionIllandQualityGroupCrequirements.
Thelargerpumpisdrivenbyanoncondensing steamturbine.'Iheturbinereceivessteamfromthemainsteamisolation valves,andexhauststotheatmosphere.
epumpstakesuctionfromthecondensate storagetankanddischarge totheearngenerators.
Theturbine-driven pumpiscapableofsupplying auxiliary eedwaterilowtothesteamgenerators forthetotalexpectedrangeofsteamgenerator pressurebymeansofaturbinedrivercontrolled byavariablespeeamechanical governor.
Eachmotor-driven pumpsuppliesieedwater toonesteamgenerator.
Acrossconnection isprovidedtoenabletheroutingoftheflowofthetwomotor-drivenpumpstoone.steamgenerator.
Theturbine-driven pumpsuppliesfeedwater tobothsteamgenerators bymeansoftwowithitsowncontrolvaveanaeachsizedtopassthefull'low.
Thecontrolofauxiliary feedwater flowandsteamge'nerator levelisaccomplished bymeansofcontrolroomoperatedcontrolvalves.Localcontrolstationsarealsoprovided.
Eachofthemotordrivenauxiliary feedwater pumpsutilizeaClassXEacpowersupply(4.16kVsafetyrelatedbus).Theturbinedrivenpumptrainreliesstrictlyona'cpowersupply.10.4SafetEvaluation TheABLSremovessensibleanddecayheatfromtheReactorCoolantSystemduringhotstandbyandcooldownforinitiation ofshutdowncooling.Foreventsinwhichmainfeedwater flowisunavailable, (e.g.,lossofmainfeedwater pump,lossofoffsitepower,andmainsteamlinebreak),theAPTSisautomatically initiated toprovidehotstandbyand/orcooldownheatremovals'%hecondensate storagetank(CST)discussed'n Subsection 9.2.6,provides~atersupplyfortheAuxiliary Feedwater System.TheCSTissizedto1de-I50pHSgallonsofdemineralized waterforStLucieUnt2hotstandbyandcooldownoperations; anadditional 550,AGOaonsisreservedintheStLucieUnit2CSTonlyfortheunlikelyeventthataIQ'fq40O10,4-20)25,oooAmendment No.4,(6(81)
SL2-FSARtornadomissilesomehowrupturestheStLucieUnit1CSTandthewatercontained therein(116,000gallonsperStLucieUnit1Technical Specifi-cations)isunavailable toStLucieUnit1.4hennotornado~arningsarexneffect,theStLuciebnit2totalcapacityof300,800gallonsisavail-ableifneeaed.Ch.ibe.xe-i<<%
Copo4ihg<~>+<~S4o<the.4o'Aozaq)
Uolai>>C'.
'ThequantityofwaterrequiredforStLucieUnit2cooldownhasbeendeter-minedassumingaworst;case condition'herein theunitisbroughttohotstandbyconditions anaheldthereforapproximately twohoursthencooledaownatthemaximumrateuntiltheshutdowncoolingwindowisreached.Vnaerthisscenario, eachAuxiliary Feedwater Pumphasthecapability ofachieving anorderlyshutdownconsisting oftwohoursofhotstandbyfollowedbyaregulated cooldowntotheshutdowncoolingentrypointwithin'henextfivehours.Thequantityofcondensate requiredforthisscenarioisapproximately 129,000gallonsasshownonTable10.4-2(Case2)4The.conaensate storagerequirements fortheAuxiliary Feedwater Systemwerecomparedwiththerequirements ofRegulatory Guide1.139"Guidance forResiau1heatRemovalSystem".Vnderthisscenario, theunitisbroughttohotstandbyconditions andheldthereforfourhoursthencooleddownatthemaximumrateof75F/houruntiltheshutdowncoolingwindowof350Fisreached.Thecondensate storagerequirement forthisscenariois149,600gallonsasshownonTableIG.4-2(Case1)andFigure10'-9~D<<ingemergency blackoutconditions (exceptthehypothetical tornadomissilewhichdrainstheStLucieUnit1CST)thereissufficient waterintheCSTtoallowhotstandbyoperation for16hoursandasubsequent cooldownto350Foverfourhours(seeFigure10.4-1G).
'Ihecondensate requirements andtheauxiliary feedwater flowratebasisisdiscussed inFSARAppendix10.4.9A.Thesteamgenerated duringdecayheatremoval'nd cooldownafteralossofoffsitepo~erwillbedischarged throughtheatmospheric dumpvalves,ex-ceptforthesteamusedbytheturbinedrivenauxiliary feedpump.Therearetwoac/acmotoroperatedatmospheric dumpvalves(ADVs)locatedoneachmainsteamline.TheADV'sarecapableofautomatic modulating serviceusingacpowerandarecapableofopen/close servicefromthecontrolroomusingdcpoweronly.EachADVissizedtopass50percentoftheflowre-quiredtobringtheReactorCoolantSystemto.theshutdowncoolingsystementrytemperature, assumingthatonl4&5~0gallonsofcondensate isavail-ablefromthecondensate storagetank.12t>0Theauxiliary feidusterpumpsarelocatedunderneath
...;steamtrestle.TheAFl'Sisdesignedtowithstand naturalphenomena asdescribed inSec-tions3.3ana3,5.Thecondensate storagetankisas.~Category1structure.
Itissurrounded byastructural barrierwhii:ovidesmissileandtornadoprotection forthetank.Components intheASSareprotected fromfloodingascomponents arelocatedabovetheprobable'maximum floodlevel(refertoSection3.4)~Thedesignprovisions utilizedtoprotecttheAFLSagainstthedynamiceffectsofpiperuptureandjetimpingement effectsareprovideainSection3.6.TheAuxiliary Feedwater Systempipinglayoutandthesteamtrestleconfiguration isprovidedinFigures10.4-14,10.4-15and10.4-16~10.4-21Amendment No,4,(6/81) 0 DATEaiiED~DYDATECI.IEHTPROJECTSUBJECTEBASCOSERVICESINCORPOR:-D NEWYORKOFSHO.SHKKTOFDKPTIHO.~)~n.~saVe.
Ue)~i~e....KllWO.G~<5+eVQXL4Q(e43a.V%@.QIYiC4MO08VQ.+44.SV<~i+<.IDOInKiscanstkeCaeliunuSO)ohe,
~regis'I)aden+)
cia)DW9(looD)a)lansISaons'ii).ereI)i.
in&c.eke.'cevYD'inacian OE<ha.mxrA'muon my'reks<orehvolux&ic~I)oQre4AislAkgen4ctheke.iaYM.0(IAIQter'A>'Qbe.~net'in+heIavaluÃian o(&e.<e%Foa)X;ve.
sui.'c)an
))eachava,'lalD'le QOK4+AeAQ)I)a.i"gFQQAIJJ(L4Q.V P)A~pbIIA'Ut1.Sh.~%down Valu.Avoluene-D)T)ksooogal)ionsI'Emrna<a.inek go'Yu.se.)DD)Unit<iY)%he.eve.n<+h.e.6)-'-2c.a'Tis<~Meed,4go.torose@YTcissile.
,Th)>QAnounhlsTnoYc&ansup'ie.'Ien<
)I'Eshuckatun
..'liurpases
..~n.i<0lacy5pac.level;gIIL,coogallons,jU'Mn>u.I~IAvoluene.Og)))9I),ee QeillonsisIno'In&Lnak taku.thea)n.
1'Q7nik2Qscull'ne.J.,)Dale~,
IIIIIIIII\!II....aLtuKAKC'WcO'C)b)+)noug4 inst<ecenen~+lon
'Icrrer'4egpeekee) oo4e.neggenter+4e,n1'7D)oee)nservh'we.
Tnorgin,a)D 5/oD))%l)e,-'.InscYuenan+
reAne)e(R)I')Ieo gallaYIs)
QEIslseenIAAIieg+DCl)e'YOOVe.VolgODe.S~,,).',l)I~%0~'Y9hu~t.~we.N+alo0<lacabove.vo4~e.s,ine.'iud;nq Qlla~anc.e.
4'or",~gg<u,m<~KO, CiOn~<~VgaiWou.A~+0$)t~golllDA5"skeraLvoluine.is.3O7poeDTA6ensIi(rox'i)na'talg
<e.E)i'VOQ<a'mu.<&85~FORMIS1RCV11'I 0
~~r+F~+RSgco~4PAr4.44'o.TheConsdensate StorageTanks(CST)areintertied betweenUnits1and2.EachCSTisaseismicCategory1,SafetyClass3structure designedtostoresuf7icient watertobringeachplantfrompoweroperation totheinititation ofshutdowncoolingconditions.
TheUnit2tankislocatedwithinaconcretestructure designedtowithstand theDBEandtheim-pactoftornadomissiles.
TheUnit1tank,whichhasbeendesignedtowithstand theDBEandhorizontal
- missiles, isnotprovidedwithprotec-tionfromthevertical.
missiles.
IntheunlikelyeventthatatornadomissilerupturestheUnit1CST,anintertiewiththeUnit2tankisprovided.
TheUnit2CST,whichstoressufficient condensate tocooldownbothplants,canbeconnected directlywiththesuctionsoftheUnit1Auxiliary Feedwater Pumps.ShouldUnit1requirecondensate beforeUnit2,valvesA,D,E&Fcouldbeopened.ThelocationofthenozzleontheUnit2tankinsuresthattheUnit2supplyofcondensate isnotcompromised whileatthesametimeproviding sufficient coolantforUnit1.Alternately, ifUnit2'scondensate hadbeenpreviously
- consumed, valvesB,C,D,E&FareopenedtosupplyUnit1.CheckvalvesareplacedintheUnit1suctionlinesbetweenthetankandtheinterties topreventthebackflowofcondensate toarupturedtank.Theprovision" ofredundant lockedclosedmanualvalvesprecludes theaccidental lossofcondensate.
TheentireintertielinethatrunsbetweentheUnitsisburied,therebyproviding protection fromtheeffectsoftornadomissiles.
'I t~
QNlT2CONOKM5Ac7K STORASCTANgalz~1~l'!~~UNlT1.GOMOEH5ATE.
TORA&ETANC.LOLoLt'CV'MO'ERGRovg0EF!l.oN1'T'ROLVA='l9,2ooCsAL9:l5O,LlooGALg-l50gooGgL2AlA,IBUMiT1.VOLUMEA,:llo,oooCALB=lt.o,OooCALloLOAVXlLlABY FEEOWATEQ PUMPSg~r7F~J'vq~~~
/%~Jl'-~uTyCE~/4~~~~/J~jgfi/~M1-UTORGQ.ANY 0It Additional requestforinformation regarding thetrestlegratingmissileproteation.
~Resense-SeeamendedFSARpage3.5-40
ee'elSL2PSARTABLE3.5-3(Conttd)~tuientAtmospheric DunpValves~;>Sfect~/~fat~galve5FldXqol&c~Y&afeeic~cu,fuffientiecRLocationSld/Elevation (ft)SteaisTrestleArea/+36.0FSARSystt'ia~teecritien10.4.9/A3/OP+P7~PRRRPiure10.1-1Enclosure g~-(z.a(I~"'~
'"~~)(~frS4fg$3$rent'Nfo~cec(
~~g~TpAg,~n)9cine~~~~lena,S
~S~~~+4>6'nflfcgfs4-jgQP-bCPth7"Cns~5~~'F~'~OperiqSizf.~"Vl~q" 0
RevisionII]8/3/81NRCuestionsonSt.LucieFSARgi45l.OBTheterraincorrection factorspresented inTable2.3-102indicatethatthestraight-line
'nnualaverageatmospheric dispersion modelmaynotadequately represent theregularspat-ialandtemporalvariationsinairf1owinthevicinityoftheSt.Luciesite.However,thepuff-advection modelonwhichthesecorrection factorsarebasedismostusefulwhenmeteorological datafrommultiplesourcescanbeusedtodescribespatialandtemporalvariations inairflow.IdentifythemeteoroQical datausedasinputtothepuff-advection model,anddiscusstheappropriateness andreasonableness ofcorrection factorsatdistances of7.5milesandbeyond.Thepuff-advection model{MESODIF) wasusedontheFSARanalysestor~~~~developsite-specific terrain/recirculation correction factors.Tneseadjustments weredeveloped forapplication tothestraight-line airflowmodeltoaccountfor,onanannualbasis,theairflowch'aracteristics intheSt.Luciesitevicinitythataffecttheatmospheric transport anddiffusion conditions.
FortheSt.Luciecoastalsite,theseconditions consistofseaandlandbreezecirculations.
Theterrain/recirculation correction factorsweredeveloped fromtheratiooftherelativeconcentrations calculated usingthepuff-advection modelandstraight-line modelforthemeteorological dataperiodofAugust1977throughAugust1978(8760validobserva-tions).Althoughitistruethatthepuff-advection modelcanberunandismoreusefulwithmultiplesourceinput,sucharunconfigura-tionisofmoreimportance inareasofcomplextopography and/orforlargedistances fromthereleasepoint.FortheSt.Lucieapplication, theonestationpuff-advection analysisshouldbeappropriate for"distances lessthan7.5milesastheonsitemeteorological datawillcontainthelandandseabreezecirculations.
Topographic modifica-tionswithinthisrangeshou1dnotbeofsignificance.
Theappropriate-nessofthisapplication isfurthersupported bythefactthatseabreezeci.rculations havebeenfoundtopenetrate upto50kilometers Revision/ll8/3/81.inlandandthattheexpectedreleasesfromtheSt.Luciesiteareatgroundlevel.Therefore, thedataasmeasuredattheonsitetowershould,inapplication inthepuff-advection model,berepresentative ofthe7.5mileradiusinland.Ofadditional concernistheuseoftheresultsofthepuff-advection analysisforflowsoffshore.
Thefactthatthemeteorological dataarenotavailable overtheoceanandonobservations ofotherinvestigators indicating theslowadjustment ofmeteorological para-meterstooverwatertrajectory, theapplication oftheone-station puff-advection analysistotheoverwatertrajectories within7.5milesisappropriate andreasonable forthissite.Themagnitude oftheterrain/recirculation factorspresented inTable2.3-102forlargedistancefromthesourceareexpectedandappropriate duetothephysicalprocesses involvedandthenatureofthetwomodels.Becauseofthelackofmajorterrainconsidera-tionsandthegeneralpersistence oftheseabreezecirculations atcoastalsitesinFlorida,aone-station puff-advection analysismaybemoreappropriate attheSt.Lucielocationthenatotherswithoutsuchambientmeteorological/terrain conditions.
Butbecauseothelimitation ofthepuff-advection analysistotheuseofone-station, theterrain/recirculation correction valuecalculated atlargedistances aremoreuncertain, butnotunreasonable, thanthevaluescalculated closertothesourceofthemeteorological data.
SL2-FSARd)Emergency CoreCoolingSystempipinge)controlroddrivemechanisms f)fuelassemblies andspacer-grids g)reactorinternals 1.9.4reactorcavityshieldwallssecondary shieldwallsLOWTEMPFRATURE OVERPRESSURE PROTECTION (LTOP)Lowtemperature overpressure protection willbeprovidedviatheinstalla-tionofpower-operated reliefvalves(PORVs)qualified forbothsaturated steamandliquidreliefservice~ThePORVswillbesizedtoaccommodate thepressuretransient associated withaControlled RodWithdrawal andalso(atthelowpressuresetpoint) tomitigatethepressuretransient resulting fromeitheraspuriousinitiation ofsafetyinjection, orareactorcoolantpumpstartwithanexcessive temperature difference betweentheRCSandthesteamgenerator.
Thefinaldesignisdescribed inSubsection 5.2.6.Corresponding transients analyseswillbeprovidedinSection15.8earlyin1981.1.9.5HYDROLOGICAL DATAAsdiscussed inSection24.additional information forHutchinson Islandisbeingevaluated, ontheseparatesub)ectsoffurthertidedataandpossiblepotablewelllocations'n amendment toSection2.4willbefiledonoraboutMarch1981incorporating therelevantinformation.
1-9.6UNDERGROUND CABLEREVIEW,controlcableshavebeenrevieweda~)approved'et/dryenvironmental qualification cablesisec'sci'd+~s<<4s<4'm3,il.4.Keriteinsulated powerandbytheNRCforunderground lgderground Peramemorandum andorderissuedonMay23,1980,the.NRChas(ll)orderedapplicants foroperating licensestomeettherequirements of19.7ENVIRONMENTAL ANDSEISMICQUALIFICATION OFCLASSlEEQUIPMENT Inmid-1978theNRCissuedaletterrequesting additional information (10)onClasslEequipment qualification.
Sections3.10and3'lhavebeenorganized toprovidetherequested information onseismicandenvironmental quali'fication testresults.However,atthedateoftendering theFSARseveralvendors'ualification testsummaries andreportsofresultsarestillbeinggenerated andhavenotyetbeenreceived.
Therefore, amendments toSections3.10and3.11willbefiledperiodically inordertoprovidethenecessary information andalsoto'provide resultsofrelevantanalyseswhenavailable-'
~9-2'mendment No.1,(4/81) 01 SL2-FSARintegrated radiation exposurecombining 40yearsnormalnperation andtherequiredtermoffunctionality duringthepostdesignbasisaccident(DBA)period(upto1year).Tables3.11-1present.thedesignparameters forradiation foreachspecified envirnnmental condition
~Thenormaloperations expnsurednsefnrequipment iseitherderivedmoreexplicity fromthedesignsourcetermspresented inChapterlltakingaccountofequipment arrangement andshielding configuration, nrbasedonthemaximumdoserateanticipated fortheradiation zoneinwhichtheequipment isgenerally located.SeeSection12.3andthezonaldosemapsonFigures12.3-4through12.3-12.Forequipment inlowerradiation zones(I6II)thecumulative 40yearexposureiscnnservatively takenas10Rads.ForZoneVequipment withafewexceptions, (theCVCSionexchanger, spentresintank,spentfueltransfertubeandvolumecnntroltagk)thedoserateis100R/hr.Fortheaforementioned exceptions,,the designdoserateishigherthan100R/hr.TheDBAexposuredoseaffecting ESFsystemsandassociated safetyrelatedccmpnnents isdependent nnequipment lncatinn.
TheDBAconsidered forthecontainment, ReactorAuxiliary, Turbine,andDieselGener~t.or rruilar.ngs isthepg)uiation ofaLOCAinaccordance withtherecommendatinns nfT?D-14S44andRegulatory Guide1.4,"Assumptions UsedforEvaluating thePotential Radiological Consequences ofaLossofCoolantAccidentforPressurized MaterReactors",
June1974(R2).TheDBAaffecting equipment intheFuelHandlingBuildingisbasedonthepostulation ofafuelhandlingaccident.
Thefewnrganrcmaterials thatexistwithinthecontainment arediscussed inSubsectinn 6.1.2.Theradiation exposurednseratesgiveninTable3.11"1isbasedongammaradiation exposure.
Itisrecognized thatthebetaenergyreleasefromnnblegasesisasmuchas2.5tirIIp~greaterthanthegammaenergyreleasewithin30dayspostaccident.
Howeverarepresentative cablegeometryinsidecontainment hasprotective coversheathing theinsulation layerandanoverallcoveroffireprntective Flamemastic orequivalent.
Therefnre theintegrated betaradiatinn doseforaoneyearpostaccidentperindislessthan10percentoftheintegrated gammaradiation dnseoverthesame'period.Thiscomparisnn includestheconservative assumption ofcomparingeffective 2.2Mevbetaswitheffective 2.2Mevgammasandassumesaspherical cloud,radius40ft,ofairbnrnenuclides.
Othercnmpnnents insidecontainment areconsidered sufficiently shieldedfrombetaradiation sinceitiseffectively attenuated byonlyafewmillsthickness ofmetal.Therefore basednntheaforementioned discussinn betaradiation isnotconsidered anenvironmental qualification problem.3.11.6SrJBMERGED CABLESSafetyrelatedcableslocatedoutdoorsthatcouldbesubmerged inwaterarequalified fornperability undersubmerged conditions.
Pcdbe'ev,'r~~g@<"Ir'~r~
Qal<~!Ar."p~yMWeri'4.Mp~y m(4.~~(~+,we+/AyMud~~'km4us~LW~'MM(~cP.C.(r.3.11-5 0
SECTIONF11:REFERENCES SL2"FSAR(1)D'8Vassalo(NRC)lettertoDr.REUhrig(FPL),"Environmental andSeismicQualification nfClassIEEquipment" datedJuly28,1978.(2)Dr.REUhrig(FPL)letterL-78-334toDBVassalo(NRC)datedOctober16,1978.(3)JJDiNunno,FDAnderson, REBakerandRLWaterfield, "Calculation ofDistanceFactorsforPowerandTestReactorSites,"TI0-14844, USAEC,,March23,1962.4(4)1976ANSPaper:"In-containment Radiation Environments follnwing theHypothetical LOCA(LWR)."3.11-6 FLORIDAPOWER&LIGHTCOMPANYSTLUCIEUNIT2DOCKET50-389ENVIRONMENTAL DATAFORUNDERGROUND CABLE.EXPOSEDTOWET/DRYENVIRONMENTS I.TesofCablesUsedInUnderroundDuctsTwocablevendorssupplycablesforuseinunderground ducts.TheyaretheOkoniteCompanyandtheKeriteCompany.Okonitesupplies5KV&15KVpowercable.Keritesupplies600Vpower,controlandinstrumentation cable.The5KVand15KVpowercablesareinsulated withunfilledcrosslinkedpolyethylene, wrappedwithanextrudedlayerofsemiconducting insulation shieldmaterialcompatible withtheinsulation, andcoveredwithaleadsheathandaheavydutyoverallneoprenejacket.The600Vpowercablesareinsulated withahightemperature Keriteinsulation (HTK)andcoveredwithblackheavydutyflameresistant (FR),jacket.The600Vcontrolcablesareinsulated withKeriteflameresistant (FRII)~~~insulation andcoveredwithheavyflameresistant (FR)jackets.The600Vinstrumentation cablesconsistsoftwistedairedshieldedandPunshielded cables.Unshielded cablesconsistoftwistedpairswithKeriteflameresistant (FRII)insulation coveredwithanextrudedpolymerlayerandhavinganoverallflameresistant (FR)jacket.Shieldedcablesinadditiontotheabovehaveadrainwirewitheachpairindirectcontactwitha'lumimum mylartape.Eachshieldedpairisseparated byglassmylartape.
0 II.TestDataVendordata(KeriteandOkonite)regarding theenvironmental qualification oftheircablesexposedtoawet/dryenvironment areattachedforyouruse.Inaddition'o theabove,aprocedure wasdeveloped onStLucieUnit1totestcertainunderground cablestoconfirmtheirfunction'ability.
Thefollowing isabriefsynopsisofthisUnit1procedure.
Atleastonceper18months,duringshutdown, byselecting onarotatingbasisatleastthree(3)cables,onefromswitchgear tointakecoolingwatermotor,onefromswitchgear tocomponent coolingwatermotorandonefromswitchgear todieselgenerator aretestedwitha2500VDCmegger.Controlcablesthatare'ssociated witheachoftheabovemotorsanddieselgenerptors aretestedwith1000VDCmegger.ThethreesparecablesareDCpro~<tested at25,000voltsandmeasuredforleakagecurrentat30secondsintervals for10minutes.Allreadingsmustmeettechnical specification 4.8.1.1.3.
Ifanyinstalled sparecablefailstheHitPottest,theNRCwillbenotifiedandcorrective actiontakepertechnical specification 4.8.1.1.3.
AttachedarecopiesofactualtestdatatakenatStLucieUnit1.
'
tACK~et~g4.SLORIDAPOIKRdLIQITCCCIPAMtRests~0STrLUCIKPLANTCycloIMIIIÃIISX tROCCDUlt RI..OI?ONI nannagearCtAll1l1NStlt1>>StumCuV.iOI4f~ltcKKet1500TSerialXo,~t~'>>N>>~7Rt~TeccerSerialXo,~Q7-6l(ra+icy".1A~~I~~~~4>>~~*~W~toi'ps>>~~00NIXSoSEC01NIX>>00SECTESTVOLTS~NIX>>READACTUALREADCEO'LETED STgC.p/./~0//<71IbIELECTRIChII-POTDCTIAL READIXCIXNICROANPS OSNIX10SECOdNIX-00SECagent~~02NIX-3-l5NIX$0SEC0$NIX00SKC04NIXSOSECC5IIIX00SEC/.0Oio6OiOtNIX-OOSECP.t07NIX)0SEC0$NIXOoSECCSNIXSoSKCglI0%NIX-OOSECOSNIX10SEClONIX<<OOSECPilgfC"NECCKRREADERIESTVOLTSNIX,READACTUALREADCQSLKIEDKT~100NCosylacedXgDecoUIforlcve4Sy~P4NONAklfrea4$aKSaeaCSeeeCedaiealCPeeittCaCIOOC lAoloLS~'4>>Qlksj 0
h6tLOKIDAtOOKkSLIOITCCCO'AXTSavie&ooST,LDCIKt1ARTcpsl6llllsllllllfCC PCCCtsutS M.sslssst lStS~OAThSXEKT66606ICttststtts
~PAIICClllCtssstCwt.~PXc)abtity Ltegger2SOOVSerialNa.~~I52~TeeterSerialNa,~~ss46(((660is'Ia4'2tlOEet~llP~0~('(6~r(46'I(AIECCEkkEADIXCTESTVOLTS~NIX~kEADACIUALkKADCrtLKTEDST100Nr~~00NIX$0SEC01MIX00SEC01NIXSOSEC02NIX-00SEC02NIX20W'0NO!00SECr'ig~OSMIX30SKC0$NIX-00SECCGNlX30SEC07NIX00SKCGimxSOSECOSNIX-00SKCOZELECTXICIXI-tOTEXTIAL kKADIXCIXNImurrSOJ/~64p~Qo"!6I~'6'5NIX00SEC04NIX20SECI,08NIXSOSEC09NIX-00SKCOTNIX20SKC)6Ãfr(h,,t-<<'4tpE.)66~4,,~6~ss400'Irhs(I~E'I*0s,SEh'Q)tg'qnC10NIX00SKClLECCQLRKADIXCTESTVOLTSMIX,kKADACIUALSKADCHPLKTKDST2SOOV"100N~C'sr1ICoapletetr Xy-6i~OctaXaviave1SXDatehaart.EINOTXthllraa4iakaaacataeettecltatcal ateciOcatioee 40!Clsls)
'rs'I~606*~st"r~t"(~('".r4CQQ'6th+46)p6
,eye4~'-441*1asso~~~v'16~,~>>Fg4'~6Fr.t>>6iSatACE4ef~N20RIDAtfACRSLIGHTCIRftAffT
~ReofoTea0SToLUCIEtLAffTCyaleloillisclllsc ala>>Floss 2N.0620062 SalDATASlfEETcussisNora>>>>usraucuu'uaaShacaa2200OSarlalSa,2>>slss~slorsausN.~2=-1ThaICIty~<~PNECCKRRKADISCTESTVOLTS~NlxoREADACNALREADCIXPLE1ED SZ2500Y10FFIDIKLKCTRIChn-mmmAL RKADIXCINXICROAXtS 4'>>F.'4~~rlg'1ia00NIff)0SEC01NIN00SECOllCtSOSECOSNIN00SECCstNlÃ00SKC04NS~SOSECgo02~'n~;OSNiff~SOSKC06Niff00SKC0)NIN00SKC07NINSOSKCObNfff00SKC0$NIN-SOSKC09lflN00SKCO'0NINSOSEC10NIÃ00SECrs.4'.I~g'11'4O'J,~.,et2F-',;4"h4'KCCKRRKADIECTt~SOLTSNISRFADACIOALREADCIC~TEDSTKSOOV"100NCeoltlete4 Ey-~Date~IeefweiSSlyAoet0~'cLoeIDTEOAOSeeCI2oge metsecttecfsesfcel eteeIOeetfeee 400ololoS 4l>'",.O'42'~0~~alF>>41'420'4
-
,.Iktk,.!415~e~.~I<<<<V~'4.~-~~~*r~erib:Ilt<<A I'0:L'AALIf<<C!fCILIA'<<5'IT ST,LLYII:I'I'?tttII!Tf~;V; Sr;aCI!!T.
r".I:O.O~.OOA!
TtATASI!.".iTCIASSlt:ICSTAI.I.LO StALLCAktlXyp)~sr1~k'CACSgof~Revlstou0C<<i~tk<<)SoovsIIr.o.E-lttt?otTesterSertst4>4LV6k~<<.~triiiiii<<~I/.I<<Iaffords)SOOV)091!5ooo'-bttfrr.kotc/!!1-.)TS)<<TILL
.'0SS111'.:IC~)AL'S reef>>FJ'J<<DIDlESTVk!LTS~r!::.Rf'll.ACLOAI,CEADCO:LrlLTKO EY4~iIII\I00I!I::)0SlroOl1:111-00SSC011:I'.I3'I<<I'.C02l<<ISMS'r.ltc-)0.:c0>I:IS)IISf<<Cosrls-00sxO'!'"))S.".C0;g:-C>>SSC5OI:::S-)0S~)Ck<<I.!IS-00S<<X0)'ttl>>-)9SLCOS!!I'3!1STCI4klII-'""'"4Ir~,Oh'V.~<<Vt<>i.>>IQ.csr.tx-OOSu:)o:r.ts-)oszc0)rt"..-oos:x:OPIIIS-)0SSC03111>>-CoSSC310!Ittl00SIX/rr~ttrQU4TZSTY!r-ks1!I>RCLl~4'AL~eCL~Tel'LT')00ItCosstktrted SyRc>>rt<<ved SgAsI')4Ltectrtcot lkkeke~gCRIN1reaftaosNu'CskeetCecttatrol opectftcottoas 4.$.).))IH,,24t<<kkJ4<<J'~1*I,'14<<4II"4 0II W~>PI>>:<<14!4~/"I h;segllgy" hgi}I'"eeep>}<<}s'}lqhll>>', As(i4>>0<<s$})QseA~++A<<s}4'ec)s~ehs."<<PI}t<<I<<I/v,.Nl'e<<~g)<<I~*e'M'1sP~s-~~s>>),)'I<<PE1>><<P}.>>,'C11'PI(S~,,IP>>11}IIPISeI)1)I<<q-5,.*I'.<.}QFits;ID.h Ftt~cdaI.IC!ITF<<FIFA.;T ST>>LI'CIEI'!AsarI!hit:TI:.i: "i'.EFFALrwRF. I'0,09.'<It!At DATASI!ELTCULSS11.1!iSIALL!.0 SF"!ECAlLEIOASTer~gEseIsion0SeII}II!essess}seIII,CISI-IIS}SIISPP.sP.~OllamaIdley~/~HIXCE"FPAVI!e~SEt'ORETFSrTOLTSI:IS.EFAOACTUALEEAOC0%'LETEO ST2560V100It'00Ie'I'.I-30SFFIOlI'PINIytSI.COlI!t!:-$0SEC02sti"t<<$S"02I:t"-Al$FC01I:I'IOA$"A:tQltt:!30SASsSIS-OSSPS[OCNtt-20SECDIKLECT,.I C/I!ITOTE.,I'.'.Es'AOISCs::VICROh>>CS0$HIH-20SM0$N!te00SL'C3OfHte$0$LC3r/..::i-teSECOvht.'>>.1t<<0SECI0"Ht>>-$0SFPCg09H!HCOSEC09HIS-$0SEC0$I:IS-00SEC310HIS-00SECAFTER2$00YCossplrced SyRsrefcs<<r41Ortcssc~$:!Pc>>Elrccclcal NtfcNlcadleEscsstcsrrtcrc'$sctcal sFrclltwltesc h0.1~1,51GX7~DEAD!'A<<STTO>>TSttl!I1rAhPiUALv~vCO'LsLKDST"*hpeees.S,gP+Peh)e-ve~~1'ss~epe'I}I1
NN,-~!-,aal,I:.~NOt'hh'JCIS."~',I'~I""~)s,~~afCIIt4't~fc'tACE4ot~lLORIDAtOUKR4LIIDITCSPANTReo5sjose 0~STOLUCIKPLANTCycietaatstNNscs taoccNIIN NI,CIINata aaaao'tlTA SIIKXTcussasNotaaatostaasusas'aoaaaC'.r,I,IIJea'lrcrLvc.4pVtaNuaSSOOVSeuaO.<-COISN~CaoaSNuaSO.~C-.-9saao.~4Sa$85ty~~2300YIOONDIELECTRIC/NI-POIZmut. READINCINNmaerSICCCKRRFADIÃCTESTVOLTS~IQNOREADACTUALRtADCRIPLKTED SThli,Ih4ej-CI4"ODIQN30$EC03NINCOSKCOlNIN-30SP:02IQB00SKC1stNN-30SCC58IQN-005ECC4IQN~005KC04IGN-305t'CaG~2O)2Qo~SJ~r)5~r)~03NIN-30SECC4NIN00SKC04IQN30SECOININ00SKC07NIN-30SKC04NIN-00SKC05NIN30SEC09IQN-00SEC09NLl30StCIONIN00SEC~S)~Srs.rSs.l~ZOj's'I4)eCecstlecel Kyc)).~lhce~Reofecsed Dyc~~SEtetcAIIreaf5egeeeetsectteclse5cel epec5E5cettcee 4,R,Il3l~~IIECCKRREADIKCTESTEDITSNINOREADACTUALREADmtl4~RT2300t"100Nr"-~r.55-"~~~444Ohepoe4~4'4Lb.0JNae4'4I4(aa*"~4IS~~I44 ~~~s~~~CRKAQRRKR I~RSERR'M~'%K&M~~~r(gg)'* 'I rc~I"'-~40'~90~4~ I4'~~~0~~I0~\'t'wjgc~PAR~et~FLORIDAtfRKRSLICHTCNO'AXTSdrlileeST0LUCIEtLAXTCycleIIRIRI0IIIICR RRCCCNIRR 00.00I005R KateWuaLCIty~0~9~~'ATASffEETCIASSlETIISTALLED STARECAELA~~0t5gger2SOlVSerfalXo,~36S\acmiczcccccRccccc00.~EZ90tlrtI;HECCERREADIRCTESTVOLTSHIX0READACTUALREADCfDftLETED RI100NS'M"iilrL r0I'foIGX-SOSECOlNof-00SEC01NIXSOSEC02HRX00SEC02HIXSOSECOSHIM-00SK(OSIGXSaStCDIELECTRIC/UI-tOTQITIAL READIÃCIlfHICROAHPS OSlGXSOSEC06HIX00SECOSlfIXSO5Ã07HIX-00SEC07NIX-SOSEC08NIX-00SECOSlGX-SOSEC0'I9I00~4j'0~~OfNTX00SECQlGXSOSECOSlGX00.XOSHIX-00SECf6HIXSOSEC10HIX-00SECTESTVOLTSIGh.READ2500VCaaylccet SfIeelef0ee SyNfEISA?1see4Seffs weteeetCca0,~~~"100lf~~0CC.todcefcal etcct!Icotfoee0,0.1,~~~4~+r+++7L000'tRII, ~~~~A0
0~'>>elPeI(~>>>>LljI'I>>*~hhe=Ier'I>>II,j'Ie,'I~>>~~tkCE21ehaSLO'IIDAtOMRLSLICll2CCCIPANYMeToaST>>LUCIStilerCpcle't>>I>>ICCI>>ICC tk>>CCIN>>t 00.~0>>t>>05 Dete~~ggg+ QTASllEETCARS2tIlQZALLED StASECASLE1082TF=PKHHetter2500YSerialRs,~QgQt~tTeeterSeria1%>>~~~fbafdItg'0~~HIN>>LEADACIOALLEADCCRC'LEIED ST100N2500Yl0~0}tr~Av>>QI00NIN>>>>QSEC01NIN-00SEC01NIN20SEC0$XIN-20SECOSNIN00SECCdlQN20SEC~2~~02HIN~00SEC07NIN00SEC02lN20SEC03HINOOCEC07NINSOSECOSNIN00SECCOHIN)0SEC09NIN00SEC09HIN20SECOSHIN00SEC.10HIN-00SEC2SOONOospleted Sy~DateEgta>>pt~ectrS,ecrC0+Jj,h'C.C'.eIrc.hj~~~~~ICItr.~~>>RerteucdACE!L22resdlesecejetaccttecbdca2apecQSeatfaas d>>L2>>LSttI~~~~~~'i~...Cj"~IQXCELEEADIECTESTVOLTS~RRFOSIDIELECTRICINI-tOTENTIAL NEADINCINHICEOAHtS .CCIQ':IQrh0~t~e~~ 0 >>-J,>>~iidiIrilr,""6'I~P1,,-'*".,i,'I>>'r'"O>>idJOLCNt,PJLo'6dc~1r~~>>r.i-".~he~P$ 4~'r*4~'o'L'r+'r,~fL".yWCP'pv~'$rd~~;)~1j)f~>>i,proJJ6~3~PC~>>+1~6~~~i~DA7QAX4LtctlTCCttt'ANT STDLDCEEHJWT'LILLoprlocc ppdcpcolc CD.DIPDDLL eu~.jP.p1DATANtEETCCOICLCLCCCILLCO CPLCCCLOLOLOOCC~ESOOrSaIttoS~O~Ct~T<<acert<<rI<<lNo,'~~NECCERRFADINCTESTVCPLTS~NlttoREADACIVALREADCQCKETEtt ST25corlcoNbnXZCTRZChu-TOTESTIAL READIDCXSNImeeSCONIIC)0SEC0$NIttSoSEC~/OSNttt-CoSEC,/OlNItt00SEC05ttItt$0SEC~/50>Nltt-COSEC,/+07NlctSoSEC<</OSNItt-00SEC/gOStGNSoSECQNltt00CC,,ggIN<<XSEC04tQt00SEC04NDtSOSEC0$NItt-COSECOStnt-00SEC(goltNIttSoSECg.]0NItt-CoSEC~]$".HIlt.READACIUALREADCXC~SYmIC>q~~RES<<sec@%yreaStaSsasstkatarS6LOIC~<<<<&5C4L'tecbat<<ai sp<<cILI<<atS<<ee 0.LLL3d~=d~~'6Ji,'I,~~~~~~~+~~PL,,jO
THEQociKciwnEV'CDMPWNWPostOfficeBox340Ramsey.NewJersey07446201-825-0300/Cable: Qkonitea~pa4gl0'i~Vs'~iJuLy21,1981r'babcoSecvmm,7nc.Twotilo&dT~e,C~mNeulYak,hl.Y.hPc.George,Aorta,~
Subject:
SC.Luci.eU~TTP.O.NY-422574 5815kVPowMCabeeP~A,.A~uun,TRQMCocon(~oall,conversation o$todayhelative. Coouzel,prie&.oufLy dub~edquaLipc~n documentation onwMandAycabLe,~ru~atiom. Ole,havenoobje~no$yomsub-n~~gany'p~o<aLLo(omquaLLPcation rtepo~WAehlRCno<douehave,anyobjection WAe,Ln$oenatianbecomingpubicm$oenation. Vmy~iLyyo~,R.A.GubaRAG/mg , 'fHHDKANITBCDMPANYRorrmegNew~~FLORIDAPOWERhLIGHTCOMPANYST.LUCIEPLANT~MEDIUMVOLTAGEPOWERCABLEEBASCOSPECIFICATION NO.211-73,REV.3PROS.IDgFLO-2998-291 INUCLEARQUALIFICATION REPORTforX-OLENEINSULATED CABLES'ThisdocumentisTheOkoniteCompany's nuclearqualification reportforX-Oleneinsulated cables.*Itcompliesliterally withIEEEStandard383-1974, Section1.4"Documentation>>. Section1.4documents theparameters specified inSectionl.3.IncludedinthisreportaresevenAppendices whichservetofurtherclar-ifyOkonite's testprocedures andresults.TheseApp'endices areasfollows:~AeviixComparison ofOkonite's LOCAQualification TesttotheSuggested TestProcedures andNESCRSheetsasgivenintheEbasco211-73Specification. Coxnparison ofOkonite's LOCATestProfiletobasco'sPostulated Event40-YearLifeDetailDocument. CRadiation Certification LOCAAutoclave DrawingListofEquipment ElevatedTemperature MoistureAbsorption Thenecessary'data todocumentsatisfactory compliance asspecified inSection2.6ofXEEE383,Documentation ofTypeTesting,isprovided. inthisreport.Thefollowing cross-reference tableillustrates wherethis~information canbefound. THQDKQNITGCOMPANYRxrrwgNewJomeyC9048APPENDIX7'OISTURERESISTANCE Longterm'moisture stability isoneoftheessential factorsinselection ofaninsulation formanyapplications. Itisnotun-usualforapowercabletoberequiredtooperateinanenvi>>ronmentalternately wetanddry.Todetermine thelongtermwaterstability ofacable,asampleinsulated withathinwalldielectric isimmersedinwateratanelevatedtemperature toaccelerate thedeteriorating effectsofmoisture. Monitoring theelectrical properties providesanindication oflongtermbehavior. Baseduponactualexperience capability ofwithstand-ingtotal,waterimmersion at90Cshouldbecapableofalifeinexcessofagenerating station's designedlifeinanenvironment of100%humidity. FigureIshowslongterm90oCwaterimmersion ona1/C814AWGX-Oleneinsulated cable.Testinghasbeenperformed inaccordance withICEAS-66-524, paragraph 6.6"Accelerated WaterAbsorption Tests"exceptthat(1)thewatertemperature was90C,(2)three25ft.samplesweretested,(3).thetestperiodwasextendedfor12monthsand(4)a600voltacpotential wasappliedcontinuously. Evenwiththemorestrenuous testparameters, thesamplesmettherequirements ofICEAS-66-524, Section3.7.3.3.Theextended12monthdatademonstrates alargemarginofassurance. Alternate wet/drycyclictestingonthisinsulation hasneverbeenperformed. Forthepurchased 5and15kVcablesthisques-tion(aswellastheentirequestionconcerning moisture) isacademicsincetheleadsheathwouldpreventallmoisturefrombecomingincontactwiththeinsulation.
~rTHEOKONITECOlVIPANY FhmcmgNew~~Appendix7,Page2LONGTERM90CVOTERIMMERSION TESTConstruction: 1/C,gl4SolidCC,.047"X-Olene(Ref.2-18,pg.240).Continuous Stress,600Volts,AcAveraeof2SamlesTimeInitialMeasuring StressVolts/mil40800.1)0.102.31,2.31VoPFSICSIRMohms-1pppft. at-500V&250,0001Day400.10Z.0980'.13""2.09"~289,000I'4~1%'eek2%'eeks408040800.060.080.070.07Z.132.132.152.15~276,000~263,0004%Pecks4p800.070.082.152.15W237,0002Months40800.050.062.152.15w141,0003Months40800.062.150.062.15&257,0004Months5Months6Months12Months408040804p8040800.030.040.030.030.050.050.020.032.182.182.182.182.182.18'2.192,19w257,000~250,000M250,000~257,000
49DeyStreetSeymour,Connecticut 06483(203)888-2591-thekerttecompanyEbascoServicesInc.2WorldTradeCenterNewYork,NY10048July1,1981ecsssiR~ENr44CI~)~EJtt~jr~IJij,!'~tI'IE:r~~oJi.(.'c;",";) ~t~7$,'r'rr"s~LuZATTENTION:MR.'W.LUNDGRENSENIORENGINEER, ST.LUGIEg2PROJECTGentlemen:
SUBJECT:
FLORIDAPOWERsLIGHTCOMPANYST.LUCIEPLANTUNITg2PURCHASECONTRACTNY-422573 ~~~~Confirming ourconversation ofJune29,thisistoadvisethatourEngineering Department hasreleasedthefollowing documents sothatyoumaycopyandsubmitthemtotheNuclearRegulatory Commission: KeriteQualification Documents For:DocumentReference Reference 6KeriteFRII/FRSignalandInstrumentation CableEngineering Memorandum 240June6,1979Reference 6KeriteHTK/FRPowerCableEngineering Memorandum 223May4,1977Reference 5KeriteFR/FRControlCableEngineering Memorandum 205November6,1975Wetrustthatthiswillsatisfyyourrequirements. Yourstruly,THEKERITECOMPANYFrom'heofficeof:E.N.SleightAssistant VicePresident NationalGeneration NHD:ss'Signee:rmaH.DubeAdministrator-PowerPlantGeneration sssssidisfy ofHARVEYHUBBELLINOORPORATEO ~~L,~'~'~ft~Il~'ST.'XUCIENUCLEARPLANT""'BASCOSERVICESBlCORPOBATED -.:,FLORIDA POWERANDLIGHTCOMPANY'QUALIFICATION DOCUMENTATION FORKERITEFB/FBCONTROLCABLESASSIGNEDTOEBASCOSERVICES, INC.T.~~~~~~~JL~wC~I~~Theinformation inthisdocumentation packageisconfidential andassuchisnottobecopiedorduplicated inanyway,withoutwrittenpermission fromTheKeriteCompany.I;ChREF/dm4/ao/vvAPR22SV e thehei.it;ecompanyApr.20,19VVSt.LucieNuclearPlantKeriteFR/FRControlCableOthersupportive agingdata(notreferenced inEM178-A)andnotincludedbecauseoftheirproprietary naturebutavailable forauditatourplantoruponvisitation tootherofficesare:FourHourOverloadCycles-Kerite-October9,1956OverloadCyclingTest-Kerite-January23,195VProductEvaluation Test49-Kerite-April18,1962-OvenAgingHighVoltageLabTestSheetNo';3-OvenAgingDielectric Strength-PBInsulation.- D,~.',19VOf---Physical TestSheet-,,K~+-.nAged-4Yearsat52C-April19,1962Miscellaneous Te--.~iite-February13,19V3QLWaterImmersion~ ~2Thesubjectofwate-'ersioniscoveredinKeriteEngineering Memoran-dumNo.205(Bef.5),withthesupporting dataavaQableforauditatTheKeriteCompany..Aswiththethermalaging,anevaluation technique hasbeendeveloped by.;:Keritetocompareourlatermaterials toKeritewithitstimeprovenservicerecord.Thedatadeveloped showsPBinsulation capableofoperating atatem-peraturelevel22ChigherthanKerite.Again,'thiscorresponds withthe90Cconductor ratingassignedtothePRinsulation. Summarysheets(attached toEM205)coverthepointsusedtodeveloptheplots.Insummary,themonitoring oftheeffectofwateronelectrical properties showedtheXBwasthemostusefulparameter intermsofcomparing thelater...compounds withKeriteinsulation. Therateofchangeofinsulation resistance !ratherthantheabsolutevalueofinsulation resistance isused.Thedataplottedonthecharts,unlessnotedinthesummarysheet,isforimmersedcon-ductorscontinuously energized at600voltAC.Amulticonductor PB/FBcontrol.cableofthetyperecommended forSt..-iiLuciehasbeenimmersedin90Cwaterwith600voltDCexcitation between~conductors andground(water)forover39weeks.Comparison ofperformance ofmulticonductor constructions toindividual conductors immersedinwater
I,,thekeritecompanySt.LucieNuclearPlantKeriteFR/FHControlCableApril20,1977showsthebenefitofcoverings overtheinsulation (seesummarysheet).Continuous waterimmersion wouldonlynormallyapplytocablesthatareusedforsubmarine applications althoughsomeunderground ductsarealmostalwaysQooded..Bothoftheseinstallations alsogivethealternate wetanddryexposures (i.e.,tides,seasonalgroundwaterlevels).According toourin-formation, thereareseverallocations inthesoutheastern U.S.areawhereKeritesubmarine signalcableshavebeeninstalled andoperating since1926.TheAltamahaRiver'near Everett,Georgia,installed in1926andstillinex-'stencein19VO.AlsoSatillaRiveratWoodbine, Georgia;St.Mary'sRiver,Georgia;andTroutRiver,Jacksonville. Thisservicerecordcanbeveri-fiedbytherailroads ifneeded.XV.Alternate %letandDrKeriteEngineering Mew~y.ba1sostatesthatfromourexperience, alternate wetanddryisnoT~rethancontinuously wetandusuallymuchlesssevere,.depengi0g'~ ~Pedryingtemperatures anddryingtimes.Actualsupporting testde%<,seporte8%tarch 16,1976,tsreferenced andattached(Ref.6).~.-~.'atai@8eingdeveloped andwillbeavaQableforaudit.V.Radiation -..TheFRinsulation hasbeensubjected toanumberofradiation tests.The'eportofApril20,19VOwassubmitted originally. Thisreport,initself,con-tainsaQthesupportive datanecessary toqualifyFR/FRcontrolcablesfortherequiredtotal40yearsplusoneyearemergency integrated radiation doseof8;5x10~rad,forinsidethecontainment oftheSt.LuciePlant.However,thespecifictestprogram baseduponPar.2.3.3ofIEEE383-1974including pre-aging byTheKeriteCompanyfor101hoursat150C,gam-mairradiation of50megarads, andthentheelectrical integrity verifiedbyiRmeasurements andhighpotential withstand testsiscoveredinReportF-C4020-3 preparedbytheFranklinInstitute ResearchLaboratories, entitled"TestofElectrical CablesUnderExposuretoGammaRadiation". TheFranklintestwasdoneonsingleconductor No.12AWG,50milsFRinsulation withoutthebenefitofanyouterjacketsorcoverings (amoreseveretest).Thecablesuccessfully mettherequirements. r IENGINEERING MEMORANDUM NO.205EPTP"0November6,1975Supersedes ugus,~IssueChartredrawnOct.22.1976DETERMINING TEMPERATURE 'RATING'F CABLESFOROPERATION INALTERNATE WETANDDRYLOCATIONS Temperature 'rating'f cablesforalternate wetanddrylocations isestab-lishedutilizing theArrhenius techniques butincorporating 'areference material'orelateactualfieldperformance ofcablestothehighertemperature continu-ouswatersoakdataonsmallwire..Thisrelationship isthenusedtopredictthe.'wateraging'fmaterials infieldservicethatdonothav'eanextendedoperating history.Continuous immersion ismoreseverethanalternate wetanddrycondi-tions,andarelationship betweenthese'aging'at sisnecessary. Supporting datashowingperiodicimmersion tobenomorep~rethancontinuous immer-siononKeriteandFRinsulation isfoundin-.>$,-gtestreportsorpro-grams:A.Hvizd,Jr.'sprojectNo.',.Cmer,.196V) -Kerit;e15-3LabTestSheetNo..sulation(July2V,1970)Engineering Project'-..O',R+sulation (inprogress) geo%Thereference matej',isregearKeritewhichhashadanextendedservicehistoryencompas'--.inexcessof100'millions offeetofmanycon-struction typesinallenvironments andatconductor operating temperatures ofVOtoV5C.andcablesurfacetemperatures of60to65C.Themethodbywhichthisanalysisisperformed isdescribed asfollows:Thebasisforcomparison betweeninsulations isthe"insula-tionresistance". Testshaveshownthatthiselectrical para-meterisrepresentative ofaginginwetenvironments. Changeincapacitance ordissipation factor,however,isalsomeas-ured.Engineering ProjectNo.75-40coveringtheelectro-endosmosis programwithsamplesenergized. with600voltsAC,600voltsDC,ornotenergized showednosignificant effectontimeto-1/2IRorapproximate doublingoftandeltaduetoelectrification. Onefurtherquestionwaswhethercurrentloadingretardedoraccelerated anyelectrical degradation. Alaboratory testtoanswerthisquestion(15-3LabTestSheetNo.227datedMarch29,1970)gave noindicatioq thatcurrentloadingaffected'electricals'.
Pg.~Havingidentified therelevantagingfactorstobetimeand.watertemperatures, therelationship betweenmaterials wasselectedtobebasedonthetimetoreachone-halfoftheoriginalIRlevel.*Otherlevelscouldhavebeenselected; however,the1/2IRpointwassomething achievable inreasonable timeperiods.Oneotherrequirement inthisanalysisisthatthe'slopes'f the'aging curvesbeessentially parallel. Thisisthecasewiththesematerials; i.e.;theslopesofFRinsulation andKeriteareparallel. 'TestpointsinwaterforKeritewereat90,V5,and52C.andforFRinsulation 90andV5C.~D.15-3LabBook-B,Pages1P.~'9q.,15-3LabBook-B,Samol1-,.5",-ChemicalLabRecord/".~75-118(1971),V5-119(1971),V5-8V-,.24(1960),V5-123(19V1)onthishasis~cshavhientical 'aging'lopes areexpected:-t g~arlyundehsimilarenvironmental serviceconditions'aqug" iroperating temperatures forequivalent ag-ing'would therefore berelatable. Thus,fromtheattachedchart,theperformance ofKeritehavingaprovenservicerecordofmorethanfortyyearsatinsulation surfacetempera-turesof60oC,andhigher,itisseenthattheequivalent con-tinuouswaterimmersion timeat60C.toreach1/2IRiseightyd'a'ys.Alsofromthechart,forFRinsulation, thewatertemperature requiredtoreducetheIRto1/2theorigi.-nallevelineightydaysis82C.Thisanalysisindicates thatFRinsulated cablesmayberated22C.higherthanKerite.-(FRinsulation isconservatively ratedat90C.conductor temperature. )~Inactualservice,cablesfullyimmersedinwaterwilltendtohavetheirsurfacetemperatures approachthetemperature ofthewater.Therefore, attempting toestablish atemperature ratingforcable(assumedtobedry)maynotbeassignificant asdetermining whattheenvironmental watertemperature willbe;however,thisanalysisprovidesatleastacomparison betweennewermaterials andserviceprovenmaterials forgeneraluseeon-'ditions.
EM205Ij',st~~toverthecabledinsulated conductors oranincreaseTheadd>>ooa~aceoee.elininsulation thickness showssignificant improvemen ope15-3Lab'Bopk-B, SimpleIMCB.VrItshouldbenoesotedthatsaltwaterimmersion islessseverethantapwater.darch81974.BefertoProductEvaluation No.1VV,reportdateMareinsulation in1966hasgivennoevidenceoffieldtIthabdibdt,'d..h;.ld.d ..bl,...,t irealications. Itseenanastheinsulating jacketon1/c,5EV,90C.ratednon-s~eecaanddryapplications, alsowithoutanyreportdserviceproblems. ~AH,Jr./dmcopies:Engineering MSal'esOffices.eLQ~'.Hviz,Jr.V..P.ofEngineering e EM205Determining Temperature HatingsofFireHesistant (FB)CableforOperation inWetLocations ~~.~II~I~~I~I4II~~5,000I~'jil!I~~IIII~~~~I..i~-..~I~I-!I~I~~S~IIi!,ii1TlJit!ITiII500.'tI~~&'ttt',I-IIt'I~II10~I~III~~iI-I~~tIt~II~~i'~'II"'I:.I~I:i'~~~I1tII02802602402202001801601401208060RS/dm10/22/VG'C(-SCAL5..) . 1~~~ICONFIDENTIAL. March16,1976To:From.'.F.ParsonsA.Hvizd,Jr.
Subject:
St.LucieNuclearAlternate Wet/DryCycleTest-HI-VOInsulation Reference. 'Electrical LabReportNo.599;~PuroseIIlwEvaluateandcompare'the electrical c<<acteristics ofHI-VOinsulation cycledalternately bebveen90C.eaterr>,-.temperature airtoacon-0trolsamplecontinuously immersedi--ter.IProcedure ~sPriortotheperiod@pi-0 of+Cycledtestsamplesfromthewaterbath,measureinsulatsch ~q,@tenue 5tisstpation factorandcapacitance ofalltest.samples.Qp'@iudcon'stsof3f/3daysin90oC.waterand3/3daysinroomtemp:,.'ir(approximately 33oC.).'amaleDescriotion ZB-1(control) 'B-1(cycled)ZB-3(control) ZB-3(cycled)No.14(solid)conductor. No.14(solid)conductor, No.14(solid)conductor, No.14(solid)conductor, .030"HI-VOinsulation. .030"HI-70insulation. .050"HI-VOinsulation. .050"HI-VOinsulation. DataSampleReference 50/0ofInitialIR200"/0ofInitialDF2GC/0ofInitialCapac.ElapsedTine-'aysto:ZB-1(control) ZB-1(cycled)ZB-3(control) ZB-3(cycled)3058'r19V25.5'51821102956149p155**Testterminated beforereaching200~0ofinitialcapacitance
NFPSt.LucioNucl'carMar.16,1976.Besults~1)Testsonsamplesdtosustained waterimmersion aremoreseverethanthoseconsPti.,1ternatesvet/dry cycles.2)Therelation~':, weens~~lesundergoing sustained waterim-mersionandthose~yR."frerecycleBisinfluenced bysamplewallthickness. IBS/dm.Hvizd,r..V.P.ofEngineering 4F ~: i;=k.;ritecompany9y.ST.LUCIENUCLEARPLANT-UNIT2--"--EBASCOSERVICESINCOHPGHATED .FLOPIDAPOWERANDLIGHTCOIL,iPANY ~UALIFIATIONDOCUivIENT~ON FOHKEHITEFR2/FHSIGNALANDINSTRUiVIENTATION CABLES.Assignedto:EbascoServices-copy1ISSUEDWAARSe~S>0Theinformation inthisdocumentation packageisconfidential andassuchisnottobecopiedorduplicated inanyway,withoutwrittenpermission fromTheKeriteCompany.3 04 keritecompany-5-March1980qOSECTIONV.HATERIMMERSION Thesubjectofwaterimmersion iscoveredinKeriteEngineering Memorandum No.240entitled"Determining Temperature RatingofFR2Insulated CablesforOperation inHetandAlternate HetandDryLocations, datedJune6,1979(Ref.6),withthesupporting dataavailable forauditatTheKeriteCompany.St.LucieNuclearPlant-Unit2KeriteFR2/FRSinalandInstrumentation CablesInsummary,themonitoring oftheeffectofwateronelectrical properties showedtheIRwasthemostusefulparameter intermsofcomparing thelatercompounds withKeriteinsulation. Therateofchangeofinsulation resistance ratherthantheabsolutevalueof'nsulation isforimmersedconductors continuously energized at600VoltAC.Aswiththethermalaging,anevaluation technique'has bee'n,developed byTheKeriteCompanytocompareourlatermaterials toKeritewithitstimeprovenservicerecord.Thedatadeveloped showsFR2insula-tioncapableofoperating atatemperature level30ChigherthanKerite.Again,thiscorresponds withthe90Cconductor'ating assignedtotheFR2insulation. Continuous waterimmersion wouldonlynormallyapplytocablesthatareusedforsubmarine applications althoughsomeunderground ductsarealmostalwaysflooded.Bothoftheseinstallations alsogivethealternate wetanddryexposures (i.e.,tides,seasonalgroundwaterlevels).According toourinformation, thereareseverallocations inthesoutheastern U.S.areawhereKeritesubmarine signalcableshavebeeninstalled andoperating since1926.TheAltamahaRivernearEverett,Georgia,installed in1926andstillinexistence in1970.AlsoSatillaRiveratWoodbine, Georgia;St.Mary'sRiver,Georgia;'ndTroutRiver,Jacksonville. Thisservicerecordcanbeverifiedbytherailroads ifneeded.IALTRNATEHETNDDRYSECTIONV,EAKeriteEngineering Memorandum No.240alsostatesthatfromourexperience; alternate wetanddryisnomoreseverethancontinuously wetandusuallymuchlesssevere,depending onthedryingtemperatures anddryingtimes.SECTIONVII.RADIATION, LOCAANDPOSTLOCATocovertherequirements'f LOCAandPostLOCAexposurefortheSt.LuciePlant,Unit2,therepor't"St.LucieNuclearPlant,Unit2,LOCAgualification ofKerite600voltFR2Insulated, FRJacketedSignalandInstrumentation Cables,dated3/20/80,(Ref.7)wasprepared. t June6,l"...'s~~~P~I~~~~EVC1':!:! I',PiC,.'.ll':.li)!!ANDU'..I NG.2'!!)~~~~~~~~~DETEI<I'I"G TE:!4IPEIRATt;DE IriXTING~g}BIIO'SULATED KEBITECA13LESFGBGPEBAgg9ii IN%'ETANDALTEHVATE ~YETANDDRNLOCATICNSTemperature 'ratin'fcablesforwetandalternate wetanddrylocations isestablished utilizintheArrhenius technique. butincorporatin areference material(orelateactualfieldperformance ofcablestothehighertemperature continuous moistureabsorption testsonsmallinsulated wires,Thisrelation-shipisthenusdtopredictthe'wateraging'fmaterials infieldservicethatdonothaveanextendedoperating history.Thereference materialusedisregularKerite,whichhashadanextendedservicehistoryencompassing u>.excess ofonehundredmillionfeetofmanyconstruction typesinallen;ironments andatconductor ooerating temperatures of70to".5Candcablesurfacetemperatures of60to65C.Themethodbywhichthisanalysisisperformed isdescribed asfollows:Thebasisforcomparison betweeninsulations isthe"Insulation Resistance". Testshaveshownthatthiselectrical parameter isrepresentative ofaginginwetenvironments. Changeincapaci-tanceanddissipation factor,however,isalsomeasured. Samplesenergized with600voltsAC,DCornotenergized, showednosignificant effectoritheelectrical Parameters measured. (Ref.1).Havingidentified therelevantagingfactorstobetimeandwatertemperature, therelationship betweenmaterials wasselectedtobebasedonthetimetoreachone-halfoftheoriginalIRvalue.Othercriteria, couldhavebeenselected; however,theone-halfIRpointwassomething achievable inreasonable timeperiods.TestpointsinwaterforKeritewereat90C,75Cand52C,and0forFBIIinsulation (ED-72),90oCand75Cwereused.Onthisbasis,compounds havingessentially identical 'aging'lopes areexpectedtoagesiniilarly undersimilarenvironmental serviceconditions andtheiroperating temperatures forequivalent agingwouldtherefore berelatable. Thus,fromtheattachedchart,theperfornnnce ofKeritehavin~aprovenservicerecordofmore0thanfortyyearsatinsulation surfacetemperatures of60Candhigher,itisseenthattheequivalent continuous waterimmersion timeat60"Ctoreachone-halfIHis1950hours.Also,fromthechartfor1BIIinsulation, U>ewatertemperature in1950hoursis90C.Thisanalysisindicates thatFHIIinsulation canberated630ChigllcrtlianKerite.Thismaterial, however,isconservatively ratedat90C.(References 1,2,and3.) F) p'w(94IJp,~Laboratory teststodetermine theeffectsofalternate wetanddryenvironments havealsobeenconducted andindicatenosignificant difference btween'"ntinuous waterimmersion andalternate wetanddryimmersion. (Reference 4.)~P~\~I(gQgb>~6/6/79\aciualservice,cablosfullyimmersedinwaterwilltendtohavetheirsurfacetemperatures appro..chthetemperature ofthewater.'Therefore, atten:ptin toestablish aconductor temperature ratinforcable(assumedtobedry)maynotbeassignificant asdetermining whatiheenvironmental watertempc:aiure willbe;howeverthisanalysisprovidesa~oodcomparison bbveennewermaterials ,andservice-proven inaterials forgeneraluseconditions. PLaboratory References Theinformation presnteQaboveandontheattachedplothasbenbasedonthereferences givenblow.Thedatahasbencollected aspartofacontinuing vraterabsorption proramandrepresents thatwhichispresently availab'le. These-references areavailable forauditattheKeriteCompanyintheEngineering Depart-ment.Engineering ProjectNo.75-40.SampleNos.97B,98B,and99B.2.Engineering ProjectNo.75-40SampleNo.94A.,3.ChemicalLabRecords,Samples75-118(1971),75-119(1971)75-87{1965),52-24(1960);75-123(1971).4.Engineering ProjectNo.75-40,SampleNos.ZB-29,30and31.SampleNo.ZBA,29,30,and31.'PHFS/lcAttach.cc:BookHolders~~~H.F.SmithJ'.Electrical EngineertAPPROVEDgg()~JO.Gur(41cL'p .pofEngij><ering f j~EM2sjoJuno6,lf.'ej0)0000,000jj~.I,~~~~jIj'Deter::;inii>'Tom-. ratureBatin,sofIB-EIInsulated CablesforGprationin5'otandAi(em.i(o KVotanlIDryJ.ocations (ED-72)~~~~~~Ij~jjIjTheactualtimetoI/2IRforFRIIatV5Ch~snotbeendetermined. Intheabsen'ceofthisdata,.theFRII.,'.linehasbeendrawnthroughtheVoC,"timeontest'oint. Useofthisdatapointisconsidered conservative sincetheactualtimeto1/2IRwould--:-.besomewhatgreater,therefore indi-.-'-catingaslowermoistureabsorption -:-..-..:t4htth1pt':.:~iIi~~~~~j'I~~A~~~'j~~~~~~temperature range.~~k~IIi[:PlI.I~I;j~~j~~ijII+Irjj~'jgr~~~~~j~~~~~~j~~~~~e~~j~r~~~~~g100IL~~~~I~~j~j~~~~~~~~-I~j~~'~~jj~I~I~~~OI+IflQp.,I.:I~~~v~III-I~~~~~j1~~~~~~j~~~II~js~~~~j~~I~~j~~~~~j~-.L-.~~l~jI~jl~~-I~~j~j-3-i10,...i&'III~it~~~~~~~~~~~~j~~~~~~~~~~:I:".:I:I:~lI~~~~e1Ij~~~I~II2t'joItlat'tiO$4860Temperature c(-',"cnLr.)0 l ~~thekeritecompanyST.LUCIENUCLEARPLANTEBASCOSERVICESINCORPORATED FLORIDAPOWERANDLIGHTCOMPANYUIFICTIONDOCUiiENT TIONFORKERITEHTK/PRPOWERCABLESASSIGNEDTOEBASCOSERVICESTheinformation inthisdocumentation packageisconfidential andassuchisnottobecopiedorduplicated inany@aywithoutwrittenpermission fromTheKeri,teCompany.gIREF:mc5/5/vv
theteelicecompanyST.LUCIENUCLEARPLANTKeriteHTK/FRPowerCablesMay5,197VFour-Hour OverloadCycles-Kerite-October9,1956OverloadCyclingTest-ICerite-January23,1957ProductEvaluation Test49-Kerite-April18,1962-OvenAgingPhysicalTestSheet-Kerite-OvenAged-4Years't52oC-April19,1962~PMiscellaneous TestsonKerite-February13,19Z3III.WaterImmersion Ig3sThesubjectofwaterimmersion iscovered~,teEngineering Memorandum No.223(Ref.6),withthesupporting da'tgrauditatTheKeriteCompany.Aswiththethermalaging,@/onech'niece hasbeendeveloped byThe'eriteCompanytocompa"jy0materials toEeritevrithitstime-proven servicerecord.'Thed<','io"dshopsHTKinsulation capableofoperating atatemperature le~,$'ertiara"Rerite. Again,thiscorresponds withthe90Cconductor ':."ssigneP4theHTKinsulation. Insummary,themonitoingoftheeffectofwateronelectrical properties shovredtheinsulation resistance wasthemostusefulparameter intermsofcomparing thelatercompounds withEeriteinsulation. Therateofchangeofinsulation resistance, ratherthantheabsolutevalueofinsulation resistance, isused.Thetestresultsforenergized samples{eitherat600voltsACor600voltsDC)versusunenergized samplesare,forpractical
- purposes, thesame.Also,thecomparison oftheperformance offinishcablesversusinsulated conductors showedthebenefitofthejacket.Continuous vraterimmersion wouldonlynormallyapplytocablesthatareusedforsubmarine applications, althoughsomeunderground ductsarealmostalvraysQooded.Bothoftheseinstallations'also givethealternate wetanddryexposures
{i.e.,tides,seasonalgroundmaterlevels).According toourinformation, thereareseverallocations inthesoutheastern U.S.areawhereKeritesubmarine signalcableshavebeeninstalled andoperating since1926.TheAltamahaRivernearEverett,Georgia,installed in1926andstillinexistence in1970.AlsoSatQlaRiveratWoodbine, Georgia;St.MarysRiver,Georgia;andTroutRiver,Jacksonville. Thisservicerecordcan*beverifiedbytherailroads ifneeded. , sthekeritecompanyST.LUCIENUCLEARPLANTKeriteHTK/FRPowerCablesMay5,19VVXV.Altnerate WetandDrtKeiiteEngineering MemoNo.223alsostatesthatfromourexperience, alternate wetanddryisnomoreseverethancontinuously wet,andusuallymuchlesssevere,depending onthedryingtemperatures anddryingtimes.Supporting data',isavailable forreviewandauditatTheKeriteCompany.V..Radiation sTheHTKinsulation hasbeensubjected toanumberofradiation testsandisqualified forradiation levelsinexcessof200megarads(morethantwice.therequiredlevelforSt.LucieNuclear'Plant,Unit2).Supporting dataispresented intheSt.Lucie,Nuclear Plant,UnitNo.2,Qualification TestofKexite600VoltHTK/FRPowerCableUnderSimulated PostAccidentConditions Reportof5/3/VV(Ref;V).VLLOCAandPostLOCA~~~~,Tocovertherequirements ofLOCAand:':I,eSt.Lucis'Plant,Unit2,thereport"St.LucisNuclear~gag:U4,Qualification Testof.Kerite800VoltHTK/FBPower~jigagemulatedPostAccidentCondi-tions,"(Bef.7)wasprepar.Theone-yearPo'stLO.;nreq~gd,frompractical timeconsiderations, 'naccelerated testcyclis"accelerated relationship" isdeveloped fromtheArrhenius aginganalysisinEM178-AorEM178-B,using"equivalent aging@mes."It'houldbenotedthatthe"rate"ofagingforHTKinsulation isessentially identical, whethertheenvironment isairorwater..ThetestprofileattachedtotheLOCA,reportshowstheaccelerated testcycle(alsodescribed inthereport)usedtoencompass theentireone-yearNuclearEnvironment. ServiceCycleRequirement givenintheSt.Lucie,NuclearPlant,Unit2Specification. Arequirement inIEEE323isthatequipment--in thiscase,cable--performunderLOCAandPost.LOCAconditions foratleasttherequiredoperating time.Thisinformation wasnotfurnished, andtheactual"margins" presented in'thesereportsmaybewellbeyondtheapplicable factorssuggested inParagraph 6.3.1.5ofIEEE323.)Vll.FlameTestsTheHTK/FRpowercablesmeetthefiretestsdescribed inIEEE383.Indi-vidualreportson1/c,No.6(V),600volt,HTKinsulated andFRjacketed.powercablesareasfollows: h ~rs~(EM223ENGINEERING MEMORANDUM NO.223Supersedes ZM223dated8-12-V6Ma419VVDETERMINING TEMPERATURE 'RATING'F HIGHTEMPERATURE KERITEINSULATED CABLESFOROPERATION INWETANDALTERNATE WET/DRYLOCATIONS 45Temperature 'rating'f cablesforwetlocations isestablished utilizing theArrhenius techniques butincorporating areference materialtorelateactualfieldperformance ofcablestothehighertemperature continuous moistureabsorption onsmallwire.Thisrelationship isthenusedtopredictthe'wateraging'fmaterials infieldservicethatdonothavean'extended operating history.Thereference materialusedisregularICerite,whichhashadanextendedservicehistoryencompassing inexcessof100millionsoffeetofmanycon-struction tpesinallenvironments andatconductor operating temperatures ofVOtoV5Candcablesurfacetemperatures of,60to65C.Themethodby.isanalysisisperformed isdescribed asfollows:~+$:.~AmThebass@~'~ajarbetweeninsnlations isthe"insulation re-.agn('-yhaveshownthatthiselectrical parameter 5Qe'd~gveofaginginwetenvironments. +ange.',j'v@F~ddissipation factor,=however,l4a~rreasW-~spiesenergized with600voltsAC,600foMsDC,6;energized, showednosignificant effectontheelectrical pametersmeasured. HAY-61977Havingidentified therelevantagingfactorstobetimeandwater.temperatures, therelationship betweenmaterials wasselectedtobebasedonthetimetoreachone-halfoftheoriginalIRlevel.Otherlevelscouldhavebeenselected; however,. the1/2IRpointwassomething achievable inrea-sonabletimeperiods.Oneotherrequirement inthisanalysisisthatthe'slopes'f theagingcurvesbesimilar,whichisthecasewiththesematerials. TestpointsinwaterforKeritewereatV5and52C,andforHTKinsulation, 90andV5C.~~H
ENGINEEBING NEMOBANDUM NO.'23~e"lIPage2'6T47n5I!IOnthisbasis,.compounds havingessentially identical 'aging'lopes areexpectedtoagesimilarly undersimilarenvironmental serviceconditions andtheiroperating temperatures forequivalent agingwouldtherefore berelatable. Thus,fromtheattachedchart,theperformance ofKeritehavingaprovenservicerecordofmore0thanfortyyearsatinsulation surfacetemperatures of60Candhigher,itisseenthattheequivalent continuous waterimmersion timeat60Ctoreach1/2IRis1950hours.Also,fromthechart,forHTKinsulation, thewatertemperature requiredtoreducetheIBto1/2theoriginallevelin,1950hoursis92C.Thisanalysisindicates thatHTKinsulated cablesmayberated32Chighersurfacetemperature thanKerite.HTKinsulation,, however,isconservatively ratedat90Cconductor temperature. Inactualservice,cablesfullyimmersedinwaterwilltendtohavetheirsurfacetemperature i=,'p>roachthetemperature ofthewater.Therefore, attempting toestadAiY! J"'uctorte'mperature ratingforcable(assumedtobedry)maynotMpgg'qtt,. tasdetermining whattheenvironmental watertemperature wiII'4>>',gg'sanalysisprovidesagoodcomparison betweennewermaterials an4-'c~materials forgeneraluseconditions. Laboratory teststodetermine theeffectso~~'uatewetanddryenvironmen shaveaisobee~conducted andindi'cate thatcont"uswaterimmersion ismoresevere.4Theadditionofajacketovertheindividual orthecabledinsulated conductors oranincrease. ininsulation thickness showssignificant improvement ofIBperformance. ~Itshouldalsobenotedthatsaltwaterimmersion islessseverethantapwater.4Laborator Beferences Theinformation presented aboveandontheattachedplothasbeenbasedonthereferences givenbelow.Thedatahasbeencollected aspartofacontinuing waterabsorption programandrepresents thatwhichispresently available. Engineering Project'No. V5-40.SampleNos.22A,23A,24A,228,238,and248.2.Engineering Pr'ojectNo.V5-40.SampleNos.22A,228,23A,238,24A,and248.ChemicalLabBecords-52-24,V5-2V,V5-186,V5-202,75-203,75-204,andV5-205.(Continued) el ~~1ENGlNEERING MEMORANDUM NO;223~e~~~~~(Laboratory References -Contin@ed) e~~~Page3'jv]~~j,~~S.Engineering ProjectNo.V5-40.SampleNos.2MCB,19A-24A,19B24B~VA8A~9A85A86Aj87A~VBf8Bp85Bp86Bp8VB4.ProductEvaluation No.1VV.5.Engineering ProjectNo.75-40,SampleNos.B-12-ZB-16.~,4'4RFSSr:mcR..mith,Jr..Assistant Electrical EngineerAPPROVED: CareChiElectrical Enge~coies:BookHolders )I"tI. EM223b7~/Determining Temperature RatingsofHighTemperature KeriteInsulated 'Cablesfor0erationinWetLocations 00,00010,000..a,-000:;<<J'/'.Q'tJjI005t)~.hs~~RFSSr:mc00280260240220200l80l60'l40l20l008060 ' 5>>64(F84)RISPSSIPIOI6 9965(ATOR2I'SM4618946QSwI696606(.9606~9610) 92OI6AI.I'A'RISPOSII'lOR 644g.I>JO'OA>>ASwZl~!6.'4FA'IZOVl(~SIT566641u65IRf5.ITOSITIOH 916'RIIIOICATOR Sw~ZT~65427ILCA2IBRRlS.IOTTi.Sw69CAIIBRSfs~Q6S2ISwLAIIBRPf5.a6a566I2TZIA.SR]C7232SSASAwS8SR]C7230558'SA 0C-S8]C3o232SSCSSIS58jC323255'P0IItT3960VALVElIMITSwV3614SII270PCSTIISII 2AKIID2YTALYE'LIMITSwY-368Sv269IPIIISSltrWTsIw566.Zk<<PZVALVf.IIP'ITSWV-3634SR27IOPIL2P~WAV56626'ALVELIMITSWv3644SII2)2~PTTSII~6466,ZRSLP3P3AP3HOfEI-QFBTFIELEIRCVLOATCOVAPPROVtO4IsIl7WRII"~I~P97117g~ig>~'l'>>RRVIOAT@'CM"APPROVKOEIIASCOSERVICESINCORPORATED ARC966OlWNUCLEARSAFETYRELATEDFLORIDAPOWER8LIGHTCO.STLUCIEPLANT-EXTENSGH.Vt(IT2 CONTROLWIRINGOIAGRAtII ISOLYALSCsV3564V~AM,'I-~g~s4 5~POSITIPII IIIDICATORS 998-8.327 ~IHIIT29M94 t IgIO32aloiScsexCOrrr4CT5 %.~uVIa41HTAIttCO COIITACTStEVRIIIOV40CINCOCACX%ttROSITIOtt OttcVXcovrAcrctoNo714$%ecclLOCI(0closeOrc~E5CLtTCHEONItt525<.Scot)95-206(-aAS117133Vr373039S-SAfFtC-IIO~IIOC-1104+H1412>0cttIl41,250,).>>L';.'"J" '":~tl.ZG9HS.Wet4-2l'IITACTSvcoW3X;343sO>Ctt552EII,(SH~2tAc>4.CTO38/MacyIpIIIS3ct242/259'GG+T7>29Ne.cata.l~47t27cG0IIGRtrlA<<TAItaE0COtcTACTStcE>REHOVASLE IttLOl.tCOOREMOTEPOSITtGta OitLVX-CONTACT CLPSEO'Ttat&5IIEETIOCrloRCŽtcCICCEORC<SJ".tc,klLIetgL3))a,l,~3YPx(SIe3Y5tL>Crt-ISOL'3VIOESCLI~C1EGtcv'lw~~rZ47race(arsea(tert41I+VFII49T474I72474F342C~3t3l9Gl2JCIcgI;.AWA~~j 'c~~/'L10Vt,ccq246<nttrrrCrpC3ICAL15tb'l-lt141~-tt~~~ctc~rtcrtutcutRatutcacaoACTORLINEbOO$-555.A.SAgC725749A-SA5H12SO5EQUICrtCEOF'EVTttTSIS0IC48SAC.865135II$57147.SO,-2326911SAOOARCCCSAPACTOF232',c3CSAVALVELIHIT5Hv-3et4(-3I35G)51L255SPACE.IIEATER45TO3C7~4.4%A74lS1C?377914414 QC7t4ctc,RTorC-'SA)C7PARTcr232$9C-SA7ClRttuutcrtr~.WycIct440Or-8YFI<tCtD-f&CAICCR LcrtCEOOPEtcVAIEtlRLACTOPI5tIOTlttSIIIJTOOrltl IrgtEQ-c3I14+CI2-ceOJ>>OF3'-2rlCiOt-4VIACVOATECHAPPRoviotlcvA%9'1rtII~rOATcCHtcl'rAovcct4.'t5I"t4I")FAA3lt0'ICIA~,74>lRIC'b(uHctC4Su~74'VEOAr~OSERVICa.S INCOITIcGRATEO NcvrvrtttKDeT~+04.~ACcJ.NUCLEARSAFETYRELATED2998-8-327 etcEOTeggLST.LUCIEPLANT-EXTENSION.UNIT 2CONTROL.WIRINGDIS-GRANI SAFETYINCTECTIOIC 74clcc2AIISOIVALVEv3524
COIITrtcT 0(0).H6~'5CI4~I/26V05IINi)NIAIIIE0CPIIThC75IlfII>>OVACIK IV(CO(nPm>>rpsTip<O~IY(PIIIACF(III(vTii.<SlgflESCutt>KORIESCSIRI4941,SEAS(717)33APC~<<03IIFC=II0S>>IC'I254SYII0405159IOWCtr)ISA,IIT(68.706 (9601)%55C75T523'59ro0F<ATL.270ORFFACTK'RPI4S56)4R2r0X6667(IRC660SRIIOTIO'I6II6I.III67IOW +QORT744>>S>>1144aCI+8IIGO75152.Ih<<This)E0CONTACTYS REVft(~ciirt EL5wlocvSF>ftt~orrnnslrieaOiIVKCON~ACTCLOSSD~.THISgMEF~,IRFRoptfIpshORCH40pV,SPI,SOIVI~~II.'YLlLtLs)))gSA~RX('KMISOLCOMPTrXXIXiiiIYgill~6LOOIIi2iIP'5A34'(11-'hrr.8I3O19(4ESCLIT0Hf0Iv7I77NX16I74~4911174htCga37'~\PMOTORLINE527(355547ASA)CrtSTIPASaSli.125'-AshfrRTcrC.SARhl)Tfir23ttOCSASS0()ENCE-ODEVENTSISOL-CAasa.~3RSI)SIIIS77J232707(SAVALVELIIYII75+V3614(7+56)$N255SPACEMS>TCRC7~~F~~4QOVL1CC+2A5IO3CCIIPTD'EF2(3(04)D~33h'~h.h3*QCIT'I3S'TCf737J-I:gcl731)TYHAshPAOTOFC-SA3C7'hk'TOP2327OCSAh4.RlRoTCPORotPoYYK>>IRR667>>7C4%CYT6OP~ORT>>t0>>ORTRPYRT'~~CY7)43CABOT~~CP>>TROTCT4RIDP-PYFIELDEslteA,Kc+ I.OCKKOOOC<WHEEItEAC>QQl5HOTINDOWRtrhGC)EZ~-8f(4FRCI2-4@-8tIAflP56.244D47VCkDVOATSCHAPPROVCQIIDV4~RRSI5>f1710hr651.1Q'fR.r.o6..OATC6(r)67IOVDO Rtt~gt66@7~C.D.t>>TRXXRK(3ASCOSKRVICKSINCOIXXOI(ATKO NCWTOOKoRorooo10~ICC~266j>>6NUCLEARSAFETYRELATED2998-8-3() 7scar27OL1ASTLUCIEPLANTEXTENSION4HIT 2CGNTROLNIRINGDIAGRAMSAFSTTINITKCTIOliTAIIK2A2ISOL VklVKV3SIQ
LIS.3(33+.QFT(0IITACT563)oeqCrtDI'Sl~'tIAIIITAIIIDDCD>>TACT5>>IYL1.OVASLEI>>LO(IIDOOI>>t'I3S3TIO33 O33LY)ICOIITACTCLOSED)FTHISSHEETIO(>>t0(IDSIopt>>ESCvTCHEOHRTO8.206(-(9LIQ)%boatt,ISLI6III<0lllZ,JG55~wI0I5t(p0tc-iios-iPiiosIf-~~l5>>93,249S>>Si,249TS()75M46G22I.IIII!7,1:271HS.36'b4~zft0I/TACMnItNII03('~t"9'3I,7239'2I--tIS5634-2/27) -ICC'tzI7-.iiS.34'14II2.IIGMAINTntttIEL)C03ITACT6KE>>R6tr(r~ntSIf.~tiLO(KEtsAEIOTEf305ITto<ouLY)(-(03ITACT COSLOS~EE7LOCALDR(irOTt033(it40OV3St(360IVI5Q.P3331tLtLlLs'I766)))@3L.DK~62f'I(.Ovtr3T5X',(32332II'5At>VFII~4933trt3t$3~5KSovtrlec1296 CO~F2.+DF2t4(-:-IOrT) t9y32B-SBESCuTCHFOtt(t330~li74crrttcK-ASK146~3Q~33lrOTORLluE-723B33SA.SB)C323221A-SI3SH1257I-ASBS'hgTOFCSB5'Etzt)ETIC'E OFCYLIITSISO'A23SIS(5661)6>>I!TtJC3FA~oo23ZTI(-613 VALVELILIITf)tV3634S<<SS(.NS()513ACtlIIEL7at2704'rtS(WT4S46CU~ITI+ItILjC3~4.466]C323)III3.L\S 3426'IC833~433R4~r4ttI33LtC>>C-S3]C3PARTOf~432TIC-SB T~et~vtt~Oakta~th4'tW~O3"4Ir1Irat'ptt4t.h>>TI3SCCtithOTClC%$DQfBYFICI-DBREAKS"LOCXEC)OPEIIIVIIEIIFEAC eDQIrIIOTtt45IIUTGOLvttggDEjib,-a/>>Ctz~ ATI3JY+F'"'24NUCLEAIII SAFETYRELATED~S~LL~~R~DATa(.I3')I330JIW.36ARfJr333~:IS'33~grIAFTROV40RCVDATCQttrt>>RROVCO AertlOT34~S.T'I~I~'rICWTC~033~IZ(tggI(CACAOSEIIVICCS IIICOR?OIIATCD tICWYORKLIt)A~2SST.LUCIEPLAt(T-EXTEHSIO,"2 UiklT2COITTROLNIRINGOIAGRAMSAFETYIIIJECTIONTAIIIL2SIISOI 3IALVEV-3(t342998-8.327 maaT271
N5.3o4I-$27'ONTACT5>>o
.llDC"IOCVIOI>>I>>5IIM41>>TAI4t0CONTAC15IICVRIDIOVAQtf III4<<<<at>0>>tIIPO51I,ONQIIIVXCoNTAcT<<lootTHI55Itt1CIO5tOot>>E5CvTCHEONrESC-SSLIEve25OB206(96IO)T155vR(PCllOS~I~IV<<IIOE75>>.140,270 34.I40,2291~9nttaIL8(1I'II54~4~G5S352vbtl7F5SZL272Irvvo~~33::I'47CIv(S3644-3OsrrACTE'l XOotIt<<WOSIIl.oQFFIIVIljHV.I>>-I9GCIRwtg64SY5LT'2I2I25-Sa~CIORDI.ISOl COVIPIHS>~1422Ew0325272&29IVIAINT>ID>>E 0CONTACTvr KEVRfIOiASLEINLOCICEOREI40TEQOvoITIO>>7 GHLVX-CONTACTCLOSEDT>>I155kf'cTIOvVtO4fl>>oftOotNE5Cv~CI'EpurVAv2>>>>I>>tv(Rtv$I41345OVMCCr2bsCOMPt.+ARI(-Btp<)~II7~I+VvO4E7449747422QFCCII~>i~42(O/K.A'5b74~~4rC45r-C-SS.It<<~OIDVDOv~ID>>OIV>>OIODIECTaoDvtv<<IotMOTORLINE-676S.33545SjC3232224-5S 125pQ-AsbPARTOrC.53TE7~7'Pvwlc5<<OIIEVCE PARTOF23222C5bOFEVEICt5I50LCAS5S(.255I)5>>I<<7rJL23DQI-SSSPACEO'EAIEELVALVELIHITSttV-3644<.Dg<SII255734~4.45SgC3r232QVDASr3C314c-sa]caPARTOF23272(-32 II>>$$4<Co>>1447cL0$40QF-STFIEL<<7SREAICEP.
LOCEECOPENWH6NIfEvtCIC72IS227TINc-ItCOVVN(7OC~2'll4+C12.4deSIDIFPSS24R<<V5<<vIAVC.VV>>.I,4NUCLEARSAFETYRELATEDll.REVOATSHAPPII0VCO4'6II2EtIOT.:3AEREVOATEQ,QAPFAOVEOEISA>>WCOSERVICCSIHCOIIPOIEATED HEWYOAIC~VTKVLVtVAVaTt>LOO'~INC77&JDOLFIST.LUCIEPLANT-EXTENSION.
UNIT2CONTROLWIRINGDIAGRAMSAFCATTINITECTIOIt TA'4K252ISOLVALVEv3fv442998-B-M7 CDIOOTvi72 "CFCfiilS')ITCtttltt)S SQUUIF.REX)ii'LTD'))3t)
.))OI.'iC(IS'if fCti'IRDSALTO'))TCIvIC)iAR;:ORV%LCOL).)l!is" i:TPRESSi'RE SI'tsStf:aSURI StFÃTCILI:CiTI
)RIF'Xi)SLSSwti.SC,3),SID0-3t-FORTYP))I)IU)ICIATOR VIIHQO')V OESCIEID)TIOH Sc,f.c))t.8OE~i'IIISIaiDIPVatic'ROUIRIOR:)'iL)RSITRIPIJSII"i'SPI)LCCILiRCEiIi.'St))LwSIIFSIIt.I'.)'i'tR tiltR)SDSO)TRI:O'I iOc,cw,CS)NCII+IiS4I)~ltlRECIO<fI)'SlTA:1'SO)i)TICR "Qstt,TOS:cCIOSII)'CSlT.t::I.5.LSFlu':v-3Q).V36'ciIOSL)0-35ITAX)IISCLTIN.V-2CitiVKRLC'll)
ALiRSI~RIPSl1A."SIO'C)'fRlXDALSFOITRS'iiIIISIFIO)tI))'o'c,.".CY-).24 I!D'it.IICVAeSlOTORCTRLIII)Sl')2)'fRRit)E);O~:.c)ZSSc6)25<.C622SS4)4RCVDATRRYAFI'ROVED AIIIII40i+4)i2MIP/~ti))EVIDATC)RYIAPP)tOVCD ESASCOSERVICESINCORPORATED
~SEP7'ligt~FLORIDAPOWER8)LIGH)CO.ST.LUCIEPLANT-EXTENSGN.I.INIT 2CONTROLWIRINGDIAGRAM0CDiiXRIDS'tFZOUARDS
'NiL~CA.ORO Zt.IRTCR2C6299B-8-'32ii)t<T6 Chater8.3SERItem-Isolation DevicesTheStLucie2designutiliiescircuitbreakers, fuses,andCT's(4.16KVsystemon3y)asisolation devicesforpowerandcontxol(120,125VDC) circuitsThisisinaccordance withthePSAR,section8.3w'hichstates:Thedesign~<llcomplyariththeintentofRegulatory GuMe1.75(RG1.7S)andcompliesintotowithonemception, i.e.,thedesignincludesfaultcurrentinterrupting deviceswhichserveanisolation function.
Thisisrequiredtopreservetotheextentpracticable theduplicity ofUnitsI6Z.CompLiance withthisregulatory guidewillresultinmodification ofthecabletraysystemcrtheRTGB,orsomecombination thereof.Theexactmodi-fications willbedelineated duringthedetaileddesign.CircuitintorrL>pting devicesactuatedbyfaultcurrent(fuses,circuitbreakers) arecommonlyusedasisolating devices.Onceactuatedthesedevicespre~antthefaultedcircuitfrominfluencing theunfaulted circuitinanunacceptable manner.Thus,thedesignisbothcompatible lliththeduplication conceptandisresponsive totheintentofRGl.75.Thedefinition ofanIsolation devicewasclearlyidentified aswell&PBARSection8.3.1.2.3 c)8whichstates:Adw<ceinacircuitwhichpreventsmalfunctions inonesectionofacircuitfromcausingunacceptable influences inothersectionsofthecircuitorothercircuits.
ClassXEcircuitinterrupting devicesactuatedbyfaultcurrentareconsidered tobeisolation devices.AlthoughthisapproachwasacceptedbytheHRCasevidencebyissueofacon-struction pendtbasedontheE'SAR,theStLucia2electrical designwasen-hancedsuchthat:a.Allcablesdownstream fromisolation devicesarefu11yqualified toIEEE383.b.A11cablesdownstream fromisolation devicesaresubjecttothe.saiccabledexating, racewayfillflameretardance andsplicingrestrictions asthatafclassIEcaMe.c.Theisolation devicesaxequalified tothesamelevelofqualification asHnasXRcixcuitbreakersandfuses.Otherthanuniquei6ent&icertion andnotroutingthesecablesinclassIEorassociated raceway,therequirements discussed
$aaandbaboveareinaccor-dancewithRC1.15R0paragraph 4.5aforassociated circuits.
Xtmustbeconsidered thatallnon-class lEcablethatsharethesameracewayasthosedownstreamofisolation devicesareofthesamequalityf..e.envixon-csentally qualified; qualityassurance requirements etcasthatofcXassIEcables.Itmustalsobeconsidexed thatforthe4.16KVand4SOVsystems,singlelinetogroundfaultsassuggested inRG1.75Rev2SectionCvillnotcausethetrippingofanybusbreakerorbackupbreakersincethesesystemsfeaturehighxesistance grounding whichlimitsthefaultcurrentto10to15amps,andfsinsufficient totripabusbreaker.Pox125VDCpowercircuits, fusesineachlegorn~polethermalmagneticbreakersassurethatintheunlikelyeventthatbothlinesaxefaultedtogethertwointerrupting meansareprovided.
Furthermore, sincethesecablesareroutedonlywithcablesthat.are<<jualified toIEEE383asarethesafetyrelated-cables,the1&elyhoodofacablefireinanonsafetycabletraywhereacabledcnmstrecm ofaniaolation deviceisroutedisnogreaterthaninasafetytray.ShouldthiscablefirecauseathreephasefaultandthequaXified isolation devicefailtoclearthefault,itwouldbeconsidered asasinglefailureaswouMbethesameventonasafetycable.VQaseduponthepreviousacceptability byNRCandrecognizing theenhancements totheStXucie2designasdiscussed above,weconsidertheuseofcircuitbreakersfuses,andCT'sasacceptable isolation devices.
0 Testsareper5iodically performontheonsitesafetyrelatedelectrical dis-tribution systeminaccordance withtheTechnical Specifications.
Sincethetwoelectrical onsitedistribution systems(divisions) arephysically andelectrically redundant andindependent, eitherofthedivisions canbetestedwhiletheotherloadgroup providespower.Thedieselgenerators aretestedat1eastonceper31daysandat18monthintervals duringshutdown.
Duringthesetestsportionsoftheonsitedistri-butionsystemisalsoexercised toassurethateachsafetydivisionisiaareadystatetoperfoxmizsintendedfunction.
Foxfurtherdescription ofthesetests,seetheappropriate technical specification.
The4.16KVnndervoltage relayscanalsobetestedthroughtestcircuitry providedatthe4.16KVsafetyrelatedswLtchgear.
IVarioussafetyrelatedequipmcnr.
isalsotestedand/ormonisored asperthe'ecoaanendations oftheequipment.
amnufacturer.
TheCESARwillbercvfsedaccordingly.
ChapterS.3SEE-YOVThermalOverloadBypass'.'afetyrelated480Vmotoroperatedvalvesthatarerequiredtobemanuallyoperatedduringadeoignbaseseventwillhavetheirthermaloverloadp'o-tectionbypassed.
Thisisconoistant withtheRG1.106"ThexmalOverloadProtection forHlectricHotoroonHotorOperated Valves.Porsafetyrelated480Vmotoroperatedvalvesinsidethecontainment, manualorautomatic, starterthermaloverloads arebypassed.
However,becausethevalveoperators arelocatedinsidecontainment.,
andcontainment integrity mustbemaintained atalltimes,thermalmagneticbreakersareutilizedinthefeedercircuitsforthesevalves.-These-circuit--breakers-are sizedsuchthat-they-will-trip between-10 and-20secceds-of valve-lock rotor-time-;-so aomottodamage-the.
penetration-integrity.
POSTACCIDENTSAMPLINGSYSTEMRe:P.A.S.S,MeetingbetweenFPLandNRCS/ll/81Pursuanttotheabovereferenced meeting,FlordiaPower&Lightisproviding thefollowing concerning thePostAccidentSamplingSystem:1.Section9.3.6isrevisedtoincludedilutedandundiluted samples.(seeattached),
2.Section9.3.6.2is"revisedbydeletingtheworld"chloride" from4thparagraph of9.3.6.2andfrom3rdsentencepriortoINSERT"B"(seeattached),
3.INSERT"A"ofSection9.3.6.2isrevisedto;.include monitoring dissolved 02inaccordance withRegula-toryGuide1.97,revision2(seeattached),
4.INSERT"B"ofSection9.3.6.2willberevisedtoincludeanarrative description ofhowsampleactivityiscorrelated tocorerelativedamage.Revisiontothissectionwillbeformallytrans-mittedon.orbefore9/1/Sl,5.,FlordiaPower&Lightwillalsoprovidethefol-lowingitems4monthspriorto5%poweroperating license:a)Aninstrument andanalysisappliacability testfortheacciden't environment, b)Procedures whichcorrelates isotopiccon-centration withdegreesofcoredamage.
~~~9.3.6POSTACCIDENTSAt'IPLING SYSTEN.ThePostAccidentSamplingSystem(PASS)consistsofashieldedskid-mounted samplestationandaremotelylocatedcontrolpanel.ThePASSprovidesameanstoobtainandanalyzepressurized andunpressurized reactorcoolantsamples..containment buildingsamples,diluteda'ndu'ndilht8d sampl'es.
ThePipingandInstrumentation diagramsforthePASSareshowninFigures9.2.6aand9.3.6b.DesigndataisprovidedinTables9.3.10,9.3.11and9.3.12.9.3.6.1~Bi6ThePASSisdesignedinaccordance withthecriteriastatedinSectionII.B.3ofEnclosure 3toNUREG0737.Thequantitative designcriteriaforthePASSareasfollows:a)ThePASSprovidesameanstopromptlyobtainareactorcoolantliquid,containment buildingsumpliquid,andcontainment build-inggassamples.Thecombinedtimerequiredforsamplingandanalysisislessthanthreehours.b)ThePASSallowsforpost-accident samplingwithresulting per-sonnelradiation exposurenotexceeding thecriteriaofGDC19(Appendix Ato10CFRPart50).c)ThePASSiscapableofaccomnodating aninitialreactor'coolant radiochemistry spectrumcorresponding toapostulated releaseequivalent tothatassumedinRegulatory Guide1.4,Assumptions Used'orEvaluating thePotential Radiological Consequences ofaLossofCoolantAccidentforPressurized HaterReactors, Rev.2datedJune,1974,andRegulatory Guide1.7,ControlofCombustible GasConcentrations inContainment Following aLossofCoolantAc-cident,Rev.2datedSeptember 1976.d)ThePASSprovidesameanstoremotelyquantifypHandtheconcen-trationsoftotaldissolved gas,hydrogen, oxygenandboronintheliquidsamples.
e)Sampleflowisreturnedtothecontainment toprecludeun-necessary contamination ofotherauxiliary systemsandtoensurethatradioactive wasteremainsisolatedwithinthecontainment.
f)Components andpipingaredesignedtoequalityGroupD(a'definedinRegulatory Guide1.26)non-seismic requirements.
Theequipment islocateddownstream ofdoubleisolation valvesfromsafetycodesystems.9.3.6.2SstemDescrition.Therequirements forpost-accident samplingofthereactorcoolantandcontainment buildingatmosphere aremetthroughthePost-Acci-dentSamplingSystem(PASS).ThePASSprovidesameanstoobtainpressurized andunpressurized reactorcoolantsamplesandcontainment buildingatmosphere samples.AreactorcoolantsamplecanbedrawndirectlyfromtheReactorCoolantSystem(RCS)wheneverthe'CSpressureisbetween200psigand2485psig.RCSsamplelinesareprovidedwithorificesinsidecontainment soastolimittheflowfromanypostulated breakinthesampleline.Atpressures below200psig,reactorcoolantsamplescanbedrawnfromaSafeguards Systemsampleline,Thispathwayalsoprovidesameansofsamplingthecontainment buildingsumpduringtherecirculation modeofSafeguajds system.operatio'n.
Acontainment buildingatmosphere samplecanbedrawnwithcontainment buildingpressurebetween10psiaand75psia.Allsampleflowisreturnedtothecontainment buildingtoorecludeunnecessary contamination ofotherauxiliary systemsandtoensurethathighlevelwastere-mainsisolatedwithinthecontainment.
Thesesampleprocesspath-wayswereselectedtoinsurearepresentative sampleunderallmodesofdecayheatremoval,ThePASSsamplinq,flow ratesareprovidedinTable9.3.10.
0t4 eThePASSconsistsofaremotelylocatedcontrolpanelandaskid-mounted samplestationwhicharedesignedtomaintainradiation exposures toplantpersonnel aslowas'reasonably achievable (ALARA)andwhichislocatedtominimizethelengthofsamplelines.ThePASSisinterfaced withthe~existingreactorcoolantandsafeguards systemsamplelines..Postaccidentsamplingdoesnotrequireanisolatedauxiliary systemtobeplacedinoperation.
ThePASSisatotallyclosedsystem(i.e.,samplestakenfrom'ontainment arereturnedtothecontainment).
Thegrabsamplesareextracted fromsamplevesselsbyinjection ofasyringethrougha.septumplugmountedinthevessels.Inaddition, thePASSsamplestationskidisprovidedwithaventilation flowpaththatissizedfor333scfminairflowfromthesurrounding roomtotheventilation systemexhaust.Theexhaustairisdirectedthroughanactivated charcoalfilterforiodineremoval.ThePASSprovidesthecapability forremotechemicalanalysesofthereactorcoolantincluding totaldissolved gasconcen-tration,dissolved hydrogenandoxygenconcentration",
boronconcentration andpH.Reactorcoolantanalysisisprovidedthroughtheuseof.anundiluted grabsamplefacility.
Shieldedgrabsamplesofthedepressurized undiluted reactorcoolantliquidmaybeobtained.
Unshielded, depressurized anddilutedgrabsamplesofthedegassedreactorcoolantliquid,reactorcoolantdissolved gasandcontainment buildingatmosphere mayalsobeobtained.
Theoperation ofthePASSforcollecting andanalyzing reactorcoolantandcontainment buildingatmosphere samplesmaybeca'tegorized as(1)reactorcoolantsamplepurging,(2)reactor coolantsamplegaseousanalysesanddilution, (4)undiluted liquidgrabsamplecollection, (5)containment buildingatmosphere samplepurginganddilution, and(6)systemflush-'ing.Anoperation description forthesecategories isprovided-below:Reactoicoolantsamplepurgingisaccomplised bydirecting theIsampleflowthroughthesystemisolation valves,thesamplevessel/heat exchanger, thepressurereducingthrottlevalve,andouttothecontainment buildingsump.Atreactor.coolantpressures oflessthan200psigthecontainment sumpsampleflowispurgedinthesamemannerusingthesafeguards pumpdischarge connection.
Reactorcoolantgaseousanalysisisperformed onapressurized samplewhichiscollected byisolating thesamplevessel/heat exchanger.
Totaldissolved gasconcentration isdetermined by.degassing thesample.Thisisaccomplished bydepressurization andcirculation byalternate operation oftheburetteisolation valveandthesampl'e-circulatio'n pump.-Theresulting displace-mentofliquidinto.theburetteisusedtocalculate thedis-solvedgasconcentration; Thecollected gases,whichhavebeenstrippedfromtheliquid,arethendirectedthroughafloatvalveformoistureseparation and"circulated throughhydrogenandoxygenanalyzers.
Afterrecording thehydrogenandoxygengas,concentrations, thegassar>pievessel,whichcontainsnitrogen, may.beplacedonlinetodilutethegasvolume.Thisdilutionoperation reducestheradiation levelssuchthatlocalsamplescanbedrawnfromthegassamplevessel;ifdesired,byinjec-tionofasyringethroughaseptumplugmountedinthevessel.Priortosamplewithdrawal, additional
- dilution, whichmaybenecessary forthisquantification, maybeperformed byfurthernitrogenaddition, circulation andventing.
Reactorcoolantliquidanalysesisaccomplished byreinitiattng anddirecting the,sampleflowthroughthein-linechemistry analysisequipment. Thegasresidence chamberandfloatvalvedownstream ofthethrott')e valveallowsforautomatic ventingofgasescomingoutofsolution. Thisventingisrequiredinordertopreventgasbubbleinterference withflowrate'andchemistry measurements inthedownstream instrumentation. BoronandpHreadingsareobtainedfromthein-lineinstrumen-tation.Asmallfixedvolumeofdepressurized liquidsample(collected inafour-wayvalve)isthendrainedtothedepres-.surizedliquidsamplevesselandasampleiswithdrawn inthesamemannerasdescribed aboveforthegassample.Anundiluted liquidgrab,sampleforchlorideanalysiscanbecollected bydirecting reactorcoolantpurgeflowthroughtheundiluted depressurized liquidsamplevessel.Thisvesselisprovidedwithaleadshieldedcontainer andcartfortransferofsampl'etotheanalysislocation. Theisolation valvesforthevesselareprovidedwithstemextensions penetrating theshielding. ~(Vsc'g-7pgPContainmeni buildingatmosphere samplingisinitiated byopeningthecontainment isolation valvesandbyusingthecontainment samplepumptopurge"theairsamplethroughthesystem.Purgef')owisdirectedbacktocontainment. Asampleismanuallywithdrawn fromthecontainment samplevesselcontain-'ng nitrogen. Theinitialnitrogenvolumedilutesthesampletolevels'acceptable for.withdrawal. Acontainment'air samplemaythenbewithdrawn fromthecontainment samplevesselinthesamemannerasdescribed previously forthereactorcoolantsamples.Systemflushingoftheliquidandgaseousportionsisaccom-plisedbypurgingwithdemineralized waterandnitrogen, respec-tively,toreducepersonnel exposureduringwithdrawal ofthedilutedsamplesandtoreducecontamination plateoutbetweenPsamples.
INSERTAInaccordance withitemII.B.3ofNUREG-0737 (pg.3-67,item4)PASShas'hecapability tomonitortotaldissolved gasesandH2concentration. Thecapability of'onitoring dissolved 02willbeinaccordance withRegulatory Guide1.97rev.2.
Radionuclide ana')yses areperformed ongrabsamples.Thesesamplesarecountedinstandardradionuclide countingequipment. Grabsampletechniques areutilizedforanalysis. Backuoboronanalysisisperformed usingatomicabsorption techniq~es. Containment hydrogenanalyzers aredescribed inSubsection 6.2.5.9.3.6.3ComonentDescription ThemajorPASScomponents aredescribed inthissection.Theprincipal component datasummaryincluding designcodeispro-videdinTable9.3.11.l.SamleStationThesamplestationisafree-standing skid-mounted enclosure. Theenclosure containsthepiping,valves,components andin-strumentation necessary toprovidethesamplingandanalysiscapability. Theenclosure isprovidedwithlouverssizedtopassupto333scfmfromthesurrounding roomtotheventila-tionsystemsuctionconnection 'intheupperportionoftheenclosure. Thisairflowprecludes anypossiblebuildupofradioactive orhydrogengasandprovidesforremovalofheatgenerated byinternalcomponents. Theenclosure isprovidedwithremovable panelsonallfoursidestoensureaccessibility formaintenance. 2.SamleCirculation PumThesamplecirculation pumpisaperistaltic typepostitive displacement pump.Thispumpiscapableofpumpingliquidsand/orgases.Thepumpwillbeusedinthetota'Igas,hydrogen, andoxygengasanalysesoperations tostripthegasesoutofsolutioninthesamplefluidandcirculate themthroughthehydrogenandoxygenanalyzers. '
INSERT8Theestimation ofcoredamagewillbedonebyanalyzing gassampleactivity(samplesfromtheRCSloop),sumpactivity, andcontainment airactivity. Thetotalcuriesavailab'le willbedetermined and'elated tototalactivityinthe"core(basedonChapter15dataandplantshielding studies)todeter-minewhat'Aofthetotalcoreactivitywasreleased.
3.SureVesselPumThesurgevesselpumpisaprogressing cavity(helical) pump.Thepumpisusedtopumpdownthesurgevesselcon-tentstothecontainment buildingsumpandisalsoused,inthecalibration operation ofthepHintheliquidsampleline.4.Containment SamlePumThecontainment samplepumpisavacuumpump/compressor unitthatoperatesasapositivedisplacement compressor usingastainless'teel diaphram. Thepumpisusedtocollectacontainment atmosphere sampleandtodilute'he sampleviacirculation throughthecontainment samplevessel.5.GasSamleVesselThegassamplevesselisa12,000mlsamplevess'elinitially filledwithnitrogengas.Thevesselsuppliesthegasanalysisloopwithnitrogengastodilutetheradioactive gasespresentinthesampleline.Thevesselisequippedwithaseptumplugwhichallowstheoperatortowithdrawadilutedgaseoussamplewithasyringeforradiological analysis. 6.Deressurized LiuidSamleVessel'I~Thedepressurized liquidsamplevesselisa12,000mllsamplevessel.Thisvesselcol'Iects aliquidsampletrappedinthefour-wayvalvelocatedabovethesamplevessel.Thevesselispartially filledwithdemineralized ~aterbeforethesampleisdrainedintothevessel.Additional demineralized wateristhenaddedtoobtaintheproperdilutionfactorsothataliquidsample'canbewithdrawn forradiological analysis. Thisvesselis.equip-pedwithaseptumplugforsamplewithdrawal usingasyringe.
7.Containment SamleVesselThecontainment samplevesselisa12,000mlsamplevesselthatisinitially filledwithnitrogengasfordilution. Thecontainment samplepumpdrawsasamplefromcon'tainment andcirculatesitthroughthesamplevesselwheretheni'trogen gasdilutesthesamplesothatitcanbewithdrawn forradio-logicalanalysis. Thisvesseliqequippedwithaseptumplugforsamplewithdrawal. 8.~5VThesurgevesselhasa10ga]ioncapacityandservesasaventanddraintankforthedepressurized liquidsamplevesselandthetotalgasanalysisburette.Thisvesselcanalsobefilledwithbuffersolutionusedtocalibrate thein-linepHmeter.9.SamleVessel/Heat Exchaner.Thesamplevessel/heat exchanger isavertically mounted,shellandtubetypeheatexchanger. Theheat.exchanger usescomponent coolingwatertocoolthereactorcoolant,sampleflowfrom,amaximumRCStemperature of650oto120oFtoallowlowtemperature sampleanalysis. Thetubesideoftheheatexchanger servesasasamplevesselforcollection ofapressurized reactorcoolantsample.10.Stainless SteelBuretteThestainless steelburettehasa1,000mlcapacity. Theburetteisusedtodetermine theamountoftotalgaspresentinthesample/fluidbymeasuring adifference inthefluidlevel,oftheburetteupondegassification of-thepressurized reactorcoolantsample.11.StrainerThe.strainerisdesignedtoremoveinsoluble particles which'aycausesamplestationchemistry instrumentation tobecomeplugged.Thestrainercanbebackflushed withdemineralized waterremotelybyoperation ofvalvesatthecontrolpan'el.
12.GrabSam1eFaci1itThegrabsamplefacilityisdesignedtoobtaina75ccundiluted sampleofreactorcoolantliquid.Thefacilityconsisted ofaleadshieldedsample'vessel andvalvesmountedonacartfortransport withintheplant.Thefacilityismanuallyoperated. 13.GasResidence ChamberThegasresidence chamberisahorizontally mountedleadshieldedbaffledcylindrical vessel.Thechamberis'usedtoremoveundissolved gasesfromreactorcoolantsamplestopreventinterference withthein-lineprocessmonitors. 14.CharcoalExhaustFilterThecharcoalfilterisdesignedtoremoveradioactive iodineandparticulate 'material fromtheenclosure ventilation exhaust.Thefilterismountedinaseparatehousinglocatedontopofthesampleskidenclosure. 9.3.6.4Instrumentation andControlDescritionThemajorPASSinstruments andcontrolsaredescribed inthissection.Theon-lineprocessmonitordataisprovidedinTable9.3.12.IControlPanelThepanel.isdesignedtomeetNEYiA-12requirements.Allsamplesystemnon-codeisolation valvesandpumpsarecon-trolledfromthispanel.Indication ofallprocesspara-metersandchemistry readoutsaredisplayed onthepanel.Tofacilitate systemand~operability allcontrolsandindi-cationsarearrangedinamimic-ofthesystem.Allprocesspumpsandvalvesareequippedwithhandswitchesatthecontrolpanel. e 5.~55Thecontainment buildingatmosphere samplepipingisheattracedtolimitplateoutofradioiodine andcondensation ofcontainment atmosphere vapor.Theheattracingensuresarepresentative gassample.3.BoronHeterTheBoronHeterisaspecificgravitymeasuring devicewhichdetermines andremotelyindicates theconcentration ofboronpresentintheliquidsample.4.~HNeterThepHmeterdetermines andremotelyindicates pHintheliquidsample.5.~il5~A.Thehydrogenanalyzerisathermalconductivity devicethatdetermines andremotelyindicates thevolumepercentofhy-drogeninthegasstrippedfromthereactorcoolant.5.~DA'ITheoxygenanalyzerisaparamagnetic devicethatdetermines andremotelyindicates thevolumepercentofoxygeninthegasstrippedfromtherea'ctor"coolant. 9.3.6.5SstemEvaluation Thelocationofthepost-accident reactorcoolantandcontainment atmosphere samplingsystemareinanareaofrelatively lowpost-accidentbackground radiation. Thisensurescompliance withthepersonnel exposurelimitsofNUREG0737duringsamplingand.analysis. Additional plantshielding alongwithselective routingofinterconnecting pipingtotheexistingsamplingsystemensures.that(1)theexposurelimitsforpersonnel arenotexceededand(2)theon-siteradiochemistry analysisequipment isavailable for t \post-accident sampleanalyses. Thesamplestationisalsophysical-lyseparated fromsafetyrelatedequipment suchthatfailureoftheassociated non-seismic equipment doesnotcausedamagetotheIIsafetyrelatedequipment. Coolingwatertothereactorcoolantsamplingsystemisavailable duringpost-accident conditions toenablelowtemperature sampleanalyses. Overrides arealsoavailable toenableopeningofcon-tainmentisolation valvesfollowing aCIASsothatpost-accident samplingcanbeaccomplished. Controlforthereactorcoolant.samplingsystemreturncontainment. isolation valveisprovidedinthecontrolroom.Aninterlock isprovidedtoensurethatthisvalveandthecontainment sumpisolation valveisopenbeforethesysteminletisolation valveisopen.*Asmuchaspracticable, reactorcoolantsamplingsystemconnecting pipingispitcheddownwardatleast1Qdegreestopreventsettlingorseparation ofsolidscontained bythesample.Trapsandpocketsinwhichcondensate orcrud.maysettle'..are avoidedsincetheymaybepartially emptiedwithchangesinflowconditions andmayresultinsamplecontamination. 9.3.6.6TestinandInsectionThesamplestationskidandcontrolpanelareequippedwithdoorsfortestingandinspection duringnormaloperations. Thesamp'jestationisprovidedwithremovable panelsonall'oursidesforinspection. Eachcomponent istestedandinspected priortoin-stallation inthesamplesystem.Instruments arecalibrated duringinitialsysteminstallation. Automatic controlsaretestedforactuation atthepropersetpoints'. Thesystemis,operatedandtesteduponinstallation withregardtoflowpaths,flowcapacityandmechanical operability.
Periodcalibration isperformed according tothescheduleprovidedinTable9.3.13.ThePASSisdesignedtofunctionforsixmonthsunderpost-accident conditions withoutrecali-bration.Systemoperability willbetestedatafrequency mini-mumofsixmonths,coinciding withtherequiredsix-month Emergency Plansamplingexercise. Suchoperating testswillcheckthefunctioni ngofallaspectsofthesystem.,9.3.6.7.0eratorTraininAllFP8LChemistry Department technicians willbetrainedbothintheclassroom andinactualhands-onoperations, asafunctionoftheChemistry Department trainingprogram.Operating proce-dureswillbedeveloped andtheywillbeconsistent withtherecom-mendations ofthePASSsupplier(Combustion Engineering).
Table9.3.10Post-Accident SamlinSstemFlowRatesSourceNominalFlowReactorCoolantHotLeg0.2-1.0gpmContainment BuildingSump0.2-1.0gpmContainment Atmosphere 0.2cfm 0 Table9.3.11DesinDataforPost-Accident SamlinSstemComonents1..SamleCirculation Pum2.TypeFluidSuctionPressure(max)psig'uction Temperature (max)oFRatedFlow,gpmRatedHead,ftCodeSureVesselPumPeristaltic PositiveDisplacement Post-Accident ReactorCoolant5160150Non-Code3.TypeFluidSuctionPressure(max)psig~SuctionTemperature (max)oFRatedFlow,gpmRatedHead,ftCodeContainment SamlePumTypeFluidSuctionPressure(max)psiaSuctionTemperature (max)oFRatedFlow,cfmMaximumDischarge
- Pressure, psigCodePositiveDisplacement Post-Accident ReactorCoolant51601'85Non-CodetVacuumPump/Compressor Post-Accident Containment Atmosphere 10-753000.295-%on-Code 4.SamleVessel/Heat ExchanerTypeTubeSides:FluidPipingDesignPressure(max)psigInletTemperature (min/max) oFShellSide:~FluidPipingDesignPressure, psigInletTemperature (min/max) oFFlow(max)gpmCodeShell(cooling);
Tube(sampleflow)PostAccidentReactorCoolant2485120/650Component CoolingMater15065/12030Non-Code
Table9.3.l.l(cont'd)DesinDataforPost-Accident SamplinSstemComonents5.Depressurized LiuidSamleVesselInternalVolume',ccDesignPressure, psigDesignTemperature, oFOperational
- Pressure, psig*Operational Temperature, FHaterialFluid'ode12000ml502005120Stainless Steel316LPost-Accident ReactorCoolant'Non-Code6.GasSampleVessel--InternalVolume,ccDesignPressure, psigDesionTemperature, oFOperational
- Pressure, psigOperational Temperature, oFHaterialFluidCode1200050200.5120Stainless Steel316LN2,H2,02,FissionProductsNon-Code7.Containment SampleVesselInternalVolume,cc.DesignPressure, ps.igDesignTemperature, FOperational
- Pressure, psigOperational Temperature, oFHaterialFluidCode1200050100~..Q.to20.275'tainless Steel316LSteam,Air,H2,FissionProductsNon-'Code 8.SureVesselInternalVolume,gal.DesignPressure, psi~DesignTemperature, FOperational
- Pressure, psi~Operational Temperature, FHaterialFluidCode10100200.5120Stainless Steel316LPost-Accident ReactorCoolantNon-Code
Table9.3.11(cont'd)DesinDataforPost-Accident SamplingSstemComonents9.SuretteInternalVolume,ccDesignPressure, psigDesignTemperature, FOperational
- Pressure, psigOperational Temperature, oFHaterialFluidCode10001002005120Stainless Steel316LPost-Accident ReactorCoolantNon-Code10.StrainerTypeParticleSizeRetention Operating
- Pressure, psigOperating Temperature, oF~DesignFlow,gpmOperating Flow(max)gpmCleanaP(psig8gpm)LoadedaP(psig8gpm)CollapsesP(psig8gpm)"Y"TypeHesh250Hicrons2235621,2128110817081GasPesidence ChamberDesignPressure, psigDesignTemperat'ure, oFOperational
- Pressure, psigOperational'emperature,
.oFVolume,cc FluidHaterial.Code13035080"t204600Post-Accident ReactorCoolantStainless Steel316LNon-Code12.ExhaustCharcoalFilterTypeTypeElementDesignFlow,scfmOperational Flow,scfmOperational PressureFluidCleana,P,incheswater8scfmLoadedaP,incheswater8scfmCodeReplaceable Cartridge Activated Charcoal333250-333Atmospheric Aux.Bldg.,Atmosphere (1'833318333Non-Code
Table9.3.12DesinDataforPost-Accident SamlinSstemProcessInstruments Instrument ,'oronMeterDescritionDensitySensorAccuracy-100ppm~Rane0to5000ppmpHMeterElectrode Sensor-0.053to12HydrogenAnalyzerThermalConductivity -2%ofscale0to100";,Sensor0to10%OxygenAnalyzerParamagnetic Sensor-2%ofscale0to25%,+Oto5% Table9.3.13Instrument Calibration FreuenciComponent Idehtification Calibration Maintenance Maintenance or~F~FC1;1t,;lCharcoalFilterPumpsYalvesLevelInstruments 6mos.asreq'6asreq'dl8mos.Replacefilterwhensaturated, orwhendosaoeisunacceptable (testwithfreon)AsrequiredFunctionally testandrepairasrequiredResetzeroandspanagainstknownvessellevelsPressureInstruments 6mos.CheckaccuracyagainstastandardPressureInst'ruments withalarmIncontrolfunctions 6mos.Checkpressuresetooints pHMonitorH~8OpMetersBoronHeterFlowMeters.Panalarm6mos.*6mos.-lyr6mos.*6mos.6mos.Calibrate withbuffersolutionSetzeroandspanusingstandardgasesCheckzero,span,andtemp.compensator againsttestboronsolutionandde-mineralized waterCheckaccuracyagainstastandardCheckalarmfunction*Calibration frequency canbeextendeduntilinstrument malfunctions. orgetsunstablereadingsinapost-accident situation 7,
4~\~SL2-FSARSTLUCIEFSARQu'estion No.Inaccordance withtheFSAR,theStLucie2designincorporates anautomatic reactortrip10minutesafterlossofthecomponent coolingwater(CCW),tothereactorcoolantpumps(RCP)The'FSARalsostatesthatthetripisdesignedtoIEEE279-197lrequirements. TheRCP'swouldbetrippedmanuallyonlossofCCW.TheportionoftheCCWsystemsupplying coolingwatertotheRCP'sisnotsafetygrade.Regarding lossofcoolingtotheRCP,providethefollowing information: a)Statewhethertheinstrumentation thatalertstheoperators inthecontrolroomofthecauseofthereactortripdiscussed aboveissafetygrade-b)Providetestdataorotherinformation todemonstrate thattheRCP'scanoperatewithoutCCWflowforaperiodoftime,compatible withoperatoractiontotriptheRCP's.c)Assumingthereactorisi'nhotstandbywiththeRCP'stripped,howlongwillthepumpsealsperformtheirfunctionwithoutCCWflow?Responsea)Thereactortripuponalossofcomponent coolingwatertothereactorcoolantpumpsisnotrequiredforreactorprotection. Thereactortripuponlossofcomponent coolingwaterisdelayedforten(10)minutesafteritreachesthepresetpoint..FourchannelsofClassIEindication ofcomponent .coolingwatertotalflowfromallreactorcoolantpumpsisprovidedontheRTCBoard.Theinstrumentation thatalertstheoperators inthecontrolroomofthecauseofthereactortripconsistsofthefollowing safetygradeinstruments &controldevices.Safetygradeisolation devicesarealsoprovidedtoisolatesignalsgenerated bysafetygradeequipment tonon-safety gradestationannunciators andsequenceofeventsrecorder. 410.19-1
SL2-FSARSTLUCIEFSARTagNo.DeviceFunctionClassChannel:1.FIS-14-15 A)B)C)DIndicator &BistableIndicates CCWFlowIEfromRCPumps&ProvidesRPSTripSignalma,mb,mc,md 2~FF-14-15A,B,C,DSqRootExtractor SignalConditioner &IE"Transmitter PowerSupplysma,mb,mc,md 3.80XA,b',c,d 10min;timerAlarmslovCCMflovinstantly &DelayReactortripfor10minutesma,mb,mc,md 4.CS-206-1,2,3,4*ControlSwitchProvidestestability forIndicator-Bistable10min.timerIEma,mb,mc,md
- -Includessetofsafetygradetestresistors.
b)SanOnofreUnits2and'3reactorcoolantpumpshavebeenoperationally testedtodemonstrate s'atisfactory sealperformance withsealcoolingwatershutofffor30minuteswiththepumpoperating. Basedonthe30minuteoperational test,i.tvasdemonstrated thatthesealswouldnotlosefunction(i.es)grossleakage)butthesealassemblies didrequirerefurbishment following thetest.ItisthejudgmentofCombustion Engineering thatthe.RCPsealsvouldnotlosefunctionfollowing alossofpowertwohoursinduration. Basedonthesetestresults,thesimi,larity ofthesepumpswiththoseofStLucieUnit2,andtheinformationavailable totheoperator(seeFSARSubsection 9.2.2.3.1), theoperatorisexpectedtohavesufficient timetotripthereactorcoolantpumps..TheSanOnofreUnits2and3pumpswerealsooperationally testedtodemonstrate satisfactory motorbearingperformance withcoolingwatershutoffandwiththepumpoperating. Thecoolingwaterwasshutofffor23minutesandapost-test examination shovedthebearingstobeinexcellent condition (i.es)noobservable damage)~Analysisoftestresultsindicated thatthepumpmotorcouldrunatleast30minuteswithoutcoolingwaterandremainoperable. s410.19-2 SL2-FSARSTLUCIEFSARThemotorbearingsfortheStLucieUnit2pumpsareofthesamedesignasthoseintheabovementioned test.Therefore, acceptable performance oftheStLucieUnit2bearingsafteralossofcomponent coolingwaterwasdemonstrated bythetestoftheSanOnofrepumps'naddition, therehave,beentwooccurrences oflossofcomponent coolingwateratStLucieUnit1(Licensee EventReports335-77-23 and335-80-29). Thepumpbearingshaveperformed satisfactorily sincetheseincidents, indicating the'cceptable performance ofthebearingsafterlossofcomponent coolingwater.c)Testshavebeenperformed tosimulatethelossofcomponent coolingwater..to theRCPswhileathotstandbywiththeRCPstripped.Afterapproximately 50hoursatcoolant'conditions of550Fand2250psig,theRCPsealcartridge stillperformed satisfactorily withthepumpidle.Somesealdamagewasobservedduringthepost-test inspection; however,themaximumsealleakageduringthetestwasonly16gph(
Reference:
FP&LletterL-81-107, Harch10,1981).NoFSARchangerequiredasaresultoftheaboveresponses. 410.19-3
3.4.2.3.3 DiffuserEachofthe58portsismountedona14foothighr1ser,withafourfootinsidediameter(Figure.3.4-4). Tocontrolmarinegrowth,the1nsidewallofeachriserisline8w'1thNOFOUL,arubbercontaining bis-(n-tributyltin) oxide(TBTO).TBTOreleaseratesanditseffectsonbiotaarediscussed 1nSection3.6and5.3.3.6.8.4Bis-(n-Tributyltin) OxideNOFOULrubberisaneoprenerubberbasewithbis-(n-tributyltin) oxide,otherwise knownasTBTO,d1ssolved init.TBTOistoxicatlowconcentrations tobarnacles, snails,tubeworms,mussels,- oysters,encrusting byrozoa,algaeandotherfoulingorganisms. Theantifouling propert1es ofNOFOULare,maintained bythecontrolled, slowreleaseofTBTOfromtherubber.AtStLucieUnit2,theliningwillbe0.5inchthickwithafivepercentconcentrat1on ofTBTO.Fromestimates madebyBFGoodrich(>); thefollowing continuous releaseratesofTBTOfromtheNOFOULlinerareexpectedfromtheStLucieplant(totalarea=10,950sqft;discharge pipewaterflowrate~515,000gpm):1styearofoperation averagereleaserate~0.039ppb1sttenyearsofoperation averagereleaserate~0.025ppb2ndtenyearsofoperation, averagereleaserate~0.018ppbTheTBTOisreleaseddirectlytotheoceanfromthedischarge piperisers.Thesedataaresummarized inTable3.6-1.51.3.2.3EffectsofNOFOULNOFOULrubberwithTBTO(bis(tri-n-butyltin) oxide)astheact1veingredient hasbeentestedasanant1foulant oncoastguardbuoys,sonardomesand,recreational boats.MarinepaintsusingTBTOfor1tsantifouling properties havebeencommercially marketedforthelastseveralyears.TBTOiscurrently registered withtheUSEPA-(OfficeofPesticides) foruseasanantifoulant. TheproposeduseofNOFOULatStLucieUnit2isconsistent withtheexistingregistration guidelines.(4) TBTOisreleasedfromtheNOFOULliningofthedischarge piperisersdirectlytotheAtlanticOceanatanestimated averageconcentration rangeof0.018to0.039ppboverthelifeoftheplant(seeSection3.6.8.4).Theexpecteddegradation pathwayofTBTOinwateris(5):trialkyltin formdialkyltin formmonoalkyltin form1norganic tinform'mosttox1c)"(moderately toxic)(geaerally nontoxic)whereeachdegradation productislesstoxicthanTBTO.TBTOistoxicatlowconcentrations tobarnacles, snails,tubeworms,musselsoysters,encrusting bryozoa,algaeandotherfoulingorganisms. Resultsofacute,subacuteandchr'onictoxicitystudiesforavarietyofaquaticspeciesarepresented inTable5.3-3.Thelowestconcentration ofTBTOreportedtocauseacuteeffectsforanyspeciestested1sabout10ppb(50percentofthepinkshrimpd1edin96hours).Forlonger 0 exposuretimes,thelowestconcentration ofTBTOreportedtocausedeathis0.2ppb(5percentoftheguppiesdiedaftera30dayexposure) and0.96ppb(5percentofthesheepshead m1nnowsdiedaftera21dayexposure) 'Inevaluating thepotential toxicityofTBTOtobiotaoffshoreofHutchinson Island,threeenvironmental pathwaysofTBTOwerecons1dered. ThefirstcaseassumesallthereleasedTBTOremainsinthewaterphaseandnoneislosttothesediments ordegradedtootherforms.Thisisaworstcasesituation forthewaterphasewithrespecttoorganotin. ThesecondcaseassumesthatthereleasedTBTOmayassociate withthesedimentphase.SinceTBTOisknowntoreadilyassociate withorganicmaterialandsediments, thissituation isconsidered morereal1stic ~Thethirdcaseconsiders theimpactoftheinorganic tinform(whichisassumedtobetheeventualdegradat1on product)in.thewaterphase.Thissituation assumescompleteandrapidconversion totheinorganic form.Thesecasesareconsidered inmoredetailbelow.ThefirstcaseassumesthatallreleasedTBTOisfullymixedinthewaterphase,withno,losstbt'esediments. Undertheseconditions, theexpectedconcentration ofTBTOwouldnotexceedthatofthemaximumdischarge (0.039ppbfirstyearaverage)~Thedilutionfactor,understagnantconditions, established fromhydrothermal studiesattheStLucieplant(assuming a28oFdischarge temperature riseanda3.5Fsurfacetemperature increaseforStLucieUnit2)iseightforavolumeofapproximately oneacre-foots Theestimated TBTOconcentration afterdilutionfromStLucieUnit2is0.005ppb.Boththeimmediate discharge concentration andthedilutedconcentration arebelowthoseseentocauseacuteorchroniceffectsinthefishspeciestestedtodate.Casetwoconsiders thepotential partitioning ofTBTObetweensuspended solidsinthewatercolumnandthewaterattheStLucieplantdischarge s1te.Calculat1ons ofrelativeTBTOdistribut1ons havebeenbaseduponFreundlich isothermequilibrium constantvaluesreportedbySlesinger(6) forTBTOadsorption tosediments. Utilizing aFreundlich equationconstantK~40(ml/g)(conservatively baseduponTBTOadsorption tosandyloamsoil)andaprobablemaximumconcentration oftotalsuspended solids(TSS)measuredatthesite(seeTable2.4-5),TBTOmassdistribution percentages havebeencalculated. TheresultsindicatethatforTSSlevelsofl00ppmorless,morethan99percentofthemassofthereleasedTBTOwillremainintheaqueousphasewithlessthanonepercentoftheTBTOadsorbedontosuspended solidparticles. Thiscalculation appearsconservative forthesandysedimentmaterialcharacteristic oftheStLuciesite.Therefore, thecasetwoanalysisissimilarto,thecaseonesituation whereadverseimpactisnotexpectedtooccur.Casethree,theadditionofinorganic tintothewaterphasethroughdegradation ofTBTO,wasalsoexamined. IfalltheTBTO,discharged (0.039ppbfirstyearaveragedischarge) isconverted toinorganic tin,'heaqueoustinconcentration oftinwouldbe0.016ppb.Afterdilution(dilution factorofeight),theexpectedconcentration is0-002ppb.Ambientseawatertinconcentration hasbeenreportedas0.8ppb(7)
witharangeof0.002-0.8 ppb(8).Thisadditionoftintotheambientconcentration isexpectedtohaveminimalimpactonwaterqualityorbiota.TheseTBTOcalculations, including thereleaseratecalculations, arebasedonadischarge rateof515,000gpm.TherateofreleaseofTBTOisindependent oftheamountofwaterpassingthroughthepipe.Significant decreases inthedischarge rateof515,000gpmwillresultinapproximately thesamequantityofTBTOreleasedintoasmallervolumeofwater.Thus,higherconcentrations ofTBTOmaybeexpectedinthedischarge wateratthesetimes.Becauseoftheimprovedthermalmixingproperties oftheStLucieUnit2discharge
- pipeline, thispipelinewillbethepreferred discharge routeforbothStLucieUnits1and2.Consequently, operation ofeitherplantwillresultinnormalflowratesthroughtheStLucieUnit2discharge pipeline.
Severalswimmingareasexisthearthedischarge pipeline. Althoughnoinformation isavailable onpotentially harmfulaffectsofTBTOexposureinwater,TBTOconcentration levelareexpectedtobeverylowatanyswimmingareaduetothelowinitialreleaserateandthedilutionthatwilloccurthroughmixinginthedischarge plume.Insummary,TBTOreleasefromtheStLucieUnit2discharge diffuserduringnormaloperation oftheplantisnotexpectedtoadvers'ely affectwaterqualityorbiotaasexaminedinthethreecasesdescribed above'.TheTBTOlevelsexpectedinthesecasesarebelowthoseseentocauseacuteorchroniceffectsinaquaticspeciestestedtodate.
3~WrittenCommunication, BFGoodrichtoEbascoServices, Inc.19814~WrittenCommunication, USEPAtoBFGoodrich, 19765.Cardarelli,, N,1977.Controlled ReleaseMolluscicides. Environmental Management Laboratory Monograph, University ofAkron,Akron,Ohio.6~Slesinger, A.TheSafeDisposalofOrganotins inSoil,1978.inOrganotin WorkshopReport,M.LEGood,Editor.Sponsored bytheOfficeofNavalResearch. 7~NOFOULAnti-Fouling Rubber.Technical
Background
- Document, BFGoodrich, 1980.8~Riley,JPandGSkirrow,1965.ChemicalOceanography Voll.AcademicPress,NewYork.9~Bowen,HJM,1979.Environmental Chemistry oftheElements.
AcademicPress,NewYork.
AcuteStudiesTABLE5.3-3TBTOTOXICITYSheet1of2~SeciesIteterotis hemichromes ExposureTime120+hr120+hrTestConcentration Condition inppmLC5p**0.03Reference 'ardarelli (1977)(3)~Ttlaianilotica~Tilaianilotica, Hemichromis spCarassius auratus(goldifsh) Lebistesreticulatus s(guppy)Salmogairdneri (rainbowtrout)15daysLD7p15daysLD7p24hrLD1000.0450.0450.07524hrLD1000.07524hrLD1000.028120+hrLD5p*.0.03Cardarelli (1977)(Cardarelli (1977)(3) Cardarelli (1977)(3) Cardarelli (1977)(3) Cardarelli (1977)(Cardarelli (1977)(SalmoSsirdneri (rainbowtrout)~Leerniemacrochirus (bluegill)~Leomismacrochirus (bluegill)(fungus)Bacillusmycoides(bacterium) Bulinustropicus(snail)Bulinuscontortus (snail)Commonmummichog48hr24hr48hr96hrLDlppLD5pLD5pLD100LD100LD5p10PLC5p002,0'070.04050.50.10.010.0750.024Cardarelli (1977)(Cardarelli (1977)(Cardarelli (1977)(5)Cardarelli (1977)(5) Cardarelli (1977)(Cardarelli (1977)(5) Cardarelli (1977)(5)Slesinger 1979asnotedinrefe'rence
- 7.
Sheet2of2~SeeineExposureTimeTABLE5.3-3TestConcentration Condition ~innReference Pinkshrimp96hrLC5p0.011Slesinger 1979asnotedinreference 7.Piddlercrabs96hrEC5p7.3.Slesinger 1979asnotedinreference 7.SubacuteandChronicStudiesLebistesreticulatus (guppy)30dayLC50.0002Cardarelli (1977)(5)Lebistesreticulatus (guppy)60dayLC50.0014Cardarelli (1977)(5) ep(sheepshead minnow)(sheepshead minnow)21daye21dayLC5pLCp0000960.00033Slesinger 1979asnotedinreference 7.Slesinger 1979asnotedinreference 7.(sheepshead minnow)177dayLClpp0.0048Slesinger 1979asnotedinreference 7.eECx~estimated concentration whichresultsinmortality to"x"percentofthetestorganisms "LDxdose,whichresultsinmortality to"x"percentofthetestorganisms
- "LCxconcentration whichresultsinmortality to"x"percentofthetestorganisms
SL2FSARTABLE1.90-3EVALUATION OFXCCDETECTION INSTRUMENTATION .TOATTACHMENT 1OFIX.F.2ItemResonse2.StLucie2has56coreexitthermocouples (CETs)distributed uniformly overthetopofthecore,.Section3.1.3hasadescription oftheCETsensors,Figure1.9B-7dep><<sthelocations oftheCETs.Theprimary.displaywillhaveaspatically oriented'oremapavailable ondemand,aswellasselectedreadingsofindividual CET's.Directreadoutandhard-copy capability willalsobeavailable. Trendcapability showingthetemperature-time historyofrepresentative coreexittemperature valueswillbeavailable ondemand.Theoperator-display deviceinterface willbehuman-factor designedtoproviderapidaccesstorequested displays. 3.45.6.'.XCCinstrumentation designincoporates aminimumofonebackupdisplaywiththecapability ofselective readingofaminimumof16operableThermocouples, 4fromeachquadrant. AllCETtemeratures canbedisplayed within6minutes.Thetypesandlocations ofdisplaysandalarmsare'determined fortheprimarydisplayby.performing ahuman-factors'analysis.'he QSPDSalsoincorporates humanfactorsengineering. Theuseofthesedisplaysystemswillbeaddressed inoperating procedures, emergency procedures, andoperatortraining. TheXCCinstrumentation wasevaluated forconformance toAppendixBofNUREG-0737.(see table1.9B-4).TheQSPDSchannelsareClass1E,electrically independent, energized fromindependent stationClasslEpowersourcesandphysically separated inaccordance withRegulatory Guide1.75"Physical Independence ofElectricSystems"January1975(Rl)uptoandincluding theisolation devices.
ResonseICCinstrumentation shallbeenvironmentally qualified pursuanttoC-Eownersgroupqualification program.Theisolation devicesintheQSPDSareaccessible formaintenance following anaccident. Primaryandbackupdisplaychannelsaredesignedtoprovidethehighestavailability possible. TheQSPDSisdesignedtoprovide99%availability. Theavail-abilityoftheQSPDSwillbeaddressed intheTechnical Specifications. Thequalityassurance provision ofAppendixB,Item5,willbeappliedtotheICCdetection instruments asdescribed intheAppendixBevaluation inTable1.9B-4. ' SL2,FSARTABLEle9B-4EVALUATION OFICCDETECTION INSTRUMENTATION TOAPPENDIXBOFNUREG-0737 Iteml.2.ResonseTheICCdetection instrumentation isenvironmentally andseismically qualified asspecified inSection5.0.Theisolation devicesintheQSPDSareaccessible formaintenance following anaccident. tTheICCdetection instrumentation throughtheQSPDSlE'solators meetthe'.single,.'failure, requirements specifi,ed j,nAppendixBofNUREG0737.3~TheICCdetection instrumentation throughtheQSPDSlEisolators arepoweredfromtheClasslEpowersourcesforchannelsAandB.TheICCdetection instrumentation throughtheQSPDSlEisolators aredesignedtooperateduringnormalaswellasemergency conditions. Theavailability willbeaddressed inthetechnical, specification. 5.Recommendations ofthefollowing Regulatory Guideswere.considered inthedesignofICCinstrumentation; 1.28"QualityAssurance ProgramRequirements (Design6Construction)" 1.30"QualityAssurance Requirements fortheInstallation Inspection andTestingofInstrumentation andElectricEquipment". r,r1.38"QualityAssurance Requirements forPackaging,
- Shipping, Receiving, Storage,andHandlingofItemsforMater-Cooled NuclearPowerPlants".1.58"Qualification ofNuclearPower,PlantInspection, Examination,,
andTestingPersonnel".. 1.64"QualityAssurance Requirements fortheDesignofNuclearPowerPlants".'.741.881.123"QualityAssurance TermsandDefinitions". "Collection, Storage,andMaintenance ofNuclearPowerPlantQuality.Assurance Records". "QualityAssurance Requirements forControlofProcurement ofItemsandServicesforNuclearPowerPlants". J ternResonse5.(contd)1.144"Auditing ofQualityAssurance ProgramsforNuclearPowerPlants".6.7~TheICCdetection instrumentation outputsarecontinuously available ontheQSPDSdisplays. TheICCinstrumentation isdesignedtoprovidereadoutdisplayandtrendinginformation totheoperator. 8.Theinadequate corecoolinginstrumentation isspecifically andsingularly identified sothattheoperatorcaneasilydiscerntheiruseduringanaccidentcondition. FTransmission ofsignalsfrom'instruments ofassociated sensorsbetweenredundant lEchannelsorbetweenlEandnon-1Einstrument channelsareisolatedwithisolation devicesqualified totheprovisions ofAppendixB.10.TheQSPDSconsistsoftworedundant channelstoavoidinterruptions ofdisplayduetoasinglefailure.Ifintheremotechancethat,onecompleteQSPDSchannelfails,theoperatorhasl.Additional channelsofICCsensorinputsforcoldlegtemperature, hotlegtemperature, andpressuizer pressureonthecontrolboardseparatefromtheQSPDS.2.TheHJTCSandCEThavemultiplesensorsineachchannelfortheoperatortocorrelate andcheckinputs.'3.TheHJTCSsensoroutputmaybetestedbytheoperatorreadingthetemperature oftheunheatedthermocouple andcomparing toothertemperature indications. FurtherHJTCsensortestscanbeperformed withspecialtestequipment. 2.4.'thervariables areavailable totheoperatorontheMainCbntrolBoard.forverifying theICCparameter. Servicing, testingandcalibrating programsshallbeconsistent withoperating technical specifications. Thesystemdesignissuchastofacilitate administrative controlduringperiodswhenchannelsareremovedfromservice.
ResonseThesystemdesignissuchastofacilitate administrative controlofaccesstoallsetpoints adjustments, calibration adjustments andtestpoints.Monitoring instrumentation isdesignedtominimizeanomalous indications totheoperator. Instrumentation isdesignedtofacilitate replacement ofcomponents ormodules.Theinstrumentation design.issuchthatmalfunctioning components canbeidentified easily.The-design incorporates thisrequirement totheextentpractical. Thedesignincorporates thisrequirement totheextentpractical. Thesystemisdesignedtobecapableofperiodictestingofinstrument channels. 0 1~0Figure6.2-9andFigure6.2-10,withrespecttocontainment. pressureandtemperature responses following aMSLBaccident, shouldberevisedtoshowthecontainment pressure/temperature responseprofiles(fromtime=0secondto10secondsfollow-ingtheaccident) foruseinequipment qualification. ~ResonseSeeFSARrevisedtextandnewFSARFigures6.2-9aand6.2-9bforcontainment pressureandtemperature responses following aMSLBaccidentfortherangeof0to105seconds. 0 SL2-FSARPipebreaklocations, breakareas,peakpressures andtemperatures, timesofpeakpressureandtotalenergyreleasedtocontainment aresummarized inTable6~2-4foreachLOCAanalyzed. TheDBAsareidentified inTable6'-2.Figure6'-Sgivestherateofenergydistribution insidecontainment fortheLOCAcontainment pressureDBA.Thelong-term performance isessential-lythesameforalltheLOCAcases'llmechanisms ofenergystoragewithinthecontainment areaddressed. Includedarethevapor,energy(steamplusair),sump(liquid)energy,andenergycontained inheatsinks.Table6~2-10summarizes thecontainment energydistribution atseveralkeypointsintime~Forthea@stsevereReactorCoolantSystempipebreaksthistableshowsthedistribution ofenergypriortotheaccident, atthetimeofpeakpressure, attheendoftheblowdownphase,attheendofthecorerefloodphase(coldlegbreaks),andsteamgenerator energyreleaseduringthepost-reflood phase(peakpressureonly)~HainSteamLineBreaksAnalysesareperformed toshowthatthecontainment designpressureisnotexceededevenifthefollowing singleactivefailuresarepostulated: (1)lossofonecontainment heatremovaltrain(i.e.,twofancoolersandonespraypump);or(2)MSIVfailuretoclose;or(3)mainfeedwater isolation valve(MFIV)failuretoclose.Theassumptions foreachcasearediscussed morefullyinSubsection 6.2.1.4.2. Thepeakcontainment pressureiscalculated tooccurfollowing theDBA102percentpowerMSL.~withafailureofoneMSIUassumingtheavailability ofoffsitepower.Thepeakcontainment temperature iscalculated tooccur'ollowing theDBA102percentpowerMSLBwiththefailureofoneofthetrainsoftheContainment HeatRemovalSystemwiththeavailability ofoff-sitepower.The.containment pressureandtemperature transients forthemostsevereHSLBpressureandtemperature usesareshownonFigures6'-9~through6.2-12.+Figures 6~2-12and13showthecalculated transient con-nsC.rtainmentvesselsurfacetemperature andshieldwalltemperature gradients, respectively, forthecontainment temperature DBA.Pipebreaklocations, breakareas,peakpressures andtemperatures, timesofpeakpressure, initialpowerlevel,singleactivefailureassumedandtotalenergyreleasedtothecontainment aresummarized inTable62"4foreachMSLBanalyzed. TheDBAsareidentified inTable6.2-2.Figures6.2-14and15areplotsofthecondensation heattransfercoeffi-cientversustimeforthecontainment pressureandtemperature DBAs.TheUchidaheattransfercoefficient contained intheunmodified CO"tTBHPT-LT computercodeisusedfortheanalysisofallsecondary systembreaks.Thecontainment analysesfortheMSLBsareperformed usingallthecon-tainmentinitialconditions, heatsinksandmethodology assumedfortheLOCAanalysesexceptforthefollowing: a)FortheMSIVandMFl'Vfailurecases,twocontainment spraypumpsoperateandspray5,300gpmofwaterat100Fintothecontain-ment.I*id2-9'"-/dI.I,Ig++p~~Phiggle~oP+IteQe7kin~ff'~~'"ee6.2-10Amendment Yo.0,(12/80) ,I'I"~Q>, Il<<',Jt))f'bi4l'rr~tI!)I)(%~IIIi!)I'PF@)))IIZ~P4),'ll; ii'44)4IL (j'4iIII}ijf,j)',i.iTI~.Lg)It)4iI)syI!kii":!!)'p(jI!I'.'Ž"ll' I9'k:I'lIj'I'9I)JIIII4Pdk<<g))),t'. )i.'LLII>!)u'W)~XR'i"sp4',,)Li1+<I))44I)t<<r'l VAA.IfI;il'$.'~~)~i) )))!Il':l',~pI+8'4~,I})IlfAILij1)lj<<iI<<IMI~L~Vt))-'aO~h.mf)!,"!"p't!j,,!I![ttlltrrrt,)f8) II))I}j!ft~'It')f f'.)1II"44'l4)ri~I))I!f,Iqjt')4<<)lj!" I1'll'!,<<r,,;,)Ilrig 'l",i'.5)ii,l,r)PP, Il,,4+I}I')Ii:,'Sg )'!)'i',,w"))tg",$4iL'LSK~.'III,)III<<rt). mc+<t)<<w.,Ag,)I,it)~I4I!if@'iglglgi4P~Q;)it)LIt)44)'I<<'gQ~l~ P-Itillt44:I WiI<<4'IIIII)'"A<l,':j ..ri~4Pi';'Lilt)PCQ,;4)II:j<<rent<<HALI III4i<<i)hq)rL)!Ir)<<+~~ 4)fir!))I~~,),l!.:I.')4+'))Il[)>k.<<1i), Ir4)iit4llrlrk)4lpt<<I Fr)<<ri!i'<<6~I<<j)LLL~'p I)I14<<r)4<<44I ~III<<<<<<L4,<< IIIIOI'.I<<.r<<L4.)<<I Itr')Lip~4'tI)'Iig<<44'~I.a'.M~)'j)".-4+7~)',Iq q"'):))))Pg!)C~lIjI"I"a~-':li'I'r4.Ž),l;4!IIlit:I'IIi'I!IllIIIaL)7'in)8gS'BagI~I>I<<I'(I).i~<<Jljtj)<<'CH)i)~q".'4II4'I4".jIII~I~gjllljlif','.'-":Iljji'.I,I4)4,)llk44.IIIIIl<<44't.I;)4piI'4'lb')ff.!ti+I)4)IL~pl+.6.2.-$ A.coNTA~AMENTp'gcssoRE-hg(02%towcF'et.a-gSiV PhttUR&
(fIOOjmjIl1liIgill7II<<IECSBC)ltjlilli>!l,kllf<<fiIltOOOO}}itIIIr,r,F.llt.~
Forcompartment (e.g.,reactorcavity,secondary shieldwallarea,andpressurizer area)structural designevaluations, providethedesigndifferential pressureanddiscusswhetherthedesigndifferential pressureisuniformaly appliedtothecompartment structure orwhetheritisspatially varied.R~esonseDesigndifferential pressures are24PSIand14PSIforsecondary shieldwall,andpressurizer compartment aboveelevation 62-00,respectively. Thepressures areuniformly appliedtothecompartment structures. Designdifferential pressures fortheprimaryshieldwallhavebeenspatiallyvariedfromapeakvalueof86PSIwithprovision fordynamicloadfactor.SeerevisedFSARTable6.2-3andnewFSARFigure6.2-2~:. K SL2"FSARTABLE6.2-3Parameter PRINCIPAL CONTAINs~i.NT DESIGNPARA'.DIETERS Dec~inltarginlContainment Internaldesignpressure, psig(LOCA)(VSLS)~Shellsurfacedesigntemperature, F44.044.0264944psigRefertoFigure6.2"12Differential designpressure, psidNetfreevolume,10ft630.702'0>6.6">>)lrtappli-cableDesignleakrate,percentfreevolumeperdayat44.0psig0.5Nntapplicable -ShieldEuildingExternaldesignpressure, psig3.0,I.~XIC))))t)))qI)))')q)g Q'g'),Rc).~r~'i><Re=i)))vs))lIndi))r).~c)))C.'))))C))-))VLVtl CdIPA)LI)):I))~~oiuF<~"4v t'.<agd.;t~~iw.ypcy-387'IOQ/-~~3o7~/))I't77y)BOOTES:(1)Hargin(~)desinvalue-eakcalculated value,peakcalculated valueActualmargin,i.e.themarginbetweendesignvaluessodIakcal-culatedvalueswhenusingrealistic nrmedianparameter valueswouldbemuchlarger.J6.2-86 caQCVCZ2CE(2.~0-6-78)RC2R2-200 IN"Dl.GUI.c(X-a<~BKRVN077l'REIRCTj'0YSN 1.2/14/79>-eG..r~l~.c~,V3.C3C1cusrghJQ/Ncu~~1~~~~~~r~'r,"~eT.r~~~~.~r,',I'.rL*~~*,f~1~~p~4t07C)Or~~i"/~'42 Question.3e0Provideanalysestodetermine theexternalforcesandmoments,resulting frompostulated hotlegandcoldlegruptureswithinthereactorcavity,onreactorvesselsupports.'f applicable, similaranalysesshouldbeperformed forsteamgenerator and/orpressurizer compartments thatmaybesubjecttopressurization wheresignificant component supportloadsmayresult.Foreachanalysis, providethefollowing information: (1)Provideandjustifythepipebreaktype,area,andlocation. Specifywhetherthepipebreakwaspost-ulatedfortheevaluation ofthecompartment structural design,component supportdesign,orboth.R~esonseFSARTable.6.2-13isasummaryofpostulated piperupturesforthecontainment subcompartment analysis-. Contained inthistableisthepipebreaklocation, description ofthebreak,breakareaandreleaseratedataandtablenumbers.Pipebreaklocations werechosenbaseduponthehignstresspointcriteriainaccordance withReg.Guide1.46andSRP3.6.2.RefertoMEBquestionN2attached. Thepeakleadstabulated fromeachof.thepipebreakslistedon,Table6.2.13wasappliedtothecorresponding structure. Xnal'1casesithas'beenfoundtnatthestructural des'.gnwasadequatetowithstand thedifferential forcesresulting fromthebreak.Table6.2-3(seerevisedtablecontained inanswertoCSBbranchquestionI2)providesacomparison betweenthepeakcalculated forceandthestructural design.Themajorcomponents of"theRCSaredesignedtowithstand theforcesassociated withthedesignbasispipebreaks.Thesepipethrustforcesat,thebreaklocation, resultant subcompart mentdifferential pressurization forcesandinternalasymmetry hydraulic forcesactinginthereactorinternals. Acompletedescription oftheevaluation oftheplantfaultedcondition forthese'omponents isprovidedintheresponsetoMEBquestsN35attached. ThemajorportionoftheAsymetric Analysisnasbeencompletec-MEBquestionresponseN35.containsatable(Table1),that'rovidesthecurrentasymmetric loadinganalysisschedule.forbotnthemajorcomponents andthestructural designin-dicatingtheanticipated completion datefor.eachitem.~~
Itmustbedemonstrated thatSt.Lucieplantanalysissystempara-metersfallwithinthedesignenvelopeofCENPD-)68, Revision).~Resonse2Thesystemparameters oftheSt.Lucie2plantfallwithinthedesignenvelopeofCENPD-)68, Revision).,SeeattachedproposedFSARamendment to3.6.2.).).
3.6.2DETEP81,'iAT10ti OFBREAKLOCATIO,iS At,'DDYtiAHICEFFECTSASSOCIATED WITHTHEPOSTULATED RUPTUREOFPIPItJG3.6.2.1CriteriaUsedtoDefineBreaklocations forPipeM~h>~Anals>s~~I-//2.1.2HighEnergyPipingSystemsPsectionprovidesthecriteriausedtodetermine postulated pipingfailurelocations forhighenergypipingsystemsbothinsideandoutside/RJcontainrent. He)ReactorCoo1antSystemHainLoopPiping/=sH/2,)AstresssurveyoftheSt.Lucie2ReactorCoo1antSystemHainLoopPipintperformed inaccordance uiththemethodsdescribed inCENPD16BA(Reference 1)TheSt.I.ucie2,Reactor CoolantSystemgeometries andtransients wereemployeditheanalysis. Theresultsofthisanalysisarepresented inFigure3.6-4.Inaccordance withthecriteriaspecified inReference (1)circumferential typepipebreaksarepostulated tooccuratallterminalendsandpipebreaksarepulatedata1)intemediate locations throughout the,pipingsystemwheretheofprimaryplussecondary'stress intensity exceeds2.4Smorthecumulative> usagefactorexceeds0.10.Whereallintermediate pipebreaklocations wouldbeconsidered unlikelybecauser'thestressesandcumulative usagefactorscalculated foraparticular runofpipingbetwenterminalendsareeverywhere lessthanthestressandfatiguelimitsstatedabove,thetwointermediate locations ofhighestcumulative usage-'actorarechosenasthemostlikelybreaklocations forpipingrunslongerthan.')0diameters tota1length",andforpipingrurishavingmorethanonechangeindirection through-out therun.>)Theresultspresented inFigure3.6-4confirmthebreaklocationandtypes,ofReference (1)forthemainlooppipe.>)Forthepartial.areaguillotine typepipebreaksatthereactorinletandoutlet'oles'andthesteamgenerator inletnozzles,themethodsofReference (I)wereyedtocalculate thef1owareasandopeningtimesofthebreakattheselocations. Thestiffness valuesareprovidedinTable3.6-2andFigure3.6-5. ITheresultant breakcharacteristics areshowninTable3.6-1.Thepipewhiprestraint atthereactorvesselinletisshowninFigure3.6.3.'ll otherllotinebreakshavebeenassumedtoopentofullarea.Thebreaklocations forRCSareshowninFigures3.6C-2.1and3.6C-2.2., .C040LRQP1P"-~7oPq-,)ppgK55 5,npP)P'-0¹C,'po,9;op+W~pg'c)yi'gopNdsZ+Topee$svir-r-~a~s c~t,<)g,~Nogg'SzCI'zP.A12B.l33ao;3Klo854,.2.<~cgz.Z.C<(oQ)f.ZWlOyg,gx,(e~o.g<Wg~.g>(io)f.oK)o5,l<)o)X)O2'X2,,8slo34{'.>f~to'),Ox~a q[.gxlo4,1.)xl4.95,)xIcP3<gg,QK(o'555gKlo'Zl)iO~l~pig3x<ogp,.5x>o+dan)8)+4+l~lo-'JIlo>t~FgvfJ
P/PEBREAk'REAS AA/0&REAR'RNER/A/8 TrhfE5A/E.ARLAr/Lr077h!F yZece3.6-EpvSrucATED Ru~Ee.8<EAvFloe/ARHR(g~z)g/SE77WE(nrizusaccwmp ZO.89/AflE'7Fo///oT/NL I 'pfPICA)RCPD)seHARCE LE.GsraQlnxV~PlV)E.VCS-80ETAlL~p>CAlZ~ACE,~~O~@o'lQlioZC>0J'gSTO'PMO.R1.7QJ~jR~0yDE'7AllVlFWA-A"o~oo~ .q"%..Jz~pOQkgb.bolji,>hgqq I'L'tabb,.apQ;l,yq$ q.lVlp<.oiw, y.6ogKX5Xg,b>>r IP.V~$ob'gxpibE6lLVQ(pro,.poop >K.Ro%X)~~STEAMGENERATOR2hQli~~>>lo,.opW, l,woo/gal,.bbtQ,l:b6$$~~,Iooar,agqgj(<lfo1.2ppp>l<l6Ef>$6o)opbo(\xlg'lbpLoli6IQ:>Cs>pw6,5 >Tip=64,.bogj,Qllhoq>~o,.obwl, l.LV>.)~U)o,.abIP,g! )x;PUi~>P:l.2hhgl2~re~h2(~Xc>+oOPO l4ppg)i"'tqeeE.a,'Iqng) 'UMP'h2(6oo<.OKl+'lhVQrco,.outLobo>-oaO l.+opI'go>.Pbqt>'L.QKQW @3%0ab'ljP~-0>,ob-pI~.ggqg c~t,ww,.ooO, W(4<t~>'j~t.bbXg)l.qXC$)l402.obop>t.6o'%o) QS0~+ooC.~~o~bu,l.WV~+~ ~%'lLO,.Oab O,'L,&69) tQ~o,.ooq+,4.6l4. (6>>,.cp--\> L.%gee62<.pplh,>4Kb@l4X,.op~a,k.ggcg) LL42okoogloio'E4$ ~-L$6o].op>>gy ~t,gJ53X,.oeil,gWt(I'g&,+oath~wi>gQJ0~QtWW,.ob-L<Alt)807E:DAThPOIl<T.hOei lbhGBPACERCteVF)andSn/Saarefndkcatcd Jnthcparenthcscs~ 0~~~~~0ISO:m..IC S~:nCaCMnATIillS..>GBFhCKRg'0yOR-M,IZ"=a FRISKYPLUSS=.CC:,0<.Y S7R."~SZhtl'SITERhNQP(tL'SUt.TS FORSh"IStGCLOAOING(LCW'>LA)'LT,<o,'lg5p,Fl&ORK3.6-'ISHREDloF.p 0 0OP(K~O.o<<o,ihi~~)(33)o.ooC3%,galI~oooo)LA~'\s.o<+Coo'l~l.<1\('AXo.oo~og~~+>l~2~,'.oo-0~\.4)63 IBiX,goya,i,gus STEAf.lGElxLRrXTOD 2BkI5+0)Cot/~($$$+Q)Qt'Lo,.oo O'L<h>gh35!4o>oo+(,g~~~~so~+3~OAT~L,)40Jl5!(><<XW,LQ'b>gl L<QK,ooMi'\-L4g~toIPUii'tP'2816yy>.oo63 gpqfi)XCN),oo'1'h $3)oy~~vb3r)agog@ 'L,QQ5I'Q16t,.cooo,(,sqgg)l'5)lo5>gf(ACE.oom,g,~gq)gtC)oo'Qg,pygmy)Ql6o<.oog,l,~qq ~"~)oo444$6lWR4t).oogg,4.(o~g'A~o>.oot 4>(ZWW(goo36eo,.o(c7 x.(go<<6olwoo?tJ(+EoloQWI6T(ooWL.3<t'L)(hlto,.oCqy.qqqq)$518o,~on(pggq~0~tt>>.C<oosV4g c~r(5520~81k'(llifo);r~lqa4y.oo$t,(XQ)tM,eon,tq.to% %laicREACTOR~e(pQ>,coZt,L.iong) 4%%~~>.oooo, XiWoZ)NOTE:DATAPOINT?lO.s USAGEFANCP.(C.U.F)andSn/Smarefndicated fntheparentheses lSO~oSWIG gy,ET~CNfiQATIVH USAGEFAfORA'.:3NCNQLIZ":.D P..IN'LUS SF'AND.'~Y RA!eaR~SuusFCRS~IS:aCIDI.;~(C.OC>l28)~~FlGvac.3a-'f%HELDd'or?
/"SYA1BOLS:-CILCIRCUMFERENTIAL BREAKLLONGITUDINAL BREAKSTEAMGENERATOR .0aO~~0jPUMPgCSUCTEONLEGWWCgPUM)P.LSUCTION;-CLEGDISCHARGELEGHOTLEGDISCHARGE.LEGNOTES:1.CORRESPONDINGBREAKSAREPOSTULATED INOTHERHALFOF.SYSTEM(NOTSHOWNFORCLARITY)REACTORC-c'.C-mbvstion Enolneering b..c.DESIGNBASISPIPEBREAKSTYPESANDLOCATIONS 3-4Figl&c
NCLCs(040)QVJ SIC'tCSCtC QNAt<4PAPCMlO(Cif(PC@HALtINCHCQCCNCOICCXC2(Cf((L~SAOC}N}L8IafttIJJ'~I~tl4')I~0(sjI(ils~II('.I'il'00>'ID>J( lff(ef.~~~Li~~V~i~0J~~LI~kk4aku0~44tkk\4>001440~~~1~OAOALIIJlh'f"iIH.'j' 'f!I-."Jif'tJVH'='"=:<~Qi"- 6iiifkV6Q'la~~1)0>~~flkefvkko}JJ/014(~~SI~~4~~0040~~it~I~~~(~iti04~pLt0to4M~ktkfILJ)kfll4>fl\fJUk(Vkl)+IIfJptIIiIIIOJif~~I~~~I1'IlI)itilftl't"6Qi1~~II~~II((~~~~~Ii)~~~~~~rflI~~~~~l'ii)i!'f~j:i'i(t~~II~~)Iorfl(I~)~f~I~it,sit!~i'I~~I~I~II'}ll0~I~)II')'('iil~lteall'i'i! ~Ill:(JIi""'tiiii!')f' futkI~(tiŽJLf~L~~~~LJ~~rk~fitful~4~0}.)j++l.i}ok~(( vlVÃd4]IfJf~t~104~LLIJlkki4.1>O1~.4100LOAVL4Ltl~LkltoJ.aJLULIkli4UJsite1~~0J~I~~Ii~~(I~~~~~~~ifII[tt!I!~'tll~~,(tIit!~~~.~(t~II~i~t.~II~~~~I~fls~I~~~~(i~LaIaf~!~4~~4~I~~~IIsli11~~I~~~tl~~4~~~4>kkt~1~OOUkt~lk~art&WL~~~~LVAUkookklklekuakt> ~LIJ,~Ll~alta~~\011~~OAVlkti~L4JLJJ44J10044+Llkk+LaksiakL4JJJ ~~UU4~~Laiktilkks~IJI~f~lkak}OJJUtkLJJJJlto4144LAUJII<<44444 ~aktI~QL~ki~Luoa~~~~~4LI~<<ILLltJJktt~~taarruuaaJALLta<<rkufk k>J~>44>~t~~~~I~~~~i~~IJ111~10~~~~~~~~~I~aita>OJ>V.~~LOALLar441ti~OAULLtl>JALO ~~~4~41~11>~~Ill04~tt~~1~~14I~~~~~~J~tk>kLt~~iI4IkLLLU1I40k44~IUAJakakIJ10414LL~~~JllIJI~I~ITIto~tiaiLIJUI~~~~0JLLOOAua ~Llsik<<VUUJJAOALOI J>444Lsakt>kk<< ~~4~~~I~1~te~4~II~4~Llk~~LrLAakk>AUILLLLLULLJAL AI>lkLLV>lkrLL1~LeI~Il~~I~~~tiL)~~J~()~~~~I(~~)~)J!g)gfft'0t~tis!1Ij.!.";if. I'i!"i!Bjfji'U.))t)~lilif(ejr~.iI~ht(II')>I)I~~II~~I~~~~sitI(~Ils(i)I~~~~fe~~)~I~I~J~~0r)f~i~~~I~!t~I~}I~0~I~>~0$I~}~~~~f~Ifelilif)t..i.,II.l(.Is~t'~~I~tles'g(~41~~~~~Vt~~0~~~I~~~~~I~aauo,at~4kk4k0~~\~4~tk4~~~~0~~~I~iakuuk~1~LLOJ~J,trJ44I~~L~~v~~I~Ia44~10~~0LtLL4i~04>44.14liLLtIIII~~I~~~~4~Le441\kakkrJ ~JJ4JJ~~i~~IJtlIs~4>I~~~~*I44O~UOAUvkkkkrok ~vJJJJOUJekttkavJ~0a4~~~IJ~~~04~VJJJ~~I~i~~~~IfLekkarkUJJUklJ Lk4kkoke<<VILtiUekLkl~Ik>>eki~4\tjII~~4LI~0~Ik>lit&0Vof1JAOJrkkkskJ 44444I~a4404>LLLLLV atilt44~Jilla<<if~Jikl>UJ~~~~>Ae04Otkki~0OALUALUO~L44441LOLa kllAat~atL10>tk~4~~~~I~~~~I0~~I~11~~I~>~~~I~~~J~~I~))~it(]g(~~fl0sIiij0>t'I't~(tis~~~Ii'ol't'!Le~~~~1~L>etlJ~a<<~I~i~ej~~(~ti~I~~I'f'"'"i"'~'ii't"!Il(i)I'(JsvslsfsI)IQ)aj.~)(~~~~~~(~~II~f~Ise~~I~f~I~1~)1,(I~~~~~I~II~~ge~~~~e~<I~~>I~~J>I~t.ii')f)IiIl)II04I(f'(~)~~(f.IfJ.fo4>IQA~i&Ok0~4to~as~aUk(I~OJ4~~iliglepU(l)LI 4141~~~r.'Iti:"I')tflj6,'(t .f~4~Ial444akoku~404~00~1044kkkrkV IIoI~tkkkk<<tu01LLII11I~~ll1J~~JJ~lt~~~%.""2>>f:!))'!!" 'lt40Llk14~~~10~~~~~~~~I~~~~4I~~~~~ji'I~0!ILVLLLU044kk,III44.~~40A>VJ~~4~~.04~~te4ik>ILelkJ~~(ilt1)~)II~>~~Ie~aatfe~lkIJL(JJf41s~~!!t!i(I"il~.Vs~lIJALfL(AJJttLkALftf'tifLeoLi.~~~>~~L~~~~~10~Ik.4~~~~~J~~~~L~~~~~1~I~I~i.~I~kouk0~~014444LOI10~14LUIIJIf14orJ0fieftLtguj4>f~iL.U:laUUIAL't 'uefILt>fIII(~4L~~~4>10~tktk>ALVIN ~0taovtkkuk>4~I444~4~katkko~~I~LI1J>40044~>~~1~~I~1~400II~~IILJL>i~LrLL0JJJkk>1I4Ii>AI~i0~II~~~II~LII~~~14JLLLJIIJ0AU01~LLLLILli~4~11IsoktILkkaJAt~'~)k><<LOA>4LaLOakIU~~I~~gJinni~}f~~0~~~~~~)11}~fet~~))~I~~U4Vkal>444OI~~Lt4okffkkkk4>40~UUaktLUrkkku4UJ~Ikkat~1114~o4~14katka1141vkutokOJke~~~~L}ke>kkiL+11'ltkvLUJJ0(<<UtileL>.~LLLOf~I);i"'"."'"'~~(~Ilf~~I~e~~~~~>iijjIi'fatti"~IVol>J(I~~ti0IirJ'0~>~LJ~~~~~~~~<<it0">tsIl>tI~~Q~~~s)fifi~I~~~~I~~~llif'~~~~~>~~III~6'iiiV~I5hR" 'I"I'I'!I[ijisl'II~~~III~I)~~~I'~)'f)fit())'I). ~~~~r~~II~f~Jile~I~IIIIIIIIittt)'fslIif((fs'f)'f'lj'" "iii~i:~~~~~~~~}'lisilt~I~~~~We)g'~~I~f}'i'tt~44'1s~1>J~iko~~~IUI4>~~UlVkt0a~LUI~~glut'IIL! It)tll"iaaf.f.Ji'I~~)~1~f04al(J~0~tIIAtkflLI~0~0~~~44444>0kk~~>Ak~LII~~~~~LL~4)>I~I4IQQ4[II~fIJ't'4'll'J'1.'f~~~))~~~I~i'iI'tij~~I~4~f~1~~~.)1~>4~~t)f0~~I~~~~lt'ftiatt0'q.f(}'!'I~~(~~I~140Its'L4~Ittj)Iftt)fit~st0(I(i(~Iate44~I4~I~~~4el!}J)tj))I;I~)~}~OLItkaa>Lt~"(Kfft'ULOkt>4/$4I0JJ~4~+IV144IJLJLIAtl"4,sts~AL}lkJ~LLvk1fJJ~I~tJ~044404JJ+rk~loLLL~t~~~Lf11If~~f(4~J~f~Itk~IkuLIJ'~~taiJJdi<<tk>4kkUU~JJ~IJJia>Lief}~I~su1I~sIII~AOJ44444~)ef4\0~~~~~L14440~~~10~I~I~~~~~~~~I~0f1~~44JOJ0Lt~~Iil~~~~ILL>4~I~I~LIL0~~~~I>~.~JI~~~1(}~~~Irk~4~alla4ski~llI~te~i1JIJI+4JJI~>~~1>1~I~~iill~r~~ItlI~S~ill!ii+I(lit4(ILr~~[ItI'e(sI~fj.'))~I~(ijll'(tffl(i) tt.Jdiiel}~lt)~~Ll'!iJjl(I! (Is(f'I:i'i'i' ~I~~I~II~~I~~I~~I~llt(liijfjtl(.lf.iLVIll~'iIl'}III i);;iiii:}~II~f~~~I>(~II~~Iit!Is)i'(IsjItIl}sf:IIJl~tl~~I~~I~~Jft(I)j)J 40114~~~~4>~0~La>44k4104.4>e~IJ~~I~tfefgfkJ~afMV.Mfft(f}) II0AO~LL>.~~UkLLLL~\<L1~1st~J)~4~IJJe~~)4~Jf~f~4~tii!I'Utt)l.i)tf.i44I[tl'jJ~4(toJ~st~>i<<~feio~~~I!!i~s.~~>i~Itii~Is'I~~~~lsIflipi,"i'iiIIiI~IIIII~II~~}SI~~IIIi~~I'if'I~~IsJ"ts~4It~~II~~~~~aa4oof~>~l~s(I1...Itl)Ilsake4LU1'jljlii}'fL'tt>tJs','t"t~~~~>OJ~I~~>4\1>~~1L'~~i~I~I:."."!lf!Iiiitfs'e1!Is.f~>)tiffiffy'.'"",:,!J'j fi~~i(I~~e!~eII~~~00~I~)I~I~~I~~)~~)~if~~)I!jest):!Blp~!3'gt~t!/fan'(klttI)I'lg!tlitk~~0444~OA,~(JJ~fffI~If1'.et~j-.~~~a>90~~~~e~IsI~~~f~~IIJ~~~~I~I'~~~~~it'II~ttt')i)j~~I~~~~~~~~I,~~~I'OI~JJ}4f~~f~~If'I0~~~~0~~~~~(I)iggteggff jfyI(~III~eiI)elf.)IJ!(IIll!Li'!I}LIIl':lJllll'iIf!!i'")fl~fPi[,'tf'If.tii jail~)'<<I}IPL('} ILtI~I~I~~tka~UlarI~~~1~~~~~4~feI)IHl<~IIi,sl~~iI~I}II@Ij)tflj(I'iij)j}lt ~I)~~))i'e.~~I~IL)teI~I~t~~I;"I)IIlt'sII}I~)~sI(li01IIi~I~I.~l~10~~IIlsjf(fiefJiLU~11)I~~i(it'i}~If;(fj)slfIIIJ uesuestion35Theresponseofcertainreactorcoolantsystemcomponents andtheirsupportstopostulated asymmetri0 LOCAloadsneedstobeaddressed inaccordance withNVREG-0609. ~Ra8onseTABLEIprovidesthestatusoftheevaluation ofcomponents, structures, andattachments totheRCSwhensub)ected toasymmetric loads.Wheretheevaluation hasbeencompleted, theresultshavebeenshownacceptable.
TABLE1:Assessment ofStructures/Asymmetric Loads~~OiComponent/Structure Assessment StatusEvaluation BasisReference CommentsReactorPressureVessel'team Generators ReactorCoolantPumpsReactorVesselSupports~SteamGenerator SupportsCompletePlantSpecificAnalysisFSAR3.9.1.4'CompleteReactorCoolantPumpSupportsBiological ShieldWellFSAR6.2.1.2SteamGen.,RCPumpFSAR6.2.1.2Compartment WallRCSMainPipingCompletePlantSpecificAnalysis TABLE1:Assessment ofStructures/Asymmetric Loads~~IOComponent/Structure Assessment StatusEvaluation BasisReference CommentsECCSPiping-InProgress:.PlantSpecificFSAR3.9.1.4.5 AnalysisPreliminary analysespredictacceptable results.FSARAmendment Nov.1981.ECCSPipingSupports&Restraints InProgressCEDMSInProgressFSAR3.9.1.4.3 ReactorInternals FuelInProgressInProgressFSAR3.7.3.14FSAR3.9.2.5AnalysisnearlycompleteResultstodateareacceptable. Analysesexpectedtobecompleted 3/82. e i.s'IisttII~~~Il ST.LUCIE2CEDM~GEONETRYANDMOMENTCAPABILITY SIMILARTOPALOVERDEaPIPEBREAK+SSEHEADVELOCITIES LOWERTHANTHOSEFORPALOVERDESINCEPALOVERDEHASBEENDEMONSTRATED ACCEPTABLE, ST.LUCIE2CEDMAREEXPECTEDTOBEDEMONSTRATED TOBEACCEPTABLE ~ANALYSISISEXPECTEDTOBECOMPLETED SYSEPTEMBER 1,1983,
4ooPihSKQ)-H)C.,KO-pggzzc~BLtAtlTule(go%P4Sic>~~4Llii4lij)'DOEDCO0C)p~~le.exu>ooChOLvCX.Ego~~LEROMBgt~fr'-yp9,>(STY
ST.LUCIE2ECCSPIPING'PRELIMINARY CALCULATIONS INDICATETHATLINESlAAND1BARETHEMOSTSEVERELYLOADED~COMPARISON OF'INPUTMOTIONSWITHOTHERECCSLINESPREVIOUSLY ANALYZEDINDICATETHAT1)PLASTICANALYSISISREQUIRED. 2)RESULTSAREANTICIPATED TODEMONSTRATE ACCEPTABILITY.~ANALYSIS. ISEXPECTEDTOBECOMPLETED BYSEPTEMBER 30,1981
fAca'fcu1atfon pftheref'oreatfon oftheSt.lucfe2RCp$pfngKensubjected totgteaexftramrionenta11madbySectionIll.Nb3652waspilaf'omed. The,bteached mteria1sh~sthevesu1tsofthat,ca1culatkon.
~~r~.r~I/III.~ICI'o+~ges&r~r~~~Q1l\~~IIIOy~~I~~'~/rrr~+SUCTIONiL80HTOTALCISP.RTHIGGLESECTION 0 3.9.1.4Consideration fortheEvaluation oftheFaultedCondition 3.9.1.4.1 SeismicCategoryINSSSItems'hemajorcomponents ofthereactor'coolantsystem(RCS)aredesignedtowithstand theforcesassociated withthedesignbasispipebreaksdiscussed $nSection3.6.2,incombination withtheforcesassociated withtheSafeShutdownEarthquake andnormaloperating conditions. SeeSections3.9.1.1and3.9.3r~r-discussion ofloadingcombinations. Theforcesassociated with,thepostulated pipebreaksincludepipethrustforcesatthebreaklocation, resultant subcompartment differential pressurization forces,andinternalasymmetric hydraulic forcesactingonthereactorinternals. Thepipebreakthrustforcesaredetermined bythemethodsdiscussed inSection3.6.2.6.1.Thetimeandspatially dependent asymmetric hydraulic loadsactingonthereactorinternals aredetermined bythemethodsdiscussed inSection3,9.2.5.0Adynamicnon-linear timehistoryanalysiswasperformed togeneratereactorvesselloadsandmotionsduetotheforcesassociated withthepartialareapipebreaksatthereactorinletandoutletnozzlesandthesteamgenerator inletnozzles(SeeSection3.6.2.1.1.3). TheanalysisusedtheDAGScodetoperformadirectintegration ofthecoupledequations ofmotion,inwhichthesystemcharacteristics areupdatedateachintegration steptoaccountforlocalnon-linearities., Thesenon-linearities includeinitialgapsandpreloadsatsystemrestraints orlocalplasticresponsewhichmayoccurfollowing apipebreak.TheFORCEcodepost-processes DAGSresponseoutputinordertoprovidetheloadsandmotionsatpre-specified locations.- Theanalysisusedalumpedparameter modelincluding detailsofthereactorvesselandsupports, majorconnected pipingandcomponents,and thereactorinternals (Figures3.9-19through3.9-22).Thismathematical modelprovidesathree-dimensional representation ofthedynamicresponseoftheRCSmajorcomponents subjected .tothesimultaneous timevaryingpipebreakforcingfunctions. Thisaedelisdefinedmathematically intermsoftheICESSTRUDLIIcomputercodetodevelopappropriate matricesfortheelementsofthethree-dimensional spaceframemodel. TheresultsgeneratereactorvesselandsupportloadsandtimehistorymotionsofACSpipingat,ECCSpipingjuncturepoints,andRVshellmotionsatinternals andCEDNsupportpoints.Thesemotionsprovideinputexcitations.for thepipebreakanalysesofthereactorinternals, fuel,CEAS,CEDARSandECCSpiping.Thecomponent andsupportloadsfortheSteamGenerator, ReactorCoolantPump,andPressurizer weredetermined byequivalent staticanalyses. Aloadfactorequalto2.0onthecalculated thrust,jetimpingement, andsubcompartment pressureloadsisemployedtoaccountforthedynamicresponseofthestructure. ThemodelemployedforstaticanalysiisshowninFigure3.9-18Thesystemorsubsystem analysisusedtoestablish, orconfirm,loadswhich~~~~arespecified forthedesignofcomponents andsupportsisperformed onanelasticbasis.Mhenanelasticsystemanalysisisemployedtoestablish theloadswhichactoncomponents andsupports, elasticstressanalysismethodsarealsoused$nthedesigncalculations toevaluatetheeffectsoftheloadsonthecomponents andsupports. Inparticular, inelastic methodssuchasplasticinstability andlimitanalysismethods,asdefinedinSectionIIIoftheASHECode,arenotusedinconjunction withanelasticsystemanalysis. Analysesofthereactorcoolantsystemcomponents (reactorvessel,steamgenerator, reactorcoolantpump,pressuriier, .andreactorcoolantpiping)andtheirsupportshavebeenperformed inaccordance withthemethodsdescribed above.Foreachcomponent andsupportmember,thecalculated loads,incombination withtheseismicloads,arebelowtheloadsspecified fordesign,andthestresses(pipingrupture4ncombination withSSE)arebelowthoseallowedbySectionIIIoftheASNEBKPVcodeforServicelevel0. . 3.9.1.4.2 ReactorInternals SeeSections3.7.3.14and3.9.2.5'.9.1.4.3 ControlElementDriveMechanisms (CEDMs)Thecapability ofthecontrolelementdrivemechanisms {CEDMs)towithstand theeffectsofdesignbasispipebreaksincombination withsafeshutdownseismic(SSE)loadingsisevaluated byanalysis. Thisdynamicloadingisexperienced bytheCEDNsviathemotionofthereactorvesselhead.Thereactorvesselhead/CEON motionsduetopiperuptureandseismicloadingsarecalculated usingthemodelsdescribed insection3.9.1.4.1.
3.9.1.4.3. IMethodofAnalysis~~~~~~PreviousstudiesonotherCFplants(Reference I)have'indicated thatthereactorvesselasyornetric loadaspectsofahypothetical guillotine breakproducemotionswhichresultinstresseswhichexceedtheASIDECode'evel 0allowable stressesforelasticcalculation. Elasticplasticdynamicanalyseshavedemonstrated forthoseplantsthatthestructural. integrity OftheCEDNsisnotimpairedbytheseloadingsandthattheASIDECodeLevelDallowable limitsforelasticplasticcalculation arenotexceeded. Inordertodemonstrate that*theintegrity oftheCEDHsarenotimpairedbypipebreakandSSEloads,elastic-plastic dynamicanalysesareperformed. Intheelasticplasticanalysis, themotionsoftheRVareinputtothefiniteelementmodeloftheCEDN.Momentsanddeformation arecomputedasafunctionoftimeduringtheevent.Themomenttocauseplasticinstability ofthemostseverelyloadedsectioniscomputedbyelasticplasticstaticanalysis. Theactualmomentsduringthedynamiceventarethencomparedtotheplasticinstability momentinordertoevaluateintegrity. 3.9.1.4.3.2 Models,,DynamicanalysisfiniteelementmodelsarepreparedforCEDMsnearthecenteroftheRVheadandneartheouteredge.Themodelsaremadeupofbeamtypeelements., Yhemodelofthecalculation oftheplasticinsta6ility loadismadeupofshellelementsinordertoconsidertheeffectsofovalization ofthecylindrical section.ThenozzleattheRVheadisusuallythemostseverelyloadedsection.3.9.l.4.3.3 MaterialProperties Recentlythematerialproperties necessary'or elasticplasticanalysishavebeendeveloped bytheCEMetallurigical andMaterials Laboratory. Yheseproperties areavailable forallofthematerials atallofthetemperatures thattheCEONnormallyexperiences. ~~~~~.9.1.4.3.4 Loading.TheeffectsofpipebreakandSSEaretransmitted totheCEDNbythe~motionofthereactorvesselheadresulting fromtheanalysisofSection3:9.1.4.1..
Aresponsespectrumiscalculated forthemotionofthereactorvessel~~headresulting fromtheprimarysystemdynamicanalysisforpipebreakloads.ThisresponsespectrumiscombinedwiththeSSEresponsespectrum!bytakingthesquarerootofthesumofthesquares(RSS)oftheordinates ofthetwospectra.Anartificial timehistoryofmotionisthendeveloped fromthecombinedacceleration spectrumandusedastheinputtothedynamicGEOManalysis. Acceleration spectraresulting frompiperuptureattheRVinletnozzle,theRVoutletnozzle,andatthesteamgenerator inletnozzlearecomparedinordertodetermine themostsevereloadingcondition. Ifoneloadingcondition canbeidentified asthemostseverecase,onlythatloadingcondition isusedinthedynamicCEDHanalysis. Otherloadingsarealsoused4ftheyarenotclearlyenveloped bythemostsevereone.3.9.1.4.3.5 ResponseThemodels,materialproperties andRYheadmotionhistoryareusedintheNRCfiniteelementprogramfotanalysis. TheANSYSprogrammayalsobeused.Theresultsofthedynamicanalysisincludemoments,strains,stressesanddeformation asafunctionoftime.Theseresultsarepresented graphically forcriticalregionsoftheCEDM.Thesamematerialproperties areusedinthestaticanalysisfortheplasticinstability moment.3.9.1.4.3.6 Evaluation 3.9.1.4,3.6.1 Acceptance criteriaTheCEOMsarenotrequiredtooperateforsafeshutdownafteralossofcoolanteventresulting fromthedesignbasispipebreaks.InordertocomplywithexistingECCSanalysismethods,however,theintegrity oftheCEDMsmustbemaintained andleakagemustbeprevented. TheASMEBoilerandPressureVesselCodeSectionIIIDivision1AppendixFlistsanumberofcHteriawhichassurethatthe.pressureboundarywillnotbeviolated. Thesecriteriaincludeaninstability limitforcomparison toelasticplasticanalysisresults.Theintegrity ofthepressureboundaryisassured$ftheappliedloadsdonotexceed70"oftheplasticinstability 1oad.
3.9.1.4.3.6.2 Evaluation ofIntegrity Theresultsofeachdynamicanalysisarecomparedtotheresultsofthestaticplasticinstability momentanalysis. Integrity oftheCEDMsisazuredifthe,acceptance criteriaaresatisfied. BasedonReference (1)studies,itisexpectedthatresultsoftheseanalyseswilldemonstrate theintegrity oftheCEDMs.Resultswillbesubmitted inaNovember, 1981amendment. REFERENCES 1."ReactorCoolantSystemAsymmetric LoadsEvaluation ProgramFinalReport",Combustion Engineering, Inc.,July1,1980.3.9.1.4.4 ~~Thecomponents notcoveredbytheASMECodebutwhicharerelatedtoplantsafetyinclude:(1)fuel,(2)nonpressureboundaryportionsofcontrolelementdrivemechanisms (CEDMs)and(3)controlelementassemblies (CEAs).Eachofthesecomponents isdesignedinaccordance withspecificcriteriatoinsuretheiroperability asitrelatestosafety.
3.9,1.4.5 EMERGENCY CORECOOLINGSYSTEH+ECCS) PIPINGANDSUPPORTSThecapability oftheemergency corecoolingsystem(ECCS)pipingandsupportstowithstand theeffectsofdesignbasispipebreaksareevaluated byanalysis. 'Thecapability oftheECCSpipingandsupportstowithstand thecombinedeffectsofpipebreakandsafeshutdownseismic(SSE)loadingsarealsoevaluated. Pipe'ruptureloadingsareexperienced bytheECCSpipingviathemotionoftheprimarysystempiping,andtheSSEloadingsareexperienced bytheECCSpipingviathemotionoftheprimarysystempipingandtheECCSpipingsupports. Theprimarypipingmotionsduetopiperuptureloadingsarecalculated usingthe'modelsdescribed insection3.9.1.4.1. Theseismicloadingsareprovidedfromthecodestress'nalysis oftheECCSlines.3.9.1.4.5. lMethodofAna~lsisPreviousstudiesonotherCEplants(Reference 1)haveindicated thatthemotion~~~~~~ftheprimarysystempipingattheECCSinjection nozzleduetopiperuptureloadscontainsfrequencies whichareintherangeofthenaturalfrequencies oftheECCSpiping..TheECCSpipingresponse, therefore, issensitive tosmallgeometryandinputfrequency changes.Becauseofthissensitivity theanalysisofapipesystemmayrequireeitherelasticorelasticplasticanalysis. EachECCSpipelinetobeevaluated willbeanalyzedbytraditional dynamicelasticanalysisandevaluated according toappropriate elasticstresslimitsforASHELevelBandLevel0conditions. Forpipelines whereLevel0limitsarenotsatisfied, adetailedelasticplasticanalysistodemonstrate integrity andfunctionability ofthepipingwillbeperformed. 3.9.1.4.5.2 NodelsTheelastic@namicanalysiswillbeperformed byusingdistributed massmodelsandtheappropriate ECCSnozzlemotionhistory.TheNRCfiniteelementprogramillbeusedfortheelasticdynamicanalysisforpiperuptureloads.Theprogramwilldetermine themotionhistoryoftheECCSpipelineandtheloadsinthesupportsbyperforming thetimehistoryanalysis. Elasticplasticdynamicanalysis, ifrequired, will.alsobeperformed withtheHARCfiniteelementprogram.Adetailedanalysisofatypicalpipeelbowandatypicalstraightsectionwillbeperformed todetermine themomentcarryingcapability, orplasticinstability moment,oftheelbowandpipe.Thisanalysisalsoprovidesanelasticplasticstiffness oftheelbowtobe.usedinthepipelinedynamicanalysis. Thefiniteelementmodelusedfortheelasticplasticdynamicanalysisisriadeupofpipeelementswithmodifiedstiffness atelbowstoincorporate theovalization effectsobservedinthedetailedplasticelbowanalyses. Thestiffness andloadcarryingcapability ofthesupportsinputtotheanalysisiscomputedbyelasticorelasticplasticanalysis. 3.9.1.4.5. 3MaterialsThematerialusedforthe'ECCSpipingisASNESA376GRT316stainless steel.'Theelasticproperties requiredforanalysiswillbetakendirectlyfromtheASHECode,Theelasticplasticproperties willbeestablished byscalingstressstraindataavailable frompreviousCEteststothespecified codeyieldand1ultimatestressvalues.43.9.1.4.5.4~LoadinTheeffectsofprimary,systempipebreaksaretransmitted totheECCSpipingbythemotionoftheprimarypiping.Fortheevaluation ofpipebreakloads"only,thedisplacement timehistoryoftheprimarypiping(attheECCS'injection nozzle)MillbeapplieddirectlytoeachdynamicECCSpipelineanalysis. Thedisplacement timehistoryisobtainedfromadynamicanalysisofthereactorcoolantsystemforPostulated pipebreaksatthevesselinlet,outletnozzlesandsteamgenerator inletnozzle.'"'~~~3.9.1.4.5.5 ~ResonseThenaturalfrequency ofallECCSpipelines willbedetermined. TheresultsofthePrimarysystemdynamicanalysisforpiperuptureat;thereactorvesselinletnozzleMillbecomparedtothe.pipelinefrequencies todetermine whichhotleginjection
~~~~~~andwhichintactcoldleginjection lineisloadedmostseverely. Themostverely'loade4 pipelines areanalyzedforcoldlegpiperuptureloads.Theresul'tsoftheprimarysystemdynamicanalysisforpiperuptureatthereactorvessel.outletnozzleandsteamgenerator inletnozzlewillalsobecomparedtothepipelibe.frequencies. Thiswillenabledetermination ofthecoldleginjection linewhichisloade4mostseverely. Themostseverelyloadedcoldleginjection lineandtheintacthotleg'injection linewillbeana1yzedforthemostseverehotlegpiperuptureloads.Theanalyseswillresultinmotionsandstressesinthepipingan4pipesupportloads.Elastic-plastic analyseswillinaddition, resultinplasticstrainsanddeformation inthepipeandelbows.3.9.1.4.5.6 Evaluation 9.1.4.5.6.1 Acceptance CriteriaTheintegrity andfunctionability oftheECCSpipingmustbedemonstrated. Integrity andfunctionability areassurediftheLevel8(upsetcondition) limitsoftheASMEBoilerandpressure.Yessel CodeSectionIII,DivisionI,arenotexceeded. IftheLevel8-limitsareexcee4ed, thenLevelDorfaultedlimitsmaybeusedtodemonstrate that'ntegrity is.maintained. Functionability maybeassuredbydemonstrating thatthedeformations ofthepipingareacceptable. 3.9.1.4.5.6.2 Evaluation ofIntegrity andFunctionability Theevaluation oftheeffectsofpipebreakloadsandSSE.loadscombinedwhenbothloadingsproduceonlyelasticstressesisbythecomparison ofthesquarerootofthesumofthesquaresofthestressescausedbythetwoloadingswiththeelasticstressallowable. TheelasticdynamicstressresultswillbecomparedtotheLevel8stress'imits ftheASMECode.Intheeventthatthesestresslimitsarenotsatisfied, Levellimitswillbecomparedfordemonstration ofintegrity. IfLevelDelasticlimitsaremet,functionability willbeevaluated byassessing theextentofdeformation ofthepipe. 0 Theevaluation oftheeffectsofpipebreakloadsandSSEloadscombinedinthecasewheresignificant plasticity existsinthepipeisconducted bycomputing thesumofthestrainsduetothetwoloa'dings andcomparing thesumtothestrainat.70%oftheplasticinstability load.Integrity isdemonstrated iftheappliedmaximummomentislessthan70%oftheplasticinstability momentorcorrespondingly iftheappliedstrainislessthanthestrainat70Koftheplasticinstability moment.Functionability willbeevaluated bycomparing theextentofdeformation atthemaximumloadingtothedeformation requiredtosignificantly affectECCS1Iflow.Resultswillbesubmitted inaNovemberl981amendment. REFERENCES 1."ReactorCoolantSystemAsymmetric LoadsEvaluation ProgramFinalReport,Combustion Engineering, Inc.Duly1,1980. ehl 3.S.2.5~DnamicSstemAnalsisoftheReactorInternals UnderFaultedConditions ynamicanalysesareperformed todetermine blowdownloadsandstructural responses ofthereactorinternals andfueltopostu1ated LOCAloadingsandtoverifytheadequacyoftheirdesign.Abriefdescription ofthesemethodsisprovidedbelow.TheLOCAmaximumstressintensities inthereactorinternals aredet'ermined usingthecombinations oflateralandverticalLOCAtime-dependent loadingswhichresultinmaximumstressintensities. ThemaximumLOCAstressesandthemaximumstressesresulting fromtheSSEarethencombinedusingtherootsumsquaremethodtoobtainthetotalstressintensities. 3.9.2.5.1 DnamicAnalsisForcinFunctions Thehydrodynamic forcingfunctions duringapostulated LOCAresultfromtransient
- pressure, flowrate,anddensitydistributions throughout theprimaryreactorcoolantsystem.3.9.2.5.1.1 HdraulicPressureLoadsThetransient
- pressure, flowrateanddensitydistributions arecomputedforthesubcooIed andsaturated portionsoftheblowdownperiodduringaLOCA.ecomputercodeutilizedisbasedonanode-flowpath conceptinwhichntrolvolumes(nodes)areconnected inanydesiredmannerbyflowareas(flowpaths).
Acomplexnode-flow pathnetworkisusedtomodeltheReactorCoolantSystem{RCS).Themodelingprocedure hasbeencomparedtoalargescaleexperimental blowdowntestwithexcellent agreement. Thelawsofconservation ofmass,energyandmomentumalongwitharepre-sentation oftheequationofstatearesolvedsimultaneously. Thehydraulic transient ofthereactoriscoupledtothethermalresponseofthecorebyanalytically solving.theone-dimensional radialheatconduction equationineachcorenode.Pre-blowdown steadystateconditions intheRCSareestablished throughtheuseofspecified inputquantities. Theblowdownloadsmodelusesanonequilibrium criticalflowcorrelation forcomputing thesubcooled andsaturated criticalfluiddischarge throughthebreak.3.9.2.5.1.2 ~DLdAbreakintheprimarycoolantsystemwillresultinlargelocalpressure'ifferences across'variousreactorvesselinternalcomponents andanaccel-eration.of thelocalfluidvelocityinvariousregions.Theacceleration ofthelocalfluidvelocitycanresultinhighercomponent dragloadsthanoccurduringsteadystatereactoroperation. e ~gh.9.'2.5.1.3 Core'oads hetotalinstantaneous loadacrossthecoreisgivenbythesumnation ofthepressureanddragforcesactingparalleltotheflow.Theloadsareobtainedusingacontrolvolumeapproachutilizing anintegrated fluidmomentumequation. Thedragforcesarerepresented bythefluidshearterminthisequationandconsistofbothfrictional andformdrag.3.9.2.5;1.4 CEAShroudLoadsDuringnormaloperation, thereactorcoolantflowaxiallythroughthecoreintotheupperguidestructure. Hithintheupperguidestructure, thecoolantflowchangesdirection sothatitexitsradiallythroughthehotlegnozzles.Duringat.OCA,thetransverse flowofthecoolantacrosstheCEAshroudgivesrisetoloadswhichinducedeflections intheseshrouds.Thetransverse dragforcesweredetermined fromflowmodelexperiments whichweregeometrically and'dynamically similartothefull-scale upperguidestructure design.Themeasuredexperimental modelforceswerescaled-up torepresent theactualforcesontheupperguidestructure usingthecomputedtransient flowrateanddensityinformation. 3.9.2.5.1.5 ResultsofBlowdownLoadsAnalsisalysiswasperformed ofapostulated pipebreakatthereactorvesselinletozzie.Thetransient pressuredifferences throughout thevesselareevaluated andusedinthestructural responsecalculation described below.Thepressuredifference acrossthecoreisalsoevaluated forthebreak.Apostulated pipebreakoccurring atthereactorvesseloutletnozzlewasalsoanalyzed. Thepressuredifference throughout thevesseliscalculated. Thedecompression intheannulusissyometric earlyinthetransient becausethepressurewavemusttiavelthroughthecorebarrelinternals toreachthelowerplenumfromwherethewavepropagates uniformly upthroughthedowncomer. The.axialpressurediffe'rence acrossthecorewasalsocalculated. Apostulated pipebreak.occurring atthesteamgenerator inletnozzlewasalsoanalyzed. Thepressuredifference throughout thereactorvesselwascalculated. Theaxialpressuredifference acrossthecorewasalsocalculated.
39.2.5.2Structural ResonseAnalsesI-dynamicLOCAanalysesofthereactorinternals andcoredetermine theshelbeamandrigidbodymotionsoftheinternals, usingestablished computerized structural responsetechniques. Theanalysesconsistbasically ofthreepartsiinthefirstpart,thetime-dependent shellresponseofthecoresupportbarretothetransient loadingiscalculated usingthefinite-element computercode,.ASHSD. Thesecondpartoftheanalysisevaluates thebucklingpotential ofthecoresupportbarrelforhog]egfreakconditions usingthefinite-element computercode,SANNSOR-DYNASOR<1'~'2>. Inthethirdpart,thenonlinear dynamictimehistoryresponses ofthereactorinternals andcoretoverticalandhor-5zontalloadsresulting fromhotandcoldlegbreaksaredetermined withtheCESHOCKcode,whichisfurtherdescribed inReference $10).3.9.2.5.2.1 ShellResonseoftheCoreSuortBarrelAcoldlegbreakcausesapressuretransient onthecoresupportbarrelthatvariescircumferentially aswellaslongitudinally. TheASHSDfinite-element computercodeisusedtoanalyzethe.shellresponseoftheCSBtothepressuretransient fromacoldlegbreak.TheCSBismodeledasaseriesofshellelementsjoinedattheirnodalpointclesasshowninFigure3.9-1.Thelengthoftheelementsineachmodelisctedtobeafractionoftheshellattenuation length.Adampedequationof.~wtion isformulated foreachdegreeoffreedomofthesystem.Fourdegreesoffreedom,radialdisplacement, circumferential displace-ment,verticaldisplacement, andmeridional rotationareconsidered intheanalysis. Thedifferential equations ofmotionaresolvednumerically usingastep-by-step integration procedure. Thecircumferential variation ofthepressuretime-history isconsidered byrepresenting thepressureasaFourierexpansion. Thepressureateachelevation $nthemodelisdetermined bylinearinterpolation. Thus,.acompletespatialtimeloaddistribution compatible withtheASHSDcomputerprogramis.,obtained. Eachloadharmonicisconsidered separately byASHSD.Theresultsforeachhar-nenicarethenaddedtoobtainthenodaldisplacements, resultant shellforcesandshellstressesasafunctionoftime.V3.9.2.5.2.2-DnamicStabilitAnalsisofCSB'Ahotlegbreakcausesnetexternalradialpressureon.thecoie'supportbarrel.Astability analysisoftheCSBisperformed usingthefinite-element computercode,SANNSOR-DYNASOR. Theeffectsofaninitially imperfect shapebasedonactualout-of-roundness measurements areincludedintheanalysis. eCSBismodeledasaseriesofshellelements, es.showninFigure3.9-2.iffnessandmassmatricesforthebarrelaregenerated utilizing theSAMMSORpaltofthecode.Theequations ofmotionoftheshellaresolvedinDYNASORusingtheHouboltnumerical procedure.
ninitialimperfection isappliedtothecoresupportbarrelbymeansofapseu-loadforeachcircumferential harmonicconsidered. Theactualpressuretran-entloadinggenerated bytheoutletbreakisuniformcircumferentially butvarieslongitudinally. Theresponseisobtainedforeachoftheimperfection harmonics. AppendixF,SectionIIIoftheASMEBoilerandPressureYesselCoderequiresthatpermissible dynamicexternalpressureloadsbelimitedto75Kofthedynamicinstabi15ty pressureloads,oralternately, thedynamicinstability loadsmvstbegreaterthan1.33timestheactualloads.Consequently, thisanalysisisrepeatedwiththeimperfection appliedinthecriticalharmonicandthepressureloadinpisicrasedbeyond1.33timestheactualloadsinordertodemonstrate thestabiiityottiecoresupportbarrel.'0~~3.9.2.5.2.3 ~Di2I2tII't2tIttDynamicanalysesare'performed todetermine thestructural responseofthereactorinternals topostulated asyrhnetric LOCAloading{including reactorvesselmotioneffects)andtoverifytheadequacyoftheirstructural design.Thepostulated pipebreaksresultinhorizontal andverticalforcingfunctions whichcausetheinternals torespondtobothbeamandshellmodes.Detailedstructural mathematical modelsofthereactorinternals aredeveloped basedonthegeometrical design.Thesemodelsareconstructed intermsoflumpedssesconnected bybeamorbarelements, andinclvdenonlinear effectssuchaspactingandfriction. Themodelsaredeveloped forinputtotheCESHOCKcodeichsolvesthedifferential equations ofmotionforlumpedparameter modelsbyadirectstep-by-step numerical integration procedure. Themodeldefinitions employtheprocedures established inCombustion Engineering TopicalReportCENPD-42and,inadditiogincludehydrodynamic couplingeffectsandadetailedrepresentation ofthecoresupportbarrel toupperguidestructure toreactorvesselinterfaces. Separatemodelsareformulated forthehorizontal {fig.3.9-3)andvertical{fig.3.9-4)directions tomoreefficiently accountforstructural andresponsedifferences inthosedirections. Themodelsforthe'or'izontal directions aredeveloped intermsoflumpedmassesconnected bybeamelements. Thestiffness valuesforthebeamelementsaregen-.erallyevaluated usingbeamcharacteristic equations. Thelumped-mass weightsarebaseduponthemassdistribution oftheinternals structvres. Localmassessuch.asplatesandsnubberblocksareincludedatappropriate nodes;--The effect"of thesurrounding wateronthedynamicsoftheinternals forhorizontal motionisaccounted forbyhydrodynamically couplingthecomponents separated byanarrowannulus-thevessel,corebarrel,coreshroud,lowersupportstructure
- cylinder, andupperguidestructure cylinder.
Theclearance betweenthecoresupportbarrelandthe.reactorvesselsnubbersaswellastheclearance betweenth'ecoreshroudguidelugsandthefuelalignment plateissimulated bynonlinear springswhichaccountfortheloadsgenerated shouldimpacting occur.Arepresentation ofthecoreisinreisincludedintheinternals modelswhichprovidesappropriate inertialandimpactfeedbackeffectsontheinternals response. ~~~~~~~~~~~~~~~Theverticalmodelstiffness valuesaregenerally calculated usingbarcharacter-sticeqvations. Nonlinear. couplings are)nclvdedbetweencomponents toaccountorstructural interactions suchasthosebetweenthefuelandcoresupportplate>>('ndbetweenthecoresupportbarrelandupperguidestructure upperflanges.pre-1oads,whicharecausedbythecombinedactionofappliedexternalforces,deadWeights,andholddowns arealsoincluded. frictionelementsareusedtosimulatethecouplingbetween,thefuelrodsandspacergrids. i~'<<"~~,jsy~+I~eg~>~~ ~~~~~~-~.~g~~~~~Q~~P} ~~~~sh~s'~> 4"I>M~AIsIAreducedmodelofthereactorvesselinternals (Fig.3.9-5)isdeveloped for',incorporation intothereactorcoolantsystemmodel.Thedetailednonlinear '.,orizontal andverticalinternals (pluscore)modelsarecondensed andcombinedntoathree-dimensi'onal modelcompatible withthereactorcoolantsystemmodelandthecomputerprogramsthroughwhichthelattermodelisanalyzed. Thepurposeofthisreducedinternals modelistoaccountvrtheeffectsoftheinternalLOCAloadsonthereactorvesselsupportmotionandthestructural loadinginteraction betweentheinternals andthe~essel.Thereducedinternals modelisdeveloped soas:toproducereactorvesselsupportmotionsandloadingsequivalent tothoseproducedbythedetailedinternals models.Thedynamicresponses ofthereactorinternals tothepostulated pipebreaksaredetermined withtheCESHOCKcode utilizing thedetailedmodels. Horizontal andver-ticalanalysesareperformed forbothhotandcoldlegbreakstodetermine the1ateralandaxialresponses oftheinternals tothesimultaneous internalfluidforcesandvesselmotionexcitation. Theverticalexcitation oftheinternals iscalculated bytheLOAD2computercodeusingthecontrolvolumemethod.Inthismethod,thereactorinternals aredividedintovolumescontaining bothstructure andfluidorstructure alone.'he momentumequationisthenappliedtoeachvolume,andaresultant force.iscalculated whichisdistributed overthestructural nodeswithinthevolume.Thismethodtakesintoconsideration
- pressure, fluidfriction, momentumchanges,andgravitational'forces actingoneachvolume.Theresulting loadtimehistories areinaformconsistent orCESHOCKcodeinput.ordertoachieveaninitial(priortothepipebreak)equilibrium, theinitialstaticdeflections and'apsarecalculated.
Theresulting initialconditions and'loadtimehistories areinputtotheCESHOCKcodeandthedynamicresponseofthemodeliscalculated. Thehorizontal inputexcitations resulting fromacoldlegbreakarethecoresupportbarrelforcetimehistoryandthevesselmotiontimehistorydetermined fromthereactorcoolantsystemanalysis. Thecoresupportbarrelforcesareobtainedbyrepresenting theasymmetric pressuredistribution timehistoryasaFourierexpan-.sion.Thetwoterms(sineandcose)whichexcitethebeammodeofvibration -are-thenintegrated overthecoresupportbarrelandtransformed intonodalforcetimehistories. Thehorizontal inputexcitations resulting fromahot1egbreakaretheCEAshroudcrossflow loadtimehistories andthevesselmotiontimehistorydetermined fromthereactorcoolantsystemanalysis. Theforcesappliedtotheshroudmasspointsaredetermined directlyfromtheblowdownpressuretimehistoryandincludethe'dragforceandforcesduetothepressuredifferential ontheshrouds.'heresultsfromtheseanalysesconsistoftime-dependent memberforces,andnodaldisplacements, velocities andaccelerations. Theloadanddisplacement responses areusedinthedetailedstressanalysesoftheinternals. Preliminary resultsofreactorinternals analysesindicate, onaloadcomparison basis.thattheadequacyofthestructural designoftheinternals willbeconfirmed thedetailedstressanalyses. Resultsofthestressanalysiswillbesubmitted alateramendment inDecember1981.( ~II ~~~~~~31."LOAD2-AcomputerCodetoCalculate VerticalHydraulic LoadsonReactorInternals UsingCEFLASH-4B DataAsInput",Calculation No.79-STA-003, G.Garner,August24,1979. 0e Qy+(Q'l7A'L2-PSAR 3!9.5.3~DesinLoadinCataorionThedesignloadingconditions arecategorized below:3.9.5.3al Normal'perating andUpsetThenormalandupsetcategoryincludesthecombinations ofdesignloadingsconsisting ofnormaloperating temperature andpressuredifferentials, loadsduetoflow,weights,reactions, superimposed loads,vibration, shockloadsincluding operating barisearthquake, andtransient loadsnotre-quiringshutdown. 3.9.5.3.2 Faulted,CThefaultedcategoryconsistsofthemechanical loadingcombinations nfSubsection 3,9.5.3.1 withtheexception thatthesafeshutdownearthquake (SSE)(inpiaceoftheoperating basisearthquake) andtheloadsresulting frantheLoss-of-coolant accident(LOCA)areincluded. 3.9.5.43.9.5.4.1 'eactorXnternaLs Thestresslimitstowhichthereactorinternals aredesignedarelistedinTable3.9-14.Noemergency condition hasbeenidentified fortheapplicable components, therefore, noappropriate stresscriteriaareprovided. X'g~8~~psr~g~atagoziae-end~C .areeinThemaximumstressintensities inthereactorinternalcomponents arede-terminedutilizing themostconservative combinations ofthelateraland'ertical LOCAtime-dependent loadingsinthestructural analysis. These~maximumstressesand'themaximumstressesresulting fromtheSSEarethencombinedabsoluteLy toobtainthetotalstress.intensities. b)Toproperlyperformtheirfunctions, thereactorinternalstructures'are designedtomeetthedeformation limitslistedbelow:aUnderdesignloadingsplusoperating basisearthquake forces,de-flectionislimitedsothatthecontrolelementassemblies (CEAs)canfunctionandadequatecorecoolingispreserved. IUndernormal;operating
- loadings, plusSSEforces,pluspipe'ruptureloadingsresulting franabreakequivalent insizetothelargestkineconnected totheReactorCoolantSystempiping,deflections arelimited'o thatthecoreisheldinplace,adequatecorecool-ingispreserved, andaLLCEAscanbeinserted.
Thosedeftectinns whichwouldinfluence CEAmovementarelimitedtolessthan80per-centofthedeflections requiredtopreventCEAinsertion. 3.9-54
Reactorinternals aredesignedaccording toSubsection NGoftheASMECode,SectionIII,withtheexception ofstampingandacodestressreport. 0 4~e~~~~~~7/I5i!IS'CS7gJS>AYof~0~~<</55n..(~~9%saon~0~l6U/LpCow5uorat8rrr~lWw//A~~~~~~~doJ~/~t~eeeee1be~~~e0'~~~~
i~4LOOON9/220:22/49zs20I32~~~~8W&A 0 h'VSf&ZSIS p+s~oaJVPPMGVlOEQc,Tv'YLWP6+Hf-~PPDD5P<rme-j7'ti2.CDt&5)L.~g~'PGngiyfh'rfoup5NVo~~I9L16'NRE+7 pjitr~avion'~'.865clelIo'itClIII'zI7<<ya-f'l1S7loll67l(2,ill'N'Ojlg8Ilgllgl~loglJ4PIll'f5(00IffloJ(5Ip~ygQ7QoL~(0~/g~o&LY)l2~vessels5&/oR75eggj'5ccREVE55L.L~~$7<7co58MGCh'ggtCGNARLf'uEL.\Ot~4'0Igf<<2C'If$-65'7'g$6/srss7fte,oRE'H<o~O Z7jolO'-qgps'upt'~g&wgRsufp~Slurer8<>~$~fCYME<<LouER'Sing= g~igCygI&PE~l2g2~P/uddMS~~iJGUwW~~~iA'sacr+-%~4).n~/gZpfg~~-zocAAoJeC~s~o~~ft
441.s46.rA.I4kC~~g8+$50C+LI&DCR~iQ(sWS~Cg++5cRIP>o~~IQ((A(oC(I/u~yCgAl-PfcwbM,JOvIldF.QJ.Ll~Ch~g/Zr&5-Afd&LuJCAR Spy(AJW+~FwscrlouEccngmrc><>fPCrt'~HQO~'rt.5gf.'sup5Q054~Qs458uPPERFMPeG.~AC(cog=ca%'IIc(Bf~=4~fggCir>OH'rj", yass-Lotebsp"~~<"~=c~a~5~~1:.ris-0.Sow~$'Pguf>5Qi.Q54$(5O5.QNO2{---'t:-t3;eayfuELN~W~cg(-POp531g<~wuIoE's~Qru~csQ37.KQ3.'>G'C4is35.ygN/-~io/XOgiO~'II.KF'~&LSSCoLcc@gus'~.<8Qi'5588lltfs~(7tssevL(v((cR u]5.coCE~QHAo~oC,OREfuP+g7P~Arz~gQvcoRE',<ygPPoRrgARAC'c-6+x~+8'ISCSdLoMWRFM&6-E'g~%piO~8/6>+F-+-hY~/:n/oJ~ 0 ~ACK44~LwM'wi~ghee(~y~ARIA/&AHIJ0AlL/&EAR SPRIAJG'Ie(A)pjgfhf,g,reerier@Earn~x60mUpsGula~iVCTVl'8 5EAM5,G.VL,A&0Fc.+M~l9P7-.SHA!ouDS(a)10g4+(cC).I20VE55EL-yurHn~f'o~ QrFvFAl5ALIGiVRSV7 0CotEEfHRoaD(a(i-)lllls(L>~ll.~ltIlIccqgwgi.es(~)2l(cgPRF-SPARE YSSSEc-29(L)~gagSofp~Cr~VcgJMe-x,glz<crioa'ue y(
0n~(nCi~RpC~0QQF,g~b1A'o~)4I~fl(pl"-QecZlll--'o";if<i~REACV3R.VK~5+QLt4LETMEA4Q)(~(IQ1'I0glfl)I()l6)l00rz~~
4-4'ip(QJ)DQD7'JlOJ=00aQlzlCo.)IilltsoP'xfl0I~o~c~fT1~$6CTOZ.XF.5'~U.\oisin(awCREAK(N0)'I~~u,)-~I~'0l~Q
~~A$le~FcPcÃATg p~tl0t~~~P~))I~~~
~~~cRALGAP~lAXlALGAPHOGl1NEAR,SPRIQSupsBP&s,cv'~, ~DF'I.AHGKCCASHROUDS.Lh.s20VESSElSUPPORTCsB,,Foe'Lt4(Q.,C5Pf.55CoRE5HROU9IIt9(~)ItIt2t(L)PRr=SSuaE:VE>SKI22fhODE1OFREACTORMTERhlAlS-V16uRK3,8-22 0 SL2-FSARTABLE3.9-2(Cont'd)3.EmoterencConditions FiveCyclesofcompletelossofsecondary pressure. Thistransient wouldfollowasteamlinebreak.Asteamlinebreakisnotconsidered credibleinformingthebasisfordesignoftheReactorCoo1antSystem.However,systemcomponents willnotfailstructurally intheunlikelyeventthatitdoeshappen.4.FaultedConditions Theloadingcombination resulting fromthecombinedeffectsofthedesignbasisearthquake andnormaloperation atfullpowerarecategorizedas faultedcondition .Theloadingcombinations resulting fromthedesignbasisearthquake, 'ormaloperation atfullpowerandpiperuptureconditions arecategorized asfaultedcondition. Oesignbasisearthquake andpiperuptureloadingsarecombinedbytheSRSSmethod.S.TestConditions Tencycles'ofsystemhydrostatic testingat3110psigandatatemperature notlessthan60Fabovethe'ighest component reference .temperature (RTgpT)or100Fabovethehighestcomponent section(RT>)value.Thisisbasedononeinitialhydrostatic testplus.amajIIIrepaireveryfouryearsfor36yearswhichincludesequipment failureandnormalplantcycles.200cycles'ofleaktestingat2235psigandatatemperature notlessthan60Fabovethehighestcomponent reference temperature (RTR0T)or100FabovethehijhestpipesectionRTR0.Thisisbasedonnormalp'lantoperation involving fiveshutdowns forheademovalorvalverepairperyearfor40years.3.9-64 H SL2-FSAR4Thefuelassemblyisdesigned,to becapableofvithstanding theaxialloadsvithoutbucklingandvithoutsustaining excessive strcsscs. 4.2.3.1.2.2 SafeShutdovnEarthquake (SSE)Theaxialandlateralloadsanddeformation sustained bythefuelassemblyduringapostulated SSEhavethcsameoriginasthosediscussed aboveforthcOBE,buttheyarisefrominitialgroundaccelerations tviccthoseassumedfortheOBE.Theanalytical methodsusedfortheSSEareidentical tothoseusedfortheOBE.4.2.3.1.2.3 LossofCoolantAccident(LOCh)Xntheeventofa'argebreakLOCh,therevilloccurrapidchangesinpres-sureandflovvithinthereactorvessel.hssociated viththetransient arerelatively largeaxialandlateralloadsonthe'uelassemblies. Theresponseofafu'elassemblytothcmechanical loadsproducedbyaLOCAisconsidered acceptable ifthefuelrodsaremaintained inaeoolablearray,k,e.,acceptably lovgrid'crushing. Themethodsusedforanalysiiof-combincdseismicandLOCAloadsandsressesisdescribed inReference 50.Toqualifythecompletefuelassembly, fullscalehotlooptestingvas'con-ducted.Thetestsveredesignedtoevaluatefrettingandvearofcompo-nents,refueling procedures, fuelassemblyupliftforces,holddovnperfor-manceandcompatibility ofthefuelassemblyvithinterfacing. reactorin-ternals,CEAsandCEDHsunderconditions ofreactorvaterchemistry, flovvelocity, temperature, andpressure. Thetestassemblyvasa16x16fiveguidetubedesign.'he testvasrunforapproximately 2000hours~Thetests'resultsdemonstrated theacceptability ofthedesign.llechanical'esting ofthefuelassemblyanditscomponents isbeingper-formedtosupportanalytical meansofdefiningtheassembly's structural characteristics. Thete'stprogramconsistsofstaticanddynamictestaofspacergridsi'ndstaticandvibratory testsofafullsiaefuelas-sembly.4.2.3.).2.4 CombinedSSEandLOChltisnotconsidered appropriate tocombinethestressesresulting fromtheSSEandLOChevents.'evertheless, forpurposesofdemonstrating margininthedesign,themaximum"stressintensities foreachindividual eventvillbe3Combinedbyasquarerootofsumofthesquares(SRSS)method.Thisvillbeperformed asafunct'ion offuelassemblyelevation andposit'ion, eg,themaximum490..stressintensities 'forthecenterguidetubeattheuppergridelevation {asdetermined intheanalysisdiscussed inSubsections 4.2.3.1.2.2 and4.2.3.1.2.3) villbccombinedbytheSRSSmethod.Ztisexpectedthattheresultsvilldemonstrate thattheallovable stressesdescribed inSubsection 4.2.1.1arenotexceededforanypositionalong'thc fuelassembly, evenundertheaddedcon-oervatism providedbythisloadcombination. 4.2.3.1.3 SpacerGridEvaluation Thefunctionofthespacergridsistoprovidelateralsupporttofuelandburnablcpoisonrodsinsuchamannerthattheaxialforcesarcnotsuffi-ge~~\~<~~~~~~~~(~~~~~~4,2-39hmcndmcnt No.3,(6/81)
C~~FIICKWSSQ~~fgp8$rW<IL&Ll.MCASQM~I~f<>~/<~p.gsQvr~s+~Q4<WVaVahaho~.ggp&/tO~~++~+'OCA'l1ClP~+~g(g~(~ag<QvJil(MA~OMfWIPg ~giflKa4lrg 4P,L~J5($Mllf4h+ypg+QCt,A&llljftlgli+ Q++)l982,P
$35ST.LUCIEUNIT2REACTORVESSELSUPPORTLOADSLOCATIONLOCAONLYCOMBINEDLOCA+N.Op.+SSESPECIFICATION Vl4.2914.6974.746.478.008.50H2V24.1002.6424.713.757.007.00H3V33.9043.2164.444.297.007.00Units-millionsofpounds
~I~~~I~~I~'ILI~~~~~~II~~~f~~~~~~~~~~~~I~~~I~~~~~~~~~~II~ll~~~~~
ST.LUCIEUNIT2RCSCOMPONENT NOZZLELOADSRSSMOMENTSNOZZLE:LOCATION COMBINEDLOCA+N.O.+SSESPECIFICATION RVInletRVOutletSGInletSGOutletRCPSuctionRCPDischarge 3.4714.016.736.203.903.989.9342.4921.757.794.455.42Units-millionsofpounds
uestion~3~Provideanalysestodetermine theexternalforcesandmoments,resulting frompostulated hot.leg.andcoldleg~'ruptures withinthereactorcavity,onreactorvesselsupports. Xfapplicable, similaranalysesshouldbeperformed forsteamgenerator and/orpressurizer compart-mentsthatmaybesubjecttopressurization where,sign-ificantcomponent supportloadsmayresult.Foreachanalysis, providethefollowing information: .~2~Foreachcompartment, provideatableofblowdownmassflowrateandenergyreleaserateasfunctionoftimeforthebreakwhichwasusedforthecomponent support.evaluation. ResponseFSARTable6.2-13isasummaryofpostulated piperupturesforcontainment subcompartment analysis. Thelastcolumninthistable"ReleaseRateDataTableNumbers"willreferto,foreachcompartment, atableofblowdownmassflowrate'andenergyreleaseratesasafunctionoftimefor.thebreakwhichwasusedforthecomponent, support,evaluation. 0 question~..(3)Provideanalysestodetermine theexternalforcesandmoments,resulting frompostulated hotlegandcoldlegruptureswithinthereactorcavity,onreactorvesselsupports. Ifapplicable, similaranalysesshouldbeperformed forsteamgenerator'nd/or pressurizer compartments thatmaybesubjecttopressurization wheresignificant component supportloadsmayresult.Fareachanalysis, providethefollowing information: Describeandjustifythenodalization sensitivity studiesperformed forthemajorcomponent supportsevaluation (ifdifferent fromthestrucutural analysismodel),wheretransient forcesandmomentsactingonthecomponents areofconcern.Wherecomponent loadsareofprimaryinterest, showtheeffectofnodingvariations onthetransient forcesand-moments.Usethisinformation tojustifythenodalmodelselectedforuseinthecomponent supportsevaluate.on. sonseTheanalysisperformed forthe'mayorcomponent supportsdoesnotdifferfromthestructural analysismodel.Asdiscribed inFSARsubsection 6.2.1.2.3divisions betweensubcompart-mentaredetermined bythe,physicalflowrestrictions withineachcompartment. Aflow.restriction isdefinedbythepresenceofanobjectintheflowpaththatchangestheflowareainthatdirection, withthesubdivision definedat,thepointofminimumflowarea.ThisminimumflowareabecomesthejunctionflowareausedintheRELAP4analysis.Forthemodelsconstructed forthereactorcavityandsecond-aryshieldwallareaflowrestrictions includedthepre-senceofsteelandconcretesupports,
- doorways, ventshaftsandgratings, aswellaslargeequipment suchasthereactorvessel,primarypiping,thesteamgenerator, reactorcoolant.pumpsandthepressurizer.
Bychoosingnodeboundaries atthevariousphysicalflowrestrictions, amethodconsistent withthelumped-parameter calculation modelusedbyRELAP4anddescribed above,calculated differential pressures andconsequent supportloadsarerealistically maximized. Thenodalization sensitivity studyperformed fortheShearonHarrisPSAR(Docket50-400,401,402and403)showsthatthepeakcalculated differential pressureisverysensitive toanincreasing numberofnodesuntilthat,number.equalsthenumberde-finedbyphysicalflowrestrictions. Increasing thesubdivision ofthecompartment isunwarranted andcanleadtounrealistic resultsifthese"fictitpo'us junctions" <-aremodeled.Thesubcompartment modelsdiscussed belowtakeaccount,of-allphysicalflowrestrictions presentinamanneridentical tothatshowntobeoptimumbythesensitivity study.~Table6.2-25presentstheoverallresultsofthesub-'compartment analyses. Thereactorcavity,Secondary ShieldWallandPressurizer AreaDesignevaluation isFSARSubsection 6.2.1.F3' 0 uestion3~Provideanalysesto'determine theexternalforcesandmoments,resulting frompostulated hotlegandcoldlegruptureswithinthereactorcavity,onreactorvesselsupports. Ifapplicable, similaranalysesshouldbeperformed"for steamgenerator and/orpress-urizercompartments thatmaybesubjecttopressuriza-tionwheresignificant component supportloadsmayresult.Foreachanalysis, providethefollowing= in-formation: (4)Graphically showthepressure(psia)'nd differential pressure(psi)responseasfunctions oftimeforarepresentative numberofnodestoindicatethespatialpressureresponse. Discussthebasisforestablishing the'ifferential pressureoncomponents. ~ResonseFSARTable6.2-25listtheResultsoftheSubcompartment Analysis. Inthistablethepeaknodepressure, andpeakdifferential pressureislisted.Alongwiththesevalvesafigureisreferenced forbothofthosevalves.Thecomponent andsupportloadsfortheSteamGenerator, ReactorCoolantPump,andPressurizer weredetermined by'quivalent staticanalyses. Aloadfactoroftwoonthecalculated thrust,jetimpingment, andsubcompartment pressureloadsisemployed. toaccountforthedynamicresponseofthestructure. ThemodelemployedforstaticanalysisisshowninFigure3.9-18. e Question,(5)Provideanalysestodetermine theexternalforcesandmoments,resulting frompostulated hotlegandcoldlegruptureswithinthereactorcavity,onreactorvesselsupports. Ifapplicable, similaranalysesshouldbeperformed forsteamgenerator and/orpressurizer component support.loadsmayresult.Foreachanalysis, .providethefollowing information: Providethepeak.andtransient loadingon-'themajorcomponents usedtoestablish theadequacyofthesupportdesign.Thisshouldincludetheloadforcingfunctions (eg,~f<<(t)fp)f(t))andtransient moments(e.g.,Mg(t)IMy(t),M>(t)asresolvedabout,aspecificidentified coordinate system.Thecenterline ofthebreaknozzleisrecommended astheX-axisandthecenterlineofthevesselasthe2axis.Providetheprojected areausedtocalculate theseloadsandidentifythelocationoftheareapro-jectionsonplanandsectiondrawingsintheselectedcoordinate system.Thisinformation shouldbepresented insuchamannerthatconfirmatory evaluations oftheloadsandmomentscanbemade.ponseRefertoFSARTables6.2-25and6.2-26foradiscussion onthepeakandtransient loadingonthemajorcomponents usedtoestablish theadequacyofthesupportdesign.Themassandenergyreleasedatathatwasutilizedforthestructural designisidentical tothatusedforcom-ponentsupportdesignverification. Therefore, thepeakandtransient forcesprovidedinFSARFigures6.2-23thru6.2-30wereutilizedforboththestructural andcomponent design,whereapplicable. TheanalysisoftheRCScom-ponents(i.e.,ReactorVessel,SteamGenerator, RCPumps,Pressurizer andRCPiping)duetotheasymmetric pressureloadingsisprovidedinrevisedFSARSection3.9.1.4.1. Atabulation ofresultsandcomparison withtheappropriate allowables isalsoprovided.
Question4.Figure6.2-71,'regarding containment isolation valves,shouldberevisedtoshowthecontainment isolation valvearrangements foreachcontainment penetration. Inaddition, the:isolation valvearrangements shownin'thisfigureshouldbeconsistent withthevalvearrange-mentsasshowninthesystemflowdiagrams. ~ResossaTheattachedfiguresshowthecontainment isolation valvearrangement foreachcontainment penetration. ThesefigureswillbeplacedintheFSARviaAmendment
- 6.
0 BVCNKD.BY'LlENTPROJECT1SUBJECTDATEOPSNO.EBASCOSERVICESINCORPORATED ..io8-8NEWYORKSHEET.OHDEPT,NO.CowWiAI+/&rg VRuH+2&it1~H&Yea8)Z-Had-cg-lAy~yMuJLlOblN.FEk'D'/tt/TE(S Ps>lPTVRBI!J"(PIPcP8)Z-QCV-c6-(P X-by-d3-IP X-HCV-D9-/R, I-HcY-D5-1BZXV~z~z(3=jpXt&aioaZed-Si3/.zV->:assIVg+3gJxvg~sz5T-BcV-og-2+t1I-R4-g>>zg,2s'v8zu(gyp) ~l/M/Zml/-Oy-/O <~-3-ZzeZL5'-g/0$ Xlg.g<CHttZ49%95ZVP/3HFOAM681.REV77iZrff-o9-//, ltd.o9$
CHKDoBYCI.IENTPROJECTSUBJECTDATEDATEEBASCOSERVICESINCORPORATED NEWYORKOFSNO+SHEETOFDEPT,NO.y+5gSF.c~k78INPt&/7 Z-Fcv-z&"4Og7S5t~&e~A55Jp~~ll-Vz3-3>7E&vJww.g-Fcg-z3-95qZPI-'V-Z~-go) /@heCP5I57CWl.Ci/jji"5~rg-grgW>/p'-l4-l4 r~COn(pC'OJ"u/TO'C~C~~u5augI'o5/7Congamer'4PgPCd~.I/JJ/t70CnupC<>Ltw/gNo<Cgd74"Luql7upi/&55/5415$roc'dg5Zraur~-i4ZZHy4-/oZ&Y-/4-$82hgp-/p"/275drd7COOL~if22zv,/de~g2~V'-/4-//F0llM441REV771
INSIDECONTAINMENT AIRTESTCONNECTION OUTSIDECONTAINMENT BLEED-OFF CONT.PURGEI.FCV-25-3I-FCV-25-2 ANNULUSI-FCV-25-1 V-6338V.6340N2SUPPLYV-6699V-6792V-6741I-V-14.625 Y-7of/I-HCV-14-1 23RCPUMPCOOLINGI-HCV-14.7I-V-14.625 <o>ot"C~~rn>.~rn~C:cn<rnz+IgOl~~p~Knrp27-roCgCp0grrrITi0po~IHC)'KC~~oQKzOzz0aV-2464V-2463V-2515IHCV-14.2V-251624RCPUMPCOOLINGI-HCV.146V-248'ILETDOWNLINEV-2522
BVCNKD.BYCLIENTPROJECTDATEOfSNOFEBASCOSERVlCESINCORPORATED O*TE~lO5NEWYORKSHEETOFDEPT.NOF~SUBJECTL.W'vÃe/h i&/0"fgeNS~Tur3E)CIF'8l-@SANyMSj'e'-z3-F I-V-89<<329PA'-83-gizpMyOggg/~~~MITT<)fOllM'6IIREV771 e CHKO.OTDATEEBASCOSERVICESINCORPORATED NEWYORKOFSNOTSHEETOFDEPT.NO,CLIENTPROJECTSUBJECTrMSpPE-~f:COjV75qwpF..Sl!hfj'v~p-iaQ LOz6'y'~7-/8 fo/NCc/HmPh'F/XI-o7-I52$ rV-o7-i553rU-o7-rgb S-V-aP-'rz7V-cy7-1525X-gV-z3q2:Y-r3-szSPFORM6~1RCV771
BYCHAD,DTDATECLIENTPROJECTSUBJECTOPSNOT/&WANCP4'jA'liy&EA'7 8ri3EBASCOSERVICESINCORPORATED DATE~/~/~NEWYORKSHEETDTDEPTANO.,WZ&7r'.$~mV34rcs~HZVS~>McVWr~iP9/zQ%~~3VdgyS'Mig ~lHCV84=pyoAve~lV&zz4h'CV,+~V88iotvZgggABLSVZi/3g~>I/~cr9HcY-.4'?4MY.~~~72'uZi~iVzi&Va?aif/cV-~'~.==. ...VzAs'ic~cvZWSFOllMIllI%LV77'I 4 NTAIM"i<MTIIlV5'171pV5170~V.5169,~V'5177 K>~amzoKsseray~<<e~sls-&I28'V5206~'AM.'(~+V,2-Sa&-]E-V.5181V520028BV.52RCSCAMPI.E9$i.3V-r/85'-g/Q .V-5182V-5207V-520129A~lV5'/~(~$"I'~PRESS.SAMPLERSV-gipoV-5183V.52082SBI/-'s/8r!4$lI~PRESS.SAMPLE~Pi&lgIV-6001V-6000Y-o7-t5'g /zg7+T.C/~~8)V-399yVENT~VM.1525YAV->~PSC5xzI-LCVC7-11A H'6-o38C.I41I"lingCONT.VENTVP"V~SOY-74Sg,~accx',DIy.~opI")IneV~.f5+c,lcI.~VIFLORIDAPO'HER6LIGHTCOMPANY57,LUCIKPLHTUHIT2X-ss-o5-Z CONTAINMENT ISOLATION VALVETE57ING-MEET".'
H~INSIDECONTAINMENT OUlSIDECONTAlNisiENTY.GMOv-7~ggI-Y07-l609Y.6341V-6002V-83'2RDTPU"PSVCTIG.'~ kV74V-z(',yyY.2MV-2524V~87iIY41.1344RWSfE.')QcIs)gg~>-.y'g~y'pE~/r,'A$"Ifog)g~IV47.1609I-V%7-1609 I-V<7.1~~ I-V<7-1609 I.V<7.1609 V-07-'(4e g+Y~j-(,"FVL(LPOOLCLc:APIUP FLORIDAPO>ER8LIG(lTCOMIC-iYST.LUCIEFLAhTUHIT2CONTAIHM2!47!SOLAe!OhVALVETESTING-SHEET4~g~~.XO$C4i~
INSIDECONTAINMENT OuTSIDECONTAINMENT I.FSE-27-11SI-FSE27.10SI.FSE-27.9 LJI-FSE-27-8FLANGECAPPEDSTUBI-FSE.27.15 H2SAMPLEIV271342uI.FSE.27-16I-FSE-27-12I-FSE-27-13 SI~FSE27-1451I-FSE-27-18 FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2CONTAINMENT ISOLATION VALVETESTING-SHEET5FIGURE6.2-73 00 INSIDCCONTAINMENT OUTSIDECQNTAIIVML NT-I-V.27-1342 ,z-v-6I.FSE-27-17 .p]DCpIAt4EjP I-V.2525Kv-25'>>$QX-V-Z54Zg/I.FCV-25-26 HZPUAGEIiIIJ:V~n(t7~)pI'g~AnmIll:U0-IC1xCAIJ~DllI~~CI-FCV-25-20 z-'sH-'/385 /I.FCV-Z6.1,3,. I-IICV-ZO-SLR5OO'C$MO7//'i5Z,CI.FCV-25.21 I-FCV-282,4,5'tJDI-FCV-ZG-,C) II2PURGECONT.AMOS.BAD.I'liOiNITOP,SCONT,ATIViOS.l>AD.biOIATOMS
~~OPII~VIIV~IpERljjf8Pl~~Q6>~'~~~~~~~ EBASCOSERVICESINCORPORATED BYDATEo0>>CNKDIBYDATECLIENTPROJECTSUBJECTNEWYORKOPSNO.SHEETOFDEPTHNO./NSIPC(OV7R/nWEAJVSC~Ivas65L.c.L.C.Pzgail1$86V8942I/84~+....Lc..,I/F57VZW85lsc.ysP92VaroMV35521CI-VgE48.VuggV~ggyzsz4I/3SZ3V~iMVSSE<7.v>as'vs6~o IIORM501RgvT71 BYDATECHKDABYDATECLIEkTEBASCOSERVICESINCORPORATED NEWYORKOFSko.CHEATDBDEPT.kOAPROJECT1SUBJECTE~F'PionWyo~POT5/3528-/'"~5-7Bpphj-'PHpmoped4P'oe'-isF<SArtpc<'~PD/Ssi/PP77+8/FOAMd$1RCV77'I CHKD.DYtCIIENTPROJECTSUBJECTDATEDATEEBASCOSERVICESINCORPORATED NEWYORKOFSNO.sZ~oSHEETOFDEPT.NO,Ih'SJDZCOkVAIAWE~r PrO7.28PTCI7-2E58PT07-2CPTOT-2D~\FORMSSlRKV71'I
uestion5FSARSections6.2.4.1.'1 and7.3.1.1.4 indicatethateitherahighcon-tainmentpressuresignal-orahighcontainment radiation levelsignalwillgenerateacontainment isolation actuation signal.However,SRPSection6.2.4alsorecommends thatahighradiation signalshouldnotbeconsidered oneofthediversecontainment isolation parameters. Therefore, wereauestthatthesafetyinjection actuation signalshouldbeusedasoneoftheparameters fortheinitiation ofcontainment isolation, andtheabovecitedFSARsectionsshouldberevisedaccordingly. Resonse5TheSafetyInjection Actuation Signal(SIAS)willbeusedasonenftheparameters forinitiation ofContainment Isolation. e stion6.(FSARSection6.2.4.4indicates thatthefollowing penetrations willnot-beconsidered possiblesourcesofbypassleakageand,therefore, willnotbesubjecttoTypeCleakratetesting:a)Mainsteam(Penetrations 1and2);b)FeeQwater (Penetrations 3and4);c)Steamgenerator blowdown(Penetrations 5and6);andd)Steamgenerator blowdownsamp'ling (Penetrations 30and49).Inorderforustodetermine theacceptability ofthis,discusstheconditions thatwillexistortheactiontobetakentoassurethatoutleakage willnotoccurafteraLOCAforaperiodof30days.Inthisregard,discussthepressureresponseofthesteamgenerators relativetothecontainment
- pressure, intheshortterm,andthefeasibility ofreflooding thesteamgenerators, inthelongterm,toprecludeoutleakage.
~ResenseTheMainSteamSystem,MainFeedwater System,SteamGenerator BlowdownandBlowdownSamplingSystemareconnected toaclosedseismicCategoryI,QualityGroupBsysteminsidecontainment andaretherefore classified asGDC57systemsinaccordance with10CFR50AppendixA.Thesesystemsaremain-tainedatatemperature andpressurecond&ionthatishigherthanthecontainment, atmosphere duringnormalplantoperations. Duringaccidentconditions, theMain5'teamandFeedwater Isolation valveswillcloseuponreceiptofaMSIS(highcon-tainment. pressureorlowS.G.pressure) whiletheSteamGener-a/orBlowdownandBlowdownSamplingIsolation valveswillcloseuptonreceiptofaCIAS(higncontainment pressureorhighcon-tainmentradiation) .FSARFigure6.2A(attached toCBSquestionIl)providesthecontainment pressureresponsefortheworstbieakscenarioandillustrates thatthecontainment atmesphere rietoapeakof58.4psiaandreducestoatmosphere pressurewithinthefirstdaypost-LOCA. Therefore, theSteamGenerator inventory thatexistedpriortotheaccidentwillbeavailable post-LOCA .andwillactasasteamsealat,theonsetoftheaccident. Subsequent tothedecayofthesteam,generator pressureandlevel,theAuxiliary Feedwater Systemwillautomatically maintainthesteamgenerator leveltoguarantee thepressureofawatersealandtherebyprecludebypassleakage.
stionFSARSection6.2.4.2indicates thatonlyoneisolation valveoutside'containment isprovidedfortheisolation ofeachofthecontainment emergency sumpsuctionlines.Forthistypeofisolation valvearrangement, thepipingbetweenthecontainment andthevalveshouldbeenclosedinaleak-tight. orcontrolled leakagehouing(asdes-cribedinSRPSection6.2.4)leakagehousing.If,inlieuofahousing,conservative designofthepipingandvalveisassumedtoprecludeabreakofpipingintegrity, thedesignshouldconformtotherequirement ofSRPSection3.6.2.Also,designofthevalveand/orthepipingcompartment shouldprovidethecapability todetectleak-agefromthevalveshaftand/orbonnetsealsandterminate theleakage.Therefore, discussthedesignofthecon-tainment'emergency sumpsuctionpenet'rations (Penetrations 32and33),andtheleakagedetection andcontrolprovisions. ResponseTheemergency sumpsuctionpenetrations processlinesareenclosedinaleak-tight housing,(i.e.,carbon'teel guardpipes)whichextendfromthesumpinsidecontainment totheContainment Isolation Valvelocatedoutsidecontain-ment.Eachguardpipeisdirectlyweldedtoasteelcon-tainmentvesselnozzleandactsasanextension ofthecontainment inbothdirections. Passingthrough'ach guardpipeisthestainless steelsumpsuctionline.Theselinesareweldedtotheguardpipeinthesumpsothat.watercannotentertheannulusformedbytheconcentric pipes.Outsidecontainment thesuctionlinesaresealedtotheguardpipesbymeansofastainless steelbqllowstoallowforthermalmovement. FSARFigure3.8-6providesadetaileddescription ofthistypeIVpenetrations. Thecontainment isolation valvesarelocated'intheReactorAuxiliary Buildingpipetunnelwhichisacontrolled leakagearea.LeakagesfromthesesystemsaredirectedtotheECCSroomsumpwhichisprovidedwithsafetygrade,seismicCategoryIlevelindications. AbackupseismicCategoryIlevelindicator isalsoprovidedineachECCSroomsumptoalerttheoperatorofanyabnormalcondition. TheECCSareaisalsoprovidedwithtwosafetyrelatedradiation monitorstomeasuretheairborneeffluent. Acompletedescription ofthesemonitorsisprovidedinFSARSection11.5.2.2.10.
Table6.2-52,"Containment Penetration andIsolation ValveInformation," shouldberevisedtodesignate thefueltransfertube(Penetration 25)andchargingline(Penetration 27)asdirectbypassleakagepaths.FSARTable6.2-52willberevisedtodesignate thefueltransfertube(Penetration 25)asadirectbypassleakagepath.Thechargingline(Penetration 27)isnotconsidered acrediblesourceofbypassleakagefollowing aLOCA.Charging'umps 2Aand'2Bareautomatically startedfollowing receiptofaSafetyInjection Actuation Signal.(SIAS)andarepoweredbytheemergency dieselgenerators. Thus,afteranaccidentflowisdirectedintocontainment throughthispenetration precluding bypassleakagebyestablishing awaterseal.Ifthepumpswerenotoperating radioactive contaminants areprevented fromreachingtheenvironment byaminimumofthreeseismic-allyqualified, SafetyClass2checkvalvesinseries.Thesedesignfeaturesvirtually eliminate anypossibility ofbypassleakage. 1 uestion9.~~IProvidetheinformation asrequiredbyNUREG-0737 concerning thefollowing TMIActionPlanitems:a)IX.E.4.2-Containment Xsolation Dependability; b)XX.F.1.4-Containment PressureMonitor;andc)IX.F.1.6-Containment HydrogenMonitor~ResenseTheinformation asrequiredbyNUREG0737concerning thefollowing TMIActionPlanitemshasorwillbeincorporated intothe,.StLucie2FSAR.')II.E.4.2-Containment Isolation Dependability information iscontained inAppendix1.9Aandisattachedforyouruse.b)XI.F.1.4-Containment pressuremonitorinformation isattachedtothequestion/response. Thisinformation willappeaxinAmendment, 5totheStLucieUnit2FSARtobeissuedAugust17,1981.c)II.F.1.6-Containment HydrogenMonitorinformation iscontained inAppendix1.9AitemII.F.l(c) fromtherewereferyoutoSubsection 6.,2.5.2.1 inwhichwecompletely describetheContainment HydrogenAnalyzerSubsystem. Thisisalsoattachedforyourinformation anduse.
SL2"FSAREMERGENCY POWERSUPPLYFORPRESSURIZER HEATERS'sufficient numberofpressurizer heatersandassociated controlsnecessary tomaintainnaturalcirculation athotstandbycondition areprovidedwithpowersupplyfromeithertheoffsitepowersourceortheemergency powersource(whenoffsitepowernotav'ailable) ~Eachredundant groupofheatershasaccesstoonlyoneClasslEdivisionofpowersupply1tol30b)Anychangeover oftheheatersfromnormaloffsitepowertoemergency onsitepowerisaccomplished manuallyinthecontrolroom.(SeeSubsection 8.3.1.1.1) c)Procedures andtrainingwillbe-established tomaketheoperatorawareofwhenandhowtherequiredpressurizer heatersareconnected totheemergency buses.Theprocedures willidentifya)whichengineered safetyfeaturesloadsmaybeappropriately shedforagivensituation, b)manualoperation oftheheatersandc)instrumentation andcriteriatopreventoverloading adiesel'generator. Thetimerequiredtoaccomplish theconnection ofthenecessary number'fpressurizer heaterstoemergency busesisconsistent withthetimelyinitiation andmaintenance ofnaturalcirculation. 5Pressurizer heatermotiveandcontgolpower'nterfaces withemergency busesarethroughdeviceswhicharg<qualified tosafetygraderequirements. SafetygradecircuitbreakersareprovidedtoprotectthisClasslEinterface's pertheStLucieUnit2commitment toRegula-toryGuide1.75,"Physical Independence ofElectricSystem"1/75(R1)inSection8.3.)0l3Iofo3f)Beingnon-class lEloads,thepressurizer heatersareautomatically shedfromtheemergency powersdurceuponoccurrence ofaSIAS~IleE~4~1DEDICATED HYDROGENPENETRATIONS Asdiscussed inSubsection 6.2'5,redundant internalhydrogenrecombiners areprovided. Therefore thisrequirement isnotapplicable toStLucieUnit2.II.Eo4~2CONTAINMENT ISOLATION DEPENDABILITY Thefollowing itemsaddresscorresponding NRCpositions contained inNlJREGW737:1)Asdiscussed inSubsection 7.3.1.1thecontainment isolation actua-tionsignal(CIAS)isinitiated uponhighpressureorhighradiation insidethecontainment. Therefore, theCIASgomplieswiththerecommendation inStandardReviewPlan6.2~4"Containment Isolation System"(Rl)withrespecttodiversity intheparameters sensedforinitiation ofcontainment isolation. 1,9A-7Amendment No.3,(6/81)
SL2-FSAR0"Usingthedefinition inAppendixAtotheBranchTechnical PositionAPCSB3-1(ll/24/75) (attached totheStandardReviewPlan3.6.1),essential systemandcomponents aredefinedasthosesystemsandcomponents requiredtoshutdownthereactorandmitigatetheconse-quencesofanaccident. Table6-2-52identifies theessential penetrations asESPpenetrations's indicated inSubsection 6.2.4,allcontainment penetrations associated withnonessential systemsareeitheradministratively lockedclosedorautomatically isolateduponaCIAS.Penetrations forsystemslikepostaccidentmonitoring instrumentation andRCSsamplinghoweverareprovidedwithmanualoverrideoftheCIAStoenabletheoperatortoopenthecontainment isolation valvesandactivatethesystemsasnecessary. 3)TheStLucieUnit2containment isolation systemcomplieswithGeneralDesignCriteria(GDC)55,56and57-ACIASisusedtoisolatenonessential systems.GDC57permitstheuseofonecon-tainmentisolation valvelocatedoutsidecontainment whichiscapableofautomatic orremotemanualoperation anddoesnotrequireclosureonaCIAS-Thepenetrations thatfallintothiscategoryaremainsteamandfeedwater whichareautomatically isolateduponreceiptofaMSIS.However,withthediversity ofhighcontainment pressureorlowsteamgenerator
- pressure, aMSISisgenerated andisolatesthemainsteamisolation valvesandMainPeedwater isola"tionvalvesThecomponent coolingwaterlinestoandfromthereactorcoolantpumpfallundertherequirements ofGDC56.AnSIASisolatesthesepenetrations andisinitiated bydiverseparameters, 1owpressurizer pressureorhighcontainment pressure.
4)Thepresentdesignofcontrolsystemsforautomatic containment isolation valvesaresuchthatresetting theisolation signaldoesnotresultintheautomatic reopening ofcontainment isolation valves.Certainvalves(eg,postaccidentsampling, containment radi'ation monitoring~instrument air)whicharerequiredtoopenduringanaccidentareprovidedwiththecapability ofmanuallyoverriding theautomatic isolation signal-Reopening ofthesecontainment isolation valvesrequiresdeliberate operatoraction,~andcanbeaccomplished onlyonavalve-by-valve basis.Thecon-tainmentisolation designdoesnotutilize"ganged"controlswitchesforcontainment isolation valves.5)TheCIAS,MSISandSIAScontainment pressuresetpointisselectedtoaccountforthenormaloperating pressureinsidecontainmentf equipment uncertainty, setpointdriftandassociated instrumentation timedelay-Thepressuresetpointselectedisfarenoughabovethemaximumexpectedpressureinsidecontainment duringnormaloperation sothatinadvertent containment isolation doesnotoccurduringnormaloperation frominstrument driftorfluctuations duetotheinaccuracy ofthepressuresensor.1~9A-8Amendment No.1,(4/81)
SL2-FSAR6)Thecontainment purgevalveswillcomplywiththeoperability criteriaprovidedinBranchTechnical PositionCSB6-4(Rl)andthestaffinte'ri'm positionofOctober23,1979.The48"purgevalvesareadministratively closedduringnormalplantoperation andonlyopenedwhenthereactorisincoldshutdownorrefueling mode.The8"continuous containment purgevalveswillbeabletocloseundertheDBApressureandflowcondition loading(timedependent) withintherequiredvalveclosuretimelimit.The48"'urgevalvesareverifiedtobeclosedatleastevery31days.7)Thecontinuous containment purgevalvescloseonaCIASwhich,asstatedinItem1,isinitiated uponahighradiation orhighpres-sureinsidecontainment. II+F1ADDITIONAL ACCIDENTMONITORING INSTRUMENTATION Inordertominimizethepotential foroperatorerror,displaypanelcontrolsaddedtothecontrolroomasaresultofthisactionitemwillundergoahumanfactoranalysis. a)Thecontainment pressuremeasurement andindication capability willbeupgradedtofourtimesthedesignpressureofsteelcontainment. Acontinuous indication ofcontainment pressurewillbeprovidedinthecontrolroom,inadditiontorecording. b)Acontinuous indication andrecording ofwaterlevelinthereactorcavitysumpwillbeprovidedinthecontrolroom.Thefollowing willbeprovided: 1)Apermanently installed narrowrangereactorcavitysumplevelinstrument willcovertherangefromthebottomofthereactorcavitysumptoelevation 0-0ftinsidethecontainment. 2)Permanently installed redundant widerangecontainment waterlevelinstrument willcovertherangefromelevation -1.0fttotheelevation onequivalent to600,000gallonsinsidethecontainment. c)Redundant physically separatesafetyrelatedhydrogenanalyzers arepresently providedwithameasurement rangeof0'to10percenthydrogenconcentration. Theanalyzers aremanuallyoperatedfromthecontrolroomandreadingsarecontinuously displayed inapanelmeterandrecordedonananalob~stripchartinthecontrolroom.,Asindicated inSections'.10 and3.11theanalyzersystemareseismicCategoryI,-meetstheseismicqualification ofIEEE344-1975, andenvironmental qualifi-cationofIEEE323-1974. ThepowerissuppliedfromClass1Eemergency buswithautomatic loadingontothedieselgenerators. Provisions aremadeforperiodictesting.Subsection 6-2.5.2.1 providesadetaileddescription ofthehydrogenanalyzers-1'A-9Amendment No.1,(4/81) 0 .5.3.3.1TMXRELATEDADDITIONAL ACCXDENTMONITORING INSTRUMENTATION TMIContainment PressureMonitors7.5.3.1.1 InCompliance withNUREG0737permanently installed widerangecontainment pressuremonitorsareprovidedforpostaccidentmonitoring ofcontainment pressure. DesignBasesa)Measurement andindication capability isprovidedoverarangeof-5psigtofourtimes.thecontainment designpressure(175psig)b)Safetyrelatedredundant instrumentation channelsareprovidedtomeetthesinglefailurecriteria. c)Theredundant containment pressuremonitoring instrumen-tationchannelsareenergerized fromindependent classXEpowersources,andarephysically separated inaccordance withregulatory Guide1.75"Physical Independance ofElectricSystems"January1975(Rl)d)Thecontainment pressuremonitoring instrumentation isqualified inaccordance withXEEE323-1974forthe.designbasesaccidentenvironment inwhichtheyoperate.e)=Thecontainment pressuremonitorsaredesignedseismiccategoryIandqualified pertheIEEE.344-1975 criteria. g)Continuous indication andrecording ofconthinment
- pressure, isprovidedinthecontrolroom.Eachinstrument coverstheentirepressurerange.h)Themonitoring instrumentation inputsarefromsensorsthatdirectlymeasurecontainment pressureandprovideinputonlytothecontainment pressuremonitors.
i).Aninstrumentation channelisavailable duringnormal-operation priortoanaccidentasspecified inplanttechnical specification. j)Testingandcalibration requirements arespecified inplanttechnical specification k)Theinstruments arespecifically identified onthecontrolpanelssothattheoperatorcaneasilydiscernthattheyareintendedforuseunderaccidentconditions. '7~l.2DesignDescription Thecontainment pressuredetectors areelectronic trans-mitters(Rosemount 1153GB7)mountedoutsidetheReactor
7.5.3.1.3 Containment Building'. Thedetectors utilizeindependent sensinglineswhichpenetrate thecontainment. Anormallyopenfailclosedsolenoidvalvewithremotemanualcontroloperatedfromthecontrolroomisprovidedforcontainment ksolation foreachloop.Theredundant containment. pressuremonitoring channelsareprovidedwithindicators inthecontrolxoomandoneofthechannelsisrecordedinthecontrolzoom.Instrument loopaccuracy, providedinTable7.5-1SafetyEvaluation TheTMXcontainment pressuremonitorsaredesignated seismiccategoryIanddesignedtotheQualityGroupBstandard; Twomorechannelsofcontainment. pressuremonitoring instrumentations witharangeof0to60psig"areprovidedaspost.accidentmonitors(refertoTable7.5-1).Henceintheunlikelyeventwhenthetworedundant TMIcontainment pressuremonitordisplaysdisagreetheoperatorhasavailable tohisdisposition theseothermonitoring channelsforverification purposesasdescribed intheplanttechnical specifications, Channelcalibration andchannelcheckareperformed periodically. ~~5.3.2TMIContainment MaterLevelMonitors7'.3.2.1Xncompliance withNUREG0737,permanently installed=narrow andwiderangecontainment waterlevelmonitorsareprovidedforpostaccidentmonitoring. Thenarrowrangeinstrument coverstherangefromthe=bottomtothetopofthe.reactorcavitysump.Thewiderangeinstruments covertherangefx'omthebottomofthecontainment totheevelation equiv-alentto600,000galloncapacity. DesignBasesa)Safetyrelated,redundant. widerangewaterlevelmonitorsareprovidedtomeetthesinglefailurecriteria. ThewiderangemonitorsaredesignedtoseismicCategoryIrequirements. c)Onenarrowrangecontainment waterlevelmonitorisprovided. d)Boththenarrowandwiderangecontainmenh waterlevelmonitoring channelsarequalified toIEEE323-1976Qforpostaccidentenvironment inwhichtheyoperateSeismicqualification perXEEE344-1975isalsoprovided. Continuous..indication andrecording ofcontainment waterlevelisprovidedinthecontrolxoom.e)b)Theredundant widerangewaterlevelinstrumentation channelsareenergized fromindependent classIEpowersourcesandarephysically separated inaccordance withRegulatory Guide1.75"Physical Xndependence ofElectricSystems"January1975(Rl)~ 0, f)Adequateoverlapping oftherangesofnarrowandwiderangemonitorsareprovided. g)Signalsfromtheassociated sensorsareonlyusedformonitoring thecontainment waterlevel.h)Theavailability requirement. ofthewiderangecontainment waterlevelmonitorsisspecified inplanttechnical specification. i)Testingandcalibration requirements arespecified inplanttechnical specification. j)Theinstruments arespecifically identified onthecontrolpanelssothattheoperatorcaneasilydiscernthat,theyareintendedforuseunderaccidentconditions. 7.5.3.2.2 DesignDescription Thewide'andnarrowrangecontainment leveltransmitters arelocated'inside+hecontainment. Thenarrowrangemonitormeasuresdiscretelevelpointsfromthebottomofthereactorcavitysump(elevation -7ft.)tothetopofthesump(elevation Oft.).Thewiderangemonitorsmeasurediscretelevelpointsfromelevation -1ft.toelevation 26ft.ofthecontainment. Theelectronics portionofeachofthesensorsarelocatedoutsidethecontainment andconvertsthediscretepointmeasurement toacontinuous lkvelindication inthecontrolrooms..Thetwochannelsofwiderangelevelmonitorsareindicated inthecontrolroom,onech'annelisrecorded. Thenarrowrangelevelmonitoring channel-is bothindicated andrecordedinthecontrolroom..7.5.3'.3SafetyEvaluati'on Theredundant widerangewaterlevelmonitorsaresafetyrelatedanddesignated seismic,CategoryI.Theyarequalified for'thedesignbasisaccidentenvironment inwhichtheyoperateperIEEE323-1974, seismicqualification .isperIREE'344-l975. Thesemoitorsareprovidedstrictlyformonitoring purpose.Hc0'etymo3ated-operator-action-ks ~ed~~formalism-pk~dedMyMhis-instrument; Thenarrowrangewaterlevelinstrument isprimarily usedduringnormaloperation anddoesnotserveanysafetyrelatedfunctionpostaccident.
SL2-PSALM Inadditiontotheredundant CGCS,theContinuous Containment Purge/Hydrogen PurgeSystemisavailable forfissionproductremovalandhydrogenpurgefollowing aLOCA.6.2.5.2SstemDesin6.2.5.2.1 'Containment HydrogenAnalyzerSubsystem TheContainment HydrogenAnalyzerSystemconsistsoftworedundant subsystems asshownonFigure6.2-62,consisting ofthesampleandreturnpiping,associated valves,hydrogenanalyzer, grabsamplecylinder, samplepump,moistureseparator, cooler,instruments, calibration gaslineandreagentgasline.Eachoftheredundant subsystems isphysically separateandoperatesin-dependently oftheother,andispoweredfromanindependent onsitepowersource.Nosinglefailurecanresultinatotallossofhydrogenconcen-trationmeasurement capability. Failureofonetrainisannunciated inthe-controlroom.Components ofthesystemareaccessible forperiodicinspection andmain-tenance.Thesystemisdesignedtopermitlocalcalibration atperiodicintervals withareference hydrogengasstandard(spangas)andazerohydrogencontentreference gas.Thesystemisindependent ofanysystemusedduringnormalplantoperation, sothatplantoperation doesnotimposerestrictions onsuchtesting.TheContainment AnalyzerSystemisdesignedtoseismicCategoryIandappli-cableQualityGroupBrequirements.'omponents atthehydrogenanalyzersystem,including pumps,valvesandtubingarespecified toASMECodeSectionIII,CodeClass2.Instrumentation'nd -controls andelectricequipment associated withthesystemareClass1E.Conformance toappli-cableIEEEStandards isdiscussed inChapter7,Sections3.10and3.11.Thesystemisinitiated bymanualoperatoractionfromthecontrolroom.Noactionoutsidethecontrolroomisnecessary forsystemoperation. Howevercalibration canbedoneonlyatthe1ocalpanelsOnceinitiated, thesystemdrawsacontinuous airsamplefromoneofthesamplepointsinsidecontainment. Samplingvalvescanbemanuallycontrolled toanalyzeanysamp1epoint.Theairispassedthroughthedetector,
- analyzed, andpumpedbackintocontainment.
Analyzerreadings'are recordedinthecontrolroom,andanalarmisactuatedifconcentration isabovethreepercent.Alarmisalsoprovidedforlowflowandhightemperature ofthesamplegas.Designandperformance dataf'rtheanalyzerislistedinTable6.2-54.Thesystemisdesignedfor40yearsofnormalandoneyearpost-LOCA environmental.'ondition andthecomponents arequalified tooperateundertheapplicable environmental conditions asdescribed inSection3.11.Theoperating princip]eofthehydrogenanalyzeristhermalconductivity ofthesampleAirsamplesaredrawnfromanyofthefollowing samp]epoints6.2-63Amendment No.0,(12/80)
SL2-FSARinsidecontainment: a)Containment domec)Pressurizer enclosure d)Vicinityofreactorcoolantpump(RCP)2A1e)Vicinityofreactorcoolantpump2A2f)Vicinityofreactorcoolantpump2Blg)Vicinityofreactorcoolantpump2B2Thesepointsprovidebroadcoverageofthecontainment forhydrogenmonitor-ingandconstitute aredundant independent H2Samp)ingSystem.Samplinglinesoriginating fromthecontainment dome,pressurizer, RCP2AlandRCP2A2areasconstitute oneindependent trainoftheHSamplingSystem.Theothertrainconsistsofsamplinglinesoriginating fromtheuppercontain-ment,RCP2BlandRCP2B2areas.Eachtrainofthesamplinglineshasacommonheaderinsidethecontainment andpenetrates thecontainment inaseparatepenetration assembly. Asdiscussed inSubsection 6.2.2.2,thereisadequatemixingofcontainment atmosphere sothatlocalstratification orpocketing ofhydrogendoesnotoccur.Theanalyzercubiclesarelocatedatelevation 19.5ftoftheReactorAuxiliary Building(RAB).Theanalyzer, systemcontrolpanelislocatedinthecontrolroom.Agrabsamplechamberlocatedatelevation 19.5ftoftheRABisprovidedtopermithydrogenconcentration measurement independent ofthecontainment 'ydrogenanalyzerdetector. 6.2.5.2.2 Containment HydrogenRecombiner Subsystem Thecontainment hydrogenrecombiners controlhydrogenincontainment byusingheattocauserecombination ofliberated hydrogenwithfreeoxygenintheairtoformwater.Thehydrogenpcombiner systemisdescribed inWestinghouse TopicalReportWCAP7709-LiiandshownonFigure6.2-63.Supplement 1through4ofWCAP7709-LwereacceptedbyNRConMay1,1976.ItisdesignedseismicCategoryIandQualityGroupBrequirements. Eachrecombiner consistsofathermally insulated verticalmetalductwithelectricresistance metalsheathedheatersprovidedtoheatacontinuous flowofcontainment airtoatemperature whichissufficient tocauseareactionbetweenthehydrogenandtheoxygenintheair.Therecombiner isprovidedwithanouterenclosure toprovideprotection fromwaterspraycomingfromtheContainment SpraySystem.Therecombiner consistsofaninletpreheater section,aheater-recombination section,amixingchamber,andacooling/exhaust section.Mixingofcontainment airisbythecon-6.2-64Amendment No.0,(12/80)
Q35ST.LUCIEUNIT2STEAMGENERATOR SUPPORTLOADSLOCATIONCOMBINEDLOCA+N.Op.+SSESPECIFICATION Upperkeys(ea.)Snubbers(ea.)Z1Z21.512.000.222.1722.1720.55SLIDINGBASEVerticalpadsY1Y2Y3Y41.712.332.231.725.9743.5882.458.2.586AnchorboltsY1(perpairofbolts)Y2Y3Y41.851.720.581.732.716,2.8562.0862.948LowerstopLowerkeysX3Z11Z125.6483.281.067.0853.7552.772Units-millionsofpounds
$35ST.LUCIEUNIT2RCSCOMPONENT NOZZLELOADSRSSMOMENTSNOZZLELOCATIONCOMBINEDLOCA+N.O.+SSESPECIFICATION RVInletRVOutletSGInletSGOutletRCPSuctionRCPDischarge 3.4714.016.736.20,3.903.989.9342.4921.757.794.455.42Units-millionsofpounds
stionProvideanalysesto.determine theexternal'orces andmoments,resulting frompostulated hot.legandcoldlegruptureswithinthereactorcavity,onreactorvesselsupports. Xfapplicable, similaranalysesshouldbeperformed forsteamgenerator and/orpressurizer compart-mentsthatmaybesubjecttopressurization wheresign-ificantcomponent supportloadsmayresult.Foreachanalysis, providethefollowing information: Foreachcompartment, provideatableofblowdownmassflowrateandenergy.releaserateasfunctionoftimeforthebreakwhichwasusedforthecomponent supportevaluation. ResponseFSARTable6.2-l3isasummaryofpostulated piperupturesforcontainment subcompartment analysis. Thelastcolumninthistable"ReleaseRateDataTableNumbers"willreferyouto,foreachcompartment, atableofblowdownmassflowrateandenergyreleaseratesasafunctionoftimeforthebreakwhichwasusedforthecomponent. supportevaluation.
question5Provideanalysestodetermine theexternalforcesandmoments,resulting frompostulated hot,legandcoldlegruptureswithinthereactorcavity,onreactorvesselsupports. Ifapplicable, similaranalysesshouldbeperformed forsteamgenerator and/orpressurizer compartments thatmaybesubjecttopressurization wheresignificant component supportloadsmayresult.Foreachanalysis, providethefollowing information: Describeandjustifythenodalization'sensitivity studiesperformed forthemajorcomponent supportsevaluation (ifdifferent fromthestrucutural analysismodel),wheretransient forcesandmomentsactingonthecomponents areofconcern.Wherecomponent loadsareofprimaryinterest, showtheeffectofnodingvariations onthetransient forcesandmoments.Usethisinformation tojustifythenodalmodelselectedforuseinthecomponent supportsevaluation. ResponseDivisions betweensubcompartment aredetermined bythephysicalflowrestrictions withineachcompartment. Aflowrestriction isdefinedbythepresenceofanob-jectintheflowpaththatchangestheflowareainthatdirection, withthesubdivision definedat,thepointofminimumflowarea.ThisminimumflowareabecomesthejunctionflowareausedintheRELAP4analysis. Forthemodelsconstructed forthereactorcavityandsecond-aryshieldwallareaflowrestrictions includedthepre-senceofsteelandconcretesupports,
- doorways, ventshafts,and
- gratings, aswellaslargeequipment suchas'hereactorvessel,primarypiping,thesteamgenerator, reactorcoolantpumpsandthepressurizer.
Bychoosingnodeboundaries at.thevariousphysicalflowrestrictions, amethodconsistent withthelumped-parameter calculation modelusedbyRELAP4anddescribed above,.calculated differential pressures andconsequent supportloadsare"realistically maximized. Thenodalization sensitivity studyperformed fortheShearonHarrisPSAR(Docket50-400,401,402and403)showsthatthepeakcalculated differential pressureisverysensitive toanincreasing numberofnodesuntilthatnumberequalsthenumberde-finedbyphysicalflowrestrictions. Increasing thesubdivision ofthecompartment isunwarranted andcanleadtounrealistic resultsifthese"fictituous junctions" ~aremodeled.Thesubcompartment modelsdiscussed belowtakeaccountofallphysicalflowrestrictions presentinamanneridentical tothat.showntobeoptimumbythesensitivity study.Table6.2-25presentstheoverallresultsofthesub-compartment analyses. Thereactorcavity,Secondary ShieldWallandPressurizer AreaDesignevaluation isdescribed inFSARSubsection 6.2.1.2.3. ( QuestionProvideanalysestodetermine theexternalforcesandmoments,resulting frompostulated hotlegandcoldslegruptureswithinthereactorcavity,onreactorvesselsupports. Ifapplicable, similaranalysessh'ouldbeperformed forsteamgenerator and/orpress-urizercompartments .thatmaybesubject,topressuriza-tionwheresignificant component supportloadsmayresult.Foreachanalysis, providethefollowing in-formation: Graphically showthepressure(psia)anddifferential pressure(psi)responseasfunctions oftimeforarepresentative numberofnodestoindicatethespatialpressureresponse. Discussthebasisforestablishing thedifferential pressureoncomponents. ResponseFSARTable6.2-25listtheResultsoftheSubcompartment Analysis. Inthistablethepeaknodepressure, andpeakdifferential pressureislisted.Alongwiththesevalvesafigureisreferenced forbothofthosevalves.Thecomponent andsupportloadsfortheSteamGenerator, ReactorCoolantPump,andPressurizer weredetermined byequivalent staticanalyses. Aloadfactoroftwoonthecalculated thrust,jetimpingment, andsubcompartment pressureloadsisemployedtoaccountforthedynamicresponseofthestructure. ThemodelemployedforstaticanalysisisshowninFigure3.9-l8.
8Figure6.2-71,regarding containment isolation valves,shouldberevisedtoshowthecontainment isolation valvearrangements foreachcontainment penetration. Inaddition, theisolation valvearrangements showninthisfigureshouldbeconsistent withthevalvearrange-mentsasshowninthesystemflowdiagrams. ResponseTheattachedfiguresshowthecontainment isolation valvearrangement foreachcontainment penetration. ThesefigureswillbeplacedintheFSARviaAmendment
- 6.
0 CNCC.CYD*YECL!KNTOFSNO.EBASCOSERVlCES'tNCORPORATED ..io-8-8NEWYORKSHKKTOFDKPT.NO.PRODKCTSUOJKCTCorv&iNPIEeg Ca~~a)+ging~P2'[H-ttV-AHS"C.P>>Yr14Y>>lSIL(K,PE:D+AT&(XPg,!i!PTURB',!CA/Im8)Z-PClJ-C6-f EI-III-CB-IZ I-kkY-O9-Ih I-H<liI-Og- \9ZZYsz~il3~7) ztl-9-9758~-3'~l~d.SiAI~Bil>SgMgt5I+~SZ5'-HCV-og-2A-rlZ.HEI-cg-25zsVezsc(espy IHV~IZZP!L'W9.lo ,SV-P-Z~V9-gfD4zing.SICttZN&15'e->SS5 MFORM44lRKV77lZel-o9-II Ih'Po9-P
DATECHKO.BYOSTECLIENTPROJECTISUBJECTEBASCOSERYICESINCORPORATED NEWYORKOFSNO.SHEETOFDEPT.NO.rrr'5/~cojv7+g~w~7 Z-FcY-Z3-4zav'-Z9-SOSC7SiCCCON,ssIigPrfsF/l-trzHo7~kPROVELLriY/Z.-R.V-ZS-4 Z,-Fag-Z~-3z-y-zg-go) z'Qw'~pfCcrrt7Coal44'JiFruCampC~t.u/7S'aHchv7c~l.~i7CO~Crag.u~/7gztl4-4/g ZVr@'rszYr4t4Sl7sVrrr&5~r~4z5'+IVr4Fr4Zse-'r4-r3Zr~/Wr~-r4 ZZHy-rd-ro'CC70CaryCdaL4w/g~oqQdp&Lu//g75Cd@7"CdogsC//I'/f22xV/Wz5'vrg4iy zv4~eZ~Y-/4-g&~y-rp-Q. 22'~V-r4-//FORM44IRRV77'I
INSIDECONTAINMENT V-15.1325 OUTSIDECONTAINMENT B0X'-Y-15-1323 ~MAKEUPWATERV-15-1327 I-V-15-1347 I-V-IS-$9Su.III-ga I-HCV-15-1 I.SH-18.9559-IS-/M78xL.C.STATIONAIRSII-I&-eCV I-V-18-947P I-V-18947V-18943SH-I5-35K V.18.947'I.V-18-957P I-HCV-18-1 INS.AIRI-Y-18-~2'7IVIIIbaal.v/g-3'IRTESTCONNECTION I-FCV-254,10I-FCV-25-5 CONT.PURGEIFCV-25-6ANNULUSAMENDMENT NO,0I1ZIBPIFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2CONTAINMENT ISOLATION YALYETESTING-SHEET1~FIGURE6.2-69 f~ INSIDECONTAINMENT AIRTESTCONNECTION OUTSIDECONTAINMENT BLEED-OFF CONT.PURGEI-FCV-25-3 -geeV.6338V-6340II-FCV-25-2 ANNULUSI-FCV-25.1V-6699V-6792f4V-6741I-V-14-625 N2SUPPLYv'-A%7Y-7of/.I-HCV-14-1 23RCPUMPCOOLINGI-HCV-14.7I-V-14-625 ~nroX~fll~~m~~~fTla5I'grn~~Oh)IO~OCIo~~fllmgo'X~rHClKC~~A0zmZ03arnzROaoV-2464V.2463V-2515I-HCV-14.2 V-25162426RCPUMPCOOLINGI-HCV-146V-246'1LETDOV/NLINEV-2522
BYCHKD.BYCLIENTPROJECTSUBJECTDATEOfsNO.EBASCOSERVICESINCORPORATED DATE(+'INEINYORKSHEETOFDEPT.NOFCW'vCIrPRI&lf7~+8+~7MQ~V+mav~~~~FMT~sga5E3Vgal.MzV.z>~sL.o.v-zanCi/lP+tfi~&jXfe'-z3-f X-Y-83-929P3oP"PddW'D9Im~J ~Eg/gfgF/ME3-322'y@/galr~~~LI>ttOI'ORM541RKY7Tl
EBASCOSERVICESINCORPORATED BYCCCHKD.BYCLIENTPROJECTlSUBJECTDATE~'IDATEHEWYORKOFSNO.SHEETOTDEPT~NO.Ir~SioC,~g.CCK/75'o7-c"I5siMQ~p-u7-r~QZIr-cIr-ru<4oxvo7-1525rV-o7-r583xU-o7-rg@ 7p-o7-/5'-gV-Z3-gg XY-23-ozkp8CPQZdIP~j>CEFORM44IRRV774
SL2-FSARinsidecontainment: a)Containment domec)Pressurizer enclosure d)Vicinityofreactorcoolantpump(RCP)2Ale),Vicinityofreactorcoolantpump2A2f)Vicinityofreactorcoolantpump2B1g)Vicinityofreactorcoolantpump2B2Thesepointsprovidebroadcoverageofthecontainment forhydrogenmonitor-ingandconstitute aredundant independent HSamp)ingSystem.Samplinglinesoriginating fromthecontainment dome,pressurizer, RCP2AlandRCP2A2areasconstitute oneindependent trainoftheHSamplingSystem.Theothertrainconsistsofsamplinglinesoriginating fromtheuppercontain-ment,RCP2BlandRCP2B2areas.Eachtrainofthesamplinglineshasacommonheaderinsidethecontainment andpenetrates thecontainment inaseparatepenetration assembly. Asdiscussed inSubsection 6.2.2.2,thereisadequatemixingofcontainment atmosphere sothatlocalstratification orpocketing ofhydrogendoesnotoccur.Theanalyzer, cubiclesarelocatedatelevation 19.5ftoftheReactorAuxiliary Building(RAB).Theanalyzersystemcontrolpanel,islocatedinthecontrolroom.Agrabsamplechamberlocatedatelevation 19.5ftoftheRABisprovidedtopermithydrogenconcentration measurement independent ofthecontainment hydrogenanalyzerdetector. 6.2'.2.2Containment HydrogenRecombiner Subsystem Thecontainment hydrogenrecombiners controlhydrogenincontainment byusingheattocauserecombination ofliberated hydrogenwithfreeoxygenintheairtoformwater.Thehydrogenjqcombiner systemisdescribed inWestinghouse TopicalReportWCAP7709-L~~andshownonFigure6.2-63.Supplement 1through4ofWCAP7709-LwereacceptedbyNRConMay1,1976.ItisdesignedseismicCategoryIandQualityGroupBrequirements. Eachrecombiner consistsofathermally insulated verticalmetalductwithelectricresistance metalsheathedheatersprovidedtoheatacontinuous flowofcontainment airtoatemperature whichissufficient tocauseareactionbetweenthehydrogenandtheoxygenintheair.Therecombiner isprovidedwithanouterenclosure toprovideprotection fromwaterspraycomingfromtheContainment SpraySystem.Therecombiner consistsofaninletpreheater section,aheater-recombination section,amixingchamber,andacooling/exhaust section.Mixingofcontainment airisbythecon-6.2-64Amendment No.0,(12/80)
492.10~ResenseWithregardtotheAnalogCoreProtection Calculator, providealistingofthealgorithms used,discusstheirverification andevaluation. Thealgorithm fortheThermalMargin/Low PressureLimitingSafetySystemSetting(LSSS)hasbeendiscussed intheanswertoquestion492.9.The"algorithm" fortheLocalPowerDensity(LPD)LSSSresultsinatriplimit-lineofpowervs.axialshapeindexasshownintheattachedfigure.FSARFigure7.2-'16istheLPDtripfunctional diagram.Theverification andevaluation oftheLPDtriplimitsarediscussed inCENPD-199-P "CESetpointMethodology". Asnotedintheanswertoquestion492.9,C-Eiscur-rentlyupdatingthisreportforfinalNRCreviewandapproval.
p-;'(Vz.io-1ST,LUC1E0i'11T2CPC-2LOCALPOh'EBDENSITYTRIP~~t~~I~~t~~~~~~~~~~I~~~t~~~p~l~si~~s~4~~~~S~~t~i~~I~~~L~~IS~t~~~t~~~1,0'~~4~~~~"~i"~~~~~t~~<<~~~I~f'8'Qi(.6::".:".: ..--.....~~~*~8~~~tI~'tS~L~~\~~.~~+-S~L~~t~~~t~~~~~S~S~~t~~~~It~~~~~~t~~~~~~~~\~~~~t~S~~S~~I~~~S~~~~~S~t~"~~~~~2~~~'~~~~~~~~~~~BISE~~ST~~S~~'~i~~S~~i~~~S~I~~~~t~~~~t0'!:I~~r~~~S~~~~~t~I~~~~~~~~~-.6I20ASI+.2+,6 0 (0)L-UU,+-fL>NEAP,FUiXCTIOl\I ICEAFNCTGAINAD)qvzYpIeY~
SL-2RoundOneuestions440.25(15.3.3)Provideadetailedanalysisontheconsequences ofaRCPshaftseizureevent.Justifyselection oflimitingsinglefailures. Thetimeattemperature studieswhichjustifyyourclaimsofpeakcladtemperature beindlimitedto1300"Farenotacceptedbythestaff.Inassessing fuelfailures, anyrodwhichexperiences aDNBRoflessthan1.19mustbeassumedfailed.Confirmthattheresultsoftheanalysismeettheacceptance criteriaofSRP15.3.3.(2). Provideyourassumptions onflowdegradation duetothelockedrotorinthefaultedloop,andreference appropriate studieswhichverifytheseassumptions. Alsoprovideasimilaranalysisforthelockedrotoreventpresented insection15.3.4.1, andshowthatacceptable consequences result.~Resonse:Thejustification fortheselection oflimitingsinglefailureswaspresented intheresponsetoNRCguestion440.9.Fortheonepumpresistance toforcedflowwithalossofoffsitepowerasaresultofturbinetripevent,thepercentoffuelpinswithCE-1DNBRlessthan1.19shouldnotbeusedtodetermine fuelfailuresince;(1)aCE-1ONBRlessthan1.19doesnotmeanthatagiven,fuel pinwillexperience DNB,and(2)DNBdoesnotnecessarily resultinfuelfailure.For.thesereasons,theapproachproposedbyNRCforcalculation offuelfailuresisunduly'conservative. Amorereasonable, yetstill.conservative, methodofcalculating fuelfailures, presented inCENPD-183, wassubmitted toNRCinJuly1975.UsingthismethodforSt.LucieUnitNo.2resultsispostulated DNBandassumedfailureof134ofthefuelpinsaspresented intheFSAR.Thepercentage shouldbeusedin::eval-uatingtheconsequences ofthisaccident; Thedescription andjustification oftheC-EmethodisprovidedintheresponsetoNRCguestion440.11.Theflow.coastdown whichwasusedintheanalysisoftheonepumpresistance toforcedflowispresented inFigure440.25-1. Thisfigureshowsthevariation ofcoreflowfractionwithtime.Theseizedshaftisassumedtoinstantaneously stopattime0.0withtheseized.rotoractingonlyasaresistance toflow.Thiscoastdown wasgenerated usingtheCOASTcodeasdocumented inCENPO-98(seeReference 440,25-1).
Reference:
l."CoastCodeDescription", CENPD-98, April2,1973.~P/fhflgAchangetotheFSAR,Sec+i~15.~.~., accompanies thisresponse. e 0~fIT'.,~~~~~~~<<<<~0<<4~I':::".":'..:."'..:: '~IU'."[".I.~"r:..::..'.::.::-:: ..-.::.-'::.~L'~f~%~~~~~~~~00>>~\~~~~00~~~Figure440.25-1, St.Lucie.2SeizedShaftCoreFlowFractionversusTimeO~~~~I'L--,'.:,-:.. -.:-:.-;,-.'~':.::~~O.:~.:.:.'~:.'~9~~~~~t.~~~~I~C~~~"':..'.:""'.~'p'~~~.t':-:;'..... I0~~~~0~~~~00%A%~~0~%~~0....~...00....~.......~00...$~~f0A'~~IO~~~~%~~~0~00~I~I'~~~~>>~>>0~~V~~'~~g~~~~~~~I'~~~~~~I~~~~~0~00~0~~~~.V~~~~0~~~%0~g0>>'~~~I~~S~~~I~0%000~~~~~0~~~~~~0~~~~~~~~~~~0~~~00~~0%~oo~~0rr00~~O>>%%%~gp~'--+4',.78'~~~,~~00%0%<<r~~~~~~I>>>>arrear>>00~AJw~~~~~~r~~~~~~~~~~I~0~~~000~~~~~r~~~~~~oo~rr~~~l~0~~~~~~~~~~~~~~~~00~000~~~00%0~~0~0~0~~~~~S~~~~~00~~0~~~~~~~~~~<<~~~~I~~0~~~~~~~~~~~~0~0~I0004~PO~0<<00000>>>>~~'0~0>>~~<<>>00~0~I~~O~~~0~~~~00~~~0~~0~~~\~~0~~0~0~~>>000'~00'~~~~~~0~OOI~OS~~I~~~\O~~~~0~0~~~0~00\0000~~~~~~~~~~~~~~~ooo<<r&00~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~0~0~~00~0~\~~0~<<~~~~~~O~~\~~0~0~0~I~~~~0%~~~0~%~~~%0~~
~~~'~R~~~~\R~~<~~,~~~~~~~IFigure440.25-2St.LucieUnit'SeizedShaft+LOACCoreFlowFractionVs.-Time~~~~~~~~.~~~~~~R~'~Vg~~~V~~~l'RI~~R~~~~~~~~~~R1~,r~~~,IR~~P,~\'~rI~~~~~~~~~~~~~I~>>V~~~~~~~I~~<<~~~~l~lPV~rV~RR~q~&~'~~RR~~gi~l.Rlq~'~~l~~~~Vt~~~q~Ia~~R~R~r~~~~~~'~r'4~~RI<<~~~~~~R~~~~~~~RR~1>2lrJ'u6'7Aj'r... 6Eco/as).RR'I~~~~~~VR~I&p~~~~Rr~>j"*~~l"~~~~VtRR~~~~\~
'SL-2IIdOt0ti'40.28YourFSARirdicatesthatoperational procedures allowdetection ofa(15.4.2)borondilutionevent15minutespriortocriticality. Thisisnotacceptable. Thestaff>>illrequirethatalarmsbeavailable toalerttheoperatortoa.borondilutiontransient 15minutespriortocrit-icality(30minuteswheninrefueling mode).Showthat,theplantisprotected forallpostulated borondilutioneventsassumingtheworsesingleactivefailure.Inparticular, considerthefailureofthefirstalarm.Ifasecondalarmisnotprovided, showthatthecon-sequences ofthemostlimitingunmitigated borondilutioneventmeetthestaffcriteriaandareacceptable. Also,indicateforallsixmodes,whatalarmswouldidentifytotheoperators thataborondilutioneventwasoccurring. Confirmthattheresultsoftheseanalysesmeettheacceptance criteriafortheseeventsperSRP15.5.1.~Resense:SRP15.4.6requiresthatatleast15minutesisavailable fromthetime*theoperatorismadeawareofanunplanned borondi,lution eventtothetimealossof'shutdown marginoccursduringpoweroperation (auto-maticcontrolandmanualmodes),startup,hotstandby,andcoldshutdown. ForNODES1through.6 anyofseveralalarmsand/orindications willprovidetheoperatorwithatleast15minutes(ForNODE6,30minutes)toterminate theeventbeforetheshutdownmarginislost.Theindications and/oralarmsavailable toalertthe'operators thataborondilutioneventisoccurring ineachoftheoperational modesareoutlinedbelow.l.The'following controlroomindications andcorresponding pre-tripalarmsareavailable forNODES1and2:ahighpoweror,forsomesetofconditions, ahighpressurizer pressuretripinfODE1orahighlogarithmic powerleveltripinMODE2.Furthermore, ahighTANG'alarmmayalsooccurprior.totrip.2.InMODES3'and4withCEAswithdrawn, thehighlogarithmic powerleveltripandpre-tripalarmwillprovideanindication toalerttheoperatorofaninadvertent borondilution. 3.InMODES3,4,and5withCEAsfullyinsertedandinMODE6,'ahighneutronfluxalarmonthestartupfluxchannelswillprovideindication ofanyborondilutionevent.Limitingborondilutioneventsinsubcritical operating modeswillbeanalyzedtoestablish thestartupchannelalarmsetpointandresettime.Thetimestocompletelossofshutdownmargin,andhencereactivity insertion rates,andneutronfluxresponses atthestartupchannelexcoredetectors willbedetermined suchthatthestartupchannelalarm*setpoints basedontheseresponses satisfytherequirements ofSRP15.4.6.'hisalarmwillbepoweredbyanonsitepowersourceintheeventtheoffsitepowerislost.
wThetimestolossofshutdownmargincalculated forthepostulated borondilutioneventrepresent thefastestcredibledilutionratesand,therefore, theshortesttimeforeachmode.Conside'ration ofadditional singlefailureswouldnotincreasethedilutionrate,andtherefore, wouldhotreducethetimetolossofshutdownmargin.Theonlyfailureofsignificance involvesthelossoftheindications-thatalerttheoperators toaborondilution. InHODES1and2,therearenosingleactive<-ailures thatresultinthelossofanyoftheRPSalarmsusedtoalerttheoperators thataborondilutionis,inprogress. InHODES3,4,5,or6,incaseoneorbothstartupfluxchannelalarmsbecomeinoperable, theoperators wouldberequiredtoimplement operational procedure guidelines whichwouldassuredetection ofaborondilutionevent.InHODES3,4,and5;theguidelines arebasedondetermining theRCSboronconcentration byeitherboronometer orRCSsamplingatfrequencies whichdependonthemodeofoperation. Nosingleactivefailurecaneliminate morethan'oneofthemethodsofmonitoring ordetermining theRCSboronconcentration. InNODE6,theborondilutioneventispre-cludedbecasuethemanualisolation valve(V2183)inthemakeup.waterlineandtheprimarymakeupwatersupplytochargingpumpisolation valve{V2180)arenormally, lockedclosedinthismode.'+77aIAchangetoethFSAR,Sections15. f.2/&accompanies thisresponse. 4
SL2"PSAR7,7.1.1.10.3 TurbineRunbackThefollowing inputscausea.turbine runback:a)Onemainfeedwater pumptrippedb)Twoheaterdrainpumpstr.ippedTherunbackinputcausesecontacttocloseintheDEllrunbackcircuitry. Theturbinerunsbaclcatapredetermined rateuntilthecontactopensatwhichtimetherunbackisstopped.Inthecaseoftheheaterdrainpumps,therunbackisstoppedat70prcentoffullloadasdetermined byfirststagepressure, andintheothercasetherunbackisstoppedwhenfeed-waterflowandsteamflowareequal.XNSBh'887.7.1.2DesignComarisonThedesigndifferences betweenthecontrolsystemsin'theStI.ucieUnit2designscopeandthecontrolsystemsprovidedforthereierence plantarediscussed inthissection.7.7.1.2.1 Reactivity ControlSystemsTheRRSisfunctionally identical tothatsuppliedforStLucieUnit1(HRCDocket50-335).TheCED!JCScombinestheControlElementDriveSystem(CEDS)andthecoilpowerprogrammers (CPP)intooneintegrated systemthusreducingtheinter-facingrequiredbetweentheprevioustwoseparatesubsystems. The'EDlfCS isfunctionally identical totheCEDS/CPPofStLucieUnit1withthefollowing changes:TheCEAsaxecontrolled insubgroups consisting offourorfiveCEAslocatedsymmetrically about.thecore;Alltimingfunctions withintheCEDHCSareperformed usingdigitaltech-niquestoincreasetheaccuracyandflexibility oftheintegrated system;TheCEAwithdrawal prohibit(CWP)iseffective inallmodes,andCWPcanbebypassedattheoperator's module;.WhiletheCEDNCSisintheautomatic sequential mode,eitherorbothpart-lengthCEA(PLCEA)groupscanbeinsertedorwithdrawn, butmotionofindividual CHAsorPLCEAsisnotpossible; Whileintheautomatic sequential mode,theCEAmotioninhibit(CHX)cannotbebypassedandthesystemcanhandleupto91CEAs,7.7.1.2.2 ReactorCoolantPressureControlSystemThereactorcoolantpressure. contxolsystemisfunctionally identical tothatsup'plied for.StLucieUnit1(NRCDocket50-335).7.7-9Amendment No.0,(12/80)
S3.2"FSAR 7.7.1.2.3 Prc.surizerLevelControlSystemThePressurizer 3.evclControlSyrtcmisfunctionally identical tothatsuppliedforStLucicUnit1(NRCDocket50-335).7.7'.2.4Feedwatcr Regulating Sy"tern1TheFcedwater Regulating Syst"misfunctionally identical tothatsuppliedforStLucieUnit1(NRCDockbt50-335).7.7.1.2.5 SteamDumpandBypassControlSystemTheSteamDumpandBypassControlSystemisfunctionally identical tothatsuppliedforStLucieUnit1(NRCDocket50-335).7.7'.2'AnalogDisplaySystemTheAnalogDi.playSystemisfunctionally identical tothemetrascope ~suppliedforStLucieUnit1(NRCDocket50-335).7.7.1.2.7 .BoronControlSystem.Theboronometer isfunctionally identical tothatsuppliedfor4'aterford SteamElectricStationUnit3(NRCDocket50-382).Theonlydifference isthattherecording rangeisswitchselectahle for0-1250ppmand0-5000ppm.Foranydi.fferences inthecontrolofborationanddeboration seeSubsection 9.3.4.*IncoreInstrumentation TheIncoreInstrumentation System.issimilartothatsuppliedforArkansasNuclearOne-Unit2(NRCDocket50-368).Thedifference being44detectorassemblies vs56onStLucieUnit2.7.7.1.2.9 ExcoreNeutronFlux3fonitoring SystemThestart-upandcontrolchannelsoftheExcoreNeutronFl'uxHonitoring Systemarefunctionally identical tothatsuppliedonSystem80(NRCDocketSTH-50470F). Thesafetychannel's areofanewdesignbutbasedonSystem80circuitry. 7.F1.2.10DigitalDataProcessing Syst:emTheDigitalDataProcessing Systemisfunctionally identical tothatsup-pliedforSt.LucieUnit1(NRCDocket50-335).Theonlydifference isthattheUnit2systemhasredundant computers. 7.7-10Amrndmcnt No.0,(12/80) t nsertBB7.7.1.1.11BoronDilutionAlarmSystemReactivigy controlinthereactorcoreisaffected, inpart,bysolubleboronih'reactor'oolant system.TheBoronDilutionAlarmSystem(Figure7.7-8)utilizesthestartupchannelnuclearinstrumentation signalstodetectapossibleinadvertent borondilutioneventwhileinModes3-6.Therearetworedundant andindependent channelsintheBoronDilutionAlarmSystem(BDAS)toensuredetection andalarmingoftheevent.TheBDAScontainslogicwhichwilldetectapossibleinadvertent borondilutioneventbymonitoring thestartupchannelneutronfluxin-dications. 1<hentheseneutronfluxsignalsincrease(duringshut-down)toequalorgreaterthanthecalculated alarmsetpoint, alarmsignalsareinitiated tothePlantAnnunciation System,Thealarmsetpointwillonlyfollowdecreasing orsteadyfluxlevels,notanincreasing signal.Thecurrentneutronfluxindication andalarmsetpoint(perchannel)aredisplayed". Thereisalsoaresetcapa-'ility toallowtheoperatortoacknowledge thealarmandinitialize thesystem.TheBDASwillbepoweredfromanoffsitepowersourcewithanonsitebackuppowersource.InsertCC7.7.1.2.11BoronDilutionAlarmSystemTheBoronDilutionAlarmSystemisanadditiontotheSt.LucieUnit.'2design.Thereisnofunctional comparison toSt.LucieUnitI(NRCDocket50-335). e FIGURE7.7-g,BOROtlDILUTIONALARl1SYSTEtlSIt)PLIFIED~BLOCKDIAGRlNResetStartupChannelNuclear'nstrumentation SignalBoronDilutionAlarmSystemLogicCurrentFlux8SetpointDisplayAlarmSignaltothePlantAnnunciation ~SystemNote:Onlyoneoftwoidentical channelsisshown.
SI,2-1'SARlh,d,2.Sl.imitinr~lo.".s nfShutdow~nhsr lafvaat"SlowPo'litivr. Rrsc"~tivitlnsnrtion 15~4~2.4~1Identificat:inn ofEventandCausesTheInfrequent .eventgroupsfromtheReactivity and1'owerDistribution lhnomalies eventtypeandtheInfrequent eventcoiobinations shownin'ableJ.5,4.2-1 werecomparedtofind.theevent:combinarionres>>)ting intheclosestapproachtothecompletelossofshutdownmargin.TireSlowPosi"tiveReactivity Insert:ion wasidentifit:d astlutemostlimitingeventbecausenootherInfrequent eventaffectsshutdownmargin.The.event:groups andeventcombinations evaluat:ed andthesignificance oftheapproachtothelossofshutdownmargin,acceptanc'e guideline foreachareindicated inTableI5.4a2-1aTheslowpositivereactivity insertion mayoccurduetoaclosureofaboronflowcont:rolvalveoramlfuncticn ofthemakeupcontroller whichcausesaborondilution. 'IThemostlimitinginitiating event'resulting inaslowpositivereactiviyinsertich isamalfunction ofthemakeupcontroller modeselectorswi'chin.thedi'lutemode.Thismayoccur.byafailureintheboroncontrolsystemwhichcausescontinuation ofthemakeupoperation afteraplanneddilutionhasbeencompleted. Thisfailureresultsinthemaximumpossibledilutionrate.Theotherinitiating eventwhichcancauseaslowpositivereactivity in-sertionisthefailureofthcsolenoidinthe.boronflowcontrolvalveintheboricacidlinewiththeboroncontrolsyst:emint:heautorlatic orboratemodes,Thisfailureresult:sintermination oftheboronflowtot:hekCSandthus'ould approachthelossofshutdownmarginatthesamerateas'makeupmodeselectorswit:chmalfunction, \lowever, thiseventyieldsalowflowalarmintheboricacidlinewhichalertstheoperatorattheini"tiationoftheevent:.Themakeupmode.selectorswitchmalfunction wouldnotproduceanimmediate alarri.andtherefore ismore1"mitingthanthein-advertent closureoftheboronflowcontxol.valve.Analysisofaslowpositivex'eactivity insertion eventinitiat:ed duringeachofthesixoperational modesdefinedintheTechnical Specifications wasperformed. Theseanalysesshowt:hatbode5(coldshutdowr.) resultsinthelearntt:imeava-lable fordetection andt:ermination oftheevent.Thisisbecausetheshutdorv~> marginrequirement whichwillbespecifiedoytheTechnical Specification" ia"mallestinHade5(i.cattvopercentdpauhcritical). 'lneither.Hodefiveorl,tode-tx,andutchtheRSS'erallowered,administ:rative procedures governing thefrequency ofboricacidsamlingwillprecludereachingcriticality. 15a4a2e4a2 SequenceofEventsandSystemsOperations Tablel5.4.2.4-1 presentsachronological listandt:imingofsystemactionswhichoccurfo11owing aborondilutioneventaRefertoTable15a4a2a4"l. wl>ilereadingthisandthefollowing section.Thesuccesspatlrsreferenced are'hosegivenont:hesequenceof.eventsdiagran(SED),Figure15.4~2.4-I~15.4-53Anlen(lllrent No.2,(5/81) e SL2-)S/;ItThisfi->>r~pt.'u"-thrr withTable1'p~0-6,whici>containsaglossaryotSl;Dmbolsandacronyn<s, maybrusrdtotracethractu;<tion andinteraction ofsystemsuordtomitigateth>><<ouse<)u!nces oEt)iisevent,ThetimingsTable154s2s41<naybeusedtodetermine when,aftertheinitiatingeve<tt,eachactionoccurssThesequencenEevent;sandsystrmsoperastiono described belowrepresents thewaytnw)tic)t'th>> plantwasstszunadtnrespcndtotheeventinitiator, ))anyplantresponses arepossible, however,certainresponses arelin<iting wit)treaps><<ttotheacceptancr. guidon'nes forthissectionsOf"th"li<nit-ingresponses, themost:likelyonetobcfollowedwasselecteds Table15,4,2,4-2 containsainatrixwhichdescribes the'extentt:o<kichnor<nally operating plantsystemsareassunedtofunctiondu<in'hetran-sientsTheoperation ofthesesystemsisconsistent withtheguidelines ofSubsection 15.0s2.3. Table15'4s2s4-3 containsamatrixwhichdescribeo theextenttowhichsafetysystemsarr.assumedtofunctionduringthetransient, 'Thesuccesspathsinareasfollows:thesequenceofevent:sdia<rams,Figure15,4,2,4-1, ~4tAP~~$Lv~wJcJ~.Jx.React:ivity Control:~~~eoperatorisalertedtoadecreaseinReactorCoolantSystem(PCS)boroconcentration e!.tnerthroughVsempling,'."boronoineter indications~ or-by-etartup-eflux-channel -inaicationeo. Viet;urnsoffthecha'gingpumpsandclosestheletdowncontrolvalves.inorder'tohaltfurtherdilut'ion, Theoperatorthenturnsoff,theprimarymakeuppu.nptndclosestheprimarymakeupisolation valvetostoptheflowofprimarymakeupwatertothechargingpumps,.)text,heincreases theRCSboronconc'entration byopeningtheboricacidgravityfeedlinefromth'eboricacidmakeuptanktothechargingpumpsuctionandrestarting thechargingpumpstoprovideboratedwatertotheRCS,Letdownflowmaybedivertedtotheflashtanktoin-creasetherate.ofboration, 'IArlGs~QFP<Lisrsvicwinp aproposeduethodofprovidins rtdurdant indications ofborondilutiont'batutilis:controlrosieindicstron andRCSsamplin<atvaryingfrequencies (depending nnplantoperating node),FP&Lwilladviset:>eNRCoftheresultsofthisreview,s15d4d2s4s3, .AnalysisofEffretsandConsequences a)Hathematical l)odelCompletemixingofboronintheRCSandequalletdownandcnargingElowrates arr.assumed.The<at:enfchangeofboronconcentration ~duringadiLutioninwhich<<atcrwithoutboronisaddedandcoolantatthetinedeprndent RCSboronconcentration isreiovedisdescribed bythefollowing differentia1 equation: 15.4-54Antendment No.4,(6/81) t Sl.?-FSAR 4)Completemixingof:thcboronint:hcRCSisass~nncdbecauseofthelargeRCSmasscircu1ation byaminianmiofonelowprcssuresafetyinjection pumpoperating inthc:hutdown coolingmode,comparedtothc'relatively smallmassaddedthroughthecharg-ingpumps.2th'/6~7i~i~Thecriticalboronconcentration atcold"hutdownwi.tha11CEAsinis845ppmincluding,uncertainties. Theinverseboronworthis55.8ppm/%lb'hichincludesuncertainties. Applyinguncertainties tothisnumberinthemostconservative direc-~tionI'beinitialsubcritical boronconcentration forthecold.'hutdown modeisfoundbyaddingtheproductoftheinverseboronworthandtheminimumshutdownmarginrequired(i.e.,twopercenthp)tothecriticalboronconcentration. Theresult-ingminimuminitialboronconcentration'n Hode5is.956.6ppm.Theparameters discussed abovearcsummarized inTable15.4.2.4"4. c)Results-Theconservative parameters listedinTable15.4.2.4-4 areusedinEquation3tocalculate thetimetocriticality duringaSlowPosi-tiveInsertion.. Theminimumpossibletimetodilutefromtwo~rcenthssub-cri"ical tocriticality is62minutes.fOperational procedures periodicmonitoring ofthestartupfluxchannelsallowdetection oftheeventwithatleast15minutesavailable toterminate theeventbeforecriticality isreached.('skcd...CcLKpaar.d...rue.vc,The61OtaPO"itiVaReaCtiVity InSertiOn infcdR=FdcaSbbTrbranir'iu7.anypressureortemperature perturbations intheRCSbecausetheeventggterminated beforecriticality isreached.Otherprincipal 1'CSandsecondary systemparameters arenotperturbed bythisevent.AstheRCS.boronconcentration isreducedbythedilution, positivereactivity isinserted. ThiscausesthetwopercentApsubcriticality margintobereducedbutthecoredoesnotbecomecrtical.15.4,2.4.4 Conclu'sions IIThisevaluation showsthattheplantresponsetoaSlowPositiveReactivity Insertion villproduceresultswithintheacceptance guideline forInfre-quenteventsinTable15.0-4,fr15.4-56Amendment No.2,-(5'/8l)
S),2-1'SAR ,SESQUINCI'. OF)>V)'.HTS, COB)l)SPOKE'))ihC Tii(I'.SANDSU)li~)h)LY OFRl',SU].TS FORSI.O';))>OS'CATV); )<I',hG'1')VJTY 1HSI.'I<T10N SuccessPat)csTimeSecEventAnalysisSetPointoz'alue0LtQ4Jcsrc>oS4O4Joj0>SwMQQc>0C>E:C0C>>>C>>C!r.C000C>4JCC>>W0C>>4JC>COf-C>~g4J4CRc>-C0Makeupmodeselectorswitchmalfunction, 'RCSboronconcen-tration,ppm<<1800Operator'dc.tects,event throughoperating.'procedures ZtuZG)~7'~ 037zoOperatorturnsoffchargingpumpstoterminate theevent~QGS-boron-ee~n trwt.ia~pm-+78Amendment No,2,(5/81)
Insertsto15.4'.4~%73Theindications and/oralarmsavailable toalerttheoperators thataborondilution-eventisoccurring ineachoftheoperational modesareoutlinedbelow.1.Thefollowing controlroomindications andcorresponding pre-tripalarmsareavailable forNODES1and2:ahighpoweror,forsomesetofeon-'itions,ahighpressurizer pressuretripinMODE1orahighlogarithmic powerleveltripinMODE2.Furthermore, ahighTAVGalarmmayalsooccurpriortotrip.2.InMODES3and4wi'thCEAswithdrawn, thehighlogarithmic powerleveltripandpre-tripalarmwillprovideanindication toalerttheoper-atorofaninadvertent borondilution. 3.InNODES3,4,and5withCEAsfullyinsertedandinMODE6,ahighneutronfluxalarmonthestartupfluxchannelswillprovideindication ofanyborondilutionevent.4.InNODE5withtheRCSpartiallydrainedforsystemmaintenance, thestartupfluxchannel.alarmwillprovideindication of.anyborondilutionevent.Inthisplantcondition, administrative controlswouldallowoperation ofonlyonechargingpumpatamaximumrateof44gpm.Plantoperating procedures willrequirethatthepowertotheothertwochar-gingpumpsberemovedandtheirbreakerslockedout.Thisdraineddowncaseislesslimitingthanth'eMODE5eventpresented above.Theoperational procedure guidelines, inadditiontotheseindications and/oralarms,willassure.detection andtermination oftheborondilutioneventbeforetheshutdownmarginislostinaccordance withtherequirement ofSRP15.4.6.gp5EW.Thecriticalboronconcentration withCEAswithdrawn (AllRodsOut);.theinverseboronworth,andthenetrodworthforthecoldshutdownconditions are984.5ppm,55.8ppm/Khp,and2.5Ahprespectively, including uncertainties. Thecriticalboronconcentration valueof845ppmwasobtainedbysubtracting theproductoftheinverseboronworthandthenetrodworthfromthecriticalboronconcentration withallrodsout.~5~73.Ahighneutronfluxalarmonthestartupfluxchannelwillassuredetection of'borondilutioneventwithatleast15minutespriortocriticality as'ertherequirements ofSRP15.4.6.2820Highneutronfluxalarmonthestartupfluxchannelalertsoperator.toaborondilutionevent. e ~~~~~~40.38Discusstheprovisions andprecautions forassuringproper,systemfilling(6.3)andventingofECCStominimizethepotential forwaterhammer.and airbinding.Addresspipingandpumpcasingventingprovisions andsur-veillance frequencies. ~ResonseTheECCSsystemisprovidedwithsufficient drainagecapability onthepipinglowpointsandsystemventsonthepipinghighpointstoassurethatairwillnotbeentrained inthesystem.TheECCScomponents areprovidedwithventanddrainagecapability. TheHPSIpumps,LPSIpumps,andshutdownheatexchangers areprovidedwithcomponent ventsanddrainsasshowninFigure1.2-34.ThepipingventsanddrainsareshownonFigure6.3-1a'nd 6.3-1b.Priortosystemoperation, theECCSpipingandcomponents willbeadequately ventedinordertominimizethepotential forwaterha+acrand,airbinding.Administrative procedures willbewrittentoensurethattheECCSpipingandcomponents areproperlydrainedandfilled.
~~~~40.39IdentifyallECCSvalvesthatarerequiredtohavepowerlockedout;(6.3)confirmtheyareincludedundertheappropriate Technical Specifications, withsurveillance requirements listed.~ResenseTheECCSvalvesthatarerequiredtohavepowerlockedoutarelistedbelow.TheTechnical Specification sectionoftheSt.Lucie-2FSARis'urrently beinggen-erated.Surveillance requirements forthesevalveswillbelisted.1)V-3550,Y-3551-HotLegInjection Isolation Valves."Powerrackoutrequiredtomotorduringplantpoweroperation". 2)V-3614,V-3624,V-3634,V-3644-SITIsolation Valves."Powerrackouttomotorrequiredwhenpressurizer pressuregreaterthan700psig."3)V-3613,V-3623,Y-3633,V-3643-SITVentValves.Powertothosevalvesisremovedinthecontrolroomduringnormaloperation.
40.41Identifytheplantoperating conditions underwhichcertainautomatic ~~~~safetyinjection signalsareblockedtoprecludeunwantedactuation ofthesesystems.Describethealarmsavailable toalerttheoperatortoafailureinthepiy~d1illt'aiPtf0tiIthtiavailable tomitigatetheconsequences ofsuchanaccident. ~ResonseMhiletheplantisinpoweroperation, thesafetyinjection signalsmaynotbeblocked.Duringtheinterimphase,whileRCSpressure, isbeingreducedtore-fuelingmode,itbecomesnecessary topartially blocktheSIAS.Asafetyinjection blockisprovidedtopermitshutdowndepressurization oftheReactorCoolantSystem(RCS)withoutinitiating safetyinjection. Thisblockisaccomplished manuallyafterpressurizer pressurehasbeenreducedandaper-missivesignalisgenerated bytheEngineered SafetyFeaturesActuation System.~Thisblockingproce'dure isunderstrictadministrative control;blockandblockpermissive isannunciated andindicated inthecontrolroom.Itisnotpossibletoblockaboveapresetpressure: ifthesystemisblockedandpressurerisesabovethatpoint,theblockisautomatically removed.Theblockcircuitcom-~plieswiththes'inglefail'urecriterion inIEEE279-1971. heSIASblockremovesonlythepressurizer pressuresignalfromtheSIAStriplogic.Thehighcontainment pressuretransmitters stillremainindirectcon-nectionwiththetriplogic.Shouldaneventoccurwherebythecontainment pressureissufficiently raised,highcontainment pressurealarmssoundonRTGB-206andtheSIASisinitiated automatically, regardless ofthepressurizer signalblock.TheTechnical Specifications willpermitblockageoftheSIASinplantmodes5and6,whilethe'hutdown coolingsystemisinoperation. Inthesemodespro-tectionagainstoverpressurization oftheReactorCoolantandShutdownCoolingSystem,duetoaspuriousactuation oftheHPSI,isprovidedbyreliefvalvesY-3666andV-3667intheSDCsuctionlines.FSARTables7,5-1and10.4-5in-dicatesthedisplayinstrumentation andtheiralarms<h~~h<'available totheoperatortoestablish primaryandsecondary systemconditions. Duringcoldshutdownorr'efueling {modes5and6)shouldalossofcoolantoccur,.levelguagesinthecontainment andcavitysumpandthesafeguards roomsumpwithalarmswouldalerttheoperatorofsuchanaccident. Duringtheplant-cooldown, operatoractionisrequiredtocontinually monitortheS.G.secondary water3evelandfeedwater flow.Becauseofthistheoperatorisawareofthesecondary systemconditions. Duringarefueling, forspecificmaintenance tasks,itis'xpected thatsomeinstrumentation willbeinoperable. Administrative procedures willassurethattheoperatorwillbeabletoassessthestatusoftheprimaryandsecondary sys-temsforthespecificsituations,'
40.44~Reson'seAreportedeventhasraised.aquestionrelatedtotheconservatism ofNPSHcalculations withrespecttowhethertheabsoluteminimumavail-ableNPSHhasbeentakenbythestaffasafixednumbersupplied'hrough theapplicant byeitherthearchitect engineerorthepumpmanufacturer. Sinceanumberofmethodsexistandthemethodusedcanaffectthesuitability orunsuitability ofaparticular pump,i'tisrequested thatthebasisohwhichtherequiredNPSHwasde-terminedbebranded(i.e.,test,Hydraulic Institute Standards) foralltheECCSpumpsincluding thetestinginaccuracies beprovided. TherequiredNPSHoftheSt.LucieUnit2ECCSpumpsisconfirmed bytest.Thehighpressuresafetyinjection pumpsaresuppliedbyBingham-!li llametteCo.These'pumps aretestedinaccordance withtheASNEpowertest.code8.2.(cen-trifugalpumps),EachoftheSt.LucieUnit2HPSIpumpsweretestedfortheNPSHrequiredattherunoutflow.SimilarpumpswerealsosuppliedforSt.Lucie'nitl.EachoftheSt.LucieUnit1pumpswerealsotestedfortheNPS)Ire-quired.Theresultsshow(seefollowing table)littlevariancebetweenpumpsfors,imilarflow.TheLPSIpumpsaresuppliedbyIngrsol-Rand. TheNPSHcharacteristic iseon-'firmedbytest.BothoftheSt.LucieUnit2LPSI'pumpsweretested.TheydrualicInstitute Standards wereusedforthetests.NPSH;,TEST RESULTSFORST.LUCIEUNITS1AND21St.LucieUnit1,HPSI.Pums¹200113¹200114¹200115St.LucieUnit2HPSIPums¹14210014 (sparepump)'14210015 ¹14210016 St.LucieUnit2LPSIPums¹1076149¹1076150,GPN640'4064064063163930003000~NPSHft19.719.919.619.919.019.413.0-11.0TheNPSHvs.flowcurvesfortheSt.LucieUnit2HPSIandLPSIpumpsareshownin'igures 6.3-3a,6.3-3b,6.3-4a,and6.3-4b.
440.516.3)~ResenseIIntheeventofearlymanualresetofthesafetyinjection actuation signal(SIAS)fo1'lowed bya.lossofoffsitepowerduringtheinjection phase,operatoractionmayberequiredtoreposition ECCSvalvesandrestartsomepumps.-Thestaffrequiresthatoperating procedures specifySIASmanualresetnottobepermitted foraminimumofIOminutesafteraLOCA..Provide theadministrative procedures toensurecorrectloadapplication tothedies@generators intheeventoflossofoffsitepowerfollowing anSIASreset.TheSIAScanonlyberesetwhentheinitiating signalhasbeenremoved;i.e.normalconditions havebeenreestablished. Ifthesignalthatgenerates anSI'ASisstillpresent,theSIAScannotbereset.Following alossofoffsitepowersubsequent toanSIASmanualreset,thesafetyinjection pumpsandvalveswillnotloadontothedieselsifthecon-ditionsthatrequireautomatic safetyinjection arenotpresent.However,. iftheconditions thatrequireautomatic safetyinjection arepresentafterthemanualSIASresetfollowedbylossofoffsitepower,the,safetyinjection pumpsandvalveswillsequenceontothedieselsautomatically. Nooperatoractionisrequired. uringlowpressureoperation ofthesafetyinjection system,duringshutdownooling;the.operating procedures willrequiretheoperatortomanuallyloadthelowpressuresafetyinjection pumpsontothedieselgenerator following alossofoffsitepower.TherequiredactionsthatwouldprovideSIASwhenthepressurizer pressuresignalislockedout(duringdepressurization forshutdown) aregivenbelow.IAnSIASisinitiated byalowpressurizer pressuresignalorahighcontainment pressuresignal..Therearefourindependent pressuretransmitters eachforthecontainment andthe"pressurizer. Inordertoallowdepressurization ofthepressurizer (i.e.system)asafetyinjection blockisprovidedbymanuallyblock'ing onlythepressurizer transmitter's signalstotheSIAStriplogic.Thecontainment pressuretransmitters remainindirectconnection withtheSIAStriplogic.Therefore, aninci'dent whichwouldraisethecontainment pressuresufficiently >>illautomatically initiateanSIAS(nooperatoractionisrequired). Ifnecessary, the'operator canmanuallyinitiateanSIAS,asdescribed inFSARSection7.3.1.1.1.Shouldthesituation beevaluated asrequiring lessthanfullactuati'on, theoperatorcanalignthesafeguard pumps'nacomponent basistoprovidemakeupwaterforthereactorcoolantsystem. ee C/IelgiQuestion440.54DescribethemeansprovidedforECCSpumpprotection including instrumentation andalarmsavailable toindicatedegradation ofECCSpumpperformance. Ourpositionis<<thatsuitablemeansshouldbcprovidedtoalerttheoperatortopossibledegradation ofECCSpumpperformance. Allinstrumentation associate'd withmonitoring theECCSpump,performance should.beoperablewithoutoffsitepower,handshouldbeabletodetectconditions oflowdischarge flow.Describedur'ingpost-LOCA operation (injection modeandrecirculation mode).tResponse440.54Belowarelistedinstrumentation usedinconjunction withtheLowandHighPressureSafetyInjection (LPSIandHPSI)pumpsforuseindetermining pumpperformance: 1.P-3314andP-3315areusedforLPSI2Aand28,respectively. Theyareusedtodetermine pumpdischarge pressure. Theyhaveindicators onlocalpanels.2.P-3316andP-3318areusedforHPSI2Aand28,respectively. Theydetermine pumpdischarge
- pressure, andhaveindicators onlocalpanels.3.F-3301andF-3306determine totalflow(minusanyminiflow) for,LPSI28and2A,respectively.
Theyindicate, record,andcontroltheflow.Therecorder. isusableas'nindicator bytheoperator. Thereisanindicator displayont'eHotShutdownPanel.4.F-3312(LPSIA),F-3322(LPSI'A),'-3332 (LPSI8),andF-3342(LPSI8)areusedtodetermine flowthroughthevariousLPSIflowbranches-theyhaveindicator displaysinthecontrolroom.S.F-3317andF-3327determine totalSDCflowfromHPSI2Aand28,respectively. Theresultsarerecordedinthecontrolroom.6.F-3315andF-'3325determine totalSDCflowfromHPSI2Aand28,respectively. Theresultsaredisplayed onanindicator inthecontrolzoom.7.'-3313, F-3323,andF-3343determine branchflowfromHPSIpumpsAandB.Theflowsdetermined arerecordedinthecontrolroom.8.F-3311,F-3321,andF-3341determine branchflowfromHPSIpumpsAandB.Theresultsaredisplayed onanindicator inthecontrolroom.,9.Lowflowalarmsarebeingadded'totheLPSIandHPSIpumps.Thesealarmswillhaveemergency power.
Question440.580ListallECCSvalveoperations andcontrolsthatare'ocated belowthemaximumfIoodlevelfollowing apostulated LOCAormainsteamlinebreak.Ifanyareflooded,evaluatethepotential consequences ofthisfloodingbothforshortandlong-tenn ECCSfunctions andcontainment isolation. Listallcontrolroominstrumentation lostfollowing theseaccidents. Response440.58Themaximumfloodingevent,whichresultsfromalargeLOCA,willcausethewaterlevelinsidecontainment toreachanelevation of26feet.Thisconservatively assumesthattheentirecontentsoftheReactorCoolantSystemdrainsandthattheRefueling MaterTankwasatitsoverflowlevelatthetimeoftheaccident. Theoperation ofsafetyrelatedequipment inapost-LOCA, potentially submerged, environment willbeaddressed inaccordance withNUREG0588AppendixEandwillbesubmitted byNovember30,1981.AsstatedinFSARsection3.11.6thisstudywillconfirmthatnoessential equip-mentwillbe'ostasaresultofthemaximumpostulated postaccidentcontainment waterlevel. r,ct 440.59(If)itisourpositionthattheSIShotleginjection valvesshouldbe(6;3)lockedclosedwithpowerremovedduringnormalplantoperation inordertopreventpremature hotleginjection following aLOCA.~ResenseThehotlegSISinjection valves(V-3540,V-3523,V-3550,andV-3551)donothavepowerremovedduringnormalplantoperation becausetherearetwo(redundant) valvesineachline.Administrative procedures ensurethatthesevalvesarelockedclosed'"the controlroom.Inaddition, eachsetofvalvesisprovidedwithanopen/closed statusindication inthecontrolroom.
Question440.61Duringourreviewsoflicenseapplications wehaveidentified concernsrelatedtothecontainment sumpdesignanditseffectonlongtermcoolingfollowing aLossofCoolantAccident(LOCA).Theseconcernsarerelatedto(1)creationofdebriswhichcould'potentially blockthesumpscreensandflowpassagesintheECCSandthecore,(2)inadequate NPSHofthepumpstakingsuctionfrom~.thecontainment sump,(3)airentrainment fromstreamsofwaterorsteamwhichcancauselossofadequateYPSH,(4)formation ofvorticeswhichcancauselossofadequateNPSH,airentrainment andsuctionoffloatingdebrisintotheECCSand(5)inadequate emergency pro-ceduresandoperatortrainingtoenableacorrectresponsetotheseproblems. Preoperational recirculation testsperformed byutilities haveconsistently identified theneedforplantmodifications. TheNRChasbegunagenericprogramtoresolvethisissue.However,moreimmediate actionsarerequiredtoassuregreaterreliability ofsafetysystemoperation, Vetherefore requireyoutakethefollowing actionstoprovideadditional assurance thatlongtermcoolingofthe'eactor corecanbeachievedandmaintained following apostulated LOCA.1.Establish aprocedure toperformaninspection ofthecootainment, andthecontainment sumpareainparticular, toidentifyanymaterials whichhavethepotential forbecomingdebriscapableofblockingthecontainment sump'when requiredforrecirculat'ion ofcoolantwater.Typically,'hese materials consistof:plasticbags,step-offpads,healthphysicsinstrumentation, weldingequip-ment,scaffolding, metalchipsandscrews,portableinspect,ion lights,unsecured wood,constuction materials andtoolsaswell'asothermiscellaneous looseequipment. "Aslicensed" cleanliness shouldbeassuredpriortoeachstartup.2.Institute aninspection programaccording totherequirements ofRegulatory Guide1.82,item14..Thisitemaddresses inspection ofthecontainment sumpcomponents including screensandintakestructures. 3.Developandimplement procedures fortheoperatorwhichaddressbothapossiblevortexing problem(withconsequent pwnpcavitation) andsumpblockageduetodebris.Theseprocedures shouldaddressalllikelyscenarios ands3iouldlistallinstrumentation" available totheproperoperator(anditslocation) toaidindetecting problemswhichmayarise,indications theoperatorshouldlookfor,andoperatoractionstomitigatetheseproblems. '~Pipebreaks,drainflowandchanneling ofsprayflowreleasedbeloworimpinging onthecontainment watersurfaceintheareaofthesumpcancauseavarietyofproblems; forexample,airentrainment, cavitation andvortexformation-Describeanychangesyouplantomaketoreducevorticalflowintluteneighborhood ofthesump.Ideally,flows3iouldapproach'niformlyfromalldirectfons. 0 eQuestion440,61(Cont'd)5.Eva]uatetheextenttowhichthecontainment sump(s)inyourplantmeettherequirements foreachoftheitemspreviously identified; namelydebris,inadequate NPSll,airentrainment, vortexformation, and.operator actions.Thefollowing additional guidanceisprovidedforperforming thisevaluation. (1)Refertotherecommendations inRegulatory Guide1.82(SectionC)whichmaybeofassistance inperforming thisevaluation. (2)Provideadrawingshowingthelocationofthedrainsumprelativetothecontainment sump.(3)Providethefollowing information withyourevaluation ofdebris:(a)Providethesizeofopeningsinthefinescreensandcomparethiswiththeminimumdimensions inthepumpswhichtakesuctionfromthesump(ortorus),theminimumdimensions inanyspraynozzlesandinthefuelassemblies inthereactorcoreoranyotherlineintherecirculation flowpathwhosesizeiscomparable toorsmallerthanthesumpscreenmeshsizeinordertoshowthatnoflowblockagewilloccuratanypointpastthescreen.(b)Estimatetheextenttowhichdebriscouldblockthetrashrackorscreens(50percentlimit).Ifablockageproblemisidentified, describethecorrective actionsyouplantotake(replaceinsulation, enlargecages,etc.)(c)For.eachtypeofthermalinsulation usedinthecontainment, providethefollowing information:. (i)typeofmaterialincluding composition anddensity,(ii)manufacturer andbrandname,(iii)methodofattachment, (iv)locationandquantityincontainment ofeachtype,(v)anestimateofthetendencyofeachtypetoformparticles smallenoughtopassthroughthetinescreeninthesuctionlines.(d)Estimatewhattheeffectoftheseinsulation particles wouldbeontheoperability andperformance ofallpumpsusedforrecirculation cooling.Addresseffectsonpumpsealsandbearings.
Responsel.StLuciewi11institute aninspection programtoverifythatthecontainment isfreeofdebristhat.mayleadtoblockageofordamagetotheECCSsump.Theseinspections willassurethatthecontainment andsumpareinthe"aslicensed" stateofcleanliness priortoeachreactorstartup.2~Thesumpinspection programwillincludeanexamination ofsumpstructures, suchasintakesandscreens,asoutlinedinRegulatory Guide1.82.3~Longtermcoolingoperating procedures willrequireperiodicveri-ficationofsystemperformance toinsuresafeoperation underre-circulation conditions. 4.Thedynami.ceffectsassociated withpipewhipandjetimpingement ofallhighenergylinesinthevicinityofthesumphavebeenevaluated. Innocasewouldanyhighormoderateenergypipingfailurecompromise thefunctional capability oftheESFsumpwhen.itisrequired. Therefore, thesumpmodeltestoutlinedintheresponsetoquestion440.60willnotsimulatesprayflowsim-pingingonthecontainment ~atersurface.However,variousscreenblockagetestswillbeperformed tosimulateworstcaseapproachflowandflowchanneling conditions. 5.1.TheStLucieUnit2sumpconsistsofonelargefullcapacityres-ervoirwhichphysically separates theredundant ESFsuctionlinesbyapproximately 15feet.Thesumpdesign,described indetailinFSARsection,6.2.2.2.3, meetsalltherequirements ofRegulatory Guide1.82withtheexception thatonlyonesumpisprovided. Theliteralintentofthislastrequirement issatisfied bytheuseoffinescreentoseparatethesuctionlines.5.2.Therelativelocations oftheReactorCavityandcontainment sumpscanbeseenonFSARfigure>~25.3.a)Thesumpdesignincorporates aninety(90)milfinemeshfilterscreentoprotectthesuctionpipingfromentrained particles. Thesescreensaresizedtoeliminate allparticles toolargetopassthroughthereactorfuelassemblies whiihisthemostrestrictive flowpathinthesystem.Particles smallerthanthiswillpassthroughallsystemcomponents including reactor,pumps,heat-exchangers andspraynozzles.b)Debrisgenerated insidecontainment asaresultofanaccidentwillbeconfinedbetweentheprimaryandsecondary shieldwalls.Largedebrisgenerated hereisprevented fromreachingandpossiblydamagingthesumpbytheSeismicCategoryItrashrackslocatedatthesecondary shieldwallopenings. Althoughitisbelievedthatthisdesignvillminimizedebrisatthesump,modeltestswillbeperformed assumingblockageofhalfoftheverticalscreensandallofthehorizontal screens.
Response~.~.440.61(Cont'd), (Cont'd)c)Adescription ofthevarioustypesofinsulation expectedtobeusedinsidecontainment andanestimateofthequantities appearinFSARTable6.2-40.d)Asstatedpreviously, particles smallenoughtopassthroughthefine,screenscanpassthroughthesystemswithoutdele-teriouseffects.Pumpoperability isnotexpectedtobeimpaired. 6.TheReactorDrainTank,locatedinthesump,isdesignedtoremaininplacefollowing anaccident. Theeffectofupliftloadsre-*suitingfromthesubmergence ofanemptytankhavebeenanalyzedandfoundtobewellwithinthecapabilities oftheholdownbolts.AContainment Isolation Signal(CIS)isolatesthetankandstopsthedrainpumps.esponse6addressaddxticnal NRCconcernexpressed inthereview'meetingfJuly23and24,1.98lregardingReactorDrainTank.
Thesubmittal fortheLOCAanalysesdoesnotaddresstheeffectsofsteamgenerator tubeplugging. Theeffectofadecreaseinsteamgenerator tubeflowareaisanincreaseinthepeakcladdingtemperature (whenthepeakoccursduringtherefloodportionofthetransient). Iftheanalysesprovidedareconsidered tosupportgenerators withpluggedtubes,describetheextentofthepluggingtheanalysessupportandthemethodusedtoaccountfortheplugging. Ifsteamgenerator tubepluggingwasnotconsidered, theappli-cantwillberequiredtoperformadditional ECCSanalysespriortooperation withpluggedgenerator tubes.Ineithercase,theapplicant isrequiredtoincludeaninterface requirement onthevalidityoftheLOCAanalyses(acceptance criteriaof10CFP50.46) andtheTechnical Specification .limitforthenumber(orpercentage) ofallowable pluggeds.earngenerator tubes.Resonsetouestion440.62TheSt.LucieUnit2ECCSanalysisdoesnotassumeanysteamgenerator tubesareplugged.TheeffectoftubeplugginghasbeentreatedonanasneededbasisforC-Eoperating. plantsandtodatetubeplugginghasbeen'inimal. Inoneexample,anECCSanalysisw'asperformed assuming500tubesperSGpluggedwhich,represents approximately 6~~oftheunplugged total.Thepre-dictedECCSperformance changedverylittleandtheallowable peaklinearheatgeneration rateremainedunchanged fromthecasewithnoSGtubesplugged.Themethodofanalysisfortheassessment ofECCSperformance withaportionoftheSGtubespluggedisprovidedintheReference. SincetheNSSSdesignutilizedinthereferenced calculation issimilartotheSt.LucieUnit2design,asimilarconclusion isanticipated forthisplant.Presently, St.LucieUnit2has47steamgenerator tubeswhichhavebeenplugged,whichrepresents approximately 0.6i.oftheunplugged total.Thisissignificantly belowthe6~pluggedanalysiswhichdemonstrated minimalchangeinECCSperformance andnochangeintheallowable peaklinearheat'eneration rate.Basedonthis,C-EfeelsthatthecurrentECCSperfo~iiance
- analysis, whichdoesnotconsidersteamgenerator tubeplugging, remainsapplicable andnonewanalysisisrequiredunlesstubepluggingbecomesmoresignificant.
tFS~g5'cc-k'~s 437Q3~0G333sha~a.Lco~~odAcJ.0os@kcM+>>Mre~$~~+'fo~p(uppg.Q~
6.3.3'.3CoreandSystemParamctcrs SL2"FSARspumpflowiscredited. Theactualdelaytimewillnotexceed30sccon<"fol-lowingaSIAS.~Inthelargebreakanalysis, nooperatoractionhasbeenassumedThesignificant coreandsy.ternparameters usedinthclargebreakcalcula-tionsarepresented inTablc6.3-7. ThcPeakLinearHeatGeneration Ratewasassumedtooccurint)ie'topofthecore,theconservative locationasidentified inSectionIV.A.4ofReference 2.Acopservativc beginning-of-lifemoderator temp.rature coefficient (80.5x10'p/F)wasusedinalllargebreakcaseszi~srp7>1'.rTl>einitialsteadystatetoolrodconditions seredetermined asafunction'1ofburnupusing'theFATEScomputerprogram.Thelimitingcondition forECCSperformance wasdetermined tooccurforahotrodaverageburnupof620tI'liD/SITU. Aparameter studywasperformed whichdemonstrates thatcladtemperature andoxidation weremaximized atthisexposure. Theresultsofthisstudyarepresented onFigure6.3-13.Qf/g~'.3.3.2.4. Containment Parameters Subsection 6.2.1.5discusses indetailthecontainment parameters assumedintheECCSanalysis. Thevaluesfortheseparameters'ere chosentominimizecontainment pressuresuchthataconservative determ1nation ofthecorerefloodratewasmade.Pressuresuppression equipment startuptimes~wereselectedattheirm1nimumvaluescorresponding tooffsitepowerbeingavailable 6.3.3.2.5 BreakSpectrumIn'general, all'possible breaklocations areconsidered inaLOCAanalysis. However,asdemonstrated 1notherAppendixKLOCAcalculations (References 8and9forexample), hotleg.ruptures andcoldlegrupturesonthesuc-tionsideofthereactorcoolantpump,yieldcladtemperatures substantial-lylowerthanthoseobservedforcoldlegrupturesonthedischarge sideofthepump.Pumpdischarge legrupturesare:limit1ng duetotheminimiz-ingofblowdowncoreflowandrefloodrateforthebreaklocation. Thus,onlythesebreaksneedtobeconsidered inordertoidentifythatrupturewhichresultsintheh1ghestcladtemperature orlargestamountofcladoxidation. Sincecoreflowisafunctionofbreaksize,calculations havebeenperformed forbothguillotine andslotbreaksoverarangeofbrealsizesuptotwicetheflowareaofthecoldleg.Alistofthebreaksexam1nedappearsinTable6.3-8whichrefertoFigures6.3-5throughFigures6.3-11.6.3.3.2.6 ResultsandConclusions .Theimportant resultsofthisanalysisaresummarized inTable6.3-9andthetransient behav1orofimportant VASSSparameters isshowninthefig<ircslistedinTables6.3-10and11whichrefertoFigures6.3-5through6.3"11andFigures6.3-9respectively. Peakcladtemperature vs.brcaksize1"6.3<<17Amcndmcnt No.0,(12/80)
SL2-FSARIcIBasedontheseassuniptions, thefollowing creditistakenforinjection flowinthesmal1breakanalysis. Foradischarge legbreak:75%oftheflowfromone.1IPSI pump50%oftheflowfromoneLPSIpump100%oftheflowfromthreesafetyinjection tanks50%oftheilowfromonechargingpumpand~forbreaksinother.local.ons: 100%of'theflowfromoneHPSI,pump 100%oftheflowfromoneLPSIpump100%oftheflow.fromfoursafetyinjection tanks100%oftheflowfromonechargingpump'able 6.3-12presentsthehighandlowpressuresafetyinjection pumpflowratesassumedateachofthefourinjection pointsasafunctionofreactorcoolantsystempressure. 6.3.3.3.3 CoreandSystemParameters gtjto4RThesignificant coreandsystemparameters usedinthesmallbreakcalcula-tionsarepresented inTable6.3-13.Thepeaklinearheatgeneration rateof15.0kw/ftwasassumedtooccur15percentfromthetopoftheactivecore.Aconservative beginning-of-life moderator temperature coefficient ~~~~~~~~~~of+0.2xloha/oFwssused.~met'-T()ATheinitialsteadystakefuelrodconditions wereobtainedfromtheFATES()computerprogram.-The'small breakanalysisassumedthesamehotrodaverageburnupaswasfoundlimitinginthelargebreakanalysisdescribed inSubsection 6.3.3.2.11owever, sincethesmall.breakanalysis'conservatively usedahigherPL11GRthandidthelargebreakanalysis(15.0kw/ft"vs13.0kw/ft).thefuelrodparameter valuesgiveninTable6.3-13differfromthoseinTable6.3-7,'s6.3.3.3e4 Containment Parameters Thesmallbreakanalysisdoesnotcreditanyriseincontainment pressure. Therefore, otherthantheinitialcontainment
- pressure,
'whichisassumed.toremainconstant, nocontainment parameters areemployedforthisanalysis. Theinitialcontainment pressurewasassumedtobe0.0psig.6.3.3.3.5 ,BreakSpectrumFivebreakswereanalyzedtocharac(erize thesmallbreakspectrum. Fourbreaks,ranginginsizefrom0.5ftto0.015'ftwere'postulated tooccurinthepumpdischarge leg.The0.5ft.freakwasalsoanalyzedforthelar'ge.break ~~~ctrum(Subsection 6.3.3.2)andisdefinedasthetransi-tionbreaksize.One.breakrepresenting afINllyopenpressurizer reliefvalvewithanequivalent areaof0.008ftwaspostulated tooccurinthetopofthepressurizer. Theequivalent areaisbasedonthedesignflow.requirements qfthereliefvalveasutilizedintheC-Esmall'break.evaluation model(~.Table6.3-14liststhevariousbreaksizesandlocations examinedforthisanalysis. .6'-18a,Amendo>cnt No.I,(4/81)
InsertAATheECCSperformance
- analyses, aspe'rformed, donotaccountforsteamgenerator tubepluggingwhichmayoccurduringtheplant'slifetime.
August18,1981KbascoServices, Inc.AgentsforFloridaPower6Light,St.Lucie2worldTradeCenter,83dFloorHewYork,NT10048Attention: R.Ragbavan~
Subject:
FloridaPowerandLightCoSt.LuciaUnitNo.232"MSXVEbascoPO422528RockMellS.O.No.36-11000XnresponsetoyourTVXdatedJuly31,1981Rockwellisproviding thefollowing Interimresponsere1ativeto"asdo11vered" valvebonnet,andmaindiskthicknesses forpressureretaining purposes: Saedon"on-going" iterative finiteelementanalysisthebonnetthick-nessisat.least30percentgreaterandthemaindiskthickness isatleast25percentgreaterthanminimumthickness requiredforpressureretention purposes. Theexact'percentages andotherconsiderations forthickness .allowances forcorrosion andmechanical loadsvi11beidentified inourfinalreportscheduled forcosapletion thismonth.ProspectBngineering Supervisor RockwellInternational cc:N.Hangieri-FL-9R.D.Hordea3.R,BlackS.3,MumB.B.Hildreth
SNEET0OFllOFSNO.2SZ4afO~NO,C~l~o~A'T~+~/Z++~++~op'ACO<CamTRATEnYORSAPO>I+S~g)0~~(EBASCOSERYtCEStNCORPORATED BY~CHl~ll >6oAT(.'8~IZ.SINElh'YORK r~~CHg((gyjC/'//lD((g~u/(///CLIENTPROJECT5~L+&I62""~*"-((~s~~....RF-V>P.WP~oc:ey~~F< Wp.g<<>><Sv.tgavieW@Re~EpOR~SFog.6HeAg.SH,z..RF-.v.lf&dFQgAl'~gg..~PP,P=8'-agFV'lE,WOF~(Span@=Q-0~\RFVt~I,.OF4gq7<H6ypRKV<EWOpQRATIh)G5p~~=5~-0SH-5REVlE.vbOp5P~W-.-.W'-oIU~V~SOFCort'uTeg~VSA55O~ay..t+VAR10u&5pA<$.opgpA~~~q..<~p~<~Ot-~ep~a~~~e. SH9-Il~t~~l'p~~FOAM6~'IACV11I (' sHFavIoFocpT.RLvlEwt.'pstNpl-'(5~ggdg5'Eb '6RATiH4Su85'6c'7 A.~PhlCEh~Tf"A7E.D YDRt4AEoMl&<lLEt-OA>EBASCOSERVICESINCORPORATED BYT.CIIIANCh BAYK8Kl~hOYIRKWYORK,hOBKO.BY/CW!I'A'AYK QEifll/CLIENTFPL.ApRosacvaTIUc1c.2.BBBiKOY~KIKUC LYJZILIIWKAIQAIADS&U~AChAUDiT-IYIISSILK+I~OTK 'T-IOAS(LAN>Zt~9E+iCe5l=tHoD:'lKevin.m@~EgoREsRn..sE,~slag:. I.ASSUM'K+(i)ocTILITTRAZio')COMPUTE~KP,IRMLLtOmHil"HM'5THGMOmG~fgoMcXC5)'~~tOAD&L'COMPUTE.N/MyQHCAQMg=Fg5)5=ELAH'l~SEcTI09.4ioPOLUQ IFIw/~pigIF</any(ls0ToSE.Ta&TFP,~HE<t:-I5=&HAPCFwc.Tc~QR.PRGC7WNqytgg gaCylo~lq'gy.ILAa.CEg.fR.y'SmAu,a.wLEf'EAT~ALcu.LAT'iog/go~rT&P1"!n.enAIPUIZP-"~.IFI~/l.'~IO,TKSIa~ r~jN)-2~........tsoK(sea.plDTxepc.oars)..~.D...:.'............ ~M~~"'(~N'.E,ORATl~C3)ESi6QF0PP~Ft.RE~CFC<~-8>S~H.SQlKS/ER.TopLASTICMCTIIU95olSiIlociUIKISL AIIALySI&sy8G.HEALrPP.Il+..QSIARlTFKtk,EBSWlTQl4=-FORMSllRKYVB77 -e OFSHO.7PRDIECT~iLU CIREBASCOSERVlCESlNCORPORATED BYI'CIIIAID iDDATEI3~4,JNEWYERKCIIKD.BY~..'/TDATE~/58/CLIENTFLSHaaT3OPDEPT,BBBIECT~R<Jr[O-J~ZAL EPPI~&PDl:AU~AC. ~LI'DI~M!$ ~&l(6IPTDICCfIc'AiRl1/EVICTW0PCjgr>>IH> FP8-l2~<l5-05C.<,4+Pl/<h%15>Il..l.+PA<=5"09CAAiagSAR&'~8Pig,r/~3CRo55gag~~i~<l~@Zc/~6=2(.g3'~/vzA~<IIDA-IC/YD.I2//I31522qIu/Fh3//urea. ~=io)RI3>I~EHITg845I/Y~Z.COWL))TE.J13$./(3WEGREITIN+~QCPPi/'AQ I'.IIDCI=>D)l32x.,locot.5N+l,gzV1iMIhSSF>~'Tc<=C,-~,igP~Wlh).PiAirrl~PAH+e2$~P5)ffR~ID,3SSXi.3~s/> qq~qIKI'-1BILIg)(5=3@x24.73125l2S<'IO.+,=I.4+5<l5>tBOggPGaq51~pIvo5>A9SHg~g4k-F7QoD~QlNTactE.QS5uMPloe.8gIR4ft,MSlB9f$l.slllBg'I5I'HSthrallO'KBRl)'3,&l+l53.4)lo'E.etcpJ)9~lcfR0IBORLI$01REV771
EBASCOSERVICESINCORPORATED ~lc:f<<.B4B.ICHKO~BY~I(.IIICATO~gf/QiCLIENTLSHET4OFEOEPT./OFSNO.c-~<'C'2NO.iP5-PROJKCTPT.LIICIC~pE(16.2'l-6gbfiN(ipE.5tghl-5p+t4KUBJKCTPtQIC7IIZAI'0Zg~lRIAITP8TIAr~AuIT~i-MQPOPZLIC+I"OTZC~~OHCHc.CI+.+HC.Agwxei><E.5A.V4uJHaalZ>y.I5'-o~,+gPiP~~ASSI~~)gI)+IS'Sll<8IT3+0SP&~CoMpLzTKZ3ZZ~/I~h~AI-i+.3s.8xz5'Tlz=733.ZXIcooI.5Oi+I,'Ix+tZ.QPi3QZXZIOIO&FORM5I'IRCV113
<EBASCOSERYICESINCORPORATED BYQ,CIfIPgCTOATESs0'INEWYORKCIIKB,BT~CJ//JJIBATE~F/CIJ/CLIENTL'HEET~OFI,s>>FDEPT.~.OF5NQ.~"'"J~/ONO.'PROJECT~LU+IE>>R.&4l6V4lH4CjP.ATrHQSUBJECT'5~T,IICT4</IL2>C5I/S6>ISC0UAC~Au'DIT-h1IS~LI-+RU+C'IO~JSpAv=>0-8CIIEtk.PEIJT)IIICT I.PJJJUIJKIf~-10h)lSSIt.E IZ~ply-~5</.QOPiPE,HlTSQ45PPQ'2.c.chipu+E. R~(02.3+ACEC1IIATIIE) jSZSICTN'2H,22)UJ-~iCI2.'BSS2.ci+i,924.P~'SINGi.24Xl392<l/I3qq>4.q-g~L+.ejc/SI/25 Xldg~//5=Zgg,5fz.8I~oo,>"-'7>7728-IgagNyl"'oy,g,gpp~I7gq~~VogASSHOTO<N~>OLl=-l.=S.e3-2.-3-Zxl.4'7?. Ny~(ct.ofK.)<C,~c.~OI*A~50r<uto&.78leS,L5Ml.kbtt.q87t,+97loFSIi'-4mputing'L6$3,QO'f6It)8clo,f,(PyC~PRIuQiHE,R~VALVEWl~Qt=..5-00PR~~,~HM~>>FORM4~IRKV711
(EBASCGSERVICESINCORPORATED BY5HIAl6DATE((~~8(CBED.BY~</YA.V 0*YEEQl8/CI.IENTI"I+PROJECT+L0CI&0AMBYI.0-'L~Cia.rTI8gSHEET~OF'L+j>A.HŽ5-o(,Q05DlfY15rALo(I(Y(l55((8((115<>Mpg76.x'90.Ql(5Dscg(EATlB((0 zllES,(BA( IA.(9Dp00)z30,5uo2IOSooo,iv)+J,9zcpr(5g(~f<x(392x318,5(98~YBl((~gg-0,33g2.Sxgpx.$22)(ILyCfQcfIN>>358((zSxs/g=z<p.4.""EEAS5oeEp10LE,984.~.+5.~~5=~t'2@,~3X< 5'oo5-g-Fy12.8zl(15.)(2DO.I5a.RgpgAT57MtToQwsQuPplv7+)C..'I302(((.l(89 S.c.~~l~l.20$,I,go+Ii%87II'%gQCdn>t(0pje'HII5g2ID/FORM$8IIIKV807I P EBASCO.SFRVICI.:S INCORPORATED I'BY.CIIIUcICTo*TEE0BlCIINO.OTJCT.Pr>'ATE QP~+5/CLIENT&PL,PRO)EOT6fcLVEONl6SuS~ECT~~r 0FAL'P)'rido4HE'WYORKsHEEToFIIC::RT.CTBNo,iD~CZ-No.'oPZCUIUAC~PCIIY>T-IIII55IE~EZOTECTICOIg.EVIGm.&RAaiW6PE.StQM+pal&=5cc.QE,cl<5HEARI.p55UME.jl.='oNCowpuTQlYIICO5ILE. IZ,WIS-CO5CII.OOPIPEPPOP*II]IgguDiq~q~PIXl,3zX3ol2.TIcf~(see6.8385H.S5k{.>I0F3og*T"9.V=>iS'~to.ss8<z585/zKiP's.../V=Il5X.I,Sgi%9;125xzz.cICog{z~@oIc.~~IBOA54ddlACV7Tl
EBASCOSERVICESINCORPOIRAl ED(BY3~~NtA+6DATEHe~R9CHER.BY/C//IIFCATE~/+i/P CLIENTFRCJEOT~ST VClE,NEWYORKSHEETOFf]DEIT./OFBRO.~2LII~C/IIO.u'I-.'>><<RaYA>>C:-'.RE,Vi5VJOP5IMPLJ$DPPbRTE.OgP.A+IPJQ$0Gg~TAC0$4c.~>>YQAYEro RgvAQON11&&i~CLOA>.:.CoMt'OTALP10/-.IoL=8-0Qtlb.S~~IOCvRvEs0PGal>llYKDP.VsAssulnaPVAR1CU66AH5CF4RPT1NCFIIEI'I~MI~00I.IOt.'ZQl.30l+0l.<gl,g(I.+1I,WS(,Qgl,~'f~l'H9IW'f6I'H8lSoI,ago1~115(.Z<IIi'58l2~34P,lpga'3,lr4+,os'.5,00t,o111.9o6QIIZ,8ll.150I5.Sll$Bl10FIX')3'"-.'>4'BQ 5tE'8IEOIIM$$IRCV7Tl
THPLASTICMETHODS'F STRUCTURAL ANALYSIS. .B.G.Nealhl.A.,Ph.l).,M.l.C.l'... hl.l.Mech.E., A.M.I.Slcuct.E. Pr%seerofAppliedSciencefmperioiCollrgrofScirnce~ndTrchnofo~ CHAPMAN&HALLLTDandSCIENCEPAPERBACKS i\ .l40g30o4~20Q10Initialaihph,625Aipaphr~.In.rr~rIIIII<6ippc,JQ000Inps pe'~.nr.IIIwIIIIlgI>0nhhtPfPtrain-harChning IIIIIvl020JP40PPhP.P20PJOPSJP6trainta>fb)(o)Strees-strain relation. (b)Bendingmoment~rvaturs relation! AI~AhFig.5.8.Bcadingnunncnt~in'c rchtionforI.section tsithstrain-hardening (afterHrennikoff). thatthestress.strainrelations obtainedhemtensilespecimens cutfromvariouspositions inrolledsteeljoistsareknowntovarywidely,aspointedoutinSection6.2.Tlifthanalysisitwasassumedthatthethickness ofosimpyetheflangesviasnegligible incomparison withthcdepthotebeam,sothateachflangeareacouldberegardedasconcentrated ataconstantdistancefromtheneutralaxis.Withthisassump-tionthcformofthebendingmoment-curvature relationdependsonlyonasingleparameter, namely,thcratioofthetotalflangeareaArtothewebareaA.Uptothecurvature atwhichstrain-hardening developsintheoutermost fibres,thcanalysiswasasimpleextension ofthetheorywhichhasjustbeengivenfora172ESTIXATES OFDXFLECTION8 whicharediscussed inSection6,2,haveindicated thatthe-material ofrolledsteeljoistsexhibitseitherasmallorzerodropofstressatyield.However,theparticular featureoftheassumestress-strain relationwhichisofespecialinterestisthatitincludes'hcstrain-hardening range.Thcstrainhadcommences is0018whereasthestraincattheyieldreningco0018pointis00011,sothattheratioofc,tocsis00011or164.Afurtherimplicitassumption intheanalysisisthatofhomo-geneityThisisratherdifficult tojustifyinview-ofthefactgeneity.isisraerLOADDEFLECTION RELATLONS FORBEAMbeamofrectangular cross-section. 'Todetermine thebendingmomentforagivencurvature, andthusagivenlinear'distribu-tionofstrainacrossthesection,itwasonlyncccssnry toaddthebendingmomentduetothcrectangular.web tothebending-momcntduetotheflanges,whichisequaltothcproductofthcstressinaflange,itsarea,andthedepthofthebeam.Athighercurvatures, aprocessofstep-by-step integration becamenecessary. Fourvaluesoftheratiooftotalflangareatowcbareawercconsidered, namely,0,05,10nnd15.Thevaluezerocor-respondstothecaseofabeamofrcctangiilar cross-section, andtheothervaluescovertherangeofstandardI-sections. Theresultswerepresented intheformofcurves,andforthepurposeofaccuratecalculation weretabulated forthecaseinwhichthisratiois10,sothatAr--A.Thcbendingmoment-curvatiire relationforabeamofI-section ofthistype,asdcrivcdfrointhesetabulated results,isshowninFig,5,8(b).Theresultsareplottednon-dimensionally, theordinates beingtheratioofthebendingmomenttotheyieldmomentandtheabscissae beingtheratioofthecurvature tothecurvature at'yield. Itisreadilyverifiedthatforsuchacross-section theshapefactorctis1125,sothatMP=1125Mr.Itwillbeseenfromthefigurethatstrain-hardening commences when-~164,thisbeingt)ieratioofKsShtOCs~Furtherresultswerealsotabulated whichenabletheload-deflection curvesofstatically determinate beamsandsimplestatically indeterminate beamsandframestobederived.Someapplications ofthisworkwillbegiveninSections5.8and5.4,Foramoregeneraltreatment oftheproblemofdetermining bendingmoment-curvature relations fromanyassumedformofstress-strain
- relation, theworkofKadairmaybcconsulted.
Severalcomparisons withexperimental resultsforlightalloybeamshavebeenmade,forinstancebyRappleyca andEastman'ndbyDwight,sandthecaseofalightalloybeamofrectangular sectionwhichissubjected tohendi>>gmomentsaboutaxesotherthantheprincipal axeshasbeendiscussed byBarrett.'.3 Load-deflection relations forsimplysupported beamsForabeamrestingontwosimplesupportsthcbendingmomentdistribution inthebeamforagivenloadingisknownfrom178
r.sTIM~TEs orDErLEcTIoNs considerations ofstaticsalone.Oncethebendingmoment-curva-turerelationisspecified thecurvature atanysectionisknown,andthedeAectedformofthebeamcanthenbefoundbyintegration. Inthefirstplacebeamsofrectangular cross-section willbecon-sidered,withthebendingmoment-curvature relationofequation5.6;subsequently, someofthcresults'btained byHrennikolf sforjoistswiththebendingmoment-curvature relationofFig.5.8(b)willbegiven.Beamofrectangular cross-section Ioithcentralconccntratcd loadConsiderauniformbeamofrectangular cross-section, breadthbanddepthh,whichissimplysupported overaspanJ,asshowninJYg.6,4Simplycapportcd rectangular scctimsbeamarsAccatrntconccntratcd toad.Fig.5.4.Itwillbeassumedthattherelationbetweenbendingmomentandcurvature intheyieldedregionsistherelationgivenbyequation5.6,andforsimplicity itwillbeassumedinthefirstpla'cethatf~~f~,sothatM-~<-8--"ooo5.8Thisrelationcorresponds totheassumption oftheideal-plastic stress-strain relationofFig.1.4(b).ThebendingmomentdiagramforthebeamisasshowninFig.5.4,thecentralbendingmomentbeingHAJJ'l.Yieldfirstoccursatthecentreofthcbeamwhenthisbendingmoment1V4~~LOhD-DEFLECTION RELATION8 roRREawareachesthevalueMoThecorresponding valueoftheload,JJ>>istherefore givenbytheequationM~)JVl... -.5.9Iftheloadisincreased toavalueWgreaterthanJJ',theyieldmomentMwillbeattainedatsomedistanceafromthesup-ports,asshowninthefigure.InthccentralportionofthebeamwherethebendingmomentexceedsM>>yieldoccurs,andplastic-ityspreadsinwardstowardstheneutralaxis.Thegeneralformofthcplasticzonesthuscrcateilisshowninthefigui.c;aderiva-tionoftheshapeoftheelastic-plastic bounilary willbcgivenlater.Eventually, collapseoccurswlicnthccentralbcnilingmomentreachesthevalueM~,sothatplasticity hasspreadrightdowntotheneutralaxisatthccentreofthebeam.Thecor-responding collapseloadJV,isgivenbythe.equation81~~)JYPUsingequation5,9itfollowsthatJV,NJVNsincetheshapefactorforarectangular beamhasthevalue15.Fromstaticalconsiderations itfollowsthat1lfv=JJJaCombining thisequationwithequation5.9,itisfoundthattSincetheslopeatthecentreofthebeamiszerobysymmthecentraldeflection 8isseentobegivenbytheintegral. Ia'edz..~.5.110wherea;ismeasuredfromtheleft-hand support.For0<e<a,thebeamiselastic,sothatthecurvature icisequalto-~,.Fortc~~ora<ai<-,,thebeamhaspartlyyielded,sothattherelationbetweenbendingmomentandcurvature isgivenbyequation5,8.Solvingthisequationfore,itisfoundthat.,fora(a<-, \'Dl~tr-YI~11r~~.~'4,oPIptI4}}