ML20249B429

From kanterella
Revision as of 00:28, 1 February 2021 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Proposed Tech Specs Changes Reducing Minimum Primary RCS Cold Leg Temp from 544 F to 535 F Between 70% & 100% Rated Thermal Power Levels
ML20249B429
Person / Time
Site: San Onofre  Southern California Edison icon.png
Issue date: 06/19/1998
From:
SOUTHERN CALIFORNIA EDISON CO.
To:
Shared Package
ML20249B424 List:
References
NUDOCS 9806230088
Download: ML20249B429 (67)


Text

_ . _

PCN 491 Attachment A Existing Technical. Specifications SONGS Unit 2 I

1 l

i 9806230088 990619 PDR ADOCK 05000361 p PDR L-__-_-_______-_____. .

[.-__-__-_-________-_______-_-____-_________-_______

RCS DNB (Pressure, Temperature, and Flow) Limits 3.4.1 I= 3.4 REACTOR COOLANT SYSTEM (RCS)

i. 3.4.1 RCS DNB (Pressure, Temperature, and Flow) Limits l' LC0 3.4.1 RCS parameters for pressurizer pressure,' cold leg temperature, and RCS total flow rate shall be within the limits specified below:
a. Pressurizer pressure 2 2025 psia and s 2275 psia;
b. RCS cold leg temperature (T,):
1. For THERMAL POWER less than or equal to 30% RTP, 522*F s Te s 558"F,
2. For THERMAL POWER less than or equal to 70% RTP and greater than 30% RTP, 535*F's T, s 558*F,
3. For THERMAL POWER greater than 70% RTP, 544 F s T,

.s 558*F.

c. RCS total flow rate 2 148E6Lbm/hrands177.6E6 Lbm/hr.

APPLICABILITY: MODE 1.


NOTE------------------------

Pressurizer pressure limit does.not apply during:

a. THERMAL POWER ramp > 5% RTP per minute; or
b. THERMAL POWER step > 10% RTP.

l ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME 1

A. Pressurizer A.1 Restore 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> pressure or RCS parameter (s) to flow rate not within limit, within-limits.

(continued) o SAN ON0FRE--UNIT 2 3.4-1 Amendment No. 127

RCS DNB (Pressure, Temperature, and Flow) Limits

- 3.4.1 ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME B. Recuired Action B.1 Be in MODE 2. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> anc associated Completion Time of Condition A not met.

C. RCS cold leg C.1 Restore cold leg 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> temperature not temperature to within limits, within limits.

4 D. Required Action D.1 Reduce THERMAL 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated POWER to Completion Time of s 30% RTP.

Condition C not met.

i SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY l
SR 3.4.1.1 Verify pressurizer pressure 2 2025 psia and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> l s 2275 psia.

l l

i SR 3.4.1.2 Verify RCS cold leg temperature: 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> ,

l

1. For THERMAL POWER less than or equal to l 30% RTP, 522'F s Tc s 558 F,
2. For THERMAL POWER less than or equal to 70% RTP and greater than 30% RTP, 535'F s Tc s 558*F, (continued) i SAN ONOFRE--UNIT 2 3.4-2 Amendment No. 127

- i RCS DNB (Pressure, Temperature, and Flow) Limits

. 3.4.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.2 (continued)

3. For THERMAL POWER greater than 70% RTP, 544'F s Tc s 558'F.

l


NOTE-------------------------- I Required to be met in MODE 1 with all RCPs running.  !

SR 3.4.1.3 Verify RCS total flow rate > 148E6 Lbm/ hour 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and s 177.6E6 Lbm/ hour. i 1

1 SAN ONOFRE--UNIT 2 3.4-3 Amendment No. 127

PCN 491 Attachment B I Existing Technical Specifications SONGS Unit 3 l

RCS DNB (Pressure, Temperature, and Floc) Limits

. 3.4.1 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS DNB-(Pressure, Temperature, and Flow) Limits LC0 3.4.1 RCS parameters for pressurizer pressure, cold leg temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure > 2025 psia and s 2275 psia;
b. RCS cold leg temperature (Tc ):
1. For THERMAL POWER less than or equal to 30% RTP, 522*F s Tc s 558"F,
2. For THERMAL POWER less than or equal to 70% RTP and greater than 30% RTP, 535*F s Tc s 558*F,
3. For THERMAL POWER greater than 70% RTP, 544"F s T, s 558'F.
c. RCS total flow rate > 148E6 tbm/hr and s 177.6E6 '

Lbm/hr.

APPLICABILITY: MODE 1.


NOTE------------------------

Pressurizer pressure limit does not apply during:

a. THERMAL POWER ramp > 5% RTP per minute; or
b. THERMAL POWER step > 10% RTP.

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. Pressurizer A.1 Restore 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> pressure or RCS parameter (s)to flow rate not within limit.

within limits.

1 (continued) l l

l SAN'ON0FRE--UNIT 3 3.4-1 Amendment No. 116 l

O RCS DNB (Pressure, Temperature, and Flow) Limits 3.4.1 ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME B. Required Action B.1 Be in MODE 2. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated Completion Time of Condition A not met.

C. RCS cold leg C.1 Restore cold leg 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> temperature not temperature to within limits, within limits.

D. Required Action D.1 Reduce THERMAL 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated POWER to Completion Time of s 30% RTP.

Condition C not met.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.1 Verify pressurizer pressure 2 2025 psia and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> s 2275 psia.

SR 3.4.1.2 Verify RCS cold leg temperature: 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

1. For THERMAL POWER less than or equal to 30% RTP, 522'F s Tc s 558'F, i
2. For THERMAL POWER less than or 70% RTP and greater than 30* ' 5 s Tc s 558"F, (continued)

"" ^

RCS DNB (Pressure, Temperature, and Flow) Limits 3.4.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.2 (continued)

3. For THERMAL POWER greater than 70% RTP, 544'F s Tc s 558 F.

NOTE--------------------------

Required to be met in MODE 1 with all RCPs running.

SR 3.4.1.3 Verify RCS total flow rate > 148E6 Lbm/ hour 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and s 177.6E6 lbm/ hour.

)

l l

1

)

i l

SAN ONOFRE--UNIT 3 3.4-3 Amendment No. 116

D PCN 491 Attachment C Proposed Technical Specifications (Redline and Strikeout)

SONGS Unit 2 1

i l

l RCS DNB (Pressure, Temperature, and Floa) Limits 3.4.1 i l

3.4 REACTORCOOLANTSYSTEM(RCS) 3.4.1 RCS DNB (Pressure, Temperature, and Flow) Limits LC0 3.4.1 RCS parameters for pressurizer pressure, cold leg temperature, and RCS total flow rate shall be within the limits specified below:

)

1

a. Pressurizer pressure 2 2025 psia and s 2275 psia;
b. RCS cold leg temperature (Tc ):
1. For THERMAL POWER less than or equal to 30% RTP, 522*F s T s 558 F,

'- "'r """

EM'.!"E"?cr_r

3. co so, smou sv>"ra
r. ::,:';;';

. , , sss ,v' ,cs"a! m :Y/, ,v'-

,e a sso

32. For THERMAL POWER greater than t030% RTP, 5t4535*F s T, s 558 F.
c. RCS total flow rate 2 14GEGLbiTi/in and a 177.GEG Lu' ni/in . 396,000fgpmi

' APPLICABILITY: MODE 1.


NOTE------------------------

Pressurizer pressure limit does not apply during:

a. THERMAL POWER ramp > 5% RTP per minute; or
b. THERMAL POWER step > 10% RTP.

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. Pressurizer A.1 Restore 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> '

pressure or RCS parameter (s) to flow rate not within limit.

within limits.

(continued) l l

f I  !

SAN ON0FRE--UNIT 2 3.4 1 Amendment No tfi l-

RCS DNB (Pressure, Temperature, and Flow) Limits

. 3.4.1 ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME B. Required Action B.1 Be in MODE 2. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated Completion Time of Condition A not met.

C. RCS cold leg C.1 Restore cold leg 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> temperature not temperature to within limits, within limits.

D. Required Action D.1 Reduce THERMAL 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated POWER to Completion Time of s 30% RTP.

Condition C not met.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.1 Verify pressurizer pressure > 2025 psia and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> s 2275 psia.

SR 3.4.1.2 Verify RCS cold leg temperature: 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

1. For THERMAL POWER less than or equal to 30% RTP, 522'F s Tc s 558 F,
2. Fcr THERMAL P0"ER less thar, cr equal to 70': RTP and greater than 30": RTP, 535"F

_ Tc _ 558"fr (continued) i I

SAN ON0FRE--UNIT 2 3.4-2 Amendment No. t27 l l

u_________ _ _ _ _ _ _ _ _ _ _ _ _ _

j

RCS DNB (Pressure, Temperature, and Flow) Limits

. 3.4.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.2 (continued)

'2.h for THERMAL POWER greater than 730%

RTP, M4535'F s Tc s 558*F.


NOTE--------------------------

Required to be met in MODE 1 with all RCPs running.

SR 3.4.1.3 Verify RCS total flow rate > 396,000 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> gpmHOEC Lbm/ hour end m 177.SES Lbm/ hour.

l l

l SAN ON0FRE--UNIT 2 3.4-3 Amendment No. +27 i

I L - _ _ _ - - - - - _ - - - - _ -

i (

l l

i 1

PCN 491 l

! i 1

l l

Attachment D Proposed Technical Specifications (Redline and Strikeout) l SONGS Unit 3 l 1

i l

{

L ___------ _---

RCS ONB (Pressure,-Temperature, and Flow) Limits

. 3.4.1 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4' 1 RCS ONB (Pressure, Temperature, and flow) Limits LC0 3.4.1 RCS parameters for pressurizer pressure, cold leg temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure > 2025 psia and s 2275 psia;
b. RCS cold leg temperature (T,):
1. For THERMAL POWER less than or equal to 30% RTP, 522*F s T, s 558"F,
2. Fcr TllCR"AL P0"ER less than or equal to 70!i RTP and greater than 30": RTP, 535"F : T, m 550"F,
32. For THERMAL POWER greater than 7030% RTP, 544535"F s T, s 558"F.
c. RCS total flow rate 2 14SES Lbm/hr and a 177.SES Lbm/hr.396,0001gpmi APPLICABILITY: MODE 1.

NOTE------------------------ i Pressurizer pressure limit does not-apply during:

a. THERMAL POWER ramp > 5% RTP per minute; or
b. THERMAL POWER step > 10% RTP.  !

I ACTIONS  ;

CONDITION REQUIRED ACTION COMPLETION TIME A. Pressurizer A.1 Restore 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> pressure or RCS parameter (s)to flow rate not within limit.

within limits.

(continued)

SAN ONOFRE--UNIT 3 3.4-1 Amendment No. 446

RCS DNB (Pressure Temperature, and Flow) Limits

._ 3.4.1 ACTIONS (continued)

CONDITION- REQUIRED ACTION COMPLETION TIME B. . Required Action 8.1 Be in MODE 2. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and' associated Completion Time of Condition A not met.

C. RCS cold leg C.1 Restore cold leg 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> temperature not temperature.to within limits, within limits.

D. Recuired Action D.1 -Reduce THERMAL 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> anc associated POWER to Completion Time of s 30% RTP.

Condition C not' met.

1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.1 Verify pressurizer pressure 2 2025 psia and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> l_ s 2275 psia.

l SR 3.4.1.2 Verify RCS cold leg temperature: 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

1. For THERMAL POWER less than or equal to 30% RTP, 522'F s Tc s 558 F,
2. For TllER".AL P0ER less ther. or equoi to 70*: RTP and greater than 30": RTP, 535T J  : Tc : 558TT (continued)  ;

i l

SAN ON0FRE--UNIT 3 3.4-2 Amendment No. 4% j i

RCS DNB (Pressure, Temperature, and Floa) Limits

. 3.4.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR l3.4.1.2 (continued)

2. h For THERMAL POWER greater than 730%

RTP, 544535'F s Tc s 558'F.


NOTE--------------------------

Required to be met in MODE 1 with all RCPs running.

SR 3.4.1.3- Verify RCS total flow rate a 396,000 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> gpd140E6 L h/ hour er.d m 177.5ESLbm/ hour.

L 1

l SAN ON0FRE--UNIT 3 3.4-3 Amendment No. H 6

PCN 491 Attachment E Proposed Technical Specifications SONGS Unit 2 l

l

[

( -----------------_J

l*

RCS DNB (Pressure, Temperature, and Flow) Limits I. 3.4.1 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS ONB (Pressure, Temperature, and Flow) Limits LC0 3.4.1 RCS parameters for pressurizer pressure, cold leg temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure > 2025 psia and s 2275 psia;
b. RCS cold leg temperature (Tc ):
1. For THERMAL POWER less than or equal to 30% RTP, 522*F s T s 558 F, c
2. For THERMAL POWER greater than 30% RTP, 535*F s Tc s 558 F.
c. RCS total flow rate > 396,000 gpm.

APPLICABILITY: MODE 1.


NOTE------------------------

Pressurizer pressure limit does not apply during:

a. THERMAL POWER ramp > 5% RTP per minute; or
b. THERMAL POWER step > 10% RTP.

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. Pressurizer A.1 Restore 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> pressure or RCS parameter (s) to flow rate not within limit, within limits.

(continued)

SAN ON0FRE--UNIT 2 3.4-1 Amendment No.

l l

RCS DNB (Pressure, Temperature, and Flow) Limits

. 3.4.1 ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME B. Required Action B.1 Be in MODE 2. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated Completion Time of Condition A not met.

C. RCS cold leg C.1 Restore cold leg 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> tem]erature not temperature to wit 11n limits. within limits.

D. Required Action D.1 Reduce THERMAL 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated POWER to Completion Time of s 30% RTP.

Condition C not met.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.1 Verify pressurizer pressure 2 2025 psia and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> s 2275 psia.

SR 3.4.1.2 Verify RCS cold leg temperature: 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

1. For THERMAL POWER less than or equal to 30% RTP, 522 F s Tc s 558 F,
2. For THERMAL POWER greater than 30% RTP, 535'F s Tc s 558 F. j SAN ON0FRE--UNIT 2 '3.4-2 Amendment No.

L______---_.

RCS DNB (Pressure, Temperature, and Flow) Limits

. 3.4.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY


NOTE--------------------------

Required to be met in MODE 1 with all RCPs running.

SR 3.4.1.3 Verify RCS total flow rate 2 396,000 gpm. 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> SAN ON0FRE--UNIT 2 3.4-3 Amendment No.

PCN 491

~

l l

I l

Attachment F l

Proposed Technical Specifications SONGS Unit 3 1

i F

t

RCS DNB (Pressure, Temperature, and Flon) Limits 3.4.1 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS DHB (Pressure, Temperature, and Flow) Limits LCO 3.4.1 RCS parameters for pressurizer pressure, cold leg temperature, and RCS total flow rate shall be within the limits specified below;

a. Pressurizer pressure > 2025 psia and s 2275 psia;
b. RCS cold leg temperature (T ): c
1. For THERMAL POWER less than or equal to 30% RTP, 522*F s T, s 558 F,
2. For THERMAL POWER greater than 30% RTP, 535*F s T, s 558*F.

I

c. RCS total flow rate > 396,000 gpm.

APPLICABILITY: MODE 1.


NOTE------------------------

Pressurizer pressure limit does not apply during: I

a. THERMAL POWER ramp > 5% RTP per minute; or
b. THERMAL POWER step > 10% RTP.

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME l

A. Pressurizer A.1 Restore 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> pressure or RCS parameter (s) to j flow rate not within limit. i within limits.

(continued) 1 1

1 SAN ON0FRE--UNIT 3 3.4 1 Amendment No.

1 L_._..__

RCS DNB (Pressure, Temperature, and Floc) Limits  ;

3.4.1

~

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME  ;

1 l B. Required Action B.1 Be in MODE 2. 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated Completion Time of ,

Condition A not  ;

l met.

C. RCS cold leg C.1 Restore cold leg 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />  !

temperature not temperature to i within limits, within limits.

]

D. Required Action D.1 Reduce THERMAL 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and associated POWER to Completion Time of s 30% RTP. 4 Condition C not l met.

1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.4.1.1 Verify pressurizer pressure 2 2025 psia and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> s 2275 psia.

SR 3.4.1.2 Verify RCS cold leg temperature: 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

1. For THERMAL POWER less than or equal to 30% RTP, 522'F s Tc s 558"F,
2. For THERMAL POWER greater than 30% RTP, 535 F s Tc s 558 F.

SAN ONOFRE--!.: NIT 3 3.4-2 Amendment No.

_.__________________.--~J

RCS DNB (Pressure, Temperature, and Flow) Limits

.. 3.4.1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY

______.__...___..__.__.----NOTE--------------------------

Required to be met in MODE-1 with all RCPs running.

SR 3.4.1.3. Verify'RCS total flow rate.2-396,000 gpm. 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> 4

l 1

l l

l- SAN ON0FRE--UNIT 3- '3.4-3 Amendment No.

f j '. _ _ _ . _ _ . . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _

' PCN 491 Attachment G Proposed Technical Specifications Bases s-SONGS Unit 2

. (For Information Only - Unit 3 will be the same as Unit 2) i

1 RCS DNB (Pressure, Temperature, and Flow) Limits

. B 3.4.1 B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.1 RCS DNB (Pressure, Temperature, and Flow) Limits ,

1 BASES BACKGROUND These Bases address requirements for maintaining RCS pressure, temperature, and flow rate within limits assumed i in the safety analyses. The safety analyses (Ref. 1) of l normel operating conditions and anticipated operational occurrences and design basis accidents assume initial l conditions within the normal steady state envelope. The limits placed on DNB related parameters ensure that these parameters will not be less conservative than were assumed in the analyses and thereby provide assurance that the minimum departure from nucleate boiling ratio (DNBR) will meet the required criteria for each of the transients ,

analyzed. l The LCO limits for minimum and maximum RCS pressures as measured at the pressurizer are consistent with operation within the nominal operating envelope and are bounded by ,

those used as the initial pressures in the analyses. l The LC0 limits for minimum and maximum RCS cold leg temperatures are consistent with operation at the indicated l power level and are bounded by those used as the initial i temperatures in the analyses. l The LC0 limits for minimum and maximum RCS volumetric flow  ;

rates bounds-that are bounded by-thee-used as the initial i flow rates in the analyses. The RCS volumetric flow rate is not expected to vary during plant operation with all pumps running.

APPLICABLE The requirements of LC0 3.4.1 represent the initial SAFETY ANALYSES conditions for DNB limited transients analyzed in the safety analyses (Ref. 1). Tne safety analyses have shown that transients initiated from the limits of this LC0 will meet the DNBR criterion of 2 1.31. This is the acceptance limit for the RCS DNB parameters. Changes to the facility that l could impact these parameters must be assessed for their impact on the DNBR criterion. The transients analyzed for include loss of coolant flow events and dropped or stuck control element assembly (CEA) events. A key assumption for the analysis of these events is that the core is operated (continued)

SAN ON0FRE--UNIT 2 B 3.4-1 Amendment No. 127

RCS DNB (Pressure, Temperature, and Flow) Limits }

B 3.4.1 BASES r

APPLICABLE within the limits of LC0 3.1.7, " Regulating CEA Insertion SAFETY ANALYSES Limits"; LC0 3.1.8, "Part Length CEA Insertion Limits";

(continued) LC0 3.2.3, " AZIMUTHAL POWER TILT (T,)"; and LC0 3.2.5, i

" AXIAL SHAPE INDEX (ASI)". The safety analyses are

, performed over the following range of initial values: RCS l pressure 2000 - 2300 psia, core inlet temperature 9tt-=

5GC^F (fei > 702 penerh--533 - 560 F (for s 702 pe h eiid

> 30% power), and 520 - 560 F (for s 30% power) and reactor vessel inlet coolant volumetric flow rateh95=-it0%.

, The RCS Pressure, Temperature, and Flow limits satisfy Criterion 2 of the NRC Polic) Statement.

LC0 This LC0 specifies limits on the monitored process variables-RCS pressurizer pressure, RCS cold leg temperature-to ensure that the core operates within the limits assumed for the plant safety analyses. Operating within th",a limits will result in meeting the DNBR criterion in the event of a DNB limited transient.

The LC0 numerical values for pressure and temperature are given for the measurement location but have not been adjusted for instrument error. The uncertainties for pressure and temperature are accounted for in the CPC and COLSS overall uncertainty analyses. The RCS flow uncertainty must be applied to the valuer stated in this LCO.

APPLICABILITY In MODE 1, the limits on RCS pressurizer pressure, RCS cold leg temperature, and RCS flow rate must be maintained during steady state operation in order to ensure that DNBR criteria will be met in the event of an unplanned loss of forced coolant flow or other DNB limited transient. In all other MODES, the power level is low enough so that DNBR is not a Concern.

A Note has been added to indicate the limit on pressurizer pressure may be exceeded during short term operational i transients such as a THERMAL POWER ramp increase of > 5% RTP l per minute or a THERMAL POWER step increase of > 10% RTP.

(continued) {

SAN ON0FRE--UNIT 2 B 3.4-2 Amendment No. 127 May 29, 1997  ;

RCS DNB (Pressure, Temperature, and Flow) Limits

. B 3.4.1 i

l BASES l

SURVEILLANCE SR 3.4.1.2 REQUIREMENTS

(continued) Since Required Action A.1 allows a Completion Time of

! 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> to restore parameters that are not within limits, the 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Surveillance Frequency for cold leg temperature is sufficient to ensure that the RCS coolant temperature can be restored to a normal operation, steady state condition following load changes and other expected transient

operations. The 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within ,

safety analysis assumptions.

SR 3.4.1.3 The 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Surveillance Frequency for RCS total flow rate has been shown by operating experience to be sufficient to assess for potential degradation and to verify op? ration is within safety analysis assumptions.

The 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Surveillance Frequency for RCS total flow rate is normally performed using the Core Operating Limits Supervisory System (COLSS) generated flow. COLSS utilizes sensor inputs of RCP speed, RCP. differential pressure, cold leg temperature, and Pressurized pressure to calculate the volumetric flow through each RCP. Total RCS flow is then calculated by.COLSS as the sum of the flows of each of the four RCPs.-

When COLSS is out of service, RCS Mew Volumetris Flowrate is determined manually. An evaluation of the heat balance between primary and secondary plant powers is the preferred methodology to determine RCS Mew Volumetric Flowrate.

Another acceptable methodology is to determine RCS Men Volumetric Flowrate by performing an evaluation of the

j differential pressure across each RCP.

i (continued)

SAN ON0FRE--UNIT 2 B 3.4-5 Amendment No. 127

PCN 491 Attachment H UFSAR CHAPTER 15 ASSESSMENT

  • UFSAR CHAPTER 15 ASSESSMENT SUPPORTING PROPOSED TECHNICAL SPECIFICATION AMENDMENT This Attachment discusses the various UFSAR Chapter 15 engineering assessments performed in support of the proposed Technical Specification (TS) changes.

Specifically,1) the TS changes for the reduction in Reactor Coolant System cold leg temperature (RCS T u) at Power Levels > 70% rated thermal power (RTP)and2)theRCSflowchoange from Mass flow rate to Volumetric flow rate and removal of the upper RCS limit value. The assessments performed demonstrate that the proposed TS LC0 values satisfy established Acceptance Criteria. The results of these assessments are presented in Table H.1 below.

Objective The objective of this assessment was to determine the impact of reducing the l TS minimumcoT u on accident analyses presented in the Updated Final Safety Analysis Report (UFSAR) (i.e., Chapters 6 and 15). The minimum coT u reduction from the current value of 542*F to 533 F (which includes 2 F uncertainty),

of 9"F. This temperature resultsinanetreductionintheminimumT,E100%ofratedthermalpower reduction is being applied to the 70% throug c

range.

In addition, this assessment addresses the impact of a change in the TS LC0 for RCS flow. In particular,-the TS change consists of modifying the current minimum " mass" RCS flow to a minimum " volumetric" flow and removing the upper RCS limit value. The p RCS mass flow of 148x10,roposed lbm TS change would replace the current TS minimum hour by a volumetric RCS flow of 396,000 gpm which corres)onds to 148x10'/ lbm/hourat553*Fand2250psiaandalsoa removal of t1e upper limit of 177.6x10' lbm/ hour.

All of the UFSAR safety analysis events were assessed for San Onofre Units 2 and 3 with regard to the impact of the above stated minimum Tcou reduction and flow rate change.

This assessment also addresses the impact of the above TS changes on the safety analysis events that are used to provide setpoints for the Core Operating Limit Supervisory System (COLSS) and the Core Protection Calculator l System (CPCS). The COLSS and CPCS setpoints are verified or modified at least once each fuel cycle to account for cycle-s 3ecific changes to core parameters.

COLSS uses on-line departure from nucleate ) oiling ratio (DNBR) calculations based on measured power, pressure, temperature, flow, and axial shape to assure that required thermal margin is maintained. CPCS uses on-line DNBR calculations, based on inputs independent of the COLSS inputs, as part of its Low DNBR trip logic. The use of on-line DNBR calculations by COLSS and CPCS causes the cycle-specific setpoints for many events to be insensitive to the values of Tcou and RCS flow that are assumed in the setpoint analyses (i.t.,

for many events, the on-line adjustment of COLSS thermal margin and CPC DNBR l

basedonmeasuredT)u and measured in these parameters . Although RCS flow fully the cycle-specific accounts setpoints forinsensitive are the variation to the values of T uco and RCS flow that are assumed for many events, a review of each event was performed. This review identified those events for which the proposed TS changes would have no impact on the cycle-specific COLSS and CPCS setpoints and identified those events for which the proposed TS changes would potentially affect the cycle-specific setpoints. For each event that is potentially affected, the Cycle 10 analysis will be performed consistent with 7 the proposed TS changes.

H-1

l l

H.1 Discussion of UFSAR Chapter 15 Events Table H.1 shows the impact of the T o and flow specification changes on all relevant UFSAR Chapter 15 events. Non-Mode 1 events (Sections 15.4.1.4, 15.4.1.5,15.4.3.1), Uncontrolled CEA Withdrawal from a Subcritical or Low Power Condition (Section 15.4.1.1), and Section 15.7 and 15.8 events are not j relevant to this change and thus not included in this change.

Table H.1 Acronyms CFR - Code of Federal Regulations CPC - Core Protection Calculator '

CVCS - Chemical and Volume Control System DNBR - Departure from Nucleate Boiling LHR - Linear Heat Rate LOCV - Loss of Condenser Vacuum RCS - Reactor Coolant System l SBLOCA - Small Break Loss of Coolant Accident

!' SG - Steam Generator SONGS - San Onofre Nuclear Generating Station ,

UFSAR - Updated Final Safety Analysis Report 1 I

I H-2

l b l b l

ad m l

m ea ad m u ea m ed e ed e el i S cnt c nt ca n T nuS nuS nui i o i o it m W sb n sb n sc O i n i n a e L d eao d eao d h F er Mi erMi eot za t .

za t . t n .

F y d c) y d c) c ne O l a ee3 l aee3 a sit S ai sS aisS pi a S TE nr I

CG aee a(1 n ra(1 m er S

. aee i eg AN t rw1 t rw1 rnw Y PA ti co .

L ti co t eao MH ornl 5 ornl 5 ohhl A I C N c I F1 N cI F1 N Nt cf A

T w w re N eo eo pet E rl rl it a g r D aF aF rl r noo I ti i nf C am i a am f e r C i a tCR h ees a A re re oPB eth wai et et nCNh t oh r tS tS e 5

i e .DT y l Ft 1

irn ci rn ci rt e .bt oe3i R E a nred nr3 r E a a eure o5 c T G l M l M av s utdf P N l l i enl cn eol A A ad ad r eia a rtl H H e . e . es a p e a C C es) es) ti of mdhd ca 3 ca3 iht il Tl n R D ne ne rt l o oo A

S F

L O

C i r sc n

1 1

i r1 sc .

n1 c

eosf t esc reuiT .c dT c

- t U - dI dI . rf nfl a T e 5 e 5 u eeooomp .

E z y1 z y1 sd rdi cu mt H F yb yb seaut eT min T O l n l n eg l ag i e ad u ad o rnsccnl nev N T ne i nei P ereia ais e O C ad t adt l erfhi mr A n c nc kl t pi ct es E P t u e t ue aal r i evi G M oo S ooS ehi oef nhdh N I Nb ( Nb( P cft voit at A

H C

R R R S B B B T f N f N f N o D o D o D U s s s O  % m  % m  % m 0 1 L m e u 0 e u 1 0 e u 1 F e 1 r m2 1 r m2 1 r m2 1 u 1 u 1 u ns t i i i A

s s s

s s n s s n s y s i s s s i D I S e MR e i M R e MR L R e r (H e r (H e r (H O E y r P L r P L r P L C T r u e u e u e

- I a s yn rk s yn rk s yn rk T R d s rg uae s rg uae s rg ua C n e ai l e ai l e ai l e E o r d s iP r d s iP r d s iP H E c P ne a P ne a P ne a T C e oD Fd oD Fd oD Fd N S S c n S c n S c n F A C ef l a C ef l a C ef l a O T e R n g

S o e ) R n S o e ) R n S o e )

P h u1 t g u1 t g u1 t T E ki k% k%

C A

C C

t y

a s ee a0 e1 Fo1 w

3. /

f ki as ee a0 e1 Fo1 3. w f

/ ki as ee k %

a0 e1 Fo1 3. w f

/

P A b PD P1 N 2k PD P1 N 2k PD P1 N 2k M

I l a

- v o w n 1 m e o i H R l a n e nF M E t i r i w L a ru r d o B e eet ee el A st a st sF H aar aa a T

E L n ewe rd p ew rd em ra T

i cem ce ce

_ I e eee ne nt T s DFT I F I S

_ a

_ e

- r

_ c n 1 2 3 N I .

1

' IO 1 1

RT 1 1 1 1 AC .

SE 5 5 5 5 FS 1 1 1 1 i

l

h g ad m ad m t n ea ea

. a ed e ed e S t rh . cnt cnt T ea ece shh v n g nuS en nuS en i o l o i o l o W it t iun sb ngi sb n gi O l a i nt i nt L st wesh d eai c d eaic F i aod nc erMS e erMS e s l i za S . za S .

F ydf na s y dh() y dh()

O l e am i l aet 3 l aet 3 S TE S anr u mmce r h aisi e aisi e t nra wr2 n ra wr2 I

S CG AN aomsfi ps aee u aee u Y

h t rwl 1 t rwl 1 L

PA erxmi t ti coi . ti coi MH h ea uh i ornl a5 ornl a5 A I C T p m pT w N cI FF1 N N cI FF1 A

T t w w N a eo eo E e ) y rl rl D cd3 s - n aF aF I ne r T a C as1 u am am C ma c f n i a i a A re1 ec oeo re re or so h et n et n 5 f c5 o et t . tS o tS o 1 rn1 dt u ca i i i i eI n l gai rnt rnt R P nee a npr cic cic E E yot v vi me a e ae T G l bii e rit l MS l MS P N e t s ee i l ( l (

A A ud cf s l wor ad ad H H F eefi b onc ee ee C C dS oh al es r es r d n( t w s e ca u cau R D n u e oeac nel nel A L aows r l rh n i ri i ri S O b oro l o a sc a sca F C e l ef afdt nF nF U - reF v el p dI dI T ur samac d e mr oe uecc e e e e E z yl . z yl .

H F s a n mhT c yb g) yb g)

T O eaet e iT a l n3 l n3 rit su x m adi adi N T P rS oq a ue neS2 neS2 O C e me m . mh ad ad A k t n s dit nh1 nh1 E P aii en el n t ut . t ut .

G M erah o h oif ooi5 ooi5 N I P cMT c t cmo Nb w1 Nb w1 A

H C

R S

f B e & &

T N l f f o D o o y o y 3

t s h s rn s rn 0  % m w  % ti  % ti L 0 e u 1 0 e eh 0 e eh F 1 r m2 m e

1 r mt 1 r mt 1 u i 1 u oi 1 u oi s

s n s R s ew s ew A s i s s g s s s g s D I e MR 5 e l e e l e L R e r (H e r el n e r el n O E r P L 0 r P l e i r P l ei C T u e u b wl u b wl

- I s yn rk s s yn a e s yn a e T R s rg u ea s rg l ed s rg l ed C e ai l e e ai os i e ai osi E r d s iP s r d s oou r d s oou H E P ne a o P ne cD g P ne cD g T C oD F d D oD oD N S c n S c ne0 S c ne0 F A C ef l a e C ef it 0 C ef it0 O T R n g

S o e ) t R n S o ai1 R n S o ai1 P u1 t i g tSR g tSR E k % s y k% n n T

C A

C C

k i a s ee a0 e1 F o1 w

3. /

f fd f o ki as ee a0 e1 ifC af0 F ki a s ee k%

a0 e1 iaf0 fC F

P A PD P1 N 2k Ob PD P1 MO1 PD P1 MO1 M

I p h rm t 1 ou i e w e

_ t D W r o r

- H aa t ue l ue t rc n enl v nF l v E nf ei i reii i tii L eonr rurat t r natt B t ee eet rF c n ee eF cn A rgGh st au A e st r A e T en p aarce n a a are n E vi ms e ewenl no ew ul no L d na ov rd poga p rdh cgap T a eeml cemC n m cet nn m I nptt a eee if o neioif o T I OSAV DFT aS oC I FWCS oC 4 1 2 N .

O 1 2 2 I .

RT 1 1 1 AC . .

SE 5 5 5 FS 1 1 1

m i e i e m u h h u m t t t tt t m el i oi . oi el i S c an n t r n t r, ca n T n ui eea e eea e nui it m s shh v sshh v i t m W s c i ut ti i utt i sc O a e a l a l ae L d h sct we sct we d h F eot i eaod i ea od eot t n ,

sb l sb l t n .

F c ne y df n y df n c ne O a sit l d e a l d e a asit S TE S pi m er a aemmc aemmc pi a nt ru nt ru m er I

S CG AN i eg r n w acoms a afi coms i eg Y PA eprxm afi p p r n w L

t ea o eprx m t ea o MH ohhl h mea u h mea u ohhl A I C Nt cf Ti pmp Ti pmp Nt cf N

A T l f e r N c od b e o E eun n e e r f D hf o eay rl cd u e e e I t i g b R ul nel em h rm h rm h C et nd B si asi cu mt ou mt ou mt C t d za al d oA nic h oe N nw maa nm u f m u f m u A D e reft ei mf i mf i mf n a mi cct a or s u x i o ex i o ex i o 5 i f T c eoi f ceoqa n ca n ca n 1 e . nni f rt ii r ol p a t t r a e rnl mem eI g s

.i y d mn e nm .i y d mn nm e

.i y d mn R a ngme am idt P nenel a uel a uel a E E er v eii rei yi h oh oe qh oe qh oe T G a v ao tt pv r l bST ct ch n et ch n et ch n P N i emt r ai yoorc e - t o s t o s t o A A r e rnl t re udh etT . ntT .

ntT .

H H esRtt ie ps e . F et . s a gt a oa gt a oa gt a C C tiB el e s rpect di) o f nci c f nci c f nci i hN si h eroarnn d R D rtD f th ei pae n u n w 3.d r s oia r rpe er s oia r r pe er s oiar rpe L c e t v r , t v eu eemt s ueemt sueemt A

S O C

rf re y eooah bt a dP nepe ob e a

e boo w 2. t c uwii l 1 i cl o r rc u wii ecl o r rcuwii ecl o r F

U - rf T o .i cs reF . so al oc v oal oc voal oc T u ns d nt etl ci ur 5f v ,n e d v ,n d v ,n E sd or e ogal ah sam 1ft at e at e H F s eie .td nnti t s a on ees c neesc neesc T O egtt s cn a nwl eaen el ra n t el ran t el ra n rnal e aa sh e l r rit oevb oh a s vb oh a s vb oh a N T P enir p ucmnao P rSi s e af t oeaf t oeaf t O C l if u mdh ei f e t r wed p m wed p m wed p A kl b l il t sl gt kt nces orl e sorl e sorl e E P a amCi o i prat aiievil eoc eil eoc eil eoc G M eh oP a scsh mah e eraSdhl h cc hhl h cc hhl h cc N I P ccCf iTiti mt m P cM( at aTT a Tt aTT a Tt aTT a A

H C

S & & & &

T f f o y o y y y h W rn s rn r r t&

O  % ti  % ti t tl i -

L 0 e eh 0 e eh e el wee F 1 1

r u

mt oi 1

1 r

u mt oi m

on ma om0i pe k r .

s s ew g s s ew ei es0 p k A s s s g s gh s g 1 sri D I e l e e l e t e aR op L R e r el n e r el n ein e F ef s O E r P ng l ei r P l ei l wi l sC n C T u b wl u b wl b l b 0i0 e

- I s yi a e s yn a e as e as1 d0 n T R s rs ed s rg l ed l ed l e o1 i E

C e r

a e dD losi oou e

r ai d s osi oou osi oou os oof iRd F o H E P n cD g P ne cD g cD g cD otCi T C of oD n0 N S co ne0 S c ne0 ne0 nene1 g A C C n F

O T R n g

Se% 0 it0 ai1 R n g

ef S o it 0 ai1 it 0 ai1 it or aiirni P tSR t SR tSR tSt uit T E ki k1 n F ki k% n F n F n cch s C C a s a1 ifC a s a0 ifC i fC if a nti A C ee e af0 ee e1 af0 af0 af roix P A PD P s MO1 PD P1 MO1 MO1 MOf c we M

I p

h rm s r s 1 nt e ou e ee e ii r t D r rw r H aWt ue aa a ue muo mup M nl v t rc l v el p el i E weii nf eihtii ti ) t i r L d orat t eonrt natt sapn sat o B el rF c n t eeieF cn yFi o yF t A sF u A e rgGhW r A e S ri S -

T a ce n en p re n gt s g n)

E emnl no raoga p vi mseul no d naovc gap mn - r aieu mnt rr aisue L

T cec n m a eeml nn m eprc epot w I nt i f o npt t aoif o ti P x ti P eo T I S aS oC I OSAVCS oC SP( e SP( rp A B 3 4 l 1 N .

O 2 2 3 3 I

RT 1 1 1 1 AC . . .

SE 5 5 5 5 FS 1 1 1 1

ad ad u u e e m m

_ ed ed el i el i S c n r c n; can ca n T nue nuen nui nui i os n i os o it m i t m W sb no sb ni sc sc

- O ei et ae ae

_ L d edt d ed c d h d h

_ F ernc ern e eot eot zaoe . zaoS . t n . t n .

- F y C S) y C() c ne c ne O l a ( 3 l a 3 asit a sit S aif aif pi a pi a S TE nro m1 nrom1 m er er

_ m I

S CG ae u . ae u i eg i eg

_ Y AN t su2 t su2 r nw rnw

_ PA ti s c ti s c t eao t ea o

_ L MH oroa5 oroa5 ohhl ohhl A I C N cLV1 N cLV1 Nt cf Nt cf N

A T n a t N em ru em r u i i a E d r y D au au d e e . s - n I c c k e r m d t t rT a C aa aa at ou m n i n u C iV iV en f m u u re cf en A r r P e i m o c v coh o er er s ex i b e o t 5

1 t e i s rn t e i s rn d p

.er ca nm e

.i i d m h ns me eursk t ugca ruuinnl nai e t ,

R ce ce l uel t acl hi eaipr

_ E E d d os qh o e ait s v v rme

? G l n l n ci et ch n aV a e eit

? N l o l o T s s - t o i F yt ew i A A aC y ntT rr H H aC . . ml oa gt a eel b a sl oor eibl nc C C ef) ef) ua c f nci t s edhh a co3 co3 mn soi a r i nue t w ,s e R D n n i a er rpe reF ge oeac A L i s1 i s1 n sue emt cd ns rl rh n S O s s s s . iR rcu wii nd erol o a F C o2 o2 mA . ecl o r eonl ef afdt U - dL dL SI v oal oc rC al v el p T e 5 e 5 tF d v ,n e u ad emroe E z y1 z y1 aUt at sf)h acuecc H F yb yb n ne es c s o3 c nmhT c T O l n l n gee t el ra n e t eiT a T

ad o ad o nr m s vb oh a rs1

.tooqas ux m N nei nei i uh oeaf t P s ue O C adt adt t sc m w ed p o2 nmem .mh A nc nc i s a so rl e k L s dit E P t ue t ue met eil eoc a 5 eenel n

_ G M ooS ooS i rt hhl h cc e y1 rh oh oif N I Nb( Nb( L pA Tt aT T a Pb( aT ct cmo A

H C

R S B T f f f f N k o o o o D n d s s s s i 0  %  %  %  % m os L m 0 e 0 e 0 e 0 e u 1 t

F e 1 1

r u

1 1

r u

1 r 1 r m2 t t 1 u 1 u i ya A

s s s

s s

s s s n s re y s s s s s i oh D I S e e e e MR t L R e r e r e r e r (H ne O E y r P r P r p r P L et C T r u u -

u u e va

- I a s yn s yn s yn s yn rk nu T R d s rg s rg s rg s rg u e a i q C n e ai e ai e ai e ai l e E o r d s r d s r d s r d s i P Gd H E c P ne P ne P ne P ne a S a T C e oD oD oD oD Fd N S S c S c S c S c n en F A C ef C ef C ef C ef l a ti O T e R n S o R n S o R n S o R n S o e ) aa P h g g g g u1 t ut T E ki k% k% qn C

A C

C t

y a s ee a0 e1 ki a s ee k %

a0 e1 ki as ee a0 e1 ki a s ee k %

a0 e1 Fo1 3. w f

/ ei d a P A b PD P1 PD P1 PD P1 PD P1 N 2k A m M

I l

a l m

- v o a u 1 m n u l e r c a H R e p a m t i V r E t x r o L a E T r N B e e r A H f e f s f e T o n on) ow E i eV o L n sd b sdC sP i

T sa r snO s I

e oo u ooL oC

_ T s LL T LC( LA

_ a e

- r c

e 1 2 3 4 N D .

O 1 1 1 1 I .

RT 2 2 2 2 2 AC SE 5 5 5 5 5 FS 1 1 1 1 1

ad ad u u e e m m ed e ed e el i el i S c nrl nuegn cnrl nuegn can can T nui n ui i os no i os no i t m it m W sb nii sb nii sc sc O est c

est ae a e L d ed d ed c d h d h F ernh e ernh e eot eot z aotS . z aotS . t n . t n .

F y Ci() y Ci() c ne c ne O l a w 3 l a w 3 a sit a sit S

S aif e aif e pi a pi a TE nromr 2 n romr2 m er m er I

S CG ae uu a e uu i eg i eg Y

AN t s ul 2 t s ul 2 rnw rn w PA ti s ci t i s ci t ea o t ea o L MH oroaa 5 oroaa5 ohhl ohhl A I C N cLVf 1 N cLVf1 Nt cf Nt cf N

A T n .

N em ru em ru i ) t E

D I

a u c

a u c k e d

rm y 3.

2 omom t sor h e

C aa aa at ou m b a n n f u mt C iV r

iV r

en f m u a2 e m u A P e i m dh eh ei mf ern ern s ex etf5 rT cx i o 5 t eo t eo

.er ca nm ins di o1 a nw na n 1

R E E i si rnt cec d e i si rnt cec d e d p l

os e

uel qh o d

. ii mh e

t omroit.

u ena b uuirneh oe em u qel d.imn y a

T G l nS l nS ci et c h n ul t eest ch n P N l o( l o( T s s - t o ecict v n t o A A aC aC y nt T . ra aeieot T .

H H e e ml oa gt a aVFS r ca gt a C C ef r ef r ua c f nci ( cs f nci cou c ou s o ia r are i k s oia r R D n l n l imna er rpe i el t eh nr rpe A L i si i si n s ue emt rs gncti ueemt S O ssa ssa iR rcu wii ennen scuwii F C of of mA . ecl o r t einay cl o r U - dL dL SI v oa l oc ids ombtpr oal oc T e e e e tF d v ,n e rn a v ,n e E z yl . z yl . aUt at cot mod et H F yb g) yb g) gee n ne esc C nof eh neesc T O l n3 l n3 t el ra n e eC rg el ra n adi adi nrm s vb oh a rf r enevb oh a N T nes2 nes2 i uh oea f t uorepeseaf t O C ad ad t sc m w ed p s uv l r wed p A nh2 nh2 i sa so rl e sscil l esorl e E P t ut t ut met eil eoc es nt ea v il eoc G M ooi5 ooi5 i rt hhl h cc roocuhdhl h cc N I Nb w1 Nb w1 L pA Tt a TT a PLCAF cat aTT a A

H C

R S B T f f f f k N o o o o n D W s s i O  %  %  %  % os m L 0 e 0 e 0 e 0 e t u 1 F 1 r 1 r 1 r 1 r t m2 1 u 1 u 1 u 1 u ya A s s

s s s

s s s

s s s

s re oh in s i

D I e e e e t MR L R e r e r e r e r ne (H O E r P r P ng r pn r P et L C T u u u g u v a e

- I s y n s yi s yi s yn nu rk T R s r g s rs s rs s r g i q u a C e ai e a e e a e e ai e l e E r d s r dD r dD r d s Gd iP H E P n e P n P n P ne S a a T C oD of of oD Fd N S c S co S co S c en n a

F A C ef C e C e C ef ti l O T R n S o R n S% R n S% R n S o a a e )

P g g 0 g 0 g ut u1 t T

C A

E C

C ki as ee k%

a0 e1 ki a s ee k1 a1 e

ki a s ee k1 a1 e

ki as ee k%

a0 e1 qn ei d a Fo1 3./w f

P A PD P1 PD P s PD P s PD P1 A m N 2k M

I l m a u r 1 n e e u e e e r r r c r w r H e ue p ue a ue o ue t a l v i l v V l v l P l v E x tii r ti i tii l tii L Eh natt T natt r natt aC natt B t eF cn eF cn e eF cn A eF cn A fi r A e e r A e f s r A e f r A e T owre n nare n onare n ol are n E ul no i ul no e ul no a ul no L sd c ga p bh c ga p sdh cgap s mh cgap T sa nn m rt nn m s nt nn m srt nn m I oooif o uioif o ooioif o ooioif o T LLCS oC T wCS oC LC wCS oC LN wCS oC 1 2 3 4 N .

O 2 2 2 2 I

RT 2 2 2 2 AC SE FS 1 5 5 1

5 1

5 1

h u h tt t m t t t oi . el oi .

S n eea e t r ca in n t r T

sshh v nui eeae it m s shh v W i utti sc i utt i O a l ae a l L sct we d h sct we F i ea od eot i eaod sb l t n . sb l F y df n c ne y df n O l d e a a sit l d e a S

S a emmc pi a ae mmc TE nt ru m er nt ru I

S CG AN acoms afi p i eg r n w ac a

oms fi p Y PA eprxm L MH t ea o ep rxm A

h mea u ohhl h m eau N

I C Ti pmp Nt cf Ti pmp A

T N .

E t t D s r e e s r e I oom h rm h o om h C mf u mt ou mt m f u mt C t m u f m u t m u A oeei mf i mf oe ei mf nh c x i o ex i o nh c x i o 5 T n a n ca n T na n 1 e r .em at qel u d

. iy mna nm .i y e

uel d mn a

e r . u em .i y d mn a

R E at qel E neh o e qh oe n eh oe T G aest c h n et ch n ae st ch n P N i v n - t o s t o i v n t o A A reotT . nt T

  • re otT .

H H e ca gt a oa gt

  • e ca gt a C C t s f nci c f nc t s f nci iik so ia r s oia ii k soiar R D rh n r rpe er rp* rh nr rpe A L cti ue emt s ueem ct i ueemt S O scu wii rcuwi scu wii F C ey cl o r ecl o ey cl o r U - rbt oa l oc v oal o rb t oal oc T u a v ,n e d v ,n u a v ,n e E sd et at
  • sd et H F s eh ne es c eg nees s e h neesc T O el ran t el ra" eg el ra n rnevb oh a s vb oh " rn evb oh a

' N T P es ea f t oeaf P e s eaf t O C l r w ed p m wed l r wed p A kl eso rl e s orl kl esorl e E P aavil eoc eil eo a a vil eoc G M ehdhl h cc hhl h c eh dhl h cc N I P cat a TT a Tt aTT

  • P c at aTT a A

H C

e S h T f k f t f k o n o o n W s i s h e i O  % os  % gr  % os L 0 e t 0 e uu 0 e t F 1 r t a

2 r os 1 r t 1 u >

1 rs 1 u ya

& s t h e s re A s s e

- h s Ne t r s s oh D I t p e t L R e r

r ne e r e e r ne O E P et r P sS r P ng et C T u v a u aC u va

- I s yn nu s yn eR s yi nu T R s rg i q s rg l s rs q C e ai e e ai ek e a e i e E r d s Gd r d s ra r d D Gd H E P ne S a P ne e P n S a T C oD oD d p of N S c en S c i S co en F A C ef ti C ef ur C e t i O T R n g

S o aa R n g

S o qo R n S% aa P ut if g 0 ut T E ki k% qn ki k% L e ki k 1 qn C C a s a0 ei as a0 V s as a1 ei A C ee e1 d a ee e2 oS a ee e d a P A PD P1 A m PD P1 NP c PD P s A m M

I

- m e

1 l w t l w e ao s ao r H ml y ml ue rF S s rF l v E o k o ti i L N r ra N r natt B e ee e ef cn A ft t r ft r ae T oa aB oaare n E w w w ul no L sd d e sdh cgap T s e ep set nn m I oe ei oeioif o T LF FP LF wcsoc 5 1 2 N .

O 2 3 3 I

RT 2 2 2 AC SE 5 5 5 FS 1 1 1

ft t at ooit c l i t

i

%, a ei a

pt mc ue S n oe n t r crePS T s ss s eTS

(

eeae nel (

v W

O oa ue L wah sshdi e

ut a l i t gt si nn riat L ct w sct we d cSl f F l we o i eaod e oa a ob yl . sb zeyoh .

F O

il tFd bF) 1 y

l d e dCn a ycbCS) l n 2 S

S r e df . a emmc aad r d TE ad z eo2 nt ru nt eoe3 I

S CG P eyd acoms apdt r AN cl ns3 af p enca3 Y

L PA era us eprdm t cuae A

MH h onoo5 h meau ocoeh5 I C TF abL1 Ti pmp N abRS1 N

A T s f e N a n o b E wd o e t D ei s rl e f I wdt e R ul c a C onc e c B si n h C l ue thR n N nw aeS A F oS oTB e oD e tl b( n N uet a pgd 5 d

.D qh eoi ene 1 es e et rt t r ci r ci w rt gs oa e cS a R r o a nnneiidt a e E E otl ei t rrei yh T G Fi F a v v aP pv r l bS P N -

i er l orc l A A ef r eeo . re ad p H H f so ess iapse . em .

C C ou t i e vipec t ed u) as i h r ra rn n cnP2 R D scs rt p t e pa e nu A L seo C a ot , t v i ot3 S O obL rs ninep e sb n F C L eoe rob e a3 U - dl rf v oci c s d el T l ea u l d tl c i ero5 E azt ,

sd o eal a h zao1 H F i yo) s ev ut cti t y C T O tl T 1 egns nn nwl l a n ra . rni eae l r airo N T ane 2 P e nvt mna o n roi O C P ah l t epei f aett A t 3 kl n g el gt t cc E P et aae ecpra t ti ae G M h oy5 eh v ah cmah e ores N I T nb 1 P cemt ai mt m N cR(

A H

C R R S B B T f N f N f o D o D o yl W s rl O  % m  % m  % t a L 0 e u m2 1 0 e u 1 0 e em F 1 1

r u i 1

1 r

u i m2 1 1

r u

ms o

s s n s s n s s e a0 A s i s s s s G 0 D I e

e r

MR e

e r

iMR e r

s1 L R (H (H e e R O E r P L r P ng L r P n g

l eF C T u e u e u b sC

- I s yn rk s yi rk s yi ao0 T R s rg ua s rs u a s rs l D1 C e e ai l e P

e a e l e e ae o E t r d s i r d D i P r d D oef H E a P ne a P n a P n Ct o T C R oD Fd of Fd of i N S c n a

S co n a

S co ns n F A w C ef l C e l C e i f o O T o R n S o e ) R n S% e ) R n S % afi P l g u1 t g 0 u1 t g 0 t ot E k% n c T

C A

C C

F t

ki as ee a0 e1 F o1 w 3.f / ki as ee k1 a1 e

F o1 w

3. /

f ki as ee k 1 a1 e

i d a anr P A n PD P1 N 2k PD P s N 2k PD P s M af M a I

l o

- o f f t C or r or ne 1

r o f o o er H o st w ot w st wrue t sco co s c orl v E c oal sal oal uii L a L eF s eF L eF catt B e R oR R nf cn A R l t l t l t o ae T ad n d n ad nC e n E n i ea l ea i ea l no L t cl acl t cl h ga p T

i rro t ro rrot n m I

e a oo ooo a ooiif o T s PFC TFC PFC wsoc a

e r

c e 1 1 2 N D

_ O 1 2 2 I

RT 3 3 3 3 AC SE 5 5 5 5 FS 1 1 1 1

a pt u a pt a mc m a mc ei c reps ue el i ei ue S

(

can crePS T nel nui nel (

i t gt i t m it gt W sinn sc si nn O riat ae riat L d cSl f d h d cSl f F e oa eot e oa zeyoh ' t n . zeyoh .

F ycbCS c ne ycbCS)

O l n a sit l n 2 S

S a ad rd ' pi a aad rd I

TE nt eoe m er nt eoe3 CG a pdt r

  • i eg a pd t r S AN enca rnw Y enca3 L

PA t cua e ' t ea o t cua e A

MH ocoeh ohhl ocoeh5 I C N abRS Nt cf N abRS1 N

A T

t cu em N

E e

t s nm t D f oei e e f I c n

a mux qa h c a C h mt n h C a eS t eem u a eS A tl oh s mf t l pgd nT ne i o pgd 5 ene oh n ene 1 ci r e . ct .i y ci r cS a rt d mn cS a R a e anetl a a e E E G

yh ecaoe yh T l bS a v n ch n l bS P N l i eas - t o l A A ad p r mrT , ad p H H C

em .

ed u) esru ti ocf nci gt a em .

C ed u) c nP2 i hf c oiar c nP2 R D nu rt ro rpe nu A L i ot3 C e eemt i ot3 S O sb n r pt uwii sb n F C a3 eo nl o r a3 U - d el rfl eal oc d el T ero5 u ev v ,n ero5 E zao1 y

sd ue e zao1 H F C sef eesc y C T O l a n eg sl ran l a n airo rneib oh a ai ro N T nroi P esh af t nroi O C aett l rt wed p a ett A t cc kl e orl e t cc E P ti ae aa v rl eoc t i ae G M ores ehd ol h cc ores N I N cR( P caf aTT a N cR(

A H

C S

T f f f o yl o yl o yl S 5 rl s rl s rl O  % t a  % t a  % t a L 0 e em 0 e em 0 e em F 1 r ms 1 r ms 1 r ms 1 u o 1 u o 1 u o

& s e a0 s ea0 s e a0 A s s G 0 s s G 0 s s G 0 D I e s1 e s1 e s1 L R e r e R e r e R e r e R O E r P l eF r P l eF r P l eF C T u b sC u b sC u b sC

- I s yn ae0 s yn ao0 s yn ao0 Y R s rg l D1 s rg l D1 s rg l D1 C e ai o e ai o e ai o E r d s oef r d s oef r d s oef H E P ne Ct o P n e Ct o P ne Ct o T C oD i oD i oD N S c nsn S c nsn S c nsi n F A C ef if o C ef i f o C ef if o O T R n S o afi R n S o afi R n S o afi P g t ot g t ot g t ot T E ki k% n c ki k% n c ki k% n c C C a s a0 id a as a0 i d a as a0 id a A C ee e1 a nr ee e1 anr ee e1 an r P A PD P1 M af PD P1 Haf PD P1 Maf M

I t

1 r r r ne o e o t f o er t pr t pf ot wrue H

cmu cma corl v E a uz a uh sal uii L epi ePS seF cat t B R e R oR nf cn A tS td L t o A e T en ene d nC e n E l at l a r l ea l no L gl f gl a acl h ga p T noa noe t rot n m I i oh i oh oooiif o T SCS SCS TFC wS oC 1 2 3 N

O 3 3 3 I

RT 3 3 3 AC SE 5 5 5 FS 1 1 1

,i'

m m m el el i el i S ca in c a n c a n T nui nui nui it m it m i t m W sc sc sc O a e ae ae L d h d h d h F eot teot . eot t n . n t n .

F c ne c ne c ne O a sit a sit a sit S

S pi a pi a pi a I

TE m er m er m er CG i eg i eg i eg S AN rn w rn w Y PA t eao rnw L t eao t eao A

MH ohhl ohhl ohhl I C Nt cf Nt cf Nt cf N

A T f e N o b E e D e s rl e I emu h e R ul r m h m t e c o u C

C hm u m f thR n oTB e oD e B si N nw f m mt u

mf A i ex i o n N uet a e i x i o 5 ca n qh eoi c a n 1 nm ,i y e .D et rt t r n m .i y e d m n rt gs oa e e d mn R uel a annneiidt u el a E E qh oe eiot rrei qh oe T G et ch n av vcaP pv r e t ch n P N s t o i er l orc s - t o A A nt T . r eeo . re n tT .

H H oa gt a esshi apse . o a gt a C C c f n ci ti et vipect c f nci s oi ar ih r rarnn soia r R D er r pe rt ptt e pae e r rpe A L s uee mt C a ot , t v s ueemt S O rcuw ii rsh ninepe r cuwii F C ecl o r eoet rob e e cl o r U - v oal oc rf v oci cs v oal oc T d v ,n u l hd tl ci d v ,n e E at e sd oc eal ah a t H F nee sc s ev ut ct i t nees c T O t el r a n egns n nnwl t el ra n s vb o h a rni eae l r s vb oh a N T oeaf t P e nvt mnao o eaf t O C m we d p l ti epei f m wed p A s or l e kl n g el gt sorl e E P eil e oc aaerecPrat e il eoc G M hhl h cc eh v ah cmah e h hl h cc N I Tt aT T a P cemt a1 mt m T t aTT a A

H C

R R S B B T f N f N f e l o D o D o r a W u t 0 0 O  % m  % m  % 0l el o 5 0 0 1 L u 0 u 1 0 8i geT 2 1 F 1 m2 1 m2 1 f2 aa u f 1 i n s 1

in s 1 o s

f rF e ,os R F

A s i s i s ytl vt myt C D I s MR MR peeA s gpe L R e e (H e (H e l l u e/l l 0 O E i r L r L r al fl tl al 1 C T l u e u e u h e at ah e

- I a s rk s rk s t pSt oCt P s T R m s u a s ua s n G oH n C o e l e e l e e el NT 0El e E n r i P r i P r eO f0 e s H E A P a P a P euS : o2 eu o T C F d Fd nf d nF D N n S n S n S i (l ysi F A o C l a C l a C l t op l t) e O T i R n e ) R n e ) R n rs mhl t rs m t s P t g u1 t g u1 t g eegsaeeeg it T E C

A C

C b

i u ki as ee Fo1 w

3. /f ki a s ee Fo1 3. w f

/ k i a s ee t t/ehl t t/

ntl rtl ntl eoah neeoa si f m fi P A r PD N 2k PD N 2k PD Ch ctEPCHC Ol M t I s i

- D A E t t 1 r C n n) e t e eA H w d a m n mE o e e o eC E P l l l i l (

L l a E t E B d ow ya yn A n ra l l r l l o T a t r ob e obi E nd r rmp rmt L y oh e t eo t ec T t ct w nss nse I

i nio osi osj T v UWP CAM CAE i

t c

a e 2 3 2 N R O 1 1 3 I .

RT 4 4 4 4 AC SE 5 5 5 5 FS 1 1 1 1

m m u n u m o m n .

el i e i el i e a )

S can c t can c h 1 T nui n c nui n tft .

i t m iS e i t m iSi on2 W sc sCS sc sC w e O ae V( ae V F n5 L d h dC d h dC S o F eot e n eot e n p5 t n zyo .

F O

c asit ne. ybi) t1 t n c ne zyot m1 yb i n o l asit l t ecn S

S pi a ad c pi a ad cr o I

TE m er nen1 m er nenr ei CG i eg ad u i eg ad uu vt S AN r n w Y P A nf5 rn w nf cic L t ea o t ul t ea o t ul nt e M H ohhl ooa5 ohhl ooa ocS A I C Nt cf Nb m1 Nt cf N Nb mc a(

A T n .

N a)

E t S t S 1 D a ,e C a ,e Cf .

I sh V sh V o2 C s l t C . s l t C C i i y1) i i F5 A eat eat yS eet a b . eet a b 5 5 sS eh t 1 sS eht t1 a o d . a o .

1 c .dt n t e5 c .dt nt d n een R d ss n d dss n d ro E E gl i ee e n5 gl i eee n ri T G nosd r v u1 n osd rv uut P N icyua e o i cyua e occ A A tTl l b n tTl l b ne H H i a ca s o i a cas oS C C mrnni i ei mrn nii ec(

i eaor h ct i eaorh c R D l w c e t nc l w cet nht A L or t i e or t it n S O epon i r sS eponir si e F C c f or o ( c f oro wn U - nl i c f d nl icf d o E

T il s u 2. ae t d en zo il su 2. aed t enp zom H F fH uc e yi fH uce yi o T O d l n n l t d l nn l t c emnaa e a c emna a e ac N T t uovt t nn t uovt t nne O C cmiep a a u c miepa a uv A ait e e f ait ee fi 2 E P pncec r tl pnc ecr tl t 1 G M mieh c h oa mieh ch oa c N I I mST a t Nm I mST at N ma A -

H C H S

T f s f s f s f s o V e o V e o V e o V W S s S s S s S O  % P a  % P a  % P a  % P L 0 c 0 c 0 c 0 F 1 h 1 h 1 h 1 h

1 ge 1 ge 1 ge 1 ge s

u r ur u r ur A ou s ou s ou s ou D I rs rs rs rs L R e h s e h s e h s e h s O E r t e r t e r t e r t e C T u r u r u r u r

- I s wp s wp s wp s wp T R s o s o s o s o C y e l S e l S e S e S E r r fC r fC r lfC r lfC H E o P R P R P R P R T C t d d d d N n S ik S ik S ik S ik F A e C ua C ua C u a C ua O T v R n qe R n qe R n qe R n qe P n g i p g i p g i p g i p T E I ki l ki l ki l k i l C C as r as r a s r as r A C t ee oo ee oo ee oo ee oo P A n PD Nf PD Nf PD Nf PD Nf M a I l o e

- o n e

C h h n 1 l t o l e t o e r o i o r i r N o d r f t d r ue f t ue t nt n t oga nt n l v t oga l v C c a n o n n r a n o t i i n nr tii L a o i enie o i nat t enie nat t B e l C t t orp l C t eF c n t or p eF cn A R a c riuO a c r A e riuo r A e T cemn et D cemnare n et D are n E

L n i meu v a r i meu ul no v a r ul no i mutf d rS e mutfh cgap d rS eh c ga p T el sl a eC w el sl t nn m aeC wt n n m I h oya n pC o h oyai oif o T e CVSM n pC oioif o s I OEP CVSMWCS oC I OEPWCS oC a

e r

c n 1 2 1 2 N I . .

O 1 1 2 2 I . .

RT 5 5 5 5 5 AC SE 5 5 5 5 5 FS 1 1 1 1 1

u sl t w y Ci u m i aoo sbA Oh m el i nnl i C Lt el i S ca n ei f hdO eB ca n T nui s ms t eL hS o nui it m aoue dB t t it m W sc cnhh f nS r sc O ae tt ou , ,oe ae L d h gt oed yfl d h F eot nasy sbh nl b eot t n . i ib t t att a t n .

F c ne td l e nnc c ne O asi t edd u rf seei a sit S TE S pi m eg e r a immne rat

' s aoiu ml e s qs p .

pi er a

m I

S CG AN i r n w i o l c rt eyes pt i eg Y erop f wa nsl s ea n rn w L

PA t eao eeoa ns e t ea o MH ohhl h el m h vh n os s v ohhl A I C Nt cf T pfi T et acaie N t cf N

A T

N e E e D

rm h t lb e I

ou m t a ec a rm ou h

C mt C f m uf d A hi f m u A i mo et . eC tl i mf ex ca i

ny moe rng r O

,p p ex i o 5 a L ca n 1 nm , i n o n B ya n m ,i y e

uel d ma f s a ruh t Sl n

e d mn R t s uel a E E qh o e eh c e eni qh oe T G et c h n pt vh e et ch n P N s - t o d e t uA s t o A A ntT . ssl qC nt T .

H H oa gt a ii o sf eO oa gt a C C c f nci c i osL c f nci s o iar edT h nB soiar R D er r pe s n t eoS er rpe A L s ue emt a ae s c s ueemt S O rc u wii c h f o r . rcuwii F C ecl o r dt oh ,ot ecl o r U - v oa l oc gl t df n v oal oc T d v ,n noy s n e v E at e i cb t yat v d

at

,n e H F ne esc t T l b ne neesc T O t el ra n i d u se t el ra n s vb oh a ml e s di ms s vb oh a N T oea f t i at s eessi oeaf t O C m w ed p l nc l rd ysh s i

wed p A s o rl e i a i nl et sorl e E P eil eoc emp a euas eil eoc G M hhl h cc h om t h ons o hhl h cc N I Tt a TT a T ni e T b aat Tt aTT a A d H

C n 0 o R S 0 i ) B T o 1 t 2 N n R a s D W e F u i H O hk C e l s m L ti 0 n a y n u 1 F

f ws i p 1 i v l o m2 l 0 l o

d e a i in s

& l 0 l no n t A a1 a se ii r a c i D I R

mR m) en h o e MR L sF s% ni t g f A S (H O E C 0id i n C L C T a0 a1 l o wi 2 O n e

- I 1 sei t Li rk T R e e(d es H B u a C y s s i g si S s l e E r of . of un ox n l i P H E o D os D o gi D e o yi a T C t e t - i b a Fd N n enn en0s ee t t n F A e t oi t o0i t r c d e l a O T v iil ii1 x i p e e d e )

P n St e StR e S e S d u1 t T E cd cF - hk n e C

A C

C I

t f ai f ru f aC e f r0 r ft i fi p e

e u e o S Fo1 3. w f

/

P A n Of g Of1 p O ws S B( N 2k M a I l o

- o r C e o 1

l t t r pn ae a e H o t me rr t rv E c a mk eu nf el L a S ua nt eoza B e re ep t rgr iV A yt r G u R rsB R en uy s T u E n a n m vi st o L i mI e a e A d nse e T T n eb C a eef G I

e irri t u O npra a

n S T s P oL ST L I OPS l A

a l e e r c c s e 1 2 3 4 i 1 N D M .

O 3 3 3 3 1 I

RT 6 6 6 6 6 9 9 AC SE 5 5 5 5 5 5 5 FS 1 1 1 1 1 1 1 l i!

l .

H.2 Detailed Evaluation of I pacted Events 15.2.1.3 Loss of Condenser Vacuum 15.2.2.3 Loss of Condenser Vacuum with Single Failure Eyaluation of Reduction in T ,i, 4 for Peak RCS Pressure The peak RCS pressure criterion for this event is impacted by the reduction in Tcold. A reanalysis of this event for this criteria was performed and is presented in Attachment I.

15.5.1.1 Chemical and Volume Control System (CVCS) Malfunction 15.5.2.1 Chemical and Volume Control System Malfunction with Single Failure Evaluation of Reduction in T, for Peak RCS Pressure For the peak RCS pressure criterion, a sensitivity analysis had been performed to determine the impact of Tcoi,on the event. It was determined that the impact of reducing the T coi , from 560 F to 542 F resulted in a peak RCS pressure increase from 2592 psia to 2600 psia. Based on this sensitivity analysis and linear extrapolation, peak pressure would increase by less than 10 psia (adding a factor of 2 for conservatism) as a result of lowering T,,i, to 533 F. The limiting analysis (i.e., CVCS Malfunction + SF) was evaluated at 542'F and resulted in a peak RCS pressure of 2629 psia. Hence, the acceptance criterion for peak RCS pressure is not challenged as a result of reducing the minimum T/S Tcoi, from 544"F to 535"F.

15.6.3.3 Loss of Coolant Accident This section presents a summary of the assessment of the San Onofre Units 2 and 3 Emergency Core Cooling System (ECCS) performance analysis for potential impact of the proposed T/S changes. The ECCS performance analysis consists of three individual components:

1. Large Break Loss-of-Coolant Accident (LBLOCA)
2. Small Break LOCA (SBLOCA)
3. Post-LOCA Long Term Cooling (LTC)
These analyses are documented in UFSAR Sections 6.3.3, Performance Analysis and 15.6.3.3, Loss-of-Coolant Accident (LOCA). The Inadvertent Opening of a Pressurizer Safety Valve (10PSV) event is also included in the assessment. The IOPSV event is documented in UFSAR Section 15.6.3.4.

The results of this event are bounded by those of the SBLOCA analysis and, consequently, the assessment for SBLOCA is applicable to the 10PSV event.

' Tcold Specification Change Impact

!. Large Break LOCA The San Onofre Units 2 and 3 LBLOCA ECCS performance Analysis of Record (A0R) was performed using a minimum Tcoi, of 530 F. This bounds the new proposed minimum value of 533'F (i.e., the T/S value of 535 F minus a measurement uncertainty of 2 F).

I H - 14

- _ _ - _ _ _ - ______ _ ____ - _ _ _ A

Small Break LOCA

~

The San Onofre Units 2 and 3 SBLOCA ECCS performance analysis is not impacted by a reduction in the minimum T c ,y. First, the SBLOCA analysis is not performed at the minimum T coi, . Furthermore, the peak cladding temperature for the limiting SBLOCA occurs during a period of partial core uncovery hundreds of seconds after the start of the LOCA. The amount of core uncovery and, consequently, the peak cladding temperature, is primarily determined by the competing effects of decay heat induced core boiloff and injection from the High Pressure Safety Injection pumps. The initial T ,y does not have a significant influence on the amount of core c

uncovery or the resultant peak cladding temperature.

Post-LOCA Long Term Cooling (LTC)

The San Onofre Units 2 and 3 Post-LOCA LTC analysis is not impacted by a reduction in the minimum T coio. In general, an LTC analysis is begun after the core has been reflooded and, consequently, is not significantly impacted by normal operating conditions other than initial core power level (which determines the core decay heat that must be removed in the long term). Also, a reduction in T coy decreases the initial RCS stored energy that must be removed in the long term.

For these reasons, the proposed reduction in the minimum T c,y does not impact the San Onofre Units 2 and 3 ECCS performance analysis.

Flow Specification Chance Imoact The conversion of the minimum RCS total flow rate from a mass flow rate to a volumetric flow rate does not impact the San Onofre Units 2 and 3 ECCS performance analysis. This is because both the LBLOCA and SBLOCA analyses were performed at a minimum RCS volumetric flow rate that is consistent with the proposed TS conversion value (i.e., 396,000 gpm). The post-LOCA LTC analysis is not impacted by the change since, as described abova for the reduction in minimum T coi o , the analysis is begun after the core has been reflooded and, consequently, is not significantly impacted by full power operating conditions. This is particularly true when the proposed change is essentially a change to the units used to express the operating condition and not a change to the actual value of the operating condition.

The San Onofre Units 2 and 3 ECCS performance analysis is not performed at the maximum RCS total flow rate and, consequently, there is no impact from removing the TS LC0 limit on the maximum value for the flow rate.

H - 15

PCN 491 Attachment I PROPOSED UFSAR SECTION 15.2.1.3 AND PROPOSED UFSAR SECTION 15.2.2.3 i

l

San Onofre 2&3 FSAR Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PIANT) 15.2.1.3 Loss of condenser vacuum 15.2.1.3.1 Identification of Causes and Frequency Classification The estimated frequency of a loss of condenser vacuum classifies it as a moderate frequency incident, as defined in reterence 1 of section 15.0. A loss of condenser vacuum may occur due to failure of the circulating water system to supply cooling water, failure of the main condenser evacuation

! system to remove noncondensible gases, or excessive leakage of air through a turbine gland packing. j l

In accordance with the direction given in Sections 15.0 and 15.0.7, additional l information which completes the presentation of this event is provided in  ;

Section 15.10.2.1.3. '

15.2.1.3.2 Sequence of Events and Systems Operation ,

l The turbine generator trip that occurs due to a loss of condenser vacuum would normally generate an immediate reactor trip signal from the turbine stop valves'(through unitized actuator pressure monitors). If credit is not taken for reactor trip on turbine trip, reactor trip would occur as a result of high-pressurizer pressure. The turbine bypass valves are unavailable l

[ following a loss of condenser vacuum.due to the actuation of the condenser I

vacuum interlock on the turbine generator trip. The feedwater pumps would trip on low suction pressure soon after turbine trip. It is conservatively assumed that feedwater flow is terminated immediately after turbine trip. The pressure increases in the primary and secondary systems following reactor trip are limited by the pressurizer and steam generator safety valves. Following turbine trip, offsite power is available to. provide eeAC power to the auxiliaries. .The case of loss of all normal eeAC power is presented in 15.2-4

San Onofre 2&3 FSAR

, Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PIANT) paragraph 15.2.1.4. The operator Mmay cool the NSSS using manual operation of the auxiliary feedwater system and the atmospheric steam dump valves any time after the reactor trip occurs.

The analysis presented herein conservatively assumes that operator action is delayed until 30 minutes after the first indication of the event.

The consequences of a siig1U nQl f eiik_ tici& uf Qu m tiVU m vm.y v u m i.t m oy a um -

f viimwim Q lv5o v f b vouG u.m . VQ cm LossioflCondens.er Vacuum are diobu m

_ _ _ _ . . _. t 1 F m m d it.

yG M u p Gyu A s . u . a . a"\ .

Tabib Z,2 1 3 1 v s. o Q ob s b .~ vf - V s.uiono fmore : adverse than t'4e t vxuithose following a tLoss of eCondenser vVacuum NitP a'aingle failure which'ia described inil5,2;2;3. Therefore,1 refer to the f- inR1 .a ebillimJ bui&da tion sequenceiof: eventsf and1results ofl the LOCV.with1 Single; Failure 1(Section 1522;2.3T"for eventusequenceldetails.

15.2.1.3.3 Core and System Performance 1

Thefcor'eTandTSystem-Performance;Followlng(a LossTofTCondenserivacuum 7arbV no '

more Tdite rse ; thaf these ? following fai Loss 1 o f? condense r(vacuumlwith; Single Failure whichqis(described [inTparagraphl15.2.2i3;3.

e . , , ._ _ _ , - .- , - , , _, , - .

,1s4n . a. . a . a . 4 muu anu=bc4 a s w- 1 , s o z-4,._ aaa MTayvuoU bu Q Avaa v4 b u uuU n p U 4.._

.__V Q b k4 edib __.

WQ a.-_ . ad444Ab&4b4bLb4

_ . . , _ _ , . .__ b& . .-Q .A _ &4}

,L&4L --

b is aJ 4.e bv.- b v4.

/MLUM gl & \/

h Q4kb b4 b. J b M 4 6./ X \4 s_ . .. s , .. - _: ___

A&A O E b b 4 \/ 4 &

m 4 e 4E 9 .

_i 4 k 4 .-

,_ t b&b _ & hbb_

d 56, bQ _.b . -AA5 NhE h4a - _ _ _ . -

Qb b b.k 4 e.

4 & b&bb d 4 k.& b d b Q k

  • Nv A A d hd OQb A k/

,m m k hr!dl k.h bb[

.s . -

d kh

._t_ . .. _ __ _, ._ _1 . _ , ., _ _ _ _ . _ __ , _ __ _ .. _ _ , , _

-b

.. . __ _ . . . i b4&b & T.-G b b \/ A b \/ M L W G4 ed ed 4 46L'es& 4 Q b T 44 L4 61 A & b & 4 b- 4 %/ 4 g b b4,Q/ L4 b L M g/ 4, g/ M Q Ai5 kg b y b M 4 g/ -- . b& 4 44

. -. .e m --- +, , - , , . ._: .. , - . _ , - - . .., .. ._ -

Q b b b 4 b/ & 4 A em/a V W4645 ._6 &4X b La - A b&& L- . . - b b/ A & F4 Q b 4 k/ 4 4 k4V m b & 4 h/T b4 mA- & 5 b & 4 Q y b L. A.. "3 e

, < m , -\ , m . . _ ._ _. ,- . ._ : , ~ .- . - m, A s . u 4. , a.s.u 11 out 1 ata - ._-_ t - muu 1111 t J a1 uk zinti vi _ o A u v.-

Anyuv yuMQ4a bbMa

, _ . _ : , _,2 . : . .. . . , .

__ , _ _ - . .-1_ . . ~ ~ - . _ . . _.. .

. - - , _ 1 Q A & b4 4444b4Q4 b b/ A &\4 A b 4 b & & e/ 44 U U b4 b b/ Q44Q A g e U b &4L 41 en/ an.7 V 4 U a? g I v 4 4 U U L k/ Q A b/ ad W \/ 4

. _ _ . -- _ _ _ _ _ ._ _ __ _ a_ _ _ _ _i _ __ _ . . . . r m . . _ ___, _ _. _

b b/ 4 4 h4 C && ad T-JM V L4 4, 44 44 & L b E4 M. b A4 A m) b b4.D ad b '.4 4A4 Q b b b 4 b/ 4 & 4 a./ e k/ e 4 54 Q k b d b k4.4, 45 4 g .1b d & b/ 6 E-

. . . _ __ __ . .. . _ _ . . . 1. . __ , _ _ a_ _ _ . _ i s _ , __ _. __ . , _ . ~ _i f Q A Q4iLU b U M Q 444E k b Wb&b b4 & A A y b4 L bU b 4 4 E- Q 4 & Q A g m.sAO b4 4 p b %4 O R L k4 &J U 4 b/ W_ Q&b 4 4 e b U \4 A44

_ , _ , e .. m ~ . , . _._ : _ . - - . , _ -_ . .. .. _, . - _, _ 1 .. .. - a . e -

b Q Am/ 4 U dd a de'- (q O b./ U 4. U b b A b/ & & \/ M bd&G 4's kQ & A b4 Q & Ah sk/ 64 C b/ & \/ T 4 Q b 4 bd A A A bl L b4&b 1 M V sJ tJ b4 & A M T- M

. . . . . , _ . .. ._ .. _ , . . _ __ _ _ __ .. _ , _ . __ . .. . . m ,.m -

b h/ h 5 b M k./ 4 h S b U &k ) N Q 5h () .h, E kuis BUM b b/ / A ( k.s_A L4 k4 V M U Q ks,_ _ _bevA b km/b/ 4 Q k 4 he AM dheU &*& k hh b 4,/f d C M U k.k 4. U mitiQutivu Q t ' u t- y i U 5 5 d M 4 4. bi .h y i Q y , . l mt i_ .- - -- r - t _ , _. .. _ _ _ _ .__ . i g . _ . i s - i _ q 4 4 4 T-- 4 4 4 4 % .6. Q A b b/ 4 4 -4 4 b 4 b/ 4 & J & bl J, b44U g/A AA&% - __ _ _4_ . _ CE 4 g.' 4. b/ b b d e/ Q 4 A Q &/ 4 " U 4 e Lb/ 4 & A b \/ M E_b4 4J g b &1U

- - . . ._ : . , _ .. . .- ... .. . .. _ ....a . . - . - . .. . . _ s _ __ . , - . t _

b 's/4b b/ g/ b& L4 4 4 4 4 j 4 44dA 4 ,- 4 i V b/ MJ kJ *J/ M-Jb V Q & 4 L b4 P 4 b&4 A & & bA4U A. _X-Q by__b Pke f 1, A ._V4_ ,sd, b/ 4 g .. G

_ e g dm 4, e . . . ._ _ . ..

. , .. _ - ._ _ < ._ .. a:  : . , .

k/f 5 4. Q b 4 & & .b . b j A b/ 4 4 jAV 44 4 44 bGM4U .h m./e \/ - d b k/ k4' 6 V M 4si4 4 4 b b&4b aaUb bi M b k/ 4 4 b4 A._ L 4 b/ 4 4 O b 4 &G V

, .. __ . . t . . . . _ _. _ _ . _ , _ , , ._ . .

M b/ ',5 A b4 g/ L b'b4 b4 b 5- mb&&G Qb4VUMOb M b/ 4 ek k/ W 4 4 & j 4 4 V' d b g/ M V m ;O b& M A e Q b .k V & & (L 4 \/ d O b/ A b b' 4 & m4 '- 4 & eD L M

' . _ _ _ _ ._L _. 1 _ _ . _ _ - . 1 l E _ ._

k, U _ _b/_ M_ _ _ _W&b&& _ __ . t

_ . _ _ _V b % 6 %s4 k.& 4 ' 5 M T,.(, Q g,& Q b

. b & d 4 and mVU4Eb dC d 44kkd 6 d j & d4& bdddM 4, M U ___h4 T. . & & (e_ _ _key __G

_. M( U / U ks'b

.L L' _ __ _. .. -. -. _ _ _ . __ .

f 4. A 4 4 4Mg ed g ed b T 44E g/ A I n .ed b4 & 4 4- Q b A b4 4 &

-_ . : _ _ ._ : W._GA 4 \/ M U bk/i+kb/4&4Q bAV&4J b/ M r . . . .: _ ,

.4. & & A b 4 Q A b b/ A. b 4 4 4 4 L;-b

. - _ . _ m.__ . __ _ _ _ , . z , _ _ . . . 2 _ _ . . . . . . . - -. a _ __ _ a -

4&4AUb MV&E 44%

b V a iig/ T.-MQb44&Vg b b/ & L .6 4 kJ M 4. Q b U g Q&J - p' i L U eJ b4 L g&sde U M f M U ed +d 64 & U b= V & 4 0 4 \4 b & U bl

. . - , ._ _ _ . . . . z .x _ . _ . __ .

1_ _ _ _ . _ _ . __ _i . . _. . -

\/ A b4 U M b \/ b VQ4MQbU L & 4 U 4 4... bMLUbbW L/ 4 4 f G Q Ta g#M L m/ O b5 A 4 4= U M-- Q & 4 k4 ad b X-Q &L4 . j b 4 4 '- A Q b \/ M m .. . _ _ . . . -

._ _ , __ _ _ i _ . . _ . . , .. ._ . t _i_

f & G ed .d be & b G e  % TU b.a M L Q R A & 4 j b4&V A444b4Q4 VUMb 4414 %b b b & 6 p b A Q b b4 & b b4 U 4 Q g ed b&& < eJ E b b/ & 4 b4 Q M g_ _ _ _

e _ _ ._ _ _ _ _ _ _ _ _ , m.. ._ _ ._i _ _ _ e . t . . . ._ _ _ . _ 1 __ __. __ . t __ __

4&VQb A L- A 6hk/ V Q 4 g k4 44 % 4- b/ b4JU \/f U 44 4 4 4 kJ k/ A b&4U U L L' Qisb ] b 4 4 T M Q b \/ M _-QMb._bg ea VQ 4 V U ed g A/ U b Q b4 O U

_ 1 __. _ __ 2 ._ _ _ , _ _ . i . . _ .. . ... . . _ ._ : ._ : _ _ __

_ __ , . __ _ .. _ m R L be\/ 4 4 b4 Q 4 j g/ M L m2 =D b4 A U e 4 4 4 4 T';__b

(-

\/ M 1,4 4 b/ M 5. b.. A&&4bAQA N4 A4&A b4QA b \/ 4. U ._4bA4 Q/ k-1 Q b k4 M L b/ M g m. 4m ,, -

. -Qs Q om mm m .

_2 mi Au o

_ _ _ _ i . _

.o Ammo bu2u i _ _ ._t mm

u. u m...

__ _ _ __ _ _i u.y m b U m &u 1__, . __ _ . -- , ..

y- a vQAuG .

-- . , . . _ 2 ._ _ , . . _ _ . , ._ . _ .. . _ _ _ _ .. . _ _ _ _ t _ __t - _ _ 1. m-...

M A A Ab b iA 4k n 4 A 4 4 A b A E4 4 4\/AU A &4 A % b b L 4.p E h Q bb41 k- ed Q g/ U Q Te 4 % b aJ 4 4 4 kJ 41 U M

. . _ _. . ._ 2 _ __ _ _ __ _ __ , . __ _ . . f &._\/ _\4_ 44 < b T.-r ame- - - ..__ ._ _

b/ 4z U&A ._b b .4 Ad

/ 4 % msO b4 M T, p b4dU Q U ed b&a E 'n b 4 \/ 4 A A A 115 b 'n-M Q b L4 M L km/4, J 7 d. 1 bb/4Aa]L MVG b4VUS

_ _. __ . . ._ .. _ _ . . . . . i _ , __ .. . i _ _ __ _ _ _ _ __ . - _ ._ _ .

4/L kur_ _deU _ Q U eh 5 4 hu.i 4 $ 5 Apbd / M U O O 44 M U- kp41 ab Q 42 b 4&U .. _

dhA _ 4 5 --_. _. Mb ed d b4 M ab des U d. / 4 U U ad LA 4. b- A T- Q kasb k/ 5 LMA

-- a ._t _1 .. . , _ . . _ . . ._ - . , .-, .. . . _. ._ . -

_-. b44L , . f M__U.. . O - _ . .-

Q 4 4 k4 b A & T. b/ b _ _ _L4 4, A M b &__ *i/ Q E L..6g b Q4VUde T b4 4 A 4 4 A L gA. Q A 41 b e.J g/ M U U U bL M U \/ M kJ f T- A 4 eb A & kJ i nar m z_____ , . __, ._ _ _. t _ t _ __t 1_ . . . _ __ _ _ . .__ _ _ -_ <

i?.b u V w/ V fe34Q

__M Q mL & b/ 44 4 4b& ._b \/ & C U L41 b 44& ._b44U A & ak kJ 4 & E . -_ U Q fa d', b d g/ M X O A/ b4 A. b o 4 & &G A G 4 4 j 5- b# A m ~a . . _ _. _ . _. a __ . a _ _ _ _ _ t , i r / ,

E's b d }/ 6 L & O %4 4. % J  % %/ 4 & m? __4 ks  % 4 L k4 L a3 j6V 4& A44 L Q b./ A K 4 ./ e b ~ Js 15.2-5

San Onofre 2&3 FSAR

, Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT) 1_ . . , m ..

4 Q A.i d elE $h ab A T

N T* AT T Y" t ? .a T..*,

wwwwwaiw F* t F r y t*T5tw a +

MAS a PP T Y r, t, ANN s.-

A T' /"* A 9 T P". M t f N t' n

< -w. = , . i r t. r'i vv tt '? M U

Lf Vb k& b a W Ems uLa vu idluc ge _ . , _ ...

V 4 bl O k& M V. -g/ M L L4 M A./ 4 & 4 b-Ub k/g/

WQ 4 V U eJ V&&

1. .- , _ - __ .

b k.4 L bl 4 4 & L L & .6 f bA ke C b \/ A b/ 4 .J bl L V b/ & 4 b5 b & 4 e U & VQ b 64 b44 bl

&4 y & g / b C b up N 4. C. i f A ' . J b be A b 4. b b %./ & 4 b b b b/ & & 3 b1R 4M $

&4d && 2M .. _.M _:h4h _

d.

M p.)ehNMU bbh tid 4

&&Q4 m .

L & & C 4pQ b C h4

, , . - . .. - -- _ x . -- , , _ _ _ .- . n rnr

__bO L' & W G G %4 A 4 m U k QR&LL }' VQ4V 4/U g 1 & 4 6 (/ A/ U&4g g/JAQ g;,,g V 4,, J 1 a . __ . z ._ __ , __ ,

..L U Q44L L' & & W 4., A.LVM __.

W d bT e 4 '

UQAC be V Q 4 h % ed Ad C eb & 4 h/ C & 4 &. 4 & g Al VV mn -.

b 6aGQ bd C ) & & &

VV

%4 4,, %igl 6 & b G L/  % %/ ArG

., . - ___.. __ _ __ , m, e m z. ., ,

& 4 Q 6"h 4 & b.L44 m 4 b \/ 4. b f b/ W U M__ .A bl =J e de b/ M M LA 4 .b

+2-+ 14&xiinw.. RCS vieeinic, psie 27M6

-  : .a,...__

y _ _ _ . . u. v ._ 3 .: ~...a 4 r 4s.v m. m ,. .s...__ ..

~www.

3m w , + . . -p i r r v.- _ - ---: _ . r x -. . , , 1 "

4de e/ L k U d O L4 & A 4 U L Q Q &b Lg VQ4V -.U eJ V 4 b/ a? L %4 l fV4Q bg M I4 d Eliasu .s a t u sia ys.nbiQtvi pibo uiu, ydid W

- ._. . z

-.. ____ _. _ _. . . . . . __ . _ _ .. - _ . m- -

be7L I- Q & 4 & jU & 4 C 6 Q b \/ h edQ&L bg VQ4 hfG ed A. 4 %J G V p [ ed ab Q mL g b/ e./ U

, n ., m a __. .. _ m . _ _ _ _ _ _ _ _ _ __ i - - _ _ _ i - . _. i 4 g b)b/ \/ 4 ki  %/f U EmQLVk b/f G & & Q Q L & 4 k\/ ad f & 4 L 4. A b V6 b Q&Lh %4 L4A 6p VQ4V-_ bed

._ _ s. . . _ _ . , _ _. _, _i__ . _ _ . m - t _.x - _ __

. _ _ , 2 _ ._

b %/ Al U j 4. & & g/ 4 Q & 4 4 4 bf \/1 L4 b/ M & & L b/ m2 & & b4 6 b4 b/ M & & b \/ k/ 4 A & 4 kJ

, . -ra a i _ . _ _i . _ ___ ___ _ _ _ _ .__m .i 44, vvv.v && & u u s4 v n . & b v v A A & oj 4 4 & 4 v 4 u v u t4 w -

J 'J 'J 'J r >; ,

gwe i sy n

} g . 4& * '4 g s s . es s , .

s s:

)' j' 15.2-6

San Onofre 2&3 PSAR

.. UPd ated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT)

_ ,_ , , - m m 4 G &/ 4 U mA. an/ e 6e ' L m a- n., s es , , n -.n,e,c. -.r3m ,.,p. , . , . , , , , .

b7 N b#d d Ee n _ eser ,d ab Nd 5 N d N5e. m., cad d h E.dMa-.MM Uhc% h A E N diJ d 3 p) d $ d .Vbb

, , . , . . , , . .Uhh bibbdddM

+ , . . _ .-

b deOhab M h Nh4't mh ad, V d d

,. _ ._ _ _. ... . , s . . .

4 4 & & L 4 Q .&. b b/ A U f V FV L d, 4L_V%Ag 44H w g V %J a L A444 UL b b/ bd .L G & 4 L L E si'p '. & T.4L M A L.p 4 g 1

2 P-r ** -- S I-s.

m.._n.a.~

s.

c.1 .. _mb_-, w s

1. f.* .uiu, u u if+ r4 1

,. , _ _ _ _ 1 n n ,. n i KT U Q b L V &__ b V bl4 Q & A b O g ad b b an f A L G e b4 & V g g/ G A Q dg wVV

.s __ _ _ . . .- _ . i__ _ . , . __ . __ _ . _ , , ,m V44U 44& MM AQd b Q Ta .&. 4 4 deQ ksb b/ 4, g TV 4 b A 4 ,&. g / b/

m.._m4, ,

i l

._ ._ _ , e.

tuav um wv&m ___ _ .u .u _ uu _ o u..,_ .vn i

1 r s s.- . - _ _ 2- ..

bb U h a b h U h b N 4p p UbU

u. a m , m  !

s..7~..,s... c e .s .: . ...s,

. _- s. s. .~ . . .~ , , . ._- . . n. n=t i v A/

A 1_ /1_ 1 O e.

L1 Ts f T. I L i

i et 9 __ _ _ _ r r: _ _ . i_ _1 ._ . 1 . F L./ % ) ALL b %/ % 6 d eA % S %~ S b & b' b bh 6GAfA4U&

o i

I

/1V1,L - . -1.. r .. - ___ __ k 6

vs n vv& vu & v 4. ut4y,  : up  ;

,,& _ . __ _ _ m _ . s _ i_ . __ , __ _ _ _

b3 b U G A,4 Al g f G ed e3 b b/ 4 4 6 & b/ 4 C j' s L U *ik A 4 4 bi f L d. Q L A V U es _ _ . . .. . . . . _ ,_ _ .. . . - _ .. .. - :

E e U N b.Pb b/ M hMM . b/ d E b bd M $M M & E b L dad d d 5 b/ UMUk eE, V U K 4 U ed G 64 & 4 5.i L &_. 4G 'i V 4 b b/ 4 & L & h4 4 b 4 44%/ UMQLkVU as J G 4 E 4' h 2

l

. . - - _. - - . - - . . _ . - - -- . -- . ..n .. - --- - - - - n :

s & U J e 44 L 4 6 E A f dmC U ed b4 & G b b/ 4 4 L M b/ 4 ed -.D L U 4 Al & & b/ f b M Q b 4 k U 15.2 '7

-_ -,a-_ -

_ - _ - - . _ _ _ - - - - - _ - _ _ _ - - _ - - - - - - - ---.w- - - - - - - . . - - - - - , - - -- , - - - - - . -

I Sru ouo;2a 29E 3SVM ndpe2ap

. l i

l G3DH3VS3 IN H3VI H3HOAVI' HA 1H3 S3DONGVHX SXS13W )1nHGIN3 dI'VNI(

,,,,,,-c,,-,n-

,,,, ,m,m

,emmem,,

aemnn,-,c

,me%me ,em,eam,,

, , ,,,, , -mmn,, -, ,11, ,m_..

mc a , emm _ ,.. r ,. ,____,mAm,

.., . _ _, , , s e n. r . , , mmem,

,, ,,,, mn, ,m

,,,, ,mc-

,,mm, ,/ r ,,,m mT, 9,. ti"

,9 T ,.

    • ,,%'f,,na,T[. ILT' %/ A n_ P,m2

%F 3 d T b , , , , %/ AA , ,,, t,_ t T , c '"'rn,,,3T T % F c t', T 3 c t 6,, m , ,. c Am,,n . esnm ,- ,

c e m m ,, , ,,m -.

n A,t ., m , t , A ,, , n

-- ,- , , , , - ,t ,t,,,-., Sr e

,ec,ne

,. , n e m

, t m ,,n a e v , .

,mam,..,m,,,, , .c-- . _ _ . . . -. . . .. ,

,r.,...r.r.r a=-- m, ,,,,. m r ,, e me m ,/ ,1, e A e m ,. m, l

, _ , , . . , .. , , , _ _ ,_ , , a, m e m...m , , , c,

, , S/ , , m S ,. ., P , T _.Am,.,.-iMM Tm ,,mM ,,,b- n Tmd8 m, ,O , , , l de,'3-,,,,3", T , b *, T 3 d ,*/.,., ,,,TmMb,,

J

,F,4.

t l

, _ . l

_, , , , . , %/ c mT c93m,9, T , T# AA m i, "" .9 %/

S/ 'f n T ,

%/ , i",,,

A*,,._A m

,.,nT,"i,,,','-

f 't,%' T ,t m M %' , 'f

$ **f [

,.,,,.,,me,_ ,,,,c a , m e e n ,- , . a ,. m. m ,-

,eavm ,,, ,,,m - ,,m,,m ,-r , ,, , , - m, n , , , , ,. e m

,, y , -.rm a, e m, ,1, a s e me , r _ , m e m , ,1,m m ,. _r ,, s e,,, e m , , r e m ,.

,,,, , o,,,,,, ,enemc n ,naem ,em ,na -4 ,,,m

,1,,

df i 3 e.p O i', ,' , 9 ,... ,., , $" T = D O m e g gf A T 39 y y g=,

d y yy93D T [ e g,tg T 9 9 nie n y h n q g/ 39yg T i', /T% con 7T9%T a,,c e n, m a , m m n ,, ,, n_ m. ,, e n ,, a , m o c n ,. _ 1-ms 7 e,m,m ,r e n ,. ., n e e, , ., c,,m,,mc m, m e

, , v a , n , , m ,.. .-- -

, , , s , , _ a ,.-_ c - - , ,.- , .,..

.n , ,. ,. , e,,n,

,,n,,

m.r c = , n , , n .c .

, , , = , _ue  ;

T/ = b , ,,

%,. Tm

,,,b , , , . _9 _ a%#, ,. , S .

i  %* %t T , m9

,m*". c , , %/ , , S, '"L$

.,,T,,,

AA

,_i' 3 T , ?, T , , D , - #c .9,.,% N,TU

. e o ,-,.

, , vs v ,' ,- , ,

, , , , , m m .m m, ,mr.,c m, ,m,e ammm,.

,.m,,n

,  %/ S,,,,.,

t'/ T ,T,S --._i' 3 3,,1, b 1*- , , $ T m 9 %/ T dmT%. . i"_ _ A m P' A 1"' d 1, ,9

, %/. ,

'"C 3 %" %/ , , t , c 1,,,%,

9,,S a,scei,,,,,,__ c m ,, ,r A me me m-

,m.m e s ,,,,mr_e ,. __ m mm ,, _ ,, s _ _ _ , , ,, - m s , , m e c ,,,n m,,,, ,,,m y

,m,m

,.%', , [ ,-3 gy 9,.=*3 d g/ a 3- T gy i, S 9 g/ T % 3P %*\* A T qTT g= gf T e d 9,,,. aT,.,197, T [- m,,m .'c 3 N n T ,m e T a,mceneme e,,s, , m m , , , ,. ,. , A.. m mm emnm acem.

a, ,- n e c n ees, atseenem me

,/mm ,,,n r a,-,-_.,.__r

-en e m ,. emtn,r,novAne meman o ,. ,

te.r cn,m,.mc. , ten emmmm R m e , n ,.m ,.m,..

cm,nmr  ;

Ae ,A3&  %- , %f e 3 u ta mem c % %* m , e m, e * }

l i

8.,3 D? 91

,,,3 N ,1'"

m ,' , b 3,, $ T 5, , m T Ae,A3F  %*4'/,,.,,. ,. , n3 . , %/ ,.' 3 T ,. 3. __A, ,m 9' , . 3 m ,,'1%'t d .,,3Ta_^, .. . , ,9 , , , .T

$'t ,- '"/ %/

,_%* , ,3 m 4~,.?. *'/ d._,,3TT , c , %* n.9,  %, n, A e , A 3 *C eT, m 3 T ,3 %, ,/ [ N N , ,. 5. , i' , T m , , , %/ , , f ,1T , , n

  • S & .

, '9N ,,y,

,,,s a e m , , .,

,c

,, , , , , - , ,m-,,m

,m rem , m, o,,,,,,

y _ _ ,

,__,,ms c,,,,.,,mmm,,

,m m ,,,.,n ,c

, , , , ,em,,m.

., . , y

,,,m mm . m n,.. , ,mm. m_, ,m

-,,,,,mm,r a,mcen,s mm r

,,m, m

,,,.m

,em, m, mecem,, a,secn,s

, m r e m u ,,,n m

,mcc m, ,r,.e mr m ,, e s ,. _.Ae, .n mm, . , , rnc m e c n , ,,, m

,r e m , , , , ,

-,,,ms,,,r..

me

.,,m -

c,sem - r e <- s m ,- -e

,m n e,m mm , , , ,me,,,m,,,m,,. , , , ,

m, ,1, m m,, -. ,~,,. na - , , . ,,.mm ,,,m,,msme

, , */ A T S/ e m , T m , , ,, .9,,,. T M ,., .r,9' , O T ,f 1m T , * ? '1'T , e

  • m,,e,__,c

,..,C _ , , . ._

e

, - - _ ' , , , - Y/ 3 m 1' N T3dc nT ,.

TF m , .A,

,,,S t e ,,%t o e 9,,m, i ,t %"d N T 3 e 9,  %/ T ,9,,S 3 -.S 3,,i' mT%

[

,mm,,. ,,em,,

. , ,s, , - ,~m . _ , -o ,- ,,, -

,.e,en,,. _

,,,,,-sem,-,,

i m a a, ,- m me,m,r .s ,. - - , r_ ,acem .. - , ,,n e m TST3T

,,m - ,,

9,,3 c 3 b n 3,- , , N ,T

,- A 3, T 9 O m ,,m T$ene9O mT 9,,, , Pm. , . . m T ,,., O,,,b,-

A 3

T e T e n ,- 3 u ,,_,m.. . . , ,r.,.,.ri , , , . , , ,. ,m,. ,A,,,,.

- n n m ,,, m mm,m, r I

IG*g tag p ae22Ta2 da2;o2weuca i u

syogge22Ta2; d_.e2;c2weupa deavm02aas LOITOMTuS LToss o; ooupsus02Ceonnw nonTA go rassiepAe2sa ageu: 4908*!JoTTouTu6; Toss.og ooitpausex ieonnw MT2yysTuSta

  1. eTTn3*fLM4T09t s P*S02T93PCTu dexe52edy;ts.m gei p.

,r.,. .r.m.m , -,, . . . ,, ..mz,m

, - x.

, , , , . -- , , , , -. m , ,,,. . ,

momm,

_nemm r ,- __

,m, /

m,.,,-,,em,-,

, , . __ . , _ _ _ _ - , _,m_, ,- _ , , _ _ , _ ,, , , , ,

,_.,,1,. a e ,- e s , e a,,

n, ,/m,,rm,__ a ,. , , n , m e ,- , ,- ,-- _,n ,, , m, ,n , , ~ , ,,ne,,em,n ,-,, ,e.,.,.n.r.

,r.,...r.m.,. .

r, m,

> m . . z_-

mm

-, 1,,r m r

,. m-. _, m,,r, _ . , _.

,,,s ,.,,a. m .. as m ,.m ms , m ,_e 3 T T m T ,?1m ,,,.

m ,,m ,,,T,,. m,  %" m ,, m T 4* , S/ ,, f ne3n ,' m T 1"'A M T n D 4* , %/ , ,  %/ ,* T'/ m T T , 3 T O mTS

, __ a m ,_ _ms,_a,,

-m,,,,,,m, ,m , ,, n e n mm ,semmm ,,, ,r.,...r.r.

l

, ., , , , , r, - - - ,, , , , ,, , , .-

m , ,p e.w...re t .r

,,T.

s r A n ,-

se

,e., n m,.m ,r.,

,,emm _.

A, , -

,m,.

am r,2

,a,ne-nem-m,

_ , _ - _ _ a . , m e m ,. __

e,snm m, em,m,r ,meAm ,emmem,mc m ,ene ,me-IG*g-8

San Onofre 2&3 FSAR

. Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT) m uJx um . -v m m u.c, n a u s i x. . t. m2o .muo.mut vi vam, m i mm x 1...mm y 1 - .m i. y

, . n _ .. .. -- -, . - . x _ _ _ _ - , -

u mm=uwy__.

y cc vuv .v. wuu w a a o a s u u u u vu, uua .,wuxc1 v, . =. o u x . .-

u, u ..~ow t _ 1 it m1 _ . . , .. ,

1 . _1 2 , - - t -t T y c A r-1 - -

-- _ l -

L44744r 4' I, 4 44 % L g/LgA b g 4 L Q 4 g L ( (4 4 4 L/ yy a Q L L- L 4 4, (/ (4 - 44 .--L44 _ g)& G g g (4 L 4 4, "-- 4,

_ z . ,_ , _ . , m , , , _ , , , ___

o u <_ m y_ -,.  :

vuv=o u m. o uvu

.s . . , . . .

.m u s a m.u .4 . - .m cu umm, or=_mz_..u tu mum.y u uumm _m __ m. un nu r .. ~uc.__ uuu y=ons s _. _ _ _ _

vcomm vuum, to uv.. s < i u ..v o z

tv.

< z .< ._ . , _ ., _ . _ , . . , - , . _ _ _ ,

mu camu

v. -v /~.u.,. Aucc.mc, mum ...m..u.._m y c o .- _ _m_s. . om

cy smv

1 , .. z . _ . . . , _ _ , _., _ _ . , . __ _, _ _ ,

m .

.L, Mb.'~ A. v . L44C A %/ o o b/ . b b/ 4 A b4 ' 4 4 c.__ G L 4 4 L44. Li G 1 A o A T-44L A4 s T--o & 4 b/b E TawC'- b& L.A _bL1LQA

_ _ _ ._ _ .. , , . . . _ _ m . __ _ . _m . - _ , ,

tacu . vm awm. u, m uu v vu, . _ ,u u s. -

- acum mu m u a ..3ca u m. . - . .wucy c o .a m m . mo i , i i i . __ _ _i i_ . __ _

b v s e of A T- _b. E 4 g--

u - 4L4 -. . 64&T , . . .

_ , _ _ .2 ._ . i b k/ 4 4 %.4 T.-4&e/ 1-_ y 64 c 1 A b & & L Q&d T6 E 4 & w4 415- A A b m 4 u. _ _ ._ . m 4 U M o 5 b4 A 4 b/ L L b/ L44C ,

n-..-

u , .. v o y u m u m -.._exu '.

am.-~o p u = .. t su .. uu co, . u=u unt u m. y vu vco m-

. . c mycucu,

.1 _ z . ._ , , , .. __

s_ _1 $

vus __sma .~ = . uuau ,

2 ,

vum om puu.avs .mvu outuvy mu uavc u.omuu.ycu us .,

. _ _ _ . . _ , _ , __ ._ . __ _ __ _ . __ ._,_ ~. .mm pumuuo m o m. mm c.yy m. m..m m m y vvv, vvv ymm.~

m

,..ucum mvmu ./= u m um wcu

. .__., , , ,_ _1 ,

., _ _ _ . , ., 1_ . _ ,. ,

L 4.b/b4j4& L&A . _ _6. 4. ik/ wf 4 A ', .AV C4 o L U L 4ib 4 be 641.p V G4 A w Cs? \4 L4 A4& j _b a 4 T-- s & a s/ b4 k b b/ b/ 4 m b__ FY 4 4 g } 4 V 4 4 ej Q mu...~-y u m c. vz m

. _ _ , ,r- _,

._mm

.v-.m > & smm= . _ .mv mu_ ,_s, vm y v m uu.-

15.2.1.3.5 Radiological consequences The radiological consequences due to steam releases from the secondary system are less severe than the consequence of the inadvertent opening of the  ;.

atmospheric dump valve discussed in paragraph 15.1.1.4.

15.2-9

e San Onofre 2&3 FSAR Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT) 15.2.2.3 Loss of Condenser Vacuum with a Concurrent Sinale Failure of an Active Component I

i 15.2.2.3.1 Identification of causes and Frequency Classification )

i The estimated frequency of a loss of condenser vacuum with a concurrent single i failure of an active component classifies this incident as an-infrequent )

incident as defined in reference 1 of section 15.0. The cause of the loss of condenser vacuum is discussed in paragraph 15.2.1.3.1. Various active component single failures were considered to determine which failure had the most adverse effect following a loss of condenser vacuum. The single failures j

~

considered were (1) a loss of all ac power on turbine trip, and (2) failure of a pressurizer level measurement channel associated with the pressurizer level ]

control system. The failure of a pressurizer level measurement channel  !

produces the most adverse effect following a loss of condenser vacuum. This  ;

failure is assumed to produce a false low level signal, resulting in I activation of both standby charging pumps and the closing of the letdown l control valve to its minimum flow area.  !

15.2.2.3.2 Sequence of Events and System Operation i l

The systems and reactor trip which operate following a loss of condenser vacuum with failure of a pressurizer level measurement channel are the same as those described in paragraph 15.2.1.3.2 following a loss of condenser vacuum.

In accordance with the direction given in Section 15.0 and 15.0.7, additional ,

information which completes the presentation of this event is provided in j Section 15.10.2.2.3.

Table 15.2-5 and Table 15.2-7 give a sequence of events that occur following a loss of condenser vacuum with concurrent failure of a pressurizer level measurement channel for peak RCS pressure and peak secondary pressure cases.

15.2-17 L . - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

San Onofre 2&3 FSAR

, Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT)

Table 15.2-5 SEQUENCE OF EVENTS FOR THE LOSS OF CONDENSER VACUUM EVENT WITH CONCURRENT SINGLE FAILURE - PEAK RCS PRESSURE CASE'"

Time (sec) Event Setpoint or Value l l

0.0 closure of turbine stop valves on ------ I turbine trip due to loss of condenser vacuum 7.3 High pressurizer pressure trip 2,1372410 psia 8.6 condition occurs te Trip breakers open, yic seuii;u -----

)

9.5 sJ ay cel cs v y x. u

(

10.3 Pressurizer safety valves begin to 2,5302575 psia open, psia te-+} Main steam safety valves open 11331122 psia 10.'5

.3 CEAs begin to drop into core -----

10;51 J

)

I 11.5 Maximum RCS pressure occurs 42,7502744 psia [

11.~ 3

+fr-O Peak secondary pressure occurs <1,210 psia 15.2 15 i L xit. a. , vn oomim liquid a v l m. =- " f4' Mr5 15.67 Pressurizer.s'afety.valvesfclose 2459 psia

)

g g--.  ;; ;g . j i

15.2-18 1

L______________.. __

San Onofre 2&3 FSAR

, Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT)

Table 15.2-6 KEY PARAMETERS ASSUMED IN THE LOSS OF CONDENSEh VACUUM ANALYSIS WITH CONCURRENT SINGLE FAILURE - PEAK RCS PRESSURD CASE PARAMETER, UNIT VALUE Initial Core Power, MWt l 3,478 j Initial Inlet Coolant Temperature, 'F 5+2537"'

Initial volumetric-Cele Meso Flow Rate, W fft:1376i200 lbin/higpm Initial RCS Pressure, psia 2,000 Initial Steam Generator Pressure, psia 796 Moderator Temperature Coefficient, 10-' Ap/ 'F OW-0.3""

Fuel Temperature coefficient Multiplier 0.75 Minimum CEA Worth at Trip, % Ap -6.0 l pressurizer safety. valve ~-OpeninglSetpoint ( 3%

Tolerance Main" Steam l Safety Valve. Opening'Setpoint +;:2%

Tolerance Steam Bypass Control System Inoperative Reactor Trip on Turbine Trip Inoperative Pressurizer Pressure Control System Inoperative Pressurizer Level Control System Single Failure is Assumed

(*} .

The.; initial coze f inlet';. temperature l (Tem) wae :. varied ^from 532*F to1560'F to1 determine the '(Tem): which ' maximizes peak RCS pressure

"( * * ) Thiafanalysis.supportsfaimost positive 1MTC ofE-Oi3x10# Ap/'F'at HFP.

~

(LCS 3.1.100)L l

l 15.2-19

San Onofre 2&3 FSAR

, Updated I DECREASE IN HEAT REMOVAL BY THL SECO!vDARY SYSTEM (TURBINE PLANT)

Table 15.2-7 1

SEQUENCE OF EVENTS FOR THE LOSS OF CONDENSER VACUUM EVENT PEAK SECONDARY PRESSURE CASE

  • i Time (sec) Event Setpoint or Value 0.0 Closure of turbine stop valves on ------

turbine trip due to loss of condenser vacuum 4.6 !4ain Steam Safety Valves Open 1133 psia l

l r.5 High pressurizer pressure trip 2,437 psia condition occurs 8.4 Trip breakers open ------

8.7 Pressurizer safety valves open 2,538 psia 1

9.3 Maximum RCS Pressure occurs < 2,600 psia j 9.5 CEAs begin to drop ------

12.5 Maximum Pressurizer Liquid Volume 1051 ft 3

, occurs

! )

13.0 Pressurizer safety valves close 2,410 psia '

I l 14.2 Peak secondary pressure occurs < 1,210 psia i*' The requence of event s p, esent ed is fut the peak W Cecondaly prescote ca e- which assumed a  !

M.05V uet poi n t tolerance of+M. The r+a k RC . I reesut e case reviewed and apptevm; t,y t he NM a s s um+-d a K:3V rat pv i nt tolerance of +21.

f i 1

t l

l l

l

(

l 15.2-20 l

L____________________-- ._- - - -

e San Onufre 2&3 FSAR

, Updated l

DECREASE IN HEAT REMOVAL BY THE i

1 SECONDARY SYSTEM (TURBINE PLANT) i Table 15.2-8 l

KEY PARAMETERS ASSUMED IN THE LOSS OF CONDENSER VACUUM ANALYSIS PEAK SECONDARY PRESSURE CASE I

!. PARAMETER, UNIT VALUE Initial Core Power, MWt 3,478 Initial Inlet Coolant Temperature, 'F 560 Initial Core Mass Flow Rate, 10' lbm/hr 160.8 Initial RCS Pressure, psia 2,000 Initial Steam Generator Pressure, psia 965 Moderator Temperature Coefficient, 10~' /Q/*F 0.0 Fuel Temperature Coefficient Multiplier 0.75 M' ninium CEA Werth at Trip, % tw -6.0 Steam Bypass Control System Inoperative Reactor Trip on Turbine Trip Inoperative Pressurizer Pressure Control System Automatic Pressurizer Level Control System Automatic j l

1 i

15.2-21 l

San Onofre 2&3 FSAR Updated DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT) 15.2.2.3.3 Core and System Performance 15.2.2.3.3.1 Mathematical Modgl. tlc ,omthmueticel nusnl uomd fu. s.vminmiivo vi vvi< mud oyotca pmifv mmnce ai o ;dsnticml iv t ha t d m o m i Ls-J a n p o im 3ispL

~

~

15. 2.1. 2. 3.TheT NSSS response? to" A? loss of ? condenser vacuum 'with" concurrent single $ failure- was : simulated;usinglthe cESEc l computer programc describedtin sectionll540; 15.2.2.3.3.2 Innut Parameters and initial Conditions. The input parameters and initial conditions used for evaluation of core and systems performance are listed.in Table 15.2-6 and Table 15.2-8 for peak RCS pressure and peak secondary pressure cases.

15.2.2.3.3.3 Results. The results presented below are for the peak RCS pressure case,fwhich..assumedLa,MSSV;setpointjtolerance?of.f+2tiand peak secondary. pressure cases which assumed a MSSV setpoint tolerance of +3%. The ps mi RCJ p msedim mnd pemL aucvudsiy pimeaum voamo u i m d and oppivumd by -

LLm I;RC m o e wumJ m I-133V ..etpelni tvls.encm vi :n The dynamic behavior of important NSSS parameters following a loss of condenser vacuum with a concurrent failure of the pressurizer level control system is presented in figures 15.2-232 through 15.2-3+0 for the peak RCS pressure case.

The loss of steam flow due to closure of the turbine stop valves produces a rapid increase in the secondary pressure. This produces a rapid decrease in the primary-to-secondary heat transfer, which causes a rapid heatup of the primary coolant. The insurge to the pressurizer increases the pressurizer pressure producing a high-pressurizer pressure reactor trip condition at

+reSi6 seconds. The CEAs begin dropping into the core at 9 e10.51 seconds.

The opening of the steam generator safety valves at 10.65 seconds and the pressurizer safety valves at er410.3 seconds combine with the decreasing core power due to reactor trip to rapidly reduce the primary and secondary pressures after reaching a maximum pressurizer pressure less than 2750 psia.

The pressurizer safety valves close at ++-915267 seconds.

Peak semvudmiy yi=.unim mnd peek pressurizer water volume are's i calculated tn 2

amem mtm ceum to be less than 1210 vo.m end leso ihon the volume which would release liquid through the pressurizer safety valves, .copmciavmly. -

PeaklsecondarpLpreisure isicalculaed~inla~sep hat' e[ case'itolbeLlessLthan

~

t 12101 psia; The steam generator valves continue to relieve steam to the atmosphere until the atmospheric steam dump valves are opened by operator action at 30 minutes.

The plant is then cooled to 350*F at which time shutdown cooling is initiated.

The maximum RCS and secondary pressures do not exceed 110% of design pressure following a loss of condenser vacuum with concurrent failure of the pressurizer level control system, thus. assuring that the integrity of the RCS and main steam system is maintained.

15.2.2.3.4 Barrier Performance 15.2.2.3.4.1 . Mathematical Model. The mathematical model used for evaluation of barrier performance is identical to that described in paragr4 h 15.2.1.3.315/2.2?3l3.

15.2-22 1

i

l*

l l San onofre 2&3 FSAR Updated I DECREASE IN HEAT REMOVAL BY THE SECONDARY SYSTEM (TURBINE PLANT) l l

l 15.2.2.3.4.2 Innut Parameters and Initial Conditions. The input parameters '

l and initial conditions used for evaluation of barrier performance are listed in Table 15.2-6.

l 15.2.2.3.4.3 Eesults. Figures 15.2-29 29fand 15.2-24 30 give the pressurizer l and steam generator safety valve flowrate versus time following a loss of condenser vacuum with concurrent failure of the pressurizer level l measurement channel. Until operator action is taken at 30 nunutes, l the total steam release to atmotphere discharged through the steam generator safety valves has been no more than 50,100 100,_000.3 pounds. The operator would then begin a controlled NSSS cooldown at 75'F/hr by opening the atmospheric steam dp valves. After the 3-hour cooldown, the primary system will have reached an average temperature of 350*F at which point the shutdown cooling system may be placed in operation. The total steam release to atmosphere

during the course of this transient is 450,100 760,000 pounds.

l' 2.2.3.5 Radiological Consequences The radiological consequences of this event are less severe than the

consequences of the inadvertent opening of an atmospheric dump valve discussed in paragraph 15.1.2.4.

I 1

1 l

I l

15.2-23 i

l i.

I 110 l

100 90 l

80 1 -.

k o 70 m

W 60 o

e y 50 m

ic O

40 O

U 30 20 10 0

0 5 10 15 20 25 TIME, SECONDS I

1 SAN ONOFRE NUCLEAR GENERATING STATION ,

UNITS 2 & 3 l Updated Safety Analysis Report LOSS OF CONDENSER VACUUM ,

/ WITH CONCURRENT SINGLE FAILURE  !

CORE POWER vs TIME  !

Figure 1L.1-22

110 100 g 90 9'

80 m

o 70 e

[ 60 s

$ 50 s

E 40 2

na

< 30 s

o U

20 10 0

0 5 10 15 20 25 TIME, SECONDS SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report LOSS OF CONDENSER VACUUM WITH CONCURRENT SINGLE FAILURE CORE AVERAGE HEAT FLUX vs TIME Figure 15 2-23

2800 2600 6

2 i

$ 2400 8

e m

b

$ 2200 s

s 8

o 2000 x

0 O

b x

1800-INCLUDES REACTOR COOLANT PUMP HEAD 1600 0 5 10 15 20 25 TIME, SECONDS SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report LOSS OF CONDENSER VACUUM WITH CONCURRENT SINGLE FAILURE REACTOR COOLANT SYSTEM PRESSURE vs TIME Figure 15.2-24 L

i 6-l 650 i

625  ;

Tout tu

"' 600 vi M

o Tave d 575 x

W H

H Z

8'550 0 Tin 525 l

l 500 j' 0 5 10 15 20 25 TIME, SECONDS SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report j LOSS OF CONDENSER VACUUM WITH CONCURRENT SINGLE FAILURE I COOLANT TEMPERATURES vs TIME Floure 15.2 25 l

4 900 ,

800 m

a E

a 700 S

e N iS et

c M

N 600 2

o sa. '

500 1

l 400  ;

O 5 10 15 20 25 TIME, SECONDS SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report LOSS OF CONDENSER VACUUM W1TH CONCURRENT SINGLE FAILURE PRESSURIZER WATER VOLUME vs TIME Figure 15.2-26

l l

t I

1200 '

N . _ _ -

I 1100 s

l 1

m l a _

1

)

@ 1000 m

m M

O Ew ES 900 ,

m  ;

o 1 k

N i S i m

800 700 0 5 10 15 20 25 TIME, SECONDS l

SAN ONOFRE l NUCLEAR GENERATING STATION l

UNITS 2 & 3 Updated Safety Analysis Report LOSS OF CONDENSER VACUUM WITH CONCURRENT SINGLE FAILURE STEAM GENERATOR PRESSURE vs TIME j l Figure 15 2-27

,e i 180000 170000 --

E ca 4 160000 -

vi m

k O

o o 150000 U

CC o

5 u 140000 w i w s 130000 120000 0 5 10 15 20 25 TIME, SECONDS SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report i

LOSS OF CONDENSER VAC'JUM WITH CONCURRENT SINGLE FAILURE SECONDARY LIQUID MASS vs TIME Figure 15.2-28 i

l L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

[

e o.

l' l

300-i i

l 1

I O

.m'250 m

N El ca .

'A

i. ,

i m

h200 1 3:

.' o i

a.

N

,. W.

I >

a 150 i <-

s Ed

>- M l N

'100.

l-

! cr:

w N j s <

l cr:

o I

m. l en . 1

, -$ 50 m

r L 0 0 5 10 15 20 25 l; TIME, SECONDS 1

i

' SAN ONOFRE '

NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report

[ LOSS OF CONDENSER VACUUM WITH CONCURRENT SINGLE FAILURE PRESSURIZER SAFETY VALVE FLOWRATE vs TIME Figure 15.2-29 ._

i i-

y.

1600 1400 o-ta h }

m -j

~ ,

,. 'g -

'l l '. a 1200 l-e 3 1000 o- -

g A

to

.3: 800 )

H

$< 600 l m

k to .-

l -. H 400

.m L.

2 H.

-200 0

0 5 10 .15 20 25' e TIME, SECONDS SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2 & 3 Updated Safety Analysis Report LOSS OF CONDENBER VACUUM WITH CONCURRENT SINGLE FAILURE MAIN STEAM SAFETY VALVE FLOWRATE vs TIME Figure 15.2-30