ML20065G681

From kanterella
Revision as of 08:50, 6 January 2021 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Requests That Proprietary Version of Presentation Matls from 940314 Meeting on AP600 Core Makeup Tank Tests & Analysis Be Withheld from Public Disclosure Per 10CFR2.790
ML20065G681
Person / Time
Site: 05200003
Issue date: 03/21/1994
From: Liparulo N
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To: Borchardt R
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML19304B956 List:
References
AW-94-602, NUDOCS 9404130149
Download: ML20065G681 (200)


Text

.

H Westinghouse Energy Systems Box 355 Pittsbutgh Pennsylvarua 1b230 0355 Electric Corporation AW-94-602 March 21,1994 Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555 ATTENTION: MR. R. W. BORCHARDT APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE

SUBJECT:

PRESENTATION MATERIALS FROM THE MARCH 14,1994 MEETING ON AP600 CORE MAKEUP TANK TESTS AND ANALYSIS

Dear Mr. Borchardt:

The application for withholding is submitted by Westinghouse Electric Corporation (" Westinghouse")

pursuant to the provisions of paragraph (b)(1) of Section 2.790 of the Commission's regulations. It contains commercial strategic information proprietary to Westinghouse and customarily held in confidence.

The proprietary material for which withholding is being requested is identified in the proprietary version of the subject report. In conformance with 10CFR Section 2.790, Affidavit AW-94 602 accompanies this application for withholding setting forth the basis on which the identified proprietary information may be withheld from public disclosure.

Accordingly, it is respectfully requested that the subject information which is proprietary to Westinghouse be withheld from public disclosure in accordance with 10CFR Section 2.790 of the Commission's regulations.

l~

Correspondence with respect to this application for withholding or the accompanying affidavit should reference AW-94-602 and should be addressed to the undersigned.

Very truly yours, ll - $

N. J. Liparulo, Manager Nuclear Safety And Regulatory Activities

/nja cc: Kevin Bohrer NRC 12H5 ,

I 1578A g4Q4130149 940321 1 PDR ADOCK052Og3 A

AW-94-W2 AFFIDAVIT COMMONWEALTH OF PENNSYLVANIA:

ss COUNTY OF ALLEGHENY:

Before me, the undersigned authority, personally appeared Brian A. McIntyre, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Corporation (" Westinghouse") and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

4 /<

Brian A. McIntyre, Manager Advanced Plant Safety & Licensing Sworn to and subscribed before me this 8I day of 1994

/-

ok mwe Notary Public tel. 2.' Saal Rose Ma6 Fv/nc ('taary PWc Monorn.+ Oc.n,U.c4any Coun'y My Commerjon Ex;rus t*w 4,1990

, hkmber. Pennsytvane Axumon ot itxanes ,

1590A

e 4 AW-94-602 (1) I am Manager, Advanced Plant Safety and Licensing, in the Advanced Technology Business Area, of the Westinghouse Electric Corporation and as such, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rulemaking proceedings, and am authorized to apply for its withholding on behalf of the Westinghouse Energy Systems Business Unit.

T

_ (2) I am making this Affidavit in conformance with the provisions of 10CFR Section 2.790 of the Commission's regulations and in conjunction with the Westinghouse application for withholding accompanying this Affidavit.

(3) I have personal knowledge of the criteria and procedures utilized by the Westinghouse Energy Systems Business Unit in designating information as a trade secret, privileged or as conDdential commercial or financial information.

(4) Pursuant to the provisions of paragraph (b)(4) of Section 2.790 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.'

(i) The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse. >

(ii) The information is of a type customarily held in confidence by Westinghouse and not .

customarily disclosed to the public. Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

1 Under that system, information is held in confidence if it falls in one or more of several types, the release of which might result in the loss of an existing or potential competitive advantage, as follows:

1590A

. AW.94-602 (a) The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.) where prevention of its use by any of Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companics.

(b) It consists of supporting data, including test data, relative to a process (or component, structure, tool, method, etc.), the application of which data secures-a competitive economic advantage, e.g., by optimization or improved marketability.

(c) Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar productc i

(d) It reveals cost or price information, production capacitics, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.

(e) It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.

(f) It contains patentable ideas, for which patent protection may be desirable.

There are sound policy reasons behind the Westinghouse system which include the following:

(a) The use of such information by Westinghouse gives Westinghouse a -

competitive advantage over its competitors. It is, therefore, withheld from -

disclosure to protect the Westinghouse competitive position.

(b) It is information which is marketable in many ways. The extent to which such information is available to competitors diminishes the' Westinghouse ability to 1

sell pnx!ucts and services involving the use of ibe information. l ima ,

l 1

4 AW-91602 '

(c) Use by our competitor would put Westinghouse at a competitive disadva'ntage by reducing his expenditure of resources at our expense.

(d) Each component of proprietary information pertinent to a particular competitive advantage is potentially a:; valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.

(c) Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries. ,

(f) The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.

(iii) The information is being transmitted to the Commission in confidence and, under the provisions of 10CFR Section 2.790, it is to be received in confidence by the Commission.

(iv) The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge and belief.

(v) Enclosed is Letter NTD-NRC-94-4081, March 21,1994, being transmitted by Westinghouse Electric Corporation (20 letter and Application for Withholding Proprietary Information from Public Disclosure, N. J. Liparulo (20, to Mr. R. W. Borchardt, Office of NRR. The proprietary information as submitted for use by Westinghouse Electric Corporation is in response to questions concerning the AP600 plant and the associated design certification application and is expected to be-applicable in other licensee submittals in response to certain NRC requirements for justification of licensing advanced nuclear power plant designs.

1590A

' ' '~

y AW-94-602 <

This information is part of that which will enable Westinghouse to:

-(a) Demonstrate the design and safety of the AP600 Passive Safety Systems.

(b) Establish applicable verification testing methods. -

(c) Design Advanced Nuclear Power Plants that meet NRC requirements.

(d) Establish technical and licensing approaches for the AP600 that will ultimately result in a certified design.

(e) Assist customers in obtaining NRC approval for future plants.

Further this information has substantial commercial value as follows: s 7

(a) . Westinghouse plans to sell the use of similar information to its customers for purposes of meeting NRC requirements for advanced plant licenses.

(b) Westinghouse can sell support and defense of the technology to its customers in the licensing process. I Public disclosure of this proprietary information is likely to cause substantial harm to the competitive position of Westinghouse because it would enhance the ability of -

i competitors to provide similar advanced nuclear power designs and licensing defense services for commercial power reactors without commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the -

informhtion.- y The development of the technology described in part by the information is the result of applying the results of many years of experience in an intensive Westinghouse effort ' -

\

and the expenditure of a considerable sum of money, 1590A s

[f

4

. . 6-'

AW.94-602 '

~

1 l

l In order for competitors of Westinghouse to duplicate this information, similar i.- I technical programs would have to be performed and a significant manpower effort, l having the requisite talent and experience, would have to be expended for developing analytical methods and receiving NRC approval for those methods.

-l i

Further the deponent sayeth not.

s.

i

'l

'l l

-)

i 1

l 1590A

d 1

=li=;a

E CORE MAKEUP TANK SCALING LOGIC i L. E. HOCHREITER l . _ . - _ _ _ _ _ - _ - _ _ _ - _ _ _ _ _ - _ _ _ _ _ ___ _ _ - - _ - _ _ _ _ - _ _ __. - -.. - . ..

CORE MAKE-UP TANK SCALING THE CMT HAS TWO MODES OF OPERATION RECIRCULATIO.+ ODE IN WHICH COLD LEG WATER FLOWS INTO THE CMT, AS WATER DRAINS FROM Tr.2 CMT DRAINING OF THE CMT WITH STEAM ENTERING THE TOP OF THE CMT AND MIXING WITH THE CMT WATER ,

0752LH-030794 l

i

AP600 PASSIVE CORE COOLING SYSTEM

9e A '

PRESSUREZER PSL N-N

""~* ~

PRESSURIZER (j i r,

CORE RAAKEUP TApeK (1 OP W LES -

PSL yyggs SRWST ACCUtsULATOR

_ (1 OP M HOT COLD ove (i OP M 9 cone D II

O w-+

MODES OF CMT OPERATION DEPEND ON THE BREAK SIZE FOR SBLOCA'S RECIRCULATION WILL OCCUR AND CREATE A HOT LIQUID LAYER AT THE TOP OF THE CMT

- CALCULATED IN SSAR ANALYSIS

- OBSERVED IN JAERI TEST

- OBSERVED IN 1ST SPES TEST

- FOR LARGER BREAKS DEG-DVI AND DEG-CLBL, AND LBLOCA RECIRCULATION IS MINIMlZED, AND STEAM INJECTION INTO CMT OCCURS AS IT DRAINS

. CALCULATED IN SSAR ANALYSIS 0752LH-030794

li!!!!""i!!!!

s- ]j Recirculation !

iw I 4ee ,

: l

~

! 4 W

.I i

' l

  • y w t
e t W >

,U  !

} ; J.

  • r ,1 . i j' I g i

= , g e

d_ .

I _ is? I i_.... _

sie  ; sin esimo ase des

" " ~ ~ '

t I

i Figure 1-4 AP600 SSAR Calculation of CMT Draining Flow for 2-Inch Cold Leg Break

AP600 2 INCH CL TRANSIENT 9 - 59 VFMFN 85tilTP1 1.

.9-i .8<

b \

.7 <

Q E

S *a.

?

W 3 .s - .

H

.4-m d

.s-u

?

' .2 b

.1-1988 1588 2S38 2598 5998

'O 588 TIME (SEC)

Figure 1 $ Cold Leg Balance Line Veid F.1metion for 2-inch Cold Les Break

i

-4 llll;1 1 f

l i

l l

. o 0 a.

ul N

rq in N 4 k$4 k VI o

- .o

'O ) g< 3r0 8 s

N k 1 0 4 I M

+ Q V% -

S u s i to

'9 Qk4 5

8$

~2 w

% 2 N s 1 o "

g N P9 $ n o 0) x -8 N -. y. __

sz ,

N I $ "

O~ 9 N

1 y o-4 n o h o o o o o

" O O O O O O M N -

@ so v (Q

1 (3) 3Mn1Y83dn31

< -l 1

i I

1 l

l a

  • 11 i

O m

N N

..n S

W

.twh.

e H .. gg I m m a Z

g @ >.= .. mE9a m"- WO W

&- -- O

.~

G. G 19 Q tilp a

G "

G e&

(a _J G L k G 2 m b

19 m

M G O N 8

tD Q ED 19 19 G E9 EQ v N N G G @ to e (S/W8'11 A01J T AO 01'1W3 E dOO*1 l

1 1

1 I

i i

i 1? 211 11 ,

I i

l 9

V1 N

N G

t2 Q

N fu us t%

=

z d

w a Gm HWY gu u_

9()

_w @

w g y

..at~~

.2 G L W (D E Q. L G > ..S m t%

G

'G W

G W

% N

- Cr (D

as.

e-(ps

g. en. N. . gg

(-) NOI136d3 010A 3NI133NtnU813-1W3 2-dOO"I

i.,-,

lll l m

N

~

I

~

N -

W.

s a ~

QQ wa 4' 9

  • z k e~ qL 9 l 3L -

m a Y q e, 3IV 3-

@ <o t s~r tuu a Mg 2B A g .$

$ is t g )' m .

k O o Ry 'EW g

$[ Nk .

&5 4

-N r. -

S

+g R4 Va '

m 3

i W

N N -

- m - R u u n u - - - -

t39301 3an1683dW31 3Bnix!W t-300N IW3 E-dOO"I

W CMT CONDENSATION EFFECTS ARE MINIMAL WHEN CMT RECIRCULATION OCCURS, AND STABLE DRAINING WILL OCCUR.

CMT CONDENSATION EFFECTS BECOME MORE IMPORTANT FOR THE VERY LARGE SBLOCA'S AND PERHAPS FOR LBLOCA, WHEN THE TOP OF CMT WATER REMAINS SUBCOOLED.

0752LH-030794

4 e

CMT SCALING LOGIC - APPROACH KEY PHENOMENA WERE IDENTIFIED AND WERE COMPARED TO THE DIFFERENT MODES OF CMT OPERATION A PHENOMENA IDENTIFICATION AND RANKING TABLE (PIRT) WAS DEVELOPED AND COMPARED FOR DIFFERENT TRANSIENTS 0752LH-030794

- .., . . . . __ . ~ . .- - . . . ,_ . .. .

i .'

E.C :

?

t l

WPF1877D:1d/020794 1-16

iimcw 4

CMT RECIRCULATION MODE THE SCALING APPROACH WHICH WAS USED GAVE TWO DIMENSIONLESS GROUPS TO BE PRESERVED

, b.

  • Richardson Number Ua Q= +K Fricson Number 0752LH-030794 l

l l

l

= j;;

3.P . . -

CMT RECIRCULATION MODE (continued)

- TO PRESERVE THE RECIRCULATION MODE OF THE CMT TEST TO THE AP600 CMT; THEN E3 - 1. g)"

R. ),

n )- : . i . g)"

R),

0752LH-030794

l. _ _ _ .

er

. SINCE, FGP. THE CMT TEST FACILITY FLUID PROPERTIES ARE PRESERVED HEIGHTS ARE RELATIVELY WELL PRESERVED FRICTION AND FORM LOSSES ARE APPROXIMATELY PRESERVED

. RECIRCULATION BEHAVIOR OF CMT TEST SHOllLD BE SIMILAR TO AP600

,w.-

0752LH-030794 -

t i

A MORE DETAILED SCALING ANALYSIS WAS PERFORMED TO EXAMINE THE CMT TEST RECIRCULATION BEHAVIOR RELATIVE TO AP600 ASSUMPTIONS QUASI-STEADY

- NO MOMENTUM EFFECTS NO HEAT TRANSFER, VOLUME REPLACEMENT NO FLUID MIXING WITHIN CMT, S/WR

- THE GOVERNING EQUATION FOR THE CMT PIPING SYSTEM IS:

P'[g" "'2g '

b* P' g

N

  • N*
  • P g

y .n +.Qo.";;' p-;e-0 0752LH-030794

THE NETWORK SYSTEMS EQUATION WAS SOLVED FOR BOTH THE AP600 AND CMT TEST THE EFFECT OF THE S/W RESERV0!S WAS ACCGUNTED FOR IN THE ELEVATION HEADS IN THE CMT TEST SOLUTION

  • COMPARISON OF THE RESULTS CONFIRM THAT THE CMT TEST CAN REPRESENT THE AP600 RECIRCULATION BEHAVIOR
  • A GEOMETRIC SCALING ARGUMENT ALSO CONFIRMS THAT THE TEST AND PLANT SHOULD BEHAVE SIMILAR 0752LH-030794

s a.C

'h Figure 2 6 Recirculation Ratio of the CMT Test to the AP600 CMT at 1100 psia i

1

\

2 20 'l WPF1877D A:IS020794 l

\

t i

h a,c

}'

e i

t

.t f

r

.i Figure 2 7 Comparison of the Hot Layer l1iickness of the CMT Test and the Not CMT st - '

1100 psia ., .,

1

'i 9

t

- WPF1877D-A:IdO20794 2 21 f

4 L  % N'-

, + y w , - , . .

5ss;;g M

WALL-TO-FLUID HEAT TRANSFER WAS EXAMINED DURING RECIRCULATION

.THE CONVECTION MODE WAS INVESTIGATED Gr Gr = g (T, - T ,) Z' g -

2 y

Rc 2 THE x RATIO FOR NATURAL CONVECTION BECOMES:

g ,

Nu, ,

[0.021 (Grt Pr)**},

Nu, [0.021 (Grt Pr) *],

- SINCETHE FLUID PROPERTIES ARE THE SAME h, (T, - T,), Z, K (T, - T ),, Z, ,

- SINCE THE DEVELOPMENT OF THE HOT THERMAL LAYER IS NEARLY THE SAME, THEN

- 1.0 0752LH-030794

4 m

CONCLUSION OF CMT TEST RECIRCULATION BEHAVIOR KEY DIMENSIONLESS PARAMETERS WERE PRESERVED MASS FLUXES FOR TEST AND PLANT ARE NEARLY EQUAL DEVELOPMENT OF THERMAL LAYER IS NEARLY THE SAME

- - WALL HEAT TRANSFER BETWEEN HEATED LAYER AND CMT WALL IS PRESERVED 0752LH-030794

__-_.-.--._----._-._-_-_______.----._-_-__sw - ~v i

m

- CMT DRAIN DOWN BEHAVIOR - SCALING ASSESSMENT AN APPROACH SIMILAR TO THE OSU SCALING REPORT WAS USED THE ONE-DIMENSIONAL GOVERNING EQUATIONS WERE NORMALIZED TO DEVELOP THE KEY DIMENSIONLESS PARAMETERS AND TIME CONSTANTS 0752LH-030794

.-___m - ________ _ .___ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ _--

m u-em

. A DETAILED SCALING ANALYSIS WAS PERFORMED FOR THE CMT DRAINING PROCESS

- SYSTEM OF EQUATIONS WAS SOLVED WITH THE FOLLOWING ASSUMPTIONS; QUASI-STEADY STATE WITH FIXED WATER LEVEL WHICH WAS PARAMETRICALLY VARIED MIXING DEPTH WAS PARAMETRICALLY VARIED TO ACCOUNT FOR DIFFERENT INTERFACIAL HEAT TRANSFER

- 1-D TRANSIENT CONDUCTION CALCULATION WAS SEPARATELY USED FOR THE DOME AND S!DE WALLS

- WALL CONDENSATION COEFFICIENTS WERE ASSUMED TO BE AVERAGE VALUES WHICH DEPENDED ON THE FILM REYNOLDS NUMBER 0752LH-030794

I Table 3-4 Balr.nce Equations for Top-Down Scaling Analysis of the CMTs

~

a .C 1

Solid Structure Energy:

a ta DT (3-32)

-dt(p,V,C,,T,) = r dr (rk, dr'.)

Where the boundary condidons are:

k,,BT),,,' = Hu(T.-TJ (3-33) dr and k, ),,, =0 (3-34)

WPF1877D B:Id/020894 3 17

p ',

I d.w. ,

s I-J 3-20 WPF1877D-B:Ida :M4

(-

n= :j

=

. WALL CONDENSATION MODEL USED WAS THE COMBINATION OF THE NUSSELT LAMINAR FILM CONDENSATION AND MODIFIED COLBURN EQUATION

~

,gg p,gh,, kl NUSSELT y,L (T, - T,,)_

^"

u COLBURN

c. rOfgus p,, 4 e

4 - o.056

<'><"t >

THE FILM REYNOLDS NUMBER GIVEN AS:

ac. - f WAS USED TO DETERMINE WHICH CORRELATION WOULD BE USED 0752LH-030794

- INTERFACIAL CONDENSATION WAS CALCULATED USING GRIGULL CORRELATION FROM BIRD, STEWART, AND LIGHTFOOT m

H u= 0.003

  • ' *8 W hs .

. THE KEY PARAMETER IN THE CALCULATION IS THE DEPTH OF THE MIXING LAYER IN THE CMT, SINCE THIS EFFECTS THE LIQUID TEMPERATURE AND THE RESULTING INTERFACIAL CONDENSATION 0752LH-030794

. THE WALL CONDUCTION EFFECTS WERE ALSO COMPARED B BETWEEN TH TEST A CONDUCTION n RATIO CAN BE DEFINED AS:

L g,F p ,), ,,}

Hg(R,-R,) m k, (R,-R,)2 ,

Hg(R,-R,) m k, (R,-R,)2

'~'

t ~.

- IF WE ASSUME THAT neog = 1, THEN R,_R ,

=1 t

R,-R,

. THIS INDICATED THAT THE TEST CMT TIME SCALE IS ~ 1/3 THAT OF THE PLANT

COMPARISONS WALL CONDUCTION CALCULATIONS INDICATE THAT THE TEST CMT WILL HEAT UP FASTER (~ 3 TIMES) AS THE PLANT

-. THE CONDENSATION CALCULATIONS WERE NORMALIZED ON THE RELATIVE WALL OR LIQUID SURFACE AREA (FLUXES) AND COMPARED FOR DIFFERENT LEVELS AT A FIXED MIXING DEPTH, AND DIFFERENT MIXING DEPTHS AT A GIVEN LEVEL 0752LH-030794

AP600 CMT Wall Heatup (P=1100 psia)

In, side Wall Temp. at Diff. Levels r +Tw 2 0 0 Level = 95%

u a Tw 2 0 0 Level = 90%

e .Tw 2 0 0 Level = 75%

; Tw 2 0 0 Level = 60%

e  ; Tw 2 0 0 Level = 50%

600 _

~

2  ; "

^

u- '50 5

- r  ; -

w ,

W 500 '

& I 3 -

H k

< f e 450 w

C. ~

OE ,

" 400 W .

350- 2500 3000 3500 0 500 1000 1500 2000 TIME (S)

Figure 3-4 AP600 Plant CMT Inside Wall Temperatures for Different Levels WPFIe77D 1:1D/012094 3 40

AP600 CM.T WalI Heatup psia)

Aw e . Wall Temp. at D(iff.P=1100 Levels

.Tove 1 0 0 Level = 95%

c .Tove 1 0 0 Level = 90%

. .Tove 1 0 0 Level = 75%

;Tove 1 0 0 Level = 60%
;Tove 1 0 0 Level = 50%

600

^ 500 '

5  : /

~

w 400

/

r

/

x 300 ,

w -

c. ~

~

2

+ 200 100 ' ' ' ' '

0 500 1000 1500 2000 2500 3000 3500 TIME (S)

Figure 3-5 AP600 Plant CMT Average Wal! Temperatures for DINerent Levels WPFitMD 1:lDm12m i 3 41

.Model C'MT Wall Heatup (P=1100 psia)

Inside Wall Temp. at Dif.f. Levels

. z Tw 2 0 0 Level = 95%

.-[ . . Tw 2 0 0 Level = 90%

. . Tw 2 0 0 Level = 75%

,  ; Tw 2 0 0 Level = 60%

e e Tw 2 0 0 Level = 50%

600 _

550

^

u. -

" 500 ,

w e 450 m

< 400 '

w 6

$ 350 [

w -

w [

300 ._

250 '

0 500 1000 1500 2000 2500 3000 3500 TIME (S).

~

Figure 3 6 CMT Test Model Inside Wall Temperatures for Different Levels wmanc.uomi2M4 3-42

a Model CMT Wall Hectup (P=1100 psia-) .

Ave. Wall Temp. at Diff. Levels

- 1 Tove 1 -0 0 Level = 95%

eTove 1 0- 0 Level = 90%

e 0 Leyel = 75%- .:

e aTove 1 0

; Tove 1 0 0 f.evel = 60%

e .Tove 1 0 0 Level.= 50%

600 n

w 500 ,/

(

w 100 x

D ..

& N x 300 +

w -

Q.

2

+ 200 i

100 3500

' 500 1000 1500 - 2000- 2500 3000 0

TIME (S) a

,l Figure 3-7 CMT Model Average Wall Temperatures for Different Levels y l; q 4

WPF1877D 1:lDcm 343 j

a I

4 t 1

Wall Heatup P=1100 psia)

AP600 CM.T Liquid Temps a t D i f= f(.0 - m i x i n g Assuming Level 95%

il 3 0 0 Depth =3in 3 0 0 Depth = 6 in

, a il 3 0 0 Depth =1 ft e  ; il

Tl 3 0 0 Depth = 2 ft
il 3 0 0 Depth = 3 ft e

eco

=== ~-

~

si

-==s e::::::::sgss==

~

rh =--

J Soo -

4k W 1

+'l l ' Jr doo I l f /

y / 1r amp i.; si r q el./ /

ag  ! !

g soo "

O ,

2, L

200 l- -

l zooo sooo saco isoo 2o0c

o suo 10o0 TIME (S)

I Figure 3 24 AP600 Plant CMT Liquid Temperatures for Different Mixing Depth'at 95%

Water Level 3 60 1877D 2:!D/012094

Model CMT Wall Heatup P=1100 psia)

Liquid Temps a t D i f f(.D-m i x i n g Assuming Level = 95%

x , il 3 0 0 Depth =.3 in e . Il 3 0 0 Depth = 6 in

. e il 3 0 0 Depth = 1 ft

, , il 3 0 0 Depth = 2 ft

. . il 3 0 0 Depth = 3 ft eco ,

jpga--gp--gp--megummmmmmmmmm--- gpum=E 7

m c-L _-----qp


JL =m...--

soo - -

q7 --me=3C-------

i f ------ p-ws ----------- mm----== :5

- 4---- pwC ------- y.-medC ----m.--g p --

7g ----

gp -adC ----s.,qpeacC

~

3 I / .f a f we --

4o0 I'A # # " ^

w 1 T / J f sat 1 ( f

s ""

E

-88

,4,s = 1 /

LT /

,F mF t

" soo j , l 3

~ a r 9 I /

TLL 2co , [

l

o suo tooo isoo zooo asco sooo sooo TIME (S)

Figure 3 27 CMT Model Calculated Liquid Temperatures for Different Mixing Depths for 95%

CMT Water Level 1877D 2:lDm!2094 3 63 e 4

Model CMT' Wall Heatup (P=1100 psia)

Surf..Cond. Rates at Diff. D-mixing Assuming Level = 95%

7 0 0 Depth = 3 in

, + Con _suri 7 0 0 Depth = 6 in e sCon_ surf 7 0 0 Depth = 1 fI

. Con _suri

Con _suri 7 0 0 Depth = 2 ft e
Con _sur i 7 0 0 Depth = 3 ft

.4 1 -

, h .

O.3 T 2= Wr R \ \

~ P h \

m 1

. \ 4r I \

O as

.2 Li'T I

\ \

= 1 \ h  %

's S

TA N h

\ k N s "m ob \ N

' s 18 Y \ \ \

N ** w s j 4.i q g ---, -- ,, ~__ " '

N ,

'~

T m

-- 4

-~  ; ,

-x _

2000 2500 3000 J000 l 9 500 1000 1800 TIME (S) l l

Figure 3 28 Calculated CMT Model Surface Condensation Rates for Different Mixing Depths with a CMT Level of 95%

. 1877D-2:!D/012094 3.(A

e AP600 CMT Wall Heatup ps.ia)

Sur.f Cond. -

Rates at D i(f f D-mixing

.P=1100 -

Assuming Level = 95%

1 1 Con _ surf 7 0- 0 Depth = 3 in

. . Con _ surf 7 0 ~0 Depth = 6 in-

.  ;. Con _ surf .7 0 0 Depth =.1 ft l

icon _ surf 7 0 0 Depth = 2 ft ,

econ _ surf 7 0 0 Depth = 3 ft-Se 14 ,

~ .,

c 12 , ,  ;

E 1 .

d io 7

w ,

J

{ ,

E m a L'

s

" 1 x M

4 4 i i JS i

i T l

= a , a m 4 h 3. 3_

2 1

_ _T_,h ,

t m g% g D _ _ _'5 _._= ...,

o.- 5s E " 51sss-- - _> .gga__m_m_r_____5 lll====::= EME====EiB u soo .ioso isoo- aooo esco -sooo asco j

TIME (S).

l 1

~!

Figure 3 25 Calculated AP600 CMT Plant Water Surface Condensate Flow Rates for Different Mixing Depths at a Water Level of 95%

1877D-2:1DM12094 - 3-61 l

- , . ,, .. . ~ - . . -- .. . , .. ._ - .. . . . _ . , , .

I a.c ,

I.

l u

s 3

l i

s

.1 4

-h

?

Figure 3 21 Ratio of the CMT Model to AP600 CMT Plant Wall Condensate Mass Flux for.

Different Water Levels and a Mixing Depth of 3 Feet 1877D.2:lD/020894 3 57

. .i r .,r-, >-e- . ., .<,t ~. ,, ;' - .

i o _

a

- l

.5

.a i- ,

5 l

i Figure 3 7.2. Ratio of the CMT Model to AP600 CMT Plant Surface Condensate Mass Flux -

Rates for Different Water Levels and a Mixing Depth of 3 Feet

' 1877D-2:lDM20894 3-58. .,

, r t r -

a a.C .

L l

b d

1 ll '

l

-i l

)

Figure 3 23 Ratio of the CMT Model to AP600 CMT Plant Total Condensate Mass Flux Rates for Different Water Levels and a Mixing Depth of 3 Feet '

- 1877D.2:1Dm20894 3 59 1

e

/

h .

2 Figure 3-30 Ratio of the Calculated CMT Model to Plant Condensate Flow R ,

Assumed Mixing Depths at a CMT Water Level of 95%

l 3-66 1877D-2:lDM20894 a m . , m'

4 ~~ a' -

  • 4- '-~ -4 - - " -

[

P P

Figure 3 31 Ratio of the Total Calculated CMT Model to Mant Condensate Flow Rates for Different Assumed Mixing Depths With a CMT Water Level of 95% -

4

- 1877D-2:lDM20894 ' 3 67

= = w

m:

THE x VALUES GIVEN IN TABLE 3-7 WERE ALSO CALCULATED FOR BOTH THE PLANT AND THE TEST CMT. THE RATIOS WERE COMPARED.

4 0752LH-030794

I a,

Figure 3 34 Calculated 11 Group Ratios for Wall Condensation for a 3 foot Mixing Depth and Different CMT Levels

.WPF1877D 3:lDM20894. 3 70

, ... . 2. _ L .m. , ~ . _ ,.., .

i g  :

a o

}

k 3

P 9

AY t -i

. Figure 3-43 Calculated Surface Condensation H Ratio for CMT Level of 95% and Different - -

Mixing Depths '

1 I

i WPF1877D-3:lDAT20894 3 79  !

1

. . i

+

v. s. . . . . , _.. , y _, .

CALCULATIONS INDICATE THAT THE CMT TEST WILL CAPTURE THE SAME EFFECTS AS THE PLANT CMT FOR SOME TIME PERIOD, AFTER WHICH, WALL CONDENSATION IS LESS DUE TO THE THINNER TEST WALLS.

SURFACE CONDENSATION RATIO'S VARY-BETWEEN 0.25 TO 1.25, INDICATING THAT THE TEST WILL CAPTURE THE EFFECTS, PARTICULARLY FOR THE MIXING DEPTHS OF INTEREST.

COMPARISONS INDICATE THAT THE TEST WILL CAPTURE THE KEY PHENOMENA BUT NOT FOR ALL TIME PERIODS 0752LH-030794

WESTINGHOUSE ELECTRIC CORPORATION PRESENTATION TO UNITED STATES NUCLEAR REGULATORY COMMISSION AP600 Core Makeup Tank Test F.DELOSE MARCH 14,1994 M M r ---- -- ---- -- - - _ _ - - - _ - - -- _ - - - - - --_.a.- . - - -

AP600 CMT TEST I TEST OVERVIEW ,

TEST DESIGN / INSTRUMENTATION TEST MATRIX TEST RESULTS TO.DATE CURRENT TESTING STATUS i..

n o

y P2

) n U

E F e ]

KO A

4 3 (1 me g

v OM ,:

CT  :

O k[ I M

W -

E , T T , S e~~

,, W >

S , A

, 3

=

Y A I

4 3

r o

S L i; .im rm m1 o S

G P i

v o

N I

R E <

L 'R .

t O

f U

S S

\, E n _

O E o c

R C P [,

R E E R

O a Z M

f U

S S TG C E R

o o

t1 E.

E P V )

A I

S (

S A

P 0

0 6

P A .

. . - T.e, gg

~ TEST PIPING LAYOUT  !

~

CL, C ACi .

~

=

AP600 RCS AND.CMT TEST LAYOUT COMPARISON kE ,

3 .

Y I

puessuunam w c.r ,

!- = ""JE"4 I

t 9

A r_ _ .._ ._.

' ' ac A .,

Jt === =>

or 155 Ja=tUAL SARABICE e.ss. ,, c TANK TAIK j

sma y'

_ esueuwses 3 l

[ f

~

c V

l:  : .

-$a -

m l

Q f l l 7 1. LR r = =7,, g, g f g.

v CO'CCO

=;l

Y 7 4 6a .'v?

rv Aa .*.7 a a vvv a at hTT& gTgTgTgTg

0XCO:

1  ;

.4 CMT TEST FACILITY MAJOR COMPONENTS .

CORE MAKEUP TANK (CMT)

STEAM / WATER RESERVOIR (S/WR)

STEAM ACCUMULATOR .

STEAM GENERATOR PIPINGNALVES STEAM LINE #1 STEAM LINE #2 ,

CMT DISCHARGE LINE l

l l

t h

. p ;g

CMT TEST CORE MAKEUP TANK kn!

y.

2500 PSIG/700 *F DESIGN PRESSUREREMPERATURE

]

CARBON STEEL / UNINSULATED

2:1 SEMI-ELLIPTICAL HEADS (2.5 IN. MIN. WALL)

~20 FT.* INTERNAL VOLUME /10 FT. OVERALL HEIGHT / 24 IN. O. D. ,

1 2.344 IN. THICK CYLINDRICAL lSHELL (24 IN. SCH 160 PIPE)

INLET NOZZLE DIAMETER: i 1.338 IN.1.D.~ (1 % IN. SCH 160 PIPE) 3

! 0.877 IN. l.D. WITH STEAM DISTRIBUTOR INSTALLED DISCHARGE NOZZLE DIAMETER:

1.338 IN. l.D. (1 % IN. SCH 160 PIPE) .

i LOWER INSTRUMENT NOZZLE:

2.624 IN.1.D. (3 IN. SCH'160 PIPE)

INSTRUMENTATION:

I 21 WALL T/C'S_(0.062 DIA. TYPE J GROUNDED JUNCTION)

-41 FLUID T/C'S (0.125 DIA. TYPE J GROUNDED JUNCTION) 6 DIFFERENTIAL PRESSURE LEVEL' TRANSMITTERS -

1 PRESSURE TRANSMITTER .

1 PROTOTYPE MULTI-POINT LEVEL INSTRUMENT (4 SENSORS)_

- . . . . . . .- .. ~ - . . - _- - - - _ _ - -

~

CMT TEST STEAM / WATER RESERVOIR 2500 PSIG/700 *F DESIGN PRESSURE / TEMPERATURE ,

CARBON STEEL / INSULATED 2:1 SEMI-ELLIPTICAL HEADS (3.5 IN. MIN. WALL)

~70 FT.* INTERNAL VOLUME /10 FT. OVERALL HEIGHT / 36 IN. INSIDE DIAMETER 3.25 IN. THICK CYLINDRICAL SHELL UPPER HEAD NOZZLES: ,

2 IN. SCH 160 (1.6871.D.) STEAM SUPPLY 1 % IN. SCH 160 (1.338 IN.1.D.) STEAM LINE #1 1 % IN. SCH 160 (1.338 IN.1.D.) STEAM LINE #2 LOWER HEAD NOZZLES: i 1 % IN. SCH 160 (1.338 IN.1.D.) RETURN FROM CMT 2 IN. SCH 160 (1.6871.D.) FOR 1 IN. SPARGER INSTRUMENTATION:

2 FLUID T/C'S (0.125 DIA. TYPE J GROUNDED JUNCTION) 6 DIFFERENTIAL PRESSURE LEVEL TRANSMITTERS d '

PRESSURE TRANSMITTER

1 CMT TEST STEAM ACCUMULATOR ,

3000 PSIG/700 'F DESIGN PRESSURE / TEMPERATURE CARBON: STEEL '

- lNSULATED .

l TWELVE VESSELS (12 IN. SCH 160 PIPE) 25 FT. OVERALL LENGTH

~164 FT. INTERNAL VOLUME INLET NOZZLE:

2 IN. SCH :160 PIPE (1.6871.D.) .

OUTLET NOZZLE:-

2 IN. SCH 160' PIPE (1.6871.D.)

. INSTRUMENTATION:

4 FLUID T/C'S [0.125 DIA. TYPE J GROUNDED JUNCTION;i 1 PRESSURE TRANSMITTER i

ev,= , , - - . .. .no - - + ,,n,e , m. . - -n, .--s -- . : -- ~~ ,, -u ,----n - n- +--- - - = - ---= - - - - - - - - - - - - - - - - - - _ - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - . ---- --

.CMT TEST STEAM GENERATOR NATURAL GAS FIRED FORCED CIRCULATION COIL WATERTUBE TYPE CAPACITY: 2000 LBM/HR. @ 2700 PSIG FROM 200 *F FEEDWATER 99.5 % QUALITY SKID MOUNTED w/ INTEGRAL FEEDWATER TREATMENT 2 i

L.

.CMT TEST PIPINGNALVES

, STEAM LINE #1 '

SIMULATES FEATURES OF PZR TO CMT BALANCE LINE

. TOP OF STEAM / WATER RESERVOIR TO CMT STEAM FLOW ONLY.

1 % IN. SCH 160 (1.338 IN.1.D.) CARBON STEEL PIPE i

~20 FT. HORIZONTAL 2.5 SLOPED PIPE

-lNSULATED a I

TWO 1 % IN. SWING CHECK VALVES IN SERIES i .

2 IN. ISOLATION VALVE wNARIABLE OPENING TIME AND STROKE

} ,

t e

.i

~

. jy y CMT TEST PIPINGNALVES m oo STEAM LINE #2 SIMULATES FEATURES OF COLD LEG TO CMT BALANCE LINE PROTRUDES 4 FT. INTO STEAM / WATER RESERVOIR -

ALLOWS STEAM AND/OR WATER FLOW TO CMT ,

1 % IN. SCH 160 (1.338 IN. I.D.) CARBON STEEL PIPE ISOLATION VALVE IN SECTION OF 2.5 SLOPED PIPE ,

HEAT TRACED AND INSULATED 2 IN. ISOLATION VALVE wNARIABLE OPENING TIME AND STROKE DRAIN: DOWNSTREAM OF ISOLATION VALVE , .

i

. -- ._ * . - - . , ,, , . . - - , . n

l l.E

~

CMT TEST PIPINGNALVES CMT WATER DISCHARGE LINE 26.5 FT. ELEVATION BOTTOM OF CMT TO BOTTOM OF S/WR 1 % IN. SCH 160 (1.338 IN. l.D.) CARBON STEEL PIPE UNINSULATED ,

1 % IN. SWING CHECK VALVE 1 % IN. MANUAL GLOBE VALVE 1 IN. TURBINE FLOWMETER 2 IN. ISOLATION VALVE wNARIABLE OPENING TIME AND STROKE i

1

CMT TEST PIPINGNALVES l

MISCELLANEOUS FEATURES o CMT CONDENSATE DRAIN w/ LEVEL CONTROL VALVE & FLOW MEASUREMENT-USED FOR CMT WALL / WATER CONDENSATION TESTS o STEAM / WATER RESERVOIR DRAIN w/ LEVEL CONTROL VALVE - USED FOR WATER -

TO STEAM TRANSITION TESTS o STEAM ACCUMULATOR TO STEAMlWATER RESERVOIR PRESSURE CONTROL o STEAM SPARGER PROVIDED TO HEAT RESERVOIR / WATER o VENTS PROVIDED FOR SIMULATION OF ADS DEPRESSURIZATION o VACUUM SYSTEM FOR REMOVAL OF NONCONDENSIBLES

_ _ =. . . . - . . . . __ _ _ _ _ --

^4. ? '

  • g' '

f.-

AP600 J.  % . . :g. e, ._

,'!.l. '

i/

CMT Test Facility li Core Makeup Tank i n . f' Z .J k., M..t__

~ .,I..Wh. .. _W.; U. N. .

Isolation Valve and i'. _%. .

'F ~.J o" 0, s- . . .. ..x Check Valves { ,";.gg "~ g,4< .. _t-.s

%.j

.._ _ m ,.. .

"f% f,3 ,

.r ' . .- , ..

~ '

) . t 4; h s .. .;-

O} a p

j[f g* .m s

' ' D ,.', .

s .

n . -

-< ,, s ..

t.

, p-e" s .1 V

.,s_..

.4

..'l -

3

..s ,,

t .,

  • ~ ',

se ..  ;

,, .. t '

. 1W. .

.\

s- s AP600 C 02

1 1 .

J t i 1 . ,

n a l '

)

~

33, a n. ..

i y e 9  !

l AP600 ky : -

CMT Test Facility Core Makeup Tank

[N P-  :

l l o .

l Inlet Confiauration -

- ^

~

l . *-

l t . ..

w t  :

J $

O 'a

~

s #

y 6 -

AP600-C-0.5

. - w

,_,4.. s ns 1 _.sns4 ,es.sm a .e ..m -. e - , x m a m ..e.,a a -. .,,usnnu, ,.m m- -

Am

! CD i C cd _

. ' . ~ ' ' ' "' *

['

_c

^

s <

+ ,

3  ;;

Q

. .:5'

' ,/ D

  • N

% .(  : ~; y

! O . . .:.; -

a 2

[ ~

f ..Ikh- /f~E M~

Q _

} ;,&

O  %

n4 y . - ,

D .Y f ;_

.s g

y

" /

(D w -

/

g .(D _

(

FO _,

%s ~.

-i 2 _o s  !

oc .

/ -

p - *'99 -

1 h. % . . L . * . .$a 'N1 O 5 ..

, . i . m... . r u l-i r O- *e l

=

0& S

. ,.., , . , , , _ . . . - - . - - - . - - . - . -. - - - - - ---r-- - - - - -- - '-'- ' - " - -

, t '  ; i,, e  ; i i l l, l; ,Ill , I ll

) t

..  : . , .*.j  ;: ;'j' .i' , ,) :s :

4 y. s

.:j 3i;>1: A'  :

v . .

';:e 3h. t f #v <

~, . '.

' 5, ' .

.. !h' .. .

  • fy/.

,. n ,e~$.

, .j: '_

_ - ,gy .

i v

.t ,

p .

. p'

%, pH s,. ., .'?* _

q

. . .x

.% ,g e yi . : .

j ,,

, - / ..

7.

h.

v.,m .

~

h. .

. " .g .

._S-i E

'- l t,

..- , g^ a, r.,:?' t

.; a .

pV.b g : ,,'., 2 ..

g. s.

t  : .  : . , . ' .

v ..

p

- _,b,> s:',[J;c;n..Q;.,v- 'i .

, m

. . i I . . n

,. f t .

t y l e

i l

i z

cteoz p al 0FnN 0 t I

re U

6smt os Pe auo ATeb tic l

4 T Sts r 0 C-M i 0

0 6

C D P A

1 1 ' ' .!  :

P

,: .:i.. .::. C u

C *

.ii.... *

Hii:

C CO E -

m -

O ,

$ 55552?52 oooooooooo oooooooooo

.m **'""'

\

F i i g 4 N

-O \  ;

E I 1 F '

V)

N J .

W l Q

O E

s a to W

b O

1: ,

i

.; h ,

I j

AP600 f~- .  : -

CMT Test Facility '

1- -

ng '

Steam Water ' '

.- ~ AL"J' Reservoir  : .

~

g 4 .

l S.r..^ < . , ;.e .

a  !

i ".

i'

% ~

^

Y j -

l 4

f -

l l

12 ,

} b.

AP600-C-0.6 1 i

l , L

i :

l, i i i

l  :,

4-x s v i l

_ . . . .. ._-- -- , N' , ,  !

l

c. .

i AP600 -

1 'x s

! CMT Test Facility J -

-l:.': :' 'n

\.N A Simulated .

'D ' -

s s D

a ance ines , .. ' -

y s ,.

p s ,...

4 4 '

t s 4 \

~ $. .

i -

, . ,f . h [ <'T [\ p i

g., -

)

. 's ,. .

9 .. k

g i

,,fi I

, , Ab - , 3 ,.

4

+

, i,'

'i

! F j .*,. .

! \

t

',1 -

i AP600 C-0.7 i

I 4

i

1 1-l .

  • 4 k +

l

? i.*:

l AP600 1 i

CMT Test Facility 1 g&

Steam ,

0

/..

C .h, ,.

Accumulators y

~ .

l

=

. nd e ,

. : :,1,

'!! h x g, .

i-b s

{. .ph,g. w

- )' .-),h'

}-  ;

4F } . .. e v - : )

5 .k lb y;gy .

n

  • - ' 4 aw :' , . .

) .

s in AP600-C-D.1 1

kE

~

CMT TEST INSTRUMENTATION THE FOLLOWING PARAMETERS ARE MEASURED TO PERMIT CALCULATION OF TRANSIENT MASS ENERGY BALANCES:

TEMPERATURE:

o 21 CMT WALL T/C'S o 41 CMT FLUID T/C'S o MISCELLANEOUS PROCESS T/C'S PRESSURE:

o CMT AND S/WR VESSEL PRESSURES o CMT INLET PRESSURE o STEAM LINE #1AND #2 INLET PRESSURES o STEAM SUPPLY PRESSURE STEAM FLOW:

o REDUNDANT STEAM LINE #1 PRESSURE DROP o REDUNDANT STEAM LINE #2 PRESSURE DROP o STEAM LINE #1 & #2 VORTEX FLOWMETERS (TEST PRESSURES :s: 1500 PSIG)

LEVEL:

o 6 CASCADED CMT DP TRANSMITTERS o- PROTOTYPE CMT MULTI-POINT LEVEL INSTRUMENT o 1 S/WR DP TRANSMITTER WATER FLOW: '

o CMT DISCHARGE TURBINE FLOWMETER o CMT CONDENSATE DRAIN TURBINE FLOWMETERS

_ . _ - _ - m m______.____-___m

niunaussen CMT TEST FACILITY P&lD l,E o

  • vtxtesapatssuussarme vs ]@ve

@]@ v? '

, staarts.

-- serttaratas entssung teamssettre wavt vive actwtan e ea-' <

e - g -

g- '

g O * ** * "

gge, y gg 1

. e i sitm test n @ FCI PROIC StriaDet RTS

( rettsunt cematt wavt M

=

etnet wavt irves coerent wavt '% teacs marca w x-- ,

,, c --

-, O

-ew >e

-- . 4 ,_ _

q,

(

7 { J e '

)e 4 ,c=.::rt.:<-  ::'

(

e 44, g M ll N

's D ek gP u.

~

" "" E O (

stosi surety vs @ j tvs swa armuum uut ttusmate fv wTa a fvm sw u m come.

. m

4 C i i s!= E

~

{(/'Fg.sg,9 iu,m,,,

._ _ .y ..

_ m..

I :d I .l

- I .<,_, 2 _ . . .

I 11 1 ,J l I

<q l *1 l

..a

~U 3It4T3a l *1 I I h

z , , ,

l .oj O

- I I p

< l l 0 i H O l . ,,m..

j a - .,o _ . ,

H ""

I '"1 2

w I l lE I **l s

  1. )

Z 4( w__

l 0

1 i

4 M-AP600 CMT TEST 1 i CMT THERMOCOUPLE LOCATIONS n ,c "F w -

.e , e

-=

CMT WALL THERMOCOUPLES  ;

E,i; INSTRUMENT INST WIRE SERIAL INST

i.D. NO. NO. INSTRUMENT l

F.S. ENG BLK.

1G1 1 49697 LOCATION / DESCRIPTION RANGE UNITS NO.

T10W TC2 2 49894 LEVEL 1 WALL IG (00 F T11W+1.5 1 TC3 3 49895 LEVEL 1 WALL TC 700 F T11W+0.5 2 TC4 4 49896 LEVEL 1 WALL TC 700 F T11W+0.125 3 TC5 5 49688 LEVEL 1 WALL TC 700 F T1tW 4 TC6 6 49695 LEVEL 1 WALL TC 700 F T20 W 5 TC7 7 49897 LEVEL 2 WALL TC 700 F T2IW+1.5 6 TC8 8 49898 LEVEL 2 WALL TC 700 F T21W+0.5 7 TC9 9 49899 LEVEL 2 WALL 1C 700 F T21W+0.125 8 TC10 10 49693 LEVEL 2 WALL TC 700 F T21W 9 l TC11 11 49700 LEVEL 2 WALL TC 700 F i T30 W 10 TC12 12 49900 LEVEL 3 WALL TC 700 F T31W+1.5 11 TC13 13 49901 LEVEL 3 WALL TC 700 F T31W+0.5 12 TC14 14 49902 LEVEL 3 WALL TC 700 F T31W+0.125 13 TC15 15 49677 LEVEL 3 WALL TC 700 F T31W 14 TC16 16 49701 LEVEL 3 WALL TC 700 F T40W 15 TC17 17 49903 LEVEL 4 WALL TC 700 TC18 T41W+1.5 _F 16 18 49904 T4IW+0.5 LEVEL 4 WALL TC 700 F 17 TC19 19 49905 LEVEL 4 WALL TC 700 F T41W+0.125 18 TC29 29 49705 LEVEL 4 WALL TC 700 F TDOW 19 TC30 30 49704 DOME WALL TC 700 F TDlW 21 DOME WALL TC 700 F 22 2

1 7- ._.

CMT WALL THERMOCOUPLES INSTRUMENT INST INST WIRE SERIAL INSTRUMENT F.S. ENG BLK.

1.D. NO. NO. LOCATION / DESCRIPTION RANGE UNITS NO. ,

IG1 1 49697 T10W LEVEL 1 WALL 1G 700 F 1 TC2 2 49894 T11W+1.5 LEVEL 1 WALL TC 700 F 2 TC3 3 49895 T11W+0.5 LEVEL 1 WALL TC 700 F 3 TC4 4 49896 T11W+0.125 LEVEL 1 WALL TC 700 F 4 TC5 5 49688 T11W LEVEL 1 WALL TC 700 F 5 TC6 6 49695 T20W LEVEL 2 WALL TC 700 F 6 TC7 7 49897 T21W+1.5 LEVEL 2 WALL TC 700 F 7 TC8 8 49898 T21W+0.5 LEVEL 2 WALL TC 700 F 8 TC9 9 49899 T21W+0.125 LEVEL 2 WALL TC 700 F 9 TC10 10 49693 T21W LEVEL 2 WALL TC 700 F 10 TC11 11 49700 T30W LEVEL 3 WALL TC 700 F 11-TC12 12 49900 T31W+1.5 LEVEL 3 WALL TC 700 F 12 TC13 13 49901 T31W+0.5 LEVEL 3 WALL TC 700 F 13 TC14 14 49902 T31W+0.125 LEVEL 3 WALL TC 700 F 14 TC15 15 49677 T31W LEVEL 3 WALL TC 700 F 15 TC16 16 49701 T40 W LEVEL 4 WALL TC 700 F 16 TC17 17 49903 T41W+1.5 LEVEL 4 WALL TC 700 F 17 TC18 18 49904 T41W+0.5 LEVEL 4 WALL TC 700 F 18 TC19 19 49905 T41W+0.125 LEVEL 4 WALL TC 700 F 19 TC29 29 49705 TDOW DOME WALL TC 700 F 21 TC30 30 49704 TDlW DOME WALL TC 700 F 22 0

1

a

_ F C O t

t a

s _ Y C

1 M

I T

e s n . 3 s p RT t

u 1 A E O t SB e

_ C

/

1 t

a h R G T N L P 5

N O

T N

Y 3 L ' TI P

J t

s 6 P 1

0 A XL/L1 NN E 9 C

/

T PA DVR 6PE D

M 6 F ID r 0. T N u 0 MP A e CA C G O O T T T S ND INNI A

WD I D T R EJU E Rt P

_ ECR D

H P O

f L ET f OV SO OIL LbCTLHE .

r n o

CRR TGD AVH SIO t i t r f ) )

es 1 2 E

e s

E T

  1. ct O E

'i N

E 2u T E U L.

t a

v O t Y M C

A L m

=

E .

L i i

,i X

P X U

O C

O .-

+-

M R

E H

T L m L -

A -

W T 7 _

M a

C, .

~

4- . i AP600 ,

CMT Test Core MakeupTank

~

e. ,

c

~. -

Thermocouple :j  : .

.~ ~ ~ ~

s Installation l

. M. .. ,

>  % . ~

l .,

i l

6 I

  • i

, h I

1 l

i .*

t,

  • q AP600-C-D.8 i

l .

J ,

'i . . _ . ._ .-l

)

AP600 CMT TEST .'l CMT Ft.UID THERMOCOUPLES.

INSTRUMENT INST INST WIRE SERIAL INSTRUMENT F.S. ENG BLK.

l.D. NO. NO. LOCATION / DESCRIPTION RANGE UNITS NO.

TG55 55 53636 10+0M9 WAIT:H TG 700 F 20 TC31 31 49944 TIDO DOME WATER TC 700 F 23 TC32 32 49916 T11+2R3 WATER TC 700 F 24 TC33 33 49917 T11+OM3 WATER TC 700 F 25 TC34 34 49918 Tli-2L3 WATER TC 700 F 26 TC35 35 49919 T114M3 WATER TC 700 F 27 TC36 36 49920 T11/2+0M3 WATER TC 700 F 28 TD37 37 49921 T12+4M3 WATER TC 700 F 29 TC38 38 49T22 Tl2+2R3 WATER TC 700 F 30 TC39 39 49923 T12+OM3 WATER TC 700 F 31 TC40 40 49924 T12-2L3 WATER TC 700 F 32 TC41 41 49925 Tl2-4M3 WATER TC 700 F 33 TC42 42 49926 T12/3+6R3 WATER TC 700 F 34 TC43 43 49927 Tl2/3+0M3 WATER TC 700 F 35 TC44 44 49928 Tl2/3 6L3 WATER TC 700 F 36 TC45 45 49929 T!3+4M3 WATER TC 700 F 37 TC46 46 49930 T13+2R3 WATER TC 700 F 36 TC47 47 53631 Tl3+OM3 WATER TC 700 F 39 TC48 48 49932 T13-2L3 WATER TC 700 F 40 TC49 49 49933 Tl3 4M3 WATER TC 700 F 41 TC50 50 49934 Tl3A4+6R3 WATER TC 700 F 42 TC51 51 49935 T!3/4+0M3 WATER TC 700 F 43 TC52 52 49936 T13/4-6L3 WATER TC 700 F 44 TC53 53 49937 Tl4+4M3 WATER TC 700 F 45 TC54 54 49938 Tl4+2R3 WATER TC 700 F 46 TC55 55 49939 -

Il4+0M3 WATER TC 700 F 47 TC56 56 49940 h4-2L3 WATER TC 700 F 48 TC57 57 49941 Tl4-4M3 WATER TC 700 F 49 TC58 58 49942 Tl4 8M3 WATER TC 700 F 50 TC59 59 49943 Tl4-12M3 WATER TC 700 F Si TC69 69 49963 TCACC ACCUMULATOR TOP 700 F 52 TC70 70 49962 TCACC ACCUMULATOR 700 F 53 l TC71 71 49961 TCACC ACCUMULATOR 700 _F 54 l TC72 72 49960 TCACC - ACCUMULATOR BOT 700 F 55 l TC73 73 49952 TCSTIN STEAMIN 700 F 56 j TC74 74 49954 TCSWRT SMI RES TOP 700 F 57 I TC75 75 49953 TCSWRB SMIRES BOT 700 F 58 TC83 63 53667 TIDSW2 WATER TC 700 F 59 TC84 84 53635 Tl3+0M6 WATER TC 700 F 60 4 TC65 65 49909 AMBIENT AMblENT TEMP 700 F 61 l TC60 60 53645 Tl1+2M9 WATER (C 700 F 62 l TC61 61 49956 Tl180+2M3 WATER TC 700 F 63 i TC82 62 53655 TIDNE0.5 WATER TC 700 F 64 )

TC76 76 49949 TCCMTl CMT STEAM IN 700 F 85 l TC77 77 49945 TCCMTO CMT STEAM OUT 700 F 66 TC78 78 53656 TIONE1.0 WATER TC 700 F 67 I TC79 79 53657 Ti(JE1.5 WATER TC 700 F 68 TC80 80 53668 TIDSW3 WATER TC 700 F 69 TC81 81 53669 TIDSW4 WATER TC 700 F 70 TC82 82 53644 Tl1+2M6 WATER TC 700 F 71 TC83 83 53643 Tl1+2M3 WATER TC 700 F 72

.. ,n

a AP600 CMT TEST  ! .

CMT PRESSURE, LEVEL & FLOW INSTRUMENTATION INSTRUMENT INST INST WIRE SERIAL INSTRUMENT F.S. ENG BLK.

1.D. NO. NO. LOCATION / DESCRIPTION RANGE UNITS NO.

PUI1 1 8240 00880126005 GMI LEVEL 12 36 (1) nH2O 73 PDT2 2 9240 40880126009 CMT LEVEL 2-3 in.H2O 74 36 (1 i PDT3 3 9240 00880126010 CMT LEVEL 3 4 36 (1) nH2O 75 PDT4 4 9240 40880126008 CMT LEVEL 4-5 36 (1 l nH2O 76 PDT5 6 9240 40880126011 CMT LEVEL 5-6 38 (1) in H2O 77 PDT8 8 9240 00880126006 OVERALL CMT LEVEL 1-6 124 (1) in.H2O 78 PDT13 7 8950 00782880019 PT4 - PTS 400 (1) in.H2O 79 PT4 9 9244-00880126013 PT5 10 9244 00880126015 CMT INLET PRESSURE M (2) PSIG 80 CMT VESSEL PRESSURE 3000 (2) PSIG 81 PT8 11 9321-00907269005 ACCUMULATOR PRESSURE M (2) PSIG 82 PT7 12 NA NOT USED 83 PDT11 13 9325-00910428003 SL #1 DOWNSTREAM DP 400 (1) nH2O 84 PDT13 14 9325 40910428001 SL #2 DOWNSTREAM DP 400 (1) nH2O 85 PDT10 23 9006-00773891001 PT1 PT4 3000(2) PSIG 86 PT1 15 9321 00907260006 S/W RES PRESS TO PCV 3000 (2) PSIG 87 PT2 16 9244-00880126016 STEAM LINE #1 (NLET 3000(2) PSIG 88 PT3 17 9244 40880126014 STEAM UNE #2 INLET 3000 (2) PSIG 89 PDT7 18 9005 40772871013 S/W RES. LEVEL 124 (1) in.H2O 90 PDT8A 19 9240 00880126012 SL #1 UPSTREAM DP 400 (1) in.H2O 91 PDT88 20 9325-00910428002 SL #1 UPSTREAM DP - REVERSED 400 (1) nH2O 92 PDT9A 21 9240 40880126007 SL #2 UPSTREAM DP 400(1) nH2O 93 PDT98 24 9408-00936005033 SL #2 UPSTREAM DP-REVERSED 400(1) nH2O 94 PAT 1 22 2500790/3170177(4) BAROMETRIC PRESSURE 15 PSLA 95 LT1R 40 3509-N FCIPROBE ACTIVE SENSOR 800 F 96 LT1A 41 3509-N FCIPROBE ACTIVE SENSOR 800 F 97 LT2R 42 3509W FCI PROBE ACTIVE SENSOR 800 F 98 LT2A 43 3509 N FCI PROBE ACTIVE SENSOR 800 F 99 LT3R 44 3509-N FCI PROBE REFERENCE SENSOR 800 F 100 LT3A 45 3509-N FCI PROBE REFERENCE SENSOR 800 F 101 LT4R 46 3509-N FCI PROBE REFERENCE SENSOR 800 F 102 LT4A 47 3509-N FCI PROBE REFERENCE SENSOR 800 F 103 TJEC NA NA AVG ACC TEMP NA F 104 FM1 85 45585/45017(4) CMT ORAINLINE 17FM 75 GPM 105 FM2 84 45584/45016(4) LCV DRAIN 3/4"TFM 35 GPM 106 FM3 83 45583/45018(4) LCV DRAIN 1/2"TFM 3 GPM 107 FM4 5 TBD TBD SL #1 VORTEX FLOWMETER TBD FT/SEC TBD FMS TBD TBD SL #2 VORTEX FLOWMETER TBD FT/SEC TBD TIME NA NA ELAPSED TIME FROM DAS SYSTEM CLOCK NA SEC 108

u

[.

y l - .:  :.9

!' CMT TEST MATRIX m no L

SERIES 100 TESTS CMT WALL CONDENSATION WITH AND WITHOUT NONCONDENSIBLES  :

, SERIES 200 TESTS CMT WALL AND WATER SURFACE CONDENSATION i

SERIES 300 TESTS. .  ;

l CMT DRAINDOWN AT CONSTANT PRESSURE i

SERIES 400 TESTS

CMT DRAINDOWN DURING DEPRESSURIZATION SERIES 500 TESTS.

NATURAL CIRCULATION FOLLOWED BY DRAINDOWN AND DEPRESSURIZATION SERIES 600 TESTS CMT ACTUATION WITH BOTH STEAM LINES WITH AND WITHOUT NONCONDENSIBLES -

~_. _ . - - . , . _

Y.

pl i 1 l'1 i  ! 4 i .,i,! 9, 9,  !-

j  ! u u a a il i1'l !i}

jt l! lI l l If If

!I !!I !!I !! II !il It !il }l!

04 / ;

l il ,ilj

,l

.l}l. .

! l

l. 1, 1 i

'y

!I ll1 10 jil I Ii I 8

!!!  !!Il ! !!l li ill it i i  ! 11 i  ! I ti 3 1l 1

[e 11 il lt i ll i

1 l 1  !  ! !  ! l  !  !  !  !

- lljii i!!l[

a CMT TEST MATRIX - on TABLE S 1 AP900 CMT TEST MATRIX (Sheet 2 of 2)

Test No. Test Type CMT Droin Rete Steam Segsply Commerite

7. _ : : _:4e) pois 501402 Neheel stremisesa latoned by Dieshesgo One sealmennes est toes estowed by Siseen seqiply Bree som 1 is sleeed. Rosesveir memde.si and empsessmanneen ser one opsn enh reas empmeewomenon seso waner towel et ie* levet meervoir meter tsavesamme heessy sesv. steem suppe r lhe .

no. 2 is opened to biases siehssel cducusseen ame ene40s et Caff hosessL Reserweir unterlevel is senseed to biltste duetidoset The steem supper is testated and sie mateWsteem reserweir is wented when Sie CMT le dimined to 97 Indies.

503404 Repeat niet noteel alsouleton unII ene4ieff of CRAT homesd.

60540s Repeat meet nonsul circulemen unes CIAT Is completely hestesL 401-406 CMT ~= wie het sesess Dimessee line _ sua for 1835 - Rassrweir waner level *l5". Rassrveir wasar times, wish and wshaus e/16 symL Semann supply line sumposesse Iminisely $4ST. $hessa supply Een new I W gas. no.1 ensuemmee sus to be 3 is open. Det senasa espply line me.1 and CMT

^

607412 1985 - e N b "8 .it semen, med wie las ses aos puis er n.

inse.nrle CMT side er ses .s,pty um. .a 2.

l v

h E

- +

W O

d i

2~

c l (  !

h!:ii P

.J D

</)

W tJ)

W V

E 0 d

{

0 L-F-

.J D

(/)

W OC -

F-(/)

W F-E o d -

~

d

f O

r d-

~

E 1 p M

J 3

v)

W E

(f)

W W

H

.E O

el 4

p:

i_-

b H

a 3 ,

l V) '

W  ?

M l

> i u)

W l

> \

E o 1 O

d

p. - - _ = , _
  • am

.m -

W

'1 l

i 1

>=J 1 3  !

th ~

W M

F-u)

W i >=

a o.

4

e. . . ,

+ - - . .

g_

N P-

.J D

f/)

W F-(A W

F- i E

o Q.

q

. m i

ee

  • E- {

\

J l

)

)

H J

'"3 in W

E th W

H H

E O a d '

L

+

.=

l CMT TEST STATUS lud l o COMPLETED COLD PRE-OPERATIONAL TESTING l CHARACTERIZED COMPONENT VOLUMES i CHARACTERIZED LEVEL INSTRUMENTATION .

MEASURED DRAIN RATES

. MEASURED STEAM LINE RESISTANCES o COMPLETED HOT PRE-OPERATIONAL TESTING MEASURED SINGLE PHASE LINE RESISTANCES AT ELEVATED TEMPERATURE CHARACTERIZED CMT THERMOCOUPLES CHARACTERIZED CMT PRESSURIZATION / HEATUP RATES CHARACTERIZED STEAM JET / WATER INTERACTION-INVESTIGATED" LOW" AND."HIGH" DRAIN RATES  :

EVALUATED ALTERNATE CMT INLET NOZZLE CONFIGURATIONS TRAINED FACILITY OPERATORS ,

o MATRIX TESTING COMPLETED SERIES 100,200 AND 300 MATRIX TEST PROCEDURES MATRIX TESTING BEGAN ON 2/15/94 '

COMPLETED MATRIX TESTS C001105' AND C002105 TEST ACCEPTANCE COMPLETED STEAM LINE #1' ISOLATION VALVE REPAIR IN PROGRESS i REPAIR TO BE COMPLETED BY 3/14/94 t

1

--- _ , .- . - . . . . .________.____.._____._.____.____.___m __. . _ _ _ _ _ . . _ - _ _ . _ . _ _ _ _ . _ . _ _ _ _

m CMT TEST SCHEDULED ACTIVITY --

COMPLETE "HIGH" PRESSURE SERIES 200 / 300 MATRIX TESTS COMPLETE STEAM FLOWMETER INSTALLATION COMPLETE " LOW" PRESSURE SERIES 100 / 200 / 300 TESTS

CMT TEST DATA ANALYSIS ROBERT C. HABERSTROH WESTINGHOUSE MARCH 14-15,1994 l

l l

Introduction -

  • Objectives a CMT Data Analysis Program
  • CMT Flow, Liquid Level, and Volume Calculations .
  • Mass Balance
  • CMT Wall Heat Transfer
  • Interfacial Condensation
  • Preliminary Results for Pre-operational Test B0377-
  • Conclusions

is:E; Objectives --

  • Develop a detailed understanding of the thermal-hydraulic behavoir of the CMT tests
  • Analysis Conditions: CMT in Draining Mode
  • Provide Parameters for comparison to LOCA analysis codes
  • Calculated Values CMT inlet flow and outlet flows CMT Values liquid level vapor and liquid mass local wall heat flux wall heat transfer interfacial, wall, and total condensation wall heat transfer coefficient interfacial heat transfer coefficient mass and energy balances

e

=

CMT Data Analysis Program -

MEASURED DATA ANALYCIS RESULTS WALL TEMPERATURE LIOUID LEVEL FLUID TEMPERATUPE ALL HEAT FLWES CMT DATA d P LEVEL m ANALYSIS CD WALL HEAT TRANSFER COEFFICIENT dP ^

INTERFACIAL CONDENSATION FLOW

_ INTERFACIAL HEAT TRANSFER MASS BALANCE COMPUTER ENERGY BALANCE LS:

WCOBRA/ TRAC NOTRUW

. era CMT Flow Calculations e

flow meter for outlet line a

inlet flow calculated from line AP

- 4 methods: 2 DP cells and 2 pairs of pressure taps

- calculation normalized for zero flow during pretest period with closed valves C C DP P CgC oP

[CMT]

P "P

/

CMT Liquid Level Calculations E 2 methods: 5 narrow-range DP celis, or wide-range DP cell use 32 cells corresponding to the fluid TCs

= compare measured AP and calculated AP to determine level calculated AP = f(Pressure, Temperature, liquid level)

DP CELLS FLUID TCs e

i e

2  !!

LIOUID LEVEL pp)

U 6 3 ~~ -

CALCULATED AP 4

e e

h y"

5 e

?

ct

1 m > .

o O <]

  • t c ,s 0 9* *
  • 5 = a W b t d [

C J I e o a tu g g C >

  • O W ll $l O W 01 f

b I U)  ::2

.E u

R > 8 L' J

C u I W

O - = = ==

a E

3 ,,

N D

W o W g O b m E g 5 o

O O

o ~

a 4

> ~

W O a J

$* E > g .

2 O

23 > 5 C N > 7 <- -

H J

.E M g "O m IJ s s= g> 5 1 'g - ,W pa A e s .sr> . z

~

.S g "V " < w *E m

W CD o C O c, e 'liw m@

w m

11 E o> 0 a - a 3 W 1 9 m ->

~ gy w g .E >< .S >

s 2

0 . . . ,

4 OE g %

m:

S CMT Mass Balance -

t r'

M.v-m . g

=

g w.m dt mass in: steam ,

t o._ .

^

t F

M 1-out, =

g w out dt mass out: liquid to My =

{

fluid TCs py (P) AV y,7 vapor mass in CMT q '

M= 1 {

fluid TCs p(P,T) AV11q liquid mass in CMT.

mass balance error = excess mass in CMT mass balance errort. =- M Y+M ~l

_t

-MV +M A to M v-m. -M out~ l-l t

-I

_O-ED 2

ED -c.

g b 39 n*

C Oa O CD a

8 O ,"

N'

.- @ e e *- w:

S e;

> c. -

O.-

CFP -

C " E *,

. o;.

o".W Q.

Ool ai; mW L ew-6 0' a b

w O o O=

6. N 0 5 wM w O LaJ E

N O

cg O

Oo CD C e w

O "' 2 : --

- m_;

f1 nO..- .

m 2

G 'a-~.

w i O u o. , , ;

C g co *I :. :. .

- o ;, ;.=

m m u ..

g n CL, e e ,.

M O' g ~~ O ll CU

'- ll 2

e sammes Plot of Measured Fluid and Wall Temperatures  ;

TC33 Fluid Temperature

. . T C5 uetal Temperature at 0 031 inches from 10

- Delto-T = IC33 - TCS (L b i

6

, e 5

Local CMT Wall Heat Transfer -

a,c

  • evaluated with CONTRA

- inverse heat transfer calculation based on metal TCs

- method per " inverse Heat Conduction -- lil-posed Problems" by J.V. Beck, B. Blackwell.and C. R. St. Clair, Jr.

- calculates local heat flux and local wall ID temperature

  • calculate local heat transfer coefficient

lllll

'I'

_a.

l

.O .

w W

C CU 6

b CO CD I

'artas CU O

O J

e 8

N n e

e y t

w p r l o e a f b h t

s d s n l

t n n e l u a o n e s i g o v e w .

l e r l

o e r

i g

r A e b r e

e R b u b sa t

T , s u t N e T s u w v l

O o M se C b C rl ot a .

em r i t (

a r po n at A n t

e s o v n f n m Ro T

c a o nodo Nde j

d i

g i otinr aaf Os a e s z d rl id i

Ca e g 6n r )s aaut a i e .

eb pd ql t

a x a

r no mol u i e s i

o n r c i

u t l

ofl v n l s av ceoa c l pt nao l ee ed f aao da i t

ce l doy r

o cpre i

t xhatet e v 0s r

e ela vhe ege 2i coau l t

gy s l

f s

r t ha n dce n o l

i ee ianl f ogn t n epu r e er a

r alt ainwt a sn si T t ef nd ua ndn ndms o e s t

a ahisoe eA io at e r o s eim t t l

t aR aps sdp H

e pecvha r e rT l ue si ud r gN cr emaet el e r a qn r ein l

l a ti nt t

iCnO l

aomia cc-l W i- - -

T M

C * = =

~.

Mapping of CONTRA Results g Mapping of Heat Flux vs. Time into Heat Flux vs. Elevation 4,s l

I f

I i

{

N C.

I N

b W

C CU w

b W

I

=

CU N

u O

ems.

W D

O E

C O

3 CU w

W C

8 6 7 '*

~

Interpolation of CONTRA Results to an Intermediate Cell E a,b

!!?it i

i A -

S W

O w

W

.N W

E m

W C

C CU

.C.

O C

CD w

b W

I

^

Methods for Estimating the interfacial Condensation E

  • Steam Mass Balance
  • Liquid Mass Balance
  • Liquid Energy Balance

Condensation Based on Steam Mass Balance -

total condensation = steam flow into CMT - change of steam mass MCond = M.V-in -

~MY -M~Y t t t t

. o.

wall condensation = wall heat transfer / h,y t

Q" M wall cond

= dt t g to 8 interface condensation = total cor.densation - wall condensation

~

int cond, cond t wall cond t i

l i-l -

~~~~

Condensation Based on Liquid Mass Balance -

total condensation = drain flow from CMT + change in liquid mass

~

+ -

cond, 1-out t lt I, t

wall condensation = wall heat transfer / h,,

t c Q" M wall cond = dt t g g to 78 interface condensation = total condensation - wall condensation M int cond = M cond, -M wall cond e t

m-Condensation Based on Liquid Energy Balance total condensation rate = wcone =

rate of change of liquid internal energy

+ rate.of drain flow

  • enthalpy

+ totsi wall heat transfer above and below water level

- pressure

  • rate of change of liquid volume / J ) hg total condensation t

cond, g cond dt to P -

CMT LIOUID LEVEL JI 1 U _

--- 91 W .

dt u out out

Condensation Based on Liquid Energy Balance

=

wall condensation = wall heat transfer / h,g t

c 9

M wait cond, -

dt to g interface condensation = total condensation - wall condensation

~

int cond t cond t wall condt

?

z

=

_ b ,

m 7

7 3

0 B

t s

e T

l a

n i

o t

a r

e p

o-e r

P r

f o

t s

l u

s e

R y

r a

i n

i m

l e

r P

a ~

Preliminary Results for Pre-operational Test B0377 =

CMT Level: Comparison of Two Methods a

2 rnethods: 5 narrow-range DP cells, or wide-range DP cell

  • When filling DP cells are consistent until liquid level reaches top tap for DP1 and DP6
  • DP cells DP2 thru DP5 generally consistent a

level curves for DP6 & combination of DP2 thru DPS are parallel

m Preliminary Results for Pre-operational Test B0377 -

Comparison of Calculated Levels Level per DP6 m . Level per DPI thru DP5 Gs b

~

Preliminary Results for Pre-operational Test B0377 E CMT Level: Comparison of Two Methods

  • all DP taps are horizontal except for top tap for DP1 & DP6
  • configuration of top tap results in inconsistencies in calculated .

level

  • Design Fix:

horizontal top tap for DP1 and DP6 All test results shown on following slides use wide-range DP cell, DP6 I

I

+

=

Preliminary Results for Pre-operational Test 80377 -

Calculated CMT Inlet Steam Flows Flow per Pil-PTS s eFlow per PT2-PT4

_ _ Flow per DPT8: Upstream DP Ce!!

,  ; Flos per DPTI1 Downstreom DP CeIi

~

w Preliminary Results for Pre-operational Test B0377 Calculated CMT Fluid Level a,b

Preliminary Results for Pre-operational Test B0377 --

CMT Fluid Temperature Profiles for 0 to 240 Seconds with 20 Second Spacing ct , b

b ,

a e77 u

g3 n 0t i a8ru h c ct s/

i e .,

eT ,.

v tl e a...

Ln.

o.

gi e nt .

i a.u r

d 7 n pe.

7 oo 3 p- e 0 e se r

B c eri i t n rP. o s a r r

e l a o o T B cf l

a s n s i

o a t

a M 7 r r 7 e T 3 p M o0 r 8 o- C rt e

r E s

e P T r el f

o can no t

s oi t l

u I a

r s o e e Bp R o y se r s r a - P n o r i

Mo i

m f l

e r

P

em:: ;;

E Preliminary Results for Pre-operational Test B0377 --

Measured Temperatures at Top CONTRA Analysis Elevation TC5 1 2 377 i Cui 103.00 W+ 000 a .TC4 1 2 377 T CMT 103.00 W+ 125

- TC3 1 2 377 T CMT 103.00 W+ 500

; TC2 1 2 377 T CMT 103.00 W+1.500 e  ; TC) 1 2 377 T CMT 103.00 W+2.343

. . TC33 1 2 377 i CMT-FlulD 0 103.00 C(p b i

og

=

Preliminary Results for Pre-operational Test B0377 =

Measured Temperatures at Second CONTRA Analysis Elevation TC10 1 2 377 i CMT 86.25 W+ 000 e .TC9 1 2 377 T CMT 86.25 W+ 125

- _TC8 1 2 377 T CMT 86.25 W+ 500

; TC7 1 2 377 T CMT 86.25 W+1.500 e e TC6 1 2 377 T CMT 86.25 W+2 343

. .TC39 1 2 377 T CMT-FLUID @ 86.25 Ct b i

Preliminary Results for Pre-operational Test B0377 . h Local Heat Flux at Each Analysis Elevation Heat Flux at Elevotion 103 inches u o Heat Fluu of Elevotion 86 25 inches

Heat Flux et Elevotion 57.5 inches
Heat Flux at Elevation 23 inches g

I

Preliminary Results for Pre-operational Test 80377 =

=

CMT Wall Heat Transfer Vopor Region Heat Transfer Rote e . Liquid Region Heot Transfer Rote 4,b

, a

- .t Preliminary Results for Pre-operational Test B0377 _

CMT Wall Condensation

~

a,b i

Preliminary Results for Pre-operational Test B0377 --

CMT Total Condensation Condensation Based on Steam Moss Bolonce a . Condensation Based on Liquid Moss Bolonce

. Condensation Based on Liquid Energy Bolonce gb

'l

'l i

i l

l 1

t

< 1 i

Preliminary Results for Pre-operational Test B0377 CMT Interface Condensation Interface Cond. Based on Steam Moss Bolonce e o Interloce Cond. Based on Liquid Moss Bolonce db i

I

Preliminary Results for Pre-operational Test B0377 =

Condensation Ratios Based on Steam Mass Balance Interface Condensation / Total Condensation g,b

x, a

Conclusions Instrumentation sufficient to provide for analysis of key thermal-i hydraulic phenomena in CMT Con calulate parameters for development of understanding of tests,

and for comparison to LOCA. analysis codes .  :
  • Preliminary evaluation of Pre-operational test B0337 demonstrates consistency between alternate methods for calculating flows and 4 Condensation b

d

.g

W

?

CMT ANALYSIS PLAN L. E. HOCHREITER NUCLEAR SAFETY ANALYSIS AND STRATEGIC DEVELOPMENT t

  • CMT ANALYSIS PLAN -- STATUS OVERALL APPROACH
  • DEVELOP A DETAILED UNDERSTANDING OF THE THERMAL-HYDRAULIC BEHAVIOR OF THE CMT THROUGH TEST / ANALYSIS
  • CHARACTERIZE CMT BEHAVIOR IN MORE DETAILED CALCULATIONS
  • IF NEEDED, USED MORE DETAILED ANALYSIS TO ADDRESS SCALING ISSUES
  • BASED ON THE RESULTS, SIMPLIFYING THE MODELSIMODELING FOR THE PLANT CALCULATIONS WITH TWO MAIN OBJECTIVES: -

TO CAPTURE THE KEY OR PRINCIPLE EFFECTS THAT SIGNIFICANTLY INFLUENCE THE PLANT TRANSIENT

- IF NECESSARY, TO INSURE THE MODEL IS APPLIED IN A CONSERVATIVE FASHION 0752U1-030794

l THREE ANALYSIS APPROACHES WILL BE GIVEN, EACH WITH DIFFERENT LEVE AXI-SYMMETRIC THREE-DIMENSIONAL }VCOBRA/ TRAC MODEL VESSEL (COBRA) COMPONENT 1-D TRAC COMPONENT MODEL OF THE CMT THE N0 TRUMP CMT MODEL THE PURPOSE IS TO SHOW THAT DETAILED MODELING IS NEEDED TO IFPROVE OUR UNDERSTANDING OF THE CMT PHENOMENA BUT COARSE MODELING WILL CAPTURE THE CMT EFFECTS 0752LH-030794

b i

l'

.=

l CMT DRAINDOWN TEST AND ANALYSIS (WITH _WCOBRA/ TRAC,3D VESSEL COMPONENT)-

i l

K. TAKEUCHI NUCLEAR SAFETY ANALYSIS AND STRATEGIC DEVELOPMENT 1

r

. _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . '_ _ _ _ . _ _ . _ . . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ ___ = . .--: _ ~ . - _ . , . . r, m w .~ .

1 CMT Draindown Test and Analysis with L WCOBRA/ TRAC,3D Vessel Component.

l .

1 i Kenji Takeuchi March 14 - 15,1994 I

1. Introduction
2. Test Facility '
3. Selected Test B0377
4. WCOBRAfrRAC Model
5. Analysis Results
6. Conclusion I..

{

l ii.i.

drwne/cetVO(Tamara OBJECTIVE:

for modeling the CMT Test in Detail with the COBRA (3D) Vessel Component of WCOBRA/ TRAC :

o Gain insight into thermal / hydraulic phenomena occurring within the CMT.

o Assess the degree of complexity needed to sufficiently model CMT.

o Develop an approach to use simpler models -

(TRAL component and NOTRUMP) for plant analyses.

o Help develop scaling rational for CMT.

-g NW135YEM IBEL)

Test Facility 1,6 I

i

)

I

'I i

i i

o j

'"~

AP/!'e, NMO l.!d,y!.',lp;;;g""" TEST DATA

~8E ' 2 37' 1/- ' BEst-ts? rto, jr i

J e .

4,-m,n_

WCOBRA/ TRAC Model l

l TRAC ID Model

{\

Cw Vess:13D Model ,

N)

TRAC ID Model 7 k",3ure B.C.-

Liquid' Pressure B.C.

\/ l -

/8

1

. -m-,u I

l l

3D WCOBRA/TRAQ Nodings for CMT (axi-symmetric) Model  !

l 1

c '%.

2.

5.

8.2 Cell. Boundary 9.65"

  • Radu Steam Line CellHei ht Steam Distributor m . . ...- ... .

-1 15" Ik Dome l.15" 0'9" Cylinder -" -- - --- - --'- -- -

Region . ... .. . ... . .... ..

0.9 0.9 :i

....__..........33 29.7"

__ . _. .. . . . ... . .. 3.

- {.

. .. .... ..... ... ... 3.

... .... .... ... .... 5..

5. U n

. - _ _ _ .. . . 5.

5_ ^

. .. .... ..... ... ... 5.

10." 50,,

10.

10. p
10. H ,

10.

... .___.. __.. .~

5. 35" 5.

Bottom Dome

5. V

)

. f Drain Line -

b b.l '4 m

drama /ce VNerxhas2>

TOP VIEW OF CM.T NODING 2

nO

-CMT Water TEST vs. ANALYSIS S:t.e a m WTH00006 1.n I e t 2 4 4'

.j f

f 6

8 6

il i

t 'l 1

.t .

draanr/cunUCMTum>

Analysis Results vs. Test Data Table 3:

Test est M ysh Condinons B0377 65 psia Holding Up Tune (s) 40. 40.

70 F Early Steam Flow 0.25 0.08 (Ibm /s)

Later Liquid Drain 1.8 1.8 Rate (lbm/s)

Dram Water Flow Rate Steam Flow Rate A

Valve Open End Holding Up i

1 l

I i

dramerunV/Vesulas2>

FLUID TEMPERNTURE.(Data vs. Analysis)

' Fluid T/C Locations relative to Model Nodings C 'kk9" 2'

S.

8.2 9.65" Steam Line

< 2 , 1.15" ^

1.15

,umi _

0.9 -

0.9

. 0.9

. {.h '

. 29.7" M, ...

3.

1... TC62 -

--~

-3:

.)

2 ... TC78 "

3 ... TC79

'-~ "' "-- '-- '

3 ',

"-- ~--- --- --- 3' 4 ... TC63 --

.5. U 5 ... TC31 _

.... ..... . ... ... g. n

--- - -- - --- - --- ~--

7 ... TC60 ' -- ~-- ---- "-- ~ ~~ "

5:

8 ... TC82 ~ -- ' ~~ ' -~~ "'- "- " 5. 50"-

9 ... TC83 10."

" ~ " ~ -" ' "- " -

10 ... TC61 10.

11... TC33 10' 12 ... TC34 - U

10. n 10.
5. 35" 5.:
5. U -

Drain Line

' g, :..

in -

  • ~

_. ' FLUID TEMPER ATURE Stesm Ve TESTvs.

-]g _

us.

. ,e W __ - as 0.9 ANALYSIS

. o., bO377 g ...

...... ...... ... .... .g 65 psia 5 ::::E N  ::: 3. 70 F 2:7= N.r1 ,

CV 60 Wa :e r Jraincown VESSE_ ~03 _. Q. ~EV3 TL 21 2 0 L10VID TEMPERATURE

. s TL 20 3 0 LIQUID TEMPERATURE e e TL 20 2 0 L10010 TEMPERATURE

; TL 19 3 0 Ll0010 TEMPERATURE e e TL 19 2 0 LIQUID TEMPERATURE g.k l

'l l

'I

'l i

I

l Il ~

u '" FLUID TEMPER ^TURE Swam W e

~

. -] L ur TEST vs.

. =l" =..=.

ANALYSIS

,, b93y,

.g g

= = q= .. tj 65 psia p

W~ . ME:: ~. '- 70 F 222 :!:

CV~60 Wa :e r Jraincown VESSEL 3rd from TOP LIQ. T E M P-.

TL 12 7 0 LIQUID TEMPERATURE e a TL 11 7 0 LIQUID TEMPERATURE

_ _ TL 10 7 0 LIQUID TEMPERATURE TL 9 7 0 LIQUID TEMPERATURE-y e

y e TL ts 7 0 LIQUID TEMPERATURE _

V l

I 1

g

L efrarralcueVAasuhngb l Predicted Void Fraction i

ANALYSIS B0377 Steam Line 65 psia 70 F t < 40 sec 0.9 0.9 0.9 _

a=1.

. ;;j a <= 0.2

3. ct = 0.

~

b:

3.

ANALYSIS B0377 65 >sia 70 3 Steam Line 1.15" 1.15 0.9 t = 40 sec -

0.9 0,9 a = 1.

3.

g E a=0.

. 3.

  • t

i detmeAmuYNo&ngh l

Predicted Void Fraction ANALYSIS B0377 Steam Line 65 psia

, 70 F 1.15" ,

i 1.15 0.9 t = 60 sec -

0.9  !

0.9 l

1.5 l 1.5 1

3. a c 1.

-[ ] a <= 0.2 ,

. 3. E ct = 0.

5." l 1

l l

l

.l i

i l

l 1

1 ,

I i

)

1 1

1 1

MASS FLOW (Analysis) l I

B0377 1

i t < 40 sec. l' Steam Line

....> Liquid

==> Vapor N

e

/

/\ <

N/ .

\/

,2 .g .

9

/\

\/

<-- (- --)

_ ... ... .. ... + .... . ...a ... ... . . .. . . . ..

V 9/

i A

v

....... ...,__.. . ._4._. ._.

A

.4.. .. ..

.t.__.. .. .

4.__ ..

__4... .

___9.___, .. ..

4_... .

..p.. ...

. _ . .p . . _ .. .+_.. ..

._.y... . ..y... ...

4 1

1

'1 i

l

^l

MASS FLOW (Analysis)

B0377 t = 55 sec.

Steam Line . .

....> Liquid

==> Vapor s

v r

s i

h

/

f b /

> / 4-

- e s .

W ' , h

  • ""'P

.._p__. _ ___(p._ ._ q _. _. _.

pip I .

. ..__. . ______ . .....\___..

)

_ .Y ._ _ ....

<-~ h . .... . . ....

g .

p anu t

)\ ,V A

e W- < Y >

__p__ _

_+____ .. __ ___ ..

v e .) <-- 4 _v

.h__. . __ ..... .

..g... ...

__4.__ __ _.

4_... ..

...p____ __

_f.._. ..

, > +

._._f..... .. _. ._....

drems/emtVEMTe CONCLUSIONS :

o _WCOBRA/ TRAC Vessel Component model captures the key phenomena observed in the test.

o Condensation rates are significantly greater than the current code models.

o Use of 3-D Vessel component model will support the application of One-dimensional TRAC and NOTRUMP models.

t

-q WCOBRA/ TRAC -

wCOBRA/ TRAC 1-D COMPONENT MODELING OF CMT TEST James P. Cunningham Westinghouse Electric Corporation March 14-15,1994 CRMC2.WPF

WCOBRA/ TRAC =

WCOBRA/ TRAC 1-D COMPONENT MODELING OF CMT TEST Application of a standard safety analysis code with noding similar to a plant safety analysis

. Overall model and noding

. Results of Analysis compared to tests

. Conclusions

.WCOBRA/ TRAC --

WCOBRA/ TRAC 1-D COMPONENT MODEL DESCRIPTION CMT  :

Cell heights = SSAR model l Detailed wall heat conduction. Heads are separated to model. correct surface area and mass '

Constant wall condensation heat transfer coefficient Pressurizer-type level sharpening model Standard Best-Estimate interfacial heat transfer '

4 4 .

t.

. i

CJ!ntC2.WPF

._-_.______________________________.___-_a_ ._..._________1__

_._1.________ __ _ _ _ _ _ _ _ _ . . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _-

WCOBRA/ TRAC WCOBRA/ TRAC 1-D COMPONENT  ;

MODEL DESCRIPTION i Steam-water Reservoir

< Standard tee components for branching Detailed wall heat conduction i

4 3 c:

Piping _  !

l Valves.

Open slowly.. ,

i -- Pressure boundary condition

, Supplies saturated steam to steam-water reservoir 5

h .I f

f

-k

CMT TEST WCOBRA/ TRAC 1-D COMPONENT MODEL t

P 7

m nun 4

e 4

O 0

t

[ '- Preliminary Results' for Pre-operational Test B0377

' CMT Cold Draindown 50 psig Nominal Pil-ABS 1 2 377 S/W RES PRESS TO PCV  ;

- - - - WC/T 1-D 10 2 reservoir pressure 43 h a

1 i

e 3

b w-

<pp 4

___.__.__.. _ __._i_ _ __m________.___--_.____s _ 3_2. -- -

< - + v

W

A _

^

Preliminary Results for Pre-operational Test B0377 ,

I CMT Cold Draindown 50 psig Nominal ':

PTS-ABS 1 2 377 CMT VESSEL PRESSURE  :

15 CMT pressure .

WC/T 1-0 1

- - , et3 h .

}'

3 t

i i

t

. W I hm ,

m-- , ,- 4 y,= ,,,%.. w - ~ ..y 4-- , .- % . ,. y -w- ,

-e . u w r,,,. w is. - e > . _ _

Preliminary Results for Pre-operational Test B0377

~

CMT Cold Draindown 50 psig Nominal F-DIS 1 2 377 DISCHARGE LINE FLOW


WC/T 1-0 15 1 Moss flow out of CMT ,

- et s b G

4 m

b I F i ,

=

~

~

b v

q W

O L

F T

ET -

LM T C l

U a OI i

n .

o m T t 7 o N u I o 7 N

_ 3 g T w

'W o 0 i CI B s p

f t 7 -

s 0 7 r e 5 3 g e

T i l n n a w 2i n o i

o d 1

t a i n

r e a r

1 5 1

p D o- d e

r l

o T 0 P C U -

O1 r T T f

o M MT C/

t s C MW C

l u

. s -

e R -

y -

. r a

i n

m

, i l

e r

P L

'y .

^

.  : ~ E

~

- Preliminary Results for-Pre-operational Test B0377-CMT Cold Draindown 50 psig Nominal Comparison of Fluid temperatures'in~ Upper half _of CMT Test temperature at 111.6 inch level TC80

--- TLN 15 1 0 L10010 TEMPERATURE

- ct,b -

F

~

W 4

... . .L. .. . -

. . . - . - - _ , , . . . . _ . ._ , . . - - , .. . . ._m-.

y Preliminary Results for Pre-operational Test 80377 CMT Cold Draindown 50 psig Nominal

. Comparison.of Fluid temperatures in Upper half si CMT Test. temperature at 102.6 inch level TC33.61

--- TLN 16 1 0 LIQUID TEMPERATURE a3 b~

N 4

h I-l

~

W .

4

?

,.e . - ., - * + .- vw. r _ _.__-____._2_ ___._ . m_ _ _ _ _ _ . _ _ _ . _ _ . .

'u

~

Preliminary Flesults for Pre-operational Test B0377 CMT Cold Draindown 50 psig Nominal .

Comparison of Fluid temperatures i n Upper halfTC41.42 of CMT Test temperature at 80.5 inch level


TLN 16 3 0 LIQUID TEMPERATURE

- %b l

I l

O 6

w_ __m____m=__._____m________-.m_____x _ _ _ _ _ _ _ _ _ _ _ _ _

,a____m _ . _ . _ mm am.__-xm .__n. A_ ______u___,_=________ _m.______m___-_ _______.a

,__. 7

- 1 Preliminary Rocults for Pre-operctinncI Test B0377 _,j CMT Cold Draindown 50 psig Nominal Comparison.of Fluid temperatures'in Upper hoti of CMT Test temperature at 57.5 inch level TC46-48 TLN 16 5 0 LIQUID TEMPERA 1URE

- et, b'

.j

-l

~

G

-m -,o,

- _a _miz.o-_mr..u. -, - _ - . . - _ _ - _.___ s_ .2e:.ma_-___:_m__ __ .-.e.mm___.a_____m_--u-_______:____.-______ - -

_._-w .-m-

5,:

WCOBRA/ TRAC WCOBRA/ TRAC 1-D COMPONENT MODEL OF CMT TEST Conclusions The 1-D component model captures the key thermal / hydraulic effects, including the time of draindown, for this test.

Westinghouse will compare the model with tests over a wide range of conditions

- - _ _ _ _ - - _ - = _ _ _ - _ _ _ . . _. .. __ _.

T a

NOTRUMP CALCULATIONS OF PRE-OPERATIONAL TEST B03Tl J. JAROSZEWICZ INSTITUTE OF ATOMIC ENERGY, SWlERK/ WARSAW J. P. CUNNINGHAM L. E. HOCHREITER mssuvmm ,

I-

/'

A

-m

  • THE CORE MAKEUP TANK TEST WAS MODELED WITH NOTRUMP USING THE SAME NODAllZATION AS THE SSAR CALCULATIONS
  • PRE-OPERATIONAL CONSTANT PRESSURE CMT DRAINDOWN TEST B0377 WAS MODELED
  • INITIAL CONDITIONS CMT IS INITIALLY FULL FILLED WITH COLD WATER (TEMPERATURE OF WATER AND WALL ARE TAKEN FROM TEST DATA: bO311-09-1993)

STEAM LINE 1 INITIALLY CLOSED, OPEN TO START TRANSIENT STEAM / WATER RESERVOIR LIQUID LEVEL WILL BE ABOVE THE EXTENDED END OF STEAM LINE 2 PIPE (65 psi, SATURATED)

ACCUMULATOR FILLED DRY STEAM AT 65 psi CMT DISCHARGE LINE IS OPENED

  • TEST RUNS ARE INITIATED BY OPENING STEAM LINE NO.1 AND INITIATED FLOW THROUGH DISCHARGE LINE TO STEAM / WATER RESERVOIR (AFTER 30.19 sec.)

0756U+031094

.__ q c

=E e

,i M

.E 1

z h

. ll lll a

s.

5 s

H 2

J 2

E i

  • a

N.

b"

_. AiC

- -i

' .L l

Figure 2. CMT nodes: Fluid Nodes and MMal Nodes 1

5 f g

t I

~

L__;

Test Run bO377--NOTRUMP Run j33 Test bO377 - CMT droladown at conatont pressure. 50 psig nominct EMIXFN 56 0 0 CMI-10P T-NODE MIXI


EMIXfN 2 0 0 CMI-10P CYL1NDRICAL gg7,ggyp

- ----- EMIXFN 3 0 0 CMT-BOTTOM CYLINDRI EMIXFN 4 0 0 CMT BOTTOM MIX 1URE 42 u_

40

~

v 38 s N

m .

x '

._J _ 's

'_?_'_ %

g 36 _._._ _ . _ . _ . _ . _ . . _ . _ . _ . _ . . _._._._._. _._ _.___ _.._._._._

cc -

"3 -

X

_ 34 y _

t I t t 9 i I I I i i I I ii I I I i i I I I I t I t

-50 0 50 100 150 200 250 300 TIME (S)

% 8- J gir"Il

.r Teat Run b0377--NOTRUMP Run j33 - - - - - - - - - - - - - - - - - - -

Test bO377 - CMT droladown et constant pressure. 50 pelg nominal.

PTS-ABS 1 2 377 CMT VESSEL PRESSURE P E N- 56- 0 0 CMT-TOP T-NODE PRES 4

k i

a 4

l l -

I-t

O gr g n r., w .

Test Run bO377--NOTRUMP Run j33 - - - - - - - - - - - - - - - - -

Test bO377 - CMT droladown et constant pressure. 50 psig nominal F-SL1-DE 1 2 377 S/L 1 BEST-ESI FLOW


WGFL 11 0 0 PIPE 11 10 CUT TOP

- a,b S

u

s

~~

ypi""It sr .

Test Run bO377--NOTRUMP Run j33 ------------------

Test bOJ77 - CMT draindown et constant pressure. 50 poig nominal F-DIS 1 2 '377 DISCHARGE LINE FLOW

---WFL 4 0 0 CMT BOTTOM 10 PIPE

+

k i

f 4

4

'I

.I c .s .w . . in 4w - , w a - c sia ~

, -e- ei v ,w , we w . r -m.- +.-

P M

U t

I- i T

"Ba O 0 r N 0

l

'l T _i,l ' ,1 1 I ig

' 3

- a P L , - .

- nMARA - ,_ "

i E CDR '

mT NE

-n o

EDLM I

RI P s' 0

- 5

- g DNYE _ , 2 OI CT '

i

- sNL _ _'

- p - YMM _ ,,

- T COO ~

- 50 T T

/ '

0

- PPT T ~

OOOO ' "

0

- 2

- reT T BB  :

uT T T T s

, / W

sMMMM / /

m'

--e sCCCC /

r p

i

)

_' 0 5

3 0000 / 1 3t jn

/

o /, ' )

t S n a - ' (

un 0 0 E Ro0000 c # '

1 1

i I

T Pt p '

Ma '

U R n w 6 i 34 To5 0 Od 5 Nn i a

r ' '

7d '

7 T 0 3 M OC NNNN b F F F F '

MMMM n7 T 1 T T u7 0 R3 - - - - - ~ - - - - - - - ~ - - - - - - .. ,' 5 O -

t b - -- - 0 0 st -- 0 0

0 5

0 0

0 5 0 5 es - -- - 3 2 2 1 1 T e T

mv w&DH mwC2wW 1

. ~

AP600 CMT Test ~~

E NOTRUMP Regions'& Fluid Thermocouple Locations I

ltf"3 CMT WITH T/C'S AVERAGED FOR NOTRUMP Ar ..

Test Run bO377--NOTRUMP Run j33 ------ -----------

Test bO377 - CMT droladown et constant pressure. 50 psig nominal T-CMT4-L 1 2 377 CMT S.R 4 TEMP


TMFN 56 0 0 CMT-TOP T-NODE TEMP

- 6b

=

N

,w

h CMT WITH T/C'S AVERAGED FOR NOTRUMP nr...'

Tes. Run bO377--NOTRUMP Run j33 ------------------

Test bO377 - CMT draindown at constant pressure. 50 psig nominal T-CMI3-L 1 2 377 CMT S.R.3 TEMP TMEN 2 0 0 CMT-TOP CYLINDRICAL

- Agb

g}ir"Y CMT WITH T/C'S AVERAGED FOR NOTRUMP _ _ _

nr..:

Test Run bO377--NOTRUMP R u r, j33 - ----------------

Test bO377 - CMT draindown et conatont pressure. 50 psig nominal I-CMT2-L 1 2 377 CMT S.R.2 TEMP IMFN 3 0 0 CMT-BOTTOM CYLINDRI

- Agh m

l .

. _ - = _ - - _ - _

f CMT WITH T/C'S AVERAGED FOR NOTRUMP

-r Test Run bO377--NOTRUMP Run j33 ------------------

Test bO377 - CMT draindown at constant pressure. 50 pelg nominal T-CMT1-L 1 2 377 CMT S.R.1 TEMP


IMFH 4 0 0 CMT BOTTOM IEMPERAI e

m.

4

.' AP600 CORE MAKEUP TANK TEST - NOTRUMP CALCULATIONS:

1.

CMT DRAINDOWN TEST AT CONSTANT PRESSURE (test: bO3'/?)

-i INITIAL CONDITIONS ARE AS FOLLOWS:- < l

- CMT IS INITIALLY- FULL FIT.TED WITH COLD WAn31 (TENfPERATURE OF WATER AhB WALL ARE TAKEN FROM TEST DATA: bO311-09-1993), ,

- STEAM LINE'1 INITIALLY CLOSED, OPEN TO START TRANSIENT, .

- STEAh! LINE 2 CLOSED,

- STEAhUWATER RESERVOIR LIQUID LEVEL WILL BE ABOVE THE EXTENDED END OF STEAM LINE 2 '

PIPE (135psig,' SATURATED), .  !

- ACCUMULATOR FILLED DRY: STEAM AT 135psig,

- CMT DISCHARGE LINE IS OPENED.

TEST RUNS ARE INITIATED BY OPENING STEAM LINE NO.'1 AND INTTIATED FLOW THROUGH DISCHARGE

' - LINE TO STEAM / WATER RESERVOIR (AFTER 30.19 sec). INITIAL TOTAL MASS FLOW RATE IS EQUAL 0 (i.e. i WFL=0.0 FDR EACH FLOW LIhW.

h 4

  • k

-l.

, . . . _ _ _ . . . _ _ .. . - . - _ _ _ m -- . _ - . . - - - . - - . .. - . - - _ _.

Test Run bO379--NOTRUMP Run j 37 ------------------

Test bO379 - CMT droIndown at constant pressure. 135 psig nominal EMIXFN 56 0 0 CMT-TOP T-NODE MIXT


EMIXFN 2 0 0 CMT-TOP CYLINDRICAL NOTRtafP EMIXFN 3 0 0 CMT-80TTOM CYLINDRI

-- - - EMIXFN 4 0 0 CMT BOTTOM MIXTURE 41 _

4 e

e m 40 H  :

u_ -

" ~

39 _

e M

w 38

~

\

w

~

37 '

s w  : '

s (r -

s

~

s 36 _ ._.x _____

X -

'N-s

's. s E 35 _

6 g N M N 6 h 46 M N W6 N 6 6.M N N N N N

~ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

34 ' ' ' '

-50. 0 50' 100 150 200 250 300 TIME (S)

Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CMT draindown at constant pressure. 135 psig nominal PT5-ABS 1 2 379 CMT VESSEL PRESSURE


PFN 56 0 0 CMT-TOP T-NODE PRES Osb t

P e

__ . - - - . _ _ _ - - _ - - _ _ _ _ _ . - . _ _ _ - _ c___.__--__-_----_--______.;un - . - - ,n. .

Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CUT draindown at constant pressure. 135 psig nominal I

j F-SL1-BE 1 2 379 S/L 1 BEST-EST FLOW


WGFL 11 0 0 PIPE 11 TO CMT-TOP

- a>b 1

b Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CUT draindown at constant pressure. 135 psig nominot F-DIS 1 2 379 DISCHARGE L1NE FLOW


WFL 4 0 0 CMT BOTTOM TO PIPE

  • )2 e

N

~

~

l-I

P M

U ~

R T

O N 0

. 0 l

, 3

- aPL I T

- nMARA _

- mT iECDRNE I

- o

- n EDLM gDNYE RI P

-.- W ,

0 5

I ' I I I  ;:

, a, 2 OI CT .

i ,

- sNL

- p - YMM a., ,

- T COO ,

5 3 T T - ~ - ,

0

- 1 PPTT ~ -

- OOOO

. T T BB ' - - 2 0

e r

- u TT TT

- ssCCCCMMMM

/.

- e ' ,

0 r .

5 7p0000 i

' /. _, 1

)

3 '

_, S j

t n

- (

a , ,

E nt / M u s Ron0000 c

% /

0 0

1 I

T

/ ,

P t

/ - ,

M a '

U '

-- -r Rn6234 -

Two 5 .

T 0 Od .

i

_T 5

Nn .

- i

- r a # _m 9d . _ -.'

7 3 T

0 O M CNNNN .r b F F F F .

n9

- MMMM zT T T T T '

u7 '

0 R3 - - - _- - ~~ ~ _~ ~  :~ *~ 5 O

t b -

0 0 0 0 0 0 0 0 st - - 0 5 0 5

--- 0 5 0 5 es 4 3 3 2 2 1 1 TeT

^L a v weaF<ege=WV

- E -

Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CMT draindown at conetcn pressure. 135 psig nominal T-CMT4-L 1 2 379 CMT S.R 4 TEMP

---TMFN 56 0 0 CMT-TOP T-NODE TEMP d>b b

m - m

Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CMT draindown at constant pressure. 135 psig nominal T-CMT3-L 1 2 379 CMT S.R.3 TEMP


TMFN 2 0 0 CMT-TOP CYLINDRICAL 4; b e+v-- , - - ,

Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CMT droladown at constant pressure. 135 psig nominal T-CMT2-L 1 2 379 CMT S.R.2 TEMP


TMFN 3 0 0 CMT-BOTTOM CYLINDRI

~ 4 12 3

Test Run bO379--NOTRUMP Run j37 ------------------

Test bO379 - CUT draindown at constant pressure. 135 pelg nominal T-CMT1-L 1 2 379 CMT S.R 1 TEMP TMFN 4 0 0 CMT BOTTOM TEMPERAT

- a,b

CONCLUSIONS

. COARSE NODING USED IN NOTRUMP CAPTURES THE KEY THERMAL-HYDRAULIC BEHAVIOR IMPORTANT FOR PWR ANALYSIS RAPID CONDENSATION - -> STEAM FLOW DELAY IN INJECTION HEATUP OF UPPER NODE

- BASIS FOR THERMAL-HYDRAULIC PROCESSES WERE SHOWN IN MORE DETAILED CALCULATIONS

- TWO STEP APPROACH:

MORE DETAILED CALCULATIONS FOR UNDERSTANDING SIMPLER MODELS FOR PLANT ANALYSIS

- APPROACH WILL BE VERIFIED WITH INTEGRAL TESTS

& P

.O INTEGRATION OF TESTS / ANALYSIS FOR CMT 4

I L. E. HOCHREITER NUCLEAR SAFETY ANALYSIS AND STRATEGIC DEVELOPMENT

~

a ., . i-- ~ w . _

'O INTEGRATION OF TEST / ANALYSIS FOR CMT OBJECTIVE IS TO USE THE CMT TEST TO DEVELOPNERIFY THE CMT MODELS IN NOTRUMP AND WCOBRA/ TRAC BOTH CODES WILL BE USED TO MODEL THE TESTS CODE-TO-CODE COMPARISONS WILL BE PERFORMED

+

TESTS WILL COVER ALL OPERATING MODES OF CMT USING THE FINAL MODELS FROM THE CMT TESTS; SPES SYSTEMS TESTS AND OSU SYSTEMS TESTS WILL BE ANALYZED BLIND TEST ANALYSES ARE PLANNED IF DEFICIENCIES EXIST, FOR THIS MODEL, THE ORIGINAL CMT TESTS WILL HAVE TO BE REINVESTIGATED THE INTENT IS TO NOT USE THE SPES OR OSU DATA TO ADJUST MODELS BUT TO USE THESE TESTS FOR VERIFICATION m:um

e t

l 1

lllll1111 l

%. I l

ll ll t

J I

E .

<C 2

2 3 4 (D

1 I

I i

. i 1

l l

i l

l 1

i l

1 a

I i

W O

'e e

SUMMARY

CMT SCALING LOGIC INDICATES THAT THE TEST WILL CAPTURE THE KEY THERMAL-HYDRAULIC PHENOMENA CMT TEST IS OPERATIONAL AND IS PRODUCING USEFUL DATA DATA ANALYSIS OF THE TESTS IS PROGRESSING AND WE CAN CALCULATE THE THERMAL-HYDRAULIC PARAMETERS OF INTEREST FROM THE DATA ANALYSIS OF THE CMT TESTS IS ALSO IN PROGRESS DETAILED ANALYSIS WILL BE USED TO HELP UNDERSTAND THE DATA AND CMT BEHAVIOR AND TO SUPPORT THE APPLICATION OF SIMPLER MODELS FOR PLANT ANALYSIS 0752LH-030794

-. . - _ - - _ - _ _ - . _ _ _ _ _ _ - .