ML17326A522

From kanterella
Revision as of 16:44, 4 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Reactor Vessel Matl Surveillance Program for Facility, Analysis of Capsule T.
ML17326A522
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/08/1977
From: NORRIS E B
SOUTHWEST RESEARCH INSTITUTE
To:
Shared Package
ML17326A519 List:
References
02-4770, 2-4770, NUDOCS 8002270331
Download: ML17326A522 (93)


Text

,~~$SOUTHWESTRESEARCHINSTITUTEPostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.1ANALYSISOFCAPSULETbyE.B.NorrisFINALREPORTSwRIProject02-4770toAmericanElectricPowerServiceCorporation2BroadwayNewYork,NewYork10004JDecember8,1977Approved:'4$}%$$.$~h$i\'l~h'I~P$~iA',"}:=:"}lCP,IiEL:.O'IHiCPG"'/IISEl'}VLCC"-CORi.~cDATE'.S.Lindholm,DirectorDepartmentofMaterialsSciences80f'22V053(i TABLEOFCONTENTSLISTOFTABLESLISTOFFIGURES~PaeriiiSUMMARYOFRESULTSANDCONCLUSIONSBACKGROUNDIII.DESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMIV.V.TESTINGOFSPECIMENSFROMCAPSULETANALYSISOFRESULTS1335VI.HEATUP,ANDCOOLDOWNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.1VII.REFERENCESjAPPENDIXA-.TENSILETESTRECORDS47A-1APPENDIXB-PROCEDUREFORTHEGENERATIONOFALLOWABLEPRESSURE-TEMPERATURELIMITCURVESFORNUCLEARPOWERPLANTREACTORVESSELSB-1 I

~~lbLISTOFTABLESTable~PaeDonaldC.CookUnitNo.1ReactorVesselSur-veillanceMaterialsSummaryofReactorOperationsDonaldC.CookUnitNo.116SummaryofNeutronDosimetryResultsDonaldC.CookUnitNo.1-CapsuleT17IVFastNeutronSpectrumandIronActivationCrossSectionsforCapsuleT19CharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselIntermediateShellPlateB4406-3(LongitudinalDirection)21VICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselIntermediateShellPlateB4406-3(TransverseDirection)22VIICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselCoreRegionWeldMetal23VIIICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselCoreRegionWeldHeat-AffectedZoneMetal24IXCharpyV-NotchImpactDataA533GradeBClass1CorrelationMonitorMaterial25NotchToughnessPropertiesofCapsuleTSpecimens31DonaldC.CookUnitNo.1XITensilePropertiesofSurveillanceMaterialsCapsuleT32XIIProjectedValuesofRTNDTforDonaldC.CookUnitNo.1forUpto12EFPYofOperation40 I~~TableZIZZXZVLZSTOFTABLES(CONT'D.)ProjectedValuesofRTNDTforDonaldC.CookUnitNo.1forUpto32EFPYofOperationProposedReactorVesselSurveillanceCapsuleScheduleDonaldC.CookUnitNo.1~Pae4142 LISTOFFIGURES~Fture~PaeArrangementofSurveillanceCapsulesinthePressureVessel2VesselMaterialSurveillanceSpecimens3ArrangementofSpecimensandDosimetersinCapsuleT124,CharpyV-NotchPropertiesofPlateB4406-3(Long.)DonaldC.CookUnitNo.1SurveillanceProgram26CharpyV-NotchPropertiesofPlateB4406-3(Trans.)DonaldC.CookUnitNo.1SurveillanceProgram27CharpyV-NotchPropertiesofCoreRegionMeldMetalDonaldC.CookUnitNo.1SurveillanceProgram28CharpyV-NotchPropertiesofCoreRegionHAZMaterialDonaldC.CookUnitNo.1SurveillanceProgram29CharpyV-NotchPropertiesofCorrelationMonitorMaterialDonaldC.CookUnitNo.1SurveillanceProgram30DependenceofCvShelfEnergyonNeutronFluence,37DonaldC.CookUnitNo.110EffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.138DonaldC.CookUnitNo.1ReactorCoolantHeatupLimitationsApplicableforPeriodsUpto12EffectiveFullPowerYears4512DonaldC.CookUnitNo.1ReactorCoolantCooldown46LimitationsApplicableforPeriodsUpto12EffectiveFullPowerYears C~~

I.SUMMARYOFRESULTSANDCONCLUSIONSTheanalysisofthefirstmaterialsurveillancecapsuleremovedfromtheDonaldC.CookUnitNo.1reactorpressurevesselledtothefollowingconclusions:(1)Basedonacalculatedneutronspectraldistribution,CapsuleTreceivedafastfluenceof1.80x101neutrons/cm2>1MeV.(2)Thesurveillancespecimensofthecorebeltlinematerialsex-periencedshiftsintransitiontemperatureof75'to130Fasaresultoftheaboveexposure.(3)Theweldmetalandheataffectedzone(HAZ)materialsexhibitedthelargestshiftinRTNDT.However,becausetheintermediateshellplatematerialhasahighinitial(unirradiated)RTNDT,itwillcontroltheheatupandcooldownlimitationsatleastuntilthenextsurveillance-capsuleisremoved.(4)Theestimatedmaximumneutronfluenceof6.92x1017neutrons/cm>1MeVreceivedbythevesselwallaccruedin1.27fullpoweryears.Therefore,theprojectedmaximumneutronfluenceafter32effectivefullpoweryears(EFPY)is1.74x1019neutrons/cm>1MeV.Thisestimateisbasedonaleadfactorof2.6betweenCapsuleTandthepointofmaximumpressurevesselflux.(5)BasedonRegulatoryGuide1.99trendcurves,theprojectedmaxi-mumshiftinductile-brittletransitiontemperatureoftheDonaldC.CookUnit1vesselcorebeltlineplatesatthe1/4Tand3/4Tpositionsafter12EFPYofoperationare110Fand50F,respectively.Thesevalueswereusedasthebasesforcomputingheatupandcooldownlimitcurvesforupto12EFPYofoperation.

(6)ThemaximumshiftsinthetransitiontemperatureoftheDonaldC.Cookunit1vesselcorebeltlineplatesatthe1/4Tand3/4Tpositionsafter32EFPYofoperationarepro)ectedtobe180Fand83F,respectively.(7)SincetheweldmetalandHAZbeltlinematerialsaremoresensi-tivetoradiationembrittlementthantheintermediateshellplatematerial,theoperatinglimf.tationsmaycomeundercontroloftheweldmetalandHAZmateriallateinthe32EFPY.designlifeoftheplant.(8)TheDonaldC.CookUnitNo.'vesselplates,weldmetalandHAZmateriallocatedinthecorebeltlineregionareprojectedtoretainsuffi-cienttoughnesstomeetthecurrentrequirementsof10CFR50AppendixGthroughoutthedesignlifeoftheunit.

II.BACKGROUNDTheallowableloadingsonnuclearpressurevesselsaredeterminedbyapplyingtherulesinAppendixG,"FractureToughnessRequirements,"of10CFR50.(1)*Inthecaseofpressure-retainingcomponentsmadeofferriticmaterials,theallowableloadingsdependonthereferencestressintensityfactor(KIR)curveindexedtothereferencenilductilitytemperature(RTNDT)presentedinAppendixG,"ProtectionAgainstNon-ductileFailure,"ofSectionIIIoftheASMECode.()Further,thematerialsinthebeltlineregionofthereactorvesselmustbemonitoredforradiation-inducedchangesinRTNDTpertherequirementsofAppendixH,"ReactorVesselMaterialSurveil-lanceProgramRequirements,"of10CFR50.TheRTNDTisdefinedinparagraphNB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowingtemperatures:(1)Drop-weightNilDuctilityTemperature(DW-NDT)perASTME208;(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature;(3)60degFbelowthe35milCtemperature.TheRTNDTmustbeestablishedforallmaterials,includingweldmetalandheataffectedzone(HAZ)materialaswellasbaseplatesandforgings,whichcom-prisethereactorcoolantpressureboundary.Itiswellestablishedthatferriticmaterialsundergoanincreaseinstrengthandhardnessandadecreaseinductilityandtoughnesswhenexposedtoneutronfluencesinexcessof1017neutronspercm2(E>1MeV).()Also,ithasbeenestablishedthattrampelements,particularlycopperand*Superscriptnumbersrefertoreferencesattheendofthetext.

phosphorous,affecttheradiationembrittlementresponseofferriticmate-rials.()TherelationshipbetweenincreaseinRT~Tandcoppercontentisnotdefinedcompletely.Forexample,RegulatoryGuide1.99,originallyissuedinJuly1975,proposedanadjustmenttoRT~Tproportionaltothesquarerootoftheneutronfluence.westinghouseElectricCorporation,intheircommentsonthe1975issueofRegulatoryGuide1.99(),believedthattheproposedrelationshipoverestimatestheshiftatfluencesgreaterthan1.9x1019andunderestimatestheshiftatfluenceslessthan1.9x10Ontheotherhand,CombustionEngineering,intheircommentsonthe1975is-sueofRegulatoryGuide1.99,suggestedthattheproposedrelationshipisoverlyconservativeatfluencesbelow1019neutronspercm(E>1MeV).ThereisalsodisagreementconcerningthepredictionofCvuppershelfre-sponsetoexposuretoneutronirradiation.()Afterreviewingthecommentsandevaluatingadditionalsurveillanceprogramdata,theNRCissuedarevisiontoRegulatoryGuide1.99whichraisedtheupperlimitofthetransitiontem-peratureadjustmentcurve.Inthisreport,estimatesofshiftsinRTNDTarebasedonRevision1ofRegulatoryGuide1.99),issuedinApril1977.Ingeneral,theonlyferriticpressureboundarymaterialsinanuclearplantwhichareexpectedtoreceiveafluencesufficienttoaffectRTNDTarethosematerialswhicharelocatedinthecorebeltlineregionofthereactorpressurevessel.Therefore,materialsurveillanceprogramsincludespecimensmachinedfromtheplateorforgingmaterialandweldmentswhicharelocatedinsucharegion.ofhighneutronfluxdensity.ASTME185describesthe(10)currentrecommendedpracticeformonitoringandevaluatingtheradiation-in-ducedchangesoccurringinthemechanicalpropertiesofpressurevesselbelt-linematerials.

WestinghousehasprovidedsuchasurveillanceprogramfortheDonaldC.,CookUnitNo.1nuclearpowerplant;TheencapsulatedCvspecimensarelocatedneartheO.D.surfaceofthethermalshieldatapointwherethefastneutronfluxdensityisaboutthreetimesthatattheadjacentvesselwallsurface.Therefore,theincreases(shifts)intransitiontemperaturesofthematerialsinthepressurevesselaregenerallylessthanthecorre-spondingshiftsobservedinthesurveillancespecimens.However,becauseofazimuthalvariationsinneutr'onfluxdensity,capsulefluencesmayleadorlagthemaximumvesselfluenceinacorrespondingexposureperiod.Forexample,CapsuleT(removedduringthe1977refuellingoutage)wasexposedtoaneutronfluenceapproximately2.6timesthatatthemaximumexposurepointonthevesselI.D.,whileCapsuleX(scheduledforremovalatalaterdate)isbeingexposedtoaneutronfluxabout60%ofthatatthepointofmaximumvesselexposure.Thecapsules.alsocontainseveraldosimetermate-rialsforexperimentallydeterminingtheaverageneutronfluxdensityateachcapsulelocationduringtheexposureperiod.TheDonaldC.CookUnitNo.1materialsurveillancecapsulesalsoin-cludetensilespecimensasrecommendedbyASTME185.Atthepresenttime,irradiatedtensilepropertiesareusedprimarilytoindicatethatthemate-rialstestedcontinuetomeettherequirementsoftheappropriatematerialspecification.Inaddition,thedegreeofradiationhardeningindicatedbythetensileyieldstrengthisusedtojudgethecredibilityofthesurveil-lancedata.(7)Wedgeopeningloading(WOL)fracturemechanicsspecimens,machinedfromplatematerialandweldmetal,arealsocontainedinthecapsules.Currenttechnologylimitsthetestingofthesespecimensattemperatureswellbelow

~~theminimumservicetemperaturetoobtainvalidfracturemechanicsdataperASTME399~~,"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials."However,recentworkreportedbyMagerandMitt~1~mayleadtomethodsforevaluatinghigh-toughnessmaterialswithsmallfrac-turemechanicsspecimens.Currently,theNRCsuggestsstoringthesespecimensuntilanacceptabletestingprocedurehasbeendefined.ThisreportdescribestheresultsobtainedfromtestingthecontentsofCapsuleT.Thesedataareanalyzedtoestimatetheradiation-inducedchangesinthemechanicalpropertiesofthepressurevesselatthetimeofthe1977refuellingoutageaswellaspredictingthechangesexpectedtooccuratselectedtimesinthefutureoperationoftheDonaldC.CookUnitNo.1powerplant.

III.DESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMTheDonaldC.CookUnitNo.1materialsurveillanceprogramisdescribedindetailinWCAP8047(13),datedMarch1973.Eightmaterialssurveillancecapsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcap-suleisoppositetheverticalcenterofthecore.TheneutronfluxdensityattheCapsuleTlocationleadsthemaximumfluxdensityonthe'vesselI.D.byafactorof2.6.(ThecapsuleseachcontainCharpyV-notch,tensileandWOLspecimensmachinedfromtheSA533GrBplate,weldmetalandheataffectedzone(HAZ)materialslocatedatthecorebeltlineplusCharpyV-notchspecimensmachinedfromareferenceheatofsteelutilizedinanum-berofWestinghousesurveillanceprograms.Thechemistriesandheattreatmentsofthevesselsurveillancemate-rialsaresummarizedinTableI.Alltestspecimensweremachinedfromthetestmaterialsatthequarter-thickness(1/4T)locationafterperformingasimulatedpostweldstress-relievingtreatment.WeldandHAZspecimensweremachinedfromastress-relievedweldmentwhichjoinedsectionsoftheinter-mediateshellcourse.HAZspecimenswereobtainedfromtheplateB4406-3sideoftheweldment.ThelongitudinalbasemetalCspecimenswereorientedwiththeirlongaxisparalleltotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.ThetransversebasemetalCspecimenswereorientedwiththeirlongaxisperpendiculartotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.Tensilespecimensweremachinedwiththelongitudinalaxisparalleltotheplaterollingdirection.TheWOLspecimensweremachined X(220')270'(184')Y(320')Z(356)180'aS(4')V(176')T(40)u(140')900ReactorVesselThermalShieldCoreBarrelFIGURE1~ARRANGEMENTOFSURVEILLANCECAPSULESRTTHEPRESSUREVESSEL

~~TABLEID0NALDC.C0OKUNnNo.1REACT0RVESSELSURVEn.LANCEMATERZALS<>>)HeatTreatmentHistorShellPlateMaterial:Heatedto1600Ffor4hours,waterquenched.Temperedat1225Ffor4hours,aircooled.Stressrelievedat1150Ffor40.hours,furnacecooled.Weldment:Stressrelievedat1150F.for40hours,furnacecooled.CorrelationMonitor:1675F,4hours,aircooled.1650F,4hours,waterquenched.1225F,4hours,furnacecooled1150F,40hours,furnacecooledto600F.ChemicalComosition(Percent)MaterialCMnPSSiNiMoCuPlateB4406-3WeldMetal0.241.400.0090.0150.250.490.460.140.261.330.0230.0140.180.740.440.27CorrelationMonitor0.221.480.0120.0180.250.680.520.14 withthesimulatedcrackperpendiculartoboththeprimaryrollingdirectionandtothemajorplatesurfaces.Allmechanical.testspecimens,seeFigure2,weretakenatleastoneplatethicknessfromthequenchededgesoftheplatematerial.CapsuleTcontained44CharpyV-notchspecimens(10longitudinaland10transversefromtheplatematerial,plus8eachfromweldmetal,HAZandthereferencesteelplate);4tensilespecimens(2plateand2weldmetal);and4WOLspecimens(2plateand2weldmetal).Thespecimennumberingsys-temandlocationwithinCapsuleTisshowninFigure3.CapsuleTalsowasreportedtocontainthefollowingdosimetersforde-terminingtheneutronfluxdensity:TargetElementFormQuantityIronCopperNickelCobalt(inaluminumCobalt(inaluminum)Uranium-238Neptunium-237BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxide5332.211TwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacersinCapsuleT.One(locatedatthebottom)was2.5%Agand97.5%Pbwithameltingpointof579F.Theother(locatedatthetopofthecapsule)was1.75%Ag,0.75%Snand97.5%Pbhavingameltingpointof590F.10 46a44'OIIR.00990~.3I.3I42.I252.I05l.063l.053.35.393(a)CharpyV-notchImpactSpecimen.256.246I.005.995.255.245I6Gagelength256.3954934.2504.2I0.250RI.250'.26l.495I.80630.I98.I9.790.786.395.375D.37'ECTIONA-A(b)TensileSpecimen.375D..380.439499.437.04'73.0463D.0667.0662.0667l.45l.4PI.I30I.I20.765.745I.005.995I.005-8-~995.SOI.499(c)WedgeOpeningLoadingSpecimenFIGURE2.VESSELMATERIALSURVEILLANCESPECIMENS fC,COICO.CCSCLttfCtttL~ISLICIIIILICICLttffIItlCLIffIILfC>COICOCISII~IIIIIILOOLllISILCClllttCluttClllt1CIOItlClllt1CllltTCClltlCllltTCILIttClllttCltlttW.LIIIOI~'llI-jlI~SIISSlitSISSSSII4IL4~I4I.l~ISI1SI~SI4SI~SIillILOI~III~IIIIIILLLIII~~'llY-SSI.llI.lt~StWIL~SS~.SlISSI.llI.IS1-~I~I.ILI-~IILS-IILI.I~.II~TOPBOTTOMItICLLC~~IIIIIICIOCtllllILLOI~I(IIIII'ITOIIIL~IIICIIII)IItllIC~'LIOI.S(LIILSI(III~IIICII4I)ISILLCOIIILLIIOISaalllaIOILSOCII.IIIICLI~IOICIIL~ICILLFIGURE3.ARRANGEMENTOFSPECIMENSANDDOSIMETERSINCAPSULET

~~IV.TESTINGOFSPECIMENSFROMCAPSULETThecapsuleshipment,capsuleopening,specimentestingandreportingofresultswerecarriedoutinaccordancewiththeProjectPlanforDonaldC.CookUnitNo.1ReactorVesselIrradiationSurveillanceProgram.TheSwRINuclearProjectsOperatingProcedurescalledoutinthisplaninclude:(1)XI-MS-1,"DeterminationofSpecificActivityofNeutronRadiationDetectorSpecimen."(2)XI-MS-3,"ConductingTensionTestsonMetallicMaterials."(3)XI-MS-4,"CharpyImpactTestsonMetallicMaterials."(4)XIII-MS-1,"OpeningRadiationSurveillanceCapsulesandHandlingandStoringSpecimens."(5)XI-MS-5,"ConductingWedge-Opening-LoadingTestsoniMetallicMaterials."(6)XI-MS-6,"DeterminationofSpecificActivityofNeutronRadiationFissionMonitorDetectorSpecimens."CopiesoftheabovedocumentsareonfileatSwRI.SouthwestResearchInstituteutilizedaprocedurewhichhadbeenpre-paredforthe1977refuellingoutagefortheremovalofCapsuleTfromthereactorvesselandtheshipmentofthecapsuletotheSwRIlaboratories.SwRIcontractedwithToddShipyards-NuclearDivisiontosupplyappropriatecuttingtoolsandalicensedshippingcask.Toddpersonnelseveredthecap-sulefromitsextensiontube,sectionedtheextensiontubeintothree-footlengths,supervisedtheloadingofthecapsuleandextensiontubematerialsintotheshippingcask,andtransportedthecasktoSanAntonio.13

~~~~Thecapsuleshellhadbeenfabricatedbymakingtwolongseamweldstojointwohalf-shellstogether.ThelongseamweldsweremilledoffonaBridgeportverticalmillingmachinesetupinonehotcell.Beforemill-ingoffthelongseamweldbeads,transversesawcutsweremadetoremovethetwocapsuleends.Afterthelongseamweldshadbeenmilledaway,thetophalfofthecapsuleshellwasremoved.Thespecimensandspacerblockswerecarefullyremovedandplacedinanindexedreceptaclesothatcapsulelocationwasidentifiable.Afterthedisassemblyhad.beencompleted,thespecimenswerecarefullycheckedforidentificationandlocation,aslistedinWCAP8047.(>>)Eachspecimenwasinspectedforidentificationnumber,whichwascheckedagainstthemasterlistinWCAP8047.Nodiscrepancieswerefound.Thethermalmonitorsanddosimetercfireswereremovedfromtheholesinthespacers.Thethermalmonitors,containedinquartzvials,wereexamined,andnoevidenceofmeltingwasobserved,thusindicatingthatthemaximumtemperatureduringexposureofCapsuleTdidnotexceed579F.ThespecificactivitiesofthedosimetersweredeterminedatSwRIwithanNDC2200multichannelanalyzerandanNaI(Th)3x3scintillationcrystal.Thecalibrationoftheequipmentwasaccomplishedwithappropri-atestandardsandaninterlaboratorycrosscheckwithtwoindependentcount-'inglaboratoriesonCo-,54Hn-and~Co-containingdosimeterwires.Allactivitieswerecorrectedtothetime-of-removal(TOR)atreactorshutdown.Infinitelydilutesaturatedactivities(A8AT)werecalculatedforeachofthedosimetersbecauseASATisdirectlyrelatedtotheproductofthe

~~'~energy-dependentmicroscopicactivationcrosssectionandtheneutronfluxdensity.TherelationshipbetweenATORandASATisgivenby:E(1-em)(em)ATOR-XTm-XtASATm~1where:m=operatingperiod;decayconstantfortheactivationproduct,day1;Tmequivalentoperatingdaysat3250MwThforoperat-ingperiodm;tm=decaytimeafteroperatingperiodm,days.TheDonaldC.CookUnitNo.1operatinghistoryuptothe1977refuellingout-ageispresentedinTableII.Thespecificactivityattimeofremoval(TOR)andthespecificsaturatedactivitycalculatedforeachdosimeterarepre-sentedinTableIII.Theprimaryresultdesiredfromthedosimeteranalysisisthetotalfastneutronfluence(>1MeV)whichthesurveillancespecimensreceived.Theaveragefluxdensityatfullpowerisgivenby:SATmNOD(2)where:energy-dependentneutronfluxdensity,n/cm-sec;ASATsaturatedactivity,dps/mgtargetelement;spectrum-averagedactivationcrosssection,cm;NOnumberoftargetatomspermg.Thetotalneutronfluenceisthenequaltotheproductoftheaverageneutronfluxdensityandtheequivalentreactoroperatingtimeatfullpower.

TABLEIISUMMARYOFREACTOROPERATIONSDONALDC.COOKUNITNO.1OperatingPeriodStartDates~DSSOperating~DSsShutdown~DSSPowerGenerationEquiualentOperatingDaysT)DecayTimeAfterPeriod10122/2/752/15/752/17/752/18/752/21/753/19/754/4/756/25/756/27/757/4/757/23/7510/12/7510/15/75ll/1/7511/15/751/2/761/5/764/13/765/10/767/2/767/6/769/11/769/19/7611/21/7611/22/762/14/752/16/752/17/752/20/753/18/754/3/756/24/756/26/757/3/757/22/7510/ll/7510/14/7510/31/7511/14/751/1/761/4/764/12/765/9/767/1/767/5/769/10/769/18/7611/20/7611/21/7612/23/76132682811748536763322,1942281619142729,604200,61615,432201,50640,163116,552256,178143,868205,682196,52092754Total,Cycle11,501,2970.680.079.1161.l34.7562.0012.3535.8678.8244.2763.2960.4728.54461.94678675646548539439419357255175104330

~~TABLEIIISUMMARYOFNEUTRONDOSIMETRYRESULTSDONALDC.COOKUNITNO.1--CAPSULETMonitorIdentificationActivation-ReactionATOR(ds/mASATds/mFe-Fe-Fe-Fe-Fe-TopTopMid.Mid.Bot.Mid.Bot.54Fe(n,p)54MnAverage193x1031.69x1031.69x1031.69x1031.80x1031.76x1033.34x1032.94x1032.93x1032.93x1033.11x103.3.05x103Cu-TopMid.Cu-Mid.Cu-Bot.Mid.Ni-TopMid.Ni-Mid.Ni-Bot.Mid.Co-TopCo(Cd)-TopCo-Bot.Co(Cd)-Bot.U-238Np-23763Cu(n,a)60Colltf58Ni(n,p)58CoIfIICo(n,p)CoIIIfII238U(n,f)137C237Np(n,f)137Cs5.14x1015.27x1016.04x1013.83x1043.77x1043.95x1044.87x1061.83x1065.03x1061.64x1061.20x1034.53x1033.43x1023.52x1024.03x1024.46x1044.38x1044.59x1043.25x1071.22x1073.36x1071.09x107N/AN/A17 Theneutronfluxdensitywascalculatedfromthe4Fe(n,p)4Mnreac-tionbecauseithasahighenergythresholdandtheenergyresponseiswellknown.TheenergyspectrumforCapsuleTwascalculatedwiththeDOT3.5two-dimensionaldiscreteordinatestransportcodewitha22-groupneutroncrosssectionlibrary,aPlexpansionofthescatteringmatrixandanS8orderofangularquadrature.ThenormalizedspectrumforCapsuleTandthegroup-organizedcrosssectionsforthe54Fe(n,p)54MnreactionderivedfromtheENDF/B-ZVlibraryaregiveninTableIV.ThevalueofoisFegivenby:10MeVaF(E)g(E)dEo(>1Mev)-1'110$(E)dEl.00(3)where:VF(>1MeV)thecalculatedspectrum-averagedcrossFesectionforflux>1MeV,cm2determinedforthe54Fe(n,p)54Mnreaction.Theresultingvalueobtainedforfast(>1MeV)neutronfluxdensityattheCapsuleTlocationwas4.50x101neutrons/cm-sec.SinceDonaldC.CookUnitNo.1operatedforanequivalent461.94fullpowerdaysuptothe1977refuellingoutage,thetotalneutronfluenceforCapsuleTisequalto1.80x1018neutrons/cm(E>1MeV)basedonthecalculatedspectrumatthecap-2sulelocation.Assumingafission-spectrumenergydistributionatthecapsulelocation,thecross-sectionforthe4Fe(n,p)4Mnreaction(E>1MeV)wouldbe98.26mb.Theresultingfluxandfluencevalueswouldbe4.95x10neu-(4)trons/cm2-secand1.97x1018neutrons/cm2,respectively.18 TABLEIVFASTNEUTRONSPECTRUMANDIRONACTIVATIONCROSSSECTIONSFORCAPSULETEnergyRange(MeV)8.18-10.06.36-8.184.96-6.364.06-4.963.01-4.062.35-3.011.83-2.351~11-1.83NormalizedNeutronFlux0.00980.02540.04820.04710.08550.14000.17520.468954Fe(n,p)54MnCrossSection(barns)0.5819.5770.4910.3540.2050.0990.0230.0014VF0.108barnsFe19 TheirradiatedCharpyV-notchspecimensweretestedonaSATECimpactmachine.Thetesttemperatureswereselectedtodeveloptheductile-brittletransitionanduppershelfregions.TheunirradiatedCharpyV-notchimpactdatareportedbyWestinghouse(13)andthedataobtainedbySwRIonthespec-imenscontainedinCapsuleTarepresentedinTablesVthroughIX.TheCharpyV-notchtransitioncurvesforthethreeplatematerialsandthecor-relationmonitormaterialarepresentedinFigures4throughS.Theradia-,tion-inducedshiftintransitiontemperaturesforthevesselplatesarein-dicatedat50ft<<lband35millateralexpansion.AsummaryoftheshiftsinRTNDTandCvuppershelfenergiesforeachmaterialarepresentedinTableX.TensiletestswerecarriedoutintheSwRIhotcellsusingaDillon10,000-1bcapacitytesterequippedwithastraingageextensometer,loadcellandautographicrecordingequipment.Oneeachplateandweldmetaltensilespecimenswastestedatroomtemperature(RT)andat550F.Theresults,alongwithtensiledatareportedbyWestinghouseontheunirradi-atedmaterials(1),arepresentedinTableXI.Theload-strainrecordsareincludedinAppendixA.TestingoftheWOLspecimenswasdeferredattherequestofAmericanElectricPowerServiceCorporation.ThespecimensareinstorageattheSwRIradiationlaboratory.TheCharpyV-notchresultsindicatethattheHAZismoresensitivetoradiationembrittlementthantheas-rolledandheat-createdplateandaboutequaltothatoftheweldmetal.Thisissurprisingbecausethecoppercon-tentofHAZisreportedtobe'uchlowerthanthatoftheweldmetal.(3)20 TABLEVCHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELINTERMEDIATESHELLPLATEB4406-3(LONGITUDINALDIRECTION)ConditionBaselineCapsuleTSpec.No.(a)A-44A-45A-49A-50A-41A-47A-42A-48A-43A-46TestTemp.(p)-40-40-40101010404040767676110110110160160160210210210300300300104082110135160185210250300ImpactEnergy(ft-1b)10ll11.524.53331.557426582707893.510088110131.5115.5120144125131.512613210.5293846.562.58499105110105.5Shear(x)91113232529453737525952951009510010010010010010015203525559595100100LateralExpansion~Mls13101124292849405467606172777284958389989590929310243138535880838989(a)Notreported.21 TABLEVICHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELINTERMEDIATESHELLPLATEB4406-3(TRANSVERSEDIRECTION)ConditionBaselineCapsuleTSpec.Na.(a)AT-44AT-45AT-49AT-50AT-41AT-47AT-42AT-48AT-43AT-46TestTempt~P)-40-40-40101010404040767676761101101101601602102102103003003001O4082110135160185210250300ImpactEnergy~ft-1b)1111.51428233040413783435050845468977790959710094101625353749.55773.5878789Shear~7.)14991823182727322748374190901001001001001001005520302540100100100lOOLateralExpansion~milt1215152822263635345644464471515780717579798375858233035444763737183(a)Notreported.22 TABLEVIICHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELCOREREGIONWELDMETALConditionBaselineSpec.No.(a)TestTemps('p)-140-140-140-100-100-100ImpactEnergy~ft-1b1ll211923.52920Shear(X)182011LateralExpansion~m11s101918222618CapsuleTW-33'-35W-34W-39W-40W-37W-38W-36-70-70-70-40-40-40101010767676210210210>>4010758211016021030045.5515463596983849211410710711011211124.55075.54485759868.5244232473447737175991001001001001005207020951001001003947495253606972758887889087931941673469666666(a)Notreported.23 TABLEVIIICHARPYV-NOTCHIMPACTDATATHEDONALDCDCOOKUNITNO.1REACTORPRESSUREVESSELCOREREGIONMELDHEAT-AFFECTEDZONEMETALConditionBaselineSpec.No.(a)TestTempo~7)-175-175-175-140-140ImpactEnergy(ft-lb)5.5771622Shear~(/LateralExpansion~mals1218-100-100-100303345131420252840CapsuleTH-33H-35H-34H-39H-40H-37H-38H-36-70-70-70-70-40-40-40101010767676210210210-4010458211016021030052472730547147978982112'401311291041051040.530.552.562.584111.5832125142055504390436910010010010010010051525254010010010039352124535045836764868482859487930274146657854(a)Notreported.

TABLEIXCHARPYV-NOTCHEPACTDATAA533GRADEBCLASS1CORRELATIONMONITORMATERIALConditionBaselineCapsuleTSpec.No.(a)R-33R-37R-38R-39R-40R-34R-35R-36TestTempr-50-50-50-20-20-201010104040408585851101101101601601602102102103003003004082110160210300350400ImpactEnergy~fe-1b)6.5961214.513.522363558.541.55282.585.563.5108.581109117115121125117.512713.518.53555.586.510011196.5Shear~X913132323233329294341425867558485879898100100100100510204095100100100LateralExpansion~mals)61091514142332325142456071547269798488878783841318324566578484(a)Notreported.25 e~~160~'II~II1ttI~eiIitI~IIIlIt1IIeII1QtI~I~IIItII~t!It'III~IIeIII120III~I~etI1I~I~IiII!IjI~eIl~i~I~IIIee+lg!IIIeI~IIit~I~IIiI~'If.eIIIf~~~eIIIII1e~ICI~JIIII~'00SIufz1)C38040eIeIe~ItI,II~eI~eI~IIIt1T~I~IIIeII'ItIIIII~III!IIii~IIIIIII'1IIIIi~e~II~~I.'III~I~lt~C~I~t,IItIj:t~IItII!III'~I'-III..L'L.l.e~~'III'II~~1teI~III~'IIeI~I1J~~I~eteIi,t1IIIIII~I';!IIIiIIIII'I~"ee~-Baseline~~I~eI'tIII~IjC~IeIeIt',1~I~II,iI'-IrradiatedCapsuleTe~~e~~'ICI"~0!*I<eII'III-200-1000100200Temperature,degF300400100~I~I'I'l~I~~~I75IeIee~~I~I~IC050eII~Ie)Cc7251eIe1~IIIIiIIIIIIIII~I~II~'~eI'IIIII~I~jIII~~I!II'.I~jeI'~tiee;iIIIIIe....I,.eI~~eI~UnirradiatedBaseline~~eee~,~\-XrradiatedCapsuleT0IeI'I~I~.IIII1II'I~~'~~eeI~eLI-200-1000100200Temperature,degF300400FIGURE4~CHARPYV-NOTCHPROPERTIESOFPLATEB4406-3(LONG-)DONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM26

~c160a~ae120~I~III1,!a,Ia1ajaaI~II7aaa~IaI'Ia,'Iae80II~I.'I7~','II~IC1IIaIIIIIIIII9~I1~aaI~1IItII~a~IIIa~!III.I1II~9I't"I~~'I~'~IIiI1~aI!40~eI\';~II~lIII1III~.'II~1~~eI1~aaaII'-'II~IIII:~tIe~~Ia,1~~-I=~a"~-200-1000100200Temperature,degF300400100co758~'*fe'I1~11II'~I.'dMted&ad~Lat-dd'-CapjI:II'II*a1tI'I~IIIII!IIII~t1,I'I~~Iae1~>>~'1.LOt~J'1a~~~'I"10~501~eeI~'IIaII!~I~.6=-~.IP25I~~at,II'IJaai~t:~!IIIIII+IILJ'1a'.~~I:I't1I!JIIIa~I."'a-HIIIaIII~atIIIIIIIIIIIIIIII~IIII'IiIIaII~IaIII'itiI~.~LjII~Ie~I1."..~t.Ia.IlTI;..LII/I'.aJf)If[I~'IIJIIIIII,I,9-200-1000100200Temperature,degF300400FIGURE5.CHARPYV-NOTCHPROPERTIESOFPLATEB4406-3(TRANS.)DONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM27 1604~>I~~~'4ii>!~IIIijl-r+'!-'.H.I~'III~~I~IIII~IIf:';~II120~!I~III~;IIIIII.IIIiI!>I>1~~~IIIIIII~14>1I~~80i).~jt~~~IIItI>II4i4'I~>>Ii1~III~I~IIII>I~>I~II>~~>II4>II':i'I~~I>,'I~f1I<<I~~,CIIIIIl4I>iI~~4~~1tII>j~.II~~~iiI->II>>tiiiIiI~~400iCtIit~tII>I~II~~~II~4III~II~IIIIII>~>>~U~diatad-'BaselinejiI~~II.IIiIIIIIjiIII.'t1I~~I~I~IIII'I',wj-.'-+-.-&@Bated-CapsuleT-200-1000100Temperature,degF200,300400100II4I~.'1iIII>II:.'4'~t'C;4~I~14II~>I~1,'>~m7581~>~III~~CAjQ50Xc525~~I~1'>'4>I'~~rI4~>~f~fIl.4~'iI~~II~II~I.i.I:III,'1jI>III,1~4I'I;I!~'~fi4tII~'-~Coda-.4II,.II~~~,','~.'-,.":,;&--.UnMrediatedBaselineII~adiatedCapsuleTI~I;'4iII:III>i'tII..*.~~I>III'.~>4'I~'I-200-1000100200Temperature,degF300400FIGURE6.CHARPYV-NOTCHPROPERTIESOFCOREREGIONWELDMETALDONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM28 160!!~~!II"!~Il!DIW120~II='IIIII~~II~iII~II'!lI~IiIiII:'!IiII'+l~~.III!jIIt"~~!80)CD~~I!!II~!!~ItII!l!."I!~IIIIIII'"Ii!~~Il~I.!+:'III!(~lIP400IIIIIIII~II!IIII'LtfIIl'IIIIIIl:~!I~$J~l(iTi~i(!!,.'I~A~I~!I~ll't~Base1ine.~I!!,'Xrmdia5edl.CapsuleI,~III'(-200-1000'00200Temperature,degF300400100!I~Ii.IIiII'~'~J.'lI'IIl~'!II~!075l~I~I',iII(J~lIIIII1I:~jIII!I~IIIIII.'~LAIII~I~~I'II50II,IIIIIlII'jII;I4~tI!I~'I'I~l!jj!~fII(I~wIJu250~!!IIIIlII~~!(Q(IIII;I~"o-'-III'I.lIIII!!I~-~lII!IIrII0I~I'i'IIII~I~1ljt~IItI'~',UnirradiathdBaseline4,'-Irradiated(Capsu1eTII~!!'!-200-1000100200Temperature,degF300400FIGURE7.CHARPYV-NOTCHPROPERTIESOFCOREREGIONHAZMATERIALDONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM29 160I~'.~IfII,If~fIiIIII~f~I~',IfI'~IIjIII~~I'~II!fI~III~~I~IIIl~~~III~Ij~III~~I120~,IIIrratHQtedjiz1+~.I~~I~~r,fIIIIII~I.t!III~I~II~~~lI~~'I!~~~'"'0"fII~~I80C)o~II~~II~~~r~I1l"'~III'~~~II~I!II!Iil1IIII~ii~IjIIII~I;;~i!IIII~jI!II~I~I'I!II'~IIf~~~'III~I1I~'IIL!I~!!III~I~~!J~~IIIl!'~'Ii~IfII~~I~t!l;I~~~II40III~I~I!~IIIf~jtIf\~jI'~;~III~>'.If~fI!~I~IIIIIII~~I~I~IIl1I~iiIIIfIIII'IT~IIIIIIIIIIIIIII~~IIjj!\I~1,'I0-200t!-1000100200Temperature,degF300400100j.I.2008~i~758~"-~Zrredkited-'Gape~~j~II~~III~jI050LIo25I!II~~~!~I~~t!1!IIfI~~-I!,IIII.I~'~~~!~.I~~~I'.I'~lIiIIIjI~IIII~I~I'I~II!!II~I!'I1~I!I~~Ij~!!1!I~~~:jiIiIII~'1iri~~rI!tt,I~!e*0I!I!~I1~~~Ii~Ii!~1I~IrI-200-1000100200Temperaturede@F300400FIGURE8.CHARPYV-NOTCHPROPERTIESOFCORRELATIONMONITORMATERIALDONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM30 TABLEXNOTCHTOUGHNESSPROPERTIESOFCAPSULETSPECIMENSDONALDC.COOKUNITNO.150ft-lbCTem.(deF)PlateB4406-3WeldWeld~(Lan.)(Trans.)MetalHAZCorrelationMonitorIrradiatedUnirradiatedAT35milCTem.(deF)IrradiatedUnirradiatedATCUerShelfEnerft-lb)150(a)14075(a)6575()135(b)11060(b)4075(b)6070-70-601301305055-80-7513013014575701256065UnirradiatedIrradiatedhE,ft-lbsAE,1301082216.994841010.61101208093302727.322.51201021815(a)Energytransitionat77ft-lb.(b)Lateralexpansiontransitionat54mil.31 TABLEXITENSIIEPROPERTIESOPSURVEILLANCEMATERIALSCAPSULETConditionSpecimenIdent.TestTemp.('P)0.2XYieldTensileTotalReductionStrengthStrengthElongationinArea~si~sf~I(%)BaselineCapsuleTBaselineB4406-3(Long.)A-1A-2B4406-3(Trans.)RoomRoom300300600600Room550RoomRoom30030060060068,65068,25061,35061,20058,00058,55072,70066,70068,70067,60061,00060,90058,30055,90090,65090,25082,65082,300'87,00087,40099,80093,00090,30089,45082,80081,90086,00086,60027.727.423.422.626.025.424.320.226.625.623.023.324.824.770.469.669.469.765.167.065.764.365.865.065.064.658.858.6CapsuleTW-9M-10BaselineVeldMetalRoomRoom300300600600Room55066,90067,350'9,70059,80057,20056,30086,10075,80081,50082,25074,60074,50079,40078,500103,40095,30028.725.024.023.323.423.623.619.373.265.372.971.865.263.465.060.832

~~Thetensilepropertiesoftheweldmetalappearedtobethemostaf-fectedbytheradiationexposureinCapsuleTasexpectedfrom.thereportedcoppercontents.33

'~V.ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillanceprogramspecimenshasthefollowinggoals:(1)EstimatetheperiodoftimeoverwhichthepropertiesofthevesselbeltlinematerialswillmeetthefracturetoughnessrequirementsofAppendixGof10CFR50.ThisrequiresaprojectionofthemeasuredreductioninCuppershelfenergytothevesselwallusingknowledgeoftheenergyandspatialdistributionoftheneutronfluxandthedependenceofCvuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperationallimitationsforselectedperiodsoftime.ThisrequiresaprojectionofthemeasuredshiftinRTNDTtothevesselwallusingknowledgeofthedependenceoftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdis-tributionoftheneutronflux.TheenergyandspatialdistributionoftheneutronfluxforDonaldC.CookUnitNo.1wascalculatedforCapsuleTwiththeDOT3.5discreteordi-natestransportcode.TheleadfactorforCapsuleTreportedbyWestinghouseis2.6forthevesselI.D.surface.()ThiswassupportedbytheSwRIDOT3.5analysis.TheDOT3.5analysisalsopredictedthatthefastfluxatthe1/4Tand3/4Tpositionsinthe8-5/8-in.pressurevesselwallwouldbe49%and7.8%,respectively,ofthatatthevesselI.D.Thesefiguresareingoodagreementwithfluenceattenuationdeterminationsof46%and10%foran8-in.steelplatebytheNavalResearchLaboratory.()However,currentlytheNRCpre-ferstousemoreconservativefiguresof60%and15%,respectively,fortheattenuationoffastneutronfluxatthe1/4Tand3/4Tpositionsinan8-in.

vesselwall.(16)Thisconservatismallowsfortheincreasedfractionofneutronswhichmightaccrueinthe0.1to1.0MeVrangeindeeppenetra-tionsituations.Forthe8-5/8-in.wallthicknessoftheD.C.CookUnitNo.1vessel,theattenuationsbecome57%and12.5%forthe1/4Tand3/4Tpositions,respectively.AmethodforestimatingthereductioninCvuppershelfenergyasafunctionofneutronfluenceisgiveninRegulatoryGuide1.99,Revision1.()TheresultsfromCapsuleTarecomparedtoaportionofFigure2of.(7)RegulatoryGuide'.99,Revision1,inFigure9.Theembrittlementresponseoftheweldmetal,reportedtocontain0.27%Cu(),isingoodagreementwiththepredictionofRegulatoryGuide1.99,Revision1.However,theplateislesssensitiveandtheHAZismoresensitivethanpredictedforthe0.14%coppercontent.ThebehavioroftheHAZspecimensmayreflectsomecopperpickupintheHAZfromthewelddepositortheplacementofthenotchunusuallyclosetothefusionline.Usingthedashedcurvedrawnthroughthedatapointfortheweldmetal,itispredictedthattheweldmetalCvshelfenergywillreach50ft-lbsatafluenceofabout2.1x10(E>1MeV).Thiscorrespondstoapproximately38effectivefullpoweryears(EFPY)ofoperationatthevesselI.D.,inexcessofthe32EFPYdesignlifeoftheplant.TheplateandHAZmaterialsareprojectedtorequireevenlargerfluencestoreachthe50ft-lbshelflevel.Theseprojectionswillbereex-aminedafterthenextsurveillancecapsulehasbeenremoved.AsimilarapproachcanbetakentoestimatetheincreaseinRTHDTasafunctionofreactorpowergeneration.Figure10comparestheDonald'.CookUnitNo.1surveillancedataonthethreesurveillancematerialstoselectedportionsofFigure1ofRegulatoryGuide1.99,Revision1.Theresults 6040lsII~I'.]j.!~Ilit!~~IIss!il,!!!'iissRR..OI.'!II.jjsrs'l:lliI!!!itsjlsI!.IisssI't:.sIitiliI)~ilt;}.slsss~I'I~I:I~:list~~IsllIs'III~IlsjssI~Issl4le20W10slI~IflII!IIIjI,-I-I'0IIs,sfili~lstel.j!j.l!jIgloollif)):IIIjig!rIjs\~sIll~~tjj.l.!~I.fjljjjll!~~sl!ji!istIIjjjjs>>IIiiiv)600QtAIII!I~~l~IsIssls)l:;l',I,",ssli!ltljijl!i,:.lI~IsssssstIjsIs!Isi.;"'Issl:IsliL"lslrss:I>>>>I,I;I,'~s!jlI~!'iill;Isj!II~ssillsssIls>>II>>!'!I'.Illj~Is's~l+IIIj";lsIs!'..'IllI~ls',~I!'ii!~hl.:mlilllj'-I:jlIt"r,.)j,jltsslllI~IIliI'.,.'jii>>s'.~lIll'is's'IsSIItIss1lill~~s~~lsIlljssil!IlsllI!@pe.-I.s.i"I','s"t.s~'III'lj.~s-j~~~2x101746810182468101924NeutronFluence,n/cm(E>1MeV)FIGURE9.DEPENDENCEOFCvSHELFENERGYONNEUTRONFLUENCE,DONALDC.COOKUNITNO.1 60040020010080604020I~lli.i'~I'IjII.:1~II~>>I-~I'.lji:.Il'II/II,II!'ill"I11~',laitI!I)1jliljIIItjI~IIIIlfjlIgtil;,'"1it!i.,I)KIC4!.I..i.IjIIijlII1IIf.I)I>>.j-III,lllII!lIll~llirl:'11II;!I':jl,1lIIlI)IIjtjt~~I!!IiI,1;r!,il,!,!j'll'lT~).I,I'11~I'II~III'lt.lj,jtll.!IlF~I)1~II':i]jt!IilI:,Ii~'III>>IiiiI.~IIj-II.I~I':I~'IIfI77'~III~~II1'lI!ij!I!1j>>ii,I)::;hiiili:.II-':I~Itl2x1017'4610188101924NeutronFluence,n/cm(E>1HeU)FIGURE1EFFECTOFNEUTRONFLUENCEONRTNDTSIIIFT>>DONALDCCOOkUNITNO' indicatethatthemeasuredshiftinRTNDToftheweldmetalisinagreementwiththatpredictedbyRegulatoryGuide1.99,Revision1,butthatthemea-suredshiftsinRTNDTfortheplateandHAZmaterialsareunderpredictedbytheguide.ThepredictedshiftsinRTNDTfortheDonaldC.CookUnitNo.1reac-torpressurevesselobtainedfromFigure10aresummarizedinTablesXIIandXIII.Thevaluespredictedatthe1/4Tand3/4Tafter12EFPY(TableXII)areusedtodevelopheatupandcooldownlimitcurvestomeettherequire-mentsofAppendixGtoSectionIIIoftheASMECode,asdescribedinSectionVIofthisreport.TheseprojectionsforCvshelfenergyreductionsandRTNDTshifts,andtheresultingheatupandcooldownlimitcurves,arebasedonextrapolationsfromonedatapointrepresentingthemostsensitivematerial.Afterasecondcapsulehasbeenremovedandtested,onewillbeabletointer-polatebetweentwodatapoints.TheDonaldC.CookUnitNo.1reactorvesselsurveillanceprogramsched-uleproposedbyWestinghouse~~issummarizedinTableXIV.Ithasbeenor-ganizedtosatisfyAppendixHoflOCFR50ascloselyaspossible.Therearesevenadditionalcapsulesinthevessel,allofwhichcontainbaseplate,weldmetalandHAZspecimens.Thereisnoreasontoconsiderchangingtheproposedcapsuleremovalscheduleatthistime.39 TABLEXIIPROJECTEDVALUESOFRTNDTFORDONALDC.COOKUNITNO.1FORUPTO12EFPYOFOPERATIONLocationMaterialCalculatedFluence(n/cdE>1MeV)InitialRT(deF))Shift12EFPY(aVesselI.D.~~Vessel1/4TVessel3/4TInter.ShellPlateWeldMetalHAZInter.ShellPlateWeldMetalWZInter.ShellPlateWeldMetalMZ6.55x10183.73x101845(b)-52(b)-60(c)45(b)52(b)-60(c)45(b)52(b)-60(c):145245245110185185508787190193185155133125953527(a)1EFPY1,186,250M&t.(b)Reference18.(c)References13and18.

TABLEXIIIPROJECTEDVALUESOFRTNDTFORDONALDC.COOKUNITNO.1FORUPTO32EFPYOFOPERATIONLocationMaterialCalculatedFluence(n/cm2E>1MeV)InitialRDT(deF))32EFPY(aShiftVessel1/4TVessel3/4TInter.ShellPlateMeldMetalHAZInter.ShellPlatelfeldMetalHAZInter.ShellPlateMeldMetalHAZ'1.0x10192.2x101845(b)-52(b)-60(c)45(b)-52(b)-60(c)45(b)-52(b)60(c)240320320180285285831421422852682602252332251289082(a)1EFPY=1,186,250MMDt.(b)Reference18.(c)References13and18.

TABLEXIVPROPOSEDREACTORVESSELSURVEILLANCECAPSULESCHEDULEDONALDC.COOKUNITNO.1CapsuleIdentificationLeadFactorRemovalTime2.62.60.6Removedandtestedatendoffirstcorecycle10Years(postirradiationtest)10Years(reinsertinCapsuleTlocation)0.610Years(reinsertinCapsuleXlocation)2.620Years(postirradiationtest)0.62.60.620Years(reinsertinCapsuleUlocation)30Years(postirradiationtest)30Years(reinsertinCapsuleYlocation)

~~VI.HEATUPANDCOOLDOMNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.1DonaldC.CookUnitNo.1isa3250Mwtpressurizedwaterreactoroper-atedbyAmericanElectricPowerServiceCorporation.Theunithasbeenpro-videdwithareactorvesselmaterialsurveillanceprogramasrequiredby10CFR50,AppendixH.Thefirstsurveillancecapsule(CapsuleT)wasremovedduringthe1977refuellingoutage.ThiscapsulewastestedbySouthwestResearchInstitute,theresultsbeingdescribedintheearliersectionsofthisreport.Insum-mary,theseresultsindicatethat:(1)TheRTNDTofthesurveillancematerialsinCapsuleTincreasedamaximumof130Fasaresultofexposuretoaneutronfluenceof1.80x10neutrons/cm2(E>1MeV).(2)Basedonaratioof2.6betweenthefastneutronfluxattheCapsuleTlocationandthemaximumincidentonthevesselwall,thevesselwallfluenceattheI.D.was6.92x1017neutrons/cm2(E>1MeV)atthetimeofremovalofCapsuleT.(3)ThemaximumshiftinRTNDTafter12effectivefullpoweryears(EFPY)ofoperationwaspredictedtobe185Fatthe1/4Tand87Fatthe3/4Tvesselwalllocations,ascontrolledbytheweldmetalandHAZmaterials.(4)Theintermediateshellplatematerial,althoughlesssensitivetoradiationembrittlementthantheweldandHAZmaterials,isprojectedtocontrolthelimitingRTNDTforaconsiderablelengthoftimebecauseofamuchhigherinitial(unirradiated)RTNDTof45F.(43

~~TheUnitNo.1heatupandcooldownlimitcurvesfor12EFPYhavebeencomputedonthebasisof(4)abovebecauseitisanticipatedthattheRTNDToftheprimarypressureboundarymaterialswillbehighestfortheplatema-terialatleastthroughthattimeperiod(seeTableXII).TheproceduresemployedbySwRIaredescribedinAppendixB.Thefollowingpressurevesselconstantswereemployedasinputdatainthisanalysis:VesselInnerRadius,riVesselOuterRadius,roOperatingPressure,PoInitialTemperature,ToFinalTemperature,Tf86.50in.,includingcladding95.34in.2235psig70F550'FEffectiveCoolantFlowRate,Q~135.6x10ibm/hrEffectiveFlowArea,A26.72ft2EffectiveHydraulicDiameter,D~15.05in.Heatupcurveswerecomputedforaheatuprateof60F/hr.Sincelowerratestendtoraisethecurveinthecentralregion(seeAppendixB),thesecurvesapplytoallheatingratesupto60F/hr.Cooldowncurveswerecom-putedforcooldownratesof0F/hr(steadystate),20F/hr,40F/hr,60F/hr,and100F/hr.The20F/hrcurvewouldapplytocooldownratesupto20F/hr;the40F/hrcurvewouldapplytoratesfrom20Fto40F/hr;the60F/hrcurvewouldapplytoratesfrom40Fto60F/hr;the100F/hrcurvewouldapplytoratesfrom60F/hrto100F.hr.TheUnitNo.1heatupandcooldowncurvesforupto12EFPYaregiveninFigureslland12.44 260024002200~I~~IltII~2000180016001400u12001000800I~~1t]t...I1~tI~lf~~iI~'ffif}l,l600400200lg~:it}r'iy~~II~~~II~~,lI:1t1~<<f~fI.,f~f1~II"I~~lf:1~~1~r~jtit'riHf)L11,~If.[~]~flf60100150200250300350400IndicatedTemperature,degFFIGUREll.DONALDC.COOKUNITNO.1REACTORCOOLANTHEATUPLIMITATIONSAPPLICABLEFORPERIODSUPTO12EFFECTIVEFULLPOfKRYEARS 2600240022002000800600:.,;I)l)~'le~1~~~~I1~~er~I:.:[::II1I.;I'i>I:;I,-:II}iI'le.l,)IL)"!Ite400200601~~1)~I,.11800Aj1600P41400~QAi12001000~~I.".s~'-se-Is~ll1:~1)I!-.1;I:I!~sij!I'.II)~s~sellI1~I.',:Il'allI~-i):ls~~~Itl~1-:I~~Ii'~~".I)'e~I'!1)~r:li~~ee)ei::I?.Ig!ji'.l)!~.II~~~I~~1t1'eii!l.f~ie)tl~ij~~i~.~)~I~e=-~'1eI~j'I100efje::ff!."Iese>}s)1Is!',Iiae+II;.I,~ll~e)i}'es1~ls.Ilr',ll)~IeI'.>I;.:I~1eI~~I~~1~iI~I1e~gII'..I1~~t~~1501~I~~el>a~Isell~eeaI~~'IRlI~~e~1~ttI\IIs~lafI>1~1)I~tI,.I))~>I:lj11'i"Fig+:I.~'I~1ae,.)Ill~II~~I.';llSel1~1~1itis,';)IeisaIll11~~i:II'I}ll~~g~!'.I!!ilI)1;I)s~~ssei;.1'~~'.Lc'l,!)le~iIi;f})JjlI:,I1~I1-"~e..I:}i.~f:I'I:i!~l)iife'Il'll;~~~l200s)~Sl'1e~~~1I'~1~~ii~i>lelf:I!.p.)1~le'II)!Ij)se1~I~)I~I~ll!e~~.~11~~'~~~,iiij~Is}esj)rjlliI!1IIllsi),.I'sIf!a~~~s~~I~~~I'.I)ffjfiliI'IssgI11il>!II!e!~)'-ii'sl:::IIlI!Is~~~tp;ifgIA)~I:e)r)')1lel)lsI~~IIej1~~~ee~1I~250s~1s;-1~~~):IssI'l~1f~~Istjt~.I~~1Ieae::ils'Ii,Isls~I1fe".I-'ll:;.L'::.:.-:'I.':.iI~*~el')tsie~IIII):I'll~1sg~1~~')tI-!I'I~)I~-1!(}I1>~~~~I~~eI'.1t!I!It)}?4>IlIrI~~~'.~e~~1I;rf:ItjI~as~300~~>l~I?)j:-j-'~t's1lj:snil'l'll.'glt,1I~~.1ealI~~II'1>f11>~~IIlj~:,IiS1~~I.:;.I1j)II~,Je)~fI.:::)I:!ijI1~eI"~~4~eelgee~4ll::II~~)tj~elTae~e~~s3501g~~rma~i~~~~:i>ist';le)~~I~1I,,~~fII~rglalj)IIjal:s.A~e'1~~{gIItI't'~~I}L>Il}IlirfI'rI400IndicatedTemperature,degFFIGURE12.DONALDC.COOKUNITNO.1REACTORCOOLANTCOOLDOWNLIHITATIONSAPPLICABLEFORPERIODSUPTO12EFFECTIVEFULLPOWERYEARS VII.REFERENCES1.Title10,CodeofFederalRegulations,Part50,"LicensingofProduc-tionandUtilizationFacilities."2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents,"1974Edition.3.ASTME208-69,"StandardMethodforConductingDrop-WeightTesttoDe-termineNil-DuctilityTransitionTemperatureofFerriticSteels,"1975AnnualBookofASTMStandards.Steele,L.E.,andSerpan,C.Z.,Jr.,"AnalysisofReactorVesselRadiationEffectsSurveillancePrograms,"ASTMSTP481,December1970.5.Steele,L.E.,"NeutronIrradiationEmbrittlementofReactorPressureVesselSteels,"InternationalAtomicEnergyAgency,TechnicalReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNuclearPowerPlantComponents,"1974Edition.7.RegulatoryGuide1.99,Revision1,OfficeofStandardsDevelopment,U.S.NuclearRegulatoryCommission,April1977.8.CommentsonRegulatoryGuide1.99,WestinghouseElectricCorporation,'btainedfromNRCPublicDocumentRoom,Washington,D.C.9.PositiononRegulatoryGuide1.99,CombustionEngineeringPowerSys-tems,ObtainedfromNRCPublicDocumentRoom,Washington,D.C.10.ASTME185-73,"StandardRecommendedPracticeforSurveillanceTestsforNuclearReactorVessels,"1975AnnualBookofASTMStandards.11.ASTME399-74,"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials,"1975AnnualBookofASTMStandards.12.Witt,F.J.,andMager,T.R.,"AProcedureforDeterminingBoundingValuesofFractureToughnessKIcatAnyTemperature,"ORNL-TM-3894,October1972.13."AmericanElectricPowerServiceCorporationDonaldC.CookUnitNo.1ReactorVesselRadiationSurveillanceProgram,"WCAP-8047,March1973.14.ENDF/B-IV,DosimetryTape412,MatNo.6417(26-Fe-54),July1974.15.Loss,F.J.,Hawthorne,J.R.,Serpan,C.Z.,Jr.,andPuzak,P.P.,"AnalysisofRadiation-InducedEmbrittlementGradientsonFractureCharacteristicsofThick-WalledPressureVesselSteels,"NRLReport7209,March1,1971.47 16.Telecon,E.B.NorristoKenHogue(NRCStaff)January19,1977.17.Hazleton,W.S.,Anderson,S.L.,andYanichko,S.E.,"BasisforHeatupandCooldownLimitCurves,"WCAP-7924,July1972.18.DonaldC.CookUnitNo.1TechnicalSpecifications,asofNovember30,1977.48 APPENDIXATENSILETESTRECORDS SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-..lSpec.No.-1Est.U.T.S.InitialG.L.PS1r41Z1~MachineNo.TemperatureI4'FtsJStrainRate,<2tzpi>InitialDia..Iin.InisialThicknessin.DateInitialArea77InitialWidthin.TopTemperatureBottomTemperatureFinalGageLengthFinalDiameterFinalArea'Fp4Tine/~~Iin.ine20.2'%ffsetLoad889Dlb0.02%OffsetLoadUpperYieldPointlbMaximumLoad40lbrMaximumLoadInitialAreaP2Init1alAreapsicjoy2-~gpsi002/YS0.02%OffsetLoadInitialAreaPS1YSUpperYieldPointUPPer..ItialAreaPS1FinalG.L.-Initialx100=InitialArea-FinalArea1p@~7InitialAreaSignature:A-2 -0;0rZi9ahJA-3 SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-.ZEst.U.T.S.psiSpec.No.InitialG.L..Oin.Temperafore~P'Frr/StrainRate.C'~/WInitialDia..gC'n.InitialThicknessin.InitialArea.+H/InitialVTidthin.TapTemperatureBottomTemperatureI'FMaximumLoadS~7Slb02%%uoOffsetLoad52.=.~~lbFinalGageLengthFinalDiameter.l+Jln~0.02%%utfOffsetLoadUpperYieldPointlblbFinalArea.o'722rInitialArea0.2%OffsetLoadInitialArea002%%uYS~02%%u'ffetLoadInitialAreapslUerYieldPointPPer.-ItlalAreaFinalG.L.-Initial%%utlElongationx100'=~~'%%uoInitialArea-FinalArea100InitialAreatt )~~a'0'0g~<A-5 SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-Spec.No.Est.U.T.S.InitialG.L.psiddin.MachineNo.)>/J~~Temperature>+'FInitialDia.InitialThieknessin.DateInitialArea'~87InitialWidthin.TopTemperatureoFMaximumLoad5.>Glb0.2%OffsetLoad~~n,~>lb~sFinalGageLengthFinalDiamete"FinalArea111~in.sP/74+m.20.02%OffsetLoadUpperYieldPointlblbMaximumLoad0.2'lsOffsetLoadg~gg.InitialArea002$YS=2/oOffsetLoadInitialArea'erYieldPointpp,~telAreaps1p81%uFinG.L.-InitialG.L.%ElongationInitialG,L.%RAInitialArea-FinalAreaInitialAreaSignature:A-6 'A-7 ~~1SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-Spec.No.Temperature5ft<'FEst.U.T.S.InitialG.L.InitialDia.psiProjectNo.MachineNo.Date6<-a>>n-of"/StrainRateInitialThicknessInitialWidth1neInitialArea.OHg'7TopTemperature5~l~'FMaximumLoad+C~~'0lbBottomTemperatureo840.2%OffsetLoad~?~.5ib0.02%OffsetLoadlbin.UpperYieldPointFinalAreaMaximumLoadInitialArea0.2%%uoOffsetLoadInitialAreap02%%uYS0.02%0ffsetLoadInitxalAreaps1UerYieldPointInitialAreaps'inalG.L.-InitialGLlpp0EOIlgation-~.+lGLx-//7'InitialArea-FinalAreaInitialAreaSignature:A-8b,t, A-9 ~1)1 APPENDIXBPROCEDUREFORTHEGENERATIONOFALLOWABLEPRESSURE-TEMPERATURELIMITCURVESFORNUCLEARPOWERPLANTREACTORVESSELS PROCEDUREFORTHEGENERATIONOFALLOWABLEPRESSURE-TEMPERATURELIMITCURVESFORNUCLEAR.POWERPLANTREACTORVESSELSA.IntroductionThefollowingisadescriptionofthebasisforthegenerationofpressure-temperaturelimitcurvesforinserviceleakandhydrostatictests,heatupandcooldownoperations,andcoreoperationofreactorpressurevessels~ThesafetymarginsemployedintheseproceduresequalorexceedthoserecommendedintheASMEBoilerandPressureVesselCode,SectionIII,AppendixG,"ProtectionAgainstNonductileFailure."B.BackroundThebasicparameterusedtodeterminesafevesseloperationalconditionsisthestressintensityfactor,KZ,whichisafunctionofthestressstateandflawconfiguration.TheKIcorrespondingtomembranetensionisgivenbyKIŽm'mwhereMmisthemembranestresscorrectionfactorforthepostulatedflawando.mthemembranestress.Likewise,KIcorrespondingtobend-ingisgivenbyKIbŽb0'b(2)whereMbisthebendingstresscorrectionfactorando.bisthebendingstress.Forvesselsectionthicknessof4to12inches,themaximumB-2 postulatedsurfaceflaw,whichisassumedtobenormaltothedirectionofmaximumstress,hasadepthof0.25ofthesectionthicknessandalengthofl.50timesthesectionthickness.CurvesforMmversusthesquarerootofthevesselwallthicknessforthepostulatedflawaregiveninFigure1astakenfromthePressureVesselCode(ref.FigureG-2114.1).Thesecurvesareafunctionofthestressratioparameterr/r,whereo.(Pyisthematerialyieldstrengthwhichis,takentobe50,000psi.Thebendingcorrectionfactorisdefinedas2l3MmandisthereforedeterminedfromFigure1aswell.ThebasisforthesecurvesisgiveninASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNu-clearPowerPlantComponents,"ArticleA-3000.TheCodespecifiestheminimumKIthatcancausefailureasafunc-tionofmaterialtemperature,T,anditsreferencenilductilitytemperature,RTNDT.ThisminimumKIisdefinedasthereferencestressintensityfac-tor,KIR,andisgivenbyKIR=26777.+1223.exp0.014493(T-RT+160)NDT(3)wherealltemperaturesareindegreesFahrenheit.Aplotofthisexpression.isgiveninFigure2takenfromtheCode(ref.FigureG-2010.1).C.Pressure-TemeratureRelationshis1.InserviceLeakandHdrostaticTestDuringperformanceofinserviceleakandhydrostatictests,thereferencestressintensityfactor,KIR,mustalwaysbegreaterthanB-3 3.83.2MEh<8RAHQI(mMImm~raMbxMb<2/3hlm,1.00.70.5O.I3.0E2.~i2.22.01.61.21.01.01.2IA1.61,02.02.22.~i2.62.83.03.23A3.63.84.0FIGURE1.STRESSCORRECTIONFACTOR I70l30I20II0LgtcoSO70605040I'R26777)V'IIERERTHPT'EFEAFHCESTRESSINTENSITYFACTORTEhIPERATUREATVIHICHI'IRISPERhIITTED,'F'EFERFHCEHIL-DUCTILITYTEMPERATUREIO0-240-200-IGO-I20-eO-4004080.I20IGO200240TEIAPERATUAERELATIYETOATHP,(T-ATHPT),FAHREIIHEIDGREESFIGURE2.REFERENCESTRESSINTENSITYFACTORB-5 l.5timestheKZcaused.bypressure,thusl.5Kl'pKZR(4)or'5Mm<m~K1R(5)Foracylinderwithinnerradiusriandouterradiusro,thestressdistributionduetointernalpressureisgivenbyWith1/4Tflawspossibleatbothinnerandouterradiallocations,i.e.,atrl/4=ri41/4(ro-ri)andr3/<rj+3/4(ro-ri),themaximumstresswilloccurattheinnerflawlocation,thusIrjr+(1/4ro+3/4ri)4.2o.=Pmaxoro2-ri2(1/4rop3/4ri)2Withtheoperationpressureknown,i.e.,Po,wedeter-minetheminimumcoolanttemperaturethatwillsatisfyEquation(4)byevaluatingKlR='5Mm<maxanddeterminethecorrespondingcoolanttemperature,T,fromEqua-tion(3)forthegivenRT~~DTatthe1/4Tlocation.Forthiscalculation,Equation(3)takestheformI-*I-6..6.I[-666-'].S-6 Theinservicecurvesaregeneratedforanoperatingpres-surerangeof~96Potol.14Po,wherePoisthedesignoperatingpressure.2.HeatuandCooldown0erationsAtalltimesduringheatupandcooldownoperations,theref-erencestressintensityfactor,K1R,mustalwaysbegreaterthanthesumof2timestheKlpcausedbypressureandtheKltcausedbythermalgra-dients,thus2.0Klp+l.0Klt<KZR(10)or20Mm0max-K1R-KZtwhereomaxisthemaximumallowablestressduetointernalpressure,andKZtistheequivalentlinearstressintensityfactorproducedbythethermalgradients.Toobtaintheequivalentlinearstressintensityfac-torduetothermalgradientsrequiresadetailedthermalstressanalysis.ThedetailsoftherequiredanalysisaregiveninSectionD.DuringheatuptheradialstressdistributionsduetointernalpressureandthermalgradientsareshownschematicallyinFigure3a.Assumingapossibleflawatthe1/4Tlocation,weseefromFigure3athatthethermalstresstendstoalleviatethepressurestressatthispointinthevesselwalland,therefore,thesteadystatepressurestresswouldrepresentthemaximumstressconditionatthe1/4Tlocation.At OUTERRADIUS3/4TZ/4TINNERRADIUSPressurestressdistributionThermalstressdistribution(a)HeatupOUTERRADIUS3/4T1/4TINNERRADIUSPressurestressdistributionThermalstressdistribution(b)CooldownFigure3.HeatupandCooldownStressDistributionB-8 the3/4Tflawlocation,thepressurestressandthermalstressaddand,therefore,thecombinationforagivenheatupraterepresentsthemaxi-mumstressatthe3/4Tlocation.Themaximumoverallstressbetweenthe1/4Tand3/4Tlocationthendeterminesthemaximumallowablereac-torpressureatthegivencoolanttemperature.Theheatuppressure-temperaturecurvesarethusgeneratedbycalculatingthemaximumsteadystatepressurebasedonapossibleflawatthe1/4Tlocationfrommax(K1Rrjro+(1/4ro03/4r;)2MmroZ-rj(1/4ro+3/4rj)2(12)whereMmisdeterminedfromthecurvesinFigure1andK1RisobtainedfromEquation(3)usingthecoolanttemperatureandRTNDTatthe1/4Tlocation.HerewemaynotethatMmmustbeiteratedforsinceitisafunctionofthefinalstressratiotoyieldstrength(0./ay).Atthe3/4Tlocation,themaximumpressureisdeterminedfromEquation(ll)asP(3/4T)-KZR-KurjroZ+(1/4rj+3/41o)2MroZr.Z(1/4ri+3/4ro)2(13)whereK1RisobtainedfromEquation(2)usingthematerialtemperatureandRTNDTatthe3/4TlocationandKltisdeterminedfromtheanalysisprocedureoutlinedinSectionD.MmisdeterminedfromFigure1,B-9 Theminimumofthesemaximumallowablepressuresatthegivencoolanttemperaturedeterminesthemaximumoperationpressure.Eachheatuprateofinterestmustbeanalyzedonanindivid-ualbasis.Thecooldownanalysisproceedsinasimilarfashionasthatdescribedforheatupwiththefollowingexceptions:WenotefromFigure3bthatduringcooldownthe1/4Tlocationalwayscontrolsthemaximumstresssincethethermalgradientproducestensilestressesatthe1/4Tlocation.ThusthesteadystatepressureisthesameasthatgiveninEquation(12).Foreachcoo)downrate,themaximumpressureisevalu-atedatthe1/4Tlocationfrommax(riro~+(3/4ri01/4ro)2Mr-r~(3/4ri+1/4r)(14)whereKIRisobtainedfromEquation(3)usingthematerialtemperatureandRTNDTat'the1/4Tlocation.KItisdeterminedfromthethermalanalysisdescribedinSectionD.Itisofinteresttonotethatduringcooldownthematerialtemperaturewilllagthecoolanttemperatureand,therefore,thesteadystatepressure,whichisevaluatedatthecoolanttemperature,willini-tiallyyieldthelowermaximumallowablepressure.Whenthethermalgradientsincrease,thestressesdolikewise,and,finally,thetransientanalysisgovernsthemaximumallowablepressure.Henceapoint-by-point comparisonmustbemadebetweenthemaximumallowablepressurespro-ducedbysteadystateanalysesandtransientthermalanalysistodeterminetheminimumofthemaximumallowablepressures.3.Core0erationAtalltimesthatthereactorcoreiscritical,thetemperaturemustbehigherthanthatrequiredforinservicehydrostatictesting,andinaddition,thepressure-temperaturerelationshipshallprovideatleasta40'Fmarginoverthatrequiredforheatupandcooldownoperations.Thusthepressure-temperaturelimitcurvesforcoreoperationmaybeconstructeddirectlyfromtheinserviceleakand.hydrostatictestandheatupanalysisresults.D.ThermalStressAnalsisTheequivalentlinearstressduetothermalgradientsisobtainedfromadetailedthermalanalysisofthevessel.,Thetemperaturedistribu-tioninthevesselwallisgovernedbythepartialdifferentialequationPcT<-K[(1/r)T+T.1=o(15)subjecttoinitialconditionT(r,0)=Tandboundaryconditions-KTr(ri,t)=hLTc(t)-T(rit)I(17) andTr(roit)=0(18)whereTc=To+Rt.(19)pisthematerialdensity,cthematerialspecificheat,Ktheheatconduc-tivityofthematerial,htheheattransfercoefficientbetweenthewatercoolantandvesselmaterial,Rtheheatingrate,Totheinitialcoolanttemperature,T(r,t)thetemperaturedistributioninthevessel,rthespatialcoordinate,andtthetemporalcoordinate.Afinitedifferencesolutionprocedureisemployedtosolvefortheradialtemperaturedistributionatvarioustimestepsalongtheheatuporcooldowncycle.ThefinitedifferenceequationsforNradialpoints,atdistance6rapart,acrossthevesselare:for1<n<NhtKT=Ll-2(2-)JTQtK~gr+(g)ZL(1+-)Tn+1.+Tn-1J(2o)(21)B-12 andforn=Nt+()tN[pc(()r)ZJNpr())r)2N-1(22)Forstabilityinthefinitedifferenceoperation,wemustchoosehtforagivenhrsuchthatboth2(2+-)c1()tKZrpc(kr)2r1(23)andhtK(Ih,r~(1+)+C1pc(hr)rlpc(hr)(24)aresatisfied.Theseconditionsassureusthatheatwillnotflowinthedirectionofincreasingtemperature,which,ofcourse,wouldviolatethesecondlawofthermodynamics.Sincealargevariationincoolanttemperatureisconsidered,thedependenceof(K/pc),K,andhontemperatureisincludedintheanalysisbytreatingtheseasconstantsonlyduringevery5'Fincrementincoolanttemperatureandthenupdatingtheirvaluesforthenext5'Fincrement.Thedependenceof(E/pc)calledthethermaldiffusivityandE,thethermalconductivity,canbedeterminedfromtheASMEBoilerandPressureVes-selCode,SectionIII,AppendixI-StressTables.Alinearregressionanalysisofthetabularvaluesresultedinthefollowingexpressions:K(T)=38.211-0.01673~T(BTU/HR-FT-'F)(25)B-13 andk(T)"-(K/pc)=0.6942-0.000432~T(FT/HR)(26)whereTisindegreesFahrenheit.Theheattransfercoefficientiscalculatedbasedonforcedcon-vectionunderturbulentflowconditions.Thevariablesinvolvedarethemeanvelocityofthefluidcoolant,theequivalent(hydraulic)diameterofthecoolantchannel,andthedensity,heatcapacity,viscosity,andthermalconductivityofthecoolant.Forwatercoolant,allowanceforthevariationsinphysicalpropertieswithtemperaturemaybemadebywriting~h(T)=170(1+10~T-10~T)v/D(27)wherevisinft/sec,Dininches,thetemperatureisin'F,andhisinBtu/hr-ft-'F.Thevaluesfortheheat-transfercoefficientgivenbythisrelationshipareingoodagreementwiththoseobtainedfromtheDittus-Boelterequationfortemperaturesupto600'F.Themeanvelocityofthecoolant,v,isgenerallygivenintermsoftheeffectivecoolantflowrateQ(Lbm/hr)andeffectiveflowareaA(ft).Giventherelationshipp(T)=62.93-0.48x102<'-T-0.46x104"T2(28)forthedensityofwaterasafunctionoftemperature,themeanvelocityofthecoolantisobtainedfromv=O/(3600>p(T)~A)(29)Glasstone,S.,PrincilesofNuclearReactorEngineerin,D.VanNostrandCo.,Inc.,NewJersey,pp.667-668,1960. Thethermalstressdistributioniscalculatedfromr2+ri2CroaT(r,t)=t[3jT(r,t)rdr-T(r,t)+3(33)jT(r,t)rdrj(30)ri01whereaisthecoefficientofthermalexpansion(in/in'F),EisYoung'smodulus,andvisPoisson'sratio.ThisexpressioncanbeobtainedfromTheorofElasticitbyTimoshenkoandGoodier,pp.408-409,whenim-posingazeroradialstressconditionatthecylinderinnerandouterradius.Poisson'sratioistakentobeconstantatavalueof0.3whilenandEareevaluatedasafunctionoftheaveragetemperatureacrossthevesselT=~(3jT(r)rdrri(31)Thedependenceofthecoefficientofthermalexpansionontemperatureistakentobea(T)=5.76x10-6+4.4x10-94T(32)andthedependenceofYoung'smodulusontemperatureistakentobeE(T)=27.9142+2.5782x10~"T-6.5723x1064T(33)asobtainedfromregressionanalysisoftabularvaluesgiveninSectionIII,AppendixIoftheASMEBoilerandPressureVesselCode.TheresultingstressdistributiongivenbyEquation(30)isnotlinear;however,anequivalentlinearstressdistributionisdeterminedfromtheresultingmoment.ThemomentproducedbythenonlinearB-15 r~~stressdistributionisgivenbyroM(t)=bfaT(r,t)rdr(34)wherebis*unitdepthofthevessel.Herewenotethatthemomentisafunctionoftime,i.e.,coolanttemperatureviaTc=To+Rt.Foralin-earstressdistributionwehavethatPMc~max=I(35')where0axisthemaximumouterfiberstress,cthedistancefromtheneutralaxis,takentobe(ro-ri)/2,andIthesectionareamomentofinertiawhichisgivenbybhb(ro-r;)31212(36)CombiningtheseexpressionsresultsintheequivalentlinearstressduetothermalgradientsrorrttaxrbtTJ't'T(r')r~(r.-r)J1i(37)ThethermalstressintensityfactorKItisthendefinedasKIt=Mb0bt(38)whereMbisdeterminedfromthecurvesgiveninFigure1whereinMb=2/3Mm.Itisofinteresttonotethatasignchangeoccursinthestresscalculationsduringacooldownanalysissincethethermalgradients producecompressivestressesatthevesselouterradius.ThissignchangemustthenbereflectedintheKltcalculationforthecooldownanalysis.NormalizedtemperatureandthermalstressdistributionsduringatypicalreactorheatuparegiveninFigure4.Theradialtemperatureisshownnormalizedwithrespecttotheaveragetemperature,Tavg,by(T-Tavg)max(39)Thethermalstressandequivalentlinearizedstress,ascalculatedbyEquations(30)and(37),arenormalizedwithrespecttothemaximumthermalstress.Herewenotethattheactualthermalstressatthe3/4Tlocationisconsiderablylessthanthemaximumequivalentlinearstresswhichyieldsadditionalsafetymarginsduringtheheatupcycle.Similartemperatureandthermalstressdistributionsaredevelopedduringcool-down.ThetrendsarenearlyidenticalasthoseshowninFigure4whentheinnerandoutervessellocationsarereversedwiththeI/4Tlocationbecomingthecriticalpoint.E.ExamleCalculationsThefollowingexampleisbasedonareactorvesselwiththefollow-ingcharacteristics:InnerRadiusOuterRadiusOperatingPressure82.00in.(r)9000in.(r)2250psig(Po) OUTERWALL1.00.80.60.40.2//////-1.01.0-1.0INNERWALL1.0Normalizedtemperaturedistribution(4T/h,Tma)Normalizedstressdistribution(o/omax)Figure4.TypicalNormalizedTemperatureandStressDistributionDuringHeatup InitialTemperatureFinalTemperatureEffectiveCoolantFlowRate70'F(To)550'F100x10Lbm/hr(Q)EffectiveFlowArea20.00ft2(A)EffectiveHydraulicDiameter=10.00in.(D)RTNDT(1/4T)RTNDT(3/4T)200OF140'FInthethermalstressanalysis21radialpointswereusedinthefinitedifferencescheme.Goingfrom70'Ftothefinaltemperatureof550'F,approximately12,000time(temperatureviaT=To+Rt)stepswererequiredinthethermalanalysisforthe100'F/hrheatuprate.TheresultsofthecomputationareshowninFigures5through9.Figure5givesthereferencestressintensityfactor,KIR,asafunctionoftemperatureindexedtoRTNDT(1/4T).Forthesteadystateanalysis,KIRisconverteddirectlytoallowablepressureviaEquation12.Duringtheheatupandcooldownthermalanalysesthematerialtem-peratureatthe1/4Tand3/4TandthermalstressintensityfactorsKztarerequiredtocomputeallowablepressureviaEquations(13)and(14).Thematerialtemperaturesversuscoolanttemperatureduringthe100'F/hrheatupandcooldownanalysesaregiveninFigure6.Thesetemperaturesallowcomputationofthecorrespondingreferencestressintensityfactors,KIR(3/4T)andKIR(1/4T).Figure7givesthecorrespondingthermalstressintensityfactoratthe3/4Tand1/4Tlocationsasafunctionofcoolanttemperature. 200160RTNDT(1i4T)-200F~-120hCItVo804050150200250TEMPERATURE(F)300350400Figure5.ReferenceStressIntensityFactorasaFunctionofTemperatureIndexedtoRTNDT(1/4T) 400-100'F/HRHEATUPi3/4TLocationi--100'F/HRCOOLDOWN(1/4TLocation)30020010050100150200250COOLANTTEMPERATURE('F)300350Figure6.VesselTemperatureat1/4Tand3/4TLocationsasaFunctionofCoolantTemperature 106cuhC-100'F/HRHEATUP(3/4TLocationi--100'F/HRCOOLDOWN(1/4Location)5010Q150200250COOLANTTEMPERATURE('F)3QQ350Figure7.ThermalStressIntensityFactorat3/4Tand1/4TLocationsasaFunctionofCoolantTemperature Figures8and9demonstratetheconstructionoftheallowablecom-positepressureandtemperaturecurvesforthe100'F/hrheatupandcool-downrates.Thecompositecurvesrepresentthelowerboundofthethermalandsteadystatecurveswiththeadditionofmarginsof+10'Fand-60psigforpossibleinstrumentationerror.Figure8alsoshowstheleaktestlimit,correctedforinstrumenterror,asobtainedfromEquation(9).Thelimitpointsareattheoperatingpressure2250psigandat2475psigwhichcor-respondsto1.1timestheoperatingpressure.ThecriticalitylimitisalsoshowninFigure8andisconstructedbyprovidingfora40'Fmarginoverthatrequiredforheatupandcooldownandbyrequiringthattheminimumtemperaturebegreaterthanthatrequiredbytheleaktestlimit.B-23 2400LEAKTESTLIIIIIIT2000COMPOSITECURVE-100'F/HRHEATUP(Marginsof+10Fand-60psigforinstrumenterror)1600I1200STEADYSTATECRITICALITYLIMIT800HEATUP40050100150200250INDICATEDTEMPERATURE(F)300350400Figure8.Pressure-TemperatureCurvesfor100F/HrHeatup 240020001600COMPOSITECURVE-100F/HRCOOLDOWN(Marginsof+10Fand-60psigforinstrumenterror)CXIPJ1200CDCh800COOLDOWNSTEADYSTATE40050100150200250INDICATEDTEMPERATURE('F)300350Figure9.Pressure-TemperatureCurvesfor100'F/HrCooldown

ADDENDUMTOFINALREPORTON"REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.1,ANALYSISOFCAPSULET"PlateB4406-3HeldHeld,30ft-1bCTem.'(deT)~(lan.)(Ttana.)MetalMttCorrelationMonitorIrradiatedUnirradiated.AT6556090~.-10'020-90-10070801201054560MonitorIdentificationFe-TopFe-TopMid.Fe-Mid.Fe-Bot.Mid.Fe-Bot.Cu*-TopMid.Cu-Mid.Cu-Bot.Mid.Ni-TopMid.Ni-Mid.Ni-Bot.Mid.Co-TopCo(Cd)-TopCo--Bot.Co(Cd)-Bot.U-238NP-237Height~(m)18.215.317.216.616.464.962.970.922.925.524.59.38.79.57.712.0(a)20.0(a)(a)AsreportedinWCAP-8047. iADDENDUMNO.2TOFINALREPORTON"REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.1,ANALYSISOFCAPSULET"AdditionalTensileTestDataSpecimenNo.FractureLoadsi64,70063,250~FractureStress188,600177,000UniformElongation<>%%u45.002.45W987,600757800250,000193,7004.562.87(a)Usingmethodofchangeincross-sectionalareaofunneckedportionofspecimenperASTME184-62.}}