ML17266A494

From kanterella
Revision as of 12:19, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards Response to NRC Requests for Addl Info Which Have Not Been Formally Submitted on Docket.Responses Will Be Incorporated in Future Amend to FSAR
ML17266A494
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 09/08/1981
From: UHRIG R E
FLORIDA POWER & LIGHT CO.
To: EISENHUT D G
Office of Nuclear Reactor Regulation
References
L-81-389, NUDOCS 8109090226
Download: ML17266A494 (108)


Text

{{#Wiki_filter:REGULATORY DEFORMATION DISTRIBUTION 8'EM(RIDS)ACCESSIONS NBR:81090902'26'OC ~DATE'1/09/08 NOTARIZED!'O FACIL~50389St'>>LuciePlant~Unit2~FloridaPower{{iLightCo>>AUTH",NAME'UTHOR AFFILI'ATiION UHRIGgR,E~FloridaPower{{LightCo~BECIP~NAMKIRECIPIENT AFFIL'IATION EISENHUT'iD>>G, DivisionofLicensing

SUBJECT:

" Forwardsresponse'o NRCrequestsforaddiinfowhichhavenotbe'enformallysubmitted ondocket.Responses willoe'ncorporate'd infuture~emendtoFSAR,DISTRIBUTION CODKitBOO'1SCOPIESRECE{IVED:L7R 'NCLt'IZE:;iiT'ITLElPSAR/FSAR AMDTSandRe.latedCorrespondence NOTES!DOCKEiT'05000389RECIPIENT IDCODE'/NAME{ ACTION:=A/DLICENSNGI.ICBR¹3LAINTERNAL: ACCIDEVALBR26CHEMENGBR11COREPERFBR10,EMRGPRPDEV35iEQUIP'UAL BR43iGEOSCIENCES 28HYD'/GEOBR30.IEKi06'ICQUALBR32".MECHENGBR18OELDPOAERSYS'R19QABR21RE'ACSYSBR23>>SIT'NAL'R 24COPIESLTTRENCL.-'-10101111111-13i3222233111011111111RKCIPIENT"'DCODE'/NAME: LCCBR43BCNERSESgV~04AUXSYSBR2'7CONTSYSBR09EFFTRSYSBR12'MRGPRPLIC36'EMARKPDIV39HUMFACTENG40I{{C,SYS"BR16LCCGUIDBR35'i{ATL'NG BR17MPAOP.LICBR34PROC/TSTREV20R'ADSSBR22'1>>RUCTENG-BR25COPIESLTTR{ENCL01111111li3H111.111111101111111111EXTERNALi: ACRSNRCPDR'TIS41i02iib161111LPDRNSIC030511118FFgyg~,TOTAL.NUMBER'~OFCOPIESREQUIRED: LiTTR62ENCL~57 1hh~thh~IN~h~(I~1(I1+fl'I(th(hW%,(hhh1((rqg,~1h~'ihI'jIlc(qhttC,'lt'h(h cygllgz+/Isv<4FLORIDAPOWERstLIGHTCOMPANYSeptember 8,1981LetterL-81-389OfficeofNuclearReactorRegulation Attention: Mr.DarrellG.Eisenhut, DirectorDivisionofLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555

DearMr.Eisenhut:

Re:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsForAdditional Information AttachedareFloridaPower6LightCompany(FPL)responses toNRCstaffrequestsforadditional information whichhavenotbeenformallysubmitted ontheSt.LucieUnit2docket.Theseresponses willbeincorporated intotheSt.LucieUnit2FSARinafutureamendment. Verytrulyyours,RobertE.UhrigVicePresident AdvancedSystems8Technology REU/TCG/nlc Attachments cc:J.P.O'Reilly,

Director, RegionII(w/oattachments)

HaroldF.Reis,Esquire(w/oattachments) 8f0909022b 8i0908PDRADOCK05000389APDR((0tgi'IHELPING8UILDFLORIDA 7~' .Attachments toL-81-389September 8,1981A.~MinutestoStructural Engineering BranchmeetingheldonSeptember 3,1981.B.RevisiontoReg.Guide1.97Rev.2(Additional information onSteamGenerator waterlevelindication). C.D.Revisedresponsetoquestion460,.2Revisedsection9.3.6(Postaccidentsampling). E.Revisedsection15.1.5(Limiting fault3events).F.RevisiontoFWLBAnalysisinresponsetoinformalrequestonAFWflowrequirements. G.Responsetoquestion252.1H.Revisedresponsetoquestion420.05Additional information toexistingresponseonSER8.3openitem-90%480Vmotors.J.Chapter8.3openitem-Isolation devices.8109090226 AmeetingwasheldbetweentheNRC,Structural Engineering Branch,FlordiaPower&LightCo.andEbascoServicesonSeptember 3,1981inBethesda, MD.Thoseinattendance were:NRCFP&LEbaseoV.NersesP.T.KuoH.E.PolkW.F.BrannenE.W.DotsonW.FanE.KowalskiR.RussoL.GertlerJ.BurketP.GrossmanItemsdiscussed areindicated below:AuditItem2-FP&Lresubmitted arevisedresponse, attached. TheNRChasagreedtoclosethisitempendingstaffreview.AuditItem3-FPLhasagreedtoprovidetheNRCacompleted re-sponsebySeptember 9,1981.Thisisconsidered anopenitem.AuditItems4&5-FP&Lhassubmitted clarification ofheadingsontheReactorbasematshearstressstable,attached. Inaddition, FPLwillprovidethewaterfordpara-metricstudydetailing thesensitivity ofthebaseslabstructural stressestothesoilthickness usedinthefiniteelementanalysisbySeptember 9,1981.Itemisconsidered openpendingNRCreview.AuditItem7-FP&Lhasagreedtoresubmitarevisedresponse,. attached. TheNRChasagreedtoclosethisitempendingstaffreview.AuditItem8-FP&LwillresubmitFigure9toindicateradialand.tangential components ofseismicloading.bySeptember 9,1981.Alegendwillbeprovidedtoexplainthevariables shownonthecomputerprintouts. Resubmittal willclosethisitem.AuditItem11-NRCisreviewing theresponsetothisitem.Itemclosed.AuditItem14-FP&Lwillprovidemodeshapesforhorizontal ac-celeration withKxxandKxx=0.Thiswillbeprovided.forinformation only.Thisitemisconsidered close. AuditItem15-FP&Lresubmitted arevisedresponsereferencing audit:item 18foradditional clarifications. Itemconsidered open.AuditItem16-NRCisreviewing theuseofSRSSsummation vs.absolutesummation regarding pipingrelativedis-placements betweenstructures. Thisitemstillconsidered open.AuditItem17-FP&Lwillprovideapplicable portionsoftheCB&Istressreportandthemagnitude ofthestressesforpipeattachedtothecontainment shellbySeptember 9,1981.ItemclosedpendingNRCreview.Audit'tem 18-FP&Lprovidedaresponsetothisitem,attached. Thisitemconsidered openpendingNRCreview.AuditItem19-FP&Lresubmitted arevisedresponseaddingareference topage46,attached, oftypicalcontainment buildingcalculations, Section3.Thisitemconsidered closed.AuditItem20-FP&Lresubmitted aresponsejustifying theuseofthe0.63factor.Thisitemconsidered openpendingNRCreview.AuditItem21-FP&LwillprovidemodeshapestotheNRCanddeter-minetheamountofshearareareduction bySeptember 9,1981.ThisitemwillbeclosedpendingNRCreview.AuditItem22-FP&Lwillverifythatthewallsectioninvestigated isthemostcritical. Inaddition, FPLwillverifytheOBE/DBEratioof0.66wasusedforthedesignofthereinforcing steelbySeptember 9,1981.Favorable NRCreviewwillclosethisitem.AuditItem24-FP&Lprovidedaresponsetothistiem,attached. Itemconsidered openpendingNRCreview.A'uditItem25-FP&Lprovidedaresponsetothisitem,attached. UnderNRCreview(seeaudititemno.16).AuditItem,26-FP&Lprovidedaresponsetothisitem,attached. Itemisconsidered closed.MasonryWallCriteria-FP&Lhasagreedto'tilize theNRC'scriteriaformasonryblockwalldesigndated'July1981.Thisitemisconsidered closed. NRCQuestion220.22-FP&Lattached. NRCQuestion220.25-FP&Lattached. providedaresponsetothisquestion, Itemsisconsidered open.providedaresponsetothisquestion, Itemsconsidered openpendingNRC.TurbineMissile-FP&Lwillprovideanexplanatian oftheformulausedforbarrieryene'tration. bySeptember 9,1981.Favorable reviewbyNRCwillcloseitem. I IgtItemNo.2Verifycompatibility ofboundaryconditions betweeninter-facingstructures analyzedbydifferent computerprograms. ~ResoeseCompatibility ofthetwocomputerprogramswasnotconsidered intheoriginalanalysisbecausethedesignofthestructure wasbasedonthemostconservative boundaryassumption. (Fixedendcondition fornegativemomentsandhingedforpositivemoments.Theanalysisofthesecondary shieldwallwasdoneassumingfixedboundaryattheconnection withtheprimaryshieldwallhTheresultant boundaryreactions derivedfromtheanalysisofthesecondary shieldwallareappliedasadditional loading.to,theupperboundaryoftheprimaryshieldwall.SeeattachedFig.2-1andcalculations. ]Ies R.G.1.97Rev.2y0TAGNO.VARIABLEDESCRIPTION RANGEREQUIREDEXISTINGRANGECONIENTSPIA-1116QuenchTaskPressureD150todesignpressure0-100paigOnenon-safety pressureindicator ispro-videdinthecontrolroom.Designpre-sureis100paigtherefore therangeprovidedisacceptable. 9013ALIC-LIC-9013B LIC-9013C LIC-9013D LR-9013D.. LIC-9023A LIC-9023B LIC-9023C LIC-9023D LR-9023D. LI-9012LI-9022SteamGenerator Level916Fromtubesheettosepara-torsSeeFigure420.41-1Redundant safety.gradenarrowrangein-dicatorsareprovidedin'thecontrolroomwithaspanof183"(LIC;9013A,B,C,D andLIC-902:3A,B,C,D)'. Onechannelpersteamgenerator isalsorecordedinthecontrolroom(LR-9013D, LR-9023D). Inadditionwiderangenon-safety indication foreachopera-torisprovidedinthecontrolroomwithaspanof465"(LI-9012, LI-9022). Theuppertapforwideandnarrowrangeislocatedat.thesamelevelandisapproximately 40"abovthesteamseparators. Thenarrowrangeislocatedapproximately 57"belowtheuppermossteamgenerator tubesand50"abovethelow-eststeamgenerator tubes.Thelowertapfothewiderangelevelislocated465"belowtheuppertap.Thelowertapisapproximatel 20"abovethetubesheet.Thecombination oftheseinstruments covertherangerequiredalthoughnotalltheinstruments aresafetyrelated.PI-8013API-8013BPI-8013CPI-8013DPR-8013DPI-8023API-8023BPI-8023CPI-8023DPR-8023DSteamGenerator PressureD17Fromatomospheric pressureto20Xabove'thelowestsafetyvalvesetting.Redundant safetygradeindication ispro-videdinthecontrolroom.Onechannel:persteamgenerator isrecorded. Therangeprovidedisnotadequate'and willbechangedtomeettherequirem'ents to0-1200psia. ~~~I%t~TAGNO.VARIABLEDESCRIPTION RANGEREQUIREDEXISTINGRANGECOMMENTSFI-08-lAFI-08-1BSafety/Relief D18ValvePositions FlowClosed-NotClosedMainSteamflowisindicated intheCR.Thismeasurement isacceptedforSafetyRelicvalvepositionindication. Qualified sensorsarebeingutilized. <iqf~~S)tje~I4ge)et~~~~~C'4fQPi~Wej~se IeIC<<'C)CC<e<PQ) ~seCC+gCcj<r<<!pP~Qt~.pssslcssss)~4 ~N)st<<)If ".'"'r."~g%:Ž""-'-C." ."...,'-".-:.-.;.'..~....'--.~:-'t<Cjet<aC<<<<e) <OINK.CtsIJAMMesc<0"-'$46VFi."",*',',,-~-r-'"'r.'-'JRhtL'%~Des)t)<< '4$~~01'<<4~~pS~t<)m~<O))<st<IC'eC<4fN4~~<~a~<st<!I!g6'.1<r<<tees<<< kflvj<<lcltt+5jgso<%~l ~VHN(P5C'gssfs%ties)<C)t<~ 40rr.~reereeQwWbe<e<fy)gaA)ssrSeseej4'ejC~as')<<<adt))ICIejt~t<elI'er<CCII<s<~Ceehgs<<<MI'<IAa'<C)s)4 ~esI<<Q~ICS4~rae'i~aHj)t<1.<<&)te< tC)I<Is<~SCI~<a~is j<C<e<~sSess<<CessTris'~I*'1)'his<1stOejelsStCrt<CIAt<f<fC)C'<CI<,I!ir'<j<~elee<'e+NAes"sk4~seel';CCRCeCe0'P'<Il.'< ')useI~~C$+ICS~Pet'CC'C.q'gCO<<,4S~t41)<ecIC'C<tqrje<C"'0<e'%)rt Ocr<I/jtttiesr",C dtgr<j<ere<sertigg5)AC)essesCfg'C)IIC)t~r~IelItr'<'e)MID~'Ft.r<'vevrvQWCstPfŽICC~qg<WW<~C',OsI@5tnM<<<ff<C~~)Is<I<<e)8crsQ\Cesga-~ea<os<~3fJACCOA<I<<)<CCC<<,ee~ S<<S)er)at<<'<O)S<C>S~<C) Ct+<<<tatiS4NJOC'COts&W~lOOW4t)WCCCio<<C'<eeICI<<pleO'0~jl<)~)""712)le-2 If+,eve~jvrs'"se'e eg>>'vseejee<1." v~see"sre<errvwyrd~ey<qeejsI<errv,'e~<re<errreel<ere<see ',,I',ere'eeer Cevjeeevr

QuestionNo.460.2(11.2)Listoutdoorstoragetanksthatmaycontainpo-tentially radioactive liquidanddescribepro-visionsdesignedtoprevent,collect,andprocessspills,fromoutdoorstoragetanks.Itisourpositionthatoutdovrtanksshouldbedesignedinaccordance, withRegulatory Position1.2inRegulatory Guide1.143,Rev.1.Resonse:TheRefueling WaterTank(RWT)>Condensate Storage'ank(CST),PrimaryWaterStorageTank(PWST)andtheSteamGenerator BlowdownMonitorTank(SGBMT)areoutdoorstoragetankswhichcouldcontainpotentially radioactive liquid.TheRWT,CSTandPWSTareprovidedwithcontrolroomlevelindication andhighlevelalarm.Thyle~<~CSTandPWSTarealsoprovidedwithlocalhigh~alarm andtheSGBMTisprovidedlocallevelindication andhighlevelalarm.TheSGBMToverflowanddrainsareroutedtotheequipment draintankintheLiquidWasteManagement System.TheCSTissurrounded bytheCSTbuildingsothatoverflowandleakagearecollected inthebuilding. LevelcontrolsystemswillbeprovidedfortheRWTandPWST,topreventtankoverflow. FSARSubsection 6.3.2.2.4 and9.2.3.1.5 willberevisedtoincorporate theRWTlevelcontrolsystemandthe'WSTlevelcontrolsystemrespectively. TheRWTand'WSTlevelcontrolsystemwillbeimplemented asabackfititemafterOLdate. RWTLEVELMONITORING SYSTEMEbascohasreviewed.theStLucieUnitNo.2pipingdesigntodetermine'hether overflow'occurence oftheRNTmaybepossibleduetothear-rangement oftheRWTvolumesandfilllines.lf4jTheSL-2RWTisa525,000galloncapacity, 40feet.high,atmospheric tankusedtohold=borated waterforrefueling andsafetyinjection=- operations. TheRWTisnormallymaintained ataminimumtanklevelof28.2feetfor'safety injection purposes(413,600gallonsrequired) andatamaximumtanklevelof35.3feetforrefueling purposes(Approximately 500,000gallons). TheRWTisprovidedwithanover-flowlevelat38feet.andahighlevelalarmsetat37.5feet,therebyproviding 7,520gallonsbeforetankoverflow. Thepresent,RWTlevelmonitoring design,depicting thevariousRWTelevations, isprovidedschamatically onattacheFigure460.2-1whileasummaryoftheRWTfilllinesisprovidedinTable460.2-1.Wehaveevaluated thepossibility ofRWToverflowfromeachofthefilllinesandhavetabularized theoverflowtimeforeachsource(seeT~6(el&o.2-I).Itwasdetermined that-thelimitingRWTfillsourceisthe3,100GPMfromtheLPSIpumpswhichallowstheoperator2.4minutestorespondbeforethetankoverflowoccurs.'llothertankfillsourcesprovidetheoperatoraminimumoftwenty(20)minutesbefore'ny a'ctionisrequired. Ebascohasdeveloped anautomatic RWTisolation designwhichwillprovideenhancements to,thecurrent.designwhichwillincreasetheoperatorresponsetimemarginandminimizethepotential forRWToverflow. Thislevelmonitoring systemwillincludeanair-operated, fail-closedautomatic blockvalvetotheLPSIline,whichwillcloseuponreceiptofhighRWTlevelsignal.TheexistinghighRWTlevelal'armisretainedandadditional annunciation ofhigh-high RWTlevelat37.75feet,whichprovides3760gallonsbelowoverflow, willbeprovided. Thisannunciation willreceiveasignalfromasourcedifferent fromthepresenthigh-level alarmsignalforad-.ditionalreliability andwillbealarmedinthecontrolroom.Thisalarmwillgivetheoperatoradditional timetoinitiateanypositiveactionifthe-RWTfillisinadvertently leftopen. 1I PNSTLEVELCONTROLSYSTEMTheflowofwaterintotheprimarywatertankiscontrolled byalevel,controlvalveinthe,intakeheader(demineralized watersupply)tothetank.Highandlowwaterlevelsinthetankareannunciated. Inadditiontotheabove,interlocks willbeprovidedtoauto-matically stopthewastecondensate pumpsandboricacidcon-densatepumpswhichdischarge tothePWST(seeFigure9.2-4)'uponghighwaterlevelinthetank. ATTAC)RENT i~'l~~R-8>Aw8H8~T.2&Hie~v~07s',w7Lt.:vELM0MI7'0RlH6SCHEME~~~I~~~~III+P4QOVCgFLow~'@LE.I>Ty~xz~CrimlS~W5SPCYoCSHC'h~Q>%if4A:Qs-(54s'K4'CQ-SX;teS. I~~~o~0~)sd<<TV0V04~~~~~V'~c5pJ~eeoso~~~V~~~..'fO.l-P%+0-I \I~Attachment 2RWTFILLSOURCESTABLE$/07.-(LINESTORWT6"-CS-500 6"-SI-154 3"-CS-623"-NN-A56 3"-PM'-16 3"-FS-556 I-3-CH-938 SOURCELPSIPumpsHPSIRecirc.LPSIRecirc'SRecircReactorDrainPumpsHoldUpDrain6Recir-culationPumpsPrimaryHaterPumpsFuelPoolPurification PumpBoricAcidPumpsRATEDFLOP(m)3,10030aoo1505080'325150150HIGHALARMTOOVERFLOW(MIN)2.4250755015094.235050F~~ I0f0 9.3.6POSTACCIDENTSAMPLINGSYSTEMThePostAccidentSamplingSystem(PASS)consistsofashieldedskid-mounted samplestationandaremotelylocatedcontrolpanel.ThePASSprovidesameanstoobtainandanalyzepressurized andunpressurizeg reactorcoolantsamplesandcontainment buildingsamples.ThePipingandInstrumentation diagramsforthePASSareshowninFigures'9 3-7go9'5-V'.DesigndataisprovidedinTables9.3.10,9.3.11and9.3.12.9.3.6.1~0iBThePASSisdesignedinaccordance withthecriteriastatedinSectionII.B.3ofEnclosure 3toNUREG0737.Thequantitative designcriteriaforthePASSareasfollows:a)ThePASSprovidesameanstopromptlyobtainareactorcoolantliquid,containment buildingsumpliquid,andcontainment build-inggassamples.Thecombinedtimerequiredforsamplingandanalysisislessthanthreehours.-.b)ThePASSallowsforpost-accident samplingwithresulting per-sonnelradiation exposurenotexceeding thecriteriaofGDC19(Appendix Ato10CFRPart50).c)ThePASSiscapableofaccomnodating aninitialreactorcoolantradiochemistry spectrumcorresponding toapostulated releaseequivalent tothatassumedinRegulatory Guide1.4,Assumptions UsedforEvaluating thePotential Radiological Consequences ofaLossofCoolantAccidentforPressurized WaterReactors, Rev.2datedJune,1974,andRegulatory Guide1.7,,ControlofCombustible GasConcentrations inContainment Following aLossofCoolantAc-cident,Rev.'datedSeptember 1976.d)ThePASSprovidesameanstoremotelyquantifypHandtheconcen-trationsoftotaldissolved gas,hydrogen, oxygenandboronintheliquidsamples. e):Sampleflowisreturnedtothecontainment toprecludeun-necessary contamination ofotherauxiliary systemsandto'!ensurethatradioactive wasteremainsisolatedwithintheIcontainment. ltf)Components andpipingaredesignedtogualityGroupD(asdefinedinRegulatory'uide1.26)non-seismicrequirements. Theequipment islocateddownstream ofdoubleisolation valvesfromsafetycodesystems.9.3.6.2SsternDescritionTherequirements forpost-accident samplingofthereactorcoolantandcontainment buildingatmosphere aremetthroughthePost-Acci-dent-SamplingSystem(PASS).ThePASSprovidesameanstoobtainpressurized andunpressurized reactorcoolantsamples andcontainment buildingatmosphere samples.Areactorcoolantsamplecanbe'rawndirectlyfromtheReactorCoolantSystem(RCS)whenevertheRCSpressureisbetween200psigand2485psig.RCSsamplelinesareprovidedwithorifices'nside containment soastolimit,theflowfromanypostulated break'inthesampleline.Atpressures below200psig,reactorcoolantsamplescanbedrawnfromaSafeguards Systemsampleline.Tliispathwayalsoprovidesameansofsamplingthecontainment buildingsumpduringtherecir'culation modeofSafeguards Systemoperation. Acontainment buildingatmosphere samplecanbedrawnwithcontainment buildingpressurebetween10psiaand75psia.Allsampleflowisreturnedtothecontainment buildingtoprecludeunnecessary contamination ofotherauxiliary systemsandtoensurethathighlevelwastere-mainsisolatedwithinthecontainment. Thesesampleprocesspath-wayswereselectedtoinsurearepresentative sampleunderallmodesofdecayheatremoval.ThePASSsamplingflowratesareprovidedinTable9.3.10. 0 ThePASSconsistsofaremotelylocatedcontrolpanelandaskid-mounted samplestationwhicharedesignedtomaintainradiation exposures toplantpersonnel aslowasreasonably achievable (ALARA)andwhichislocatedtominimizethelengthofsamplelines.ThePASSisinterfaced withtheexistingreactorcoolantandsafeguards systemsamplelines.Postaccidentsamplingdoesnotrequireanisolatedauxiliary systemtobeplacedinoperation. ThePASSisatotallyclosedsystem(i.e.,samplestakenfromcontainment arereturnedtothecontainment). Thegrabsamplesareextracted fromsamplevesselsbyinjection ofasyringe.throughaseptumplugmountedinthevessels.Inaddition, thePASSsamplestationskidisprovidedwithaventilation flowpaththatissizedfor333scfminairflowfromthesurrounding roomtotheventilation systemexhaust.Theexhaustairisdirectedthroughanactivated charcoalfilterforiodineremoval.ThePASSprovidesthecapability forremotechemicalanalysesofthereactorcoolantincluding totaldissolved gasconcen-tration,dissolved hydrogenandoxygenconcentration, boronconcentration andpH.Reactorcoolantanalysisisprovidedthroughtheuseofanundiluted grabsamplefacility. Shieldedgrabsamplesofthedepressurized undiluted reactorcoolantliquidmaybeobtained. Unshielded, depressurized anddilutedgrabsamplesofthedegassedreactorcoolantliquid,reactorcoolantdissolved gasandcontainment buildingatmosphere mayalsobeobtained. Theoperation ofthePASSforcollecting andanalyzing reactorcoolantandcontainment buildingatmosphere samplesmaybecategorized as(1)reactorcoolantsamplepurging,(2)reactor coolantsamplegaseousanalysesanddilution, (4)undiluted liquidgrabsamplecol'.ection, (5)containment building.atmosphere samplepurginganddilution, and(6)systemflush-ing.Anoperation description forthesecategories isprovidedbelow:Reactorcoolantsamplepurgingisaccomplised bydirecting thesampleflowthroughthesystemisolation valves,thesamplevessel/heat exchanger, thepressurereducingthrottlevalve,andouttothecontainment building. sump.Atreactorcoolantpressures oflessthan2QOpsigthecontainment sumpsampleflowispurgedinthesamemannerusingthesafeguards pumpdischarge connection. Reactorcoolantgaseousanalysisisperformed onapressurized samplewhichiscollected byisolating thesamplevessel/heat exchanger. Totaldissolved gasconcentration isdetermined bydegassing thesample.Thisisaccomplished bydepressurization and.circulation, byalternate operation oftheburetteisolation-valveandthesamplecirculation pump.Theresulting displace-mentofliquidintotheburetteisusedtocalculate thedis-'olvedgas'oncentration. Thecollected gases,whichhavebeenstripped.fromtheliquid,arethendirectedthroughafloatvalveformoistureseparation andcirculated throughhydrogenandoxygenanalyzers. Afterrecording thehydrogenandoxygengasconcentrations, thegassamplevessel,whichcontainsnitrogen, maybe'placedonlinetodilutethegasvolume.Thisdilutionoperation reducestheradiation, levelssuchthatlocalsamplescanbedrawnfromthegassamplevessel,ifdesired,byinjec-tionofasyringethroughaseptumplugmountedinthevessel.Priortosamplewithdrawal, additional

dilution, whichmaybe'ecessary forthisquantification, maybeperformed byfurthernitrogenaddition, circulation andventing.

Reactorcoolantliquidanalysesisaccomplished byreinitiating anddirecting thesampleflowthroughthein-linechemistry analysisequipment. Thegasresidence chamberandfloatvalvedownstream ofthethrottlevalveallowsforautomatic ventingofgasescomingoutofsolution. Thisventingisrequiredinor'dertopreventgasbubbleinterference withflowrateandchemistry measurements inthedownstream instrumentation. BoronandpHreadingsareobtainedfromthein-lineinstrumen-tation.Asmallfixedvolumeofdepressurized liquidsample(collected inafour-wayvalve)isthendrainedtothedepres-surizedliquidsamplevesselandasampleiswithdrawn inthesamemannerasdescribed aboveforthegassample.Anundiluted liquidgrabsampleforchlorideanalysiscanbecollected bydirecting reactorcoolantpurgeflowthroughtheundiluted depressurized liquidsamplevessel.Thisvesselisprovidedwithaleadshieldedcontainer andcartfortransferofsampletotheanalysislocation. Theisolation valvesforthevesselareprovidedwithstemextensions penetrating theshielding. ~Azeg.7p+Containment buildingatmosphere samplingisinitiated by-'opening thecontainment isolation valvesandbyusingthecontainment samplepumptopurgetheairsamplethroughthesystem.Purgeflowisdirectedbacktocontainment. Asampleis'manually withdrawn fromthecontainment samplevesselcontain-ingnitrogen. Theinitialnitrogenvolumedilutesthesampletolevelsacceptable forwithdrawal. Acontainment airsamplemaythenbewithdrawn fromthecontainment samplevesselinthesamemannerasdescribed previously forthereactorcoolantsamples.Systemflushingoftheliquidandgaseousportionsisaccom-plisedbypurgingwithdemineralized waterandnitrogen, respec-tively,toreducepersonnel exposureduringwithdrawal ofthedilutedsamplesandtoreducecontamination plateoutbetweensamples. 'xfRadionuclide analysesareperformed ongrabsamples.Thesesamplesarecountedinstandardradionuclide countingequipment. Grabsampletechniques areutilizedfor4~4~analysis. Backupboronanalysisisperformed usingatomicabsorption techniques. Containment hydrogenanalyzers aredescribed inSubsection 6.2.5.g~'.3.6.3ComonentDescritionThemajorPASScomponents aredescribed inthissection.Theprincipal component datasummaryincluding designcodeispro-vided,in.Table9.3.11.~51SttiThesamplestationisafree-standing skid-mounted enclosure. Theenclosure containsthepiping,valves,components andin-strumentation necessary toprovidethesamplingandanalysiscapability. Theenclosure isprovidedwithlouverssizedtopassupto333scfmfromthesurrounding roomtotheventila-tionsystemsuctionconnection intheupperportionof'.theenclosure. Thisairflowprecludes anypossiblebuildupofradioactive orhydrogengasandprovidesforremovalofheatgenerated byinternalcomponents. Theenclosure isprovidedwi.thremovable panelsonallfoursidestoensureaccessibility formaintenance. 2.'SamleCirculation PumThe'ample circulation pumpisaperistaltic typepostitive di'splacement pump.Thispumpiscapableofpumpingliquidsand/orgases.Thepumpwillbeusedinthetotalgas,hydrogen, andoxygengasanalysesoperations tostripthegasesoutofsolutioninthesamplefluidandcirculate themthroughthehydrogenandoxygenanalyzers. 3.SureVesselPumThesurgevesselpumpisaprogressing cavity(helical) pump.Thepumpisusedtopumpdownthesurgevesselcon-tentstothecontainment buildingsumpandisalsousedinthecalibration operation ofthepHintheliquidsampleline.4.Containment SamlePumThecontainment samplepumpisavacuumpump/compressor unitthatoperatesasapositivedisplacement compressor usingastainless steeldiaphram.'he pumpisusedtocollectacontainment atmosphere sampleandtodilutethesampleviacirculation throughthecontainment samplevessel.5.GasSamleVesselThegassamplevesselisa12,000mlsamplevesselinitially filledwithnitrogengas.Thevesselsuppliesthegasanalysisloopwithnitrogengastodilutetheradioactive gasespresentinthesampleline.The'vesselisequippedwithaseptumplugwhichallowstheoperatortowithdrawadilutedgaseoussamplewithasyringeforradiological analysis. 6.Deressurized LiuidSamleVesselThedepressurized, liquidsamplevesselisa12,000mlsamplevesse'i.Thisvesselcollectsaliquidsampletrappedinthefour-wayvalvelocatedabovethesamplevessel.Thevesselispartially filledwithdemineralized waterbeforethesampleisdrainedintothevessel.Additional demineralized wateristhenaddedtoobtaintheproperdilutionfactorsothataliquidsamplecanbewithdrawn forradiological analysis. This=vesselisequip-pedwithaseptumplugforsamplewithdrawal usingasyringe. 7.Containment SamleVesselThecontainment samplevesselisa12,000mlsamplevesselthat'isinitially filledwithnitrogengasfordilution. Thecontainment samplepumpdrawsasamplefromcontainment andcirculates itthroughthesamplevesselwherethenitrogengasdilutesthesamplesothatitcanbewithdrawn forradio-logicalanalysis. Thisvesselisequippedwithaseptumplugforsamplewithdrawal. s.~s'Thesurgevesselhasa10galloncapacityandservesasaventanddraintankforthedepressurized liquidsamplevesselandthetotalgasanalysisburette.Thisvesselcanalsobefilledwithbuffersolutionusedtocalibrate thein-linepHmeter.'.SamleVessel/Heat ExchanerThe'samplevessel/heat exchanger, isavertically mounted,shellandtubetypeheatexchanger. Theheat.exchanger usescomponent coolingwatertocoolthereactorcoolantsampleflowfromamaximumRCStemperature of650oto120oFtoallowlowtemperature sampleanalysis. Thetubesideoftheheatexchanger servesasassamplevesselforcollection ofapressurized reactorcoolantsample.10.Stainless SteelBuretteThestainless. steelburettehasa1,000mlcapacity. Theburetteisusedtodetermine theamountoftotalgaspresentinthesamplefluidbymeasuring adifference inthe-fluidleveloftheburetteupondegassification'f thepressurized reactorcoolantsample.ll.StrainerThestrainerisdesignedtoremoveinsoluble particles whichmaycausesamplestationchemistry instrumentation tobecomeplugged.Thestrainercanbebackflushed withdemineralized waterremotelybyoperation ofvalvesatthecontrolpanel. 12.GrabSamleFacilitThegrabsamplefacilityisdesignedtoobtaina75ccundiluted sampleofreactorcoolantliquid.Thefacilityconsisted ofaleadshieldedsamplevesselandvalvesmountedonacartfortransport withintheplant.Thefacilityismanuallyoperated. 13.GasResidence ChamberThe,gasresidence chamberisahorizontally mountedleadshieldedbaffledcylindrical vessel.Thechamberisusedtoremoveundissolved gasesfromreactorcoolantsamplestopreventinterference withthein-lineprocessmonitors.- 14.CharcoalExhaustFilterThecharcoalfilterisdesignedtoremoveradioactive iodineandparticulate materialfromtheenclosure ventilation exhaust.Thefilterismountedinaseparatehousinglocatedontopofthesampleskidenclosure. 9.3.6.4Instrumentation andControlDescritionThemajorPASSinstruments andcontrolsaredescribed inthissection". Theon-lineprocessmonitordataisprovidedinTable-9.3.12.-g+gQg7P1.ControlPanelThepanelisdesignedtomeetNEHA-12requirements. Allsamplesystemnon-codeisolation valvesandpumpsarecon-trolledfromthispanel.=Indication ofallprocesspara-metersandchemistry readoutsaredisplayed onthepanel;Tofacilitate systemandoperability allcontrolsandindi-cationsarearrangedinamimicofthesystem.Allprocesspumpsandvalvesareequippedwithhandswitchesatthecontrolpanel. Thecontainment buildingatmosphere samplepipingisheattracedtolimitplateoutofradioiodine andcondensation ofcontainment atmosphere vapor.Theheattracingensuresarepresentative gassample.+WPsB@rE,3.BoronlumeterTheBoronHeterisaspecificgravitymeasuring devicewhichdetermines andremotelyindicates theconcentration ofboronpresentintheliquidsample.4.~HHeterThepHmeterdetermines andremotelyindicates pHintheliquidsample.5.HdroenAnalzerThehydrogenanalyzerisathermalconductivity devicethatdetermines andremotelyindicates thevolumepercentofhy-drogeninthegasstrippedfromthereactorcoolant.Theoxygenanalyzerisaparamagnetic devicethatdetermines andremotelyindicates thevolumepercentofoxygeninthegasstrippedfromthereactorcoolant.9.3.6.5SstemEvaluation Thelocationofthepost-accident reactorcoolantandcontainment atmosphere samplingsystemareinanareaofrelatively lowpost-accidentbackground radiation. Thisensurescompliance withthepersonnel exposurelimitsofNUREG0737duringsamplingandanalysis. Additional plantshielding alongwithselective routingofinterconnecting pipingtotheexistingsamplingsystemensuresthat(1)theexposurelimitsforpersonnel arenotexceededand(2)theon-siteradiochemistry analysisequipment isavailable for tpost-accident sampleanalyses. Thesamplestationisalsophysical-lyseparated fromsafetyrelatedequipment suchthatfailureoftheassociated non-seismic equipment doesnotcausedamagetothe~,,t5safety,.relatedequipment. SpfSBR.TCoolin'gwatertothereactorcoolantsamplingsystemisavailable duringpost-accident conditions toenablelowtemperature sampleanalyses. Overrides arealsoavailable toenableopeningofcon-tainmentisolation valvesfollowing aCIASsothatpost-accident sampl'ing canbeaccomplished. Controlforthereactorcoolantsampling-system returncontainment isolation valveisprovidedinthe,controlroom.Aninterlock isprovidedtoensurethatthisvalveand'hecontainment sumpisolation valveisopenbeforethesystem,inletisolation valveisopen.9'."3.6.6Asmuchaspracticable, reactorcoolantsamplingsystemconnecting pipingispitcheddownwardatleast10degreestopreventsettlingorseparation ofsolidscontained bythesample.Trapsandpocketsinwhich-condensate orcrudmaysettleareavoidedsincetheymaybepartially emptiedwithchangesinflowconditions andmay.result insamplecontamination. Testin'andInsectionThesamplestationskidandcontrolpanelareequippedwithdoorsfortestingandinspection duringnormaloperations. Thesamplestationisprovidedwithremovable panelsonallfoursidesforinspecti'on. Each.component istestedandinspected priortoin-stallation inthesamplesystem.Instruments arecalibrated during'nitial systeminstallation. Automatic controlsaretestedforactuation atthepropersetpoints. Thesystemisoperatedandtesteduponinstallation withregardtoflowpaths,flowcapacityandmechanical operability. TVSER7F Periodiccalibration isperformed. according tothescheduleprovidedinTable9.3.13.The.PASSisdesignedtofunctionforsixmonths'under post-accident conditions withoutrecalibration.'ystem operability willbetestedatafrequency minimumofsixmonths,coinciding withtherequiredsix-month Emergency'lan samplingexercise; Suchoperability testswillcheckthefunctioning ofallaspectsofthesystem.Xl9.3.6.7'0 ez.atorTraininAllFP8LChemistry Departmeht technicians willbetrained.bothintheclass-roomandinactualhands-onoperations, asafunctionoftheChemistry Depart-'ent trainingprogram.Operating procedures willbedeveloped andtheywillbeconsistent withtherecommendations ofthePASSsupplier(Combustion Engineering) ~InsertAInaccordance withitem.II.B.3ofNUREG-0737 (pg3-67,item 4),PASShasthecapabilitytomonitortotaldissolved gasesandH2concentration.Thecap-ability"of monitoring dissolved 02willbeinaccordance withRegualtory Guide1.97(R2).InsertCSufficient shielding willbeprovidedaroundthepost-accident samplingsystemcomponents tolimitpersonnel exposureto.theGDC-19limits.Regulatory Guide1.4sourcetermswillbeused.InsertDThepostaccidentsamplingpanelwillbepoweredfrompowerpanel2ABwhichiscap-ableofbeingpoweredfromthedieselgenerator intheeventofalossofoffsitepower.Theelectrical cablesassociated withthepostaccidentsamplingpanelandassociated '.nstruments willberoutedinaccordance withReg.Guidej..75,physicalIndependence ofElectrical System(Rev1),asassociated circuits. InsertEHeattracingcircuitswill'eelectrically connected totherespective Boric"AcidHeatTracingPanelswhichareelectrically independent, physically separated andareconnected tothedieselgenerator intheeventofalossofoffsitepower.InsertFPost-accident, sam)lingsystemvalveswhicharerequiredtooperateafteran,accidentandarenotaccessible forrepairwillbequalified totheaccidentenvironment inwhichtheyoperate.Environmental qualification isaddressed inFSARSection3.11. nsertBRadiological analysis..of PASSgrabsampleswillbeusedtoidentifytheoccurrence andtypeofcoredamage.'Laboratory analysisofPASSgrabsamplesusinggermanium detectors andmultichannel analysiswillbeemployedtoidentifythepresenceofselectedradiosotopes whichareindicative ofthevariouskindsofcoredamage.Coredamagewillbecategorized according tocladfailure,fueloverheat, andfuelmelt.Theanalysiswilltakeintoaccountthecoreburnup,coolantwatervolume,andcoolanttemperature corrections. Aplantprocedure incompliance withNUREG-0737 willbewrittenbyJune1982. Table9.3.10Post-Accident SamlinqSstemFlowRatesSourceNominalFlowReactorCoolantHotLeg0.2-1.0gpmContainment BuildingSump0.2-1.0gpmContainment Atmosphere 0.2cfm Table9.3.11DesinDataforPost-Accident SamlinSstemComonentsSamleCirculation PumTypeFluidSuctionPressure(max)psigSuctionTemperature (max)oFRatedFlow,gpmRatedHead,ftCodePeristalticPositive-DisplacementPost-Accident ReactorCoolant5160150Non-CodeSureVesselPumTypeFluidSuctionPressure(max)psigSuctionTemperature (max)~FRatedFlow,gpmRatedHead,ftCodePositiveDisplacementPost-Accident ReactorCoolant51601185Non-CodeContainment SamlePumType.FluidSuctionPressure(max)psiaSuctionTemperature (max)oFRatedFlow,.cfmMaximumDischarge

Pressure, psigCodeVacuumPump/Compressor Post-Accident Containment Atmosphere 10-753000.295/Non-CodeSamleVessel/Heat ExchanerTypeTubeSides:FluidPipingDesignPressure(max)psigInletTemperature (min/max) oFShellSide:FluidPipingDesignPressure,'sig InletTemperature (min/max) oFFlow(max)gpm'odeShell(cooling);

Tube(sampleflow)PostAccidentReactorCoolant2485120/650Component CoolingMater15065/12030Non-Code Table9.3.11(cont'd)*DesinDataforPost-Accident SamlinSstemComonents5.Deressurized.'Li uidSamleVesselInternalVolupe,ccDesignPressure, psigDesignTemperature, oFOperational

Pressure, psigOperational'emperature, FMaterialFluidCode12000ml502005120Stainless Steel316LPost-Accident ReactorCoolant-Non-Code6.GasSampleVesselInternalVolume,ccDesignPressure, psigDesignTemperature, oFOperational
Pressure, psigOperational Temperature,,

oFMaterialFluidCode12000502005120Stainless Steel316LN2,H2,02,FissionProductsNon-Code7.Containment SamleVessel8.InternalVolume,ccDesignPressure, psigDesignTemperature, oFOperational

Pressure, psigOperational

.Temperature, oFMaterialFluidCode~EYInternalVolume,gal.DesignPressure, psiqDesignTemperature, oFOperational

Pressure, psi~Operational Temperature, FMaterialFluidCode12000501000to20275Stainless Steel316LSteam,Air,H2,FissionProductsNon-Code101002005120Stainless Steel316LPost-Accident ReactorCoolantNon-Code Table9.3.11(cont'd)DesinDataforPost-Accident SamplingSstemComonents9.BuretteInternalVolume,ccDesignPressure, psigDesignTemperature, oFOperational
Pressure, psigOperational Temperature, oFMaterialFluidCode10001002005120Stainless Steel316LPost-Accident ReactorCoolantNon-Code10.StrainerTypeParticleSizeRetention" Operating
Pressure, psigOperating Temperature, oFDesignFlow,gpmOperating Flow(max)gpmCleanaP(psig8gpm)LoadedaP(psig8gpm)CollapseaP(psig8gpm)"Y"TypeMesh250Microns22356212128110817091GasResidence ChamberDesignPressure, psigDesignTemperature, FOperational

-Pressure, psigOperational Temperature, oFVolume,cc FluidMaterialCode13035080i204600Post-Accident ReactorCoolantStainless Steel316LNon-Code12.ExhaustCharcoalFilterTypeTypeElementDesignFlow,scfmOperational Flow,scfmOperational PressureFl,uidCleanaP,incheswater9scfmLoadedaP,incheswater8scfmCodeReplaceable Cartridge Activated Charcoal333250-333Atmospheric Aux.Bldg.Atmosphere <1933318333Non-Code .Table9.3.12DesinDataforPost-Accident SamlinSstemProcessInstruments Instrument BoronMeterDescritionDensitySensor~Rccurac-100ppm~Rane0to5000ppmpHMeterElectrode Sensor-0.053to12HydrogenAnalyzerThermalConductivity Sensor-2%ofseale0to100%,0to10%OxygenAnalyzer+Paramagneti.c Sensor-2%ofscale0to25%,0to5% I~.Table9.3.13Instrument Calibration Freuenc~Component Identification Calibration Maintenance Maintenance or~F~FClibtiTCharcoalFilterPumpsValvesLevelInstruments 6mos.asreq'dasreq'd18mos.Replacefilterwhensaturated, orwhendosageisunacceptable (testwithfreon)AsrequiredFunctionally testandrepairasrequiredResetzeroandspanagainstknownvessellevelsPressureInstruments 6mos.CheckaccuracyagainstastandardPressureInstruments withalarm5controlfunctions 6mos.Checkpressuresetooints pHMonitor6mos.*Calibrate withbuffersolutionH2IIo2MetersBoronMeterFlowMetersPanalarm6mos.-lyr6mos.*6mos.6mos.SetzeroandspanusingstandardgasesCheckzero,span,andtemp.compensator againsttestboronsolutionandde-mineralized water~vCheckaccuracyagainstastandardCheckalarmfunction*Calibration frequency canbeextendeduntilinstrument malfunctions orgetsunstablereadingsinapost-accident situation p(RmClCXJCJ1~I~aalu.IRAQI..ITPF%<<@au\IouiCJCWROC%sea>>CIRE~4Qti~~~~ O. O~i~~IkL(B<<Q(il~eat~I)IIOuititeaeel\a4luliaNa)0e'res,I~(t.tet)g(Iastolls~CI)&gg:~\~S'C4.~OWCILN.>oQI-ICLCCPO,gist~IC'IIeaeetaiu aave~~4(IT~r~(~OISliNillII<<+gICIL~tsstfL~Ml(NlteINa)I<<+WB-Ot~.~~IL~I(.4~4SS.VNIleIoeIuuuNI~luaI~Iis\~t~tClallSIO(ulastslOLIWt~Illl~hLOOelCuaWleeeeeI~!<<e~(~t!~~~"-'LlII~))(,11111~ee~NaQ(ll(uusI(sCiOSSSiliilceeNaaeatIsaac~~texa:S:S'L&Iwe~Cc<<ILLsoetawett oulteseeaaeaeotsLocalloeatwo~tallslatcat4uavs~ea<<slo<<NM<<ttataeeLttaeLITLstttaelsNoalovaaeisisstaa4taaIieeaelsaateaeeiaaleNLlt~~cualaccoaaMNlOIIaoNoAaiauelaac aeaaaIalloAIMtillac(4I4Tsaeeelaes IIINN(eatea<<a<<ate 4"xOIOLV<<NL44aaivIwI~asuu<<eatetoaae~nONNteaa~44aauae<<Itaaau4~Iel~4val~t4atAtsacoaiaaeateai otlaia<<ati111llustlcausCNltIatOI(allLT1414<<atl~LLMtuiicwla<<saaa<<eoutauLLLLMw'INtaIIQOWILSVNhtes 4INaaaet<<N ~L~tiaa\44<<aMilitaLl'~~waatA1CLasaaaNLaaweNLeatevv)CattaaNIeeea<<~Lae<<ciataau(atIatlveusuaI,IILLI~stMteatsua<<IeuI<<ae'I\tall~IMIoKuaI(lliualaialae4<<~ecol<<laau(v(saaa ta4LOItee\INail'IIKeeeaw<<ttittvat~4E..lbl)2-M) ~)T42ICERTIFIED FORCONSTRUCTION CM(SL'ECITAIIO~I~aau<<4~Lawtuit~I~e~t~j)Q11~IlC.ClJ<(..~euINI~al~~4'uILlilaaotwctailaeklute Haaivat4~ostlil~~Iet)Nlaliteel~~ulatCl~~aMNaee~'e'et~Ittua(ea<<II@.OII ~('I'lNlI>~(DAseeatvl~I~I~':'IaiIo'I~ICl WEESETSOAAVI LDvtvvh4T~tajgl-+~ ~I~'IstQIQ(j~C4VALEIEth ~l'SI~~sall~)tati4)g)~~i)Js)~At\O~~)QIIlalQsstoaLs~1IIP)SMles111~.'gglTL .I~I~Lht4ElQ14111)SM>>sTSll111P-0)Ella>>~E~IIt>>ACtVHEOLVIEEAtWVTMTlslI~nthtt4)S"NIH)sIaII'llII'IIP-IS)SItI>>Tt~I~~~III'IEh~'MothsEL1HICA>>It)+AatEHLaosls~lt4AC~4))SNollSS11wog.ta>>T~~L4&~EAMt4DHI~~~WVO)SM~QtSs'llolaPegvl~EKIII\I~)CTtu-J-Jq\~HHODTIA~I'seas~taItlM~ITESNallP-")JII)I~~~Il11~I~15HDt~IEAHII)VhSACKlhCol>>assasIN~I)Lvw~oEhDEMI~\aEvv1QaISkits~Iss>>~I~'Mall)S11IV~I)ssslallgvw~oI~~LS~'ha~ICvtHall~DIANEHTS4>>41AA4IIIts'H44Ltv1tovs~tostTEAOIsa411~~E.)SN~to~LltlNIaa))11IlsSotsIlt)Slrsot,QM1stECatslo~1~SIlNlQPPVt)s>>saaDvoOtlas14thWAAAtLOOLOH)salsaEAILT4\KIEVIAIOOAAA~1OHVwaOltllOAVst>>~L.H-~~I~I\~tt~STOOLSAOV>>t\tttI)asassgSS.MI~AtlSavoto~LAVAOIIEST>>OEoLOVTSWWLET 1~tt~~ot$>>ltl~0))SvoltEov~vtAOHMS~~J"I')))hSSADD4AHEODAKOtlHIOAOLCONAIATAIIIVTOAEATEIHH satstsot\ Dhsl>>MlOval~hatsSashaoSLslAHAITLENA'lsavaNsttv~EDEO111AIts>>411~AAvosl\tallIvvaoE13'l123)0)r>3EDETAOAHLETAvLS>>as~4~4T~ElsMIH~4)t>>I>>CVTsot>>voAtVoto>>AS~ETVVAttEV~F)~~'f3CERTIFIED FORCONSTRUCTION I5~>>atStHEVNHAtvs0AHLOWtAVEAWHAHOVOVttIVtpuEtta>>tatt~~EhafCI~t~h~Wt~~'VWlIHVTEELILITEC's 'TCICTTS)tsCDISCLIEELM ilhs)Z510T33) 0 \%V~I~-~~H0~,=w.'ei15.1.5LINITIHGFAULT3EYENTSSL2-FSAR-v"hi15.1.3.1LimitinOffsiteDoseEvent-LossofNainSteamOutsideCon-~ti",IlMii"IiiiiiiiffitPii~fTiii"15.1.5.1.1 IdentificationofEventandCausesAllLimitingFault-3eventgroupsandeventgroupcombinations resulting inanincreased heatremovalbythesecondary systemshowninTable15.1.5-1were*comparedtofindtheeventresulting inthemaximumoffsitedoses.Thelossofmainsteam-large, outsidecontainment, upstreamofNSIYwithlossofoff-sitepowerasaresultofturbinetripandwithtechnical specification primarytosecondary leakagethroughthesteamgenerator tubeswasidentified asthelimitingLF-3event.'.':-"Theeventgroupsandeventgroupcombinations evaluated andthesignifi-canceoftheoffsitedosesforeachare'indicated inTable15.1.5-1. Alleventsindicated asinsiginficant (I)wouldproduceoffsitedoseswellwithintheacceptance guideline inTable15.0-4.Alleventsindicated assignificaht (S)produceoffsitedoseswithintheacceptance guideline. Thelossofmainsteam-large, outsidecontainment mayoccurduetoabreakinthe34inchmainsteamline.IP~&4Breaksrangingfrom0.056ftareauptothedouble-ended ruptureofthe34inchmainsteamlinebreakareincludedinthiseventgroup.Eventswithbreakareaslessthan0.056ft2areclassified inthesmalllossofmainsteameventgroup.Theoffsitedosesweremaximized byassuminganinterme-diatebreak(1.8ft.)whichresultsinaminimumDHBRbelow1.19.Technical specification tube'leakage alsoincreased theoffsitedoses.Thelossofof'fsitepowerasaresultofturbinetripcausesthecoastdown ofallreactorcoolantpumps.Ofthetwoeventgroups,lossofmainsteam-large insidecontainment andlossofmainsteam-large outsidecorrfainment, intheLF-3category, lossofmainsteam-large, insidecontainment willnotcauseasignificant amountofsteamreleasetotheatmosphere andtherefore willnotresultinsignificant off-sitePoses.Lossofmainsteam-large, outsidecontainment withalossofoffsitepowerandatechnical specification tubeleakageisthelimitingeventcombination, sincethedecreased RCSflowduetothelossofpowerresultsindegradation offuelperformance, andthetechnical specification tubeleakagemaximizes thereleaseofactivitytotheatmosphere. i~" 15.1.5.1.2 SequenceofEventsandSystemsOperation Table15.1.5.1-1 presentsachronological listandtimingofsystemactionswhichoccurfollowing thelarge1'ossofmainsteameventoutsidecontainmen withalossofoffsitepowerasaresultofturbinetrip.Thesequenceofeventsandsystemsoperation areindentical tothosepre-sentedin15.1.5.3.2 andFigure15.1.5.3-1 withtheexception oftheresponseofsystemsactuatedbytheoccurrence ofhighcontainment pressure. Highcontainment pressureisnotpresentinthisevent.Table15.1.5.1-2 containsamatrixwhichdescribes theextenttowhichnor-mallyoperating plantsystemsareassumedtofunctionduringthetransient. Theoperation ofthesesystemsisconsistent withtheguidelines ofSubsec-tion15.0.2.3. Table15.1.5.1-3 containsamatrixwhichdescribes theextenttowhichsafety'ystems areassumedtofunctionduringthetransient. 15.1.5.1.3 AnalysisofEffectsandConsequences a}Mathematical ModelsTheNSSSresponsetoalossofmainsteamwith~lossofoffsitepowerasaresultofturbinetrip,wassimulated usingtheCESECcomputerprogramdescribed inSubsection 15.0-4.Thetransient minimumDNBRvalueswerecalculated usingtheTORCcodewhichusedtheCE-1CHF,correlation described inSubsection 15.0-4..b)InputParameters andInitialConditions Fromtherangeof-valuesforeachoftheprincipal processvariables giveninSubsection 15.0-3,asetofinitialconditions contained in'able15.1.5.1-4 waschosenthatproducesthelowestminimumONBR.,Additional clailification oftheassumptions andparameters listedinTable15.1.5.1-4,follows. Maximuminitialcorepower,maximuminitialcoreinlettemperature, mimimuminitialcoremassflowrateandinitialRCSpressurearechosentominimizetheONBR,andmaximizeoffsitedoses.-Themoderator temperature coefficient andbreaksizewerevariedtodelaytheoccurrence ofreactortripeitheronlowsteamgenerator pressureorhighcorepowerlevel,thusmaximizing thecoreheatflux.Anintermediate breaksizecorresponding to1.8ft2effective steamflowareapersteamgenerator'ith amoderator coefficient of-1.6x10-4hP/FresultsinthelowestvalueofminimumDNBRandmaximumdegradation offuelperformance. Inordertofurthermaximizethedegradation infuelperformance and,thus,tomaximizeoffsitedo'ses,thetimeofturbinetripandthelossofoffsitepower,whichcausedfourreactorcoolantpumpstocoastdown, ischosensothatthelowreactorcoolantflowtripcondition occurscoincident withthelowsteamgenerator pressurereactortrip.rInthisevent,theturbineisassumedtotrippriortoreactortripduetodepressurization ofMainSteamSystem.Thereactortriponlowhdyraulic oilpressureisexpectedtooccurduringthisevent.Inthisanalysisit'isconservatNely assumedthatthistripdoesnotoccurpriortoreactortripoa.low-reactorcoolantfloworlowsteamgenerator Vpressure. ThePressurizer PressureControlSystemandthePressurizer LevelCon-trolSystemareassumedtobeinthemanualmodeofoperation and,therefore, donotfunctiontomitigatedepressurization oftheReactorCoolantSystem{RCS).ThisresultsinlowRCSpressurewhichmimimizes theDNBR.ThehighestonepinradialpeakwiththemosttoppeakedaxialpowerstypeischosentominimizetheDNBRduringthetransient. l' ~c)ResultsThedynamicbehaviorofimportant NSSSparameters following thiseventarepresented onFigures15.1.5.1-2 to15.Table15.1.5.1-1 summarizes someoftheimportant resultsofthiseventandthetimesatwhichminimumandmaximumparameter valuesdiscussed belowoccur.0IAbreakinthemainsteamlineoutsidecontainment causesanincreaseinsteamflow,resulting indepressurization ofthesteamgenerators asshownonFigure15.1.5.1-10. Thepressuredecreaseinitiates alowsteamgenerator pressuretripand,subsequently, generates amaxnsteamisolation signal(MSIS).HSISclosesthemainsteamisolation valvesandmainfeedwater isolation valvesisolating theintactsteamgenerator whilethesteamgenerator connected totherupturedlinecontinues toblowdownthroughthebreak.Thedecreasing secondary pressureandtemperature leadstoanincreaseinprimarytosecondary heattransferratewhichcausestheprimarycoolant(coreaverage)temperature todecrease. Priortoreactivity duetoanegativemoderator temperature coefficient, thedecreasing coreaveragetemperature causesmoderator reactivity toincreas,re-sultinginanincreaseofcorepower.Afterreactortrip,thecorepowerfurtherdecreases todecaypowerlevelasshownonFigure15.1.5.1-2. Theincreasing coreheatfluxandthedecreasing reactorcoolantflowrateresultinadecreasing minimumDNBRasshownonFigure15.1.5.7-9. Thereactortripcausesthecoreheatfluxtodecreaseresulting inasubsequent increaseinminimumDNBR.TheminimumDNBRexperienced duringalossofmainsteamwithalossofoffsitepowerasaresultofturbinetripis0.88/resulting in3.1percentofthefuelpinsinDNB.Duringthisevent,twosourcesofradioactivity contribute totheoff-sitedose,theinitialactivityinthesteamgenerator inventory, whichisassumedtobe0.1pCi/ccdoseequivalent I-131,andtheactivitywhich'saddedtothesteamgenerator duringthetransient duetoassumedTechnical Specification. primarytosecondary leakagethroughthesteamgenerator tubesof1gallon/minute: Duringthecooldown, steam.releasesfromtheintactsteamgenerator viatheMSSVsandADYscontribute totheoffsitedose.Theoffsitedoseduetothelossofmainsteam-large, outsidecon-tainmentwithlossofoffsitepowerandwithtechnical specification primarytosecondary leakagethroughthesteamgenerator tubesresultsinnomorethana64remtwohourinhalation thyroiddoseattheex-clusionareaboundary. ThetotaloffsitedosesduringthiseventareshowninTable15.1.5.1-5. ',15.1.5.1.4, Conclusions RThisevaluation showsthattheplantresponsetothelossofmainsteam-large, outsidecontainment withlossofoffsitepowerasaresultofturbinetripandwithtechnical specification primarytosecondary leakagethroughthesteamgenerator tubesresultsinmaximumoffsitedoseswhicharewithintheacceptance guideline inTable15.0-4.QP4~~4P~ TABLE15.1.5.1"1 SL2-FSARSEQUENCEOFEVENTS,CORRESPONDING TIMESANDSt&MARYOFRESULTSFORALARGELOSSOFMAINSTEAMEVENT,OUTSIDECONTAIRKNT UPSTREAMOFMSIVMITHALOSSOFOFF-SITEP(NERAFTERTURBINETRIPSuccessPathsTimeSec0.047Event1.8ftbreakina34'nch2mainsteamlineTurbinetripassumedAnalysisSetPointorValue04JU4J0CJ0C4O000C5O0c4c44Jc(j'0cbo00Q4J0040H6th4JgC4HOO00Cl4J00aOKKCCO4JOg4J0gOH4J44C$Mw'4C44J4JgM&w:0c000O4J4Jvccg00i(4-Off-sitepowerlost-Dieselgenerator startingsignal48.1-FourRCPscoastdown Maximumreactorpower,XReactortripsignalgenerated onlowRCSflow,'l.ofratedfloworlowsteamgenerator

pressure, psia13459050.9MinimumDNBRMSISgenerated onlowSGpres-sure,psia0.8846068.0SIASgenerated onlowpre's-surizerpressure, psia1578XXXXX130311650Pressurizer emptiesHPSIflowbeginsAffectedsteamgenerator emptiesOperatoractuatesauxiliary feedwater tointactSG15.1-li

TABLE15.1.5.j.-l (Contcd)SL2-FSARSEQUENCEOFEVENTS,CORRESPONDING TIMESANDSUMMARYOFRESULTSFORALARGELOSSOFMAINSTEAMEVENTJOUTSIDECONTAINMENT UPSTREAMOFMSIV1~1THALOSSOFOFF-SITE2'OMERAFTERTURBINETRIPSuccessPathsTimeSecEventAnalysisSetPointorValue04J44CJ4Je0cU4JCJ0eCJVC$g000cpCJ4JCJCCOWECCO4J4J4gClCJmCQ4J0g$4b0JJCJC4J0cOW4J4J4J4JgMC5Ww04JCJ0>CJ~Pl4J4JCJCqjCJ0CC444kl18001.Operatoractuatesatmos-phericdumpvalvestocommencecooldownofRCS2.Operatorloadsthefollowing onsafetybuseschargingpumpspressurizer heaters~~3.Operatorboratestocoldshutdownconcentration 4.OperatorclearsSIASandreestablishes letdown,Lg7200Off.-site Powerrestored12,24(H.Shutdowncoolinginitiated, F/psia350/275XC~15.1-TABLE15.1.53.-2 SL2-FSARDISPOSITION OFNOR'.lALLY OPERATING SYSTEi~lS FORTHELOSSOFHAINSTER~i-LARGE OUTSIDECONTAIhÃiENT UPSTREOFMSIVWITHTHELOSSOFOFFSITEPOWERAFTER.TURBINERIP-~~~.----.......~~o~~ooyoS~(6'yc.~oco~~prov+g<z5oo(>ooQ~<y.gCa~~r(y(o>o@+~oo+c.+p<~o~o(o+~d~o~oeo~*fh~o+~og'cSYSTEH1.MainFeedwater System2.Turbine-Generator ControlSstem3.SteamBypassControlSstem4.Pressurizer PressureControlSystem5.Pressurizer LevelControlSystem6.ControlElementDriveMechanism ControlSystem7.ReactorPegulating System8.ReactorCoolantPumps9.ChemicalandVolumeControlSstem10.Condenser Evacuation System11.TurbineGlandSealingSystem12.Component CoolingWaterSystem13.TurbineCoolingWaterSystem14.IntakeCoolingWaterSstem15.Condensate TransferSystem16.Circulating WaterSystem17.SpentFuelPoolCoolingSystem~18.ACPower(Hon-Safety) 19.ACPower(Safety)20.D.C.Power21.PowerOperatedReliefValves22.Instrument AirSstem23.HasteManagement-Li uidXXXXXXXXXX24Systemhasnoautomatic mode.Losepoweronlossofoffsitepower,thenautomatically loadedondieselgenerator. 3.Operatormustconnecttosafetybusforoperation. 4.Onlyessential portionsofthesystemareavailable. 15.1-. TABLE15.1.5.1-3 UTILIZATION OFSAFETYSYSTB"8FORTHELOSSOFMAINSTEAM-LARGE. OUTSIDECONTAIhPi'KNT UPSTREAMMSIVLOSSOFOFFSITEPO>~ERAFTERTURBINETRIPPYgC7ISL2-FSARgx+M1.ReactorProtection Sstem2.EnineeredSafetFeaturesActuation Sstems3.DieselGenerators andSuortSstems4.ReactorTriSwitchGear5.MainSteamSafetValves6.Pressurizer SafetValves7.MainSteamIsolation Valves8.MainFeedwater Isolation Valves9.AuxiliaFeedwater Sstem10.SafetyInectionSstemll.ShutdownCoolinSstemCCW&ICh'2.AtmoshericDumValveSstem13.Containment Isolation Sstem14.Containment SraSstem15.IodineRemovalSstem16.Containment Combustible Gas.Control Sstem17.Containment CoolinSstem'XNOTES:*Manuallyactuatedduringnormalcooldown1.Normallyoperating system(innonsafety mode)2~Permissive blocksofSIASandMSISaremanuallyactuatedtopermitshutdowndepressurization. Systemsnotcheckedarenotutilizedduringthisevent.15.1-SL2-FSARTABLE15'~541-4ASSI%iEDINPUTPARAMETERS ANDINITIALCONDITIONS FORLOSSOFNAIHSTEAN~ARESULTOFTURBINETRIPParameter InitialPowerLevel,MWtInitialCoreInletCoolantTemperature, FInitialCoreRCSFlowRate,gpmInitialRCSPressure, psiaInitialPressurizer WaterVolume,XLevelAxialShapeIndexDopplerCoefficient Multiplier Moderator Temperature Coefficient, 10bp/FCEAWorthforTrip,10hpBreal;Size,ftAssumedValue2621.4551370,0002,15053-0'lio15.1>> SL2-FSARTABLE15.1.5.1-5 OFFSITEDOSESTwoHourExclusion AreaBoundaryDoseEntireEventLouPopulation ZoneDoseThyroid64'emWholeBody15.1-15012090Ko~60003607201080TIME,SECONDS18CCh~FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2COREPOWERVSTIMEFlGURE15.].5.l2 1504irI0I-lLJxUKLIJK0ODFJOU90O608I-300360=72010801440TIME,SECONDS1800y~,hetFLORIDAPOWERKLIGHTCOMPAHYST.LUCIEPLAHTVHIT2COREAYERAGEHEATFLUXVSTIMEFIGURE15.1.5,l3 3000~:24001800I-ZcKo"1200OI-O60Q<<DOESNOTINCLUDEELEVATION ANDREACTORCOOLANTPUMPHEADEFFECTS0720TIME,SECONDS1080i440'BGCFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2REACTORCOOLANTSYSTEMPRESSUREYSTIMEFIGURE.15.1.5.I-4 A4c7 UOCOSOOpLllo40000~o'0COUTLETAVERAGEINLET200360~72010SO.TIME,SECONDS14401SCOFLORIDAPOWERE.LIGHTCOMPANYST.LuCIEPLAHTUHIT2CORECOOLAHTTEMPS.YS,TIMEFIGURE15.1.5.I-5 k' MODERATOR DOPPLERSAFETYINJECTIONTOTALCEA360720i4401800'IME,SECONDSFLORIDAPOWERE.LIGHTCOMPANYST.LUCIEPLAHTUHIT2REACTIVITY YSTIMEt=lGURE15.1.5.f-6 ~'80060040020000360.7201080TIME,SECONDS14401800FLORIDAPOWERLLIGHTCOMPANYST.LUCIEPLAHTUHIT2PRESSURIZER WATERYOLUMEYS.TIMEFIGURE15.1.5.I-T 1~21~00~0I0360.7201CBOTIME,SECONDS.'40'pFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLAHTJHIT2REACTORCOOLANTFLOWYSTltAE 1.8~'zOS.2R0.90.60102030lIME,SECONDS50FLORIDAPOWER8LIGHTCOMPANYST.LuCIEPLAHTUHIT2MINIMUMDHBRYSTIMEFIGURE15.1.5./-9 1000800INTACTLINE400200RUPTUREDLINE~r0360720~TIME,SECONDS108014401800lI,FLORIDAPOWERLIIGHTCOh(PAHYST.LUCIEPLAHTUHIT2STEAMGEt<ERATOR PRESSUREVSTlh(EFIGURE15.1.5.I-10 I 300246COKa180120.Ql60INTACTLINERUPTUREDLINE00720108014401800TIME,SECONDSFLORIDAPOWERItLIGHTCOMPANYST.LUCIEPLANTOHIT2STEAMGENERATORLIQVIDMASSYSTIMEFIGURE15.1.5.I-11 .0 400024001600800RUPTUREDL)NEINTACTL)NE0360"720108014401800TIME,SECONDS:FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TOTALSTEAMFLOWVSTIMEFIGURE15.1.5.l-l2

  • ~.o>CO3c0wI-.~~52apLXgLQu)~~I-160'00360.,7201080TIMESECONDSi440'BGQc~FLORIDAPOWERLLIGHTCOMPAHYST.LUCIEI'LAHTUHIT2IHTEGRATEDSTEAMFLOWYSTIMEFIGURE15.1.5.I-13 20001600120C8004000360-.7201080TIME,SECONDS1440180CFLORIDAPOKIERItLIGHTCOMPANYST.LUCIEPLANTUHIT2FEEDNATERFLOWYSTIMEFlGURE15.1.5,l-14 A,

50040030Cx20010000360'201080.1440,8r.nTIME,SECONDSFLORIDAPOWERIlLIGHTCOMPANYST.LuCIEPLANTUNIT2FEEDWATER ENTHALPYVSTIME.FIGURElS.1.5.l-lS H.IVugiNRENts~cQ<0FKLi5AQa~gse.5I0Res>>4~KSL2-FSARg~U~-ogg7-"gFLo~IZED.QUiRG8EQT<~betweencoreheatadditionandsteamgenerator heatremovalpriortotheCEAinsertion and,hence'omaximizethepeakRCSpressure. The.'affected steamgenerator isassumedtoinstantaneously loseallheattransfercapacitywhentotaldepletion ofitsliquidinventory byboil-offanddischarge occurs.Thebreakarea,whichresultedin;thehighestpeakRGSpressure, wasfoundtobe0.25ft~'Usingthehighe'stinitialcorepowermaximizes theRCSheat"upwhichisthedrivingforceofthepressurization. Variations ofinitialcoreinlettemperature andinitial-reactorcoolantflowhadnegligible effectsonthepeakRCSpressure. Thehighestinitialcoreinlettemperature andthelowestinitialreactorcoolantflowwereusedxntheanalysis. ThePressurizer PressureControlSystemisplacedintheautomati.c mode,suchthatitdelaysreactortrip,thusprolonging theRCSheat-upandincreasing RCSpressurization. UsingthesmallestCEAworthanatheleastnegativemoderator temperature coefficient. maximizes theheatfluxovershoot afterreactortrip,increasing the~RCSheat-up.Thehighestinitialpressurizer liquidvolumeandmanualoperation ofPressurizer LevelControlSystemwereusedtoallowthemaximumin-creaseof.pressurizer level,maximizing thetransient effectofRCSpressureincreaseduringheat-up.However,theselection ofPress-urizerLevelControlSystemoperating modeandinitial'ressurizer liquidvolumehasonlyasmallimpactonthepeakRCSpressure. Auxiliary feedwater wasassumedtobeactivated bytheplantoperatorwithinf've'minutes ofthelowsteam-generator leveltripcondition topreventthepressurizer fromfillingsolid.Theassumedflowtotheintactsteamgenerator is500gpm.(Thepeak'RCSpressureoccursat31.6seconds.Analysishasshownthatifonlyonemotor-driven AFllpumpautomatically startsdeIivering 320gpmtotheintactsteamgenerator at146seconds,thepeakpressurewillbeunchanged hndthepressurizer willbeprevented fromfillingsolid.)TomaximizeRCSpressure, theSBCSisassumedtobeinthemanualmodesCInoraertoeliminate theimpactofuncertainty. inthewaterleveloftheaffectedsteamgenerator, reactortriponalowwaterlevelisnotassumedtooccuruntildryoutoftheaffectedsteamgenerator. Itisanticipated thatequipment maybeactuatedbyhighcontainment pressureduringthisevent.Theseactionsareidentified inthesequenceofevents,butareconservatively assumednottooccurinthequantitative analysisoftheNSSSresponsetothisevent. Q c)ResultsThedynamicbehaviorofimportant NSSSparameters following lossoffeedwater inventory withlossofoffsitepowerasaresultofturbinetripispresented inFigures,)5.2.5.2-.2 to20..Table)5.2.5.2-) .summarizes someoftheimportant resultsofthiseventandthetimesatwhichtheminimumandmaximumparameter valuesdiscussed'elow occur.Aruptureinthemainfeedwater lineinstantaneously terminates feed-waterflowtobothsteamgenerators andcausesliquidflowfromthe I 4Pehavera~lcdSubsection 10.2.3oftheFinalSafetyAnalysisRportsubmitted bytheapplicant. Ourevaluation cannotbecompleted vi"houtadditional inkometionfrowntheapplicant reiatingtothedesign,assemblyandoperating conditions ofthelov.pr"ssu-cturbine.discs.Pastexperience pithsimilarequipment inthe&icedKingdomandmorerecentlyvithVestinghouse turbinesintheUnitedStateshasrevealedapropensity forstresscorrosion crackingindiscswhich@asnotpredictable. Xnorderforthestafftoassessthepotential forstresscor"osion crackingintheapplicant's plant,thefollowing inxormatio"., villberequixedi a)baatlubricant vasusedinthehubareaofthediscsforasscubly.b)Mhatarethesimilarities jdifercncesbetweenthediscsintheSt.LucieBaitHo.2turbinesaaathoseusedbyVQstinghouse+Feataretheoperating, temperatures intheboreareaofthediscs.%hi&discordiscsareexposedtoamoisturelevelduringoperaticn thatsppxeximates thelevelofmoisturepresentincasesofcracking~ l'hatarthecalculated criticalcracksizesandwhatisthemethodused,tocalculate thatsisc.>~hatc~abiLity forvolumetric inspection ofthedischubareas"-'savelabletoSc~XacicUnit5o.2.c)TheDxbricant usedinthehubareaoXthediscsforsssembl>. isWlybdenum Disulfide oraGraphiteMbricant. St~~mcxeUnxtBoi2LiP.turbinediscsaresxmx.larindesigntootherWestinghouse units.Discsare'hrunk onandkeyedbymeansofthreekeystotheshaft-.'iheoperating temperatures andmoisturelevelforthe.variousdiscsintheboreareaareasfolio+axP252'-IAmend.-.ent No.6,t;9/Sl) 2345TllletBorekL~ta1TcppF(Tate1)280228191186Rx1tDoraWhtalT{'npF{i<~{>>2)926263209181186InletStcam)Sig>>ster01.86~28>>59+8(haletSteam~u9.s-"uW 1.86.2859>>8Xl.9khte(1)2"fromXnlatdiscfaceÃote(2)Hidkeylocationo".discoutletedgeV.%etableaboveEorr;oisture levelor"Variousdiscsdu"i'peration. E.Cri,t;ical cracksizeiscalcul.".Red tobeasfollows.'.P. No>>Di>>>>Ra.Cx1t1calCEQCJ{,83.58Bore{ini>>ch>>s>CrxtacalCrack81"eiaia>>a(iai.acbes)L>>P./e.1L.P.No.L.P>>L>>P.tb>>L>>P>>le.1X.P>>bo.1L.P,Ho.1LP>>R>>1L>>P>>5o.1J.P.Fh1L>>P.tk)>>2X>>Pbo.2DiscGo'acrnar cadDisc2GovcloorandDisc3GovezoorcAdDisc4Covexaore<>dDisc5GQveX'rior ClldBise1GGQ>>6'QdDisc2Cea.endDisc3.GBQ>>akidDisc49-Q>>GadQiac5C~Q>>CQQDisc1CoveraorendDisc2Caveroorend!5l792.6964.2434.9613.9732.5732>>2203.53482042.7092.1962>>665l.207,2.1162.5>V1.957l>>1Mo,e261.69'-839 4>>4401>>2150>>914 L.P?io.DLscNo>>C'critical CrackSireLore(ininc?ll~)CrxtxcQlCxsck>>LeeLilKP>>43"(XTILneiles)L.PifiO>>2X.P.?h.2I:PNo.2L.P.Viol2I:P.h0.2LP>>ho>>2it~P~I'4>>2L.P.R~2Dxsc3CCvtÃPQx'H8 9'ee4Clove%'Qcz ClioDisc5GOVT'X'J30l Q338DLSC1Ccae338Disc268n>>endDisc3C~n.endDiscIlGcn~GgdDisc5CC~<~QACi3.69/6.4837.8l32.66C2.233.3.6~<84.7498.237X.7953.4304.2111l86.0.936l,7662.4124.460TAeclet"Iod0c81cuiet. cN3'seel'.iie.?i'lPeed-333gJlouse Rel301tCZLtetxeRotLP?'vcleax7orbineksc33~~pec,'ioll" sui~";i::tel3 .0:l?'CinJane,1981,DiscsXsad2epprcxiznat.es thelave0:-,.Cis;'u'.e o:"f."Iit.xncclsescfctacicing ~F..heBorRBelleRfvl"BYECAilbei33'..PCCt::l:-,, uitraS033i CillSPeCti033 teehiliques l>>it!Iollt x'eeovinp:he discSrcr3rtes-.i~r't. St-LlicieUnit?io~2hisbBQAsubjected kothisinspection atthesl.te.

SERITEN3QuestionNo.420.05(7.1)Theinstrumentation andcontrolsystemcomparison information ofFSARTable1.3-1andFSARSubsection 7.1.1.6isinsufficient. Theinformation supplieddoesnotcompletely showthateachinstrumentation, controlandsupporting systemis:1.Identical tothatofanuclearpowerplantofsimilardesignwhichhasrecentlyreceivedanoperating license,or2.Different fromprevious/recent designswithadiscussion ofthedifferences andtheireffectsonsafetyrelatedsystems.Theaboveinformation isrequiredbyRegulatory Guide1.70.Revision3,"Standard formatandcontentofsafetyreportsfornuclearpowerplants",Section7.1.1.Therefore, inconformance withRegulatory Guide1.70,Section7.1.1,providesacomparative discussion foreachSt.Lucie2instrumentation andcontrolsystem.~ResonseChapter7willberevisedtoincludethefollowing information: St.Lucie2instrumentation andcontrolsystemsaredesignedandbuiltfunctionally identical tothosesystemsprovidedforSt.Lucie1(DocketHo.50-353).Inaddit'onsection7.1.1.6'ill beamendedasfollows.Alsoseetable420.05-.1fordetailedcompari-.sonsoftheReactorProtection System. SL2-FSARShieldBuildingVentilation SystemSwitchover fromFuelHandlingBuilding(E)(seeSubsection 6.2.3)Theabovearedescribed furtherin'Section 7.6.7.1,1.6Comparison'he ReactorProtective Systemwasdesignedandbuiltfunctionally identical tothesystemprovidedforStLucieUnit1(DocketNo,50-335)withthefollowingexceptions: ThenumberthenumberinCEAarid.KR53ofCEAsischangedto91.Thecorresponding changeinofCEAsandCEAsubgroups hasresultedinminorchangesb).RPSSt.LucieUnit2hasalossofCCWtripforRCP(Equipment) protec-tion.Thistripisneitherpresently norpreviously

licensed, andisnotcreditedinthesafetyanalysis.

OveralltheNuclearInstrumentation portionoftheRPSisfunction-allyidentical totheSt.LucieUnit1.However,thesub-function, ZeroPowerNodeBypass(ZPIB)isinitiated bythelowpowersectionoftheLinearPowerRangeSafetyChannelratherthantheWideRangeLogChannels, asinSt.LucieUnit1.TheSt.LucieUnit2WideRangeLogChannelwillhaveanaccuracyof+3%offullscalevoltage(corresponding toafactoroftwoinabsolutepowerlevel);witharesponsetimeof50msec.TheSt.LucieUnit2designspecifies initia-tionofZPi%bythelowpowercircuitry ofthePowerRangeSafetyChannel.Here,asmallerlinearrangeisutilizedtoprovideimprovedsetpointaccuracyandbetterresponsetime.Inparticular, thelowpowercircui-tryhasanaccuracyof+0.1%offullscalepoweroveritsrangeof102to2%power;witharesponsetimeoflessthan25msec.ThemethodofZPMBinitiation employedinSt.LucieUnit2issuperiortothatusedinSt.Lucie'nit 1sincethesetpointaccuracyandtheresponse. timehavebeenimprovedbyaleastafactoroftwo. 4 -TheSt.LucieUnit2Logicfunctions areidentical tothatusedforSt.LucieUnit1,butalsoincludesfusesinallmatrixinter-bay connections aspartofimprovedfaultprotection. Inaddition, atestcircuitisprovidedfor(2)checkingthefuses4ssociated withthismatrixfaultprotectiorij periodically( Matrixfuseintegrity willbecheckedperiodically inaccordance withtheRPStechnical specifications. St.LucieUnit2matrixrelaysaredryreedtypes,forimprovedre-liability overtheoriginalSt.LucieUnit1mercurywettedreedtyperclaydesign.St.LucieUnit2incorporates anewRPSbistabledesignw'unctionally identical, ischaracterized by:greateraccuracy, inputbfffimprovedcircuitisolation, improved'noise immunityueringorriableh-vian'aadjustable responsetime,lesscvclingduetoava'-sterisisfeatureandapull-up(down)circuitdesignUhiichforcesabistabletriponalossofinputsignal.Consequently, contrarytrartotheSt.LucieUnitIFSARSection7.2.2.2,theSi'.LucieUnit2auction-eeredInputbistables ~tilizing negativeinputswilltripinanopencircuitconfiguration. ESt.LucieUnit2hasincorporated RG1.53.RG1.22, RG1.75,IEEE-323-74 -344-g5and-38474intheRPSdesign,asthesestandards werenotineffectwhenSt.LucieUnit1waslicensed. c)~SstemsReuiredforSafeShutdownSt.LucieUnit.2conFormstoRG1.75,whichidentifies a6-inchspatialseparation requirement, versusthe12inchcriteriaofSt.LucieUnitl./d)SafetRelatedDislaInstrumentation -TheupperandlowerCEAlimitsareindicated ontheCEDMCSpanelforSt.LucieUnit2,whileSt.Lucie,Unit 1displaysthisinformation on'thecoremimicdisplay.TheS".'ucieUnit2designisidentical totheSONGSdesign(DocketNo.50-362).-Manyaspects-of theSt.LucieUnit2designforPostAccidentMonitoring .aredifferent fromSt.LucieUnit1.St.LucieUnit2isidentical toSONGSwiththeexception of.invokingBTPEICSBNo.23,gualification ofSafetyRelatedDisplayInstrumentation forPostAccidentandSafeShutdown. Theassociated changesinthisareaforinvokingRG1.97,Rev02areprovidedaspartofresponsetoICSBquestion420.41.-St.LucieUnit2utilizestheAnalogDisplaySystem(ADS),whichwhilefunctionally identical totheSt.LucieUnit1Metroscope, exhibitsimprovedreliability designfeaturesandincorporates improvedhumanfactorscharacteristics. Thissectionisnot1Eindication andisfurtherdescribed inSection7.7.1.1.6. e)EnineeredSafet'Features Actuation Sstem'(ESFAS) TheSt.LucieUnit2ESFASisfunctionally identical totheSt.LucieUnit1System.Channeldesignation andparameter inputsareessentially thesameexceptforthefollowing specificdifferences. TheSt.LucieUnit2mainsteamisolation signal(MSIS)isinitiated byalowpressuresignalfromeithersteamgenerater orhighcontainment pressure(FSARsection7.3.1.1.5). St.LucieUnit1MSISisinitiated byalowpressuresignalfromeithersteamgenerator only..TheSt.LucieUnit2containment isolation actuation signal(CIAS)wil1bemodifiedtoactuateon'safety injection actuation signal(SIAS)aswellashighcontainment pressureorhighcontainment radiation. Themodification wasincor+rated inSt.LucieUnit1asrequiredbyUSNRC*'HIActionItemstosatisfyadiversity requirement forcontainment isolation. FSARsection7.3.1.1.4 willberevisedtoreflectthisCIASmodification. St.LuqieUn'it2hasincorporated R.G.1.53,1.22,1.75,IEEE323-1974, 344-1975,and384-1974intheESFASdesign,asthese'st'andards werenotineffectwhenSt.LucieUnit1waslicensed. NOTES1.ThisdesignreflectsthatoftheC-.E.System80design,(DocketNo.STN-50-470F), wh'ichisqualified toIEEE323/74,and344/75.2.ThefusesofthissectionareutilizedintheSystem80PlantProtection SystemDesign.3.ThebistabledesignisamodifiedSystem80design,sincetheSystem80designdoesnotutilizedauctioneering. I TheESFsystemswasdesignedandbuiltfunctionally identical totheESFsystemsusedonStLucieUnit1(DocketNo.50-335).Thefollowing areESFsystemdifferences whencomparedagainstStLucieUnitl.a)'tIb)Containment fancoolingsystemhastwospeedmotors.HPSIandLPSIpumpsareprovidedwithredundant miniflow(re-circulation) headers.c)LPSI'pumpshaveredundant headersandassociated valves.d)e)TheHPSIpumpsarecomprised oftwofunctionally separateandindependent pumpsandheaders.TheShutdownCoolingSystemisdesignedwithredundant valvesandheaders.Pipingandvalvespermitthediversion ofHPSIflowfromthecoldlegintothehotlegoftheReactorCoolantSystem.7.1.2IDENTIFICATION OFSAFETYCRITERIAComparison ofthedesignwitb'applicable Regulatory Guiderecommendations anddegreesofcompliance withtheappropriate designbases,criteriastandards, andotherdocuments usedinthedesignofthesystemslistedinSubsection 7.1.1aredescribed inSubsections 7.1.2,1through7.1,2,2.7.1.2.1Desi.nBasesThetechnical designbasesforspecificinstrumentation andcontrolsofeachsafetyrelatedsystemarepresented inapplicable subsections ofthischapter,Designbasesthatapplyequallytqallsafetyrelatedinstrumentation andcontrolsystemsareinthissubsection. Table420.05-1St.LucieIandIIRPSComparison Page1of8FSARSectionSt.LucieI&IIComparison (Standards, Functional &Hardware) &St.LucieIINewAdditions CommentOtherLicensing Applications 7.1Generalfunctional differences areidentified fortheRPSandESFinSection7.1.1.6.Exceptforthoseidentified, St.LucieIIisfunctionally .identical toSt.LucieI.Somesafetycriteriadiffer-encesarenotapparentbecauseoftheSt.LucieIandIIFSARformatdifferences. However,St.LucieIIisexplicit'inidentifying bycomparison theRegul'atory Guides,versustheStLucieIIINCdesignbasis.SeeSection7.1.1.6RegGuidesandStandards aresimilartoSongs 0FSARSectionTable420.05-lSt.LucieIandIIRPSComparison St.LucieI&IIComparison (Standards, Functional &liardware)' St.LucieIINewAdditions CommintPage2of8OtherLzcenszng Applications 7.27.2.1.1.1.4'.2.1.1.1.6. i.7.2.1.1.1.11: also7.2.2.2.10 7.2.1.1.2.1 St.LucieIIdoesnotincorpor-ateAsymetric SteamGenerator Tilt(ASGT)aspartoftheTH/LPVARcalculation St.LucieIIhasprovisions for3E4RCPoperation. ThelowRCSflowtripsetpointisswitchedfromthe3pumptothe4pumpsetting.automatically whenreactorpoweris>605LossofCCl<tripisaddedtoSt.LucieIIforRCP(equipment) protection JCoranents includedinTables7.2-3and7.2-4StLucieIIisnota"stretch" powerplanttherefore ASGTisnotadesignrequirement SameasSt.LucieIDesiredbyFP8LIINotrequiredfor2560HWToperation. 'resently installed in't.LucieINotpreviously orpresently licensed;: NotcreditedintheSafetyAnalysis. 7.2.1.1.2.2 7.2OveralltheNuclearInstr.Systemperformsfunctionally identical toSt.Lucie"I.Certainsub-functions areperformed differently inSt.LucieII.Theseareasfollows:(1)TheZeroPowerYiodeBypassisinitiated bythelowpowersectionofthelinearPowerRangeSafetyChannelTheExcoreSafetyChannelsare'ualified toIEEE323-74and,,IEEE344-75Thiseliminates theneedtoqualifythe.MideRangeLogPowerSafetyChannel.Newqualification standards Notpreviously licensed. ReflectsSystem80design'ndqualification PerSystem80Design Table420.05-1St.LucieIandIIRPSComarisonPage3of8FSARSectionSt.LucieI&IIComparison (Standards, Functional &Hardware) &St.LucieIINewAdditions CommentOtherLicensing Applications T.2.1.1.3 7.2.1.1.47.2.1.1.9.9 ~7.2.1.1.9.2 l.St.LucieIILogicfunctions identicaltoSt.LucieI.St.LucieIIhoweverhasfuseinallmatrixinterbayconnections. 2.St.LucieIIMatrixrelaysaredryreedtypes.St.LucieIaremercury-wetted types.Thereactortripswitchgear.noldngerhousestheunder'-voltagerelaysforauxiliary .functions. St.LucieIIhasadditional testcircuitry forcheckingthfusesofthematrixfaultprotection fuses..Triptestcableselects(plugsinto)measurement channel.TheB/Sauctioneer selectswitchisusedtoselecttheauctioneered channeltoauctioneering input'bistables only.Forfaultprotection viaintercabinetwiringHighfailurerateofmercury-wetted typesinolderplantspromptedreplacement withdryreed.llhilefunctionally identi-'cal, therelaysarenowhousedintheCEDMCScabinetYerifycontinuity ofallfusesperiodically. St.LucieIdoesnothavefusestotest.Thissectionisidentical toSt.LucieI.Same.designasSystem80-PPS.Notpreviously licensed. Dryreedrelayshave'beensuppliedtoMaineYankeeOmaha,Millstone II,andpossiblySt..Lucie Iforreplacements. TheRTSGisidentical toSongs.Inaddition, IEEE384hasbeenincorporated forSt.LucieII.NotlicensedonanyotherplantnorinSystem80design.Testcircuitonly.Openfuseisconservative. Thiswasexplained toclarifytheSt.LucieIIdesignaswordedintheFSAR. Table420.05-1St.LucieIandIIRPSComarisonPage4of8FSARSectionSt.LucieI&IIComparison (Standards, Functional &Hardware) &St.LucieIINewAdditions CommentOtherLicensing Applications 7.2Cont'OTHER7.2.1.27.2.2.3.2 St.LucieIIincorporates anewbistabledesignwhichhas'.(1)greateraccuracy(2)circuitisolation viainputbuffers(3)adjustable timeresponsefornoiseimmunity(4)Variablehysteresis to'.preventcycling(5)Pull-up(down)circuitry ~whichforcesabistable'.triponalossofinputsignal,i.e.opencircuitry Theseunitsaredirectlyinterchangeable withtheold-.!.designandarefunctionally identical R.G.1.53,SingleFai.lureCrit.R.G.1.22,PeriodictestingIEEE323,344IEEE279/71,384/74,andRG1.75/75Rl statements ofconformance ofdesignSt.LucieIIhasadifferent manufacturer forthesebistables. Thusthebenefitsof1-4.(5)St.LucieIFSARindicates thatauction-eeredinputbistables uti.lizing negative'.inputswillnottripinanopencircuitconfiguration (St.LucieIFSAR7.2.2.2)Thesedocuments werenotineffectforSt.LucieI.whenlicensed. IEEE384andRG1.75werenotineffectwhen'..St.LucieIwaslicensed. IEEE279/71wasineffectbutconformance ismoreexplicitintheSt.LucieIIFSARNNlicensedpreviqusly. ThisisamodifiedSystem80design,incorporating auctioneering, sinceSystem80doesnotutilizeauctioneering. C Table420.05-1St.LucieIandIIRPSComarisonPage5of8FSARSectionSt.LucieI&IIComparison (Standards, Functional &Hardware) &St.LucieIINewAdditions CommintOtherLicensing Applications Table702"3Components areidentified forRCPandCEDMCSCCHFPSLdesignadditionNot:credited intheSafetyAnalysisEquipment protection only..'able,7.2-4i(1)St.LucieIIdoesnotlist'hannel accuracyandresponsetimes.(2)RCPandCEDMCSCCWchannel'.isaddedhereFpgLdesignaddition. ThisisthesameformatSongs'SAR has.NotcreditedinSafetyAnalysis..'quipment Protection only.(3)Listedparameter rangesareslightlydifferent thanSt.LucieI'.Axialshapeindexisomitted.Laterdesign,closertoSystem80.System80 Table420.05-1St.LucieIandIIRPSComgarison Page6of8FSARSectionSt.LucieI&IIComparison (Standards, Functional &Hardware) &St.LucieIINewAdditions CommintOtherLicensing Applications 7.4.2.27.4.2.1.2 St.LucieIIidentifies a6inchspatia1separation betweenredundant circuitry whileSt.LucieIidentifies a12inchseparation. St.LucieIIreferstoRG1.75(inFSARSection8.3)forsinglefailurecriteriaassociated with1Echannelsduringalossofoffsitepower't.Lucie'IconformstoRG175,whichidentsf>es the6inchseparation requirement. Thiscriteriaisslightly'ifferent fromSt.LucieIcriteriasinceRG1.75wasnotineffectwhenSt.LucieIwaslicensed. System80

I~Table420.05-1St.LucieIand,'IIRPSComoarison Page7of8FSARSectionSt.LucieI5'lIComparison (Standards, Functional &Hardware) 6St.LucieIINew~Additions CommentOtherLicensing Applications 7.5'7.5.1.4c17.5.1.8and7.5.2.97.5.1.4St.LucieIIupperandlowerCEAlimits(reedswitch)arefunctionally identical toSt.LucieI.Indications oftheselimitsare.locatedontheSt.LucieIICEDMCScontrolpanelversustheCoreMimicasinSt.LucieI.PostAccidentMonitoring forSt.LucieIIisdifferent inmanyaspectswhencomparedtoS.t.L'ucieISt.LucieIIincorpor'ates theAnalogDisplaySystem,whichisfunctionally identical tothe-St.LucieIMetrascope. TheSONGSdesignisimplemented forSt;LucieII.St;LucieIIisidentical toSongswithexception ofinvokingBranchTechnical PositionEICSBNo.23,gualification ofSafetyRelatedDisplayInst.forPostAccidentandSafeShutdown. TheAnalogDisplaySystemhasimprovedreliability designfeaturesaswellasimprovedhumanfactorscharacteristics.' Songs-Songs.=-However,RG1.97willbeinvokedintheseareasforSt.LucieII.Theassociated changesareforthcoming. Notalicensing requirement. Table420.05-1St.LucieIandIIRPSCoa:arisonPage8of8FSARSectionSt.LucieI&IIComparison (Standards, Functional &Hardware) &St.3ucieIINewAdditions CommentOtherLicensing Applications 7.7.1.1.1 7.7.1.1.8 7.7.1.1.9CED)PCSisfunctionally identical exceptasnotedin.Section7.7;1.2.1. =TheIncoreInstrumentation SystemissimilartothatsuppliedforAN02,exceptthat56detectors areutilizedonSt.LucieIIversus44onANO2(Section7.7.1.2.8)St'.LucieIIhas4linearpowerrange/log widerangesafetychanneldrawersinthe.'PS.Inadditiontheyhave2startup/control channelsfornon-safety operatorfunc.ions forstartupandsteadystatepoweroperation 'ndloadfollowing. TheSt.LucieIIsourcerange(startup) channelsuseBF3detectors insteadoftheB10usedonSt.LucieI.St.LucieIIisa16by16corewith91CEA's.Thedifferences identified in7.7.1.2.1 inhereimplemented toincorporate HumanFactorsEngineering. St.LucieIIisa)6x16core.See7.7.1.2.9 ofLucyIIFSARSongsANO2System80Seealso77129ofSt.LucieIIFSAR;; Additional Information toExistingResponseonSER8.3OpenItem-90%.480VMotors.'he loadsequencing (timing)relaysusedonSt.LucieUnit2arethesameasthoseusedonSt.LucieUnit1.Limitedsetpointdriftexperienced withSt.LucieUnit1timingrelayshasresultedinanongoingevaluation ofsolidstateelectronic timingrelayshavinggreatlyimprovedrepeataccuracyasreplacements fortheexistingrelays.Experience onSt.LucieUnit1hasshownthatsetpointdriftdoesnotexceed+1secondin18monthsandthatthisdrifthasneverimpactedthestartingandloadingofthedieselgenerators. Theprecludeanypossibility ofloadsequencing relayswillbeverifiedoperablewiththeintervalbetweeneachloadblockwithin+1secondifitsdesignintervalevery6months.Uponsatisfactory completion oftheelectronic relayevaluation, theexistingrelayswillbereplacedduringthefirstrefueling outage.Replacement oftheexistingrelayswithlowdriftelectronic relaysshallbecausetoreturnthesurvel-lencerequirement toonceevery18monthsduringplantshutdown. Chapter8.3SERItem-.Isolation DevicesTheSt.LucieUnit2designwillbemodifiedsuchthatthosenon-safety loadsconnected totheClass1Ebusseswhicharenotconsidered extremely impor-tantforoperation andplantinvestment willbeshedfromtheClasslEbussesbyaSafetyInjection Signalorwillbelockedoutofserviceduringplantoperation inaccordance withtheTechnical Specifications. Thosenon-safety loadswhichareconsidered extremely important foroperation andplantinvestment willremainconnnected totheClasslEbusses,however,theywillbeprovidedwithtwo,ClasslE,Faultcurrentinterrupting devices. O>0 (INI.U1)!..)1.04R~.(IN(C(l'(;E(R(1fili(ROff1(OOli'LSLR(YEYPUI(i0"1OYI)I(1R(I()1'Fol()ih9DiSE'D4OIISOffffffJIOLSANl)S(IORI'LINLYS OljlLOiiifDAUtil)iSl'*UIIUII5UHVIYILODU*DIV ATMNlulIUH5IN(*(HiMHAIM)NJVt'41I'tII1PM)A)Ll'AHIMLNI UlHli'AIHISUUltttS IHd,19)9IIJIIM'IWI(tPdJJ,(~i".-'p(, 5:J/J~O'ItfPIANAIION71))IOrf'~:.-(7r(~vj/NEWBERRYjP-'010'llISlItRCt292627I1IFkt.VGSm44*IIDlIIM1)ttkk'tMf.'llDOSGI'GH).)PIN)UHULS(NlIHACL(MCUEHA.tlm*IlmkIll(IILAI(II'U)ItkA'kSNV14UIJ)IItI'I.LtH190d<<l*IhJdGIUSC.I'l*UI,I'GG.dl,(H.IUPtLI',11'MIIL(9SH'IL5.I'M1,*,lkDlI.W.l.lI'I1IIIN*MMIH(Mmli0I:-1..101IncOEPARTMtYTOIMIVIILRfWHH~LSIUREAUOFGLttH,IIhhtI41MN0,II114,:~(716Y'.'"-"2',loL"jo"'~5(CfIoEXPLA.Ih'I)ONioY)1CoIIoIo710"f(f"16,10j,oclh<<141Oa(cmiplI6blcNhmalIIItWI<<PUmbctl 10(610JfI"I<<id"'Cf-"JmXxFCMLATjets(7F(r ngP+'(~4ctCI*',KE(41(EOY I-,~i0l~(!Y"i)if)UfQ)j)f!"yli--UJ':,:~((LJF/<<(ACH27I4)E)NDMI21'hMIlthl'ltCUUklilt'tS'Iik'('9IAN)DNAHf91C199.191UIAkItIHlICllIMMUt19NUfICIIIhiTERAAPERTURE. CARDM(AM(g(fSR)PFRBLUFFi21'~h1}}