ML19225A552

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test, 790219-22
ML19225A552
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 07/05/1979
From:
COMMONWEALTH EDISON CO.
To:
References
NUDOCS 7907190545
Download: ML19225A552 (60)


Text

-

REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST QUAD-CITIES NUCLEAR POWER STATION UNIT ONE FEBRUARY 19-22, 1979 397 296 7 90719 c 46

s 1

TABLE OF CONTENTS PAGE INTRODUCTION.

.4 A.

TEST PREPARATIONS 5

A.I Type A Test Procedure.

5 A.2 Type A Test instrumentation.

5 A.2.a Temperature A.2.b.

Pressure A.2.c.

Vapor Pressure A.2.d.

Flow A.3 Type A Test Measurement

.6 A.4 Type A Test Pressurization

.6 B.

TEST METHOD

.11 B.1 Basic Technique.

.11 B.2 Supplemental Verification Test

.11 B.3 Linear Regression Analysis

.11 B.4 Instrumentation Error Analysis - Application

.11 C.

SEQUENCE OF EVENTS.

.12 C.l Test Preparation Chronology.

.12 C.2 Test Pressurization Chronology.

.13 C.3 Temperature Stabilization Chronology

.13 C.4 24-Hour Plase of Leak Rate Test

.14 C.5 Induced Leakage Phase.....................14 C.6 Blowdown Phase

.15 D.

TYPE OF TFSi DATA

.16 0.1 24 Hour Phase Data

.16 0.2 Induced Phase Data

.16 E.

TEST CALCULATIONS............

.16 F.

TYPE A TEST RESULTS AND INTERPRETAT!0N.

31 F.1 24 Hour Phase Test Results 31 F.2 induced Phase Test Results 31 F.3 Leak Rate Compensation for Non-Vented Penetrations 31 F.4 Pre-Operational Results vs. Test Results 32 397 297 APPENDIX A TYPE B AND C TESTS 33 APPENDlX B AS FOUND LEAK RATES

.43 APPENDIX C COMPUTATIONAL PROCEDURES AND INSTRUMENTATION ERROR ANALYSIS 45 9

TABLES AND FIGURES INDEX PAGE TABLE ONE Instrument Specification................

7 TABLE TWO Sensor Physical Locations 8

TABLE THREE 48 psig Type A Test - 24 Hour Phase..........

1.7 TABLE FOUR 48 psig Type A Test - Induced Leak Rate Phase

.26 TABLE A-1 Type B a.id Type C Test Results.

............34 FIGURE ONE idealized View of Drywell and Torus Used to Calculate Free Volume.

9 FIGURE TWO Measurement System Schematic Arrangement........10

_3_

9 INTRODUCTION This report presents details of the Integrated Primary Containment of Leak Rate Test (IPCLRT) successfully performed on February 18 through 22, 1979 at Quad-Cities Nuclear Power Station, Unit One.

The test was performed in accordance with 10 CFR 50, Appendix J and tho Quad-Cities Unit One Technical Specifications.

The total primary containment integraced leak rate, adjusted to include penetrations not tested during the IPCLRT. was found to be 0.3!75 wt %/ day at a test pressure of 49 psig, which was within the 0.750 wt %/ day acceptance criterion. The associated uppec 95% confidence limit was 0.3219 wt %/ day.

Excluding non-testable penetrations, che supplemental induced phase leakage test result was 0.537 wt %/ day.

This value should compare with the sum of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> phase result (0.301) and the induced leak rate of 3SCFM (0 342 wt %/ day).

The statistical value of 0.537 wt t/ day lies within the allowable tolerance band of 0.643 + 0.250 wt %/ day.

397 299

=

6 SECTION A - TEST PREPARATION 5 A.I. Type A Test Procedure The IPCLRT was performed iri accordance with Procedure QTS 150-1, Revision 5, including checklists QTS 150-S1 through S13, subsections QTS 150-TI, T2, T3, T6, T7, and T8, and Approved Temporary Procedure 1186 allowing a valving change on an instrument and recuiring measurement of drywell sump levels.

These procedures were written to comply with 10 CFR 50 Appendix J, ANSI N45.4-1972, and Quad-Cities Unit One Technical Specification.

A.2. Type A Test lastrumentation Table One show the specifications for the instrumentation utilized in the IPCLRT. Table Two lists the physical locations of the temperature and humidity sensors within the primary containment.

Figure One is an ideal-ized view of the drywell and suppression chamber used to calculate the primary containment free air volumes.

A.2.a Temperature Locations for RTD's were carefully chosen to avoid conflict with local temperature variation, while still satisfying sensor placement as dictated by results of the previous Unit One IPCLRT of March, 1976. sensors were suspended to prevent direct thermal influence from any metal structures. Temperature of the reactor vessel air space was based upon the reactor water entering the RHR Heat Exchanger of the loop in operation for reactor shutdown cooling.

Each RTD-bridge network was calibrated to yield an output of 0.0 mV to 100 mV over the range of 50 F - 150 F.

Observations were made by comparison wiek.a Montedere Whitney platinum resistance thermometer, serial numbec TC 7G 100B 006D. The plant process computer sampled the output of each RTD-bridge network.

A.2.b Pressure Two precision quartz bourdon tube pressure gauges were utilized.

Each gauge had a local digital readout as well as a Binary Cc cJ Decimal (BCD) output to the process computer.

Primary Contal ment pressure was sensed by the pressure gauges in parallel througa a 3/8" tygon tube connected to a special one inch pipe penetration.

Each precision pressure gauge was calibrated over the range of 55 to 75 psig in approximately 5 psig increments using a Volumetric Inc.

VMC 07726101 calibration standard.

Since the digital readout was in

" counts" or arbitrary units, only the computer calibration factors were corrected in the calibration and no mechanical calibration was performed.

00 A.2.c.

Vapor Pressure The dewcells were physically situated in the primary containment based upon the results of the Unit One IPCLRT performed in March, 1976.

An assumption was made that the reactor vessel air space (subvolume 11) was saturated and at the same temperature as the reactor water enter-ing the RHR heat exchanger.

A calibration curve was generated for each sensor over the range of 67-93 F.

Calibration constants were derived f rom the curve to cor-relate the 0 mV to 150 mV output of the sensor to the actual dewpoint measured by a chilled mirror dewcell standard, Volumetrics, Inc.

serial no. VMC 203/184. A Fluke model 8600A digital multimeter was used to measure the voltage output of tha signal conditioner.

A.2.d.

Flow A rotameter flowmeter, Fischer-Porter serial no. 7706A9209 calibrates to within + 1% by Fischer-Porter, was used for flow measurement.

Tygon tabing connected the rotameter with the one inch pipe penetra-tion to the primary containment.

A.3.Tyoe A, Test Measurement The IPCLRT was performed utilizing a direct interface with the station process computer. This system consists of a hard wired installation of temperature, dewpoint, and pressure inputs for the IPCLRT to the process computer. The interface allows the process computer to scan, calculate, and print results with minimal human input. The system was constructea in accordance with modification M-4-1-76-45, and was used during the previous Unit Two IPCLRT in October 1976.

A.4.

Type A Test Pressurization A 3000 scfm, 600 hp electric oil-free air compressor was used to pressurize the primary cortainment. An identical compressor was available as a standby.

The compressors were physically located outside the reactor building.

The compressed air was piped into the Reactor Building through an existing 4" fire header penetra' ion.

For ease of handling a flexible 4" pipe was used within the reactor building.

The drywell was pressurized through the "A" containment spray header 10" flange with inboard valve M0-1-1001-26A open during the pressurization process.

397 30!

~

~

YT I

L i

I s

B p

A F

F T

1 F

00 A

0 0

1 E

0 1

1 P

0~

0_

0 E

0

+

+

4 R

+

i m

s Y

r f

C F

c A

5 0

F F

s R

1 5

0 2

0 0

0 U

l f

C 2

C 0

0-1

+

+

+

0 A

+

O2 H

m f

0 a

c 6

i s

F F

s

+

p F

o 0

0 1

E 0

0 5

0 t

0 C

0 2

1 1

0 1

6 1

NA 0

0 6

R 0

5 5

0 0

S J

t 0

I T

45678901 2345678 901 2 3456 A

222222333333333 01 1 1 1 1 1 1 C

2222222 22 222 2 22 3333 3333 I

O 4444fi 4444444444 6666 6666 l

I 444444 7777 7777 4444444416 E

F tJ i

O C

L E

A 901 2345678901 23 E.

P I

91 01 1 1 1 1 1

1 1 1 1 2 222 L

S R

01 22222 222 2222 2 22 9

7 B

E 33 444444444444444 o

2 2

T rl S

1 1 444444444444444 A

T 1

9 E

4 4

n M

4 4

t U

4 4

o P.

A 0

0 7

9 7

6 T

3 0

0 S

0 0

9 Jt 2

I

/

1 6

s 0

P J

5 6

5 i

t t

C 2

5

/

6 0

5 R

L l

E A

3 1

3 C

D l

A S

O P

K 1

A M

S V

2 ol re tr R

y o

E s

g t

P R

c n

i i

i n

U T

r r

i C

t e

d r a r

A e

e ye T r e

F m

s n at c

h U

u ni ki l i c

t l

r gc cm l

M s

y J

A o

un n ei a

i a

M V

BE I

VL P

F wra Y

)

r l

o

(

t A e

)

a0 T

l )

l c0 N

)

)

pB

(

i1 E

n

) 9 7

u6 r

d -

M oe2 2

(

o4 e

n3 U

i r ((

l c0 t

I 6

R s u l

o1 e

2 v4%

vaNr l

n l

e) a m -

n T

i s e s e

S c

e2 e

g' c

eE o

v J

e ab w

t r r ui e

h T l

eI I

P PG R D

T(

F 1L

t TABLE TUO SENSOR PHYSICAL LOCATIONS RTD "O.

SERIAL ':0.

SUDVOLU?!C ELEVATION A Z I'!U T:I 1

44209 1

670'0" 180 2

44210 1

670'0" 0

3 44211 2

657'0" 200 4

44212 2

657'0" 2000 5

44213 3

634'0" 70 6

44214 3

634'0" 2G50 7

44215 4 ( Ann ula r 643'0" 45 8

44216 4

Ring) 615'0" 2250 9

44217 5

620'0" So 10 44218 5

620'0" 1000 11 44219 5

620'0" 220 12 44220 6

608'0" 40 13 44221 6

608'0" 130o 14 44222 6

608'0" 2200 15 44223 6

608'0" 310 16 44224 7

598'0" 70 17 44225 7

598'0" 160 18 44226 7

598'0" 2500 19 44227 7

598'0" 340 20 44228 8

587'0" 100 21 44229 8

587'0" 1000 22 44230 8

587'0" 190 23 44231 8

567'0" 280 24 44232 9(CRD Space) 586'0" 00 25 44233 10 578'0" 00 26 44234 10 578'0" 600 27 44235 10 578'0" 1200 28 44236 10 57S'0" 180c 30 44238 10 578'0" 300 The rno co uple (RHR R:c Inlet) 11 DEtTCELL "O.

SERIAL NO.

S UE V O LU3f E E L E V :\\TI O:7 AZI5!UTH 1

000444-1 2

657'0" 160 2

000444-1 5

620'0" 340 3

000444-1 7

598"0" 70 5

000444-2 9 (CRD Space) 586'O 00 6

000444-2 10 578'0" 0

7 000444-2 10 578'0" 120o 8

000444-2 10 578'0" 240 netuv auple (Veccel Saturated) 11 i

397 393 8

FIGURE ONE Idealized View of Drywell and Torus Used to Calculate Free Volumes t


f 4

- 37 ' 0" I'

34'8" d

681'9" 677'6"

/

j/

I 11 666'9" Vessel

~

662'0"

~

y' / hi"quf,/

655'2" b

,/

//

/

rr..j. (Biolog.ical 652'8",

Occup.ned

/

/ 'k shield (Grating)

~

/

ring

-j/ Volume f

g,/

"/

3

/h Free

'- / L _J g/c /,'

24' Volume 635'10" f

i1. 7,

-((' )-.

6 3,8"

(

![

["~

(Grating) s

/

/

y N

/

c'

/

5

\\

/

,/ /

/ /'

\\

/

/

/ /

\\

614 6"

/// /

\\

2;";,","a 6

f t

605'6" E

5

'/

,/

602'10'

/

i

/

./

/

'0'0"

/'

',I/,:

l

/

9 if _ _ _ _' /

593'0"

-s

$/

/'l 8

jfr 13Q

,m,

/

/ al N

/

/

10 Nf..7

,N

/

/

x

,- f 7

OI p / /g/

579'

~/

//

(Conc re t e -' ~'/,,3b,. l

/ / /

\\

s/

/ /

i

.,,, G,,

s i 569 ' 10 Flea r,

.j

~ _ ___ f __ I -

I

\\-

-/

\\

il c

- - - - _ 54'6" ____

s

'/

'N i[ i la _J U j( \\ s ~__._.__/ t FIGURE 0'iE ~ ~ ~ ~ _g_

FIGURE TWO MEASU3EMEtlT SYSTEM SCHEMATIC ARRANGEMEtiT Beiden Se1 den 8618 P g".] RTD 8618 Belden d723 3j ( 9) Local Junction Box (16) Jewceli 8eIde" 1 8723 (7) 2/c i 110 Vac Drywell Terminal P1 Box j t 1 .h a Instrument ~ Console 1 Induced Phase Tubir g HTD Bridges Pressure Sensing Transducers Tubinq Tubing Flowmeter 40/c cable n (3) ~L2; (/ w Drywell 110 Vac Access Haten i Buikhead FI Outlet Cc outer i 40/c cable Cable aan 5 (3) Tunnel and Traastiute r Ou tpu t bi es 59[ }}} SECTION B - TEST METHOD B.l. Basic Technique The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws with measured containment temperature, dew point and air pressure to determine dry air mass in the containment. The leak rate can then be determined from the rate of mass loss. B.2. Supplemental Verification Test The supplemental verification test superimposes a leak of approximately the same magnitude as that measured during the 24-hour phase of the test. The degree of detectability of the combined leak rate provides a basis for resolving any uncertainty associated with the 24-hour phase of the test. B.3 Linear Regression Analysis Leak rate is assumed to be constant during the testing neriod, ideally yielding a straight-line plot with negative slope. Ho. er, sampling techniques and test conditi;as are not perfect; conseqv.ntly, the measured values will deviate from the ideal straight line situation. A least squares fit statistical analysis was performed to determine a regression line for mass versus time af ter each set of data was ac-quired. The slope of this regression line was designated to be the statistically averaged leak rate. This quantity was compared to the Technical Specification allowable operational leak rate L (0.75 wt u %/dav). Associated with the statistically averaged leak rate was the upper 95% confidence limit leak rate. The calculation of this upper limit was based upon the standard deviations from the regression line and the one-sided Students - T Distribution function. A procedural requirement specified the upper 95% confi;ence limit leak rate would be less than the Technical Specification maximum allowable leak rate Lp (1.0 wt %/ day). B.4. Instrumentation Error Analysis - Application An instrumentation error analysis was performed prior to the test in accordance with ANSI N45.4-1972. The instrumentation system error was calculated in two parts. The first was to deterr'ine the system accurac/. The second and most important calculation was performed to determine the error due to system repeatability. The results were 0.0428 and 0.0101 wt3/ day, respectively. A statistical combination of these two values yielded a total instrument uncertainty (203 of 0.0880 wt%/ day. The instrumentati.>n uncertainty is used only to illustrate the system's compatability to measure the recuired parameters that are necessary for calculation of the primary containment leak rate. The instrumentation for uncertainty is always present in the data and is incorporated in the 95% upper confidence limit in the form of data scatter. Procedures required that the summation of the 24 hour statistical leak rate and the total instrument uncertainty (2c) be less than Lp (1.0 wt%/ day). 3 C)'7 ?6 e auo SECTION C - SE0.UENCE OF EVENTS C.l. Test Preparation Chronology The pretest preparation phase and containment inspection were completed by February 18, 1979 with no visible structural deterioration being found. Major preliminary steps included: 1) Completion of all Type B and C tests, component repairs, and retests except for the 2A main steam isolation valve. 2) Completion of drywell equipment installation. 3) Completion of IPCLRT pre-test valve checklist including isolation of drywell and suppression chamber pressere sensors. 4) Blocking of tliree sets of drywell to suppression chauber vacuum breakers in the open position for pressure equilization between the drywell anG suppression chamber volumes.

5) venting of the reactor vessel to the primary containment via the manual head vent line and the drywell equipment drain sump.

6) Completion of pre-test data gathering system, including computer program, instrument console, and associated wiring. C.2. Test Pressurization Chronology DATE TIME EVENT 2-19-79 1530 Primary Containment pressurization initiated. 1700 Several minute packing leaks on drywell 02 sampling station were repaired. 1840 5 scfh leak on drywell penetration X-44; could not be repaired. 1853 Failed Dewcell #3 in subvolume 7 because of abnormal readings. Data from this sensor were not used for the test. 2045 Some very small leaks on the T.I.P. system corrected. 2345 Primary containment pre;sure at 64.1 PSIA; compressor wa: manually tripped and 'solated. 2350 Found leaks totaling approxin.ately 15 scfh on drywel; personnel interlocks, main tena. ice repai red these. 2-20-79 0415 Computer date sheets Indicate a leak rote v* *pprox-imately 1.2 veight per cent per day. 0800 Found a major

.akage pa th.

Drywell cooler damper controls were ieaking badly; the tubing inside the containment was probably broken causing the leakage. The controls are isolated at the penetrations by closin? the manual valves. 1100 Repressurization of the primary containment was begun. 1130 Pressurization was complete; drywell pressure at 64.8 PSIA. C.3 Temperature Stabilization Chronology DATE TIME EVENT 2-20-79 1300 Data satisfactory, reactor temperature holding steady, reactor level slowly decreasing at about 0.6 inches per hour. 1530 Ready to begin 24 hour leak rate test phase. 397 393 C.4. 24-Hour Pnase of Leak Rate Test DATE TIME EVENT 2-20-79 1530 Started 24 hour phase. Data sets taken at 15 minute intervals. 1600 The blind flange on the "A" RHR Loop was replaced. (This was the line used for containment pressurization). 1700 Torus level not at 0 inches; test will have to be restarted. Computer also averaging both RHRS loop temperatures; must delete temperature of RHRS loop not in service. 1915 24 hour phase was restarted. 2-21-79 0208 Adjusted the Shut Down Cooling mode of RHR to control temperature more accurate!'/. 0210 Computer shutdown. 0300 The computer was restarted. The failure was due to loss of printers in control room. 0825 Shut Down Cooling mode of RHR again adjusted for better Reactor water cooling. 1930 24 Hour Phase complete 95% upper confidence limit leak rate is 0 3055 wt %/ day, well below the allowable leak rate of 1.0 wt %/ day. The statistically averaged leak rate was 0 3011 wt %/ day. C.S. Induced Leakage Phase '309 DATE TIME EVENT 2-21-79 1944 Induced leak rate of 3 scfm initiated. (0.342 wt %/ day) 2-22-79 0023 Upper limit of induced phase calculated to be 0.8931 wt %/ day, lower limit 0 3931 wt %/ day, with an ideal value of 0 3011 wt %/ day (leakage of 24 Hour Phasei + 0 342 wt %/ day (induced leakage) = 0.6431. 0056 Fi6al induced Leakage Phase Results: Statistical Leak Rate: 0.5372 wt %/ day 95% Upper confidence Leak Rate: 0.5671 wt %/ day Both values are well within the aliowable upper ano lower limits. C.6. Blowdown Phase DATE TIME EVENT 2-22-79 0130 Blowoown initiated through the Standby Gas Treatment System. 1050 Primary Containment pressure at atmospheric; initial drywell entry made by technical staff. No visible damage observed as a result of the test. Drywell sump levels at about i inch, the same as at the beginning of the test. 397 3 4 SECTION D - TYPE A TEST 0ATA D.I. 24 Hour Phase Data Data for the 24 Hour Phase is illustrated in Tab 3 Three. Graphic record of this portion of the test is presented on graphs I tnrough 7 D.3 2. Induced Phase Data Data for the Induced Phase is presen.ted in Table Four. Graphic illustration of the major parameters is given on graphs 8 through 11. SECTION E - TEST CALCULATIONS Calculations for the test were based on Quad-Cities procedures QTS 150-T3 Reproductions of these procedures can be found in Appendix C. Sample instrument error analysis is also found in Apprendix C. b }}} e TABLE THREE 48 PSIG TYPE A TEST - 24 HOUR PHASE O v a ') Ol fits y)l f 1 1931 02/21/14 ....sJ* 4av ;F JATA Stf5 61 indJ 154

    • ee fcif ?)R, TtmP C AL [ 4a55 CdY AlW PcAS. LE AR p tf E GALC. Lh as uPPE4 95% C*4F!D was flmt Caff (F)

Tag pats 1 / UAT daft Ll917 (Pila) T3fAL v31%T

  • / 3Af 3.21 181433 7/20/79 0 3.S l 64.101 0.2a 193114 3/23i 79 ss.4$

64.3*S 0.2653 -3.2s43

  • 57 1944Ji 2/23/79 08.42 3.412555203E S

$4.39s

  • 3.4232

-C.S$2d -0.4241 -0.0535 3.7P 2;J11S 2/27/79 hs.42 1.9125370246 2S 64.0$3 0.1672 1.7744 0.3577 0.9631 . 02 23150s 2/?nt:9 es.41 1.912$37715h 05 64.09a 0.124e - 0. 010 $ ' 3.1635 u.$331 1.2s 233129 2/26/79 os.45 0.912t11547c 35 64.J25 3.1257 0.13C0 3.1917 0.4755 1,53 234435 2/?1/77 di.5 0 3.912s1 72 6 E 05 A4.0d7 0.1728 3.4146 0.22>4 0.42G2 1.75 2131:1 2/23/79 ds.51 1.912s36s20h :$ 64.079 0.3245 1.2dSi C 323e 0.5317 2.03 2.'.S 11 2 /2 :/ 79 98.5 4 3.912 t4 45 32 5 ;$ 64.031 0.2914 C.1214 0.3$11 3.44*2 2.23 213133 2/20/?? J).51 0.1:2344322E ;) 64.077 0.2$d4 3.0249 0.3563

3. 4$ 70 7.5 ?

214134 2/?*/7V da.56 0.912344:425 ;) 64.078 0.3065

0. e4 79 3.363d 3,/591 1.??

22J036 2/2?/77 Js.53 3.9125481'7t 35 64.073 0.2954 3.itcc 0.3tv1 0.4435 3. 2 22 533 2/21/79 aJ.80 0.012e437:3t ) 64.J91 0.2704 -0.C319 0.3)ss 0.4234 3.27 223:54 2/21/79 ed.57

3) 2s2719$: Oi 64.042 0.1340

-W.d456 0.3146 0.J640 3.52 2245J/ ?/2a/79 $d.6 4 a,91333642Sh ;3 64.373 C.3539 2.5056 0.3424 0.4385 3.73 225913 2/2a/70 $5.62 " 7t?+33627h JS 64.0 75 C.257) -1.3053 0.3JJ6 3.2593 4.;) 2319 J0 2 /2 r / 79 13.S 4 S.112 $2 25 7 5 e 'S

64. n1 0.2116

= 0. 25 7 4 0.3033 3.3s44 4.?S 232787 .' / 2 a / 7 9 cS.70 0.9 :' e21314 c ;3 A4.O s3 0.2674 1.1354 3.JG55 0.3556 4.32 234$4/ 7/23/ 73 13.7 1 3.1 ; 2 * :34 37 : ;$ 64.3 o0 0.2576 0.1513 0.3 C; 3 3.34$) 4,77 10.044 2/21/ 79 ss.70 C v;2-. i ', J e S 6*.074 0.2471 0.0361 0.2933 3.3337 $.*2 021501 7/21/77 ').75 0.9;2 2':34c ;) 64.074 3.3CS2 1.431$ 3.302 ) 0.34 s %.27 0:3J3v 2/2 /7= es.75 C.9;?stil-;: ;) 64.076 C.2727 -;.4093 0.3213

.3351

.53 13403-7/21/7d 33.77 0.412. -223: .) a4,; h C.2716 J.2SJL 3.2*43 0.3313 4.7s

      • 37s

/ /2 :/74 '.19

112si'! s: 23 b4.

0.3157

1. 4045 J 3sd>

".3356 e."2 C 113

  • s 2/2;/ 74

.oS 0. 312 $ 3 :4dit Oi 04. 07 0.35?2 . 2363 C.3 24 3 0.3543

  • 12s34is;t ;)

64.0 7$ 0.2175 -1.69o4 0.322* . 3523 s.24 Ot234J 2/21/ 79 91.8S s.51 114444 2/21/ 79 3s.14 '.912 313??: $ 64.1's 0.3173 1.312s 0.3271 0.3545 6.74 /'s52 2/2t/74 1s.41

0. 3 :2*4'4t5:

4 4.064 0.3545 A.41wl 3.3351 3.3963 7,56 31 7). 1/21/ ?* o s.71 2,;2 $3 t3 s4 : 75 04.363 C.!*7J s.2963 0.3473 " 37 32 O J:$2 - 2. 46"] J.3442 3.3913 7.47 ist??e ?/2 /73 21.v7 0.912c53.6sc ;5 04 3 SS

147:2 2 /2 ;/74 24.0 2
  • 712 e 7f a : 05 64..a" 3.3 Je 1

.' e4 C.3433 j,3717 $ 7, 34: J4 7/21/'. ".04

3:2n; t M 04.033 0.J 34 2

..J1JJ 0.3921 S.373S 9.: ] 341442 2/21/79 4.37 0,7:2537351

5 64.0S$

C.30so -0. cold 0.3434 0.3993 4.23

42*3'

?/21,74 3*.37 J,417M1113c C3 64.967 0.2924 -0.2145 L.3426 0.3616 a.S' 24*S4s 2/21/79

3.36 2 ;;2342325e ]$

$4.370 C.2752 -?.3239 0.3347 0.3534 '3 ?4');" 2/21/74 $1.05 3.9'.2s132?15 23 $4.063 0.2993 1.27$2 0.3320 0.35 31 e 1..., J 51.' 3 ? 7/2t/74 54.14 0, 2317223: M S4.397 0.J U L s.4$$) 3.3302 0.3474 0311 1.4J14 w.3331 3.!435 .23

43

'd ?/2 / 74 ii.'S C,31254;>J3: J) o4.95$ s IJ

  • 544'J 2/11/ 7*
  • d.1J 1.7:2t Jik7: JS 54.35$

0.J133 -3.4Sc6 3.3321 1.3443 IJ 7t 3t'92-2/2;/7* 53.19 0.912s36s:2: Si 24.163 3.2165 -C 4141 0.33 J 3.3453 . 23 .sta

  • 7/2t/79 5d.22 0 1;23377 4s Oi

$4.0t3 0.3117

1. i. J 7 3.33:d 3.3453 11 2*

032)*.7 '/? t/79

1.13 3,4;7331713- ;i

$4.0$3 C.21 3 -; leis . 3277 1.341* 2s!!!:ve ;i 64.063 0.110 s . 1314 0.3274 S. 34 0s 11.51 Js.4 32 ' /2 / 7 3 5).24 17./* 3,si: ', 20: ;3 od.2e/ 0.3.64 J.Cd74 L.Jss5 J. 31 'J 2 74 a359:1 2 /i s / 7' 12.33 17144s 1/? t / 79

    • .27 1.)i2+3'jJ3:

04. 57 0.3194 ..e5Si C.3 2s l

3. 33 a7

!2.24 27.'314 ?/21/ 7*

    • .2o a.91?A % 12: ;i 64,732 C,2152 0.72o3

. 3243 0.33$1 !!.11 J74507

/?t/ 73 3*.26 3.).

-27,32: ;> 64.]53 0.'$J

cJ15 3.3236 3.334) 12 74 37590'

//21/ 74 .< J1 912g'.. .: ;) 34.341 3.JJJ' 1 6323 u.3 25 S Q 33y 13.11 Oi14'v ? /2 t / ', J3L . ) : 2 + 17 7.; c ;5 ota 0.2 ij l -1.ds?) 0.3236

  • .3344 13.25 232JF$

? /2 t r 73 f..J' 3.4 :2*237v4e ;5 a 3.3 ;;

  • 2.cd44 0.3223 0.3321 t!.ts
14'1*

7/21/79

  • e.3" 0,112

_4402-73 .J07 0.2 730 - 1.10 13 0 3 17

  • !? 44

,31 ",9:i-.7423: ') 34. 57 0.2331 . 1433 C.3;/2 O_32?6 I?.77 ]i'*$v //21/ 7* , 2 );"? ! / : $4.a'? L.3 M' '.18'1 0 312 7 '.32t4 14.- J4:4c4 s/2:/ ' 'J.3) a 14.23 .*3 '/? / .* 37

1. 9 : 2 n *. '

7 : ' ^4.J47 C.3;21

  • .2329 0

3i 0.3253 k TABLE THREE (CONTINtJED) 14.5 : 074434 ,,71,7, 42.3, 3.,12,157:5e 35 s.. .2 3.334.

3. s2 75
.3142
e. 32 53 14.74

^957) 2/2i/73 di.3 7 3.f173155J46 35 +4.0Jo C.3067 0.14 65 0.313

  • 1.3251 15.1 1 1315 29 7/21/7' e?.33 0.712 611711 E 05

$4.143 0.2?te - 3.3779 3.!144 0.3235 '. i. 2 3 112132 2/7t/73 83.35 1.112e14783h

  • 5 64.032 0.J165 1.9074 3.JiS*

. 3242 15.56 1:440$ 2/21/77 97.42 9.112A1345sE 05 64.*'7 C. 3 *. 3 5

  • 4512 0.'143 0.12 '3 15.7' 11032*

7 /2 1/ 11

  • 1.33 1.117 6 315 3 4 E 0) 64.a29 C.145 2

-3.e34s

0. !!2 3 0.3212 1$.*1 111*is 7/21/73

$9.42 3.912507125k 35 $4.337 3.2926 C 7+37 0.1112 G.3114 19.27 11:341 2/2t/79 37.43 7.?t2427579E C5

  • 4.029 C 304)
1. 2 f 7!

0.'11 3 c.3195 18.50 11 4:27 2 /; 1/ 77 17.43 n.it2334137t US 34.034 0.2 71 7 -J.9499 1.81"> 0.3183 74 120071 p/21/79 93.4$ 3.017413724t 05 94.131 0.2782 0.7$1J 7.31??

  • 317*

17,07 12'437 7/?!/77 43.85 7.81243105?s 'S S4.321 C.2931 0.C152 w.3 JJ 3.3144 l'.28 123172 2/7+/77 59.49

  • 1126a??*15 C5 64.317 3.31J9 1.7154 J.JCd5 7.3187 17.57 124*28
  • /21/13 17.47

. 712431Jeda ~9 $4.*75 C. 7 '8 4 9 -J.esi$ !.365' 3.315/ 17.74 13*014 2/71/77 e?.47 1,117An?*?at OS 44.11A C.3191 1.4029 C.lJi2

7. 21
  • r ti.??

131403 y/21/ 71 98.4 7 1.7124324*it 3% e4.113 a.3:19 C.2239 0.3 0 ~ 5 21e7 4 19.1 7 133744 3 f 2 gf 72 41,4 7

  • 117*131 2E 05 64.712 C. 3 0 '2 2 0.122

.,f"42

a. 31 +1 18.9 2 135181 2/21/ 77 "2.41

'.712912127h US S4.311 0.31* ? 3. 910 0.IC#5 ' ?153 19.74 14C*"5

/21/77 d9 ?]

3.1;7614471e 05 **.*0% 0.3115 1.9154 C.31:2 5.34 ~ IV.31 181523 7/2!/72

  • 7.47 3.3124117896 35

$4.315 '.7477 -1.6521 0.3 Ja # .29 14!'l$ 7/21/?? 99.53 e 315$ s 17.97 14* 3e ?/29/') e 7.51

  • a.?t?+ ale 21h F5

^#.;"4 0.3065 1.7965 0.3:70 '.315) 112ec07??t 05 %*.3C4 0.3321 -3,042$

.3J24
  • . 3145 13.77 15*'37 2/21/79 31.* !

?.112*17344E a5 s'.007 C.2afJ -1.371) c.??') . 3134 <*.12 151541 2/21/77 91.47 c,232537135h ;5 g),J13 3,2 sa y 1,1113 ).3072 0,3129 70.22 151184

.2f/73 97.53 0.1125913175 c5 A3.997 0.3*33 c.taae 0.3071 3,312?

2 52 154547 2/21/77 4J.54 1.712516+97c T5 63.?;6 S.3113 .2J;f . 31 < J 3.3174 27 77 160034 p/21/71 ed.49 4.? l2 5143 4 3 E 05 $3.W14 C.2J06 $45) C.3JS1 3.3115 21.06 191919 2/71/77

  • J.*6 3.71253177*: 09 $ 4,; 5 3 n,7a34. a, 2107
  • *24 7 c, yg my 21.17 193733 2/71/71 9'.57

.'.912%a??41t *> $1.??? 3.2926 1.233$ 0.3'*1 c.3174 21.5 ? 168584 7/?i/77 de t2 3.7125479446 15 43.??? ?.? ?S 7 0.55?J 0.3337 S,194; ?1.85 17*940 1/21/77 e4.65 0.2123a71e15 ;5 63 74 0.2971 0.3143 a.3034 3,3,e3 22.'1 171459 2/21/79 $2.6 7 '.712*457455 05 64.731 0.14t* -G.2334 J. '.' 2 J 0,3;79 72.75 172347 2/21/77 63.73 3,11'Sas757E Ci $3.V15 J.30$$ 1.475$ 3.3:32 S.3132 22.55 174721 1/2t/73 97,73 c,7125g473?E C5 84.**3 2,2133 -3,9955 3.3;22

  • 37 74

??.72 175789

/2 t / 77 s 3.'

O.1125332+3E a5 g o.; ;' v.21?7 C.*Cai 0.307*

a. 3]A4 23.3 2 1915 31 7 / / 1.< 7 3

?).77 0.71?**1$4;c c5 g o,1 a 4 J 2 vi s g, 21 ; 7 0,3:14 , 37 gy 23.2 9 152954 2/21/77 57.74 1.7125*75ilt 17 63.??5 0.3*51 1.t292 0.3219 3.3?ge 23.5 2 184554 7/7s/77 67.31 0.7125912218 'J 5 $4.0 c3 0.2 ?? ? -0.7d0. 0.3013 '.3;%g 23.74 145157 2/21/71 el.M 1 J.91257?S70t C5 68 9*1 0.2716 C.1013 0.3:s* S.3:53 24. 171423 1/21/77 di.*8 1.012*a*513t SS 95.794 0.308J 1 5351 0.J:11 3.3055 24.25 1929 31 2/21/7'

  • ?.9 t 3.01257A$2?E *S

$1.199 0.2 P7 7 -1.1371 0.10:5 0.3044 . 9 / ji -

v ~ M .N CN M f~ - ~ ~ T- ~ ~ j - - ' ' -- [ -~ r'R ~~ J ~~~ j - ~ [~ ' ~ ~ ~ ~ ~ ~ ~ ~i T F ' ~ [ ~ !- 1 ~l I { t i i - } j i l STAil3TICAL LE AK RATE . !j _i a. I _1. I l. . q. 4 ___ i vs 4! p! _. l__l. I i l i I i .l. i .._.[_ i TEST DUR ATION . 1 i i- [ - I i l i i t t i t._.t- _g_ ! I !. I i ; I. 1 i i ~i ~l I ._ L4 __a _m. _._{.. ' i l E- '6 I ~ l! l -- l 0 750 >/. / ca r ACCEPTANCE C 4.TERECN 1 l .l. j_' ! f l[' l l g .4 l- :- j y 95 % l '- l-. l } UPPER CONriCE NC E LIMIT

_l j.

j l { { l j --- 1( lK -Mi h, i - - - c_ y, 7- ~1 r i i o I ". Cl STATISTIC AL f l 1 l l l i l'j i i i l LEAK RATE _.._ 2 ... l I .t i I I i i t t ! l l 1 i i _!.[.'_.i .1 l. i r i. I t t

j. +

i I i i O L .= l I i L. ! i I i._ [ i l I '2 l- - I l l l 1 r I i i I I t t i I i t l I l' I } 1 i .f i i I i i l I l i l I I l i t l J i i i i i e r i I ! j t i 1 i l f i { i l I l l i ,' ____i _ v ,_____,i_ ! _,________,,_ I i r __7__., j 0 2 j4 6 8 10 l 1,2 ; l l'4 i 16 18 20-22 l 24 1. 1 i 1 i l TEST Dif R ATION ( tiCUR S) l .l i l l l I i i j i QCNPS l 1 I t j UNIT ONE i i j [ l l r l i i t

l I-I.. .f m (- ,= l t .y l I l-I- [ ( . _j_ [ . 1 j.- TOTAL TIME ME ASUr6D LEAK RATE L. .i. . i. i~ ~ i i I vs i-I l-I i m i 'l' l TEST ous.. Tic 4 .!_ A:! h I: .8 \\; -i -

7..

--I-A -I-N ^}' h-t- + 5 = -+- = i i r i r-I i i r i i i i t i i i i i i i-T 6 a j I !- T 7 i i i i i 1 i ,l - i i x i- .6 r o i i I i-4 l I i w ~ l t -t 8 e ~!-' ~ ~- ~ ~: '~ ~ c I i I i i l-j. [' - l [ f -p y j - --- o i jf '4 t j "v

1 i

r i y s 3, p i i i i i i + .L. i i t I m ..at in.' i j _i l 1 i i I i I i i i i i i j a-i i i j i +- -i-l' i r. 0 0 r ~+ i i m i i i r 1 i l l l i l i j i j i I ~ l - t- - f i -2 I I LN i w j l I i i

i sa i

j i i i l l l ,i i I ~1 l l i i F4 ii l i i l l l 7 i i i I I i i l l 1 i ~ i l i LN i i i i l i r-- r 1l4. 3 i - 18 i20i -i22'_. ! 24. l l i oi O 2 6 l-16: 8 10-12 . ~ j I 1 I ._L i }' ~' l i i ! TES/ DURATION (HOURS) I QCNPS t l l i f --f-f UNIT ONE j l l j l l J I I i ._l... I {._... ! _1. __ _ i i i

GRAPH 3 I _....~._,i i t ...j.._, .._.:. 4 q i 3. 1 (.-. -.. ! .' _.i..,.. l l 'l I i f i l I p. _.3.. '.7.(.. .. _ i. .4. l I p g ,_4 i. i ..,...i.._.J_.2,..i i. L. i ' i. i 1 .I .i.._._o_. l l i,

l.... f.. a_ ! a. L.u.r.._.!... L.j.

_... J. _. .4 i. _. _ u) ,_._..._..._.._.1 -l. .l. '.I ' b . i ! y) g ! r c,. o - i

c. - -
  • l..

.l. - i, . l l i 7 l i a p. .i..... - g . + -.. _... ..__a'Ob.i l 1 i-i j t i Oz~ 1 i 1.- I i 2.. -. a _.t i.._L.., ........__.~..._aa._. ._4._._4_.J_._a__.- -_.. J g a l i-.- .l. .f i .i i -,I I.. o..._.'... I..._....t J_._.' .!.._.....i... _ _... ..__._..i j {. i i i 7 i i - + i l I ' _...w._...+ _.'...._.. a.a.. ,6.-. a._.. ..._.._..._.i-.... .._J_. e i t i i [ !.....{'..a..f..{.-.._.1_.. t .._L._.. l ~" t p 4..9. y_.._.. A I .....q._..._._...-.- ~ t ..._.._.i.._...... _... _. _. i H-o.-_ ..._....f._._._.L_.._._.. i u _... E - _.j -.. !. i 1. )... .o iy...g... i, . i g i 3 l_, o r_._.!.. .! O. Z 1 iw m 1 0 4 ~ a_..-, C .' y _ ao ' _a__ g _ __ E> 4 .e 3 m o ). W l T H o I g. i w _. ~ _. _. .~. _.I __.o _. W .-.W-_...-6.a..---.- ____g. .I i l ._.._.a. .p i. [ i + i -m.... i t -l.4 t i 3._._..{ l L 7 7 6 I -.. =. _ .-.__a l .. l..... ;. j t i i i 6 ..___.i......... i 1 s---_~ I a_._ 6._..;. _.. J._... j l ._c .,. i ,i - 1 _. m.._> > r.-e. m _... 2 - - _. 3.- e N m W o o o [ gq] ) ggyg g[y 4gg _. _.,,, _... _. _ _,., _ _ _. _ _ _ _

~ cm$l 7 ~ I 't

1

- i ' Il: i [l I i!!I l i.f i I il: , ;. i' t i -

  • {lIt-I

[ f[I! ,,Ii!llI i kj i i i ' i - . ' ~ l ~ ~ i. 1!: t 4I i 'i ,3. rl i:i .I' -. 4 4' - -I i '. j.: i f ii i: i w,l _ ~ . ii I !I I! 2- = ~ } i !l-T+ ll - i tIF:! ' l' l- .p I^ E S N '[l P Ol !! !i:F-I [.;;!. I! . ; ii l l; A,;1!' !^ N tiF + p h{ .I. C T ^ I ~ I ON 1 U ,l - ~ - s i ' ,I'lt: I 4 ^ . :i' I T I l' i!j.:r

i. ii :

I" ' i i.!. r,:' r i' - I l I -f]:! j i: l ~ iiI I .i"!' i ;ji f! i' i, -,- i !~ i .f 6-

1!.

i

l l)S l[I

,1 -!1 7 j.' ?, . R-E U-R ' U I O !J!

j H S

N 4 i:! i: O ( - S I E T N l' P R ' M' i. l d2.5 : R A i jO I T U l R sD 1 H I U A v .l- .li!! l l; t' . T;- T D-S, .i.. t ' Y E R T C T lS j: E 1l Ui.3 ii! i' !i it-j - !l-j.'. l ~ i -!i i. r l i!l

t

i' li } ,l ) r E., !~ j i J

F-

.il

!i

~ ' !i ,ii: i.i ~ 6

t
tII' t

iI f l ~ t I i TI. i _ .i ' ,I i .!l I '-i l

f z0 2

1 o. 9 l 4 4 4, ,l! !.I 3li' G 6 .$ } a3mnwg c - s I' ,l lljrif l: [:i {l.!

lI;l w

y tQ% C+$ ' gNi

GRAPH 5 ,,:..i. q. i t = y _.

__i.___-.__.-_._-.

,... +........ !... ; { _c.____ i 1 l. 6 ...'.6..~y..._.j.. ..k.._.& .I .j.. I. I i l' t I

l. ' -t i '*_}.._.'.!..i...._..

1 I i 7 6 l 'I k I l t I f ~ ~ ~ ~ W 5f {. _ _ _' _ p, _. l'. -!y l i i I t i. 1 i 1 (.;..j... . ! _. - [.._ -. ._.._.._a._..._.:..!._. .] i m z._ i Q. o .-- H.. '. ' ; .iei i 4; i .!_..i.. _.. _... .7 t .._.H ___....._;..._.-7 i l i O F.., .It. .I..- a. _ .i.. . O2 i i i D

-- i t-i i

i ~ i l p ..l......__.7.. ' I I .!......i I i i 1 t !.._ ;. d. _..j.....j. i._. l.... ! l i ..7...._....._....__... ..._i... _,. _.. l .._ y i / } g. )_. .l.._. _..._._,; r'..

h.. _

9. _... _ l ~ - + w t i

I i

vi l __i ( 'y g j -._ ___, !a ) --.y....,. t t s ~, g - _.. - / ....-,_0 1 (N., o i._..._... e, o i e 2 a .i .,a .glo .I r, u a.. q_.. .. eJ. l t ' t t' .h L......._.._.. l ... _.... -_;.... i.. .. t. f t _ _. _. _. ~ i r i i r + ._.__L. .t. i I g. ....p g. .3 f h I .;........_a' .r. i i .._y I s l-r O 1 . C0 .r. .. c to T _..._ T T _ __ _ _ Q C-EvlSd) 3bnSS3Bd W - O hpi-_ 318.

GRAPH 6 i ) .._ p. }

i.....

1' _4 i 1 I l i I i I 1 .. I i i...._:..,'....... i l p. 4 -., I f f I l 3 s i l .,.. ;a. .l.. '.. .... l _.... L. 1 L. :._ l l 'I 1 .~ ,r6 e_ i j . i - l !li- '.i -.... i. 4_..- j i -N 4 l.lI L [u.dl. J _L... .r . _ I-. ~. ._e-. .! -. - i i l i i,_j J - ...k. _, l ' j ~ ..p._...._ I L.d j.. t i ~ ~ ~ ~ ~ OZ ~^' i i i l i L O '.N: ..L.. ..J.. ._..---._i~ -- S i ' ! I i t Ob - ~ ' i Oz P i

i.. _, '

..:_._....;._..._2.. .4 -) j 6 t l l p. l. _ n-t. >.......t.. I ) I i i ._{ , 8 I i l. L { w i i z u. a.- .i i i__ - _ % 1_ a. y w i n _ _ _ _ _ y ._,-..s o r w :o x W Ct 1_ i a

z 4

oL . _ _ __.: o I I J c I L N, *c. p. l l $ v3 W "T I w i i

o t-

*D----------

o r s n I _.__.v,_.__.._. g w . j 3 I l d . _ _ _j O .i_._l o. i.. _.. - _. _... .4 r 4 . j .c. 1 1 f l... l_... '1 i r_. .s j l i Q - O-o

o

.._.._.O_....__. _.._CQ__..__. C. (J.) 36017d3:W31 3 _.._.._..._.._..._-..._...._._..__._.._._..__...._..___..._...}.

obo2 w p: } 1: i;l* .I iII i.ti!' i _i.+iul ij ,I ii*

!ii -

tt l:"l'. l . !!1 ~ i 5-l! li: i: j2! i !;i l! .i-Ii!li ' ,I g l] .I ijj i - j - j i i -I l tr

h-l

,4 ~ 2 p!f 'j !!yI lt.; .u[+f f l IT_ . - = i f I f :4i}4 L.5 Il~! E z q i. fi i

2

, ; SN ' _ i P O }_ .4. iI' il it ;! ? l \\ ,-

  • N f2

~ ^ C T l ONI a .!i5I ; I h j- ;' q i l. U i'.ilI iIl;f !-1 7 l j - - : -l 1_ l [ 1_5 l' i: . :p! _ ~ d_

r

.i -_ Ii . r i! f .iL_liS L u!!. i - L E I-i! - l! R U

l i

S j. ,I i !f j:t

t. -

S E I ! 4 j r l + :. } r :i'

il'

+' R O i' 1 l,i! 1 ii a'

' P l

i ~ i i. . R A U~ V N O 0 b l H iI 1' G A [-. 'i Ij. }i: i E i ( A R i'l Ol fi R U

L !'i' A V

.L_. -I' r2 I

!I E S D T

V A, 1 R D S T U D i!' E E T T T H G l:I! ii lih' S 1!! l '_ - l E L. i' E T W l! M iI.j !;l ."? r E i[- U L i-ll O V i ,i' i . j ; I ll1 l! g i r .I iii! Il' 1i. l if r1 l i llI! ,j' 7 1! } l:}I l Iii

!l.

j-j-:, .I l. l} .!!jl. ii;l 1 l l!'

li lj 8

.L i- - J i!' i - l -- O i ; - 6 4 2 lI5 I 5 ,l {. .l's' .i nm1 $ mwea eof > .b%N j sy li' l!iii i I;,l! ii<b(N p l I t ij eNma

TABLE 4 "JaJ Cit!E3 UNIT ? 0056 P2/22/19 ... 5g.aay tr Jara sgr3 155 Twou 174

  • ee.

TEST tja. it-e catt_ wass 04v ata sw as. Lt ar eaf t CALC. Line ge2Ea 35g cosrga was Tgat ta s is 1

  • ='

'At$ % / 04Y 947t Ll=lf (P3! a) total v' Y T % / C av 0.33 194449 ps?tr71 AJ.P9 51.177 0.74 115715

/71/74 tv.A9 el.023 0.2491 3.2461 v.41 231472
f71/17 13.97 c.1 ? ? 7 7;n 75 6 $5 g3,9 5

- ass 5 t,ySj$ g,4 +,7 ; g, 937 1.74 202121

/?,/77 3J.5' 1,1;?7a*527E C5 e3.v44 C.> T5 7 c.305$

U 5973 c.co-g 3.*" 234447 7/71/79 f3.'e 3.10774'4s1: CS 53.3mm je34 3,gye5 g,g3g4 r,p;,, 1.74 205727 2/2t/71 99 9.7n7752132t '5 A3.979 v.?*41 1.3553 C.1733 0.7537 1.47 211417 ?stis77 97 93 1.2137 3112-15 $3 ~~. C 4 4. -0.1393 0.1596 p,44*2 1.75 212831 7/?tf73 ?.w3 c.10 7 7 7117 7- "S 63.770 0. 4 1.2177 0.5143 3,**s 2.31 214652 2 f 7 3 / 77 94.?* 3.1 C ? 7 513535 $ e1.913 c.4943 C.CiS1 0.il2$ 0.57*3 '5 e3.371 v.5*$3 0.3/34 3.3:54

a;33 2.25 2153J1 7/ptf 71

? 'd. d s 3.2:17 7 c4 ??t ,307774131: ?5 43,946 0.5 lid 3.53*d 0.5312 c, e* e5 2.41 221429 yf71/7' 57.94

  • )'ik 05

$3.765 C. 4 41 5 " '

  • I v 3 4 fj.515 4 Staa 2.7*

232e31 7/2:/77 e 3.* 7 s 7377 J 3.23 72*541 2 /2 :j 77 ??.3 9 9.g;1?*85*** 05 g 3.9

  • 4 n.474a 0,5s s3 3,5113 3.5512 3.81 23 14 25 7 /2. f 79 90.0 5 1.3:11*t453t O 's

- 3.1 e 2

.4744
0. J.3 7 3 0,5:22 c.5s53 3.75 2'702*

2 / 21/ ' V1.9 7 1.9"??*47'4r 'S $3.751 C.4 n d 0.*3?3 3.5026 5375 7 7 33.01 0 0017 *1925 05 o3.953 0.543' 1.3759 3.5191 0.5*t3 ,/21/'? 3.17 21442= e ;3 83.752 e.4d13 3,3.s37 a.5 :17 e_gotp e.;c97 ?,34.t f;if79 i 07 4.24 135233

,1;i-ma.7
3 33,yet

,3;;3

,7,53 g,3 g 3 39g 4.57
  • 15 %

7 f ? 2 7$ 13.1 7 4.75 0'2+34 7 /p f 71 9' 14 c.1 :177173'c 05 $ 3.141 C.5 7:6

2. g 3 41 3.5311 a. 5513 5.11
  • 14439 p f; / s 71 v.

16 3.193743;Ait ;3 63.945 c.5 44 5 - C.15 3 3 0.5312 a *e 71 397 321 g I f. 5 ~ i /i ,f f 3 i i I STAflSilCAL LE AK RATE - _f. l yS f i - I I ,/- E-- TEST DURAll0N ~ I - '.f -_7-. I j l I_ l i -ic i.. U + l i i I f l-f-- -m - - - + - - - EXPEGTED INDUCED LE AK RATE y-- +- L----. f / Y I r - l -. ! - {.. i l -t i i ; i - -, ~ -t - r i a i . r' r +- I i i i ' i [ l ~ il l-I , j~ j l'~ 1 i j i j j j l j UPPER CONF ICE NC E LIMIT .6-I- 7-- t T i 95 % i-f ;- 2 7-i r j =-+ r i r i r i i. n) k%A M[ ,s' l ' d ! 'f 1, t-i E, s. s-i i r1 t, e r m I

  • S1AllSTICAL LE*K RATE I

i j = i i ._,N'. l e l t t .[__ii1' t'~- i I i"~ l " .4 - i l i l i 3- =- ~~ " T i j i i i t b i i i L' l l I l i l W i.3 j j i i NI [ l l 1 t l l l i i j I. t i I l l i u-pr i l i I i i i i i i 1 .2 -- - r - - l 0 J 2 l-i '---i--- r-- I 4 5 l l, l 3, i ,i l inouan tE Ax RATE enAsE I l l l QCNPS i i i i l rest ous A rioN cnoussi UNIT ONE I- }

- t i

i i i i I I i .I I _a__f [_ i

GRAPH 9 d -..

4..I...._.....a _...

f--..-.. 1 l I 1 ] .I..l i 1 i ,L i } t .f. ...4.. l. .[ } } ' ! : -l o. .t i l !_ p -. ( l i i l l i I l .....i...,...[.r. ...._9.'..,..--...... 9.. -9_ -g. .._ [

..l l

1 ,-j: 4 j i J

d. !. h.N. ;_h:,.L f.._

.g. .-.. - _ ! _.I _.- - 3 .p..

r T I

i i ' ! i i i i j l 1. .a._.. t.

- J -

. a L a....... {. l.. iW - I,

4..

.-..__t._. l I t A I j j 1 .i ' F.i : t.L. I i 1 j i i

j. ; i I

l .I- . l': l,i..I 'l .{9....-.{....____1. "1 g l 1 1 I l _M - _ ;L - L 4-.-_.~l__L.-.1~.. +. _ ..t'u,'._-.,'+._ .l.-.. { i.-l 4 I l:. - ;l -- ' l I 1 ' p..1.. g. .;- u... . -. u 'I i I g i l l l a. y. y._, ....,__.r_.!.. ~ I i i.......

-I...._.-.__4.-

I ' f ........ 4. i. I ) a 1 l I l 1 !..., _.. ;I 7. -. ;. i i ? l. I l ._.-_.___._..j L 1._ ..._a_.--. {. _... L' _w. pl. a .a. u.4 i . l. .l I 9 l l.. i I

__._a-.-_.._..._..-...-_.-

f'. .i....,. .l '...._e_.4 l j I I j i .-_.p_.' y ; l. ..'..,'....t...j. .-.l'. I ([) ""> l i 4 l ,t . b..] + 1 l { -+ _l_ -- Z ...l.... L .i.. ' i

1. O --

'.i i Or l.. ._ a i + g l. .. f..... j... a 3 I I g._.._1 _-.._..__q;__.. W I i. ( r ~- E I 1. i . M ..h_ 4 laJ l j J m Zl i i j . j.. o o k . - + - %.y I 3.' j. .. ~. _ M 4 -. i M m' g 4 W > O p._~3_ t I D i .- 1 0 1 H .4...i_. ,I + ..s-E y y W l } 3_. t t ._.-.__et 2.._... T O! 1 y. -- - ;5 __.-_ _ L n. 3 m.._..__. I O I J I O q-...b.. J. Q,' l _I l ..l. ~.&. .}. O i f w g,___. l l I O W-j. .i--..,. _. 1 I I I . _. D y. { H-i 7 p ). -... j. j...,' i i w_.. j i i i t g I I w r O i LC. v. M. N. h=. '~~ ( A70 / . 'W ) 31tb Mv37 C3bfis'/3/8 Zr J ') i ?...-_._.-._. s J J <',- 1

8 GRAPH 10 t .I._%.a. ih.-g-m. i i i 4 I ( l l .s....,.. i i l I r 4' t,..... p!.'. i.. I. t - ' '.i.a. I ,. L i r . l l.., y j l .........J.L4....__.-._._.4 j... . j.. e._.. .1.. I e }: i e i i i i 1 l .l. L... 1 i i l i ' ' I-t { ..l ....t._......._; 4 . t. e ' I i 8 i ( ._..'.._._.._._..I7___;. ...__i.._'_v__.._2.... .i. _i l:, l j. t j -l 4 - i e .. I ._f _ I _.. i I i L ..7. .I.._._LI_..-,... 4 4 { 1 1 j i l { [ I l'.. _...j L._.. t 1 Lij .. _. _, gn m z.. _.! 3 O i g.. 4 j .4 6 j l 1 I Q H i O E '~ .i.. L.. 3 .p r i p...._-..-_. I I i -t 1 1 -___ d I O ~... ,...4. a m y 3 ,... 'M CL o.... t 1 u = z 4 O l.- -. a 3 _..-. 4 - O q t 4s a w x'^~ mo a 3 3> O l q w I C l-m i ._.____..L N.- g __ __

_. a

_... _. ) ] e o o , _. _ = ~ e n L t.. w.._-_..._.. .-I l i.. {. f I _.s [. I 1 I ~ l. l i i I I .3..__... .o 3 o -) ? O 3 [SQl ) $$7W hjy A b(j -.. - -.. -.. ~ -. - - _ - - -. - - -. -. m M)[ 324.

omg-c.. ll 'I ~;- .t 4_: rr i I[I i l;- ,l! i4 I' i8 _. - "}

i. - ;i i-
i

,L ~ l + - i ~ .r 1 jr: t !~ 4

I i-t l_

[ i: 4:{rt. i. [;. ,.I .i !I ,i + 1; j T-i1 I I r:h. ;rji iy 1 I_ i! I :4a t 1 + . !+ 4; 7 ' t1 -1

h. - t

4, +! - ~ - t i; 1 - e! ,i j J-

i

[ i . i _ j: {1

i. - iLl

- i-i' r; i' +

i fiI+'

1 ,: 7, ' ' t' I-Il' ,l __. i"l i! i q i it-i' L

I i[

t ~ L-jr* .i.. p r i iI l:- Ii' il { . IHI .I .ii ~ ~ .b 5i' E! f_. - ' SN .; tt: L L:I r. ,N:,;;: ' C T lf L P O -lL_ ,iil!i l{ N i l I+'i! i. 1 l i1[.. i ;

  • ni,;

I n* N g tk U [-+!i E > :i, A li. iM4 l! i4 Ii I:

1 '

i i; !li. .ll . E ) i'l* } S I3A S H P E 'R U .l . P U O E H 4 j - S f ( C T S I , - R A _ ih .t 11 R A E T drO I P R -!l K T U A o ~ -i~ - RSD ,r i-E R I V L U A T ,!i.ii! !2 D i S D Y ~ .i' R e-E E T T C S D ~ pi! .I:l!;. l

I DU E ;i T

zI =* I T N

t

,j!;1 I' fl ilI t ,i! l. i.1 r1 i l! i - .i 7 sjI[ .'lii - 0 6iir i ii 1 0 9 8 ij 4 4 3 .Ii!,:,

3-

!i'I 6 6 <N [ 6 6 ( .sm, wgmmwg" s' i ,j-i .i '. i!' l! N[*li iwO' 3

SECTION F - TYPE A TEST RESULTS AND INTIRPRETATION F.1. 24 Hour Phase Test Results Based upon data obtained during the 24 Hour Phase, the following results were determined: Actual Acceptance Leak Rate Criterion (wt. %/ day) (wt. %/ day) Total Time Measured Leak Rate 0.3043 5,0.750 Statistically Averaged Leak Rate 0 3011 5,0.750 Upper 95% Confidence Limit Leak Rate 0.3055 5,1.000 F.2. Induced Phase Test Results A leak of 3.0 scfm (0.342 wt %/ day) was induced on the p; imary containment for this phase of the tcst. The leak rates during this phase of the tev* were as folicws: Actual Acceptance Leak Rate Criterion (wt. */ day) I;t. ^ Jay) Total Time Measured Leak Rate 0.5443 2,0.3931 5,0.8931 Statistically Averaged Leak P. ate 0.5372 3,0.3931 5,0.8931 Upper 95% Confidence Limit Leak Rate 0.5671 3,0 3931 3,0.8931 F.3 Leak R,aje, Comoensa tion For Non-Venteo Pene tra t ions The Integrated Primary Containment Leak Rate Test was performed with the following penetrations not drained and vented as required by 10 CFR 50, Appendix J. The "as left" leak rate of ea_h of these penttrations, as determined by Type C testing, is also listed: Penetration Function scfh (wt %/ day) X-9A ' f" Fecdwater Line 2.6 0.0050 X-9B "B" reedwcter Line 4.4 0.0084 X12 RHR Supply 1.55 0.0030 X14 Rx Water Cleanup Supply 0 0.0000 X-41 Primary System Sample 0 0.0000 TOTAL 0.0164 This yields the following adjusted leak rates: Statistically Averaged Leak Rate: 0.3175 wt %/ day Upper 95% Confidence Limit Leak Rate: 0.3219 wt s/ day Jg7 fi)6 '.4. Pre-Operational _Results vs. Test Results The successful pre-operational IPCLRT, performed Aprii 20 to April 21, 1971, demonstrated an average measured leak rate of 0.111 wt 2/ day. Although the instrument uncertainty for the pre-operational IPCLRT was calculated to be 0.096 wt %/ day, a number of assumptions concerning accuracles and repeatabilities using present methods were made. Using present methods yields a revised uncertainty for the test of 0 314 wt t/ day. When this value was applied to the measured leak rate of the pre-operational IPCLRT, the result was found to be very c. lose to the current test result (0.3011 wt %/ day). Although the pre-operational IPCLRT uncertainty as calcul-ated by present analysis was larger than previously reported, the pre-operation-al result was still well within the acceptable limits, and helps explain the leak rate variation from the present test. Normal component and seal wear coupled with periodic repair of components could readily account for the small variation in leak rate values between the pre-operational test and the current test. 397 327 APPENDIX A TYPE B At4D TYPE C TESTS Presented herein are the results of local leak rate test conducted on all testable penetrations, double gasketed seals, and isolation valves since immediately preceeding previous IPCLRT in March, 1976. All valves with leakage in excess of the individual valve leakage limit were restored to an acceptable leak tightness prior to the resumption of power operation. Total leakage for double gasketed seals and total leakage for all other penetrations and isolation valves following repairs satisfied the Technical Specif' ation limits. These results are listed in Table A-l. 5O ' / [' 'T f, '),J c -33

TABLE A-1 TYPE B AND TYPE C TEST RESULTS VALVE (S) OR TEST MEASURED LEAK RATE (SCFH) PEHETRATION VOLUME AS FOUND - DATE AS LEFT - DATE A0 203-1A Main Steam Line 1.85 3-20-77 1.85 3-20-77 isolation 174.9 1-19-79 1.2 2-11-79 Valves A0 203-2A 1.85 3-20-77 1.85 3-20-77 115.7 1-19-79 1.2 2-24-79 A0 203-18 1.82 3-20-77 1.82 3-20-77 285.3 1-19-79 2.2 2-18-79 A0 203-28 1.82 3-20-77 1.82 3-20-77 130 7 1-19-79 3.6 2-18-79 A0 203-IC 0.0 3-20-77 0.0 3-20-77 631.2 1-19-79

0. 0 2-18-79 A0 203-2C 0.0 3-20-77 0.0 3-20-77 81.5 1-19-79 0.0 2-18-79 A0 203-lD 0.0 3-20-77 0.0 3-20-77 104.5 1-19-79 10.0 1-21-79 A0 203-2D 0.0 3-20-77 0.0 3-20-79 10.5 1-19-79 10 5 1-19-79 M0 220-1 Main Steam Line 50 9 3-20-77 5.0 4-14-77 M0 220-2 Drains 43.8 1-18-79 10.5 2-7-79 A0 220-44 Primary Sample 0.005 3-20-77 0.005 3-20-77 A0 220-45
0. 0 2-15-79 0.0 2-15-79 CV 220-58A Feedwater inlet

>1000. 4-4-77 0.45 4-21-77 Loop "A" Inboard 2.6 2-1-79 2.6 2-1-79 CV 220-62A Feedwater inlet 16.5 4-4-77 16.5 4-4-77 Loop "A" Outboard 17, 2-1-79 17 2-1-79 CV 220-588 Feedwater Inlet 10.4 4-2-77 10.4 4-2-77 Loop 8" Inboard 4.4 1-20-79 4.4 1-20-79 CV 220-62B Feedwater inlet 2.22 4-1-77 2.22 4-1-77 Loop "B" Outboard 2558. 1-20-79 4.4 1-26-79 JY/ j2} h TABLE A-l TYPE B AND TYPE C TEST RESULTS VALVE (S) OR TEST MEASURED LEAK RATE (SCFH) PENETRATION VOLUME AS FOUND - DATE AS LEFT - DATE M0 1001-20 RHRS to Radwaste 6.0 4-25-77 6.0 4-25-77 M0 1001 21 0.0 2-7-79 0.0 2-7-79 N0 1001-23A RHRS Containment 6.56 4-11-77 6.56 4-11-77 M0 1001-26A Spray - Loop "A" 3.4 1-23-79 3.4 1-23-79 M0 1001-23B RHRS Containment 1.47 3-28-77 1.47 3-28-77 M0 1001-26B Spray - Loop "B" 0.2 1-26-79 0.2 1-26-79 M0 1001-29A RHRS Return - Loop 0.0 4-11-77 0.0 4-11-77 "A" 0.0 1-23-79

0. 0 1-23-79 M0 1001-298 RHRS Return - Loop 0.0 3-28-77 0.0 3-28-77 "B"

0.0 1-25-79 0.0 1-25-79 M0 1001-34A RHRS Suppression 0 38 4-11-77 0 38 4-11-77 M0 1001-36A Chamber Spray - 0.0 1-23-79 0.0 1-23-79 M0 1001-37A Loop "A" M0 1001-34B RHR Suppression 163.2 3-28-77 0.7 4-20-77 M0 1001-36B Chamber Spray - 3.6 l-25-79 3.6 1-25-79 M0 1001-378

1. cop "B" Mt 1001-47 RHRS Shutdown 39 4-5-77 39 4-5-77 M0 1001-50 Cooling Suction 3.1 2-16-79 3.1 2-16-79 M0 1001-60 RHRS Head Spray 0.0 4-12-77 0.0 4-12-77 MO 1001-63 0.0 1-29-79 0.0 1-29-79 M0 1201-2 Clean up System 5 75 4-5-77 5.75 4-5-77 M0 1201-5 Suct:on 0.0 2-1-79 0.0 2-1-79 M0 1301-16 RCIC Steam Supply 0.08 3-20-77 0.08 3-20-77 M0 1301-17 0.17 1-18-79 0.17 1-18-79 CV 1301-41 RCIC Turbine 0.0 3-20-77 0.0.

3-20-77 Exhaust 396.3 1-19-79 0.0 1-27-79 CV 1301-40 RCIC Condensate 0.4 3-22-77 0.4 3-22-77 Drain 1.2 1-19-79 1.2 1-19-79 A0 1601-21 Drywell and 173.8 8-3-76 12.38 8-6-76 A0 1601-22 Suppression 18.08 3-25-77 18.08 3-25-77 A0 1601-55 Chamber Purge 58 3 1-22-79 14.45 1-24-79 A0 1601-56 A0 1601-20A Suppression Chamber 0.74 3-23-77 0 74 3-23-77 CV 1601-31A Vent Lines di 14.3 1-24-79 14.3 1-24-79 330 TABLE A-1 TYPE B AND TYPE C TEST RESULTS VALVE (S) OR TEST MEASURED LEAK RATE (SCFH) PENETRAT!0N VOLUME AS FOUND - DATE AS LEFT - DATE A0 1601-20B Suppression Chamber 1.78 3-23-77 1 78 3-23-77 CV 1601-318 Vent Lines #2 147 7 1-24-79 0.67 2-9-79 A0 1601-57 Drywell and 1.25 3-24-77 1.25 3-24-77 A0 1601-58 Suppression Chamber 2.2 1-20-79 2.2 1-20-73 A0 1601-59 Supply Air Purge A0 1601-23 Drywell and 4.5 4-12-77 4.5 4-12-77 A0 1601-24 Suppression Chamber 45.0 2-16-79 14.2 2-18-78 A0 1601-60 Exhaust A0 1601-61 A0 1601-62 A0 1601-63 A0 2001-3 Drywell Floor 2.6 3-24-77 2.6 3-24-77 A0 2001-4 Drain Sump 06.0 1-30-79 1.85 2-2-79 Dishcarge A0 2001-15 Drywel l Equipment L.65 3-24-77 4.65 3-29-77 A0 2001-16 Drain Sump 2.85 2-2-79 2.85 2-2-73 Discharge No 2301-4 HPCI Steam Supply 3.47 3-20-77 3.47 3-20-77 MD 2301-5 0.00 1-19-79 0.00 1-19-79 CV 2301-45 HPCI Steam Exhaust 16.3 3-22-77 16.3 3-22-77 190.3 1-19-79 0.0 2-5-79 CV 2301-34 HPCI Condensate 0.0 3-22-77 0.0 3-22-77 Drain 1.9 l-19-79 1.9 l-19-79 A0 4720 Drywell Pneumatic 0.0 3-31-77 0.0 3-31-77 Suction 0.05 2-2-79 0.05 2-2-79 A0 4721 0.0 3-31-77 0.0 3-31-77 0.7 2-2-79 0.7 2-2-79 A0 8801A 0 Analyzer 0.3 3-31-77 03 3 31-77 2 Suction 0.0 2-3-79 0.0 2-3-79 A0 88018 0.5 3-31-77 05 3-31-77 0.5 2-3-79 0.5 2-3-79 A0 8802B 0.0 3-31-77

0. 0 3-31-77 0.0 2-3-79 0.0 2-3-79 A0 880lc 0.0 3-31-77
0. 0 3-31-77 0.0 2-3-79 0.0 2-3-79 397 331 TABLE A-1 TYPE B AND TYRE C TEST RESULTS V/a.. E,' S ) O R TEST MEASURED LEAK RATE (SCFH)

PENETRATION VOLUME AS FOUND - DATE AS LEFT - DATE A0 8802C 0 Analyzer 0.1 3-31-77 0.1 3-31-77 2 Suction 0.0 2-3-79 0.0 2-3-79 A0 8801D 1.1 3-31-77 1.1 3-31-77 0.1 2-3-79 0.1 2-3-79 A0 88020 1.2 3-31-77 1.2 3-31-77 0.15 2-3-79 0.15 2-3-79 A0 8803 0 2.0 3-25-77 2.0 3-25-77 A0 8804 A alyzer 11.5 1-30-79 11.5 1-30-79 Return 733 - #1 T.I.P. Line N1 15.0 4-20-77 90 4-20-77 5.1 1-21-79 5.1 1-31-79 733 - #2 T.I.P. Line #2 45 4-20-77 0.0 4-20-77 0.0 1-31-79 0.0 1-31-79 733 - #3 T.I.P. Line #3 2.1 4-20-77 2.1 4-20-77 1.85 1-31-79 1.85 1-31-79 733 - #4 T.I.P. Line #4 8.1 4-20-77 0.0 4-20-77 0.0 1-31-79 0.0 1-31-79 733 - #5 T.l.P. Line #5 0.4 4-20-77 0.4 4-20-77 0.25 1-31-79 0.25 1-31-79 700 - 743 T.I.P. Purge Line 2.8 4-20-79 2.8 4-20-77 2.7 1-31-79 2.7 1-31-79 S.O.-I-2499-1A ACAD/ CAM 0.0 2-14-79 0.0 2-14-79 S.0.-1-2499-2A Calibration Gas Supply S.0.-1-2499-3A ACAD/ CAM 0.0 2-14-79 0.0 2-14-79 S.O.-1-2499-4A Calibration Gas Supply S.0.-1-2499-1B ACAD/ CAM 0.0 2-14-79 0.0 2-14-79 S.0.-1-2499-2B Calibration Gas Supply S.O.-I-2499-3B ACAD/ CAM 0.0 2-14-79

0. 0 2-14-79 S.0.-1-2499-48 Calibration Gas Supply FCV-1-2599-1A ACAD/ CAM o 55 7 'h-79 0.55 2-14-79 FCV-i-2599-1B Drywell Air Control 39]7 z77 Jc A.O.-1-2599-2A ACsD/ CAM 0.0 2-14-79 0.0 2-14-79 C.V.-1-2599-23A Drywell Air Isolation TABLE A-1 TYPE B AND TYPE C TEST RESULTS VALVE (5) OR TEST MEASURED LEAK RATE (SCFH)

PENETRATION VOLUME AS FOUND - DATE AS LEFT - DATE X-200A Torus Access Hatch 0.00 5-9-77 0.00 5-9-77 532' 120 (North) 0.00 1-12-79 0.00 1-12-79 0 35 2-18-79 0 35 1-18-79 0.00 2-19-79 0.00 2-19-79 X-2008 Torus Access Hatch 0.00 8-5-76 0.00 8-5-76 582' 240 (South) 0.00 5-9-77 0.00 5-9-77 0.00 12-31-77 0.00 12-31-77 0.00 1-12-79 0.c0 1-12-79 0.90 2-18-79 0 90 2-18-79 1.40 2-24-79 1.40 2-24-79 Drywell Drywell Head 0.00 5-7-77 0.00 5-7-77 Head Flange 730. 1-18-79 0.00 2-18-79 SL-l Shear Lug 0.0 4-6-77 0.0 4-6-77 Inspection Hatches 0.0 1-31-79 0.0 1-31079 SL-2 0.0 4-6-77 0.0 4-6-77 0.0 1-31-79 0.0 1-31-79 SL-3 0.0 4-6-77 0.0 4-6-77 0.0 1-31-79 0.0 1-31-79 SL-4 0.0 4-6-77

0. 0 4-6-77 0.0 1-31-79 0.0 31-79 SL-5 0.0 4-6-77 0.L 4-6-77 0.0 1-31-79 0.0 1-31-79 SL-6 0.0 4-6-77 0.0 4-6-77 0.0 1-31-79 0.0 1-31-79 SL-7 0.0 4-6-77 0.0 4-6-77

}g/ }}} 0.0 1-31-79 0.0 1-31-79 SL-8 0.0 4-6-77 0.0 4-6-77 0.0 1-31-79 0.0 1-31-79 X-7A Primary Steam 0.00 3-29-77 0.0) 3-29-77 595' 6o 0.00 1-25-79 0.00 1-25-79 X-78 Primary Steam 13 3-29-77 1.3 3-29-77 595' 15 0.65 1-25-79 0.65 1-25-79 X-7C Primary Steam 0.00 3-29-77 0.00 3-29-77 595' 345 0.00 1-25-79 0.00 1-25-79 X-7D Primary Steam 0.00 3-29-77 0.00 3-29-77 959' 355 c.00 1 '5-79 0.00 1-25-79 X-8 Primary Steam Drain 0.00 3-29-77 0.00 3-29-77 Line 592' Oo 0.00 1-25-79 0.00 1-25-79 TABLE A-1 TYPE B AND TYPE C TEST RESULTS VALVE (S) OR TEST MEASURED LEAK RATE (SCFH) PENETRATION VOLUME AS FOUND - DATE AS LEFT - DATE X-9A Reactor Feedwater 0.00 3-29-77 0.00 3-29-77 598' 5 0.00 1-25-79 0.00 1-15-79 X-9B Reactor Feedwater 0.00 3-29-77 0.00 3-29-77 598' 350o 0.00 1-25-79 0.00 1-25-79 X-10 Steam to RCIC 0.1 3-29-77 0.1 3-29-77 605' 60 0.0 1-25-79 0.0 1-25-79 X-ll HPCI Steam Supply 0.0 3-29-77 0.0 3-29-77 591' 9) 0.0 1-25-/9 0.0 1-25-79 X-12 RHRS Supply 0.0 2-29-77 0.0 3-29-77 605' 343 2.5 1-25-79 2.5 1-25-79 X-13A RHRS Return 0.0 3-29-77 0.0 3-29-77 591' 85 0.00 1-25-79 0.0 1-25-79 X-13B RHRS Return 0.5 3-29-77 0.5 3-29-77 591' 265 0.0 1-25-79 0.0 1-25-79 X-14 Clean up Supply 0.0 3-29-77 0.0 3-29-77 625' 270 0.0 1-25-79 0.0 1-25-79 X-23 Cooling Water Supply 0.15 3-29-77 0.15 3-29-77 591' Soo 03 1-25-79

0. 3 1-25-79 X-24 Cooling Water Return 0.0 3-29-77 0.0 3-29-77 588' 50 0.0 1-25-79
0. 0 1-25-79 X-25 Vent From Drywell 0.0 3-29-77 0.0 3-29-77 649' 213 0.05 1-25-79 0.05 1-25-79 X-26 Vent to Drywell 03 3-29-77 0.3 3-29-77 591' to 232 0.05 1-25-79 0.05 1-25-79 X-36 CRD Hyd Sys Return 0.1 3-29-77 0.1 3-29-77 618' 195 0.05 1-25-79 0.05 1-25-79 X-47 Standby Liquid Con-0.0 3-29-77 70.0 3-29-77 trol 641' 2980 0.0 1-25-79
0. 0 1-25-79 X-17 Reactor Vessel Head 0.0 3-29-77 0.0 3-29-77 Spray 605'0" 0.0 1-25-79 0.0 1-2f 79 X-16A Core Spray Inlet 0.0 3-29-77 0.0 3-29-77 642' 20 07 1-25-79 0.7 1-25-79 X-16B Core Spray Inlet 0.0 3-29-7/

0.0 3-29-77 642' 155 0.15 1-25-79 0.15 1-25-79 4-1-7ff9[ 7 p.o 4-1-79 X-100A CRD Position Indic. 0.0 j 611' 40 0.0 1 31-79 O '< 0 1-31-79 TABLE A ' TYPE B AND TYPE C TEST RESlJLTS VALVE (S) OR TEST MEASURED LEAK RATE (SCFH) PENETRATION V O L'.'U E AS FOUND - DATE AS. EFT - DATE X-1008 Power 0.0 4-1-77 0.0 4-1-77 611' 45 0.0 1-31-79

0. 0 1-31-79 X-100C Neutroi. "o.- ! t o r 0.0 3-29-77 0.0 3-29-77 609' 160 0.0 1-27-79 0J 1-27-79 X-1000 Neutron Monitor 0.0 3-29-77 0.0 3-29-79 611' 170 0.0 1-27-79 0.0 1-27-79 X-100C Neutron Monitor 0.0 3-30-77 0.0 3-30-77 611'220 0.0 1-26-79
0. 0 1-26-79 X-100F CRD Position Indic.

0.0 3-29-77 0.0 3-29-77 610' 322c 0.0 2-26-79 0.0 2-26-79 X-100G Power 0.0 3-29-77 0.0 3-29-77 610' 33 0.0 2-2-79 0.0 2-2-79 X-101A CRD Position incic. 0.0 3-29-77 0.0 3-24-77 601' 142 0.0 1-27-79 010 1-27-79 X-101B CRD Position Indic. 0.0 3-29-77 0.0 3-29-77 601' 147 0.0 1-27-79 101D Recirc Pump Power 0.0 3 29-77 0.0 3-29-77 601' 127 0.0 2-2-79

0. 0 2-2-79 X-102A Recirc Pump Power 0.0 3-31-77 0.0 3-31-77 609' 127 0.15 1-?7-79 0.15 l-27-79 X-103 Thermocouple 0.0 3-29-77 0.0 3-29-77 609' 130 0.0 1-27-79 0.0 1-27-79 X-1048 CRD Positica indic.

0.0 4-1-77 0.0 4-1-77 611' 30o 0.0 1-31-79

0. 0 1-31-79 X-104C Recirc Pump Power 0.0 3-31-77 0.0 3-31-77 609' 125 0.0 2-2-79 0.0 2-2-79 X-104F Power 0.0 3-29-77 0.0 3-29-77 610' 3370 0.0 2-2-79 0.0 2-2-79 X-105A Power 0.0 4-1-77 0.0 4-1-77 611' 52 0.0 1-31-79 0.0 1-31-79 X-1058 Power Drive Modules 0.0 3-31-77 0.0 3-31-77 611' 20 0.0 1-26-79 0.0 1-26-79 X-105C CRD Position Indic.

0.0 3-31-77 0.0 3-31-77 611' 205 0.0 1-26-79 0.0 1-26-79 707 z z. yc '

TABLE A-1 TYPE 8 AND TYPE C TEST Rr.SULTS VALVE (S) OR TEST MEASURED LEAK RATE (SCFH) PENETRATION VOLUME AS FOUND - DATE AS LEFT - DATE X-105D Recirc Pump Power 0.0 3-29-77 O.0 3-29-77 611' 300 0.0 2-2-79 0.0 2-2-79 X-107A Neutron Monitor 0.0 3-30-77 0.0 3-30-77 611' 215 0.0 1-26-79 l-26-79 X-227A ACAD-CAM 0.3 2-18-79 0.3 2-18-79 583' 292o X-227B ACAD-CAM 0.0 2-18-79 0.0 2-18-79 7o/ [', J / -u-

APPEMDIX B AS FOUND LEAK RATES The As Found leak rate for primary contair.,ent isolation valves, excluding the Main Steam Isolation Valves and leakages identifled during this IPCLRT, was 772.17 scfh which was in excess of the allowable Technical Specification Limit of 110.18 scfh. The total leak rates prior to and after the outage are as summarized as follows: AS FOUND AS LEFT TECHNICAL SPECIFICATION LEAK RATE LEAK RATE LIMIT ITEM (SCFH) (SCFH) (SCFH) Isolation valves (except MSIV's) 772.12 57.41 and Total 110.18 Testable Penetrations 4.9 4.9 Double Gasketed Seals <30 14.35 36.72 Main St Isolation Valves (tested at 25 psig) A0.J3-lA 174.9 1.2 11.5 '.0-20? MA 115.7 1.2 11.5 A0-203-!d 285.3 2.2 11.5 A0-203-2B 130.7 3.6 11.5 A0-203-lC 631.2 0.0 11.5 A0-203-2C 81.5 0.0 11.5 A0-203-lD 104.5 10.0 11.5 A0-203-2D 10 5 10 5 11.5 Total Through Leakage ?:S psig 338.4 13.9 Total adiusted through leakage @48 psig 649.73 26.69 Total through leakage ?48 psig 1456.8 103 35 bY bbf Complete details of these local leak rate test results are contained in Reportable Occurrence Repo t R0-79-03/03L. In addition to these LLRT results, the following leakages were identified and repaired while the primary containment was at 48 psig for t;,.e IPCLRT: Item AS FOUND LEAK RATE (SCFH) Drywell cooler damper operator controls approx. 440 This yields the following leakages: IPCLRT Leak Rata (scfh) 147.42 As-Found Leak Rate (scfh) 1896.8 As-Lef t L eak Rate (scfh) 103 35 Difference of As-found and As-Left Leak P.ates (scfh) 1793.45 Therefore, the total As-Found leak rate of the primary coc+ainment is the sum of the IPCLRT leak rate and the As-Found minus As-Left leak rate differential, equal to 1940 scfh. (3 964 wt %/ day). If only the leakage paths found during the IPCLRT are tr'<en into account, the As-Found leak rate is 587.4 scfh (1.2 wt %/ day) falling only 0.2 wt %/ day outside the Technical Specification acceptance criteria of 1.0 wt %/ day. bl 77 Ja8 APPEf.: The following is a reproduction of the computational procedures used during the IPCLRT. Also included is a copy of the instrument error analysis. 397 339 qib 150-Revision 3 September 1976 9 IPCLRT SAMPLE EKROR Af1ALYSIS Uncertainty in the Measurement of Quad-Ci ties Primary Containment Leak Rates A. IrlSTRUMEt4T ACCURACY ERROR AllALYSIS 0 Per AflSI t145.4-1972, the compatation of the leak rate is given by the equation: ), 2400 (y_ T]P2) - 2 L(%)=( H )(100)( W1 H T2P1 where L = primary contair. ment leak rate (%/ day) l H = time interval between data sets #1 & #2 (hours) W1 = weight of the contained dry air mass at test data set #1 (lbs) W2 = weight of the contained dry ai r mass at test data set #2 (lbs) T] = volume weighted primary containment l temperature at test data set #1 (%) T2 = volume weighted primary centainment temperature at test data set #2 (OR) l Pj = dry air absolute pressure at tett data set #1 (PSIA) P2 = dry cir absolute pressure at test O aete set #2 (esi^) The standard variation on L due to the uncertainties in the ncasured variables is given by: 6(L) = - [(;h 6(Pj))2 +( 6(P )) +( 6 (Tl)) 2 +( 6(T )) 3 2 2 g7 0 substituting H = 24 hours l BL, T1 P2 ~L BP) T2 P12 Pj _L l al,_ T1 = p BP2 T2 P) Pg al.. P2 1 -2 'd T) T2 P1 T2 ( BL = T1 P2 ~l "g] T 2P] 5 BT2 2 assrming P1 ~P2 ~ P and T1 ~T2~T where P = average absolute dry air pressure (PSIA) h T = average volume weighted primary containment absolute temperature PR) 4p c ;g, ' v-. J . n _/ O .)_ d Q. C. o, s, p,

QTS 150-Tl Q Revision 3 Q The re fo re, O 6(t) - ioo c2( 6(n') 2( Scr> >) j i P_ T l. Calculation of 6(T) l 11 T= E (VF )(Tave,j) j j=1 where VFj = the volume weighting factors I Tave,j = the average absolute temperature in the je sub-volum' N' Ti,J Tave,j = g q i=1 hJ { where 1;,j = the absolute temperature of the ith RTD in the jth "~' subvoluoT NJ = number of RTD's in the ~ th subvolume Now, 6(Y) is calculated from 11 BY 0 (D =,E BTave,j 6(Tave,j) i J=1 where 37 dTave,j J

(Tave,j) = RTD accuracy (Nj)i l

Therefore, 11 (VFj)(RTD accuracy) 6(Y)= E J=1 (Hj)I 2. Calculation of 6(F) 6(P y) 2 )i 6(P)=[6(P ) T + 'l 'l 6 res/ jIfj where PT = tote! absolute primary containment sure Py = partial pressure of water vapor in the primary con ta i nmen t e A P.P R O V E D-2: so 3 Q. C. O. 5. R.

Q QTS 150-Tl W Revision 1 substituting 6(P ) " PPG accuracy T (# of PPG /s)i 11 (VFj) (dev> cell accuracy) 6(PV) = I J-] (Hj)i where PPG = precision pressure gauge Q NJ = number of dewcells in the j g f.d subvolume Therefore, ( p )(dewee11 accuracy))2 6(P) = [(PPG accuracy)2 ,[ j j (nj)i (# of PPG's)1 B 3 Instrument Spec i f i c.a t i on s RTD PPG Dewcell Flowmeter Range 32-250 F 0-100 PSIA 0-10 SCFM 0 Accuracy + 0.50oF + 0.015 PSI + 1.0 F + 0.1 SCFM Repeatability [0.10F [0.001 PSI [0.5F [0.02SCFM O 4. ceiceietie" er c('). ^cc recv amelve:2 Following are the designated volume fractions and sensor allocations: Subvolume Volume No. of flo. of Fraction RTD's Dewce11s 1 0.03477 2 0 2 0.03166 2 0 3 0.03625 2 1 Q 4 0.01248 2 0 IJ 5 0.07958 3 0 6 0.10642 4 1 r1 7 0.09110 4 0 [j 8 0.08601 4 1 9 0.03075 1 1 10 0.46565 5 2 11 0.02533 2 T.C.'s Sat. Assume the following values: P = 63.0 PSIA 1 T = 92or = 551.7 R ' Y' l> b k ),- h Dewpoi.t = 80cp APPROVED } ^CD v.

  • n7a
. ib

.l Q. C. o. S. R.

qis 13u-is n Revision 3 Therefore, 6(T) = (0..;477 x (2)20.50)+(0.03166 x (2)r0.50)+(0.03625 x (2)t0.50) r1g 0.50 +(0.01243 x (2)t0.50)+(0.07958 x (3)20.50)+(0.10642 x (4)r) +(0.09110 x (4)1).:-(0.08601 x (4)20.50)+(0.03075 x (.50) 0.50 0 1): +(0.46565 x )+(0.02533 x ) = 0.26300R 6(P ) = 0.015 = 0.01061 PSIA T (2)2 l With an average dewpoint of 800F, an accuracy of + 1 F cc. responds to + 0.017 PSI. 6(Py) = (0.0665'3 x 0.017) + (0.12831 x 0.017)+(0.19752 x (.01_?,) 0 (1): (112 1): 1 J +(0.11676 x (.017)+(0.46565 x (2)20.017)+(0.02533 x (2)t 0 1)i = 0.01456 PSI L Therefore, 6 (P) = [(0.01061)2+(0.01456)2]i- = 0.01802 The accuracy uncertainty is then found to be 6(L) = 100 [2 (0_. 01802 ) 2+2 (0. 2630 ) 2,i 63.0 551.7 = 0.0786 weight %/ day 5 calculation of 6(L), Repeatabili'y Analysis Using the formulas developed previously, the repeatability error analysis is performed by substituting the instrument repeatability errors for the instrument accuracy errors. B B 397 343 o P APPROVED LI 4_ 'CEP ? '076 n O. C. O. 3, p,

g OTS 150-Tl I' Revisic:i 3 0 6(T) = (0.03477 x o.io)+(0.03i66 x o io)+(0.03625 x o io) (2)1 (2)A (2)1 +(0.01248 x 0 lU)+(0.07958 x 0.10)+(0.10642 X 0 IO) (2)1 (3)i (4)e +(0.09110 x 0.10)+(0.08601 x 0.10)+(0.03075 x 0.10) (4)i (4)i (1)i h~ + (0. 4 65L. ' x 0.10)+(0.02533 x 0.10) (5)i (2)1 = 0.0526 R With an average dewpoint of 80 F, an accu :c) of + l F corresponds to + 0.008 PSI. 6(Pv) = (0.06643 x 0.008)+(0.12831 x 0.00f)+(0.19752x 0.008) (1)i (1)1 (1)1 +(0.11676 x 0.008)+(0.46565 x o:008)+(0.02533 x 0.008) (i)1 (2)i (2)1 = 0.00685 'SI 6 (P ) = 0,.00,1 = 0. 00 07! PS I A T (2) ,O Therefere. 1 6 (E) = [(0.00071)2+(0.00685) 231 = 0.00689 fhe repeatability uncertainty is then found to be 6(L) = 100 [2(0.00689)2+ 2 (0.0526)2 3i 63.0 551.7 = 0.0205 weight %/ day 6. Total Instrument Uncertainty

00) Total = [(c(L) Accuracy)2 + (c(L) Repeatability)2]l

= [ U.0786)2 + (0.0205)2]i = 0.0812 weight %/ day 2c(L) Total = 0.1624 weight %/ day w' Bo APPROVED 5-({inil) cro -

n76

~' D:. O. C. o. S. P. =. =.

y Revision 3 QTS 150-T2 u Septmber 1976 DATA SHEETS USED AND CALCULATl0!d tiADE TO OBTAtl HOURLY LEAK R/TES Calculations of Free Volumes and Weighting Factors Torus The calculated free volume of the torus is 116.937 ft3 This free o!ume was calculated assum'ng a water height in the torus of +2.0 inches. Fc r Q the IPCLRT, the water height should be 0.0 inches, which will add 1 rec air U volume to the torus. This additional free volume can be calculated frcm: 2 2 V = wh (R -r ) 0 where V = the addad free volume of the torus h = the height change of the water in feet R = the major radius of the torus in feet r = the minor radius of the torus in feet Therefore, V = +1437 ft3 f this test, the torus internal vent pipe and vent header l For the purposes o volumes have been subtracted f rom the torus f ree ai r volume since the ai r l volume enclosed by the header is essentially independent of the remainder of the torus free air volume. This volu.e is found to be equal to 14,714 ft3 The actual torus subvolume is found to b: equal to: O.- 116,937 + 1437 = 118,379 ft3 l Drywe11 Since the drywell and torus were divided into twelve separate subvolumes for the calculations, the FSAR numbers will serve as a comparison to the volumes calculated (see Figure 3). The total /olume of the drywell was calculated to be: V = 197,913 ft3 this compared with the FSAR volume of the drywell of V = 198,440 ft3 Calculation of the shaded areas in Figure 4 gives the calculated oc;upied volume of the drywell. This occupied volume is OV = 45,370 ft3 I this again, was compared to the FSAR volume. The FSAR volume for the occupied volume of the drywell is OV = 40,204 ft3 )N p h APPROVED CEP3 276 O. C. O. 5. R.

QTS 150-T2 Revision 3 0 in this analysis, it is necessary to assume that internal drywell equipment such as pumps, piping, valves, etc. occupv an even distribution in the v-well such that the ratios are equal to the ratios of the free v'lumes cai-culated. This assumption eliminates this ccmponent from the occupied drywell volume calculation. The free volume of each of the twelve regions in Figure 4 was then calculated acco.oing to the following volume formuli: 1. Volume of a sphere V=4/3nr3 0 2. Volume of a right circular cylinder 2 V=nr h 3 Volume of a spherical segment ? 2 V=l/2nh (3r-h) The free volumes calculated are: Free Volume #1 = 10,066 ft3 Free Volume #2 = 9,165 ft) .h Free Voluma !!3 = 10,494 ft3 Free Volume #4 = 3,612 ft3 Free Volume #5 = 23,039 ft3 Free Volume #6 = 30,808 ft3 Free Volume #7 = 26,373 ft3 F.ee Volune #8 = 24,900 ft3 ree volume #9 = 8,901 ft3 Free Volume #10=134,803 ft3 Fiee Volume #11= 7,340 ft3 The volume weighting factors are then found to be VF(l) = 0.03477 Q VF(2) = 0.03166 U VF(3) = 0.03625 VF(4) = 0.01248 VF(5) = 0.07958 VF(6) = 0.10642 VF(7) = 0.09110 VF(8) = 0.08601 VF(9) - 0.03075 VF(10) = 0.46565 VF(ll) = 0.02533 O / (d g ~ O APPROVED m...o -. :nlo nr ] s Q.C.O.E R.

QTS 150-T2 Revision 3 free volume is defined to be the air space Q From Figure 4, the subvolume il above the vessel-dryweli flange. The subvolume 42 free volume is the airspace l between elevations 652'8" and 666'9". The subvolume #3 free volume is the airspace external to t' e biologica. -hield between elevations 628'8" and 652'8". The subvolume #4 free volume is dei...- to be the annular airspace between Q .he reactor vessel and the biological shield. The subvolume #5 free volume bl is the airspace external to the biological shield between elevations 614'6" and 628'8". Ths subvolume #6 free volume is the airspace external to the biological shield between elevations 602'10" and 614'6". The subvolume #8 l free volume is the airspace external to the biological shield between elevations 593'0" and 602'10". The subvolume #7 free volume is the airspace external to the biological shield between elevations 579'10" and 593'0" in the drywell basement. The subvolume #9 free air volume is the airspace in the CRD pit I belo'. the reactor vessel. The subvolume #10 free air volume is the valume enclosed by the drywell-tores vent pipes, vent spheres, dc.wncemer o, torus internal vent header, and the torus airspace above 0" The subvolume #11 .I free air volume is the reactor vessel airspace above 35" minus the steam dryer volume and one-half of the moisture separator volume. l lO D D D re 4 1 I 397 347 g A P P.t O V E D (final) v.. o. n/U ^ cr ./ w Q.C.O.S.R. -,-..,..~.n-n--m----~-- ~ . - -. - ~.., - -

P QTS 150-T3 I Revision 5 h CALCULATIONS PERFORMED FOR IPCLRT DATA January 1979 Data collected f rom pressure sensors, dew cells and RTD's located in the containment are processed using the following calculations. A. Average Subvolume Temperature and Dewpoint. h Ty= E(all RTD's in the J th subvolume) gF d flumber of RTD's in jth subvolume D.P.; = I(all dew cells in jth subvolume) g Number of dew ce1 ' 3 in j th subvolume where T; = average t;mperature of the j th subvolume D.P.; = average dewpoint of the j th subvolume B. Average Primary Containment Temperature and Dewpoint. tJVOL (VF.) * (T ) 0 T= t. 7 J"I J j LIV 0L (VF.) * (D.P. ) D.P. = L. F J"I J j where T = average containment temperacare D.P. = average containment dewpoint Mg VF; = volume f raction of the j th subvolume NVOL = number of subvolumes If T. is undefined then J y=T for 1 1 j i (?!VOL - 2) T Tj = T _j for j = NVOL - 1 T; = estimate for j = NVOL If D.P.. is undefined J g-L2 D.P. = D.P. for 1 < j < (NVOL - 2) J" 397 348 D.P. = D.P., for j = flVOL - 1 J J-l D.P. = estimate for j = NVOL APPROVED _3_ FG161370

9. C.0. 0. R.

] qts 150-T3 Revision 5 C. Calculation of Dry Air Pressure. D. P. (OK) = 273.16 + D.P.(OF) - 32_ 1.8 x = 647.27 - D.P. ( K) 3 EXPON = X * (Y + Z

  • X + C
  • X )

(D.P. (OK))*(1 + 0

  • X)

(218.167) * (*4.696) P = y ( $'} e(EXPON

  • In(10))

P = E(all absolute pressurc gauges) -P W ia) Number of absolute pressure gauges v where Y = 3.2437814 2 = 5.86826 x 10-3 q -8 C = 1.1702379 x 10 p D = 2.1878462 x 10-3 Tf P = volume weighted containment vapor pressure y P = containment dry air absolute pressure C, D, X, Y, Z, and EXPON are dewpoint to vapor pressure conversion constants and coefficients. D. Containment Dry Air Mass. W = (28.S/) * (144) * (P) * (289.~06 - 25 * (LEVEL - 30)) 1545.33 * (T + 459.69) l where W = containment dry air mass LEVEL = reactor water level 289506 = primary containment volume E. Measured Leak Rate. L (TOTAL) = (V ~ 3/fh m BASE i / DAY l' (

  • i BASE APPROVED

_2-FEB 16 m3 E R.C,0.5

QTS 150-T3 Revision 5 L (POINT) = (W 1 - W )

  • 2400 m

i-i ^ n (t -t. -1)

  • W -1 l

Q 1 where W = c ntainment dry air mass at t = 0 BASE t; = time from start of test at ith data set t;_) = time from start of test at (i-1)th data set W; = dry air mass at ith cata set Wg_; = dry air mcss at (1-1)th data sec L,(TOTAL)= measured leakage f rom the start of test to ith. data set __ L (POINT)= measured leakage between the last two data sets m F. Statistical Leak Rate and Confidence Limit. LINEAR LEAST Sq. ARES FITTING THE IPCLRT DATA The method of "Least %uares" is a statistical procedure for finding the best fitting regress line for a set of measured data. The criterion for the best fitting line to a set of data points is that the sum of the 1 squares of the deviations of the observed points from the line must be a d minimum. When this criterion is met, a unique best fitting line is obtained based on all of the data points in the ILRT. The value of the leak rate based on the regression is called the statistically avercge leak rate. Since it is assumed that the leak rate is constant during the testing ~~~ ~ period, i ~ plot of the measured containment dry ai r 'mcss-versus~~ time wouTd ---~ - -- ideally yield a straignt line with a negative slope (assuming a non-zero leak rate). Obviously, sampling techniques and test conditions are not perfect and consequently the measured values will deviate from the ideal straight line situation. Based on this statistir rocess, the calculated leak rate is obtained from the equatior.. W = At + D l. 7g y JJO J a where W = contained dry air mass at time t J B = calculated dry air mass at time t = 0 l A = calculated leak rate O t= test duration APPROVED FEB 1 G WI'3 -3_ q.c.0S3

8 T QTS 150-T3 Revision 5 B Dry Air Mass (lbs) Test Duration (hrs) m The values for the Least Squares fit constcnts A and 8 are given by: I A = {N

  • E(t ', * (W ) - It.
  • ZW.} = E(t. - I) * (W. - E)

G i i i i i i {N

  • E(t;)2 - (It,) }

E(t; - t) { IW ; - A

  • E t ; = { I( t )
  • E(W;) } - (E(t;) * (W[ }

b= L N

  • E(t i)

- (It.) i where t = the average time for all data sets ] E = the average air mass for all data sets The second formulas are used in the process computer program to reduce round-off-error. By definition, leakage out of the containment is considered positive leakage; therefore, the statistically average leak rate is given by: 's"f-A)* (weight %/ DAY) B STATISTICAL UtlCERTAIflTIES In order to calculate the 95% confidence limits of the statistically y average leak rate, the standard deviation of the least squares slope and U the student's Toistribution function are used as follows. fl

  • E(W;)2 _ (79 )2

} c;7 I I o={ ( )-A}7 (N-2) N

  • E(t ;)2 - (It ;)

When performing these calculations on the process computer, E(W;)2 and ( EW. ) become so large that they cverflow. To avoid this problem aW. is substi-() tutEd for W;. LW ; i s the di f ference bets.een W ; and WBASE' i b APPROVED _4 FEB 1 G198 ,q.c.2 S. R.

B j QTS 150-T3 Revision 5 The single sided 70!stribution with 2 degrees of f reedom is approximated by the following formula from NBS Handbook 91: T.E. = 1.646698 + 1.455393 + 1.975371 (N-2) (N-2)2 The upper confidence limit (UCL) is given by UCL = ls+o* (TE)

  • 2400 (weight t/ DAY) 0 0

9 l l l 0 D l 397 352 () AFPROVED FEB 10 ma (rinai) E Q.c.0. S.n. L

B .e QTS 150-T6 Revision 4 IPCLRT DEFINITIONS March 1977 (48 PSIG TEST PRESSURE) aximum Allowable Leakage Rate (L ) p L = 1.0% of containment volume pe" day p 3 = (0.01)(275,481 ft )/24 hrs. (FSAR) =275%.81ft/24 hrs. 3 3 l = 114.784 ft /hr. = (114.784 f t'/hr)(48 + 14.7) = 489.59 scfh p 14.7 tl Maximum Allowable Operational Leakage Rate (L ) t l Lt = 75% of Maximum Allowable Leakage Rate 3 3 = 0.75 (114.784 f t /hr) = 86.088 f t /hr = 0.75 (489.59 scfh) = 367.2 scfh Maximum Allowable Leakage Rate for Double Gasketed Seals (0.10)(367.2 scfh) = 36.72 scfh Maximum Allowable Leakage Rate for Testable Penetrations r, Isolation Valve (0 30)(367.2 scfh) = 110.16 scfh m Maxi:aum Allowable Leakage Rate for Any One Penetration or Isolation Valve except Main Steam isolation Valves (367.2 scfh)(5%) = 18.36 scfh Maximum Allowable Leakage for any one Main Steam isolation Valve 11.5 scfh @ 25 PSIG test pressure 397 353 i 0 l APPRCVEC 'l?7 O. C. O. 5. R. , (f,nal) i .~

Rev:sion 3 ^'\\ September 1976 idealized View of Drystell and Torus Used to Calculate Free Volumes } 37'0" 34'8" d 681'9" 677'6" 666'9" 11 / 662'0" ~ -f tjji f ' / // /' 2 / / /, t 655,2,, ["a !/ I l/ /// ./ 652'8" ~ ~1, ~/ (Grating) f / Occupied l /,y t / 7 '[////2 /, /,,, '1, 635'10" Volume f ' f [ ' ^'V 1 P - <c?, tee) O f ,/ p. '6 " / b N / /, N j / t 614'6" ,!~ ~ ~ ~ / / ~~~~ / /- /' /. i (Grating) / 6 i 603'2" ~ j 605'6" 602'10" / ,e _ _ __ _ _. : /' i i / 20'0" 7 0 /< 9 f/ 593'0" (Gra t i ng) g / N [/ ' </, /,//,/ '/ g ' f) m I-569 '. 0" Floo r) - - -l ' - 30'0" 39,7 h 7- / 54 ' 6" c xv A P P R.O V Figure Tk'0 f SEP 3 376 y (final) Q.C.O.S.R. -}}