ML20107F099

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test, Quad-Cities Nuclear Power Station,Unit One,840724-27
ML20107F099
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 07/24/1984
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20107F090 List:
References
NUDOCS 8411050252
Download: ML20107F099 (68)


Text

.

u f.-

't -

ID/TS-4C,4D 3

4 REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST l

QUAD-CITIES NUCLEAR POWER STATION l

UNIT ONE I.

JULY 24-27, 1984 I

l l

l-8411050g2O O

54 PDR AD PDR l

P l~

L-

(_.

TABLE OF CONTENTS PAGE TABLE AND FIGURES INDEX......................

3 INTRODUCTION...........

.4 A.

TR'I PREPARATIONS A.1 Type A Test Procedures...

.5 A.2 Type'A Test Instrumentation.

.5 A.2.a.

Temperature..

.9 A.2.b.

Pressure.

9 A.2.c.

' Vapor Pressure...

10 A.2.d.

Flow.

10 A.3 Type A Test Measurements..-.

.10 A.4 Type A Test Pressurization..

11 B.

TEST METHOD B.1 Basic Technique.

13 B.2 Supplemental Verification Test.

14 B.3' Instrument Error Analysis..

14 C.

SEQUENCE OF EVENTS C.1 Test Preparation Chronology................

15 C.2 Test Preparation and Stabilization Chronology.......

15 C.3 Measured Leak Rate Phase Chronology............

16 C.4 Induced Leakage Phase Chronology.........

.17 C.5 Depressurization Phase Chronology.............

17 D.

TYPE A TEST DATA D.1 Measured Leak Rate Phase Data...

. 18

.D.2 Induced Leakage Phase Data.

. 18 r-TABLE OF~ CONTENTS (CONTINUED)

PAGE E.

TEST CALCULATIONS..

.31 F.

TYPE A TEST RESULTS F.1' Measured Leak Rate Test Results.

31 F.2 Induced Leakage Test Results.

.31 F.3 Leak Rate Compensation for Non-Vented Penetrations.

.32 F.4 Pre-Operational Results vs. Test Results.

.33 F.5 As Found IPCLRT Result.

.34 APPENDIX A.

TYPE B AND C TESTS....

.35 APPENDIX B LEAK RATE CORRECTION DUE TO SUMP LEVELS.

.45 APPENDIX C SELECTED DATA SETS FOR TYPE A TEST........

49 APPENDIX D COMPUTATIONAL PROCEDURES.

.55 APPENDIX E ERROR ANALYSIS PROCEDURE.

.61 r?

TABLES AND FIGURES INDEX PAGE TABLE 1 Instrument Specifications.

.6 TABLE 2

-Sensor Physical Locations...............

7 TABLE 3:

Measured Leak-Rate-Phase-Test-Results.........

19 frARLE_4<

Induced Leakage Phase Test Results-..........

26 TABLE!A-1 Type B and C Test Results...............

36

' TABLE C-1: Data Set for the Start of the 24 Hour Test......50

.TABIE C-2 Data Set for the Mid Point of the 24 Hour Test.

.51 10000E C Data Set for the Conclusion of the 24. Hour Test.

.52 TABLE'C-4

. Data Set for the Start of the Induced Phase of Test.

.53 TABLE C-5 Data Set for.the Conclusion of the Induced Phase..

.54

. FIGURE 1.

Idealized View of Drywell and Torus'...........8 Used to Calculate Free Air Volumes

- FIGURE 2-Measurement System Schematic Arrangement'.......

12 FIGURE ' 3 --

Measured Leak Rate Phase - Graph-of Statistically...

22 Averaged Leak Rate and U per Confidence Limit p

FIGURE'4' Measured Leak Rate Phase - Graph of.........

23

~ Dry Air Pressure FIGURE 5 Measured Leak Ratt Phase -

24 Total Containment Pressure

~

FIGURE 6 Measured Leak Rate Phase - Graph of Volume.

.25 Weighted Average Containment Temperature i

FIGURE 7 Induced Leakage Phase - Graph of Statistically.....

27

[

Averaged Leak Rate.and Upper Confidence Limit FIGURE _8 Induced Leakage Phase - Graph of. Volume........

28 Weighted Average Containment Temperature FIGURE 9 Induced Leatage Phase - Total.............

29 Containment Pressure l

FIGURE 10 Induced Leakage Phase - Graph of.......

.30 f-Dry Air Pressure

- t.

n-INTRODUCTION This report presents the test method and results of the Integrated Primary Containment Leak Rate Test (IPCLRT) successfully performed on July 24-27, 1984 at Quad-Cities Nuclear Power Station, Unit One. The test was performed in accordance with 10 CFR 50, Appendix J, and the Quad-Cities Unit One Technical Specifications.

This test was conducted using the ANS/ ANSI N45.4-1972, 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Mass Plot =

method. The calculated leak rate, statistically averaged leak rate, and the statistical upper confidence limit were computed in a manner consistent with-the ANSI /ANS 56.8-1981 standard.

Simultaneously with the above method,- calculations were performed using -

the Total Time Leak Rate method of BN-TOP-1, Rev. 1, a Bechtel Corporation Topical report approved by-the Commission for short duration testing. The test duration criteria of BN-TOP-1 were easily satisfied for terminating the test in 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> or less.

Because of the present regulatory uncertainty due to the ongoing revision to Appendix J and technical uncertainty due to ANSI /ANS standard changes, a full 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test was performed and is the basis of this report.

m SECTION A - TEST PREPARATIONS

. A.1 Type A Test Procedure The IPCLRT was performed in accordance with Quad-Cities Procedure-QTS 150-1, Rev. 11, including checklists QTS 150-S1, S2, S3, S4,.S5, S6, S9, S10, S11, S12, S13, S17, and subsections T1, T2, T3, and T8.~

Approved Temporary Procedure 2195 was written to exclude valves.AO-1-203-2B.and 2C (outboard MSIV's) from.

the pre-test valve line-up (QTS 150-S5), isolate the hydrogen / oxygen monitor system (QTS 150-S2), delete moisture trap installation requirements -(QTS 150-S3),

delete > graphing-the hourly measured leak rate. readings and add a plot of the reactor water temperature (QTS 150-S4), add valves 1-1001-151A and B (pressure

= test. tap-isolation off the RHR system) to the. pre-test valve checklist (QTS 150-S5),

- and:to change' test' instrument positions (QTS 150-S17).

  • pproved Temporary Procedure 2197 was written to change service air isolation allowing air ta-the

. reactor building but excluding the primary containment (a "tell tale" drain

- valve was open verifying proper isolation).

These procedures were written to comply with 10 CFR 50 Appendix J, ANS/ ANSI N45.4-1972, and Quad-Cities Unit One Technical Specifications. The methods for calculating the containment leakage and upper confidence limit are in compliance with' the-ANSI /ANS 56.8-1981 standard.

Compliance with all features of'the ANSI /ANS-56.8-1981. standard was not possible, because the Commissio-has not approved the-standard for*use due to a pending change to 10 CFR 50,

- Appendir J.

A.2 Type A Test Instrumentation Table One shows the specifications for.the. instrumentation utilized in the IPCLRT. Table Two lists the physical locations of the temperature and humidity sensors within the primary containment. Figure 1 Is an idealized view of the drywell and suppression chamber used to calculate the primary containment free air volumes used for weighting the sensor readings. Plant personnel performed all test instrumentation calibrations using NBS traceable standards.

(

2 e

4.

e a

TABLE ONE INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO.

RANGE ACCURACY REPEATABILITY Precision Pressure Gages (2)

Volumetrics 0-100 PSIA

.015 PSI i.001' PSI Burns RTD's (30)

Engineering SP1Al-5\\-3A 50-200*F i.5*F

.i.1 F Volumetrics Lithium Dewcells (10)

(Foxboro)

Chloride +140*F 11.0 F i.5 F Pall Trinity

  • Thermocouple Micro 14-T-2H 0-600 F 12.0*F i.1 F Fischer Flowmeter

& Porter 83 1.1-11.1 scfm 1.111 scfm Level Indicator LT 1-646B GEMAC 0-+60" H O 2

TABLE TWO SENSOR PHYSICAL LOCATIONS RTD NUMBER ~

SUBVdLUME-ELEVATION AZIMUTH *

~1 1

670'0" 180*

2 1

670'0" 0'

3 2.

657'0" 20' 4-2 657'0" 200*

5 3,

634'0" 70 6

3 634'0" 265*'

7 4(Annular Ring) _

643'0" 45*

8' 4-615'0" 225 9

5 620'0" 5*

10 5

620'0" 100*

11 5

620'0"-

220' 12 6

608'0" 40*

13 6

608'0" 130*

14 6

608'0" 220' 15 6

608'0" 310' 16 7

598'0" 70'

-17~

7 598'0" 160' 18 7

598'0" 250' 19 7

598'0" 340' 20 8

587'0" 10*

' 21 -

8 587'0" 100*

22 8

587'0" 190'

- 23 8

587'0" 250' 24 9(CRD Space) 586'0" O'

25 10(Torus) 578'0" 10' 26 10(Torus) 578'0" 100*

27 10(Torus) 578'0" 160*

28 10(Torus)

-578'0" 220' 29 10(Torus) 578'0" 280' 30 10(Torus) 578'0" 340*

Thermocouple 11(Rx Vessel)-

(Inlet to CU Hx)

DEWCELL NO.-

SUBVOLUME ELEVATION AZIMUTH

.1 1

670' 180*

2 2,3,4 653' 90' 3

2,3,4 653' 270*

4 5

620' 0*

5 6,7 600' 45'

'6 6,7 600' 225*

7 8,9 586' 0'

8 8,9 586' 180' 9

10 578' 130' 10 10 578' 310' Thermocouple (Saturated) 11

  • WEST = 0* AZIMUTH m-Idealized View of Dry,,, ell and Torus Used to Calculate Free Yoluses i

g 37' a '

d I

i l'-

34'8" N

_ 681'9"

.,,,_G77'G"

/

7_i1 666'3" 662'7

/

,,, 655'2"

-=,

y If N F. i

..d:

635'10" volume r

(forat s1(g)

~

j 3 '6 "

/

5

- %fl,.,3

/

6

= g s.' 2"

. s e-

/<

/,

/

"1' ' e f,e.-.1a.rl 7

77 r 1 so'r 1

l FIGURE 1 I I

A.2.a.

Temperature The location of the 30 platinum RTD's was chosen to avoid conflict with local temperature variations and thermal influence from metal structures.

The RTD's were manufactured by Burns Engineering Inc. and are Model SP 1Al-5 -3A.

Each RTD and its associated bridge network was calibrated to yield an output of approximately 0-100 mV over a temperature range of 50-150*F.

Each RTD was-calibrated.by comparing.the bridge output:to the true temperature as indicated by the temperature standard.

Three temperatures were.used for the. calibration. Two calibration constants (a slope and intercept of the regression line) were computed for each RTD by performing a least squares fit

'of the RTD-bridge output to the reference standard's indicated true temperature.

The temperature standard used for all calibrations was a Volumetrics RTD

-Model VHC 701-B used with a Deweell/RTD Calibrator Model 07782. -The standard was calibrated by Volumetrics on June 4, 1984 to standards traceable to the NBS. The sensors used during the test were calibrated within 6 months of the calibration date for the standard.

The plant process computer was used to scan the output of each RTD-bridge network. These digital inputs were:then transferred to-the PRIME computer and converted to engineering, units-for use in the leak rate calculations.

A.2.b.

Pressure.

Two precision quartz bourdon tube, absolute pressure gauges were utilized to measure total containment pressure. Each gauge had a local digital readout and a Binary Coded Decimal (BCD) output to the process computer. Primary containment' pressure was sensed by the pressure gauges in parallel through a 3/8" tygon tube connection to a special one inch pipe penetration to the containment.

Each precision pressure gauge was calibrated from 50-70 PSIA in 5 PSI increments using a third precision pressu e gauge (Volumetrics Model 07726) that had been~sent to Volumetrics_for calibration. The pressure standard was calibrated on June 18, 1984 using NBS traceable reference standards. The pressure instruments used during the test were calibrated within 6 months of the, standard's calibration.

The digital readout of the. instruments were in " counts" or arbitrary vaits. Calibration constants (a slope and intercept of a regression line) were entered'into the computer program to convert " counts" into true atmospheric pressure as read by the. third, reference gauge.

No mechanical calibration of the gauges was performed.to > bring their digital displays into agreement with true pressure.

e --

r A.2.c.

Vapor Pressure Nine lithium-chloride dewcells were used to determine the partial pressure due to water vapor in the containment. The dewcells were calibrated using the Volumetrics standard described in section A.2.a. and a chilled mirror dewcell standard calibrated on March 27, 1984 by Volumetrics.

The calibration constants (the slope and intercept of a regression line) for each dewcell were computed relating the 0-100 mV output of the signal conditioning cards to'the.-actual dewpoint indicated by the reference standard.

A.2.d.

Flow A rotameter flowmeter, Fischer-Porter serial number 8405A0348A1, was used for the flow measurement during the induced leakage phase of the IPCLRT. The flowmeter was calibrated on June 14, 1984 by Fischer-Porter to within t1% of full scale (1.1-11.1 SCFM) using NBS traceable standards.

Plant personnel continuously monitored the flow during the induced leakage phase and corrected any minor deviations from the induced flow rate of 6.65 SCFM by adjusting a 3/8" needle valve on the flowmeter inlet.

A.3 Type A~ Test Measurement The IFCLRT was performed utilizing a direct interface with the station process computer. This system consists of a hard-wired installation of temperature, dewpoint, and pressure inputs for the IPCLRT to the process computer. The interface allows the process computer to scan the inputs and send the data, still as a millivolt signal or BCD in the case of pressure, to the PRIME computer with minimal manual inputs and without the disadvantages of multiplexers or positioning sensitive electronic hardware inside the containment during the test.

The PRIME computer was used to compute and print the leak rate data using

-the ANSI /ANS mass plot method and the BN-TOP-1 method. Key parameters, such as total time measured leak rate, volume weighted dry air pressure and temperature, and absolute pressure were plotted ~ on a Ramtek color terminal.

Plant personnel also plotted a large number of other parameters, including temperature and partial pressure of water vapor for each subvolume, reactor water temperature and level, absolute pressure, etc. in real time.

In all cases data'was plotted within approximately 30 minutes of the time it was taken. The plotting of data and the computer printed summaries of data allowed rapid identificatin of any problems as they might develop.

Figure 2 shows a schematic of the data acquisition system.

With the exception of a few problems with the process computer, all of the equipment performed perfectly. One instrument failed prior to the start of the test and no instrumentation inside the drywell failed once the test started.

c:

A.4 Type A - Test Pressurization A 3000 SCFM, 600 hp, 4 kV electric oil-free air compressor was used to pressurize the primary containment.

An' identical compressor was available in standby during the IPCLRT. The compressors were physically located on a single, enclosed truck trailer located outside the Reactor Building.

The compressed air was~ piped using flexible metal hose to the Reactor Building, through an existing four inch fire header penetration, and piped to a temporary spool piece that, when -installed, allowed the pressurization of the drywell through the."A" containment spray header. The inboard, containment spray isolation valve, MO-1-1001-26A was open during pressurization. Once the containment was pressurized, the MO-1-1001-26A valve was closed and the spool

-piece was removed and replaced with a blind flange.

l

- [

MEASMADEllT SYSTEM 3CHEMAfic MUUWGDENT E

1/:

-id LOCAL Juncilo:2 (6) 30383 (8) 3M ~

I 3/C gyg I

(26)

(26)

P0l8EA SUPPtY SOX (1)

'#C P

I/C OEWEILI.S

\\"

\\

\\M 110v 3RWELL TEAMI: JAI.

l lex

--m-,,

PLIllsiETRA susrnmKM '

R4cn 1108-6

.c.

P94SSURE e

$8:3I".4 TUSI:44 60/C fac/C l

IPCutf-(3)

(3)

INETilMMil? CIBISOLE ORYWELL PERSONNEL IldTERLOCA SuuG1 TAC RTO 4 DEWCILL SIGIIAL 60/C (2)

CSIISITIGIIIIst CMtOS

    • 0 CESS 32/C (2)

C01Ptff!A P 4SSUAE SAUSES N

Il0V 791Mt SN-TCP-I COMPUTER MTHOD l

ImSS stoT l

Mico i

i FIGURE 2 '.

L:

SECTION'B - TEST METHOD ^

B.1 Basic Technique The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws to calculate the measured leak rate, as defined in ANS/ ANSI N45.4-1972.

The inputs to the total. containment dry air mass calculation. include subvolume weighted containment temperature,.subvolume weighted vapor pressure, total absolute air pressure, and a total containment volume: correction for reactor water level. As the data sets are collected over' time a regression line is computed for the measured dry air mass as a-function of time. The slope divided by the "y-intercept" of the regression line gives the statistically averaged leak rate. The upper confidence limit is defined as the statistically averaged leak rate plus the-product of the one-sided 95% T-distribution and the standard deviation of the regression line slope. The mathematical expressions for these calculations are found in Appendix C.

There has'been some criticism of this technique on a technical basis (Gogol and Reytblatt) in that the use of'a volume weighted temperature and vapor pressure is not mathematically equivalent to computing a dry air mass for each subvolume and totalling the results to obtain a containment dry air mass. While the criticism has some merit in terms of mathematical exactness, using the two different methods give nearly the same results. The correction for a change in sump levels inside the containment is shown in Appendix B and uses the G-R method for. computing the leak rate.

l I

l l

l

r n

B.2 Supplemental Verification Test The: supplemental verification test superimposes a known leak of approximately

- the same magnitude as LA (8.16 SCFM or 1 wt %/ day as defined in the Technical Specifications).

The degree of detectability of the combined leak rate (containment-calculated leak rate plus the superimposed, induced leak rate) provides a basis for resolving any uncertainty associated with the measured

- leak rate phase of the test. The allowed error. band is 25% of L

  • A There are no references to the usenof upper confidence limits to evaluate the acceptablility of the induced leakage phase of the IPCLRT in the ANS/ ANSI ~

standards or in BN-TOP-1, Rev. 1.

The induced leak used for this test was 6.65 SCFM or 0.815 wt %/ day.

B.3 Instrument Error Analysis An instrument error analysis was performed prior to the test to demonstrate the. adequacy of the data acquisition system. The instrument system error was calculated in two parts. The first was to determine the system accuracy uncertainty. The second and more important calculation (since the leak rate is impacted most by changes in the containment parameters) was performed to determine the system repeatability uncertainty.

The results were 0.0833 wt %/ day and 0.0169 wt %/ day for a 24-hour test, respectively.

These results are inversely proportional to the test duration. When a deweell failed prior to the start of the test, the values were re-calculated giving 0.0835 wt %/ day and 0.0171 wt %/ day for a 24-hour test.

The instrumentation uncertainty is used only to illustrate the-system's ability to measure the required parameters to calculate the primary containment leak rate.

The mathematical derivation of the above values can be found in Appendix D.

The instrumentation uncertainty is always present in the data and is incorporated in the 95% upper confidence Elinit.

i F

SECTION C - SEQUENCE OF' EVENTS C.1 Test Preparation Chronology The pretest preparation phase and containment inspection was completed on July 24, 1984 with no' apparent structural deterioration being observed.

Major preliminary steps included:

1). Completion of all Type B and C tests, component repairs and modifications where appropriate, and retests as-required,,except for two outboard MSIV's.
2) Blocking open three pairs of drywell to suppression chamber vacuum breakers.
3) Installation of all IPCLRT test equipment-including the sensors, associated wiring, and data acquisition system.

4)

In' situ test of data acquisition system and computer programs for data processing.

5). Dewcell number 2 failed.

6)- Completion of all. repairs and installations. in the containment.

7) Completion of the pre-test valve line-up.

C.2 Test Pressurization and Stabilization Chronoloav DATE TIME EVENT 07-24-84 0424 Began pressurizing the Unit One containment.

Process Computer problem due to fast containment pressure changes.

0500 Containment piping and valves inspected for apparent leaks.

0600 30 psia in drywell.

0855 Compressor tripped due.to third stage-hi temperature.

0910 Restarted ccepressor.

1005 Compressor tripped again - would not.run over 20 percent loaded.

[

1045 Switched over to spare compressor.

1230 Pressurization complete at 65 psia.

1238 Stabilization phase beginning.

~

1904 Stabilization phase ending (AT 0.1'F/hr)

, i-

C'.3 : Measured Leak Rate Phase Chronology DAX TIME' EVENT 07-24-84 1914 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> leakage rate phase begun.

Reactor water level is 53.74 inches and decreasing steadily at 0.75. inch / hour. This will be no problem for the test.-

Reactor water. temperature is 125*F and decreasing _

steadily at 1.75' degrees F per hour.

2105' Adjusted RHR heat exchanger valve 17A to slow down-the reactor water temperature drop.

2226 Adjusted RER system 17A valve again.

.07-25-84 0240 Adjusted RMR system 17A valve again.

0246

-Adjusted RHR system 17A valve again.

0318.

Bad data. set because RTD's 1.and 2. dropped out.of_ scan.

1150-Computer problem.

1151.

Computer. up.

Did not effect.next data point.

1415 Computer problem.

1430 Computer working.

Found that the first six RTD's were not being scanned correctly.*

1750 Decided to restart 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> leak tate phase at 1430.

This was the first point when all RTD's were scanned properly.

Reactor water level is 47.83 inches and decreasing at about 0.1 inch per hour. This will be no problem for the' test.

Reactor water -temperature is 115.8 degrees F and increasing at 0.5 degree F per hour. This will be no problem.for the test.

(?

y

C.3 Measured Leak Rate Phase Chronology-(Continued DATE_

TIME EVENT 1

07-26-84

.0315 Computer problem.

0320 Computer working. Missed one data transfer.

0650 Computer: problem.

07231

-Computer: working. Missed data-transfers-for about.

45 minutes.

1430 End of 24 hourJ1eak: rate phase. Total containment' pressure is 63.6 psia.

C.4 ! Induced Leakaze Phase Chronology DATE TIME EVENT 07-26-84 1442 Leakage induced at 6.65 scfm or 0.815 weight' percent per day. Radiation Protection taking sample for release to reactor building.

1544 Stabilization complete.. Computer program set for~

first scan on this part of-the test.

1944 Induced leakage phase terminated successfully. Total containment pressure is 63.48 psia.

C.5' Depressurization Phase Chronology DATE TIME EVENT 07-26-84 2015 Started depressurization phase.

2330 Depressurization complete. 27-84 0015 Drywell entry made to verify undisturbed instrumentation and begin post-test checklist.

'* At -1430 on July 25 after re-initializing the process computer it was noticed that the first six RTD points only got scanned one time after re-initializing the process computer. The computer was then processing a L

constant value for these 6 sensors.

Once this was noticed Computer l

Systems people were'able to correct the problem in a couple of minutes.

L LAt 1750, the same day, the Station decided to restart the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> leak l

rate phase:beginning at the time.the scanning process was repaired.

I~

l-

' l'

SECTION D - TYPE A TEST DATA D.1 Measured Leak Rate Phase Data

'A summary of the computed data using the ANSI N45.4 test method can be found in Table 3.

Shown in the table are data set number, time since the start

.of-the test (after pressurization and stabilization complete), volume weighted containment temperature in degrees R, dry air pressure in PSIA, reactor water.

level...in inches,, total-time measured leak rate, point-to-point leak rate, statistically. averaged leak. rate, and the ANSI calculation of the upper:

confidence-limit.

Graphic results for the test are found in Figures 3-6.

D.2 Induced Leakage Phase Data' A summary of the computed data using the ANSI N45.4 test method can be found in Table 4.

Graphic results for the test are found in Figures-7-10.

DUQD CIIIES UNii t 14' 36411 IHU. 26 JUL 1994 eseo c;UMMARY OF DATA SETS t THRU 139 ****

OAT 3 TAGE TIME TEST TEMP-DRY AIR RI WATER men 0VRED CAI.CULATED Pras LEAK RnTC CALC LEAK 955 UPftR SCT.

DURAT!ON (RI Pf EStiURE LEVEt.

MAGS MA55 mI AL 00 TNT R4YE C3FIDENCE (HRS)

(P9IA)

(IN)

T=6

% / DAY

% / DAY 1 / DAY L1Mtf I $9t-14:Me53-9.@eceee ' M8.56401 GL 85355 47.8J480' 4.?#964E*84 9.00$00E-91

9. Spes -

@.efe@

@.0908 9.9999 2 001 14:56:43 8.447229 558.53113 63.84776 47.56899 8.?e*56E*94 9.ee meE-el

@.e480 9.d480 e.$9e8 9.e@@@

3 @91 15:96:43 9.683892 558.52829 61 84454

47. 552"F1 8.99887E*04
8. 999(.9E *04 0.2$93 0.6421 0.1759 9.7913 4 901 15:16:44 9.78@830 558.58404 61 84199 47.45999 8.980 tee *04 0.?e97eE*04 9.1867 0.1935 9.1954 8.3963 5 968 15:26:44 9.947495 558.49797 63.83968 47.47598
8. 9#e4
  • e4 0.9e*61Es*4 9.8716 9.telt
9. t'#6 6.2996 6 est 15:36:45 1.114449 558.49044 63.83786 47.49599 8.89T80E+04 8.?M7eE*04 9.1845 0.2574 9.1953 0.2668 7 881 15: 4:4 1.281387 554.48718 61 83544 47.55299 8.0996tE+94-8.98073E***

9.2163 9.4298 9.2161 0.2737 8 est 15:56:48 1.448648 558.51416 63.83372 47.53299 8.5901eE+94 8.99987t+94 9.3237 1.145 p..tS79 0.3888 1 80t t6 86 49 I. 6 t ".w&2 558.51489 63.83194 47.53299

8. 8'le65E+ 04 8.9e*16E*#4 9.3333 9.4165 e.3327 9.4289 IO 001 16:I6 49 1.782227 558.50403 63.43994 47.49599 8.8987IE+04 8.9M98E*#4 d.2929

-9. #9M 9.3376 9.4149 11 ett t6s26:54 1.949165 558.59788 6L 82874 47.49599 8.8983 4+94 8.90892E+04 9.3186 9.5932 9.3596 9.4448 82 90t t6:36:Se 2.115837 558.59949 63.82587 47.45900 8.89794 +44 8.98197E+94 9.3443 9.G448 8.3686 8.4257 13 901 16: 4 51 2.282776 558.58623 63.82655 47.43800 8.898iSE*04 4.99194*04 9.2999

-9.2626 8.36Ii 8.4109 14 @@t t*. 56e53 2.449997 558.30583 61 82336 47.43800 8.89768E+04 8.90195E*94 9.3266 9.6905 9.3648 4.4869 15 001 17:06:54 2.616951 558.50788 63.82148 47.43899 8.89737E*04

0. 90 t 97t +M 9.3379 9.4817 9.3792 9.4872 16 991 17 16:54-2.783615 558.49963 63.42949 47.4I800 8.89737E+94 8.90t9"4**4 9.3172 9.Se76 8.3664 9.3999 17 90t t7826:56 2.950829 558.49634 63.8I832 47.44199 8.89714+04 4.90t94E+44 8.3194 9.3639 9.3637 9.3125 18 901 17:36:59 3.I18344 558.49561 63.81786 47.38800 8.897 tee +04 8.9019tE*04 9.3959 0.8604 9.3567 0.3833 19 991 17:47:06 3.285286 558.48544 63.88612 47. J8t et 8.89792E+04 0 99999E+04 9.2975 9.14tt 9.J484 9.3736 29 891 17:57:0t 3.452499 558.49t31 63.88440 '47.34499 8.81678E494-8.90096E*04 0.3876 0.5067 9.3444 9.3675 21 901 1:s97:04 3.519729 558.49898 63.81126 47.38900 8.89628E*84 8.90e97E**4 9.32 4 9.6755 9.3456 9.3665 22 001 18:17:07 3.787224 558.48416 53.81185 47.27299 8.89637E+94-8.19995E*04 9.3041

-0.1384 9.3499 0.3695 23 ett t8 27:08 3.954170 558.44633 63.89975 47.27200 8.89621E+94 8.9eeftE+94 9.3925 9.2651 0.3366 9.3549 23 901 18:37499 4.121109 558.49911 63.8 Met

  • 47.27299 8.89687Ee#4 8.?see9E* M
9. Me9 8.21 4 9.3329 8.3494 25 ett 18:47:10 4.288063 558.48682 63.89775 47.21544 4.89596E**4 8.90086E+94 0.2942 8.8767 9.3279 9.3438 l 26 Set 12:57:11 4.455082 558.44999 63.89754 47.23000 9.89587E+04 4.900SX*04 9.2987 9.1499 9.3216 9.3380 l 27 061 17:07:13
4. um 558.47751 63.80479 47.21500 8.8956ME*04 8.90071E+44 0.2894 0.3075 0.3172 0.3330

! 28 sei 19s17:13 4.788895 558. 4 997 63.88365 47.I9399 8.89548E+04 8.99075E+04 9.2795 8.095t 9.3114 9.3271 t

29 901 !! 27:13 4.955559 558.48010 $3.80282 47.15798 0.8954X+94 8.9007X *04 0.2838 9.4972 0.3e73 0.3225

( 34 001 19:37:14 5.122498 558.48645 63.89833 47.12999 8.09545E*94 8.9907tE* M 9.2894 8.4545 9.3849 9.3193

' 31 90t t9:47:17 5.290008 558.48669 63.89151 47.I2099 8.89517t+94 8.19967E+94 9.2798

-0.0378 9.3099 9.3I59 l 32 808 !! 57:18 5.456947 558.48877 63.80045 47.00409 8.89582E+94

8. 9pe64E* M 9 2780 6.2475
9. M73 9.3109 33 091 20:07:18 5.623611 558.48914 63.79989 47.96308 8.89484E*04 8.90062E 94 0.2783 0.2884 0.2943 0.3074
3) 901 29:I7e19 5.790558 558.49997 &L 79713 47.94300 8.89453E494 9.90e6eE+04 8.2836 9.4621 9.2926 8.3951 35 801 29:27:19 5.957222 558.49492 63.79593 47.00699
8. 89435E+M
8. 9M6eE **4 9.2850 9.3339 9.2914 9.3932 36 set 20:37:29 6.1241F8 558.48645 GL 79456 47.00600
0. 894ME+M 8.9995M*04 9.2797 9.4884 0.2894 8.Je87 37 eei 29:47:23 6.29I672 554.4T791 63.79439 4.949ee 4.89445E+04 8.9ee55E+94 e.2654

-0.2567 9.2855 9.2968 38 801 29:57:23 6.458336 558.48987 63.79198 4.93400 8.8931M*04 8.99954E*04 9.2801 0.8J73 9.2843 9.2951 39 Set 21:07:24 6.625275 558.47632 63.70958 4.91299 8.89382E+04-8.?ee52E+94 9.2776 0.1818

9. 28M 0.2933 49 801 28a17:24 6.7911 4 558. 4 352 63.78902 4.89790 8.8937&E494 8.3e95eE+94 9.2732
9. M61 8.28i9 9.29t9 l 41 Set 21:27:25 6.954893 558.48 4 2 63.78725 46.87640 8.89J49E+44 8.9005eE+94 0.2806 0.5834 0.2895 0.29ee l 42 Ott 21:37:25 7.125357 558.47999 63.78683 4.84889 8.09349E+94 8.90948E*$4 9.2797

-0.1442 9.2786 9.2878 43 est 21:47:27 7.292786 558.4704 63.78421' 4.81899 8.8932SE+94 8.99848E*@4 9.2734 9.3483 9.2773 9.2862 44 ett 21:57:28 7.457724 558.48456 63.78t05 4.80E99 8.89285E*e4 8.90047E+94 0.2817 9.646 9.2773 8.2858 45 801 22:07:29 7.626663 558.47137 63.78228 4.78290 8.89267E*04 8.99946D 94 9.2749

-0.0278 9.2764 0.2845

'46 Set 22:17:29 7.793335 558.48922 61 78181 4.74599

8. 0920tDM 8.99945E*e4 0.2798

$.@835 0.2751 8.2830 47 Pet 22:27:30 7.96e281 558.48694 63.77924 44.74599 0.8923?A*e4

8. 9e945E
  • M 8.2819 9.7578 9.2752 8.7878 48 Set 22:37:32 8.127502 558.480?6 63.77867 4.68000 8.8924tE*04 8.99944Ee84 8.2732

-$.@994 9.3743 9.2817 (9 991 22:47:33 8.294449 558.48572 63.77737 4.65199 8.8'7288D 94 8.9004K '04 9.275 9.3663 9.2738

9. W8 50 set 22:57:J6
8. 4 1945 558.48242 63.77596 4.63100 8.09295E*@4
8. 9M42E
  • M 9.2737 9.2065

@.2732 8.28e9 i 51 991 23:e7:31 8.629449 558.48e96 61 77404 4.59499 8.89183E*e4

8. 9W42E *M 9.7752 0.35 #

9.2718 9.2793 l 52 Set 23:17:39 8.7?6112 558.54484 63.77198 46.59491 8.89tt7E*D4

8. 90*4 7E
  • M t.2995 8.f830 0.2742

$.2806 53 Set 23:27:49 8.96J958 558.46777 63.77191 4A.574@@

8. 0*lm4D e4
8. ~5N4.f *M 9.2790

@.7655 f.2733 9.2 79G 54 Mt 23:37:48 9.819723 33.49999 63.76964 4.97799J.J98SeGeg S. 9eogeG94 8.gh7f.. 0.0633 ab 2721 9.2788.

l TABLE 3 f

l st een 33:47:43. 9.aseert 'Jee.446fs 47.74779 419Jep 9.#p8275444 8 9003084e9 0.23ae e.53M 8.37sf 8 2779 56 est 03:57:43 1.463898 558. 5923 6L 76627 46.5220$ 0.03815E*@4 8.9 MJOE*04 0.2705 0.1794 0.2/08 0.0766

)

-57 002 90:$1 44 9.630821 558.44A36 63.7645J

46. 48 we 0,89It2E*e4
8. ?*@ %E **4 9.2667
e. 06.C 8.7678 0..'754 1

~

58 902 90:17:45 7.717783 558.449*6 63.76318 4.44379 8.811@9E+@4 8.399J3E+04 e.2630 0.0480

@.2605

@.0741 51 062 09:27:47 9.965094 558.4J787 63.76@32 4.44339

0. 09873E *M
8. WOUF *M
0. N 8 3 0.502G e.2671 8.2733 l

60 f*2 @9:37:48 18.131943 5'.6.43e66 63. 75M2 46.427??

8. 0We*E * @4
0. 7M3 t E
  • 04

$.2628

-@.1827 6.2667

$.2721 61 @e2 $0:47:49 19.298077 5%.42413 63.15723 4.497 # G.0'954E*94 6.7ee?"E*04 8.Ch45 0.4118 0.2657 0.0711 i

62 $82 $8:57:41

19. 4 5"61 558.41235 63. 75C/ll8 4.497ee
8. 0W64E+ @4
8. W927E * @4

@.2578

-*.156?

0.2644

@.0637 63 002 01:07:54 10.630500 558.41431 6J. /*s533 4.334e*

8.8804'K'**

8. 9ee2'4 *e4 9.4574 9.23/5 4.2631 0.2684 64 092 91:17:51 19.7994 4 558.41772 6L 75264 4.31380
8. 8Me 7E
  • M
8. We23Ee04 0.064@

0.6822 0.it45

@.;676 65.002 64:27:53 10.966667 558.48528 63.75225 4.2/679

0. 8To'1E* e4
8. 9**eJ E
  • M e.2575

-@.93dJ

@.2616 0.26 %

66 Set'81337:54 11.I33614 554.41321 6L 75848 4.256es 8.88?e M

  • M
8. 79071E
  • M e.26@4 0.3007
e. 2W6 9.2657 67 9et Cl 47:55 11.398560 558.48649 63.74826 411Me9
8. 88773E s 94 8.?seler*e4 e.26@3 9.2:27
9. 26M e.2649 64 902 81:57:57
11. 4 7781 558.49369 63.74797 4.19999 8.88173E**4 8.9eet0E* M -

@.2565

- @. e*2",

@.2579 e.2638 69 004.82:07:54 - 11.634729 554.31136 6J. 74M3 46.88400 8.8817CE*04 8.900l[E***

6.2523

-*.4354 0.2577 8.i626 70 est 02:17:54 11.881392 558.38el8 EL 74499 4.14799 8.88748E*@4 8.?sel4E*@4 c.558

@.4454

@.25fA

@.2615 71 @et 02:27:59-11.364338 558.317 4 63.74326 4.16800 8.8832eE+94

8. 9eet 4F *e4 1.2573 8.4544 0.2561
0. 4 6M 72 est et334:M i2.I35284 554.J9995 63.74I93
4. t9999 - 8. 88811E*M
8. ** t 4t* f 4 9.26@7 0.4 Tee 4.05"8 9.06@3 73 est et 48:M i2.303055 558,39771 63.73954 4.990ee 8.SeeTeE+94 8.900t3E*@4 e.e6ee 9.2*87 0.2:54 9.2598 74 set 02:58:85 12.478001 555.38745 63.73063 4.06e99 s.See71E+04 8.3eollE+94 9.2563

-0.@tTF

@.2547

@. 5 71 75 set $3:20 4e 12.84e689 558.40085 63.73449 41 99599 4.ase97E***

8.100t!E+e4 9.2GJ3 9.517e 8.2548 9.2579 i

76 esc 03:30:48 13.015202 554.39299 EL F33M 41 99599 8.84800E+44 8.900 tee ***

e.26@2

-0.6253 9.2545 e.2587 i

77 set 03:46:49 13.t82228 554.31331 63.13279 41 95900 8.Se797E**4

8. See t et **4 9.2532

@.t029 9.2:42 8.2502 78 est 03:50:50 13.349867 554.J W79 63.73999 41 13009 8.84773E***

8.10ee9E+M 9.2680

@.3816 8.2549 9.0509

! 79 set 04:08:30 13.515439 558.38977 63.7285e 41 1880s e.Se747t+94 8.90ee9E+e4 9.26t8 e.4270 9.2540 8.2571 40 est 94 Ito53 13.683334 28.37952 63.72758 41 Seise 8.Se752E+04 8.See87E*M e.2586

-9.$831 6.25J7 9.2575 St 902 04:29:53 13.449998 558.38403 63.725W 45.88100 8.88722E+04 4.900eeE*e4 0.2613 0.4886 0.2537 0.2573 82 est 04:J9:54 14.016953 558.37769 63.72376 45.84499" 4.88705E+04 - 8.90 ecee *04 0.2685 9.2780 9.2536 9.2572 83 90t 94 40:55 14.t83891 558.3'7939 63.72264 41 84499 4.Se647E+04 8.19007t+04 9.2617 9.2?67 9.2536 9.2571 44 est 94s59:55 14.358555 558.38229 63.72979 4L 82480 8.Se65eE+04 8.See87E*$4 9.2643 9.4799 d.2538 9.2572 l SS est 05:09:SS 14.518009 558.J6951 63.78969 45 70719 8.Se665E+04

4. 30804 +94 9.2530

-0.I234 c.2536 8.2570 86 set se:10:SS 14.684723 558.37399 63.71et5 45.71500 8.Se643E*04 8.70006E*04 9.26Ii S.3697 c.2534 8.2568

'47 est 05:29:59 14.85tM 9 554.37366 63.71679 4L 69J99 8.88624E+94 e.90e97E**4 9.2615 0.2963 0.2536 9.2567 88 set 95:30:59 15.988341 558.J7258 63.71647 45.65700 8.80630E+44 8.90006E*$4 9.2574

-4.1983 9.2533 0.2564 89 est 9H4i et iL105e29 550.36 4 2 63.FI378 41 64800 8.Se695E+94 8.19086E*.04 9.259I 9.4002 8.2532 9.2362 90 est 05:51:05 15.J53346 558. Mles 63.78369 45.62099 8.88686E*04 4.1ede:E+04 0.2569

-@.0t27 9.2528 9.2558 11 est 06:01:07 LL 520054 558. 5 132 63.71182 45.60000 0.8858eE+04 0.10004E+04 0.2565 0.3029 0.2526 9.2555 W est 06:11:00 15.687500 558.36597 63.78e57 45.56300

8. 8853X+04 4.3ere4E*M 0.2632 0.8482 0.2527 9.2556 13 698 e6:21:09 15.8544 4 558.34253 63.79911 45 54300 e.se5est+94 8.90004E+e4 0.2525

-9.7500 0.2522 0.2551 14 set S6:31:Ie 16. N t333 558.34436 63.79985 41 54309

8. Se575E+44 8.10002E***

9.2506 9.e657 8.251&

4.2544 i 95 = = 4i.i.

i6.iee957 5=. 35M9 63. m n 45.5Mee. 885 JE*.4

.M

. 25.

i.0:54

0. 2m3

. 2543

- 16 set 87e22:26 86.892502 558.34583 63.69017 45.397e9

8. 8843X+M 8.1989tE*e4 9.2604 8.3862 6.25I6

@.2543 17 est 97s33:24 17.951723 SSS.34314 63. 6M36 41 J7600 8.88455E*e4 8.90cesE+44 8.2543

-0.3610 9.25t3 9.2549 Se est 07:43:30 17.226307 558.33472 63.69765 41 34089 8.80440E+04 8.89999E*@4 9.2531 9.1266

e. C99 9.2535 19 902 97:53:29 17,393333 558.32849 63.63687 4L 30899 8.8445eE+44 e.89990E*94 9.2583

-9.8321

@.2504 9.2538 880 est ce 03:29 17.359990 558.38231 63.69476 45.30t99 8.88430E+04

8. 89997E * $4 8.2510 9.Jl98 9.2499 8.2525 10I set ese13:30 17.726944 558.Jt152 63.49335 41 24599
8. Se432E
  • M 8.899T5E+04 9.2443

-9.4354 8.2493

@.25t9 iet est ce 23:30 17.893616 554.29932 63.69tt7 45.29999 8.8843M +94 8.89994E*#4 9.2449

-0.1114 9.2485 9.2512 l 103 set 08:33:33 18.061111 558.21651 63.64167 41 29300 8.Se4e7E*e4

8. 89912E s #4 0.2474 e.5116 9.2480 9.2:e6 IM est 00:43:33 15.227776 2 8.20764 63.64733 45 16000 8.88392E*04 8.8999tt+04 0.2474 8.2457 9.2474.

@.2501 195 set 08:53:34 18.394722 558.209J1 63.6573 4L ISt99 0.88368E*04 8.87901E**4 0.2486

@.3843 9.2479

9. 2 4% '

106 est 99:03:34 18.561386 554.27783 63.68464 4L t3 tee 6.84373E*e4 8.879eeF o@4 0.2457

-$.0735 0.2464 9.24?e 107 set 99:13:35 18.726333 558.27344 '6L68319 41 95980 9.46J65E*04 8.8??e7E*e4 0.2447 8.12"o 9.2458 4.2484 100 set 09:23:35 18.895004 55d.27319 63.64244 41 0t200 8.88357E*04 8.89995E*94 0.2436 8.1248 9.2452 0.2478 189 est 09:33s36 I9.961943 558.26370 63.68075 45 SJ799 8.80341E*$4 8.8194X $94 9.2437 8.2:54 4.2446 9.2473 113 set 09:4J 34 19.229164 558.26245 63.67025 45.00100

8. 883t eE*M
8. 8Me tE +@4

@.2448

@.37Cl 9.2448

@.2468 til set 09:53:38 19.3954J6 558.25427 63.67007 44.90000 8.8833eE+44 8.89971E**4 0.24te

-9.8176 8.2435 8.24Cl 112 est !! 03:39 19.562775 556.24756 63.676t7 44.?*199 8.4432eE*04 8.89978t+94 8.2494 9.1618

@.2428

@.2455 113 est 19:13:39 19.729439 55s.25288 63.67279 44.88699

8. 8845E +94
8. 8M 77E * *4 -

9.2451 0.8??2 9.24U5 0.2451 114 est 19:23e4e 19.896393 558.24768 63.67266 44.47999 8.80274t*04 8.89975E**4 9.2427 9.I44i

@.242e

@.2446

( 115 est 10:33:40 29.063057 55s.23877 EL 66176 44.81380 8.882L P 04 8.89974E*94 9.2436

@.J546 0.2416

e. 262 l 116 set !! 43:42 29.238274 558.23@tt 63.66803 44.81300
0. 08242E
  • M 0.89973E*94 9.3423

@. t U,6 0.2411

$.2437 (117 Set!!53:44 29.317499 554.21075 6L Gr.669 44.19300 n.en24JE*@4

0. 6H7 t F 44

@. ?4 NI

9. @ l 2r.

@. 2 4cr, 0.24,2 l I14 902 11:@3:44 29. "l64 t 63 558.2t223 C.1. M *W

44. 7tr.v
n. w rismo n.rm a m.
c.,.94 0.1949
0.. u"

$.2427 817 ett it sl3:45 N.794#10 19F.14197 61. 6& P64 da.noget

3. ggt 19Eect 3 ggw as*e4 a teen c 39g)

C.2396 0.M22.

TABLE 3

1 s

121 nWS II:3fs97 ff.e60est set.asee? 63.6ees3 44.sesso S. Sele m+ee 0.999 6 6644 e.14ej a.54(4 e.2387 e.24;;

122 002 f t :43:47 21.231667 558.18441 6J. t.5W9 44.532eo

8. 84213E e M
8. 87M3E s #4 e.2351

-0.5816 0.2300 0.0446 123 set 11:53:44 21.310613 558.17071 63.65668 44.49599 8 Sets 8E+e4 e.89962E+e4 e.2364

e. 375 e.2J75 c.2+8 124 002 12se3e44-2I.565877 55s.t6900 63.65498 44.47500
8. SeiSWE+M 8.89961E+04 9.2355
e. Iat e.2363 c.2315 125 est 12:13:41 21.732224 558.15918 63.65295 44.43800
8. Set 7M+e4 8.4995eE+04 e.2347 e.1231 0.2363 0.2387 026 est 18:23:59 21.89987e 55s.15802 63.45221 44.34800
8. 88 t etE*M 8.89957E*e4 e.23te

-e.1318

e. 23*.,6 8.2J83 027 set It333e52 22.866398 550.14493 63.44987 44.34Iet 8.Se 4iE+44 8.89956E*e4 9 235e e.6531 e.23*.A e.2378 188 set 12:43:53 22.233330 558.84007 61 64493 44.34499 8.84tett+e4
4. 89954E+ M e.2332

.e.0076 8.2345 e.2372 l129 est i2 53e53 ft.48000t SSS.t4et6 63.64674 44.3rgee 8.Se126E+e4 8.89953E* M e.2333 e.2432 e.2331 8.2366 1Je set t3e03s53 22. 566H6 558.I450t 63.646J2 44.Je9eo

8. et!IX+44 8.8995iEee4 8.2332
8. c"ce4 e.2334 e.2361 03i set t3:13 54 22.7336Ia 550.14172 63.64J04 44.2iSee S.SeeFW +e4 4.4995eE+04 9.2354 e.5483 8.2338 e.2357 03 est 13e23:35 22.9ee55e 554.I3379 63.64ise 44.19399 8.8eo72E+e4 8.4994eE+e4 e.2346 e.It63 e.2326 8.2353 033 est 13:33 35 23.e67tt3 55s.124ts 63.63995 44.8570s e.See69E+44
e. 09946E+M e.2332 e.e547 e.2321 e.2348 034 est t3:43ese 23.2347i8 55s.1 Etat 63.63eet 44.IteTT
8. Gee 6eE+e4 8.e9946t+e4 e.2326 e.1437 e.2316 8.2343 035 set 13e53:58 23.4e1390 350.I2005 63.63643
44. Iseet 8.80et9E+44
8. 89945E +44 e.2345 e.So16 9.2313 e.2331 036 est 10:e3e59 23.568336 35s.Itie7 63.63559 44.00400 S.Seet7t+e4 8.89944E+44 e.2342 c.t998
e. 2309 -

e.2336 B37 set t4st4 set 23.735tt3 558.I1447 63.63365 44.e4300 e.80004E+44 8.49942E+e4 e.2340 e.2e24 e.23e5 8.2332 1JS set t s24ee3 23.988779 550.t0730 63.63234 43.99190

8. 87999E*e4 4.0994IE+44 e.2329 e.ese7 e.23e2 e.2328 039 set 1*s34s95 24.870007 558.89000 63.(3:19 41 96999 8.47997t+e4 8.89931E+04 e.2316 e.0354 0.2297 e.2324 I

l e

TABLE 3 l

1

QUAD CITlES UNIT I MASS PLOT LEAR RATE WS f!ME gt uP g R g g t U ngT gp CALCULATED LEAR RAT *6' w

8 S

.P' E

3o C

M414480 CIttob N 3

16 % 4 i

sss sr.

8e

-~_

I

=

c.

IIII DMAIIW G4423) r l

l l

l FIGURE 3 s

i t

e 22-

s QUAD ClTIES UNIT-1 codTA44Weef MT ABA P9ESSWE VS 11M I

- g.

3

?

J n.

3 hn

Lm l Q'

-e t

i.

~

g L..

s.

.v.

o.

.w.

.4.

ra. -

TEST cuttAtton IMOURS) 1

. j.

a F

t FIGURE 4 F

QUAD CITIES UNIT I

refa cowransadt russum vs Tim t

u i

43 2

5 e

3 I

1 4.w

. e..

.a.

.e. =

an.=

Am it.a.

IIST SunATION (

3 f

r i

I I

.p.

t'

l s

.g 'll

': {[]

,.) If

<F

~

FIGUIE 5 r

9 Y,

~)

.[l 1

'g.

I DUAD CITIES UNIT I I

MT-Seftp TWetaAlvet VE Tief

!N r

r-

!e s.

S t

k:=

n li 2

9 It

!^

  • b.am a;ee e'. as s' en s'.se s4.co is.se e ',.se ik.es ib.ee d se s's. se

-+ se s.se ab.m fl$1 DURATICIS 000U8153 FIGURE 6 --

I INDUCED LEAKAGE PHASE' DATA gise C&F 18 Lart? I 19sMaM Ties. 26 AL 1994

        • SissesW (F tain RTS too fles 879 Moe ESM FftW Find TESF 795p SWF ate M taggEn semmM9 m N aftS pef 43 LEfet ARTE Ot.C Lafut 90s treta SF SI M ISI t R9 m

LEwm.

dew 9 85W FOfst r9 feet IWD'E CiprtMfe:E 49m spSIM 1 3015-Fee S 7 OfIf 8 / Ost S F GAT LI9tlF

$48 M t$eetest e.m MM &&gm 4&am ASFSSE*06 0.00BM 40 0.953D S.0059 9.0000 0.0080 847 m 8SeSteta e.sesses Whom &a.3 met 4&sesos e.eF:saE*e6 e.eusses et s.Je93

8. Jets S. sees e csse 140 SW Itemelt
4. 33M
  • R empt na.NM 41 63389
9. 0F*45 *06 L SF99eE*et 8.8508 t.8118 8.2SEE I.6489 let SW 16484e16 J.W0 t# M 4Wa7 6&MNI 4& SFa89 E 8739X *04 E SF9Fft est 6.3438
1. 2m 8.3899 8.4720 ISB SW 16eatelf 0 860M8 WS.pm m 63.57899 43.33939 A 47t1E4*06 5.0FS M *et 8.2899 e.ms5 1.4408 8.XM ISA M 14e34el8 0.838999 30 103A3 6&SFM e& S3FM EsfttW.M A 87595E*06 8.ites 1.ZSM 1.2185 8.3896 IN est 16eeee19 ' l.0045 5 M483m &&MGM 4& 4AESD S.879 3W800 S.EFW9eE*et 8.2959 8.4SJS 8.2 Set 1.J888 IS3 M 16s99ss ' 8.neum an.8tWe 63.meu 4&30699 8.874 W *04
0. 07m*04
8. 4M

& Weg 3.33e7 8.ame 19e eN 8Feetese 8.3MM4 M lasm 63.Nele 4&ee7W S.43ecW*0e 4.4Feses*M t.549E 3.e475 B. t FW 8.aese 85 M IFettem S. M 554. 8Mt4 63.

- 4& eefGD 8. MW38*#

S.88 wee *St 8.8638 8.8859

1. 843 8.4833 SW M Sfeate48 1.000F94 M 4me$ G&M 4&J3 6 S.0009E*06

& $PSSEdeet 8.8384 9.8MS 3.87re 8.8885 ISF GW SFs3teet 8.8M We im S&54789 4&a93 D &aset754e4 E SFitFu*et t.4495

.B.apls 1.8899 4.8710 IW W $7:44e06 3.033389 M amet 63.34800 &&I8999 S. M *es 0.0FWM*et t.pgr9 8.4496 8.80 2 8.4476 LW M ifs 96e84 S.195998 MIMh3 *Ga.83F33 4&ttte G.masseet A. 875FW*e4 1.8399 8.69ee 3.1989 l.3443 489 M I4eeteN 8.3MM M le004 63.33 2 43.senes Leessmaet a.afM*e6

8. tmp
8. ewe
8. Bem 8.tMe R&8 M testesE 8.WM M 8588 64. WPM 43.88350> S. meet b47mmeet 8.8859 e.WFF
8. 8e5
4. 8M 308 W Isoetam 8.6F8904 M 1463 88.BNF 43. 847W E.N4 Meet 8.Sp535*et 8.8338
8. 9F75
3. 0FF9 8.8200 163 GM leeJeom 8.BFFIE M 83e96 83.SI M el m S. 5 630$*06

& SFWW*e6

8. teFl S. 8m I.8W3 8.11N l# M 80e44e89 A0003W. MitteS 63.38 m 4& e8199 E stMIG*e4 L SFMM*et 4.8485 1.2M 4.pm 1.18t9 85 M IGettes5 3.8783F9 M 44A09 &&M 4.9f m 8.MSF7E*e) 8.SfM*eb I. lM 9.30pF t.9963
1. 4 BS tes M Itettem ' 3.3MBel M atem &B.Wem et.95e9 h att3h+04 4.0FMWe86
8. ses
e. Fees
8. SM f.lest 86F.M 89st4s2 13NM E bl4708 63.49FfD 48.93MS 8.ablect6eb 4.SFMM*e6 8.8348
8. 4WF 8.99E9 8 1938 848 m 89eateM 1 673 M M IS83F 63.4Spee et. Wt99 e.asspeces e.3FameJ6 3.8883 e.947
3. 0M l.8078 883 M 89satem &sem Mises 83.eem ee.saems e. mage *e4 S.3753.es
8. sets e.9tm
s. SWR I. sel SM em 39e44s39 4.80 Feet M i m 43.40048 48.M409 4.ESWEE*e4 L SFueE*e4 l.acFS 5.0759 8.0059 B.teFG l

l l

l TABIE 4 e

, -. - -, - -. - - - - - ~., - _. - ~ _ _ -... -.,.. - - - -. -, - -... - - - --- -. - - - -. -, -. - _. -. - -. -. -. -,...

QUAD CITIES UNIT I nass eter Lt m urs vs fine g33g4ggp untr, cucuutto tsu ute 4w 1

8 e

g ps ase w

W 2

+ tra uti.

.L

camms g"

A

. M.

t 3

i' s __

5.

f.

h

(..

(..

Test owstafl..ee peaces) i l'

l l-l l

l i

FIGURE 7 -

[L 1

.c QUAD CITIES' UNIT 1 on..a. runsaarm vs nw -

,(.

=

4I

'S o

54 e

h 5

m b

i t

r...

t

c.,,,9.,,,g gg, s..

I i

i I

FIGURE 8...

T -

QUAD 'lTIES UNIT I C

Term. corratWnsar rarssung vs inne--

4-c I

r.

8 Y

3m.h'

?

f<

t

.se e.m e:m s '. as s'.ee s'.se

es
se f.as i.es

(.se 4m f.m tas TEST DURATI0ll 980U458 O

e 9

O e

FIGURE 9.

-~

,we

,--,-,n.-

,.-----v,

--,-a-n+-----

l l

i QUAD CITIES UNIT I i

CofffAlserEWF DAT AIA Pftt:$Ultf VS tif f 4e-i

.JI

!!!i

3. -

NM

=

I*

&6 t

8 3;.

3;.

c.

.. =

c=

cm wr masses oenn FIGURE 10.

I SECTION E - TEST CALCULATIONS i

Calculations for the IPCLRT using the ANSI method are found in Quad-Cities procedures QTS 150-T3. A reproduction of these procedures can be found in Appendix C. -The origins of these calculations are the N274 draft for ANSI /ANS 56.8.

These calculations are consistent with the standard as it was published in 1981.

SECTION-F-- TYPE A TEST RESULTS F.1-Measured Leak Rate Test Results d

Based on the data collected over 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> on approximately 10 minute time-intervals the. statistically averaged leak rate was found to be 0.230 wt %/ day with an upper confidenca limit of 0.232 wt %/ day.

F.2 Induced Leakage Test Results A leak rate of 6.65 SCFM (0.815 wt %/ day) was induced from the containment for this phase of the test. The required accuracy for the test is computed below.

Statistically Averaged Leak Rate 0.230-0.230 (Measured Leak-Rate Phase)

Induced Leak (6.65 SCFM) 0.815 0.815 Allowed Error Band (25% L )-

+ 0.250

- 0.250 1.295 0.795 Statistically Averaged Leak Rate (Induced Leakage Phase) 1.1078 wt %/ day Therefore, the required test accuracy was satisfied.

l I

F.3 Leak Rate Compensation For Non-Vented Penetrations The IPCLRT was performed.with the following penetrations not drained and vented as required by 10 CFR $0, Appendix J.

The "as left" leak rates for each of these penetrations, as determined by Type C testing, is also listed:

THROUGH LEAKAGE SYSTEM.

STATUS FROM TYPE B AND C TESTING SCFH WT %/ DAY

'A! Rx Feedwater Isolated, Filled 3.60

0. 00*/4 -

'B' Rx Feedwat'er Isolated, Filled 0.00 0.0000 RHR System Operating for SDC 12.85 0.0267 Rx Water CU Isolated, Filled 2.50 0.0051 ACAD/ CAMP Isolatedz 1 75-0.0036 Primary Sample Isolated-0.00 0.0000 Hydrogen Monitor Isolated-1.70 0.0035 Panel HPCI Steam Isolated 4.00 0.0082 (Supp & Ex's)

RCIC Steam Isolated 7.20 0.01470 (Supp & Ex's)

All' Electrical Test' Bellows Pressurized 0.80 0.0033 Penetrations.

with Dry N '

2 34.40 0.0725 This correction yields the following adjusted leak rates:

-Statistically Averaged Leak Rate (ANSI) 0.303 wt %/ day Upper Confidence Limit (ANSI) 0.305 wt %/ day F.4 Pre-Operational Results vs. Test ~Results The result of the pre-operational IPCLRT test done by General Electric between April 20 and April 21, 1971 was found to be 0.1112 weight %/ day.

Previous IPCLRT test reports for Unit One show that the uncertainty of the pre-operational test was large compared to more recent tests. The instrumentation and statistical analysis of the pre-operational test was relatively inexact by present-standards.

The leak-rate of. 230 wt_%/ day found in this test compares

- favorably with recent' tests and shows that there-is no significant deterioration of the, containment.

I I

l I

I

(

! l 3

+ v a

v

---.g

-,,-,----.s--~,-

-.m,e-

--g.-,---

- ~,,,

c

- ---,.. - e v

--~---

F.5' As Found IPCLRT Res' ult' The following table summarizes the results of all Type B and C as well as the IPCLRT results to arrive at an "as found" Type A test result.

Since the total is more than 0.750 wt %/ day (75 L, the present schedule of performing Type A tests every refuel outage must b,) maintained.

e Documentation for the values listed below can be found in R0 84-002, Rev. 1, Docket No. 50-254, DPR-29.

SUMMARY

OF ALL CONTAINMENT LEAK RATE TESTING DURING UNIT TWO REFUEL OUTAGE FALL, 1983 AS FOUND (SCFH)

AS LEFT (SCFH)

LLRT (TOTAL WORST CASE LLRT (TOTAL WORST CASE MEASURED)

THROUGH LEAKAGE M".ASURED)

THROUGH LEAKAGE (1) MSIV's @ 25 PSIG 1025.70 70.20 31.40 6.90 (2) MSIV's converted 1620.61 110.92 49.61 10.90 to 48 PSIG*

(?) All Type C Tests 1214.40**

193.15**~

173.00 75.75 (Except MSIV's)

(4) All Type B Tests 284.20 142.20 30.70 15.35 TOTAL ~(2 + 3 + 4) 3119.21**

446.17**

253.31 102.00 (1) Type A Test Integrated Leak Rate Test)

= 0.230 wt %/ day (2) _ Upper Confidence Limit of Type A Test Result

= 0.232 wt %/ day (3) Correction for Unvented Volumes During Type A Test

= 0.073 wt %/ day (4). Correc6'.on for Repairs 0*I Prior to Type A Test **

= 0.703 wt %/ day

(

)

489.

(As Found - As Left)

(5) Correction for Change

= 0.065'wt %/ day in. Sump Levela +

TOTAL (2 + 3 + 4 + 5) 1.073 wt %/ day (As Found ILRT Result)

  • Leak Rate at 25 PSIG converts to Leak Rate at 48 PSIG using conversion ratio of 1.58.

REFERENCE ORNL - NISC - 5, Oak Ridge National Laboratory, Aug. 1965, page 10.55.

    • -Total.does not include-four valves:

three-feedwater check valves and a HPCI steam > exhaust check valve.

+ See Appendix B for calculations..

APPENDIX'A TYPE B AND C TESTS Presented herein'are the results of local leak rate tests conducted on all penetrations, double gasketed seals, and isolation valves since the previous IPCLRT in December, 1982. All valves with leakage in excess of the individual valve leakage limit were restored to an acceptable leak tightness prior to the resumption of power operation. Total leakage for double gasketed seals and total leakage for all other penetrations.and isolation. valves following repairs satisfied the Technical: Specification limits. These,results are listed:.in TablevA-1.

r b

TABLE'A TYPE B AND C TEST RESULTS

. VALVE (S) OR MEASURED LEAK RATE (SCFH)

+

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0'203-1A Main Steam Line

        • 4.60 03-06-84 4.60 03-06-84 Isolation Valves ***

AO.-203-2A;

'MSIV

        • 4.60; 03-06-84 4.60 03-06-84

-A0'203-1B MSIV 34.50 03-16-84 9.50 07-20-84 A0'203-2B=

MSIV" 70.30 03-16-84~

2.30-08-04-84 A0 203-1C MSIV 31.70 03 16-84 2.30 07-20-84 A0 203-2C-MSIV 416.70 03-16-84 11.50 08-05-84 AO:203-1D MSIV 1.70 03-16-84 1.20 07-18-84 A0;203-2Da MSIV 466.20 03-16 0.00 07-07-84

~MO 220-1 Main:Stean Line Drains-

+7.53?

03-12-83

+7.53:

03-12-83 MO 220 118.40 09-17-83 21.06 09-20-83 338.20' 03-07-84 0.10 07-14-84 A0 220-44 Primary Sample 0.00 05-16 t 0.00 05-16-84 A0 220-45 CV 220-58A Feedwater Inlet UD*

04-24-84 3.60 05-21-84

Loop "A"' Inboard CV 220-62A Feedwater Inlet 33.40-05-22-84 Loop "A" Outboard

-CV 220-58B Feedwater Inlet UD*

03-26-84 0.00 06-21-84 Loop "B" Inboard CV 220-62B' Feedwater-Inlet-563.80 03-26-84 0.00-05-24-84 Loop "B'! Outboard -

  • Unable to determine the leakage due.to'an inability to pressurize the. volume with compressed: air..
    • Valve was disassembled before leak rate test was performed.
      • Test Pressure for MSIV's is 25 PSIG. Where the A and B valves in a steam line have identical leakages, the valves were tested as a single volume. The value is'a maximum leak rate through the valve assuming that the other valve leaked 0.0 SCFH.
        • ' Values are;the; combined-inboard:and outboard leakage values.

l-

+ 220-1 valve only following repairs.

i--

4 TABLE A-1 TYPE B AND C TEST RESULTS

~ VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE MO 1001-20 RHRS to Radwaste

  • 5.20/5.20 03-07-84 5.20/5.20 03-07-84 MO 1001-21 MO 1001-23A RHRSsContainment Spray -

7.00 03-08-84 7.00.

03-08-84 50 1001-26A System I-MO 1001-29A.RHRS Return Loop "A" 0.00 03-08-84

    • 6.00 08-16-84 MO 1001-34A RHRS Suppression Chamber 3.00' 03-08-84 3.00 03-08-84 MO 1001-36A Spray - System I MO 1001-37A MO 1001-23B RHRS Containment Spray -

1.50 03-09-84 1.50 03-09-84

- MO 1001-26B System II MO 1001-29B RHRS Return Loop "B" 0.00' 03-09-84

    • 4.60 08-11-84 NO 1001-34B RHRS Suppression MO 1001-36B.

Chamber Spray 1.40 03-09-84 0.70 06-15-84 MO 1001-37B System II MO 1001-47 RHRS Shutdown 3.10 05-15-84 3.10 05-15-84 MO 1001-50 Cooling Suction MO 1001-60 RHRS Head Spray 0.00 03-09-84 0.40 07-13-84 MO 1001-63

- MO 1201-2 Clean-Up System 5.00 05-16-84 5.00 05-16-84 MO 1201-5 Suction-MO 1301-16 RCIC Steam Supply 0.10 03-06-84 0.40 07-20-84 MO 1301-17

- CV 1301-40 RCIC Condensate Drain 3.00 03-08-84 3.00 03-08-84 CV 1301 -

RCIC Turbine Exhaust 4.00 03-08-84 4.00 03-08-84 A0 1601-21 Drywell and Suppression 2.10 03-23-84 2.10 03-23-84 Att 1601-22 Chamber Purge AC.1601-55 M 1601-56 A0 1601-20A Suppression Chamber 0.00 03-13-84 0.00 03-13-84 CV 1601-31A Vent Lines #1

  • Valves tested separately.

Individual valve leak rates shown.

    • ' Performed following repairs after ILRT. -.

TABLE A TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0 1601-20B Suppression Chamber 10.00 03-13-84 10.00 03-13-84 CV 1601-31B Vent Lines #2 AO 1601-57 Drywell and. Suppression-1.60 03-26-84 1.80 03-26-84 AO'1601-58 Chamber-Supply Air A0 1601 Purge AO'1601-23 Drywell and Suppression 81.00 03-23-84 27.00 03-27-84 A0 1601-24 Chamber Exhaust A0 1601-60

'i A0 1601-61 E

AO 1601 A0 1601-63 A0 2001-3 Drywell Floor Drain 0.00 03-17-83 0.00 03-17-83 A0 2001-4 Sump Discharge-75.60 04-02-84 0.30 07-20-84 AO-2001-15; Drywell Equipment 16.20 04-10-84 3.20 07-21-84 A0 2001 Drain Sump Discharge NO 2301-4 RPCI Steam Supply 1.20 03-07-84 0.00 07-21-84 MO 2301-5 CV 2301-34 HPCI Condensate Drain.

0.00 03-08-84 0.00-03-08-84 CV 2301-45 HPCI Steam Exhaust UD*

03-12-84 4.00 07-13-84 A0 4720-Drywell Pneumatic 1.90 03-16-84 1.90 03-16-84 h

Suction L

A0 4721 Drywell Pneumatic 1.70 03-16-84' 1.70 03-16-84 Suction l

l A0 8801A 0xygen Analyzer Suction 0.00 03-14-84 0.00 03-14-84 I

AO-8802A 0xygen Analyzer Suction 0.00 03-14-84 0.00 03-14-84 i

r

~AO 8801B 0xygen Analyzer Suction 0.60 03-14-84 0.60 03-14-84 A0 8802B.

_0xygen Analyzer Suction 0.70 03-14-84 0.70 03-14-84 l

L

  • Unable to determine the leakage due to an inability to pressurize the volume with compressed air.

l L

l

TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0 8801C 0xygen Analyzer Suction 2.50 03-14-84 2.50 03-14 A0-8802C 0xygen Analyzer. Suction '

2.60 03-14-84 2.60 03-14-84

.A0 8801D 0xygen Analyzer Suction 1.50 03-14-84 1.50 03-14-84.

'A0 8802D 0xygen. Analyzer Suction 0.60 03-14-84 0.60 03-14-84

.0 8803 0xygen Analyzer Return 15.00 03-15-84 4.00 06-27-84 A

A0 8804_

Oxygen Analyzer Return 4.90 03-15-84 3.80 06-27-84 733-1 Automatic TIP Ball Valve

    • 4.50 03-14-83
    • 0.40 12-23-83
    • 0.50 01-04-84 0.00 05-11-84 0.00 05-11-84 733-2 Automatic TIP Ball Valve 0.00 05-11-84 0.00 05-11-84 733-3 Automatic TIP Ball Valve 0.90 05-08-84 0.50 06-12-84 733-4 Automatic TIP-Ball Valve 0.00 05-08-84 0.70 06-12-84 733-5 Automatic TIP Ball Valve 0.30 05-08-84 0.00 06-12-84 700-743.

TIP Purge Check Valve 4.20 05-08-84 4.20 05-08-84 1X) 2499-1A CAM - Drywell 0.00 03-13-84 0.00 03-13-84 SO 2499-2A L

SO 2499-3A CAM - Suppression Chamber *0.00/17.00 03-13-84 0.00 07-17-84 l

SO 2499-4A l[

SO 2499-1B-CAM - Drywell 0.00 03-13-84 0.00 03-13-84 SO 2499-2B L

SO 2499-3B CAM - Suppression Chamber *0.00/18.50 03-13-84 0.00 07-17-84 SO 2499-4B

  • Valves tested separately.

Individual valve leak rates shown.

    • Valves tested following repairs.

r l

l i

_~ _ -, - -

TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE A0 2599-2A ACAD to Drywell 0.30 03-13-84 0.30 03-13-84 CV.2599-23A A0'2599-3A ACAD to Suppression

  • 1.30/0.00 03-15-84 1.30/0.00 03-15-84 CV 2599-24A Chamber A0 2599-2B

-ACAD to Drywell

  • 2.20/0.10 03-13-84 2.20/0.10 03-13-84 CV 2599-23B A0 2599-3B ACAD to Suppression
  • 5.00/0.00 03-15-84 5.00/0.00 03-15-84 CV 2599-24B Chamber A0 2599-4A ACAD Drywell Bleed to
  • 0.60/0.00 03-16-84 0.60/0.00 03-16-84 FCV 2599-5A SBGTS A0 2599-4B ACAD Drywell
  • 2.10/1.50 03-16-84 2.10/1.50 03-16-84 FCV 2599-5B Bleed to SBGTS X-1 Drywell Equipment Hatch 0.00 03-14-83 0.00 03-14-83 0.00 03-06-84 0.00 08-07-84 X-2 Drywell Personnel
    • 3.43 04-02-84 3.43 04-02-84 Airlock X-4.

Drywell Head Access 105.00 06-11-84 0.00 06-18-84 Hatch X-6 CRD Removal Hatch 0.00 04-23-84 0.00 08-07-84 X-35A TIP Flux Mon. Flange 0.00 05-08-84 0.00 05-08-84 X-35B TIP Flux Hon. Flange 0.00 05-08-84 0.00 05-08-84

  • Valves tested separately.

Individual valve leak rates shown.

    • Tested at 10 PSIG as allowed in Technical Specifications.

TABLE'A-1.

TYPE B'AND C TEST RESULTS

- VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE

- X-35C' TIP Flux Mon. Flange 0.00 05-08-84 0.00 05-08-84 X-35D:

TIP~ Flux, Mon. Flange 0.00 05-08-84 0.00 05-08-84 X-35E:

TIP Flux Mon. Flange 0.00 05-08-84 0.00 05-08-84 X-35F-TIP Flux Mon. Flange 0.00 05-08-84 0.00 05-08-84

-X-35G TIP Flux Mon. Flange 0.00 05-08-84 0.00 05-08-84 X-200A-

-Suppression Chamber 0.00 03-06-84 0.00 07-23-84 Access Hatch-X-200B Suppression Chamber

  • 0.00 03-14-83 Access Hatch
  • 0.00 05-21-83
  • 0.00 09-17-83 0.00 03-06-84 0.00 08-17-84 Drywell Drywell Head 30.00 03-07-84 0.00 07-23-84

- Head--

Flange SL-1 Shear Lug Inspection 83.30 05-30-84 0.00 07-14-84 Hatches SL-2 Shear Lug Inspection 2.70 05-11-84 0.00 07-14-84 Hatch SL-3 Shear Lug Inspection 5.00 05-11-84 0.00 07-14-84

-Hatch-SL Shear Lug Inspection 0.00 05-11-84 0.00 07-14-84 Hatch

'SL-5 Shear Lug Inspection 0.50 05-11-84 0.00-07-14-84 Hatch SL-6L Shear Lug Inspection-0.00 05-11-84 0.00 07-14-84 Hatch SL-7 Shear Lug Inspection 0.00 05-11-84 0.00 07-14-84 Hatch w

  • LLRT. performed after closure following entry into suppression chamber.

. ~.

. ~..

TABLE A-1~

TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME-AS FOUND DATE AS LEFT DATE SL-8 Shear Lug Inspection 6.00 05-11-84 0.00 07-11-84 Hatch X-7A Primary Steam 0.00-03-14-84 0.00 03-14-84 X-7B Primary Steam 1.20 03-14-84 1.20 03-14-84 X-7C Primary Steam 0.00 03-14-84 0.00 03-14-84 X-7D Primary Steam 0.00 03-14-84 0.00 03-14-84 4

X-8 Primary Steam 0.00 03-14-84 0.00 03-14-84 Drain Line X-9A Reactor Feedwater 0.00 03-14-84 0.00 03-14-84 X-9B

-Reactor Feedwater 0.00 03-14-84 0.00 03-14-84 X-10 Steam to RCIC 0.10 03-14-84 0.10 03-14-84

'X-11 HPCI to Steam Supply 0.30 03-14-84 0.30 03-14-84 X-12 RHRS Supply 6.00 03-14-84 6.00 03-14-84 X-13A RHRS Return 0.10 03-14-84 0.10 03-14-84 X-13B RHRS Return 0.00 03-14-84 0.00 03-14-84 l

X-14 Cleanup Supply 0.00 03-14-84 0.00 03-14-84 X-23 Cooling Water 1.80 03-14-84 1.80 03-14-84 X-24 Cooling Water Return 0.00 03-14-84 0.00 03-14-84

. ~

TABLE A-1 TYPE B'AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH)

' PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE X-25

' Vent From Drywell 2.70 03-14-84 2.70 03-14-84 X-26 Vent to.Drywell.

-0.20 03-14-84 0.20 03-14-84 X CRD Hydraulic 0.00 03-14-84 0.00 03-14-84 System Return X-47 Standby: Liquid 0.00 03-14-84 0.00' 03-14-84 Control X-17

Reactor Vessel 0.00 03-14-84 0.00 03-14-84 Head Spray X-16A-

. Core Spray Inlet 21.00 03-14-84 X-16B=

Core Spray-Inlet 8.00 03-14 8.00 03-14-84 X-100A CRD Position 0.30 05-21-84 0.30 05-21-84 Indication X-100B Power 0.00 05-21-84 0.00 05-21-84 X-10CC.

Neutroc Monitor 0.00 18-84 0.00 05-18-84 X-100D Neutron Monitor 0.00 05-18-84 0.00 05-18-84 X-100E Neutron Monitor 0.00 05-18-84 0.00 05-18-84 X-100F CRD Position Indication 0.00 05-18-84 0.00 05-18-84' X-100G Power 0.00 05-18-84 0.00 05-18-84 X-101A-CRD Position Indication 0.30 04-17-84 0.30 04-17-84

.X-101B;

.CRD. Position Indication 0.30 04-17-84

0. 30.-

04-17.

    • Two ply bellows replaced with single bellows per approved modification.

Second bellows will be added later to allow LLRT. Modification tested as part'of the Type A test..-

- ~

TABLE A-1 TYPE B AND C TEST RESULTS VALVE (S) OR MEASURED LEAK RATE (SCFH)

PENETRATION TEST VOLUME AS FOUND DATE AS LEFT DATE X-101D Recire Pump Power 0.00 05-18-84 0.00 05-18-84 X-102A-

_Recirc' Pump Power-0.30 04-17-84 0.30 04-17-84

.X-103.

Thermocouples-0.00 05-18 0.00 05-18-84 X-104B CRD Position Indication 0.00 05-21-84 0.00 05-21-84 X-104C Recire Pump Power 0.00 04-17-84 0.00 04-17-84 X-104F Power 0.00 05-18-84 0.00 05-18-84

'X-105A Power 0.00 05-21-84 0.00 05-21-84 X-105B Power Drive Modules 0.00 05-18-84 0.00 05-18-84 X-105C CRD Position Indication 0.00 05-18-84 0.00 05-18-84 X-105D Recire Pump Power 0.40 05-18-84 0.40-05-18-84 X-107A Neutron Monitor 0.00 05-18-84 0.00 05-18-84 X-227A ACAD/ CAM 0.00 06-15-84 0.00 06-15-84 X-227B ACAD/ CAM 0.00 06-15-84 0.00 06-15-84 1-2252-81A/81B H /0 Analyzer Panel 0.80/0.90 07-31-84 0.80/0.90 07-31-84 l

2 2 LT 1-1641-5A/5B Torus Wide Range 0.00/0.00 06-11-84 0.00/0.00 06-11-84 Level Inst. Lines

= _ _ -,. -.,

?

-APPENDIX'B' LEAK RATE CORRECTION DUE TO SUMP CHANGES To perform a leak rate calculation with a changing containment free air space, using the Gogol/Reytblatt method, the dry air mass for each containment subvolume is calculated using the following equation:

Wj.= 2.6995 x.Pg 1

xV (T.+ 459.69) g where P = dry air pressure in subvolume and i

.P

= containment. total pressure minus subvolume's vapor pressure; g

t Vf = free air space in the i subvolume; th Tg = average temperature in the i subvolume.

The. total containment dry air mass is given by the sum of the dry air masses for all. the subvolumes.

11 WD=I Wg i=1 The computed leak. rate will be the total time leak rate and is given by:

D L = - - x 100 x ( W - W*

t 24

)

H 0

9 where W dry air mass of containment at the start of the test;

=

WD=

dry air mass of etntainment at some time t; duration of test from start to time t in hours; H =

~

-L

=

total time leak rate at time t.

-In order to be most conservative, the calculations here will assume that the entire containment volume change due to sump level changes occurred during the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> that the test was conducted. The. sump conditions are given below:

PRE-TEST LEVELS:

(0030 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> on 7-24-84)

DRYWELL EQUIPMENT DRAIN Sl'1P = 19-3/4" (Level)

DRYWELL FLOOR DRAIN SUMP = 18-1/2" (Level)

POST-TEST LEVEL:

(0015 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> on 7-27-84)

DWEDS ='18" with 480 gallons pumped.

DWFDS = 17-1/2" with 270 gallons pumped.

The ' sumps;were pumped after the test was 'over but prior-to measuring' the' sump levels. Therefore, the containment free air space at the end of the test is reduced by che volume of water pumped and corrected for the sump

. level change. The sumps are located in subvolume no. 8 so the expressions for that subvolume's free air space is given by:

o,

' t = 0 (start of test)

V

=324,900..- (19 5) x 1200 x.13368

-(18l50) x 1200 x.13368..(ft )

3 29 NOTE: Both sumps are 12'00 gallon capacity and 3.5 feet deep.

8 V

=-24,753.9 ft L

t = 24-(end of test) i 4

= 24,900 - (18* ) x 1200 x.13368 -

2 t-(f2$0)x1200x.13368-750x.13368-

,24 = 24,664.2 R3 The following table then lists the values for-V. at the start of the test and at the end of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

~

Y =24 SUBVOLUME.

t t

Y =o

-NO. (i) i-i

'1 10,066 10,066 l

2 9,165 9,165 l --

3 10,494 10,494 i

4 3,612 3,612 l ~-

5 23,039 23,039 l

6 30,808 30,808 7

26,373 26,373 8

24,754 24,664 9

8,901 8,901 L

10 134,808 134,808 f

11*

6,251 6,347 i

  • yh=6571.7-25(LEVEL - 35),.where LEVEL = Rx Water Level g

l --

Th'e.following-table gives all of the data necessary to compute the total containment dry air mass at the start of the test (14:29:53 on 7-25-84):

SUBVOLUME VAPOR DRY AIR SUBV0LUME DRY AIR NO.

PRESSURE PRESSURE TEMPERATURE MASS (i)

(PSI)

(PSIA)

(*F)

(lbs. M) 1

.64414 63.878.

108.271 3,056.14 2-

.36945 64.153 111.275 2,779.86 3'

.369/

64.153 109.513 3,192.82 4

.36945 64.153 107.525 1,102.81 5-

.55671 63.965 105.953 7,033.10

'6

.57860 63.943 104.760 9,421.38 7

.57860 63.943 101.874 8,106.56 8

.59198 63.930 96.424 7,681.92 9.

.59198 63.930 98.718 2,750.90 10

.73813 63.784 92.819 42,011.81 11 1.49549 63.027 115.586 1,848.77 11 W =IWg=

88,986.1 1

Repeating the above process for the final data set in the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test gives'the following results (14:35:47 on 7-26-84):

SUBVOLUME VAPOR DRY AIR SUBVOLUME DRY AIR NO.

PRESSURE PRESSURE TEMPERATURE MASS (i)

(PSI)

(PSIA)

(*F)

(lbs. M) 1

.59742 63.672 105.035 3,063.74 2

.55844 63.711 109.867 2,767.53 3

.55844 63.711 109.433 3,171.27 4

.55844 63.711 107.824 1,094.63 5

.50760 63.762 107.298 6,994.15 6

.54108 63.728 105.697 9,374.14 7

.54108 63.728 101.650 8,082.53 8-

.56536-63.704 95.201 7,643.74 9

.56536 63.704 97.622 2,746.57 10

.71751 63.552 91.888 41,929.65 11 1.64761 62.622 119.036 1,853.98 24 W

=

W = 88,721.9 1.

The difference betweeu.the computer program, using volume weighted vapor-pressure and a volume weighted containment temperature, and the Gogol/Reytblatt method with sump corrections is given below:

88799 7 - 88721 9 END OF TEST _% difference in dry air mass =

j8721.9 x 100%

= 0.088%

90 START 0F TEST % difference.in dry air mass =

8h861 x 100%

= 0.023%

.Using the above data to get a total time leak rate gives the following:

24 _

24 x 100 x (88721.9 - 88,986.1) = 0.2969 wt %/ day g

24.004 88,986.1 r

. Comparing the above to the computer printout value of 0.2316 wt %/ day gives the sump correction:

L _. 4 =- 0.2969 wt %/ day 2

non-corrected value = 0.2316 wt %/ day difference = 0.0653 wt %/ day l

I.

L-L

~

J l

APPENDIXC SELECTED DATA SETS FOR TYPE A TEST Presented.herein are data sets at arbitrarily selected points during the

' Type A test.. Table B-1 has the data set at the start of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test.

Table B-2 has the data set after 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> of. testing. Table B-3 has the data set'at the conclusion of the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test.- Table B-4 has the data set at the start of the induced phase of the. test. Table B-5 has.the data set at the conclusion of'th: induced phase of'the test.

r t

4..

I SET e 1 AT 981.14:29:53 BASE DATA SET =

1 FC1 LED SENSORSs DEndCEL1.( 13 IN S.V.0 4 = 35.445 DES F HAS SEEN DELETED FROM SCAN & SET TO 0.8 PRESE M 1

= 64.521 PSIA PRESOUIE 2

= 64.523 PSIA 0.669 PSIA Dev AIR PfESSJIE

= 63.854 PSIA VAPOR PRES 5URE

=

VtL nE194TED' AVE DC = 88.619 DES F VtL nEIW4TED AVERAIK RTD

= 98.894 DES F RX IdATER LEVEL

= 47.834 INCHES DRV AIR MASS

=e.9006421875E+04 RTDS:

S. V. 8 1 ISS.101 108.440 S.V. 9 2 111.379 111.188 S. V. 9 3 109.241 109.786 S.V.#

4' 118.100 194.479 S. V. 6 5 106.249 105.572 tes.836 S.V.9 6

144.965 104.884 104.883 194.387 SoV. e 7 181.176 108.534 101.229 ISE.564 S.V. 8 8 96.956 96.543 95.706 96.493 9.V. e 9 98.718 5.V.e it 98.615 93.986 -

98.173 St.889 92.821 93.349 S.V. # 11 115.586 115.506 DENGLLS:

'S.V.#

1 87.444 S.V. # 4 9.See 85.577 S.V. 8 5 82.883

5. V. 8 7 83.029 88.133 S.V. e 9 85.016 84.371 S.v.e le 1e.185 91.379 l

NelDh5_^"# n 1

TABLE J-1 0

7.--

4 I

l l

't o

s l.

)

t

/

r i

s a

/

\\

t i

QUA0 CITIES UNIT 1 SEs24:49 THU, 26 JUL 1984

,\\

?'

SET # 70 AT 000 02:17:50 BASE DATA SE7's 1

/

7

\\

J a

i.

SIS V(L 8

. AVG TEPSD 4 AVG DfkCELL KMB VAP (DES F)

(DES F1 (PSIA 3 1

106.904 86.162 9.61844 6 -

2 119.447 84.167 9.S8829 f

3 189.547 84.167 0.58029

[

4 187.649 84.167 8.50000 5

106.683 81.356 0.52984 t

i E

105.184 82.925 9.55746 4

l 7

141.717 82.925 0.55746 4

95.624 83.709 0.57173 9

98.091 83.7e9 e.57173 j

10 32.457 91.336 9.72795 g-11 114.361 118.J61 1.61684

_i g._.._

RDtLED MISDAS -

I~~

DENCEL1.( 11 If4 S.V.9 4 = 54.999 DIES F HAS WEEN DELETED FRCpt SCAN 8 KT TO 0.0 s

Am i

= 64.395 PSIA PMSRJE 2 7

64.398 PSIR

=

0.652 PSIA '

DAY AIR PWESENE

= 63.744 PEIA VAPOR PMSOURE

=

i

' ~ t VEL MISITED AVE DC = 87.838 DES F VER. WISfTED AVERAW RTD

= 98.718 DES F-

/,

RI WPTER LEVE1.

= 46.147 INDES DRV AIR IWIM

=0.8094818580E+44 L

l NTDS:

t l

S. V. 0 1 ISS.759 107.049 S. V. 8 e tie.EPS 110.264 S. V. 9 3 199.SER 110.633 S. V. 9 4 199.685 105.614 S. V. # 1 106.873 106.367 186.811 S.V. 6 6 18G. =ei6 105.231 105.248 104.885 S.V. # ' 7 108.399 tet.305 101.See ist.364 i

S. V. # 0 96.115 95.732 94.867

,95.744 S.V. e 1 18.991 S.V.4 10 98.338 98.641 91.847 92.558 92.444 92.922 S.V.5 11, 118.361 319.361 DENCELLS:.

F s'

g.

I 3

r. -

'i g

i S. V. 0 1 86.162 i(

i S. V. t 4 9.See E4.167 S. V. 4 5 41.356 S.V. e c 7 81.964 83.906 s

i S.V. 9 9 83.942 83.477 S.V.9.19-

,11.fel St.852 f

t, l '

L V

t 1

\\

i h

g 1

TABLE C-2 i '

.. =

L - - -

QUAD CITIES UNIT 1 14:33:47 THU, 26 JUL 1984 SET #139 AT 002 14:34:05 BASE DATA SET =

1

,s' SUS V(L #

AVG TEW AVG DEWCELL INGVAp (DEG F1 (DEG F)

(PSIA)

.j 1

105.035 85IO79 0.59742 i

+

2 109.867 82.979 0.55844 3

109.433 82.979 9.55844 4

107.824 82.979 9.55844 5

107.290 80.See S.50760 105.697 82.003 8.54100

+

's 101.650 82.003 8.54100 8

95.201 83.362 9.56536 i

I 9

97.622 0.7. MR 0.56536 le St.800-90.073 8.71751 11 119.036 119.036 ' /

1.64761 s

s e

p\\

/PCILED M WCMSs

./

i t

nurset( 11 !?! f.V.0 4 = 54.685 DES F HAS BEEN DELETTOgd iCAN 8 SET TO 0.0

+

PIE 5ENE 1

= 64.273' ASIA PRESEL E

= G4.266 PSIA DeY' AIR PRESSufE

= 63.631 P9:A VAPOR D + ANE

= 0.639 PSIA 90.429 DES F

[

E WE! SITE?l AVE DC = 47.176'ide F VOL I419HTED AVEhAGE RTD

=

,~

,I RI WATER LEVEL

= 43.979 14l3ES DRY AIR 1998

\\ 'a3.8799718750E+04 4'

t g

RTO$f

= I SJ 1. e 1 104.908

,105.001 qg yi Sd1. 0 2 110.110 109.624 LV. e 3 s100.943.

109.924 106.310

\\

S.V. 0 4 109.330 S.V. 0. 5 107.426 IGL 993 107.476 S. V. 9 6 105.966 ISS.740 105.742 105.334 S.V. 0 7 100.700 1W.434 ISS.821 102.564 S. V. 9 8 95.618 95.534 94.423 95.239 S.v. e 9 97.62r 91.917 92.427 S.V.e le 91.714 92.007 91.233 91.947 119.036 l

S.V.e 11 119.036 DEWCELLS:

l

.'S.V.8 1

85.079; S.V. e 4 0.040.. J SW.979 l

S.V. 5 5 80.See ',, '

S.V. t 7 30.829.'

83.176 i

s.v.s10,;w%'t.

83.593 83.130

, S.V. 0 ; 9.

ld'rl3 l-

' ?1.40e,;

98.342 e

\\

a t

<q

. l<

s u

f f'

' f

\\,

1 i'

\\

  • t

\\

(,

)

I I

[,

'g 2

e

.-y t

+

f f

r TABLE C-3 l

',w-

- -- - ~

~

-..n-., -,,, - -,, ',,,.,

.e,..,_,,

.,,,n. -..,, - -,-.,-, -..,, - - - - - - -

a I.

GUA0 CITIES UNIT 1 15:48:19 THU. 26 JUL 1984 SET #146 AT 002 15:44s12 BASE DATA SET =

1 SUB VOL e AV9 TEMD AVG DOCELL AVG VAp (D65.Fl (DES F)

(PStA) 1 1M.950 85.079 0.59744-2 109.788 82.086 0.5%7(

3 109.444 82.886 8.55676 4

107.848 82.886 8.35676 5

107.335 79.981 0.50662 e.53969 6

185.722 81.924 7

101.657 81.924 e.53169 8

95.174 83.362 8.36536 9

97.592 83.362 0.56336 10 '

91.836 90.812 0.71614

. 11 119.440 11 % 448 1.66663 F^! LED EN00RS:

DEWCELLO1) IN S.V.e 4 =- 54.646; DES F Mts SEEN DELETED FNOM SCAN 8 SET TD e.e -

P M O RI E 1-

= 64.240 PSIA PMSSURE 2'

= 64.233 PSIA 0.628 PSIA DRY AIR PRESRIIE

= 63.599 PSIA VAPOR PRES 8UIE

=

VOL lEISITED AWE DC = 87.129 DES F VR,WE!EstTED AVERAGE RTD

= 98.411 DES F RI WRTER LEVE.

= 43.684 IM:HES DRY AIR MASS

=8.8719750ceeE+44 f RTDSs.

b

' S. V. 9 1 104.809 185.el?.

l.

1 S.V. # 2 119 031 109.544 S. V. # 3 188.913 e

58 % 895 S.V. 9 - 4 109.338 186.359 L

S.V.8 5

187.456 107.042 1e7.Se6 8.V. e 6 1e5.906 I85.778 105.792 105.334 S.V. e 7 180.700 102.415 100.821 102.614 S. V. # 8 95.600

.95.514 94.373 95.210 S.V. e 9 17.592 S,V.e le 91.645 9t.e48 91.204 91.847 91.847 92.387-

' L V. e 11 119.448 119.448 DEWCELLS -

S.V. e 3 1" 81 079-S.V. e, 4 8.ese 82.886 S.V. e : 5 71.901 L V. e 7 80.698 83.150 SW. 8 9 83.393 83.139

-, S,v. e, le -

91.344 9e.281 6

e TARIJt C-4 ~ _...

t QUA0 CITIES UNI 7 I

.19:46:33 THU, 23 jut. 1984 SET c170 AT 092 s's44:39 ESSE CATA SET = 146 SW VCt. 8 AVG TEMP AVG DLeaCELt.

AV6 VAP (DES F1 (DEG F1 (PSIA) 1 105.e50 84.815-e.53239 2

109.743 82.791 8.55344 I

3 199.379 82.70t 4.55344 4

137.133 82.791 0,55344 5

107.491 79.746 9.54275 6

I95.404 81.736 8.53642 7

101.642 81.736 0.53642 4

95.125 83.375 0.56561 9

97.573 83.375 0.56561 10 91.458 90.734 8.71439 11 121.023 121.(23 1.74111 FI! LED IBADRS:

DEWCELLE D IN S.V.s' 4 = 54.605 DES F HAS DEEN DELETED FADM SQue 8 SE7 TO S.8 PESEJRE 1

= 64.126 PSIA PHESSURE 2

= 64.115 PSIA DRY AIR PRESEUE

= 43.444 PSIA VePOR PRESSURE 8.636 PSIA

=

vfl WEIGHTED iWE DC = 47.049 DES F VOL WEIGHTED AVERAGE RTD

= 15.443 DES F RX WATER LEVEL

= 42.424 INDES DRY AIR MASS

=0.8595562500E+44 RTDSs S. V. 8 1 194.See 105.til

5. V. D 2'

109.SGI 199.525 S.V. s 3 tes.913 109.445 l

. S. V. 0 4 109.200 186.578 S. V. 0 5 107.687 107.191 107.675 l

S. V. 0 6 106.116 195.877 195.890 183.652

'S.V.#

7 100.738 let.345 fee.771 102.644 S. V. # 8 95.531 95.455 94.344 95.170 S V. # 9 97.573 S,V.e 10 91.704 98.867 91.243 91.968 91.827 92.338 5.V.0 11 121.023 121.823 l

DCLWTI: E3 S.V 0.1 84.415

' S.V. 8 - 4 e.000 82.791 S. V. 5 - -

79.746 S. V, O 7-SS.475 82.996 S.V. 8 - 9 83.621 83.13e S.V.O 18 St. 275 98.193 TABLE C-5

\\

~54-

APPENDIX'D COMPUTATIONAL PROCEDURE The procedure for computing the containment parameters, leak rates, and statistical' confidence limits is given by. Quad-Cities procedure QTS 150-T3, Revision 7.

A copy of that procedure is presented here.

4 t.

Y t

L 4

e 55-

m.,

1 CALCULATIONS PERFORMED FOR'IPCLRT DATA-Data' collected from pressure sensors, dew cells and RTD's located in the containment are processed using the following calculations.

If the test is concluded with a test period of < 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, additional calculations given in QTS 150-T9 will be required.

3A.

Average Subvolume Temperature and Dewpoint.

T.=.

I(all RTD's in the jth subvolume)

F (1)

'3 Number of RTD's in jth subvolume D.P.. = I(all dew cells in jth subvolume)

F (2) 3 Number of dew. cells in jth subvolume

-where T3 = average temperature of the jth subvolume D.P.. = sverage dewpoint of the jth subvolume.

J

~B.

Average Primary Containment Temperature and Dewpoint.

'T'=.

{0E.(VF.)*-(T) F (3)

.. -l J

j (VF)) * (D.Pq)

F.

(4)

D.P..=

where T = average. containment temperature

~ D.P. = average cont.ainment dewpoint VF. = volume fraction of the jth subvolume J

.NVOL = number-of subvolumes I

If T. is undefined then J

for 1 5 j $ (NVOL.- 2)

Ty=Tpy 3 = T,1 for j = F 70L - 1 T

3

. y = estimate for'j = NVOL-

'T If D.P.) is undefined I

D.P.) = D.P. py for 1 i j $ (NVOL - 2)

.D.P.. = D.P.j-1 for j = NVOL ' - 1 o

J D.P.) = estimate for j = NVOL l t-w,

_C;. Calculation of Dry Air-. Pressure.

D.P.( K) = 273.16 + D.P.( F) - 32 1.8 X = 647.27 - D.P.( K) 3 EXPON = X * (Y_+ Z

  • X + C
  • X )

(D.P.("K))*(1 + D

  • X)

P = (218.167) * (14.696)

(

)

e(EXPON

  • In(10))

P = I(all absolute pressure gauges)

~

(5)

Number of absolute pressure gauges v (Psia) where Y = 3.2437814

-3 Z = 5.86826 x 10

-8 C = 1.1702379 x 10

-3 D'= 2.1878462 x 10 P, = volume weighted containment vapor pressure P = containment dry air absolute pressure C, D, X, Y, Z, and EXPON are dewpoint to vapor pressure conversion constants and coefficients.

D.

Containment Dry Air Mass.

h W =-(28.97) * (144) * (P)'* (288737 - 25 * (LEVEL - 35))

(6) i 1545.33 * (T + 459.69) where W = containment dry air mass-i LEVEL = reactor water level l

289506 = primary containment volume NOTE This volume is the summation of the subvolumes

. calculated in QTS 150-T2. These subvolumes were calculated using QTS 150-T8.

Since the measured leak rate is a difference in air masses, this number is just as conservative as using the FSAR number.

- -.. - -... - -.. - ~ -.. -

. -. - ~. -

~

p E.

Measured Leak Rate.

L,(TOTAL) = (WBASE i) *

%/ DAY

~

t

  • W t

g BASE L,(POINT) = (Wg,j - W )

  • 2400 %/ DAY

(

g (tj - t,3)

  • W,7 g

g where WBASE = containment dry air mass at t =.0 tg = time from start of. test at ith data set tg.=timefromstartoftestat(1-1)thdataset W{=dryairmassatithdataset c

.Wg,3 = d_ry air mass at-(1-1)th data set L,(TOTAL)= measured leakage from the start of test to ith data set

'L,(POINT)= measured leakage between the last two data sets

.F.

Statistical Leak Rate and Confidence Limit.

LINEAR LEAST SQUARES FITTING THE IPCLRT DATA L

The-method of'"Least Squares" is a statistical procedure for finding the

.best. fitting regression line for a. set of measured data. The criterion

. for the best fitting line to a set of data points is that the sum of the squares of the deviations of the observed points from the line must be a l-minimum. When this criterion is met, a unique best fitting line is obtained l

based on all'of the data points in the ILRT. The value of the leak rate

[

~ based on the regression ~f: called the statistically average leak rate.

^

-Since it is assumed that the leak rate is constant during the testing period, a plot of the measured containment dry air mass versus time would

. ideally. yield a straight line with a negative slope-(assuming a non-zero K

H

~

leak rate). Obviously, sampling techniques and test conditions are not perfect and consequently the measured values will deviate from the ideal

. straight line: situation.

Based on this statistical process, the calculated leak rate is obtained from the equation:

D W = At

  • B where W = contained dry air mass at time.t

.. a

L

-Bi= calculatedidryzair' mass <at.timeet =40 A = calculated leak rate t = test duration B

Su crE - A The values for.the Least Squares fit constants A and B are given by:

A = {N

  • I(t ) * (W ) - It
  • IW } = I(t - E) * (W - Q) g g

g g

g g

{N

  • I(t ) ~ - (It ) }

I(t - E) g g

g

'B = IW - A

  • It{ = {I(t )
  • I(W )} - {I(t ) * (W )}

g g

g g

g N

N

  • I(t )2 _ (7g )2 g

where E = the average time for all data sets f.

9 ='the average air mass for all data sets L

The second formulas are used in the process computer program to reduce i

round-off-error.

l:

I By definition, leakage out of the containment is considered positive leakage; therefore, the statistically average leak rate is given by:

i e

L = (-A) * (2400)

(9) s

("* *.8

^

B STATISTICAL UNCERTAINTIES In order to calculate the 95% confidence limits of the statistically average 1eak rate, the standard deviation of the least squares slope and

~

l the student's TDistribution function are used-.as follows.

N

  • I(W )2, (79 )2 1

g 2\\

(N-2)

N

  • I(t )2 - (It )2) - A }

j a={

  • (

f t

l:

'When gerforming these calculations on the process computer, I(W )2 and g

l (IW ) become so large that they overflow. To avoid this problem AW is 1

1 jj substituted for W. AW.is the difference between W and W 1

1 g

BASE' l'

. u.-..

__._____..._.._,._.-_._._2..__.-_1.

T'e single sided T-Distribution.with 2 degrees of freedom is approximated

~ - -

by the following formula from NBS Handbook 91:

T.E. = 1.646698 + 1.455393, 1.975971

-(N-2)

(N-2)

The upper confidence limit (UCL) is given by

. UCL = L + o * (TE)

  • 2400- (weight %/ DAY).

(10) s.

B I

r r, -

..,., - -,.,.. -. ~.., -. -.......... -..

N APPENDIX ~E' ERROR ANALYSIS PROCEDURE The procedure for computing the system accuracy uncertainty. and the system

-repeatability uncertainty is given by Quad-Cities procedure QTS 150-T1,

-Revision 5. - A copy of that procedure is presented here.

a t

l-b e

f'

,S.

5.

- c.

v i

IPCLRT SAMPLE ERROR ANALYSIS' Uncertainty in the Measurement of Quad-Cities Primary Containment Leak Rates A.

INSTRUEENT ACCURACY ERROR ANALYSIS

-Per ANSI N45.4-1972, the computation of the leak rate is given by the equation:

L(%)=( H2i) (100) (

I ~

J )' = 400 (3,T2PI-)

TIP2 W1 H

.where L = primary containment leak rate

(%/ day)

H = time interval between' data sets #1 & #2 (hours)

W1 = weight of the contained dry air mass at test data set #1 (1bs)

W2 = weight.of the contained dry air mass

'at test data set #2 (lbs)

T1 = volume weighted primary containment temperature at test data set #1

(*R)

T2 = volume weighted primary containment temperature at test data set #2

("R)-

P1 =-dry air absolute pressure at test data set #1 (PSIA)

P2 =- dry air absolute pressure at test data set #2 (PSIA)

The standard variation on L due to the uncertainties in the measured variables is given by:

2400 BL BL BL BL 6(L) = H

[(PP1 8(P1))2 + (8P2 6(P2))2 + (8TI 8(T1))2 + (8T2 6(T2))2)h substituting l

H = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> t

BL = T1 P2 E1 BPI T2 P13 P1 y

1.

BL =- T1 E - 1_

8P2 T2 P1 P1 BL =- P2 E

1_

BT1 T2 P1 T2-E BL = T1 P2 E 1 l

BT2 T23P1 T2 l

assuming P1 = P2 E P and T1 E T2 E T I

I'

r-

where P = average absolute dry air pressure f = average volume weighted primary containment absolute temperature Therefore, 6(L) =- 100 [2( Of )' )2 + 2( 0( ) )2 ]~

P T

1. ' Calculation of'6(f)'

11 T=

I- (WJ) (Tave,j) j=1 where Wj = the volume weighting factors Tave,j = the average absolute temperature in the,lg sub-volume NJ Tave,j = I TM i=1 NJ where Ti,j = the absolute temperature of the ith RTD in the i Q subvolume NJ = the number of RTD's in the,jg subvolume Now, 6(f) is calculated from 11' 67' 6(f) = I BTave,j 6(Tave,j)

J=1 where 67 6Tave,j = Wj 6(Tave,j) = RTD accuracy (Nj)

Therefore, 11-6(f) =

1. (WJ) (RTD accuracy)

-j=1 (Nj)%

'2.

Calculation of 6(P) 6(P) = [6(P ) + 6(P )2)\\

T y

where P,= total absolute primary containment pressure P = partial pressure of water vapor in the primary contairment u.

La

7-..

"'C"'**Y

-substituting 6(P ) =--

7

(# of PPG's) 11' 6(P ) = I (VFj)

(deweell accuracy) y_

d*I (N))b where PPG = precision pressure gauge-NJ =~ number.-of.dewcells.in the M subvolume; Therefore,

+.(

(yyj) ( deweell accuracy )2 accuracy

(# of PPG's)b )2 6(P)'= [ (

(N))b J=1 3.

Instrument Specifications (SEE TABLE ONE) 4.

Calculation of 6(L), Accuracy Analysis Following are the designated volume fractions and sensor allocations:

Volume No. of Subvolume Fraction RTD's 1

0.03486 2

2 0.03174 2

3 0.03634 2

4 0.01251 2

5 0.07979 3

6 0.10670 4

7 0.09134 4

8 0.08624 4

9 0.03083 1

10 0.46689 6

11 0.02276 1 T.C.

p Volume No. of l-Subvolumes Fraction Deweells 1

0.03486 1

- 2,3,4 0.08059 1

5 0.07979 1

6,7 0.19804 2

8,9 0.11707 2

j.

.10 0.46689 2

l 11 0.02276 Sat.

r

. b

Assume the following values:

P = 63.0 PSIA T = 85*F =-544.7'R Dewpoint = 65*F Therefore,-

6(T) = (0.03486 x.0.50) + (0.03174 x 0.50) +-(0.03634 x 0.50)

~(2)b (2)b (2)b

+ (0.01251 x 0.50) + (0.07979 x 0.50) + (0.10670 x 0.50)

(2)b (3)b (4)b

+ (0.09134 x 0.50) + (0.08624 x 0.50) + (0.03083 x 0.50)

(4)b (4)b (1)b

+ (0.46689 x 0.50) + (0.02276 x

.0 (6)

(1) 6(T) = 0.2912 R 6(P ) * (2)\\ = 0.01061 PSIA T

For the subvolumes, other than the air space in the reactor, an acc.uracy of the dewcells of I'F at an average dewpoint.of 65'F corresponds to i.011 PSI in vapor pressure. For subvolume #11 at an average temperature of 140*F, an accuracy of i 2*F corresponds to i.150 PSI.

6(P ) = (0.03486 x 0.01 ) + (0.08059 x 0.011) + (0.07979 x 0.01,)

y (1)

(1)

(1)

+ (0.19804 x 0.011) + (0.11707 x 0.011) + (0.46689 x 0.011)

(2)b (2)b (2)b i

+ (0.02276 x 0.150)

(1)b

=.00038 +.00089 +.00088 +.00154 +.00091 +.00363 +.00341

6(P ) = 0.01164 PSI y

Therefore, 6(P) = [( 0.01061 )2 + ( 0.01164 )2 ]%

= 0.01575 PSI l

-. - - -. -.. ~ - - - -.. -,

b The accuracy uncertainty for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. test is1then found'to be 2

6(L), = 100 [2(

5 )2 + 2( j4

)

l

= 0.0835 weight %/ day 5.

Calculation of 6(L), Repeatability Analysis Using;the formulas developed previously, the repeatability error

-analysis is performed by substituting the instrument repeatability-errors for the instrument accuracy errors.

6(f) = (0.03486 x 0.10) + (0.03174 x 0.10) + (0.03634 x 0.10)

(2)b (2)b (2)b

-+ (0.01251 x 0.10) + (0.07979 x 0.10) + (0.10670 x 0.10)

(2)b (3)b (4)b

+ (0.09134 x 0.10) + (0.08624 x 0.10) + (0.03083 x 0.10)

(4)b (4)b (1)b

+-(0.46689'x 0.10) 0.10

-(6)b),.(0.02276 x (1)b 6(f) = 0.0514 R 6(P ) =

= 0.00071 PSIA T

(2)

For the subvolumes, other than the air space in the reactor, a repeatability uncertainty of the dewcells of 0.5'F at an average dewpoint of 65'F corresponds to i.006 PSI in vapor pressure. For subvolume J11 at an average temperature of 140*F, a repeatability uncertainty of i 0.1*F corresponds to

.008 PSI in vapor i-pressure.

6(P ) = (0.03486 x 0.006) + (0.08059 x 0.006) + (0.07979 x 0.006) y (1)

(1)

(1) 0.006 0.006) + (0.46689 x 0.006)

+ (0.19804 x.(2)b ) + (0.11707 x (2)b (2)b

+ (0.02276 x.008)

(1)b

=.00321 +.00048 +.00048 +.00084 +.00050 +.00198 +.00018 6(P ) = 0.00467 PSI y

i 1

f}

'Therefore,

-6(P) = [(0.00071)2 +-(0.00467)2]4

= 0.00473 PSI The repeatability uncertainty for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test is then found to be 6(L)r =' 100. [2( 0.00473 )2 -+ 2-( 544.70.0514 )2]4 63.0

= 0.0171 weight %/ day' 6.

Total Instrument Uncertainty a(L) Total = [(6(L),)2 + (6(L)r) l

= [(0.0835)2 + (0.0171)2]%

= 0.0852 weight %/ day 2a(L) Total = 0.1705 weight.%/ day l

l l

i

. -