ML20084F709
ML20084F709 | |
Person / Time | |
---|---|
Site: | Quad Cities |
Issue date: | 02/10/1984 |
From: | COMMONWEALTH EDISON CO. |
To: | |
Shared Package | |
ML20084F695 | List: |
References | |
ID-TS-4C-4D, NUDOCS 8405040288 | |
Download: ML20084F709 (56) | |
Text
{{#Wiki_filter:. ._ P r
, ID/TS-4C,4D i'
4 1 .! REACTOR CONTAINMENT BUILDING i INTEGRATED LEAK RATE TEST ) i 1
. ~~ .
1 i I 4 9 l QUAD-CITIES NUCLEAR POWER STATION
; . UNIT TWO FEBRUARY 9-10, 1984 i
i i f I ( f I
- i. "
B405040288 840423 PDR ADOCK 05000265 - Pf _ _ ,
. PDR. , .-e9-y e- er,, ,ww+-. ,,..,r, ,e.--es,--s%twe m w -r,s e- ,9- +.y g+ = g n me> g- . +-- -= tr e ' ' * - -= or 4 "**' Y W- 4 w
s TABLE OF CONTENTS PAGE i TABLE AND FIGURES INDEX. . . . . . .... .. . .. . .. . . . . .3 ~ INTRODUCTION . . . . . . . . . . . .... . . ... ... . . . . .4 f 4 A. TEST PREPARATIONS A.1 Type A Test Procedures . . ...... ... . .. . . . . .5 A.2 Type A Test Instrumentation. .. .. ... . . . . . . . . .5 A.2.a. Temperature . . . ..... . . ... . ..... .9 I A.2.b. Pressure. . . . . . ... . .. .. . . . . . . . .9 A.2.c. Vapor Pressure. . . .... . ... . .. . . . . .10 A.2.d. Flow. . . . . . . ... .. . . . .. . . . . . . 10 i A.3 Type A Test Measurements . ... . . . . .. . . . . . . . .10 i. A.4 Type A Test Pressurization . ..... . . .. . . . . . . .11 B. TEST METHOD B.1 Basic Technique. . . . . .... ... ... .. .. .. . .13 B.2 Supplemental Verification Test . . .. .. . ... . .. . .14 B.3 Instrument Error Analysis. ... .. . ... . .. . ... .14 C. SEQUENCE OF EVENTS C.1 Test Preparation Chronology. ..... ... .... ... .15 C.2 Test Preparation and Stabilization Chronology. .. . .. . .15~ C.3 Measured Leak Rate Phase Chronology. . ..... ..... .'16 ' C.4; Induced Leakage Phase'Chronologyi. . . ... .. .. ... .16 C.5 Depressurization Phase Chronology. . .
..... . . . . . 16 D. ' TYPE A TEST' DATA ~ ^D.1 Measured Leak Rate Phase Data . .... ..... .... . 17 D.2 Induced. Leakage Phase Data. ......... ... .. . . . 17
_1.-
.. _. . . - . - , - . u- ~ . ~ ~. ~
4
- 1
.s TABLE OF CONTENTS (CONTINUED) I d
PAGE E. TEST CALCULATIONS. . . . . . . . . . . . . . . . . . . . . . . .28 4 F. TYPE A TEST RESULTS F.I Measured Leak Rate Test Results. . . . . . . . . . . . . . .28 F.2 Induced Leakage Test Results . . . . . . . . . . . .. . . .28 F.3 Leak Rate Compensation for Non-Vented Penetrations . . . . .29 F.4 Pre-Operational Results vs. Test Results . . . . . .. . . 30 F.5 As Found IPCLRT Result . . . . . . . . . . . . .. . .. . .31 i 1 APPENDIX A TYPE B AND C TESTS. . . . . . . . . . . . .. . . .32 APPENDIX B SELECTED DATA SETS FOR TYPE A TEST. . . . .. . . .42 1 1 APPENDIX C COMPUTATIONAL PROCEDURES. . . . . . . . . . .. . .48 I 5. t
D 4 TABLES AND FIGURES INDEX PAGE TABLE 1 Instrument Specifications. .. . ... .. . . . . . . .6 TABLE 2 Sensor Physical Locations. .. . ... ... . . . . .7 TABLE 3 Measured Leak Rate Phase Test Results. . .. . . . . . 18 TABLE 4 Induced Leakage Phase Test Results . . . . . . . . . . 23 TABLE A-1 Type B and C Test Results. . . . . . . . . . . . . . . 33 TABLE B-1 Data Set for the Start of the 24 Hour Test . . . . . . 43 , TABLE B-2 Data Set for the Mid Point of the 24 Hour Test . . . . 44 TABLE B-3 Data Set for the Conclusion of the 24 Hour Test . . . 45 TABLE B-4~ Data Set for the Start of the Induced Phase of Test. . .46 TABLE B-5 Data Set for the Conclusion of the Induced Phase . . . 47-FIGURE 1 Idealized View of Drywell.and-Torus. .... . . . . .8 Used to Calculate Free Air Volumes FIGURE 2 Measurement System Schematic Arrangement . .. .. . . .12 FIGURE 3 Measured Leak Rate Phase - Graph of Statistically. . . .19-Averaged Leak Rate and Upper Confidence Limit FIGURE 4 -Measured Leak Rate Phase - Graph of . . .. . . . . . . 20. Dry Air Pressure FIGURE 5 Measured Leak Rate Phase - .... .... . . . . 21 Total Containment Pressure-FIGURE 6 Measured Leak Rate Phase - Graph -of Volume . . . . . . 22 Weighted Average Containment Temperature
~'
FIGURE 7- Induced Leakage Phase - Graph of. Statistically . . . . 24-l Averaged Leak Rate and Upper Confidence Limit FIGURE-8 Induced Leakage Phase , Graph of Volume. .. . . . . . .25
- Weighted Average Containment Temperature ,
1 FIGURE 9 Induced Leakage Phase Total. . . . . .. . .....26-Containment Pressure FIGURE 10 . Induced Leakage Phase - Graph of . . . . . .:. . . . . 27 j Dry. Air Pressure t l-i
- f. -
~
l-
. - , v ~
. . .. .- - . - .- . - - . .- . -..- - - . ~ . . . - . ---
l , INTRODUCTION
; This report presents the test method and results of the Integrated Primary
- Containment Leak Rate Test (IPCLRT) .successfully performed on February 9-10, i
1984 at Quad-Cities Nuclear Power Station, Unit Two. The test was performed 1 in accordance with 10 CFR 50, Appendix J, and the Quad-Cities Unit Two Technical
- Specifications.
i f
. This test was conducted using the ANS/ ANSI N45.4-1972, 24 hour Mass Plot method. The calculated leak rate, statistically averaged leak rate, and the
, statistical upper confidence limit were computed in a manner consistent with
- the ANSI /ANS 56.8-1981 standard.
j Simultaneously with the above method, calculations were performed using the i Total Time Leak Rate method of BN-TOP-1, Rev. 1, a Bechtel Corporation Topical l report approved by the Commission for short duration testing. The test duration criteria of BN-TOP-1 were easily satisfied for terminating the test in 10 hours 4 or less. The Commission presently requires adjustments to the IPCLRT result for Type B and C repairs performed during the refuel outage prior to the test. In order to both demonstrate a containment leakage.below the allowable limit and satisfy the "as found" criteria that the adjusted Type A test result be 1 less than 75% of L , it was necessary to perform a 24 hour test. Failure to 4 satisfy the latter* criteria would have made it necessary to perform IPCLRT's on consecutive refuel outages. Without regulatory relief (e.g. a higher "as i found" corrected limit than for the IPCLRT), short duration testing has very ] little advantage to Quad-Cities, except in the circumstance where the test ! will be interpretted as an "as found" failure regardless of the test technique.
- Fortunately, this was not the case for this test. The BN-TOP-1 data is not.
included in this report because it was not used for concluding the IPCLRT. 'l f l i i i I i I l 4-
,--v. g . . - . . y f .~+ v .
. - . _ - . . . . . _ _ . . - . . - . _ - _ . = _ _ . - - -. . . . - _ . -
5 I SECTION A - TEST PREPARATIONS A.1 Type A Test Procedure The IPCLRT was performed in accordance with Quad-Cities Procedure QTS 150-1, Rev. 10, including checklists QTS 150-S1, S2, S3, S4, S7, S8, S9, S10, S11, j S12 S18, and subsections T1, T2, T3, and T8. Approved Temporary Procedure 2035 was written for the operation of the IPCLRT air compressor and the method
- for pressurizing the containment volume. Approved Temporary Procedure 2036 was written to update QTS 150-S7 (Unit Two valve line-up) for recent modifications to containment attached piping. ,
i j These procedures were written to comply with 10 CFR 50 Appendix J, ANS/ ANSI
- N45.4-1972, and Quad-Cities Unit Two Technical Specifications. The methods j for calculating the containment leakage and upper confidence limit are in compliance with the ANSI /ANS 56.8-1981 standard. Compliance with all. features '
of the ANSI /ANS 56.8-1981 standard was not possible, because the Commission
~
) has not approved the standard for use due to a pending change to 10 CFR 50, j Appendix J. l A.2 Type A Test Instrumentation Table One shows the specifications for the instrumentation utilized.in the ! IPCLRT. Table Two lists the physical locations of the temperature and humidity.
- sensors within the primary containment. Figure 1 is an idealized view of the
- drywell and suppression chamber used to calculate the primary containment free
- ! air volumes used for weighting the sensor readings. Plant personnel performed all test instrumentation calibrations using NBS traceable' standards.
4 i I t l s i i I
- - S
. . . =. - = - . . .
h TABLE ONE INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO. RANGE ACCURACY REPEATABILITY Precision Pressure-Gages (2)- Volumetrics 0-100-PSIA 1.015 PSI 1.001 PSI Burns RTD's (30) Engineering SPIAl-5\-3A 50-200 F i.5 F .1 F Volumetrics Lithium ' Dewcells (10) (Foxboro) Chloride +140 F 11.0 F 1.5 F h Pall Trinity
' Thermocouple Micro 14-T-2H 0-600 F 12.0 F .1*F Fischer -Flowmeter- & Porter 83 0-8.44 scfm 1.084 scfm Level Indicator LI;1-263-100A- Yarway_ SCR/M +60"H O 2
k
TABLE TWO. SENSOR PHYSICAL LOCATIONS i RTD NUMBER SUBVOLUME ELEVATION AZIMUTH
- i 1 1 670'0" 180*
! 2 1 670'0" 0*
- 3 2 657'0" 20*
. 4 2 657'0" 200*- 5 3 634'0" .70* 6 3 634'0" 265* 7 4(Annular Ring) 643'0" 45* i 8 4 615'0" 225* 9 5 620'0" 5* 10 5 620'0"- 100* 11 5 620'0" 220 l 12 6 608'0" 40* 13- 6 608'0" 130* . 14 6 608'0" 220* 15 6 608'0" -310 16 7 598'0" 70* 17 7 598'0" 160* J 18 7 598'0" 250* 19 7 598'0" 340 20 8 587'0" 10* 21 8 587'0" 100* 22 8 587'0" 190* 23 8 587'0" 280* , i 24 9(CRD Space) 586'0" 0* i 25 10(Torus) 578'0" 0* l 26 10(Torus) 578'0" 60 27 10(Torus) 578'0" 120 28 10(Torus) 578'0" 180* } 29 10(Torus) 578'0" 240* 30 10(Torus) 578'0" 300*: Thermocouple 11(Rx Vessel) (Inlet to CU Hx) i DEWCELL NO. SUBVOLUME ELEVATION AZIMUTH 1 1 670' 180*
; 2 2,3,4 653' 90*
3 2,3,4 653' 270* 4 5 620'- 0* 4 5 6,7 600' 45* 6 6,7 _600' 225*
; 7 8,9 586' 0* ! 8 8,9 586' 180*
9 10 578'- 90* 10 10 -578' -270* Thermocouple (Saturated)' 11 --- '---
- WEST = 0* AZINUTH-
Ideallaso View of Or,.atI and Two us
.. Used to Calculate Free Volunas 37'7' ']
b 34'8" M _681 ' 3 677'6"
,/< ,, - _ . _ _ c66. . . . /,I , . 662'0" M _2'0"- '
J
, l/ /fs'f /-
1
/
_ 655'2"
..[//d // l d' ,! W U 652'8" (Grating) 3 ' Free -
k l " - .
- s
, Weliame / l./ '/ ,,, 635'10" ,4.~,.17 /, /. .-i / j' , [, f 4,r_,,, _, 622'8" / . :/ / .. (r.rneing)
- f. (3 % " 'y ,, -,
g
'f , s ,o / /, 5 * * ,/./,/ ' \ ,~~~~ 61te'6" ,' / /,//// / 6 ',
i (Gra t ir.g',
,,,,,QCS'2 " .o5's" ,____ g.. p. i _ 6- i,-
f-- 20 ' T ' 7
/ s ;/ / l e' / . . . . '
5 e / ,
/ 8 j'w'*i'd! / / . / // te ' '
30'0" /O 569'10" Fl**r) ----8 --
. - Sregn . \v .
i l l FIGURE 1 l
. . _ - - , . -._ ., =_,-_.-. .-_ ..
i A.2.a. Temperature - l The location of the 30 platinum RTD's was chosen to avoid conflict with l local temperature variations and thermal influence from metal structures. I i The RTD's were manufactured by Burns Engineering Inc. and are Model SP 1Al-5 -3A. Each RTD and its associated bridge network was calibrated to j yield an output of approximately 0-100 mV over a temperature range of 50-150 F. j Each RTD was calibrated by comparing the bridge output to the true temperature
- as indicated by the temperature standard. Three temperatures were used for
! the calibration. Two calibration constants (a slope and intercept of the regression line) were computed for each RTD by performing a least squares fit l of the RTD bridge output to the reference standard's indicated true temperature. I t The temperature standard used for all calibrations was a Volumetrics RTD Model VMC 701-B used with a Dewcell/RTD Calibrator M: del 07731. The standard was calibrated by Volumetrics on July 27, 1983 to standards traceable to the j' NBS. The sensors used during the test were calibrated within 6 months of the calibration date for the standard, i The plant process computer scanned the output of each RTD-bridge network
- . and converted the output to engineering units using the calibration constants.
I j A.2.b. Pressure ! Two precision quartz bourdon tube, absolute pressure gauges were utilized ? to measure total containment pressure. Each gauge had a local digital readout l and a Binary Coded Decimal (BCD) output to the process computer. Primary
- containment pressure was sensed by the pressure gauges in parallel through a '
) 3/8" tygon tube connection to a special one inch pipe penetration to the
- containment.
i Each precision pressure gauge was calibrated from 0-100 PSIA in 5 PSI' increments using a third precision pressure gauge (Volumetrics Model 07726) j- that had been sent to Volumetrics for calibration. The pressure standard was 1 calibreted on July 26, 1983 using NBS traceable reference standa'rds. The pressure instruments used during the test were calibrated within 6 months _of j the standard's calibration. 1 I The digital readout of the instruments were in " counts" or arbitrary units. Calibration constants (a slope and intercept of a regression line)- were entered into the computer program to convert " counts" into true atmospheric - 3 pressure as read by the third, reference gauge. No mechanical calibration of the gauges was performed to bring their digital displays ~into agreement with , j true pressure. i 1 1 .
- j. H I
_ . - - , . - - _ - - .. - _.-,,,,~,..,. ._- , .. ._.m, _ - , _ . . , ..
A.2.c. Vapor Pressure Ten lithium chloride dewcells were used to determine the partial pressure due to water vapor in the containment. The dewcells were calibrated using the Volumetrics standard described in section A.2.a. and a chilled mirror dewcell standard calibrated on August 3, 1983 by Volumetrics. The calibration constants (the slope and intercept of a regression line) for cach dewcell were computed relating the 0-150 mV output of the signal conditioning cards to the actual dewpoint indicated by the reference standard. A.2.d. Flow A rotameter flewmeter, Fischer-Porter serial number 8311A9265R0001, was used for the flow measurement during the induced leakage phase of the IPCLRT. The flowmeter was calibrated on December 7,1983 by Fischer-Porter to within 11% of full scale (.8-8.44 SCFM) using NBS traceable standards. Plant personnel continuously monitored the flow during the induced leakage phase and corrected any minor deviations from the induced flow rate of 6.30 SCFM by adjusting a 3/8" needle valve on the flowmeter inlet. A.3 Type A Test Measurement - The IPCLRT was performed utilizing a direct interface with the station process computer. This system consists of a hard-wired installation of temperature, dewpoint, and pressure inputs for the IPCLRT to the process computer. The interface allows the process computer to scan, calculate, and print results with minimal manual inputs and without the disadvantages of multiplexers or positioning sensitive electronic hardware inside the containment during the test. The process computer was used to compute the statistically averaged leak rate and upper confidence limit for the ANS/ ANSI mass plot method. Data sets giving instrument outputs were transferred to a Prime 750 computer. The Prime 750 was used to perform the BN-TOP-1 calculations. Key parameters, such as total time measured leak rate, volume weighted dry air pressure and temperature, and absolute pressure were plotted on a Ramtek color terminal. Plant personnel also plotted a large number of other parameters, including temperature and partial pressure of water vapor for each subvolume, reactor water temperature and level, absolute pressure, etc. in real time. In all cases data was' plotted within approximately 30 minutes of the time it was taken. The plotting of data and the computer printed summaries of data allowed rapid identificatin of any problems as they might develop. Figure 2 shows a schematic of the data acquisition system. With the exception of a few brief problems with the process computer, all of the equipment performed perfectly. No instruments inside the containment failed during the test. A.4 Type A Test Pressurization A 3000 SCFM, 600 hp, 4 kV electric oil-free air compressor was used to - pressurize the primary containment. An identical compressor was available in standby during the IPCLRT. The compressors were physically located on a single, enclosed truck trailer located outside the Reactor Building. The compressed air was piped using flexible retal hose to the Reactor Building, through an existing four inch fire header penetration, and piped to a temporary spool piece that, when installed, allowed the pressurization of the drywell through the "A" containment spray header. The inboard, containment spray isolation valve, MO-2-1001-26A was open during pressurization. Once the containment.was pressurized, the MO-2-1001-26A valve was closed and the spool piece was removed and replaced with a blind flange. MEAUSREMEllT SYSTEM SCHEMATIC ARRAllGEMENT RTD 3/C LOCAL JUllCT10:1 (4) , BOXES (8) RTD " u (26) (26) POWER SUPPLY BOX (1) DEWCELL 5/C - 3/C (3) (0) Il0V DRYWELL TERMINAL X BOX
~
FLOWMETER
.+. , , PRESSURE I F SEi!S 1:lG N TUBillG 40/C l 40/C IPCLRT (3) -
(3) tilSTRUMENT CONSOLE .
.p.
DRYWELL PERSOHNEL litTERLOCK BULKilEAD RTD & DEWCELL SIGilAL 40/C (2) CONDITIONING CARDS PROCESS 32/C (2) C0tiPUTER ltASS PRESSURE GAUGES PLOT 11ETil0D h Il0V PRIME 3:1-TOP-1 COMPUTER METHOD I \ l FIGURE 2
SECTION B - TEST METHOD B.1 Basic Technique The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws to calculate the measured leak rate, as defined in ANS/ ANSI N45.4-1972. The inputs to the total containment dry air mass calculation include subvolume weighted containment temperature, subvolume weighted vapor pressure, total absolute air pressure, and a total containment volume correction for reactor water level. As the data sets are collected over time a regression line is computed for the measured dry air mass as a function of time. The slope divided by the "y-intercept" of the regression line gives the statistically averaged leak rate. The upper confidence limit is defined as the statistically averaged leak rate plus the product of the one-sided 95% T-distribution and the standard deviation of the regression line slope. The mathematical expressions for these calculations are found in Appendix C. There has been some criticism of this technique on a technical basis (Gogol and Reytblatt) in that the use of a volume weighted temperature in a total containment dry air mass calculation is not mathematically equivalent to computing a dry air mass for each subvolume and totalling the results to obtain a containment dry air mass. While the criticism has some merit in terms of mathmetical exactness, both methods are in fact approximations. When using the volume weighted temperature the assumption is that the dry air mass within the containment can be approximated by an ideal gas that is at thermal equilibrium at the volume weighted temperature. When computing and then totalling the dry air masses for each subvolume, the assumption is that each subvolume is in thermal equilibrium or that sensors are perfectly placed within the subvolume to measure temperature fluctuations within the subvolume. There are studies on going by EPRI and others that would seem to indicate that the two techniques do not give very different results. This certainly is what could be expected since the test gives an excellent verification of the test validity, including both the method of calculation and the subvolume modeling and weighting factors. This verification is in the form of the supplemental verification phase of the test where an induced leak must be measured along with the containment leakage to an accuracy of 25% of L . Since the verification phase of the test normally shows an accuracy much bette$ than the limit, it can only be assumed that the test method has the required accuracy. Any better method of computing the containment leakage should demonstrate an improvement in the verification phase result or show that it is better able to handle troublesome temperature related test problems, such as diurnal effects at PWR's where ambient temperatures fluctuate greatly. i l 1
.. . . ~ - - -. .
i B.2 Supplemental Verification Test The supplemental verification test superimposes a known leak of approximately the same. magnitude as LA (8.16 SCFM or I wt %/ day as defined in the Technical Specifications). The degree of detectability of the combined leak rate (containment calculated leak rate plus the superimposed, induced leak rate) provides a basis for resolving any uncertainty associated with the measured leak rate phase of the test. The allowed error band is i 25% of L
- A There are no references to the use of upper confidence limits to evaluate the acceptablility of the induced leakage phase of the IPCLRT in the ANS/ ANSI standards or in BN-TOP-1, Rev. 1. The induced leak used for this test was 6.30 SCFM or 0.772 wt %/ day.
B.3 Instrument Error Analysis An instrument error analysis was performed prior to the test to demonstrate the adequacy of the data acquisition system. The instrument system error was calculated in two parts. The first was to determine the system accuracy uncertainty. The second and more important calculation (since the leak rate' , is impacted most by changes in the containment parameters) was performed to . determine the system repeatability uncertainty. The results were 0.0833 wt %/ day ~ and 0.0169 wt %/ day for a 24-hour test, respectively. These values are inversely proportional to the test duration. Since no instruments failed during'the test and the test duration was 24 hours, these values reflect the actual test instrument uncertainties. ! The instrumentation uncertainty is used only to illustrate the system's j ability to measure the required parameters to calculate the primary containment i leak rate. The mathematical derivation of the above values can_be found in j- Appendix D. The instrumentation uncertainty is always present in the data and. , is incorporated in the 95% upper confidence limit. l 1 i I l i l l l 1
~ ,
SECTION C - SEQUENCE OF EVENTS C.1 Test Preparation Chronology The pretest preparation phase and containment inspection was completed on February 8, 1984 with no apparent structural deterioration being observed. Major preliminary steps included:
- 1) Completion of all Type B and C tests, component repairs and modifications where appropriate, and retests as required.
- 2) Blocking open three pairs of drywell to suppression chamber vacuum breakers.
- 3) Installation of all IPCLRT test equipment including the sensors, associated wiring, and data acquisition system.
- 4) In situ test of data acquisition system and ccmputer programs for data processing.
- 5) Completion of all repairs and installations in the containment.
- 6) Completion of the pre-test valve line-up.
f C.2 Test Pressurization and Stabilization Chronology DATE TIME EVENT 12-08-84 2000 Began pressurizing the Unit Two containment. 2025 2 PSIG in drywell. 2045 Containment piping and valves are being inspected for apparent leaks. 2250 Compressor tripped dut to 2N leak on auxiliary-oil pump. Containment isolated. 2300 Leak of 5 SCFH found on LT 2-1641-5B. 2327 Compressor re-started and pressurization' continuing. 02-09-84 0145 Compressor unloaded to 50%. Containment pressure
-63 PSIA.
0210 Pressurization complete at 65 PSIA. 0355 Process computer down. Restarted 5 minutes later. 0650 Spool piece removed and blank flange installed at the M0-2-1001-26A valve where the containment was pressurized. The volume weighted containment temperature is decreasing at a rate of .30 .40 degrees per hour. 1 4 C.3 Measured Leak Rate Phase Chronology j DATE TIME EVENT l 02-09-84 0649 The 0649 scan by the process computer will represent the start of the test. j Containment temperature declining .33 degrees F/hr. Instrumentation responding normally. 0900 Reactor water temperature is increasing-steadily and at a rate of less than .2 degrees F/hr. This
- will be no problem for the test.
Reactor water level is decreasing steadily and at a rate less than .5 inch / hour. This will be no j problem for the test. 1900 Decided to continue test for a full 24 hours since i the lower leak rates that can be demonstrated by continuing the test will allow passing the "as found" leakage criteria. 02-09-84 1900 Computer down. } 1920 Computer up. 2020 Still having trouble'with computer. 02-10-84 0653 The 24 hour test ~was' terminated. Total containment pressure is 62.95 PSIA. 1 C.4 Induced Leakage Phase Chronology 02-10-84 0718 Induced leak .75%' scale reading.on. flowmeter, which. corresponds to 6.30 SCFM. Radiation Protection-taking sample for release to Reactor Building. 0819 Stabilization complete. Computer program set for first scan.for,this part-of-the test. 4 1219 Induced leakage phase terminated successfully. Total containment pressure is 63.04-PSIA. C.5 Depressurization Phase Chronology-DATE' TIME EVENT l 02-10-84 1300 -Began de pressurization. J 02-11-84: 0330 Depressurization complete. .Drywell. entry.nade to-verify undisturbed instrumentation and begin~ post'
-test checklists. . ~
_. ,_1 _ r 5 -,,
(. . ..
,;. g sc - + .- ~ - - '~* ~ i 1 . .
t.Q% ,
'l M N'3 . -
a, , (. \3 . 1 4
.-\- ,, g -N s. g
- f, . , N
\ g% -
q
'\ h, V,,' SECTION.Ub wr--? * 'fYPE'A TEST _UNA ---- c ,, .. r e.
N Iw .4,g \ k' pV
,,b ', . -D.1 - Measured Leak. Rate Phase' Data
- s' s sf .
A sumnary qf the computed data using the ANSI N45.4 test method can be found in Table.3. E(own in the table are data set number,'; time; since the start of the ,tect (after pr'essurization'and stabilization comple'tt), volume weighted containment temperature',in degrees R. dry air pressure 'in-PS'IA, reactor water ~
' level in inches, total t'imq mes ured 1eak rate, point-to point leak rate, statistically averaged, leak .nte, and the ANSI calculation of the upper conficUdelimit. . N \ g% _ i ~
Graphic %results'fo,r thes tedt are four,d in Figures 3-6. ,,
,, c y D.2 Induce ~d Leakage Phase Dati - ~ .; - - \ v..
W
" s stsummary.ofthecomputed,datajusingd.heANSIN45.4testmethodcanbe fu\ndsin3-Q,ble 4. .s,,,Graphic rem 1ts for, thetest are found in Figures 7-10.
n
~
U ,. g s x
,e% ear "\ =W ; 'N
( E. , ., -I
' \
- 1 la s
'. g % L, N , 'N '\. \ ,,
r + N\ ' '
.. i , . -. s D - a \\ 5 ., .; . . ,y 9-. - ,,A % ' ,
t. Jq'- s h \% s *, .) w, i
'* g g % \ 'i ,-
9g
\
r
., g -.g .,.< t %, . *- x - .. y ,p'(s I L 'er ,
w -% w-
*g -a, m. ,
s
- s. ' . s g; d>=w , ,
g .,
* \=*
- s u E
s, ' 4 - t
*.. s .. % c N" A\ ,.g' ~
lc - : i
.t.*
g mp(C '(
..\q s' ~ '_ % m 'n .,w
_%e-
, _ 7 ers= =~
a - w ; s.
* .g '
a Q;F , 3, . r
-f', . .s. .-
4 i H3VSnH3G I'3VX HVE ESI H3SnI'1S 6HtO 38483$ nnis 2 otet 02/10#06
* * *
- sifuW vn a oJ 0vaf nBas gS aNbA tte tsee 43sa 3103v OT&4 s3 me hg vsne5 0 kTSS guA vlu 13TW UTIS 13va ode 0 u ene '
- alut lA( uv$$ 3:13'e
,a s deb 65' N3tS'E # cra 3713'aS ut 662 3ONJ N0nu S edsled 101,1 delna 1#0va llulA 0*tu 939696 6# 6'tt 06'd# 0'66480b0443 06 tt*690 0*14 ts66:t6 s# tate 06*99 0*6044696443 06 91*669 0't612 O*1912 8*ti ta 6:96 00 06*92 0'60446999t5 06 8*68dttil093 06 tt*Gt6 0't606 8'9t40 6*t406 I*0000 0*60 4:14:66 s# 6'00 06'69 0*46424bt493 06 8*60 2869603 06 tt*GtS 8*9625 8*6490 0*>lle 0 9460 0*94 ist6:t6 6# 6#
6# 6'09 06'61 8*4048994t63 06 8'68dtits063 06 tt*6fO 8*6620 8*0612 8*6964 0 4540 0*05 tste:96 s# s'00 06*t9 0*6040e469#3 06 s'etittetteB 06 9t 613 O'9912 **0691 8*9966 S'0269 l'ed- gs06s06 6# 6809 06*93 8*6840666863 06 4*6048t40003 06 9t'610 8'9946 0*9904 t'stse O*0100 1*11 4:64:96 s# 6'00 06*t4 0*etd00606lB 06 O*68dtt64999 06 9t699 O'9981 8*t666 0*4295 0 0ttE l'tC es 6:tp 6# 6'00 06*tf 8*e096419993 06 0*68dtf61093 06 tt*tet 0*9669 0*$089 0* dart G*4tel l*60 0:86:90 6# 6'00 06*44 8'6096914293 06 0*6048t40053 06 9t'00# 8*9 tit 8*60f9 0*t009 8'4981 l*94 0826s90 4# 6809 06*28 8*6096082594 06 8*68dtt06d93 06 tt*Dd9 9668 8*9696 G*dete I*01 0:t6:69 4# 6'0D 06*89 0*etted** tot 06 0*68dftttetS 06 9t'990 8*9tte t'9096 O'9t21 0* h*9049 0*4832 3*ed 0: tenet 6# 6#00 06'IE 0*6090244683 06 8'66tt466193 06 et*666 0*9t46 8*t691 6*9459 0*l086 E*la 0:66399 6# 6#06 06*04 0*6994064 tid 06 4*404t292443 06 9t'968 O 9t61 0*9496 8*9905 8*9406 2*ti es enot 6# 6 06 06*09 0*6964656903 06 0*etittitd13 06 tt*et6 8'9210 6191 0*9936 8'9002 4*60 6:lsseD 6# 606 06*02 6994060163 06 O*68dtal0663 06 ot*Dts 0'*9 tit 8'9416 0* 0*9640 0*0006 t'94 63s4:94 8# 6'09 8#'68 8'6999694298 8* 068*604t166993 06 9t '9 46 8*9866 O*6699 0*9684 8*44t6 t*01 esE6:te 4# 6'ot te'ot 0*6999tttatS 06 0'ettiletteD 06 9t'081 8'9219 0*9640 - 0*900# 0***:3
- C*06 b tetes 4# 6409 $**et 8*60960046eB 06 4*eettitit63 06 tt'tiG 0*9t21 0*4189 0*9966 0*9902 t*ld 6:66 96 06 tt*04 0*e096646143 06 0*604t196003 06 9t'900 0*9268 S D69E S ' 9 t lV 0*96d9 t*tE 40s 6:tV 6# 6# 6#
6'99 et*OD 8*4096904663 OG 0*40481t6043 05 tt**02 s'9041 s2906 O*0t9E S'961 C*66 36114:96 6# 6'tt tt*01 0*6099614043 06 0*40ttit6693 06 9 t 't46 0*9161 8* ties 0*9t46 8*9D49 t'9a lesleseW 6# 4'0D et*tS 0*6999668058 06 G*etit801993 06 tt*f06 0*9100 8*6399 s'ttut 0*9924 t*01 lettenet 4# 6#00 0D*gt 8*6999t90609 06 0'eetted66dB 06 tt*t02 8*9012 0*t681 0*9440 0*9?'l
**00 30: tete' 6# 6'09 tt*tS 8*689Et94t63 06 8*604t006193 06 tt*ttO 0'tte9 t082 t'9464 8*9t60 **14 30:66399 s# 6'06 06'96 0*69946bt46D 06 8*6048109063 06 tt*t91 0'9086 l'0000 0*9466 O'963D D*tE los eseb 6# 6#06 et'9# 0*60ttelttaB 06 0*60dtiff 063 06 tt*t66 8*9666 0'0964 0' 6*9tes 0*9940 6*6e 51:legeb s# 6'00 0t*68 O'4094009043 06 8'60ttiGutiB 06 tt*tt9 9960 8'620t 8
- 9 tis ' 9946 t'94 its46:eh s# 6'09 et*66 8'699106e243 06 O'68dt569013 06 tt*ft6 8'9tG# 0*t442 O'9t46 8'9D62 0*
D*OC llat666 4# ette 09*61 0*6991D84103 06 e*404f166948 06 tt*tiL 8'9 tit 0*64tS 0*9t04 O 9tts' S'00 11 66896 6# ttet et'ed 0*6991406943 06 0*60ttitt463 06 tt*fES O'9229 0* 0't192 8*9898 s999R 6*la lts6eseb 09 et'96 0*6090d40143 06 s'60ttlett6D 06 tt*lle 0'tt14 8'699# 1*9t96 0*9t69 6*th 328 6:eb 6# 4# 68 6'09 06*91 0'40904t61t3 06 e*48dtit66W3 06 tt*tiG 0*918d *S*0 tot 0*9ts6 O'9940 6*6e 82:86396 6# 6'09 tO 8*9090 0*etta 0*9404 0*9t0# 6*9d 82:26396 6# 6'09 9e't9 tt* 8'6090tteD49 O*6090t6048806 068'64it060063 8*604t069823 06 06 9t*tte tt*t09 8'66tE 8'letS 0*9268 S'9ttO 6*0t itst6 96 6# 6#0D tt*ff 8*6090059698 06 0 *604f0268tS 06 9t'846 0*6616 S'6t## 4*910s 0*9468 9*00 ltsetseb s# 6#09 06'tS 0*60660tellE 06 0*6042640t'13 06 tt*Eet 8*6020 G*246# 0
- 91sE ' O 9E#t 9*lg 82:64:96 s# 6'96 et* 4S 0*6066969683 06 8*40426,0063 06 tt*t06 8*6022 e*6664 8*9046 s'9160 9*te itsses 9 8# 6'00 2# 0*6920 *S*0146 0*9069 0'*9191 9*60 ltalest* 6# 6'06 00'tf tt* 8*406696e613 8*606666908606 068*6044009693 8'6048020069 06 06tt'291 tt*det 0*6966 *S*06ld O*64se S'9 odd 9*94 11:26399 4# s'te 0**21 0*6066956233 06 0*6042460464 06 tt*E09 O'6909 l046 O*60t6 s'9000 9*et ttat6:99 6# 4'09 et*tS 8*6066000063 06 0*60449002D3 06 91*246 e*6611 8'640C 8* 8'649D 0*6684 d'tO lE:tesew s# 6#00 0t 8*659$ 0*retS 0*m94s O*6041 4*31 12:6639# 00 0t'10 8*4060098663 06 8*60429E9694 14 0*60666t6 tis 06 4*4444640003 06 9f*490 06 9L*t42 8'Gt90 8*6191 8*69sO 0*601$
s'CL tta taDD 6# 4'00 0D'*lG 0*6060&bbts3 06 0*6042684613 06 et'299 8'Gtet O*4426 0*66b* G*6d*4 4*60 lesleseD s# 6'de tt*lp 0*6ebe049h'8 06 e*604Ct6tsil 06 9E*t90 8*6496 0'etil O*66eb 0*6961 d'ti ID 26:tP 4# 6' s# s'00 0D*lt D*60649e9WcD 06 G*6042Dl0wtS 06 vt*266 O'Gt09 8'9206 U*Gtm6 8*h9t6 , 4*0$ ID:t6DD s# 6'09 et*II 4064>60595 06 0*e0dEE94543 e6 91*264 8*6266 0* ret 6 Gtth 0*6690 0'00 30894:90 4# m/tt 06*50 0'606ds03698 6* 06 e*netstt6 lab 06 vt*Et6 O*GttO 0*D006 s'htbb h* 0*6686
- 0*la 56:66:90 s' s'te 0t'09 atbatseldd tu 4*t04FredoD3 06 6t*tet 0*6362 0*tted 0*Gts: 8'6t61 gD 65 etse 6# 6'de et*04 s'ebettneslJ tb s' etat 4sied4 J 66*290 0*6fid D'998( t~ blat 6*6D96 8 'b. 8 b L 6# 6#te d'e t t ' ,d6 d' unetahweJ es s t.' l. . a. 6. a w ' 8
- e.u d.t. ltt u. ts t , *v'
'. t.G
- i. * . i. s. .; w* 06..d e *D
- . - . t. ' .6 2. 4.# . .e . 0.t t
i
+
1VEIE ' E
s
/.
l
- s s
l 1 l e,..-.,< tsisetse 4e neee
+ 4.4 ies esse
- i.o. ... , ,-
ee se e .ese eie e .ess..es,4e3. a . .. e.s e sesecreies es +i ari e sesaesio,e es es cis
,r . . , , , . se4e e co:4 e tser e.. -- .. ..i.
e soes e sesa e stse e sets e sv seits e c.s tser. e ew eset ee sa e- es eie e sose e ss<i e ste e : 4
- 41
,a se 6<.e es os . ne.eeeeeee3 e esecava 45es' o .esseestsi es ,r cie .es seeso ecse e ses e ste,s .e ee*4 sesse,se se e es.e e e-.4 4sesseie o eett,s4 e. e a erre e eson si *ee63e es = ,s ss res es .6 res s stis ie os iesresse se esse es er o ees*4sissa es . e s se o eesee44:se es o .eni. e tser 4.4 s esis e ssee sera seissise *r ot o- c ** os o essise4eva es or tes o essi e reac o eses e sese
- 24 tsi eies se
<< .oser 'ee es*es e .esseo.,ss 86s* = a e6 e se4144eesa es 4 ,r tse o esse e ses o ee.e e*ssas ie s :4iisse *< s se ec ,e esese;ie*aes o eesttee64i es .r tea e ete o eter o eesa o e 64 te ,e4 4iasa.s e se see o ee4: ec tes o eert e ,t,e o eert o essa te et 34:tenes se s'ee es es'e4 e4 et sessso.
eess4 4 nots ti es es e*,esi,4:tsea evein es es er tes o es 4 e sees o esir o eese ts eo tsesei,5 se esse es .. ee6444pesa es vt sec e rese o et4t a esas it t4 :4isei e se enee es er s- e seti sette.s*4sa aseno eses ,r 54e o ee os4e.te,s 4 o eesa ts se ses esse ve et sa a eesse*ee,ra eseisse e es ese**esseeeesa es vr*:4e o s*.eese ese e s,,tse essa o eset si s sessesse se s'ee es et o eestseetse es e #4 s46ssa es ,r tse ti*,a o esse e roco oo- .4rt e .ees 4 : se s'ee er ce o ee6:4*se4s es o eestseeses es er tse e o ares e .aae o esee ti se ts.4 ss esise ise se se s'ee s' et*4e e sesirts44 o esatsretta es ' oe .ets ose e ssae o eves o eeat ta oo reiesise se e7ee er 44 e essess.e,3 e es eso- e .eeti s e,riun es=er
,t ise ieae*
e sees i e tsee .ceeess eats o evet o eees e**ese o eter sa i4 isissise se sree ec 4s o eestaes 46 es s4i se4 ic si neiznies se s ee et se o eseeeesses es o ee4 siacs ,a es es r,r*tes se a sre,e a*rcse s*e,se o eses sa-,e seiteics se e'tse es*4e o et evessen es e setisie t es sea e sse -t e,es e e , ee e .ees sa ep issessat se eree et se e sseeiesees es o essisee,sa es es es er*tes se e .s.4 o eses ir os tsisenet se eree er te o eseesee e seztess4ss es ec tse e* eer -ees oe 4,ae oeo o esse o e ee,s is es te te ees esav se esse es ee seis6 se << esse e4 eese ..sse4,tsa is esee4646esesesoetesatessi es a soesetae tes es sus eea ,.et,s 4eos-e 64a aes o esse o ees6 4 o esac o ess4 ir si ee:4osiv 4i s eee es er- ,s c esatsae es sre e- o esae e **** s'etra ic ee sessesiv << esse er ,e e o en .e,ese6= eetsasa ateeses s sas tte,s.se 41 as tes es ,es;ie.1e.esee..s. 4 oe o e4:1 ic ee :oiessiv ne a<ee es et. e e,eiretsa es es4traesie es r .e er,its 44 o e,sse se . etse te os aossesse se esse es er o-e .esesir4ses es ,ee4:ticsis sesiretsis es ,ot'tta oe a e,sse e reve o eses o eves ie iv :: eitv se es se es se e o es,e.4*sessa es s ta er e reca o esse e*ee41 so ts ase enee se esse es se etsees eses e- o essae2ese es ec tse - s'eese e tros o essa o eese ie se 2 siesee de e#ep es'se e*s ette4a es o ee4sasevig es yt*tes r o e,etE e*reot e ,ses o eer4 ne ot cisaenet e< tee et se e e.eet.stees es es e eeree ,t ios > e* ese sen o ese4 o e,as ie os aistenee ss esae es se s o eessa ort.ta rn es ' ,r ies o eves e e- s.aas e*esis o eese is oe assessem se esse er*se e ee .otceti .a es o eee4 o eses is 54 cisseies se s ee er sa e s e,sessesa assree es eseosetatpeces ee44rae4,oeseset. ec*eso see -oeesetessaa eesse eirt o eeoc o esse is se saitsiis se e'<ee et sa sets ot oot , a esae ee- ,rees e reva o essa is s seseesis << esee et si is ,a4 acire ts se **se et se e..s.esesiot es. o eesse,ieseo e seveireves es o-o eeeesseios es e .este 4e>=-os es ese ssees os et ees o esse o esse e es seo ts44 o eese
- eees o eser o esse ariosut <e eree er*se ee o ees i,3 s se e. :: senie si esse es e4 s sessisias eesg tees es es e sesiseesse esec o esaso vt ste ees_ , ee enes eser o-eesse ests , o e..e.
o esis a eeso e4 o eete eisae trese es es e,s e44 . aeese ,ees e essa o etse e orea te is ia tetsi siesia essesesesnee *<eees'es es- e.ssessessen e se.664sseses ss o oesa 4 eses es 6 sar e- e tsae., e erea o eee4 ie se atneisa se 've ,es eeeeeseessecin seesi 64os es es e o esesaes.a esaestieca es es es ege o ee 4 e tarc o etes o eese is ot essee.se se e<e. c ee e+eees e ssas o etse o eete ie se :satsise ai re j es ei e .eesenssen es o eesaecassa es .es ee4 r*oee o eera
- 4 te assesiss </ e'.sue c or en .a eetesesnes e,s o esseorases es . n 4* set ,ao,eets eese -e e ss,isa se ' o etne o eees 4 ic erisesse .e 'se es ee seepesac=> eetseestas e a oo eoce44c se e6 is et sse- e* ees o eesi,- .oetse erce o eres
- 4 enisi o sese'e, es ee
, esec,.eson s es vt eic 'e esse es e ,sae os eana
- 4-.re i eitan e s ei s e .' er*re e ereves .,vaa os o esse 4,esie es ,t sec ,e sees see 6 etov - o et,se s'et 4
- 4 ,4 eires e essesse etserereo eeseno esa es ocesssc.ssa es e Sees soece essa es o ec4<e 4ese es es 1,e o-e ,eert e r4r4 **e445 o erss ic se enecs e 4si=<ee ,
rae -e eter o erec o eres ie os essam e ses*<ee es re e see cea es o etes e sris . eesa o ercs o ee.t.ssessa4 34osa eses oe o esseete,en ees os et s.et ie sa ie se
- .is e s/sesse es re tsneies senesse ec ts e- .ss.resse a ss ,vete.
ete err 44 e esra
- eres .o itse 6 e e,ets ees o ett4 o eree itas,e sesesse ec ta e ssece,. 64a 94 ,e. etesetew ie se te se sisenes ertseee ec ra o esessios a es se< resva es o ee4eseis<o'es ,c ets ,',io es e4'ert erri e oe saerst ,ses 4ps t etis o eses e eret a e:4e ie 36 sesnes sel=<ee es rt oe er *re ert4 e eeev o etni e **es ie ee sisenee esisosee er se soce
,o .e.esaisases eetsiesa es o o ,a essesesesa essestsees es es ,et*:r4 e tser e eese o esse o es6e v et se eetsoneda es e 4:4e o ee.e,e4=asa r sat a etse re4 o eiv4 o ecer is se si snee sese'see ti seis sr se secenes 66 es ete e ores o e- oise o esse e are t e r. .ie e s.ezies. ? s sie nae s ecce"e sce6.secen es ~
e ;nees ees es o eetsecivea sa vt eit o etse o a il ~ o isii ' o irii' ri
*.y, , 'e ,
8f- /
, < s i - .F l 1 ,<, > s j i l<
- 1 .
* - f
- f *
/ '# ~ !
t / '
,I !, , ?, - ~ > s.,
s
. f , =!
- 1
, -1;/f -
e G G
,... ,. s esn . . . . .. . , , , , , _ ., . .
de*ae gnissee 4/le##e ., . st*ge e*ede66dles3 06 8*4ed0864663 06 et*810 20*.8 ts14afo '/*6/8# $*pf96 e*elt9 6*t54$ et*te 0*6etteeWeiD 06 8*et44#eteht 06 tt*884 f* ele 6 iS*tb stcette 6FE#'90 S**161 4*1633 6*p046 6*ef94 26*61 tatange 4#66#09 tt*26 6*46etsevalB 06 4*e0464 melit 96 9t*899 S**12C e'0944 e**046 tt*lC 8*68e#4lb893 66 8*ned04lleiB 86 9f*049 0*Df62 tl*66 rae6:ta 58I##8# S*e599 $*lets h*e094 0*elli tl*ll ts6 esse 8/88'le tt*!E 4*ste8em64ed 46 0*48deidd983 46 91*Sse 8*etal e* lees '6*eteb tl*ts es ese6 stlo'de 0C*22 4*66elEZe913 06 e*6840189615 46 tt*44( 8*t461 8*6290 8*6888 8*69s6 8* ele 6 tl
- 6*^ ettese6 9# tt*28 0*6#ets10603 96 6*6titet6eoB 46 9t*044 8*rede 8*86et tl*6( esleseb stle'de et*gI e*68e8866 del 06 4*68d00ot693 86 94*440 et*gI 4*t669 S*Elte 8' tele 0*e094 ca o. etteson 6/56'ee 6* gtteettatS 86 #*64detE6vs3 06 v2*46D G*teet 4*DGdt st*63 4#l# # G*6146 1*teit e*tolb 8*e091 esseneb silbise et*te ts 86 e*66les48443 46 8*ne94644 tit 86 9#*661 8*e966 0*8699 8*t646 42*54 0866aet ssit'te t* 44lb aragos 06 0*60946e4965 86 94*609 b*tlE9 t* tete 8*eteS 22*ts 68 es del 6/t 6: 46 3,ee r sslese,e tt'*le e*64tbbLd049 46 4*489664ls93 06 94*491 8*DIII 8*846(
t*teht 6*t464 0*ettd 8*eSld t ew et*Id s'eektiteteS e6 8*469696Et*3 86 93*646 4*tlit 4*6146 4'2*61 6satsop 4#l*'te etat 9 s'eettedytla 06 8*4494044493 86 92*646 4* tits t*6493 8*ttel 8*D019 tf 96 6:tespe 5#lb8te tt*le 8*60tte6Gt93 86 8*6e946e4e63 06 94*444 3*tet6 0
- e 00 4 8*elet 4*lltI 2*tec6 0*t669 tt*03 68eespe 681##9e st*lt 0*60t49eedom 06 8*6494444699 06 9t*494 4*tiSI 4*tt69 4*teid 6s66ste 6#69'te 9t'84 8*46Ldeed465 06 8*609644dytI 86 ts*699 8
- t ep O lt*'t gE't 93 esse 6#lbsgo tt*II 4*4tt444W4la 46 4*6494448683 46 44*698
$'eteS s'gerg 8*e063 8*9402 4*tebO 8*t68t 4*ted6 8*tedO tt*63 9346:te 4/88#4e tf*06 0*60sdatE025 86 8*e994406463 46 9E*499 tt*46 4*etSI 8
- t9 tS st*94 #*tted 4*t691 tsresse 8#l##ee tt*ta 0* 66t6480695 06 4*44t6420963 86 9K*664 S*6664 G*6909 tt*0t tsrenee 6#lufeo 4*6419486 den 86 4*609648tefa 06 9d*466 tilg 8
- t9 66 8
- t46 $
2e*es et*ts b*tS&D 8*teet tt*69 6*648v46488A 86 8*689etseerB e*4649882883 46 3*69949959f486 06eE*661 t*ettE 8*e065 *s'004( tsetsee 8#86'W* 4* 92*6p6 0*t096 S*reid 8*e092 =0*0002 6*t994 8'k63$ e
QUAD CITIES UNIT 2 ffASS PLO'r LEAK RATE VS TIME Mf3El8[g0ggCELIMIT t 2 CALCULATED LEAK RATE A-2 k o , L n l 2 y o ya a G' h a: . W T3 *.
~ ,
e-e. n.".
. p 15 *4 L. ._.- ----- --(~___ . _ . -. - - - - - - - ^ ~ - - -
3
-= w ..__ _ , . 4' ,2 %.oo a'. eo 4'. oo s'.ee s'. se ab.oo eh.oo is.oo s's.oo sb.eo ab.oe n't.oo a'<.oo 2k.oo 2's. oo :
TEST DURATION (HOURS) 4 e
i e e.
. _ .e et o= . ~ . . . . . _ - . . . - .. _ . . . . .
_. ,. ~ . . _ . - . . .. . .. _.. .. ..
.. . . . . . - . ..__. . _ . . . . . _ _ . - _ . . .... .. . .e
_ _ . _ . . ._ _. ._. ._ . . __ .__.. _ .. . . . ..- .i eu
. _ _ ...~. _... ~ . T : :: ~ ~.~ ~ . ' . . . ' . . .:. ** ~~ r ~ ~~; '. . * ** ~. -~.* .*~.:~ . __._ .7 ?' " ^ . ' ._ ~ ~.'~: o o- ..._. _..._ -.. -..-. .. _. . _ .e .. _.. N .w N . . . . _ . . _ _ - .. . . . . . . . .- . ._. .o N .. .. _ _ _ _ _ . . . _ _ _ _ . . .. _ _ ~.- .... . .-. . _ _ . . . - . . .. . . ~ .
e
~ . . _ - . .. _ . ..e . . _ . . . . . . .. . . _.. = *._...~..._:__. . . . _.. _ . en em - .e o
g
.. . ~. .
e W.
. ' ' " ~ ~ . " . " . _ .~~~_~_^~T.~~~~"..~.~.'.~.I..._.7.Z *~ . .... ~~~.._... ~ . . . - . _ .. . _ '~l~~"'.'~'
o
.~ :~.
{\l . _
. . _ .~~ . . .:*_~. *_:~*
_ _::Y':. . _. ~ , .~. :. L: _ .*.. . . _ . . _ ' .~~* ~. '_ _ . _ " . .T.T '. ... . . _ . _.__.7.... p. 4 K _ _. . . . . . .._ . . _ _ _ _ . . . . _ . . p _ . .. e. W -
~ ~ ~ . ~ .:" ' 'T ~~. T ..:7 L.... . *. . ' . .'..~ .. . ~ (n Z f_ ..- _ . . _ . - . . . . . . . . . .- . _. .
w p . J . . . ..~. . ' ~._ _ -~~ ".". 1 *'. .~ :_.~ ". .. ~. ~ ;/~~f J : . : _._ _ _ . >=
. _. .._ .....,e. . . . . _ . __.._....-..._e.
_.. . m.e _ . . . _ . _. ...N.
.e W . .. .
g y m . W m . . _ _ _ _ _ _ . M h3 . . .__. . . _ . .... . . ~ _ _ b E . . . _ . .. . .. . . .._... . . . .. d g . _ _ _ _
.r .... _ .- . _ ..e .__ .. ....g... . . . . . 4 . - . ..._'..__._..-e-...,____'.M. . . . . _ . . .eh .4... k 6 g ..y _. .
4 . . . .
.e.
w Q
'~~* "~~~~~
- E
~ --* ~~;*_T.-~~~
o -. _ .. . . . . ~'. .T.. .., . . . . . 2 O . .
~ ~ ~ ~ - ~ - -- ~
2 ~ ~ -
== _.. . .._... .. .. - .. . . . . , . ..
( g E - - - - -- - -- -- .- - . O ~ - ' ' - --- - - O . -
. . . _ . . . . _ _ _ . . . . . _ _ _ . es .s * - .i.- .-
1 2 es is os is tris G1070S8V) HONI 38 VADS W3J SON 00d
+c is oe is s o t's on is ro is wa[
FIGURE 4 l 2 l 1 l I . . ~ . -- .- - ... . _ . . . , - . - -
. e 6
3 . - D N
-_.i.._~..-.g-.
- a. .-..- .e... . ..,..-.e..s% . .-q..a. i.._.M+ - ww .m e h-".
-see-*- .- ..- . _ - _e . . ., . , . .- - .-w ... . . _ O. . _ N . a - - . m . -
u -
.. . .. . ~ . . ._ . . ..,gi. g --.-p.. . . .. m+. ._
_ M .h. . y
. .-.i . _. . O G.
l+ es
. . . . . e.i, . .a. g . . w . .m. ... . . . .. . .=. .
O
. G
_. . . .. .. . =
.. ~. . .N . -. . at .m. . W.-. .-++ .e e .e.. .
g .
..e. .=mm.. * ...m-6-. ' ' . .N.h ....4*... .' ..... _ . . ~. -... ~ ... .~ ....I"1...'..-.._.'-.......... - .. .
3N o
- e .. .e g.- . . .g m anw. ...e .m- . ... . .g. MM.-- . .-N . . =m. . .. >.w._ww. .- . ..ehem.m.__.-. 6. Mh.F= e....6.4N.y.MG.-e.e * . . - -. ** . . .h. .a _O-. . . + wa -._m.--.e op .-.N .- . 'M .. ..-. . . .@. m ...-. .W_.-. ... . .+ . i =. b .*4 .. _ .. .._ ..._. ... ..- . _ _ __.. .S . . , + .. .. . _. .-...a. . ._. .... . . .. .~.. .. . == ,-....+.._.w.w.e,,_.w..... .- . . . - . .e . .. . - . . ,-- ae. . e.v . . . * *e . . . . . .e . . g-.-.--6. .. .p.4 . h . .t .a. .
m -
.e.. .-e . . .h.. 6 . -. . . . - . . ... . . . . . .. #^
O& g
- __.. _ . . _ . . _ . . . . _ . a O - ~~~ -.
2 _ . . . = . . .-.s. ... .i. _.. . . . . .
. &.i.. w h ..m ea e. _
- e. 6 .M. 4.h- he. -
6 3 _ ... ~. ._.. ...
.e = ,o ._ m >=
g m.wg..h.Mp=..*.eMW.. W.m .bw 5.* gh. .+ - -. . .
..e-6_m e F-- & g.g..g_.egme .gp ..... . - ----:.. _:-- :- --- - --=- - -- .
4 - .
. . _. . 3. a . . . . . .-. po Z . --. . ~ . . g . . - . w. ... .... . . . . . . - . ...
- p. ____. . . ... ,. . ...._ _..
>= . . _ . . ._. . _._.._ . . . ._..
e. g
.m = . .w.*.'_VW8'.W'.. .=
6-...p. . . .. . g g
* - . .m-. .M Hg g .. . .-M.
- 4. e .i.
.-.h. p.--h.e.. . . .. . - -.e.ei.=m e . 6 3 . - .. .. ~.-._.. .. . .... ...
g _ . _ .
, em 4 . g ,
g . .
>=W ... .. . an gg . ...
6
. . ~. _._-. .. .-_
e..
.~. . . .-.... .. . ._. ._. . ~ .._ .
p .. m w Q g . e
< p, 3 - .. .
O 2 Q y
. * * . ' 8' ..m .m
- m. . ...
I
~ ~ ' .+. '
l
.. . l .- .~ . .. -.- . . ... 1 . --_.e s .b6 . . m. p a. .
e- _ . N l l o l e 4 oo is os is on is cris os is es is wh oc is on ni (31010S8V) H3N1 3 WADS W3d SON 00d FIGURE 5 i l I 1
J 3
. .4 . . .
b . . e
.g-e .g.. . r. e=..- .- . .. ~ . ..
O
. . _ - - - - . . . . . . - - . . .e.. ~ .. ....-_ - -. _ _ _ . , . . _ _ _ . . _ .. . . _ . . -.. . . . . . . - .te N .. . . _ . w. .N....eue..._w. wi. .=hh '..=m . ' ** ..-M* * -... .g we. .*'.mu M. .i-p . . . . . m e. mm. .. . .. **- * . ** . ' - . . e. .. m. ...hm'. .m .-
m.w wMm* . ' . = * . ..m.-.. . >. mi. .g. . . . .
..___..y . ... . . .
_. ..- ..... . .. . O
...- ._-.N.
_ _ __ . _. ._ . ... . . . . .T
. ... _ . . . . ..._ . . ..~ .__
N
. 4 . .h. ' .m- -..se e. m.. . gg.+ . .., ..w.g.,, .=. +.ma>. . .M 6 ..6g .m.>-. .. ... . . .. ...e =. - , .._ ~ . . .N N . m. +...-e.- g .um.. wh.-. .. b. e...N .' . * .. - . - . . *-. . . . . ..e . ..ce. . . . ., . . . . . .- .-. ' .** . .m. .
e .- .-. .eeg.-.M .6 .meo - e.p..a . .h. .. .. ..
.- . .m. .. .~ . . . ._.._ . .. _... _
g O
= .O 4 . . . . . . - . N -N.W = = . **hM.h e.k._wu.p.he h. __e.h. .. e.- _+. . . = , u..I.* .. _ eh.
N . - ' *
... .. .-.s ..4 h-w... .._.@ e. .... ... - . . +.h**.h e ...uu.h. m ..,-w,,,gg.
4 _ q.g,,w.,. . M. .. . . . . e
.*.-- . =' . " . ' . _ . . . -e .mm.-M.w.m, eh m9... . a-. . .- . e. . . . %a.m -
my. . .
- _ _ ...m+. -. . _ .. . . . . - . . .. A= ..- e - - .. . . . . .. i.. -e,.a im he ..me.Meww g h _g,-.h g. .w. .+.
W 8-..m.*W . __ . m.#.ume.+e. .. s4 .. m..m .g..+ .*.
. .g g ..m.--e.....N.96 _. -6 e . . ~~.-, .. ...h. --.- . . . . 9M ~. . .. .. .- .. ag = . . . ._. .- == 3 o
g
. ... . + .. . =.NMW.MM'. '. . .. .. .. W. . . . h.*.*..hi. .u'u. . F.
- 4. N..= 6 &
4-t'. .+h... . .. .
.6em.. .."--- _- MgN_D6 -e.m . . m..S. _ ---N . .. .. . . - .-..h.um .-- .-w. .. . H
_. ... . . .._. . 4 g Ig3 F=- ..._... ___. .. .__.._._...
*--.. . . _ = ...=* _ ' .NW pq _ .g.N..
w..sh. . w.
.._'We. .,. . .ey .e.s p e . ..
6-
...+4 .. .. . . .. g ..@...h. e4 ..NN..- +. m.* ...ee e- . .- *w um.i.e.-.6.ubm-..N eg .m . h. e- gum...4+h. . *..w " * . .k. .*.m .eg ,.m g w m g agg.p. pgp.m, w e gg. . p ,,g . ,, og
_ .+.=.e.is..m. ee -
. . .e ,, _
w.h..,g.e
.J-......_msmspl.,..-. - - ..,e_+... lmb- .-.W.e,h .e . . . ..-..=m-. . . . . - - . .. . -
_ .== mum.i M6 m M M6 -N. mu. ,*. .
'-=..h d 6.- W ..m.e_ .N-.=.
_. NMh m - ._ . . - . ..
....e.. .mm .w.
_...e.*N=N..w
. ...e..M...-p-e.y ,hm., r.N.*. a. . .m= .e..h.m.-.
e..um. .. . e . pw p .. . . .. . . . . . . _ _ . .._ . _ . _ _ . _
.* ..m.
m..s. .hM... . ,4.m, p __. . . . . _ . _ _ . , . . . . . - ~ . . - - l m
. .. .-.._. ._. .. .. . .. O )-- 3 . e.
W gg _ . .-... . . . .. _ . - . . . . . . . . . . . .. ._ .... .. _ . . _ - . . - ._. . e EK ..._. -- .. . . _ , . () y _. . ._. j 4: . . _ _
. . . . . . . . . _ . -1
- q. . . .
Q
. . . . . . . . . i g .. . ._. .. . . - . _. .._.. ... - . .
e
< W e- . .. + .-- . . . . - .4.6 h. ..-.g.m . . . ..e. .+....se .m.i.. .h. . . . . - = . -w.h M *-.. .6_.s p.. . .
p .. ~ . _ . . O g a g . 3
. e g
__. . . . ~ . . . . . . . . . .
. . _. . .~........ . _ . ..w.m ... - _..A ..si . . g. .h.
wee h s....
.e.
b e.e. e _+e.. .. s.b-. . . =
.-...hWh.
h.-... g D 0 as
.m.m+ .4.. ..euu8-- .. ._.. M... . .M @
y
- w. . . e..e. . . .w,, .W .s .
..W..Mh. . s.s. .. . . +. *.3 .e- .4 . se.. h.e.my.W .eqM.
m. __ . _ . . . ..-. .. e e. oo is ovis ode oe h es in oo4 as ie avis oe ur LI3HN3MHVd S3380 0 FIGURE 6
e e INDUCED LEAKAGE PHASE DATA 2na0 cl'tt$ V417 2 128t afstatae seeelit*=4e? SF Data SEtt 179 twes, 203 ee** TElf CLOCm Dats TE"* *8atu eF0 CALC. = ASS Dev als reas. Leon AafE C4LC. LEau uppEn 098 fl"E (Ft *a15 tse s=Est. t / Dav 994 Comi 4008S 189tal 70 fat p0tti saff, gigs Limit 0.00 8:19:37 piggfpe 82.9s 0.999121403E OS 62.900 0.17 8:29137 t/teste 42.96 0.9438119440 nm 42.894 1.4356 1.4396 0.33 St!9:27.sitesP4 92.94 0.90799379gs SS 6.9031193t9E 09 42.984 1.0392 8.6426 1.0397 2.1499 8.90 4f49837 s/18#44 92.94 0.902e31462E 09 O!993tt?99tt OS 62.891 1.0212 0.96S4 1.9414 1.7861 0.67 8899t?? pita s04 92.93 0.9020?*9'tf 49 0.1031190eef 95 62.875 1.1449 1.9229 *.0049 1.9784 0.0? 98 9 tat sitssta 82.93 0.9*27797179 09 0 *93tt'899E 09 62.871 1.1981 0.9999 t.00*? f.7063 1.80 9819884 pp14s94 92.91 0.9027194045 OS 0.903110139E 09 62.084 1.8742 0.9844 t.0711 1.1936 1.37 9:2984g pitos04 42.90 8.992442'908 SS 0.90311977tE 09 e2.418 1.A944 1.2164 '.07a4 1.t344 1.33 9:39:48 82.90 0.90298796*r 99 0.903117 tent 09 42.093 1.0476 0.8004 s.0479 1.1129 1.90 9:49:41 9/19i,#4 ofgg 44 02.09 8.9029te996E OS 0.9031164948 09 42.047 989984, 1.0709 1.0946 * . 0414 1.099? 1.e7 7/insee 82.89 9.902479244E OS 0.903tt?2tPE 09 42.040 1.1049 1.4311 1.87'9 1.1109 1.44 19812fte sites #4 82.00 0.902351434E SS 8.903120009E OS 47.033 1.8933 0.9996 1.0819 1.1008 2.90 18:19:39 pitqsG4 82.87 0.902314703E 89 8.903119913E OS 42.f29 1.0749 0.7087 1.07?> 1.1084 2.17 10 29:39 9/teste 82.84 8.902263174E OS 9.9431144796 OS 42.825 1.0991 8.9234 1.047, 1.0894 2.34 10:39839 sitasse 92.04 0.90714474tt SS 0.903110881E OS 47.e17 1.0919 1.9710 1.0729 1.0930 2.50 10 49839 7#teste 92.09 0.9021038679 OS 0.903tt4944E 09 62.912 1.0442 0.9701 1.0744 1.0923 2.47 10:59839 tites94 82.83 0.907099?2*E OS 8.9431164496 01 42.406 1.0404 0.7044 t.e644 1.0093 2.94 111,10s t psteste 82.04 8.9019597238 09 0.9831180618 09 #2.799 1.0089 1.9277 1.07'4 1.0001 3.01 11:201 3 pitesed 82.82 0.90196874tt 65 8.903117444k 09 42.794 1.0739 0.0133 '.0716 1.0e93 3.17 11:308 1 82.81 0.9014979196 OS 0.993119997E 09 42.789 1.0401 0.8109 1.047s 1.0002 3.34 11:408 1 sit t/14e,s84 44 82.01 0.90t'443998 09 0.9031t+42?E 09 42.783 1.0797 1.4149 1.0698 1.6807 3.51 118941 1 titert4 82.01 0.9014979168 39 0.403tt00946 09 62.779 1.0601 1.2597 1.07?1 1.n836 3.47 128 18 t sites 04 82.04 0.9014t09 tat OS 0.9031199706 OS 62.770 1.0942 1.2233 t.0766 1.0878 3.03 128 9839 9/19s04 82.00 0.9019390999 OS 0.9031229019 09 62.744 1.1019 1.2913 1.0819 1.P933 e.00 92119:39 prigi44 82.78 e.901491779E OS 8.9831225206 09 42.758 1.0848 0.4728 1.087t 1.9924 1 TABLE 4 l l
' 0 's.
o a
's.
E T
$A hR o $ s.
RK '4 A E AL E LD o E 4 T '4 EA
$U SC L
fL o kCA '4 o. _ o s
's. )
oS a
's. U R O
H ( e eN
'a.IO 2 T A . R U
T - oD 4 I , 'a. ST N - E T U . e
- o 'a.
S E E M I I T o s T S
's.
I V E C T A o R a D A U K A E L T m 's. o s Q p O 'e. L P S _ S o A 4 M 'e. 1
. 1 o
o. gN 8# 3& 8N
. 84 ;k s- -- 8d 4 E wE mEh -
il ! .
'te . -4 5
N
-a 3
3
-4 8 -4 3
ri oh IE esg 5 og n N 4 h go Z 40 D U 9 (O " LiJ $ g
- m O $
4 : o5 ~2
< t D W .
O ., =
*d
_3 W e b E o
. g. -4 8
soia os ia w ie as ie ee ie so ie on ie w is 12 ti 113HN3MHY3 S33WS3G FIGURE 8 c a s
's.
s a
's.
O o s ( a.
'4 o
o.
'4 o
s i.
)
sS a
- i. R u o
H ( oN
- s. IO
'2 T
2 A R U T *D I 'a. ST N E 1 E T U t I T o o. S i S V E E R I U o S s T S i I E R P C o T N a E D 1 t N i A I A U N T o s Q o c
'o.
m e L . A T o O 4 T 'o. o o. 26 2d
.O. li g;3 .i7 3d 3b 8i%
C e>a_o E S Io2~ g<Do" :a*e. o k L y e
,wea .
w
-Li-01 3EDIl POUNDS sa.rs PER SQUARE INCH (ABSOLUTE) ja.7s . st.rr sa.ei sa.es sa.es sa.or s,2. es s,a. ei ?.
o O E
-4 o Z f e"
- k* C C
e, >
~
E' O b b
, ~
o m ~ M g m m
~
cn et" o M M 4 C g Z 4* m - ' CO C 2 m
~~. N oo 20 E
o C U, Eds P. 8 8 t-8 9 Y. _ .a -
I SECTION E - TEST CALCULATIONS
- Calculations for the IPCLRT using the ANSI method are found in Quad-Cities I procedures QTS 150-T3. A reproduction of these procedures can be found in Appendix C. The origins of these calculations are the N274 draft for ANSI /ANS 56.8.
These calculations are consistent with the standard as it was published in 1981. SECTION F - TYPE A TEST RESULTS F.1 Measured Leak Rate Test Results Based on the data collected over 24 hours on approximately 10 minute time intervals the statistically averaged leak rate was;found to.be 0.385 wt %/ day with an upper. confidence limit of 0.392 wt %/ day. F.2 Induced Leakage Test Results A leak rate of 6.3 SCFM (0.772 wt %/ day) was induced from the containment for this phase of the test. The required accuracy for the test is computed below. Statistically Averaged Leak Rate 0.385 0.385 (Measured Leak' Rate Phase) Induced Leak (6.3 SCFM) 0.772 0.772 I Allowed Error Band (25% L* ) + 0.250 - 0.250 1.407 0.907 Statistically Averaged Leak Rate (Induced Leakage Phase) 1.082 wt %/ day Therefore, the required test accuracy was satisfied. i 1 l 2 i
F.3 Leak Rate Compensation For Non-Vented Penetrations The IPCLRT was performed with the following penetrations not drained and vented as required by 10 CFR 50, Appendix J. The "as left" leak rates for each of these penetrations, as determined by Type C testing, is also listed: THROUGH LEAKAGE SYSTEM STATUS FROM TYPE B AND C TESTING SCFil WT %/ DAY
'A' Rx Feedwater Isolated, Filled, Unvented 0.52 0.00106 'B' Rx Feedwater Isolated, Filled, Unvented 25.80 0.05270 RilR System Isolated, Filled, Unvented 8.34 0.01704 Rx Water CU Used for Core Cooling 0.83 0.00180 ACAD/ CAM Isolated 1.50 0.00306 Primary Sample Isolated 0.18 0.00036 All Electrical Test bellows filled and 1.65 0.00337 Penetrations pressurized with dry N '
2 38.87 0.07939 I This correction yields the following adjusted leak rates: Statistically Averaged Leak Rate (ANSI) 0.464 wt %/ day Upper Confidence Limit (ANSI) 0.471 wt %/ day 1 l
F.4 Pre-Operational Results vs. Test Results Past IPCLRT reports have compared the results of those tests with the pre-operational IPCLRT, performed from August 29 to September 2,1971. For comparison purposes the statistically averaged leak rate corrected for non-vented volumes and corrected upper confidence limit are given for the last three Type A tests on Unit Two. 1976 1980 1983 Statistically Averaged Leak Rate 0.327 0.449 0.464 (wt %/ day) Upper Confidence Limit 0.344 0.459 0.471 (wt %/ day) The above data shows that there has been no significant deterioration of the containment integrity and that the leakages have been consistently below the allowable limit of 0.750 wt %/ day. J l l
F.5 As Found IPCLRT Result The following table summarizes the results of all Type B and C as well as the IPCLRT results to arrive at an "as found" Type A test result. Since the total is less than 0.750 wt %/ day (75 L ), the present schedule of three Type A tests in 10 years can be maintained. D*cumentation for the values listed below can be found in R0 83-15/03L-1, Docket No. 50-265, DPR-30. SLHMARY OF ALL CONTAINMENT LEAK RATE TESTING DflRiNG UNIT WO REFUEL Ol;TAGE FALL, 1983 AS SUUND (SCFH) AS LEFT (SCFH) LLRT (TOTAL WORST CASE LLRT (TOTAL WORST CASE MEASURED) THROUGH LEAKAGE MEASURED) THROUGH LEAKA(f (1) MSIV's @ 25 PSIG 59.92 17.30 27.66 10.06 (2) MSIV's converted 94.67 27.33 43.70 16.37 to 48 P.11G* (3) All 1 pn 3 C Tests 1095.79 144.92 215.66 (Except MSIV's) 109.40 (4) All Typo B Tests 108.31 54.23 22.49 11 32 TOTAL (2 + 3 + 4) 1298.77 226.48 281.85 137.09 (1) Type A Test (Integrated Leak Rate Test) = 0.385 wt %/ day (2) Upper Confidence Limit of Type A Test Result = 0.392 wt %/ day (3) Correction for Unvented Volumes During Type A Test = 0.079 wt %/ day - (4) Correction for Repairs Prior to Type A Test = 0.183 wt %/ day
,(As Found - As Lef t) 4226.48 - 137.09) . 459.59 (5) Correction for Leak Repaired During Type A Test = 0.020 wt %/ day TOTAL (2 + 3 + 4 + 5) 0.674 wt %/ day (As Found ILRT Result)
- Leak Rate at 25 PSIG converts to Leak Rate at 48 PSIG using CONVERSION ~
RATIO OF 1.58. REFERENCE ORNL NISC - 5, Oak Ridge National laboratory, Aug.1965, page 10.55. e l-i APPENDIX A l TYPE B AND C TESTS i
- Presented herein are the results of local leak rate tests. conducted on all penetrations, double-gasketed seals, and isolation valves since the previous
- IPCLRT in February, 1979. All valves with leakage in excess of the individual
- j. valve leakage limit were restored to an acceptable leak tightness prior to the resumption of power operation. Total leakage for double gasketed seals and -
total leakage for all other penetrations and isolation valves following repairs ] satisfied the Technical Specification limits. These results are listed in ! Table A-1. 4 4 i l 1 I 1 i i I i I i l 1 6 a f i i i i 1 } I i i i a I
TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0 203-1A Main Steam Line 9.24 09-06-83 9.24 09-06-83 Isolation Valves
- 4.60 09-07-81 4.60 09-07-81 A0 203-2A 34.56 09-06-83 2.30 12-27-83 2.30 09-08-81 0.00 09-11-81 A0 203-1B 4.60 09-05-83 4.60 09-05-83 0.00 09-07-81 0.00 09-07-81 A0 203-2B 4.60 09-05-83 4.60 09-05-83 0.00 09-07-81 0.00 09-07-81 A0 203-1C 2.30 09-05-83 2.30 09-05-83 0.00 09-07-81 0.00 09-07-81 A0 203-2C 2.30 09-05-83 2.30 09-05-83 0.00 09-07-81 0.00 09-07-81 A0 203-1D 9.20 09-04-83 9.20 09-04-83 2.30 09-07-81 2.30 09-07-81 A0 203-2D 9.20 09-04-83 9.20 09-04-83 2.30 09-07-81 2.30 09-07-81 M0 220-1 Main Steam Line Drains 39.27 09-05-83 7.46 01-12-84 MO 220-2 66.30/5.50 09-07-81 8.63 12-23-81 A0 220-44 Primary Sample 0.35 09-27-83 0.35 09-27-83 A0 220-45 0.00 10-16-81 0.0 10-16-81 CV 220-58A Feedwater Inlet 267.3 10-05-83 0.52 01-09-84 Loop "A" Inboard 1.03 09-21-81 1.03 09-21-81 CV 220-62A Feedwater Inlet 2.70 10-06-83 5.26 01-06-84 Loop "A" Outboard 1140.0 09-22-81 6.20 10-07-81 CV 220-58B Feedwater Inlet 1.00 09-13-83 25.80 12-22-84 Loop "B" Inboard 42.40 09-10-81 0.00 11-12-81 CV 220-62B Feedwater Inlet 362.0 09-14-83 28.50 12-30-83 Loop "B" Outboard 1018.0 09-17-81 13.60 11-13-81
- Test Pressure for MSIV's is 25 PSIG. Where the A and B valves in a steam line have identical leakages, the valves were tested as a single volume. The value is a maximum leak rate through the valve assuming that the other valve leaked 0.0 SCFH.
o
)
TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE MO 1001-20 RIIRS to Radwaste 0.00 09-05-83 0.00 09-05-83 MO 1001-21 0.00 12-23-81 0.00 12-23-81 MO 1001-23A RIIRS Containment Sprny - 3.08 01-04-84 3.08 01-04-84 HO 1001-26A System I 1.10 09-15-81 1.10 09-15-81 MO 1001-29A RIIRS Return Loop "A" 0.00 01-04-84 0.00 01-04-84 3.00 09-14-81 3.00 09-14-81 MO 1001-34A RIIRS Suppression Chamber 0.00 01-04-84 0.00 01-04-84 MO 1001-36A Spray - System I 34.60 09-14-81 1.21 11-18-81 , MO 1001-37A MO 1001-238 Ri!RS Containment Spray - 7.88 09-22-83 7.88 09-22-83 MO 1001-26B System II 4.10 09-24-81 4.10 09-24-81 MO 1001-29B RlIRS Return Loop "B" 2.07 09-22-83 2.07 09-22-83 0.00 09-23-81 0.00 09-23-81 MO 1001-34B RIIRS Suppression 2.40/163.83 12-01-83 1.20 12-13-83 MO 1001-36B Chamber Spray 1638.0 09-23-81 6.07 12-19-81 MO 1001-37B System Il MO 1001-47 RilRS Shutdown 0.00 10-20-83 0.00 10-20-83 MO 1001-50 Cooling Suction 7.04 11-20-81 7.04 11-20-81 MO 1001-60 RilHS Ilead Spray 0.38 01-06-84 0.38 01-06-84 MO 1001-63 1.33 12-22-81 1.33 12-22-81 MO 1201-2 Clean-Up System 2.61/1.76 09-28-83 2.39 02-02-84 MO 1201-5 Suction 4.58 10-16-81 4.58 10-16-81 MO 1301-16 RCIC Steam Supply 20.40 09-06-83 3.35 01-18-84 MO 1301-17 29.00 09-07-81 0.46 12-01-81 CV 1301-40 RCIC Condensate Drain 5.03 09-05-83 5.03 09-05-83 3.90 09-09-81 3.90 09-09-81 CV 1301-41 RCIC Turbine Exhaust 24.90 09-05-83 5.78 01-14-84 24.90 09-07-81 1.00 09-30-81 A0 1601-21 Drywell and Suppression 68.10 09-27-83 24.80 01-10-84 A0 1601-22 Chamber Purge 53.60 09-29-81 10.32 12-20-81 A0 1601-55 A0 1601-56 A0 1601-20A Suppression Chamber 6.70 09-23-83 6.70 09-23-83 CV 1601-31A Vent Lines #1 7.60 09-24-81 7.60 09-24-81 TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR HEASURED LEAK RATE (SCFil) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0 1601-20B Suppression Chamber 7.10 09-12-83 7.10 09-12-83 CV 1601-31B Vent Lines #2 19.90 09-23-81 10.70 09-30-81 A0 1601-57 Drywell and Suppression 0.00 09-15-83 0.Q0 09-15-83 A0 1601-58 Chamber Supply Air 0.05 09-11-81 0.05 09-11-81 A0 1601-59 Purge A0 1601-23 Drywell and Suppression 9.00 09-30-83 9.00 09-30-83 A0 1601-24 Chamber Exhaust 17.99 10-18-81 17.99 10-18-81 A0 1601-60 A0 1601-61 A0 1601-62 A0 1601-63 A0 2001-3 Drywell Floor Drain 8.10 09-08-83 2.81 01-06-84 A0 2001-4 Sump Discharge 0.00 10-27-81 0.00 10-27-81 A0 2001-15 Drywell Equipment 0.014 09-08-83 7.35 01-23-84 A0 2001-16 Drain Sump Discharge 7.50 02-23-83 7.50 02-23-83 0.30 10-27-81 0.30 10-27-81 HD 2301-4 IIPCI Steam Supply 2.30 09-05-83 2.30 09-05-83 MO 2301-5 3.40 09-07-81 3.40 09-07-81 CV 2301-34 IIPCI Condensate Drain 6.76 09-05-83 6.10 01-11-84 7.00 09-08-81 7.00 09-08-81 CV 2301-45 IIPCI Steam Exhaust 0.00 09-05-83 0.00 09-05-83 165.0 09-08-81 12.04 10-06-81 A0 4720 Drywell Pneumatic 0.00 09-15-83 0.00 09-15-83 Suction 0.00 09-11-81 0.00 09-11-81 A0 4721 Drywell Pneumatic 0.00 09-15-83 0.00 09-15-83 Suction 0.00 09-11-81 0.00 09-11-81 A0 8801A 0xygen Analyzer Suction 0.00 10-03-83 0.00 10-03-83 0.10 09-29-81 0.10 09-29-81 A0 8802A 0xygen Analyzer Suction 0.00 10-03-83 0.00 10-03-83 0.10 09-29-81 0.10 09-29-81 i A0 8801B 0xygen Analyzer Suction 0.00 10-03-83 0.00 10-03-83 0.00 09-29-81 0.00 09-29-81 A0 8802B 0xygen Analyzer Suction 0.00 10-03-83 0.00 10-03-83 0.00 09-29-81 0.00 09-29-81 TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0 8801C 0xygen Analyzer Suction 6.00 10-03-83 6.00 10-03-83 4.40 09-29-81 4.40 09-29-81 A0 8802C 0xygen Analyzer Suction 16.00 10-03-83 1.40 11-29-83 0.40 09-29-81 0.40 09-29-81 A0 8801D 0xygen Analyzer Suction 0.00 10-03-83 0.00 10-03-83 0.00 09-29-81 0.00 09-29-81 A0 8802D 0xygen Analyzer Suction 0.00 10-03-83 0.00 10-03-83 0.00 09-29-81 0.00 09-29-81 A0 8803 0xygen Analyzer Return 0.60 10-14-83 0.60 10-14-83 1.70 10-01-81 1.70 10-01-81 A0 8804 0xygen Analyzer Return 10.00 10-14-83 10.00 10-14-83 9.50 10-01-81 9.50 10-01-81 733-1 Automatic TIP Ball Valve 0.25 11-07-83 0.25 11-07-83 0.70 02-02-83 0.70 02-02-83 0.15 09-25-81 0.15 09-25-81 733-2 Automatic TIP Ball Valve 0.40 11-07-83 0.40 11-07-83 0.00 02-17-83 0.00 02-17-83 0.40 02-02-83 0.40 02-02-83 0.20 09-25-81 0.20 09-25-81 733-3 Automatic TIP Ball Valve 0.70 11-07-83 0.70 11-07-83 0.00 02-02-83 0.00 02-02-83 0.10 09-25-81 0.10 09-25-81 733-4 Automatic TIP Ball Valve 0.00 11-07-83 0.00 11-07-83 0.00 02-02-83 0.00 02-02-83 2.10 09-25-81 2.10 09-25-81 733-5 Automatic TIP Ball Valve 4.50 11-07-83 4.50 11-07-83 0.00 02-02-83 0.00 02-02-83 0.00 09-25-81 0.00 09-25-81 700-743 TIP Purge Check Valve 7.50 11-07-83 7.50 11-07-83 4.70 09-25-81 4.70 09-25-81 SO 2499-1A CAM - Drywell 0.00 10-12-83 0.00 10-12-83 SO 2499-2A 0.10 09-28-81 0.10 09-28-81 SO 2499-3A CAM - Suppression Chamber 0.00 10-14-83 0.00 10-14-83 SO 2499-4A 0.00 09-28-81 0.00 09-28-81 TABLE A-1 ! TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE SO 2499-1B CAM - Drywell 0.00 10-07-83 0.00 10-07-83 SO 2499-2B 0.00 09-28-81 0.00 09-28-81 SO 2499-3B CAM - Suppression 0.00 10-12-83 0.00 10-12-83 SO 2499-4B Chamber 0.00 03-28-81 0.00 09-28-81 A0 2599-2A ACAD to Drywell 5.00/0.00 10-07-83 5.00/0.00 10-07-83 CV 2599-23A 0.20 09-28-81 0.20 09-28-81 A0 2599-3A ACAD to Suppression 0.90/15.10 10-12-83 0.30 11-08-83 CV 2599-24A Chamber 2.00 09-28-81 2.00 09-28-81 A0 2599-2B ACAD to Drywell 1.50/4.00 10-07-83 1.50/4.00 10-07-83 CV 2599-23B 1.70 09-28-81 1.70 09-28-81 A0 2599-3B ACAD to Suppression 0.00 10-12-83 0.00 10-12-83 CV 2599-24B Chamber 0.00 09-28-81 0.00 09-28-81 A0 2599-4A ACAD Drywell Bleed to 1.80 09-23-83 1.80 09-23-83 FCV 2599-5A SBGTS 1.40 09-28-81 1.40 09-28-81 A0 2599-4B ACAD Drywell 6.50 09-23-83 6.50 09-23-83 FCV 2599-5B Bleed to SBGIS U.D. 09-28-81 9.50 12-18-81 X-1 Drywell Equipment llatch 0.00 09-04-83 0.00 02-07-84 0.00 03-28-83 0.00 C3-28-83 0.00 12-23-81 0.00 12-23-81 X-2 Drywell Personnel 24.73 01-14-84 1.37 01-20-84 Airlock 10.30 12-18-81 10.30 12-18-81 X-4 Drywell Head Access 0.00 10-17-83 0.00 11-08-83 Hatch 0.00 10-01-81 0.00 10-01-81 X-6 CRD Removal Hatch 0.00 09-04-83 0.00 01-19-84 0.00 03-26-83 0.00 03-26-83 0.00 12-23-81 0.00 12-23-81 X-35A TIP Flux Mon. Flange 0.00 11-07-83 0.00 11-07-83 0.00 09-25-81 0.00 09-25-81 X-35B 0.00 11-07-83 0.00 11-07-83 0.00 09-25-81 0.00 09-25-81
- Valves tested separately. Individual valve leak rates shown.
4 1 1
] '
TABLE A-1 TYPE B AND C TEST RESULTS f VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE 1 X-35C 0.00 11-07-83 0.00 11-07-83 1 0.00- 09-25-81 0.00 09-25-81 X-35D 0.00 11-07-83 0.00 11-07-83 0.00 09-25-81 0.00 09-25-81 ' 1 X-35E 0.00 11-07-83 0.00 11-07-83 0.00 09-25-81 0.00 .09-25-81 4 X-35F 0.00 11-07-83 0.00 11-07-83 4 0.00 09-25-81 0.00 09-25-81 ] X-35G 0.00 11-07-83 0.00- 11-07-83
, 0.00 09-25-81 0.00 09-25 '
i i X-200A Suppression Chamber. 0.00 09-04-83 0.00 02-14-84
! Access Hatch 0.00 03-28-83 0.00 03-28-83 0.00 12-24-81 0.00 12-24-81 '
X-200B 0.00 09-04-83 0.00 02-06-84 1 0.00 12-24-81 0.00 12-24-81 Drywell Drywell Head 7.50 09-05-83 0.00 02-07 - Head Flange 0.00 12-23-81 0.00 12-23-81 1, 1 SL-1 Shear Lug Inspection 0.00 10-31-83 0.00 10-31-83 Hatches 0.05 09-18-81 0.05 09-18 i ) SL-2 0.00 10-31-83 0.00 '10-31-83 i 0.00 09-18-81 0.00 09-18-81 i j SL-3 0.00' '10-31-83 0.00 10-31-83 0.00 09-18-81 0.00 09-18-81 j SL-4 0.00 10-31-83 -0.00 10-31-83 ! 0.00 09-18-81 0.00 09-18-81 1 SL-5 0.00 10-31-83 0.00 10-31-83 0.00 09-18-81 0.00 09-18-81~ l SL-6 0.00 10-31-83 0.00 '10-31-83 1 0.00 09-18-81 'O.00- 09-18-81 [ SL-7 0.00 10-31-83 0.00 10-31-83 i, 0.00 09-18-81 : 0.00 '09-18.81 i 1 f
._ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ . ____..____.____________._________________m____ _ . . _ _ _ _ _ _ _ . . _ . .
I I TABLE A-1 1 TYPE B AND C TEST RESULTS l l VALVE (S) OR NEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE- AS LEFT DATE SL-8 0.00 10-31-83 0.00 10-31-83
- 0.05 09-18-81 0.05 09-18-81 l X-7A- Primary Steam 0.00 10-27-83 -0.00 10-27-83 0.00 09-10-81 0.00 09-10-81 X-7B 0.00~ 10-27-83 0.00 10-27-83 0.00 09-10-81 0.00 09-10-81 X-7C 0.00 10-07-83 0.00 10-07-83 0.00 09-10-81 0.00 09-10-81 j X-7D 0.00 10-07-83 0.00 10-07-83 1.20 09-10-81 1.20 09-10-81 j
l X-8 Primary Steam 0.00 '10-27-83 . 0.00 . 10-27-83 Drain Line 0.10 09-10-81' O.10 09-10-81 ) X-9A Reactor Feedwater ~0.00 10-27-83 0.00- 10-27-83 , 0.00 09-10-81 0.00 09-10-81 X-9B 0.55 10-07-83 0.55 10-07-83 0.50 09-10-81 0.50 09-10-81 l X-10 Steam to RCIC 0.00 10-07-83 0.00 10-07-83 O.30 09-10-81 0.30 09-10-81' X-11 HPCI to Steam Supply 0.00 10-07-83 0.00 10-07-83. 0.00 09-10-81 0.00 09-10-81~ X-12 RHRS Supply 3.20 10-07-83' 3.20 10-07-83 , 1 1.70 09-10-81 1.70- 09-10-81 3 X-13A RHRS Return 0.00 10-27-83 0.00 10-27-83 0.00 09-10-81 0.00 09-10-81' ! X-13B 0.00 10-07-83 0.00' 10-07-83. I i '0.00 10-81 -0.00 09-10-81 X-14 Cleanup Supply 0.95 10-27-83 0.95- 10-27-83' O.70 09-10-81 0.70 09-10-81 ] X-23 Cooling Water 0.00- 10-07 0.00- 10-07-83 l .0.00 09-10-81 0.00 09-10-81 l X-24 Cooling Water Return 0.00 10-07-83 0.00, 10-07-83
, 0.00 09-10-81 0.00- 09-10-81 1
1 TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE X-25 Vent From Drywell 1.95 27-83 1.95 10-27-83 2.20 09-10-81 2.20 09-10-81 2.10 05-08-81 2.10 05-08-81 X-26 Vent to Drywell 1.40 10-27-83 1.40 10-27-83 0.40 09-10-81 .0.40 09-10-81 X-36 CRD Hydraulic 0.00 10-07-83 0.00 10-07-83 System Return 0.00 09-10-81 0.00 09-10-81 X-47 Standby Liquid 0.00 10-07-83 0.00 10-07-83 Control 0.00 09-10-81 0.00 09-10-81 X-17 Reactor Vessel 1.40 10-27-83 1.40 10-27-83 Head Spray 1.20 09-10-81 1.20 09-10-81 X-16A Core Spray Inlet 6.00 10-27-83 6.00 10-27-83 4.00 09-10-81 _4.00 09-10-81 X-16B Core Spray Inlet 19.00 10-27-83 11.00 09-10-81 11.00 09-10-81 ; X-1008 CRD Position 0.05 10-27-83 0.05 10-27-83 Indication .0.00 09-15-81 0.00 09-15-81 X-100C Neutron Monitor 0.20 10-28-83 0.20 10-28-83 0.50 09-21 0.50 09-21 X-100E CRD Position 0.20 10-28-83 0.20 10-28-83 Indication 0.00 09-21-81 0.00 09-21-81 X-100F Power 0.00 11-04-83 0.00 11-04-83 0.00 09-23-81 0.00 09-23-81 X-100G CRD Position 0.35 11-04-83 0.35 11-04-83 Indication 0.00 03-26-83 0.00! 03-26-83 0.00 '09-25-81 0.00 '09-25-81 X-101A Recire Pump 0.20 10-28-83 0.20 10-28-83 0.00 16-81 0.00 09-16 X-101B Recire Pump 0.20 10-28-83 0.20 10-28-83? ; 0.35 09-17-81 0.35 09-17-81 TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH) PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE X-101D Power 0.20 11-04-83 0.20 11-04-83 0.00 09-25-81 0.00 09-25-81 X-102B Neutron Monitors 0.15 10-28-83 0.15 10-28-83 0.00 09-17-81 0.00 09-17-81 X-103 Neutron Monitor 0.25 10-28-83 0.25 10-28-83 0.15 09-17-81 0.15 09-17-81 X-104A CRD Position Indication 0.00 10-27-83 0.00 10-27-83 0.00 09-16-81 0.00 09-16-81 X-104B Drywell Coolers 0.00 10-27-83 0.00 10-27-83 0.00 09-16-81 0.00 09-16-81 X-104C CRD Position Indication 0.25 10-28-83 0.25 10-28-83 0.00 09-17-81 0.00 09-17-81 X-104D CRD Position Indication 0.25 10-28-83 0.25 10-28-83 0.15 09-21-81 0.15 09-21-81 X-104F Recire Pump Power 0.15 11-04-83 0.15 11-04-83 0.00 09-25-81 0.00 09-25-81 X-105C Neutron Monitors 0.25 10-28-83 0.25 10-28-83 0.10 09-17-81 0.10 09-17-81 X-106A CRD Position Indication 0.05 10-27-83 0.05 10-27-83 0.00 09-16-81 0.00 09-16-81 X-106B The rmocouples 0.25 10-26-83 0.25 10-28-83 0.00 '09-25-81 0.00 09-25-81 X-107A Neutron Monitor 0.25 10-28-83 0.25 10-28-83 0.30 09-21-81 0.30 09-21-81 X-107B Recirc Pump Power 0.30 11-04-83 0.30 11-04-83 0.00 09-25-81 0.00 09-25-81 X-227A ACAD/ CAM 0.00 11-08-83 0.00 11-08-83 0.00 09-28-81 0.00 09-28-81 X-227B ACAD/ CAM 0.00 11-08-83 0.00 11-08-83 0.00 09-28-81 0.00 09-28-81 L
APPENDIX B SELECTED DATA SETS FOR TYPE A TEST Presented herein are data sets at arbitrarily selected points during the Type A test. = Tabic B-1 has the data set at the start of the 24 hour test. Table B-2 has the data set after 12 hours of testing. Table B-3 has the' data set at the conclusion of the 24 hour test. Table B-4 has the data set at the start of the induced phase of the test. Table B-5 has the data set at the conclusion of the induced phase of the test. i i . 4
?
j i I ii 4 0 t h t i i e o 42-
-___________m___ _ _ _ . . . _ _ . _ . . _ _ . _._m. ..._. _ _ _ _ _ _ ___._m_._ ______._m _.___.m.__._________m._____._____.________..__________m__ _m _ . . _ .___-__ _ _ _ _ _._ __ ,__ ___.
=
I x 'as e
\ ~
i m,' s' g* s g
+ e *vi 9 . % h_ '
I 4
> .s '
ss g
\* \
w
\' 4 3 'w 6*ffO 31:43$ ohla 2 8991 9#/06#09 x
- 6na 4* ' ' ' 'AD ggne - tas ein ****)sli tt av 84 3taS t sens.se 43 ee
~ 1- llt 90 94'09 s rette ? l l t'* 46 93'08 e'4dtid .C lit *00 .
tl*61 a tsgid
., s 6ge+go '
66 tI e tsdid
-6 .
G.a tk'ed 8'496dG
'.4-59P'66 69 64'et G*46369 4 et'es ,6oet s'46140 ae 14'94 '65'00 O'34468 4 49'*01 66 s 0* led 68 -le se'le 64'64 tI' 8*tegot lI f81'08 ISI*01 #*tttib s .i. .t'... u . . 6 0. o n .o ... ,, 63.3 .e.et.e 6 ,., g ou 4
t.e t 6,.t.'6 . i2#.../.8 6e. , ..0999. 0 0T8 wf6 e
.1 334.t. tE wente s'etsge6etf68 O'. 's h.
n aQS s I 3 ill'96ljE*t llE , s 4 g 554'49 %86 eg 4g - i g e
#ab 864't4 "
6 6 lo C* dd
& ne;selts'6b %tuel .* se ee sa estef'tI e u sE let'r\ ' se u ~
8 o es at se n
, .s s ~
a et 4d'66 di'ga sA'D6
\ a std'e6 gv se n fe se sE*eg ge'69 d**t9 de'04 4e*bt a l. t'te['6E lb6'd(
06a2 41'1 A ss
- l. ##
9 6,' ## h *97 [ a, ,te'6d 6 go 4 3 se$es 64'60 e- 'gd*fb 66*66 . . \_ i i lg. 46*,4 46'94
- e y 33 t4
- uosu O'44 48 me m5vsnelG l' sw1* us$$ tca T14 1493 gTgg sJom' tub ot mt61 W496'4 # 0,a itth dddle ncnaS
- s &*f eeltS' lettel s de 3913'aS st 464 aemA
.w...M .< .,.. ud, . . 4 t.6.tu .6 1...ua9u w 98 us . .a.l.si t i ..l.n.e 8.' - m .4.# .&. .ilml.A
_ gnut lnmetst04 0949 ,r ,' <
- mets elliv mets 041af me.le* uftsoliwt e s6, esses es eresseels es e 6eestsu og <.
e'nus.su e,4 'e.m'ss6eesu -siwS*et es e'znestu e< t
' ,' ; , I. - s .L , .s \
s
- s. ~ . '
.. g>. , - 3
- Y'.%?
,b y - ,i g w ,.s ,\.
S .,_ s- \ -
.. a r %. .N %s .
g
. \ %
g A \ s\, s-g** (
, -{ y) n .w . - - 'i i , \' s , , i 3
N ,.
,JVQJ7g 6-1 s s , _' N - i 3 3m \ N ~
n ,.
' ,y -9E.'. , ...- 3 1#' s io i'N \ \
y v g e' ( *\ l a :: a
e ouse Clfftt UNil f 1842 efte'#e4 eeee paga Set input sees Sue yet e ave femP ave peu CfLL sve var 1 111.45 97.e3 e.33e34 2 113.14 94.43 e.ft940 3 138.44 94.43 e .2 P140 4 lie.93 94.43 e.2794e 9 tes.48 94.ee e.fft97-4 D4.43 94.10 e.22341 7 et.98 94.10 e 49.14 e.Pf 341, 9 98.69 e.te93 71.e4 93 69 8*18937 to 71.6* 69.73 e.39949 - - it 133.90 133.90 f.4443 Set step at 184990 ft free ease esta set e 3e Pte 63.49499 Pfe 6,1'.44tt7 wLette84.94 tenPe e3.?? ewCLe 43.77 vaPees.39374 entpe63 190se nelle e.9eSte99 96e 89 nieg - - - -- - --- 1 til 3 3 til,ji iti 1 39 i 10 4 iis ,e. t 9,.e ii
.3, .i..e9 , - '!!i;;
e
$;;;!,e' ,0. '.li::i 99.,,e -
e 9
,.r,,,
es
- 9. . ...e3 9.e. e9.e
. ,4 se > .9 ,i.94 ,,.4 ri.93 . .e3 ,i.7, senttLL S . - - - - - ~ - - ~ ~ ~ - - - - - - - - - - - - - - -
t 97',ep 4 Se 99 14.f7 9 94 de F 9 94 if 94.1e 99 se 97 38 le Fe$e4 49.3e ~*- - --- - - - - - - - * - - - - * + - - felt CLOCE save fen # talc. NASS eue. Time IFD meaM499 9uese [ fee Dev als mese. Less 44fe CALC. Less uppen Mauet PWe99 S # e4T esti 993 (eNF 899189 fetal PetNT great (1417 St.se lesee 9e ,p spee e3.77 0.te9199926e 89 e.90719efile e9 43.19e e,404e e.4499 e.4est e.4eet Sunnatteg esta flue Matt telfa n a tt ilmeest nesseline e.43esense e3 e.ael444:e er e.ee9e979e e4 Dett.a Maleest e.13 *e79e er e.39949:e ee e.39ere 4e se
\
TABIJE B-2 . l
-44r- i I -.-4
,,e- >
s Y , i'
", ! e <
4 g
+
r i
, .e J' /
9 J 7: , - / s , e' ,, , f J I s e
.p, s i t
peep riflF9 Alf 3 'ig e; / , ppftgfpe , e<e Oa'4 SL' 8 8ePU I * * * * / SU6 f t)t e avg fine evG Ofm ftLL ar. e Va8 , t 108.49 *1.** 9.22P34 7 112.06 99.41 0.71048 3 112.99 49.63 0.71000 4 Igg,76 ge ,41 0.21090 9 102.40 99.tV 4.21994 < 4- 95.79 99.93 0.21009 7 01.00 99.91 0.11009 8 60.16 91.31 0.19784 ; 9 1 78.97 *t.31 0 19784 tt 74.41 S1.09 e 0.35197 41 134.ga g3e,gg 3,53Seg fgt es?S se 06 044 pfges ne tabt DATA be l e 10 p.e e,s.p4443 Pg. ge,gygge utgyte40.64 ttwPe 91.86 Du(.t e 63.16 vapest.20499 DhTF862.949?ft uss$e f.*4441,7,33s OS / 8'OS '
! ,3Pp.44 t#A.43 ,,
2 lle.am its.03 , 3 ttt.es tip.it ' 4 117.44 144.96 / ^'
'9 les,*9 19p.99 103.42 ,
0 94.44 99 44 9 4. 0J 99.07 / 7 St' ns Fr.$0 '04.70 00.07 e' ei 6, 07.ps 'ee.04 40.01 40.lg i r 9 7e 3" r , 10 f t.,=to 99.07 71.94 '71.4% ,?t.14 71.30 ',.# j 11 134',a4'j39 11 , .. f f.uctLLS * ' i 4
.9,,9 %7.A4 99.67 > '/
9 99',19 's 7 Se.ae 99.37 9 Sn.tt 91.99 / ,,' 10 49.94 48.04 f d flSt et0cm Dats tint- nFaguaE0 ^ Ca'LC. malf. DA' &la at45. t,/ LEAR R&tt CALC L(as UPP90 ptep . ftn6 (F9 mags Top Sat PetSS. este 993 C0est 6 0U69 - 8PSlat 2 4 f*L 80thi sfDay 24.ps 6849844 ff4gite 83.98 Linli 9 '9147974tf 09 0.9464462430 GS 42.949 ' O.4G42 afr.0403 0.3047 0.3929
. "e o / 'Uman' log 04fA t iset ma95 - ! e DElla na91 / PELTA Mobl**t flM6**7 h4sseltME 0.t.699:4E c4 ..teraiete et 0.r9t*ssee 09 e.rsiasare er 0.26ee m E es 0.ss194046 o - ^ ,' / ,< .
l -s *)
/ ,
e... . .
~ ## ' ,' g4 ) i f , '. s . ,;r - / ,
i .
~a> .,
i - ,r
-s , . . . < .,,o
- l ' /
. . .f j e/ y .,4 sp ; y * -
i r
.1 ' r' ' / .- + ~ ,i. ,a -
TABLE B-3 . ,
/
- / h4 #
,# 9 .k'.*.'. g? ^_
O 9 e t 04eh 384496 h4IA ( eht6 gp/lepse eees esav lis ihdna eese
$na Ash 8 98$ tlud f AS eta 3351 ene teg 1 lge'll 66*h9 lle61 d tll*40 6a vS a'dle60 6 tll*4( 94 s'floet s
e tte'90 6 66*6 e l setats 6 882*te 66*86 e*diblE 9 66 tI 66*ed d'dlgt6 a ee'46 66*ed d ttiL6
- e 9e08 61*de J*let64 a de al 6l*de e*lef62 le 45t6 tt*44 e*te699 II ite'ot tte**t 2*Gt66e 6sa slet ta seltit tsieree et59 094v 333 e 546ge all ais e e ' e6 63=es ug ot dn31e 9t*es atasse*206L9 0uase9f'6eet6 ele 9t'546eS wt55e df* va'ts e*6et54696( oG .
e&05 I let*t6 let*et 2 lle ek 54t*eg g t ll,,' e b ll ee e lld.*te 6 i'69 6' 6 leb*t4 184*61 let'99 , 9 4%*hW eW
- 6 6 6D*d6 6,*64 i ge t6 44*9 II 60'9L e,.d.'* 694*00 a ee'94 9e' 9g'46
- e. as,et le se se ss si se al sa 41 se al es lI lt6*6e tte'ee 03a3811$
i, 66 ht 6s'os bs 66 6 66:.6 4 6 66 55
- 6. ==
le 6,s os
.. b,.i a9er s 0 i ,i. =s,s isev .,si avis laen as ova =
- s. o ,ae.u,6s is -
on.sa nie.3=
- si. s ,i.. .n.i.nen 66 o .is6- . , e,a avin .sa 2o.u.
nones sel 1 teiN& llula eissisa sil ee, er .9 e .eti45,ets 66 e .ettet6eba e6 9a .l.u.s e .0191 teG o ei:6 6.#466 ev a t'stne snomealCN gvsv u mt65 031 Gtiaf u tfutse4 W9etel - 6 6649.si.p i a si e:444>*4en e9 o al8v va e. . 64estros el m'a$Sna o 46eGe.fllee4 el.. s 6 teen.luD ea ot l l 1 VEIT H-t l l I 1
e e Soap riflFS Unit 3 1733 42/19#94 ees. Data 977 198UT esse 5"8 vet e avg ft4# ave opw citL avs var i 107.J6 99.96 0.71891 7 111.90 94.84 0.73703 3 99.44 a til.62 8.23791 139.97 es.en e.23733 9 102.91 19.no 0.73497 6 99.93 7 99.32 0.21660 88.77 99.38 8.71660 0 47.73 9 St.e4 0.19994 70.09 St.19 0.I8996 10 71.29 68.e7 0.39093 13 139.34 119.14 F.99973 P Sft ste3 at 131e39 p#tesse gast gafs $tt a tyg te 63.g9469 87e at.9ttr9 WLEvL*30.76 t# wee op.78 uwCL e 43,47 va pn e g. 34 918 geype62.#9701 malle 0.99tepee,93g 09 stOS 1 107.44 te7 24 2 109.94 113 47 3 tit,9e tit.73 4 tip.sa tes.94 . 9 tee.ae 30s.99 103.70 6 96.a8 9a.39 94.99 94.'9
- 7 44,31 77.90 83.69 St.se O
9 67.34 a7.44 68.40 47.79 70.99 18 71.ta 74.91 78.02 71.29 71.70 Pl.te 11 139.84 (19.24 1 99,9a 4 97.99 91.43 9 99.no 7 99'.49 99.72 9 90.a7 9t.73 se ee'. ps on.72 183t CLOC8 Datt itPP 9F atuef0 CALC. MASS Dev age gt R. Vint trl utg3 Tat Pet 33 meat. Lisa satt CALC Lese upfie WOU#$ t # UAT matt 993 CONF (PSlot 10faL P0ths 4.00 12:19t3* 9/ teres 3g.70 g.esgeog*teg g1 c.933172974E 09 62.799 1.0040 9.4728 1/Dai 1.egst limit t.efte Summatio9 Data TIME #495 0(Ll4 mas 9 OELta nalleet ilmfeer massefinE 8.90#9993E of s'.3799764E 97 0.2087949f 44 4 7749973E to 0.13699974 43 8.4919679t 87
-6 ' TABLE B-5
. H .t .l APPENDIX C COMPUTATIONAL PROCEDURE ,
The procedure for computing the containment parameters, leak rates, and statistical confidence limits is given by Quad-Cities procedure QTS 150-T3, Revision 7. A copy of that procedure is presented here. 4 4 l r
QTS 150-T3 Revision 7 CALCULATIONS PERFORMED FOR IPCLRT DATA October 1982 ID/8B Data collected from pressure sensors, dew cells and RTD's located in the containment are processed using the following calculations. If the test is concluded with a test period of < 24 hours, additional calculations given in QTS 150-T9 will be required. A. Average Subvolume Temperature and Dewpoint. T) = I(all RTD's in the jth subvolume) F (1) Number of RTD's in jth subvolume D.P.) = I(all dewofcells F (2) Number dewincells Jehinsubvolume) j th subvolume where T = average temperature of t.he jtn subvolume D.P.J . = average dewpoint of the j th subvolume B. Average Primary Containment Temperature and Dewpoint. T= b L (VFJ ) * (Tj ) j=1 F O) D.P. = Pot (vr.)*(D.e.j>a F J=1 J (c) where T = average containment temperature t' D.P. = avera.ge containment dewpoint VF = volume fraction of the jth subvolume
- NVOL = number of subvolumes If T) is undefined then T) = Tpt for 1 1 j i (NVOL - 2)
T) = T), for j = NVOL - 1 Tj = estimate for j = NVOL ] hd]; 0?2 'i9. 'i i If D.P. is undefined 3 D.P.) = D.P.pg for 1 1 j i (NVOL - 2) D.P.) = D.P.)_1 for j = NVOL - 1 D.P.) = estimmte for j = NVOL l l
[ d. Calculation of Dry Air Pressura. D.P.( K) = 273.16'+ D.P.( F) - 32 1.8 X = 647.27 - D.P.( K) 3 EXPON = X * (Y + Z
- X + C
- X )
(D.P.("K))*(1 + D
- X)
P* = (218.167) * (14.696) ( e(E%?ON
- In(10))
P = I(all absolute pressure gauges) ,p (5) (p,1,) Number of absolute pressure gauges v where Y = 3.2437814 Z = 5.86826 x 10 ~3
~
C = 1.1702379 x 10
~
D = 2.1878462 x 10 P, = volume weighted containment vapor pressure P = containment dry air absolute pressure C, D, X, Y, Z, and EXPON are dewpoint to vapor pressure conversion constants and coefficients. . D. Containment Dry Air Mass. W = (28.97) * (144) * (P) * (288737 - 25 * (LEVEL - 35 )) (6) 1545.33 * (T + 459.69) where W = containment dry air mass 1 LEVEL = reactor water level 289506 = primary containment volume F0R RECCDCUf" Ogni'J3 LRL
!l NOTE This volume is the summation of the subvolumes calculated in QTS 150-T2. These subvolumes were calculated using QTS 150-T8. Since the measured leak race is a difference-in air masses, this number is just as conservative as using the FSAR number.
l
- l
, 5 tbscured L2nk Rato. a
' L (TOTAL) = (WBASr - W.)
I
- 2400 (7)
%/ DAY "i BASE L,(POINT) = (W g - W )
- 2400 ( }
%/ DAY (Ci - t .1) i
- W i.1 i
where Wg = containment dry air mass at t =0 t. t
=
time from start of test at ith data set
=
t g time from start of test at (i-1).th data set W= dry air mass at ith data set W g,7 = dry air mass at (i-1)th data set L,(TOTAL)= measured leakage from the start of test to ath data set L,(POINT)= measured leakage between the last two data sets' F. Statistical Leak Rate and Confidence Limit. LINEAR LEAST SQUARES FITTING THE IPC'RT DATA The method of "Least Squares" is a statisttcal procedure for findtag tne best fitting regression line for a set of measured data. The crtterion for.the best fitting line to a set of data points is that the sum of the squires of the deviations of the observed points from the line must be a minimum. When this criterion is met, a unique best fitting line is obta:.ned based on all of the data points in the ILRT. The value of the leak rate based on the regression is called the statistically average leak rate. Since it is assumed that the leak rate is constant during the testing period, a plot of the measured containment dry air mass versus time would ideally yield a straight line with a negative slope (assuming a non-zero leak race). Obviously, sampling techniques and test conditions are not perfect and consequently the measured values will deviate from the ideal straight line situation.- Based on this statistical process, the calculated leak rate is obtained from the equation: W = At + 3 j where W = contained dry air mass at time t h hk b$
a,, w a - 5 =- calculated dry air maos at time t c 0 A = :siculated leak rate t = cast duration 1 FOR~ REFERENCE OY. Ory Air P. ass (lbs) . 4 Test Ouration (hrs) The values for the Least Squares fit constants A and B are given by: A = {N
- Z(tt) * (V g ) - Itg
- IW } = I(t - E) * (Wg - 0)
{N "r 1(t ) - (It ) } I(t - E) , __ B = IW - A
- It( = {I(tg)
- Z(W )} - {I(t ) * (W }}
N N
- Z(t() - (It )
t where E = the average time for all data seca . . . _ . . _ W' = the average air mass for all data sets i The second formulas are used in the process computer program to reduce i round-off-error. - ' By definition, leakage out of the containment is considered positive leakage; therefore, the statistically average leak rate is given by: d, = (-A) * (2400) g y) (9) STATISTICAL UNCERTAINTIES In order to calculate the 95% confidence limits of the statistically average leak rate, the standard deviation of the least squares slope and the student's TDistribution function are used as follows. 1 N
- I(Wg )2 , (79 )2 q
)
e={ *( )-A} (N-2) N
- I(t g) - (It g) .
When gerforming these calculations on the process computer, Z(Wg)2 and (IWg )* become so large that they overflow. To avoid this problem AW is substituted for Wg. AW g is the difference between Wgand W W E' t ,
" The singlo sid:d T-Distributica with 2 dsgrees of frsadca is approximated by tha follcwing formula from NBS Ecadbook 91: T.E. = 1.646698 + 1.455393 , 1.975971 (N-2) (N-2)' The uppee confidence limit (UCL) is given by UCL = L "
+ a * (TE)
- 2400 ("eight L' DAY) (10)
B
~
I FOR REEREEE 0!il.Y '; i l 1 (final) i i
. __ _}}