ML20197A762

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leak Rate Test, Quad-Cities Nuclear Power Station,Unit 1,860322-23
ML20197A762
Person / Time
Site: Quad Cities Constellation icon.png
Issue date: 03/23/1986
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20197A758 List:
References
0483H, 483H, NUDOCS 8605120382
Download: ML20197A762 (72)


Text

{{#Wiki_filter:. o 4 REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST QUAD-CITIES NUCLEAR POWER STATION UNIT ONE MARCH 22 - 23, 1986 yhh kDO h P 0483H l

i c TABLE OF CONTENTS PAGE TABLE AND FIGURES INDEX.................... 3 INTRODUCTION... 4 A. TEST PREPARATIONS A.1 Type A Test Procedures.. 4 A.2 Type A Test Instrumentation................. 4 A.2.a. Temperature.................... 8 A.2.b. Pressure...................... 8 A.2.c. Vapor Pressure................... 8 A.2.d. Flow. 9 A.3 Type A Test Measurem9nts.................. 9 A.4 Type A Test Pressurization.. ..............10 B. TEST METHOD B.1 Basic Technique...................... 12 B.2 Supplemental Verification Test............. 13 ' B.3 Instrument Error Analysis................. 13 C. SEQUENCE OF EVENTS C.1 Test Preparation Chronology.... 14 C.2 Test Preparation and Stabilizatior. Chronology....... 14 C.3 Measured Leak Rate Phase Chronology.. 15 C.4 Induced Leakage Phase Chronology.. 15- .1 C.5 Depressurization Phase Chronology. 16 0483H -- --

TABLE OF CONTENTS (CONTINUED) PAGE D. TYPE A TEST DATA D.1 Measured Leak Rate Phase Data.............. 16 D.2 Induced Leakage Phase Data............... 16 E. TEST CALCULATIONS...................... 30 F. TYPE A TEST RESULTS F.1 Measured Leak Rate Test Results......... . 31 F.2 Induced Leakage Test Results.......... . 32 F.3 Pre-Operational Results vs. Test Results........ . 33 APPENDIX A TYPE B AND C TESTS........... . 34 APPENDIX B TEST CORRECTION FOR SUMP LEVEL CHANGES..... 43 APPENDIX C COMPUTATIONAL PROCEDURES......... . 49 . 58 APPENDIX D INSTRUMENT ERROR ANALYSIS APPENDIX E BN-TOP-1, REV. 1 ERRATA ............64 APPENDIX F TYPE A TEST RESULTS USING MASS-PLOT. . 68 METHOD (ANS/ ANSI 56.8) 0483H,_. __

TABLES AND FIGURES INDEX s PAGE TABLE 1 Instrument Specifications................ 5 TABLE 2 Sensor Physical Locations................ 6 TABLE 3 Measured Leak Rate Phase Test Results......... 17 TABLE 4 Induced Leakage Phase; Test Results.......... 19 FIGURE I Idealized View of Drywell and Torus.,. 7 'l Used to Calculate Free, Air Volumes FIGURE 2 Measurement System Schematic Arrangement....... 11 FIGURE 3 Measured Leak Rate Phase - Graph of Calculated.... 20 Leak Rate and Upper Confidence Limit FIGURE 4 Measured Leak Rate Ptase - Graph of Total....... 21 Time Measure Leak Rate and Regression Line FIGURE 5 Measured Leak Rate Phase - Graph of . 22 Ory Air Pressure,, FIGURE 6 Measured Leak Rate Piase - Graph of Volume...... 23 Weighted Average Containment Vapor Pressure FIGURE 7 Measured Leak Rate Phase - Graph of Volume.. 24 Weighted Average Containment Temperature FIGURE 8 Induced Leakage Phase - Graph of Calculated... . 25 Leak Rate and Upper Confidence Limit FIGURE 9 Induced Leakage Phase - Graph of Total Time...... 26 Measured Leak Rate and Regression Line FIGURE 10 Induced Leakage Phase - Graph of Volume.... . 27 Weighted Average Containment Temperature FIGURE 11 Induced Leakage Phase - Graph of Volume........ 28 Weighted Average Containment Vapor Pressure FIGURE 12 Induced Leakage Phase - Graph of..... . 29 Dry Air Pressure FIGURE F-1 Statistically Average Leak Rate and Upper.... . 71 Confidence Limit (ANS/ ANSI 56.8 Method) .V 0483H m INTRODUCTION This report presents the test method and results of the Integrated Primary Containment Leak Rate Test (IPCLRT) successfully performed on March 22-23, 1986 at Quad-Cities Nuclear Power Station, Unit One. The test was performed in accordance with 10 CFR 50, Appendix J, and the Quad-Cities Unit One Technical Specifications. For the second time at Quad-Cities a short duration test (less than 24 hours) was conducted using the general test method outlined in BN-TOP-1, Revision 1 (Bechtel Corporation Topical Report) dated November 1, 1972. The first short duration test was conducted on Unit One in Decembei, 1982. Using the above test method, the total primary containment integrated leak rate was calculated to be 0.2286 wt %/ day at a test pressure greater than 48 PSIG. The calculated leak rate was within the 0.750 wt 1/ day acceptance criteria (75% of L ). The associated upper 95% confidence limit was 0.2975 A wt %/ day. The supplemental induced leakage test result was calculated to be 1.2864 wt %/ day. This value should compare with the sum of the measured leak rate phase result (0.2286 wt %/ day) and the inducted leak of 8.16 SCFM (1.0000 wt %/ day). The calculated leak rate of 1.2864 wt %/ day lies within the allowable tolerance band of 1.2286 wt %/ day 1 0.250 wt %/ day. SECTION A - TEST PREPARATIONS A.1 Type A Test Procedure The IPCLRT was performed in accordance with Quad-Cities Procedure QTS 150-6, Rev. 1, including checklist QTS 150-Si through S13 and subsections T2, T3, T6, T8, T9, and T10. Approved Temporary Procedure 1363 and 1364 were written to include the precaution of valving out the H /02 monitoring 2 panel calibration gas cylinders prior to the test and valving the cylinders back in after the test. Approved Temporary Procedure 1365 altered the valve lineup to include the CAM H /02 monitoring system. 2 These procedures were written to conply with 10 CFR 50 Appendix J, ANS/ ANSI N45.4-1972, and Quad-Cities Unit One Technical Specifications, and to reflect the Commission's approval of a short duration test using the BN-TOP-1, Rev. 1 Topical report as a general test method. A.2 Type A Test Instrumentation Table One shows the specifications for the instrumentation utilized in the IPCLRT. Table Two lists the physical locations of the temperature and humidity sensors within the primary containment. Figure 1 is an idealized view of the drywell and suppression chamber used to calculate the primary containment free air subvolumes. Plant personnel performed all test instrumentation calibrations using NBS traceable standards. 0483H _-

TABLE ONE INSTRUMENT SPECIFICATIONS INSTRUMENT MANUFACTURER MODEL NO. SERIAL NO. RANGE ACCURACY REPEATABILITY Precision Pressure Gages (2) Volumetrics 846,847 0-100 PSIA 1 015 PSI 1 001 PSI 44209 to Burns 44238 RTD's (30) Engineering SP1A1-5 1/2-3A inclusive 50-200*F 1 5'F 1 1*F 5835-1, 5835-8 5835-3, 6084-4, 6084-9, 5835-6 Volumetrics Lithium 6084-7, 6084-8, Dewcells (10) (Foxboro) Chloride 5835-9, 6084-6 +140*F 1 0*F 1 5'F 1 Pall Trinity Thermocouple Micro 14-T-2H 0-600*F 1 0*F 1 1*F 2 Fischer Flowmeter & Porter 10A3555A 8508A9252R0001 0.9-11.05 scfm 1 111 scfm Level indicator 555111BCAA LT 1-646B GEMAC 3AAA 0-60" H O 2 0497H,

c TABLE TWO SENSOR PHYSICAL LOCATIONS RTD NUMBER SERIAL NUMBER SUBVOLUME ELEVATION AZIMUTH

  • 1 44209 1

670'0" 180* 2 44210 1 670'0" 0* 3 44211 2 657'0" 20' 4 44212 2 657'0" 200* 5 44123 3 634'0" 70* 6 44214 3 634'0" 265* 7 44215 4(Annular Ring) 643'0" 45' 8 44216 4 615'0" 225* 9 44217 5 620'0" 5' 10 44218 5 620'0" 100* 11 44219 5 620'0" 220* 12 44220 6 608'0" 40* 13 44221 6 608'0" 130* 14 44222 6 608'0" 220* 15 44223 6 608'0" 310* 16 44224 7 598'0" 70* 17 44225 7 598'0" 160* 18 44226 7 598'0" 250* 19 44227 7 598'0" 340' 20 44228 8 587'0" 10* 21 44230 8 587'0" 100* 22 44232 8 587'0" 190* 23 44233 8 587'0" 280* 24 44234 9(CRD Space) 586'0" 0* 25 44235 10(Torus) 578'0" 0* 26 44236 10(Torus) 578'0" 60* 27 44237 10(Torus) 578'0" 120* 28 44238 10(Torus) 578'0" 180* 29-44229 10(Torus) 578'0" 240* 30 44231 10(Torus) 578'0" 300* Thermocouple (inlet to 11(Rx Vessel) clean-up HX) f DEWCELL NO. SERIAL NUMBER SUBVOLUME ELEVATION AZIMUTH I 5835-1 1 670'0" 180* 2 5835-8 2,3,4 653'0" 90* 3 5835-3 2,3,4 653'0" 270* 4 6084-4 5 620'0" 0* 5 6084-9 6,7 600'0" 45' 6 5835-6 6,7 600'0" 225' 7 6084-7 8,9 586'0" 0* 8 6084-8 8,9 586'0" 180* 9 5835-9 10 578'0" 90* 10 6084-6 10 578'0" 270* Thermocouple (Saturated) 11 i 0483H _ _

Idealized View of Drywell and Torus Used to Calculate Free Volumes 'p '] 37'r' P 34'8" A _ sai 's ' f sn's" l / / _ css'sa V:u_ __"_ lI ss2*o" 1.a.. f.///.f.- n s / $55*zu .,I/ /s.'.f / / _ s82'8" e </ 7 (cratin l'/ # b r l: r>..#... 3 'J 4 p,o, p'I'f_.,,o/ Y / _ sis i " i i // f 4

. i [ / + < & './ 1

-J'iIo .L /, #. - .i v 'f /. / '//. s j/ . f/..'/.. -N';'",,,; f

.33.l..

cs' "

,j p

_ a2 io" to'o" e 7 j

/

,,,o- / v4@mm E=.. 4 /

ss'io Floor) f-- d -- 'l 3a.y.

\\ ) ,u... Av i i. FIGURE 1 0483H.. -.

A.2.a. Temperature The location of the 30 platinum RTD's was chosen to avoid conflict with local temperature variations and thermal influence from metal structures. A temperature survey of the containment was conducted prior to the test to verify that the sensor locations were representative of average subvolume conditions. The RTD's were manufactured by Burns Engineering Inc. and are Model SP 1Al-5 1/2-3A. Each RTD and its associated bridge network was calibrated to yield an output of approximately 0-100 mV over a temperature range of 50-150*F. Each RTD was calibrated by comparing the bridge output to the true temperature as indicated by the temperature standard. Three temperatures were used for the calibration. Two calibration constants (a slope and intercept of the regression line) were computed for each RTD by performing a least squares fit of the RTD bridge output to the reference standard's indicated true temperature. The temperature standard used for all calibrations was a Volumetrics RTD Model VMC 701-B used with a Dewcell/RTD Calibrator Model 07782. The standard was calibrated by Volumetrics on January 1, 1986 to standards traceable to the NBS. The plant process computer scanned the output of each RTD-bridge network and converted the output to engineering units using the calibration constants. A.2.b. Pressure Two precision quartz bourdon tube, absolute pressure gauges were utilized to measure total containment pressure. Each gauge had a local digital readout and a Binary Coded Decimal (BCD) output to the process computer. Primary containment pressure was sensed by the pressure gauges in parallel through a 3/8" tygon tube connection to a special one inch pipe penetration to the containment. Each precision pressure gauge was calibrated from 62.6-65.2 PSIA in approximately 0.5 PSI increments using a third precision pressure gauge (Volumetrics Model 07726) that had been sent to Volumetrics for calibration. The pressure standard was calibrated on January 2, 1986 using NBS traceable reference standards. The digital readout of the instruments were in " counts" or arbitrary units. Calibration constants (a slope and intercept of a regression line) were entered into the computer program to convert " counts" into true atmospheric pressure as read by the third, reference gauge. No mechanical calibration of the gauges was performed to bring their digital displays into agreement with true pressure. A.2.c. Vapor Pressure Ten lithium chloride dewcells were used to determine the partial pressure due to water vapor in the containment. The dewcells were calibrated using the Volumetrics calibrator described in section A.2.a. above and a chilled mirror dewcell standard (Volumetrics S/N 1263) calibrated on March 7, 1986 by 0483H Volumetrics'. The calibration constants for each dewcell (the slope and intercept of a regression line) were computed relating the 100 mV output of the signal conditioning carJs to the actual dewpoint indicated by the reference standard. A humidity survey of the conteinment was conducted prior to the test to verify that the sensor locations were representative of average subvolume conditions. A.2.d. Flow A rotameter flowmeter, Fischer-Porter serial number 8508A9252R001, was used for the flow measurement during the induced leakage phase of the IPCLRT. The flowmeter was calibrated by Fischer-Porter to within 31% of full scale (.9-11.-5 SCFM) using NBS traceable standards. Plant personnel continuously monitored the flow during the induced leakage phase and corrected any minor deviations from the induced flow rate of 8.16 SCFM by adjusting a 3/8" needle valve on the flowmeter inlet. The flow meter outlet was unrestricted and vented to the atmosphere. A.3 Type A Test Measurement The IPCLRT was performed utilizing a direct interface with the station process computer. This system consists of a hard-wired installation of temperature, dewpoint, and pressure inputs for the IPCLRT to the process computer. The interface allows the process computer to scan the inputs and send the data, still as a millivolt signal or BCD (binary coded decimal) in the case of pressure, to the PRIME computer with minimal manual inputs and without the disadvantages of multiplexers or positioning sensitive electronic hardware inside the containment during the test. The PRIME computer was used to compute and print the leak rate data using the ANSI /ANS mass plot method and the BN-TOP-1 method. Key parameters, such as total time measured leak rate, volume weighted dry air pressure and temperature, and absolute pressure were plotted on a Ramtek color terminal. Plant personnel also plotted a large number of other parameters, including reactor water level and temperature, dry air mass, volume weighted partial pressures and temperature, total time leak rate, statistically averaged leak rate and UCL, and all sensor outputs in engineering units. In all cases, data was plotted hourly and computer summaries were obtained at 10 minute time intervals. The plotting of data and the computer printed summaries of data l allowed rapid identification of any problems as they might develop. Figure 2 shows a schematic of the data acquisition system. I 0483H.. -

A.4 Type A Test Pressurization A 3000 SCFM, 600 hp, 4 kV electric oil-free air compressor was used to pressurize the primary containment. An identical compressor was available in standby during the IPCLRT. The compressors were physically located on a single, enclosed truck trailer located outside the Reactor Building. The compressed air was piped using flexible metal hose to the Reactor Building, through an existing four inch fire header penetration, and piped to a temporary spool piece that, when installed, allowed the pressurization of the drywell through the "A" containment spray header. The inboard, containment spray isolation valve, M0-1-1001-26A was open during pressurization. Once the containment was pressurized, the M0-1-1001-26A valve was closed and the spool piece was removed and replaced with c blind flange. l 0483H ; L

Measurement System Schematic Arrangement g 3/c. 3/C L 4) LOCAL JUNCTION sexts (8) 3/C 3/C (26) POWER SUPPLY 80X (1) 8/C 3/C DEWCELL 00) N llov ORYWELL TERMluAL X Sox FLOW 4ETER ' CONTAINKENT PRESSURE INSTRUMElff - Q - RACK .p. PRES $URE M SEllSING X TUSlHG 40/C 40/C IPCLRT (3) -l (3) INSTRUMENT CONSOLE Q. ORYWELL PERSONNEL INTERLOCK SULlulEAD RTO & DEWCELL SIGNAL 40/C (2) CONDITIONING CARDS PROCESS 32/C (2) COMPUTER PRES $URE GAUGES A/D CONVERSI0b AND SCAN t l h 110V PRIME 5:1-TOP-1 COMPUTER METHOD AND CALCUL.ATIONS MASS PLOT METHOD 0483H __... _ _ _ _.. _ _ _.. _ _. _, _ _ _ _ _ _ _ _ rt

SECTION 8 - TEST METHOD B.1 Basic Technique The absolute method of leak rate determination was used. The absolute method uses the-ideal gas laws to calculate the measured leak rate, as defined in ANSI N45.4-1972. The inputs to the measured leak rate calculation include suovolume weighted containment temperature, subvolume weighted vapor pressure, and total absolute air pressure. As required by the Commission in order to perform a short duration test (measured leak rate phase of less then 24 hours), the measured leak rate was statistically analyzed using the principles outlined in BN-TOP-1, Rev. l. A least squares regression line for the measured total time leak rate versus time since the start of the test is calculated after each new data set is scanned. The calculated leak rate at a point in time, t, is the leak rate i on the regression line at the time t. i The use of a regression line in the BN-TOP-1, Rev. I report is different from the way it is used in the ANSI /ANS standards. The latter standard uses the slope of the regression line for dry air mass as a function of time to derive a statistically averaged leak rate. In contrast, BN-TOP-1, Rev. I calculates a regression line for the measured leak late, which is a function of the change in dry air mass. For the ANSI /ANS calculations one would expect to always see a negative slope for the regressica line, because the dry air mass is decreasing over time due to leakage from the containment. For the regression line computed in the BN-TOP-1, Rev.1 method the ideal slope is zero, since you presume that the leakage from the containment is constant over time. Since it is impossible to instantaneously and perfectly measure the containment leakage, the slope of the regression line will be positive or negative depending on the scatter in the' measured leak rate values obtained early in the test. Since the measured leak rate is a total time calculation, the values computed early in the test will scatter much more than the values computed after a few hours of testing. The computer printouts titled " Leak Rate Based on Total Time Calculations" attached to the BN-TCP-1, Rev. I topical report are misleading in that the column titled " Calculated Leak Rate" actually has printed out the regression line values (based on all the measured leak rate data computed from the data sets received up untti the last time listed on the printout). The calculated leak rate as a function of time (tj) can only be calculated from data available up until that point in time, t. This is significant in that the i calculated leak rate may be decreasing over time, despite a substantial positive slope in the last computed regression line. Extrapolation of the regression line is not required by the BN-TOP-1, Rev. I criteria to terminate a short duration test. What is required is that the calculated leak rate be decreasing over time or that an increasing calculated leak rate be extrapolated to 24 hours. The distinction between the regression line values and the calculated leak rate as a function of time is made in Section 6.4 of BN-TOP-1, Rev. l. Calculated leak rates, as a function of time, are correctly printed out in the " Trends Based on Total Time Calculations" computer printouts in Appendix B of BN-TOP-1, Rev. l. 0483H Associated with each calculated leak rate is a statistically derived upper confidence limit. Just as the calculated leak rate in BN-TOP-1, Rev. I and the statistically averaged leak rate in the ANSI /ANS standards are not the same (and do not necessarily yield nearly equal values), the upper confidence limit calculations are greatly different. In the BN-TOP-1, Rev. I topical report the upper confidence limit is defined as the calculated leak rate plus the product of the two sided 97.5% T-distribution value (as opposed to the one-sided 95% T-distribution used in the ANS/ ANSI standard) and the standard deviation of the measured leak rate data about the computed regression line (which has no relationship to the value computed in the ANSI /ANS standards). There are two important conclusions that can be derived from data analyzed using the BN-TOP-1, Rev. 1 method:

1) the upper confidence limit for the same measured leak rate data can be substantially greater than the value calculated using the ANSI /ANS method, and 2) the upper confidence limit does not converge to the calculated leak rate nearly as quickly as usually observed in the latter method as the number of data sets becomes large.

With this in mind, the upper confidence limit can become the critical parameter for concluding a short duration test, even when the measured leak rate seems to be well under the maximum allowable leak rate. A graphical comparison of the two methods can be made by referring to Figure 3 for the BN-TOP-1, Rev. I calculated leak rate and upper confidence limit and to Figure F-1 for the statistically averaged leak rate and upper confidence limit based on ANSI /ANS 56.8-1981. This data supports the contention of many that BN-TOP-1, while it may not give the best estimate of containment leakage, is a conservative method of testing. B.2 Supplemental Verification Test The supplemental verification test superimposes a known leak of approximately the same magnitude as LA (8.16 SCFM or 1.0 wt %/ day as defined in the Technical Specifications). The degree cf detectability of the combined leak rate (containment calculated leak rate plus the superimposed, induced leak rate) provides a basis for resolving any uncertainty associated with the measured leak rate phase of the test. The allowed error band is i 25% of L-A There are no references to the use of upper confidence limits to evaluate the acceptability of the induced leakage phase of the IPCLRT in the ANS/ ANSI standa ' or in BN-TOP-1, Rev. 1. B.3 _ sment Error Analysis An instrument error analysis was performed prior to the test in accordance with BN-TOP-1, Rev. 1 Section 4.5. The instrument system error was calculated in two parts. The first was to determine the system accuracy uncertainty. The second and more important calculation (since the leak rate is impacted most by changes in the containment parameters) was performed to determine the system repeatability uncertainty. The results were 0.0881 wt %/ day and 0.0160 wt %/ day for a 12-hour test, respectively. These values are inversely proportional to the test duration. The instrumentation uncertainty is used only to illustrate the system's ability to measure the required parameters to calculate the primary containment leak rate. The mathematical derivation of the above values can be found in Appendix D. The method of calculating the equipment uncertainty is in conformance with the method outilned in BN-TOP-1. 0483H -. = - - _ _. It is extremely important during a short duration test to quickly identify a failed sensor and in real time back the spurious data out of the calculated volume weighted containment temperature and vapor pressure. Failure to do so can cause the upper confidence limit value to place a short duration test in jeopardy. It has been the stations experience that sensor failures should be removed from all data collected, not just subsequent to the apparent failure, in order to minimize the discontinuity in computed values that are related to the sensor failure (not any real change in containment conditions). For this test, however, no instrument failures were encountered. SECTION C - SEQUENCE OF EVENTS C.1 Test Preparation Chronology The pretest preparation phase and containment inspection was completed on March 21, 1986 with no apparent structural deterioration being observed. Major preliminary steps included:

1) Completion of all Type B and C tests, component repairs and restests.
2) Blocking open three pairs of drywell to suppression chamber vacuum breakers.

j 3) Installation of all IPCLRT test equipment in the suppression chamber.

4) Completion of all repairs and installations in the drywell.
5) Venting of the reactor vessel to the drywell by opening the manual head vent line to the drywell equipment drain sump.
6) Completion of the IPCLRT data acquisition system including computer programs, instrument console, locating instruments in the drywell, and associated wiring.
7) Performance of a temperature and humidity survey of the containment confirming instrument sensor locations to be representative of subvolumes.
8) Completion of the pre-test valve line-up.

C.2 Test Pressurization and Stabilization Chronology i DATE TIME EVENT 03-21-86 2300 Began pressurizing containment. 2305 M01-2301-23A was inadvertantly opened instead of the 26A valve. Terminated pressurization began draining water from air compressor piping. i 03-22-86 0835 Compressor back on-line. 0483H :

1 DATE TIME EVENT 0935 Drywell head and X-4 snooped. No leaks observed. 1015 HPCI and RCIC steam exhaust check valves snooped. No leaks observed. 1330 Containment is pressurized to 65 PSIA. Beginning containment stabilization phase. 1710 Attempts being made to determine cause of a reactor water level drop of approximately 1.2 inches per hour. Isolated C/U system blowdown valve (1201-75). CRD drive water isolated at pumped discharge filter. 2131 Containment temperature dropping in the last hour at a rate of 0.04 *F/hr. Free air volume correction for the computed each rate was removed from the leak rate calculation. Leakage from reactor vessel was entering torus. (See Appendix B) C.3 Measured Leak Rate Phase Chronology DATE TIME EVENT 03-22-86 2131 Containment temperature stable to much less than l'F/hr. (BN-TOP-1). 2131 Started Measured Leak Rate Phase. Base data set is#48. 03-23-86 0933 Terminated measured leak rate phase at 12 hour point. Calculated leak rate was 0.2286 wt %/ day and decreasing over time. The average measured leak rate over the last 5 hours was 0.2372 wt %/ day. The upper confidence limit was 0.2975 wt %/ day. All other BN-TOP-1, Rev. I criteria for terminating the test were satisfied. C.4 Induced Leakage Phase Chronology DATE TIME EVENT 03-23-86 0945 Valved in the flowmeter at 8.16 SCFM (74% scale reading). Radiation Protection is collecting a sample of containment air. 1045 Radiation Protection Department completed sample. 0483H - -

DATE TIME EVENT 03-23-86 1053 Lost 4 data sets (1013, 1023, 1033, 1043) while ~ transferring data files. Re-initial' zed program for new base data set (#124). Beginning of the Induced Phase of the test. 1654 Terminated the Induced Phase. Data indicated successful test. C.5 Depressurization Phase Chronology DATE TIME EVENT 03-23-86 1745 Began containment depressurization using procedure for venting through the Standby Gas Treatment System. 2030 Containment depressurized. 03-24-86 0245 Technical Staff personnel entered drywell. No apparent structural damage and instruments are still in place. Checked sump levels in Drywell. Sumps were not pumped during the test. Over the duration of the test, Drywell Floor Orain Sump level increased from 17" to 20.5". The Drywell Equipment Orain Sump increased from 13" to 36". 0745 Made initial entry to suppression chamber. No apparent damage and all instruments still in place. SECTION O TYPE A TEST DATA 0.1 Measured Leak Rate Phase Data A summary of the computed data using the BN-TOP-1, Rev. I test method for a short duration test can be found in Table 3. Graphic results of the test are found in Figures 3-7. For comparison purposes only, the statistically averaged leak rate and upper confidence limit using the ANS/ ANSI 56.8-1981 standard are graphed in Figure F-1. A summary of the computed data using the ANS/ ANSI standard is found in Appendix F. 0.2 Induced Leakage Phase Data A summary of the computed data for the Induced Leakage Phase of the IPCLRT is found in Table 4. The calculated leak rate and upper confidence limit using the BN-TOP-1, Rev. 1 method are shown in Figure 8. The measured leak rate and last computed regression line are shown in Figure 9. Containment conditions during the Induced Leakage Phase are presented graphically in Figures 10-12. 0483H -

Measured Leak Rate Test Results MEAS. CALC. UPPER DATA TEST AVE. DRY AIR LEAK LEAK CONF. SET TIME DURATION TEMP. PRESS. RATE RATE LIMIT 48 ki:31:28 0.0000 88.778 63.895 49 21:41:29 0.1669 88.773 63.894 .0411 50 21:51:29 0.3336 88.772 63.892 .2521 .2521 51 22:01:30 0.5006 88.778 63.890 .3789 .3930 .7271 52 22:11:31 0.6675 88.766 63.888 .3227 .39e5 .8757 53 22:21:32 0.8344 88.771 63.887 .2894 .3703 .7873 54 22:31:34 1.0017 88.760 63.885 .2728 .3462 .7078 55 22:41:34 1.1683 88.747 63.883 .2451 .3178 .6438 56 22:51:39 1.3364 88.773 63.882 .3301 .3348 .6146 57 23:01:40 1.5033 88.754 63.881 .2847 .3279 .5818 58 23:11:42 1.6706 88.748 63.880 .2641 .3156 .5524 59 23:21:44 1.8378 88.742 63.878 .2623 .3058 .5275 60 23:31:45 2.0047 88.749 63.876 .2899 .3065 .5125 61 23:41:45 2.1714 88.759 63.875 .3054 .3111 .5037 62 23:51:48 2.3389 88.738 63.873 .2755 .3067 .4899 63 00:01:48 2.5056 88.745 63.872 .2863 .3058 .4798 64 00:11:49 2.6725 88.739 63.871 .2643 .2999 .4675 65 00:21:49 2.8392 88.737 63.869 .2706 .2964 .4575 66 00:31:50 3.0061 88.738 63.869 .2572 .2907 .4467 67 00:41:51 3.1731 88.730 63.868 .2556 .2857 .4369 68 00:51:53 3.3403 88.711 63.866 .2335 .2773 .4254 69 01:01:55 3.5075 88.714 63.864 .2438 .2721 .4161 70 01:11:55 3.6742 88.732 63.863 .2645 .2712 .4107 71 01:21:58 3.8417 88.728 63.862 .2617 .2699 .4053 72 01:31:58 4.0083 88.707 63.861 .2378 .2651 .3974 73 01:42:00 4.1756 88.719 63.859 .2616 .2644 .3932 74 01:52:01 4.3425 88.711 63.857 .2578 .2634 .3888 75 02:02:01 4.5092 88.704 63.856 .2483 .2611 .3837 76 02:12:10 4.6783 88.713 63.855 .2579 .2604 .3801 77 02:22:11 4.8453 88.693 63.853 .2431 .2578 .3751 78 02:32:11 5.0119 88.694 63.852 .2505 .2565 .3713 79 02:42:14 5.1794 88.696 63.851 .2496 .2552 .3676 80 02:52:16 5.3467 88.696 63.850 .2448 .2535 .3638 81 03:02:19 5.5142 88.695 63.849 .2473 .2523 .3604 82 03:12:19 5.6808 88.698 63.848 .2502 .2515 .3577 83 03:22:20 5.8478 88.683 63.847 .2359 .2492 .3536 84 03:32:21 6.0147 88.702 63.845 .2579 .2495 .3522 TA8LE 3 0483H Measured Leak Rate Results (continued) MEAS. CALC. UPPER DATA TEST AVE. ORY AIR LEAK LEAK CONF. SET . TIME DURATION TEMP. PRESS. RATE RATE LIMIT 85 03:42:23 6.1819 88.693 63.843 .2525 .2493 .3502 86 03:52:24 6.3489 88.688 63.842 .2505 .2488 .3481 87 04:02:25 6.5158 88.690 63.840 .2570 .2491 .3469 88 04:12:25 6.6825 88.686 63.840 .2482 .2484 .3448 89 04:22:28 6.8500 88.672 63.838 .2452 .2476 .3425 90 04:32:28 7.0167 88.666 63.838 .2309 .2455 .3392 91 04:42:29 7.1836 88.678 63.837 .2398 .2444 .3368 92 04:52:30 7.3506 88.686 63.836 .2464 .2440 .3351 93 05:02:30 7.5172 88.676 63.834 .2461 .2435 .3335 94 05:12:31 7.6842 88.677 63.834 .2377 .2424 .3312 95 05:22:33 7.8514 88.681 63.832 .2461 .2421 .3298 96 05:32:34 8.0183 88.669 63.831 .2390 .2413 .3279 97 05:42:34 8.1850 88.687 63.831 .2431 .2408 .3264 98 05:52:36 8.3522 88.683 63.830 .2400 .2401 .3247 99 06:02:38 8.5194 88.671 63.829 .2350 .2391 .3227 100 06:12:38 8.6861 88.686 63.827 .2451 .2390 .3217 101 06:22:39 8.8531 88.679 63.827 .2398 .2384 .3202 102 06:32:40 .9.0200 88.681 63.826 .2412 .2380 .3189 103 06:42:40 9.1867 88.677 63.825 .2384 .2374 .3175 104 06:52:41 9.3536 88.668 63.823 .2348 .2367 .3159 105 07:02:42 9.5206 88.670 63.823 .2345 .2359 .3144 106 07:12:44 9.6878 88.672 63.823 .2320 .2350 .3127 107 07:22:49 9.8558 88.676 63.822 .2315 .2342 .3111 108 07:32:49 10.0225 88.686 63.821 .2356 .2337 .3098 109 07:42:50 10.1894 88.674 63.820 .2325 .2330 .3084 110 07:52:50 10.3561 88.681 63.819 .2340 .2324 .3072 111 08:02:51 10.5231 88.683 63.818 .2335 .2311 .3060 112 08:12:54 10.6906 88.678 63.818 .2297 .2311 .3046 113 08:22:54 10.8572 88.694 63.817 .2339 .2307 .3035 114 08:32:55 11.0242 88.691 63.816 .2338 .2302 .3024 115 08:42:58 11.1917 88.707 63.816 .2382 .2301 .3017 116 08:52:59 11.3586 88.708 63.815 .2355 .2298 .3009 117 09:02:59 11.5253 88.720 63.816 .2359 .2296 .3001 118 09:13:00 11.6922 88.720 63.815 .2338 .2292 .2991 119 09:23:01 11.8592 88.722 63.815 .2306 .2287 .2981 120 09:33:06 12.0272 88.741 63.815 .2372 .2286 .2975 1 i TABLE 3 0483H Induced Leakage Phase Test Results MEAS. CALC. UPPER DATA TEST AVE. DRY AIR LEAK LEAK CONF. SET TIME DURATION TEMP. PRESS. RATE RATE LIMIT 124 10:53:17 0.0000 88.799 63.782 125 11:03:18 0.1669 88.813 63.779 1.093 126 11:13:19 0.3339 88.825 63.774 1.248 1.2476 127 11:23:20 0.5008 88.821 63.770 1.083 1.1357 2.3989 128 11:33:21 0.6678 88.847 63.765 1.257 1.2187 1.7429 129 11:43:21 0.8344 88.843 63.761 1.171 1.2032 1.5523 130 11:53:24 1.0019 88.865 63.758 1.202 1.2107 1.4743 131 12:03:24 1.1686 88.880 63.753 1.248 1.2354 1.4524 132 12:13:25 1.3356 88.893 63.748 1.268 1.2584 1.4451 133 12:23:26 1.5025 88.897 63.744 1.229 1.2584 1.4279 134 12:33:28 1.6697 88.900 63.740 1.212 1.2519 1.4119 135 12:43:29 1.8367 88.923 63.736 1.234 1 2538 1.4019 136 12:53:29 2.0033 88.917 63.732 1.197 1.2441 1.3884 137 13:03:30 2.1703 88.938 63.727 1.231 1.2458 1.3814 138 13:13:31 2.3372 88.946 63.722 1.235 1.2481 1.3761 139 13:23:33 2.5044 88.961 63.718 1.240 1.2509 !.3724 140 13:33:34 2.6714 88.962 63.714 1.220 1.2483 1.3658 141 13:43:35 2.8383 88.975 63.709 1.241 1.2507 1.3631 142 13:53:36 3.0053 88.999 63.705 1.258 1.2560 1.3638 143 14:03:38 3.1725 89.014 63.700 1.268 1.2623 1.3660 144 14: 13:39 3.3394 89.024 63.697 1.256 1.2652 1.3653 145 14:23:39 3.5061 89.044 63.691 1.279 1.2717 1.3685 146 14:33:40 3.6731 89.042 63.687 1.260 1.2738 1.3679 147 14:43:41 3.8400 89.042 63.682 1.253 1.2744 1.3664 148 14:53:41 4.0067 89.065 63.678 1.268 1.2771 1.3666 149 15:03:44 4.1742 89.082 63.674 1.269 1.2796 1.3669 150 15:13:45 4.3411 89.084 63.669 1.270 1.2819 1.3671 151 15:23:45 4.5078 89.098 63.665 1.270 1.2838 1.3671 152 15:33:47 4.6750 89.113 63.660 1.273 1.2857 1.3674 153 15:43:48 4.8419 89.113 63.655 1.268 1.2868 1.3671 154 15:53:50 5.0092 89.127 63.652 1.260 1.2867 1.3661 155 16:03:51 5.1761 89.134 63.647 1.262 1.2867 1.3652 156 16:13:51 5.3428 89.156 63.643 1.269 1.2875 1.3649 157 16:23:54 5.5103 89.144 63.638 1.254 1.2866 1.3636 158 16:33:58 5.6781 89.146 63.632 1.259 1.2862 1.3626 159 16:43:59 5.8450 89.146 63.627 1.258 1.2857 1.3615 160 16:54:01 6.0122 89.143 63.619 1.269 1.2864 1.3612 TABLE 4 0483H 4 MEASURED LEAK RATE PHASE GRAPH OF CALCULATED LEAK RATE ~ AND UPPER CONFIDENCE LIMIT . Eh ...' ) 2.. I ( .~ r,. u. A r,. 1 J essace lLine r- . Ah-ree-A. s9Irr, wen._. 4 i i i

A,eo 6

i l i 4 i . I. + ##aA ! t". mas s .w.n .i. 2 i l l l .L L-l - __el i _t

v.,,

0-, 1 .c 4 4 M(ACM 27 19f6. l i i i L.. _. L i...; .se.i l 4 f i l j i -._. yl.. 7 1 I l l i i -. 4 tner a 47s 44(.704 ) .se . _j...L .; _._1 .2_ L 4. 4 - _+.p a +. 7 ....11.b I I .. i . _l. _.. __ _.4, y . s. %__#l gun.. c., n.= i i i .w.._ - 3 i 4 . t, me; t.4 1 ,... _ _._u %d I l I l f ~ e q ___. 4. d .__7, - -{.._y %l -bj 1 \\;_ 6l j l + 4l! 1 e 4 i ~ i, p __4-1 ca rw t j. 3_ j j 7, bac L L !j t q. j j j _ [. j j q i 4 z 40 .l. {. . f._ f l. f j _..f 4 2 3 4 5 6 7 8 i to si sa T"o N 8 YAeA $sAnf est "f"g CT (tloodS FIGURE 3 0483H __

MEASURED LEAK RATE PHASE GRAPH OF TOTAL TIME MEASURED LEAK RATE AND REGRESSION LINE 4 __._C# M G4 wi/MiEdf. _dKAsuddA_l'*" 28'ar f .{. l l i j I, .i .50 l i I l f j 9 Aluwe.caskic i l l l._ ! +! av..- 4.,. 4 y.y a-2 a i 3 J .t. t f l N,g y. [. 6 i 1 l D {_. _ [. _i l 4 l v s, t i l j j _-- a i. [ __ _._ _t. . _ t._ [ ] i g } j j i i l g.vo .c I Q %YAs. $?mK.JtIAA$dtEn.),.g*A$_ikrt_L._._- _gl_ ;._. w .l .]chAoo'w _4a el I i q. q l v, 4 d_,... l i ~ j 3 E i ...y. _T g..g.g^ ^ j j ^] w 'm p v _7._ )3 f 1 T 1 l } I i- }- 4 i @.20 p i - -p - t-- q [ l-g l 1 v- -I - -.4. i i_..! i [ J i i i i t _i_ ~ . _. _...a.. a___ ,,o i a t l i _4-h f i I 6-t I l 2. 3 'l 6 /, 7 8 9 10 // 4 %E fnem (GrAnr of ~fksr ( Hovas) FIGURE 4 Od83H I J

O MEASURED LEAK RATE PHASE GRAPH OF ORY AIR PRESSURE b VbdAU$ C O'dyEM j l M V.ORY ks4 NhSLY-5 I l L._ I I g f t-J._.... l l l l - L-ggg - i I l l I . L. j l t t i i -- l g i --t-~- T _ lk I J l 1 N .._ h._ l l -f-6 g _p I l l ~~ j l I gyg l g j i l.. __ t. 7-1 l g gy

7..

-4 { j }. p. ~ i. .l -.- { .+.... _ _. .L_ p 7 I gg .l. t I [ i l j g l-1 i + r i 63.81 -r t-- J, - - - j i I i wi I l t q _i_ N 3 b. -. i. - __d +_ I f,,, - i i 43.SI - - i t l fl I [ l* i 1 ll '~' I i f A 3 Y S' 6 7 S ?

  1. O

//

  1. 4 Tims Faem STA 4v or Test (H. pas)

FIGURE 5 0483H..

MEASURED LEAK RATE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT VAPOR PRESSURE r p. i g f - {. g. .l 6 i p .p p ~ _. - -Yasdni -_.NilkH14-YAAnt_lMswAt I j j l i [_j - L- -- f _r-j I-i l l. i r i i { l j. _[ .l j _g [- i i -l -l- ,37p -- f l I e e t (. [ i l l ... _{ l ' -j ' _.T~ 365 i ~ I-~~ - -r } j l ( I j. l l V. i M. V. h;._p h - ~ [ l-i . p... _ __, - l b f-f.l e i .,m 1. i l i l k. {- 1 1 i a I 1 3 4 S 6 7 6 4 to II

  • 2.

~ Tits L VAe rs $fA AY er ~ftsY ( HovAs) FIGURE 6 0483H __d

HEASURED LEAK RATE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT TEMPERATURE ggw kl.nl w, l ras l, Al.l, i , l.. j d. tn.__Caertsura carr_ wmurew l j l l } l [- -l-8M T -i ~ i i i i ggyg j i l t 3 _. a _. !~ ~ V -- i i -i-- -F l-i 3677 l l I i i i l i l i i gg,g q __ j l l i i i i j ~ - - - - 96,7F -- t -- i gg ,...._p .f 7.. l I 4._ gg,y l r-7-- r i--- ! g _ _.. _g.._;. ss.n ! --I - i i i -H,- L-


+-

j t { _.. / i j . j _- _ f{ ..y. _.1 ggy l [ l / j st.73 ( [ i. i -. / gam J.__.. L. l I i N. }\\ _ _! i- ) ^ -~~~ gg,gg .I i / ___l ..t. .1 4 l 8847 ,, 4 l { l es.4 l -- - - t-- i-r l o j i i gg,g. 1_,. l l I _j..__, L_ l _L __ a__ i I j 4 l 7.. 7_ . L. __p _ ;-. -f l ,i i I I. r t F. } i i i i i i I 2. 3 1 S s- ? 6 1 to is or T'i m a Aem Gra4r er W sr ( Heads) TABLE 7 0483H 1 1 !j

o e INDUCED LEAKAGE PHASE GRAPH OF CALCULATED LEAK RATE AND UPPER CONFIDENCE LIMIT c l l l h.If n'l= 4 l i

.a.

.l.. i assaarra ert . j... L _t/rreali. j, ede._ L _i j i i i h nakat.4,,or-.i_ ,.w } I i l(;r md. Nsa) A N-fW./ p'farwm i . ).. ... _.tLAser ag_L. L,_ j p _L. 1 I I } f,ge., y ._ _._l l I l 6 I i i i Madu L' j 23 /18. .._).___..._._ i T!._ L. _4__._ _L__.L _[' _ _;. 4__4 . g.._4. .l i I l i i i i i .L t .t. _.4_ L _t J._ j l i I i l i _i_ _L.J._ Wrr.... u. _ L. i.se _s _ - _ j_ L. L A t cisermfe,r i I A_up.. 1 4.._a..+ ._4 i.r.. e.vtr6stug ._i.. .,m I_ is i l j M.u _p._p. _g. r' ~ +i-'-'- - * - ~- - - ' n, 7 y _ 4 j i i %m q s.y H-l l llIl i. l. i. -{ t [ M-y r l l r { lg,.JT.~.1._....u _.L L _ _L._t_.___L L L._i_.L._L L _ _.T' y} f. . l _. n -e...... u. a.y y 4 .p _._p .....[ __..p. _... i .. _.. _j_ j..} o.no .b

l...-..._f..

_.j _} . f. _. ]. _.. __{ _ i _. _f. 1.N I .L -_.d.-_. .w 1-MGdKP.J.4M# i mmu 2 f . _{ _. [.. 4.._{ _ [.. j_ _. [.. .p.._p_ __._. .. _} _.... _.. [_.} i[ 4 4_. y I 1 y r s fons fa .Grsor.r f aseene fasse (Hwad FIGURE 8 0483H INDUCED LEAKAGE PHASE GRAPH OF TOTAL TIME MEASURED LEAK RATE AND REGRESSION LINE _.p. l l l l j. .-.[. Y u A Al *r A n jer.fArL_&!"As UK I [ i m M ff L j I !l' I . _Xanyan_innst f,p j j l i q_ _y_ p. gg j, q I i t t' l I y;_m.y l i t , y,. y ( gg _ q..i.. L_ __.__ 1.s n a %J uh.e i l.- _ _ _ i _._ _ _ q' i s l i L -f s.. i l. j g __[_ i _ r_ l l 6 h l .3e M'yd'Td'd5"*"d* R 'f?5ki= r? f l A L 7 m %, i K_ E /. 1 ~, _f M J~_ _.L. C _L _.L.J _1 _liL_L _afs%v m m 1.uls4 ___ !/1 N / u..! ' I l.h l! f _f.. fu f [.. -ee. e 4 ._n-m.e.e l i e In .i i Gigi.;4_m. _ ora _ c._tr w _ro. ~-- j o.11 s&Lu'st%Aa..e i .,5 _. } h' I E l l ! { I ~I~ -d~ { l l i r r -f-i l A 3 Y f 6 To ros F*xam Srsar or h ava,o%ssa (Havas) FIGURE 9 0483H INDUCED LEAKAGE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT TEMPERATURE {- I.. i l i, j i 1 i ,_.7__ _ _ _ IslKilnN. yen _. 8 vt. dANs g _. & spg. k i .c a g l l I l l j l i ._j _._.. T ame/ctn .[# AS C_.d.._[_ f l g19 i i 7-j f ._ q._... p_.. _ i t t _} j l i M.3 j e.- ..__.. _.__. 4 t l l j i j .} .. _..._L_ ~ I Su j l i I i -- j j?m -j + i. i 5 + .. w C.__p _f M.I l l i / I /,j[j l l t J (_. _l . - + _ _7_ I' l i 2! !_. _j_ i I. M.o i i . /__i l l 1 I l_ t, p i I _h [ l { l l f~ '~ ~ ~ ~ ~ I L 33,1 f -f. l l . J....._]. f~ .I. { I 33,3 2 . j _. t l l [. . }.. _{ l. l i 4-p g_. 1 I i i i I 88.7 f.- i i I l j -i-i I q 3 y g g Tmt Fnom Grsar or fxadess FMs g (Houns.) FIGURE 10 0483H ___

b INDUCE 0 LEAKAGE PHASE GRAPH OF VOLUME HEIGHTED AVERAGE CONTAINMENT VAPOR PRESSURE 9 .e . = =. ..es. g g a .. w I l .\\ . {. . _ _ __ l. YAfae jfAKn3dAC. (..Yeastat-..ULb bH T1m.. n .h l [ O FCsh AEE. . _p. 4 I .1 i l i i l,.. s _.L I j l l l i t l i j j l_ t .l g l l l t l t i i -_.. '. _L I i, j 1 l l -i-i f i f -- H j i i i ,gg t. r- ..._..{. 1' f g_ q_ 4__.,l.. +l._ l ~ l l i i 1 i l l j I i j i .f f ' ' ~, f '\\! i fj y..;Tp . 7.-p 1 pm 1 [ l l 2 3 y 5 Gt FAom Grsar w % muets F%nse ( Haass) FIGURE 11 0483H -

INDUCED LEAKAGE PHASE GRAPH OF DRY AIR PRESSURE } }, _ Q_.._ L awr lhet A sa... fk' tstaet _ D ic M e r Cimoa i j i gg .L___.._._ f5 __L_ l._ p..}I cre xAsr

i

._p_ j I ^] i 1 .} l a ,j. ._..l_. j l .. am t j - t r l l i .l. . _, _ _.L i l ~ i N.. - l y._. _ [ j j i l l ( l. J. .L_.. . _.. y'. __L ...i. j 7 .p i i l N i i g l. i i -j g' I . _ _ _.. __4 ;_ s _U_- ~ ~ ^ ~ ~ '~ 4_. i % i I l~ l 1 i i 1 I I T ~~ _._ i. I i' i I. f j f i i p',Y i l I i !- -I l l -l u / 2 3 y r 6 font fAen SrAar of D wen M sr ( He.us) s N FIGURE 12 0483H,

SECTION E - TEST CALCULATIONS Calculations for the IPCLRT are based on the BN-TOP-1, Rev. I test method and are found in Quad Cities procedure tables QTS 150-T3 and T9. A reproduction of these procedures can be found in Appendix C. In preparing for the firs't Quad Cities short duration test using BN-TOP-1, Rev. I a number of editorial errors and ambiguous statements in the topical report were identified. These errors _are presented in Appendix E and are editorial in nature only. The Station has made no attempt to improve or deviate from the methodology outlined in the topical report. Section 2.3 of BN-TOP-1, Rev.1 gives the test duration criteria for a short duration test. By station procedure som? of these duration criteria have been made more conservative and in some cases these changes may be required by regulations. A. " Containment Atmosphere Stabilization ' .Once the containment is at test pressure the containment atmosphere shall be allowed to stabilize for abcut four hours ( 4 hours required by Quad Cities procedure and actual stabilization: 8 hrs) The atmosphere is considered stabilized when: 1. The rate of change of average temperature is less than 1.0*F/ hour averaged over the last two hours. DATA SET

  • AVE. CONTAINT4ENT TEMP.

AT 47 88.772 41 88.813 0.041 35 88.857 0.044 average: 0.0425'F/ hour

  • Approximate time interval between data sets is 10 minutes, or 2.

"The rate of change of temperature changes less than 0.5*F/ hour / hour averaged over the last two hours." (Not required if A.1 satisfied) B. Data Recording and Analysis 1. "The Trend Report based on Total Time calculations shall indicate that the magnitude of the calculated leak rate is tending to stabilize at a value less tnan the maximum allowable leak rate (L ) A By Quad Cities procedure the calculated leak rate must be less than 0.75 L. The actual value was 0.2286 L, stable, and A A decreasing (no extrapolation required). i and 0483H - -__

2. "The end of the test upper 95% confidence limit for the calculated leak rate based on total time calculations shall be less than the maximum allowable leak rate." if By Quad Cities procedure the upper confidence limit must be less than 0.75'L. The actual value was 0.2975 L - A A an_d 3. "The mean of the measured leak rates based on Total Time calculations over the last five hours of the test or last 20 data points, whichever provides the most data, shall be less than the maximum allowable leak rate." By Quad Cities procedurs this' average must be less than 0.75 L. The actual value was 0 2372.L.for the last 5 hours. A 7 A afLd 4. " Data shall be recorded at approximately equal intervals and in no case at intervals greater than one hour." At Quad Cities data scans are automatically performed on 10 minute intervals. No. data sets were missed or lost during the 12 hour s test period. No computer failures were encountered. and J 5. "At least twenty (20) data point shall be provided for proper statistical analysis." There were 73 data sets taken for this test. a!Ld 6. "In no case shall the minimum test duration be less than six (6) hours." Quad Cities' procedure limits a short duration test to a minimum of twelve (12) hours. This may be reduced in the future. The data taken during this test would support the argument that a shorter duration test can be conducted. All of the above termination criteria were satisfied in six (6) hours. SECTION F - TYPE A TEST RESULTS F.1 Measured Leak Rate Test Results Based upon the data obtained during the short duration test, the following results were determined: (LA - 1.0 wt %/ day)

1) Calculated leak rate at 12 hours equals 0.2286 wt %/ day and declining steadily over time (<0.7500 wt %/ day).

0483H -

2) Upper confidence limit equals 0.2975 wt %/ day and declining (<0.750 wt

%/ day).

3) Hean of the measured leak rates for the last 5 hours (31 data sets) equals 0.2372 wt %/ day (<0.750 wt 1/ day).
4) batasetswereaccumulatedatapproximately10minutetimeintervals and no intervals exceeded I hours.
5) There were 73 data sets accumulated in 12 hours.
6) The minimum test duration (by procedure) of 12 hours was successfully accomplished (> 12 hours).

F.2 Induced Leakage Test Results A leak rate of 8.16 scfm (1,000 wt %/ day) was induced on the primary containment for this phase of the test. The leak rates during this phase of the test were as follows. Total Time Calculated Leak Rate 0.2286 0.2286 (Measured Leak Rate Phase) Induced Leak (8.16 scfm) 1.0000 1.0000 Allowed Error Band +0.2500 -0.2500 1.4786 0.9786 Calculated Leak Rate 1.2864 wt %/ day The induced phase of the test has a duration criteria given in Section 2.3.C of BN-TOP-1. The test duration requirements are listed below and were satisfied by the test procedure and the data analysis: 1. Containment atmospheric conditions shall be allowed to stabilize for about one hour after superimposing the know leak. (actual: I hour 8 minutes). 2. The verification test duration shall be approximately equal to half the integrated leak rate test duration. (actual: 6 hours for 12 hour test) 3. Results of this verification test shall be acceptable provided the correlation between the verification test data and the integrated leak rate test data demonstrate an agreement within plus or mius 25 percent. (actual: see results above) I i 0483H i F.3 Pre-Operational Results vs Test Results Past IPCLRT reports have compared the results of each test with the pre-operational IPCLRT, performed April 20-21, 1971. Over the last 15 i-years, different test equipment, sensor locations and number of sensors, test. methods, and test duration have been used. This test yleided results 1 that compare favorably with recent tests and demonstrate that there has j been no substantial deterioration in containment integrity. I TEST DURATION CALCULATED LEAK RATE STATISTICALLY AVE. j TEST DATA (HOURS) (BN-TOP-1) LEAK RATE (ANSI /ANS) April, 1971 24 Not Avail. 0.111 February, 1979 24 Not Avall. 0.3175 i December, 1982 12 0.4532 0.3796 July, 1984 24 0.4281 0.2297 March, 1986 12 0.2286 0.2286 4 1 1 4 0483H -- _

APPENDIX A TYPE B AND C TESTS Presented herin are the results of local leak rate tests conducted on all penetrations, double-gasketed seals, and isolation valves since the previous IPCLRT in July, 1984. Total leakage for double gasketed seals and total leakage for all penetrations and isolation valves following repairs satisfied the Technical Specification limits. 0483H i i ) REFUEL OUTAGE LOCAL LEAK RATE TEST StatiMlY AS F0ule (SCFH) AS LEFT (SCFH) VALVE (SI/ ulmistal liAXllAAA MINilRAI MAXilAAI ,,,DESGilPil0N PENETRATION DATE TOTAL PATHBAY PATHsAY DATE TOTAL PATISAY PATHWAY 'A' usiv i Ao 203-1A,2A l /-/ MI/M 3 l C. C l/M 3 iM J(I//5'l C2 6 l //Fl 'e' uset l Ao 203-18.28 ll-7-8tl /2 +3 l C. 0 l /f.Y3 lZ d%l 0.0 l 0.0 l O.0 l 'C' usiv i Ao 203-ic.2C li-( 841 YF. 'f l C. O t a f.'t R-( & l d 0 l C. O l C. O l 'O' uSiv i Ao 203-10.20 II-6 4 1 E 8 I Z. 7 l 5.8 II-(ni E 8 I Z.7 i 5~8 [ TOTAL 27 TOTAL 2/ TOTAL CORRECTED

  • 9.68 TOTAL C0fWlECTED
  • Y. 58 uSL DRAIN I uo 220-1,2 ll-7d l 42 Ol 21 O l 42 0 lt 7%l 9to l u o g 92.0 l PRite4RY SAMPLE I Ao 220-44.45 1/ # Yl d.3Cl C. /*7 l O 30 l' 78cTlC 3C l C. /5 l C. 30 g

'A' FEEDWATER I CV 220-58A,62A L Ydl3./8 i C f[ l 2. 22. l2-/&ll.3.// l C. Mf' l 2, 2 2, g '8' FEE 0 EATER l CV 220-588,628 l' -. l.'682 /l 7fo. / l /93' 2 Cl3-5-d' l 0.0 l C). O l 0, o g 1 7-8 l C. O l C. o l o. O l/-7.g l o. o l 0. O g o,o g 1 RHR TO RA05ASTE l WO 1001-20,21 'A' 05 SPRAY l WD 1001-23A 26A l/-8-51 32 l /. 8 l 3. 2 l/ 8 86 l 3. Z l /. 6 l J. 2. l 'A' RHR RETURN l WO 1001-29A l/- 8 8( l / 8 l /. 6 l /. f l/-8-86l /. 5 l /. f l /.5 g 'A' TORUS COOLING SPRAY l MD 1001-34,36.37A ll-88(l O.O I C.O l O. O 1/-8 M l C. O l O. 0 l O. O l 'B' 05 SPRAY l MO 1001-238,268 lI-I 881 2. 7 l /. 't i 27 l /-f-Xl E. 7 l /.y j 2. 7 g 1 88 1 /8 6 l /8 f I /8 5 l/-7 8tl // 5 l /7 5 l /8 5 l / 'B' RHR RETURN I MO 1001-298 1 -7 8(l f.3Z l J // l [ 32 l/~f&l (.JP-1 J./( l ( 32-l / 'e' TORUS COOLING / SPRAY l MO 1001-34,36,378 l M'70l SS 27 l 7[ 7p l lg, y l 77g,J7 l2d/L 7% l PAGE TOTAL l NA NA (EXCEPT WSiv'S) l 1 l l l l l l l 10/0168s 0483H REFUEL OUTA(E LOCAL LEAK RATE TEST SIAAAARY AS LEFT (SCFH) AS FOLAW (SCFH) f l VALVE (S)/ MINilAAi IIAXilEAR MINittai IAAxiltal__ DESOII%.IOV l PElETRATION DATE TOTAL PATHWAY PATieAY DATE TOTAL PAfteAY PATHWAY Swim 6tNG l W 1001-47.50 l/-28 #l O O l OO l O. O tr-/J-# l 0. 0 l

0. 0 l C. O l HEAD SPRAY l W 1001-60.63 l27-N10.38 l C. Il i O 38 lb7 8 lO 38 l O 8 l C 38 l CLEAll UP SUCTION l W 1201-2.5 ll lf N l MO l > 60 l,A 66 13 /5-#12/ M/~ l /O.73 l 2/. Y f l RClC STEM SUPPLY l W 1301-16.17 1/-7 T(I d.35 l O /8 l O 35 l/ 7-8(l 0. 35 l O. If l 0. 35 l RCIC STE M EXHAUST l CV 1301-41 1/ 8 Klo.07 l 0. 09 l o. 07 l /-8 Kl o. 09 l 0. 07 l 0.07 l RCIC VAC. PLAP EX.

I CV 1301-40 l/-(%l 3 6 1 3. F l 36 1/-(#1 J. 5 13. f I J.5-l DB/T M PLalE SUPPLY l A01001-21.22.55.5611-#78612.06 l /.03 l 2. 06 l/-/7512. 0( l / 03 l 2.06 l l l l g lg l g g l yj, g lgol l$ DW/TO W S PLR0E EX lA01801-23,24,60, 1 l l l l l l l l 61.62.63 I //75 O.2/ 0./0

0. 2/

/./p sg 0. Z/ o./0 0.21 l l l l l l l l l1 2086 l C. 55 l 0. 28 O. 55' l1.to-Mg o.55 l 0.28 g 035 l 'B' T0ftJS VENT lA01601-208, l l l Cv 1601-318 1 -5.fif l 2.M l / 30 l 2. (d l2 5.gl 240 l /. 30 l

2. (O l 2

DW/ TORUS PUR0E l A0 1601-57.56.59 DW FLOOR DRAIN SladP l A0 2001-3.4 12-Maf l 73./ l /8. O l 25 / lJ 84l 70 l MS l 7O l 05 EO. OR. SLAP l A0 2001-15. 16 l2 73 arl >-[d l )(6 1 7(d p-/7-Kl 0. D l 0 95 l o.pp g HPCI STEAM SUPPLY l u0 2301-4,5 l!-7 Edl l5l. 5 l 7(. 0 l /[/ 7 13-/7-Kl 225 l //.23 l 22.Wl 1 /f-%l C.O l C. O l C. O l 1 ~7-8(I MO l >[O l )(O 3 / HPCI STEAM EX. l CV 2301-45 l/*fM O.O l /d.O l /4. O [ HPCI ORAIN POT EX. 1 CV 2301-34 ll-d'E l /d. O l /d 0 l /d. O l 1 /Ki /. 7 i O. 8 l C. 7 12-8-861 /. 7 1 6.8 l 07 l 2 05 PNElasATIC ~ l A0 4720, 4721 l l65).n lpg. 33 l 639. M l l 138.zsl 7.5. !! l 137. 45 l PAGE TOTAL l NA l l l l NA l l l l 2-0483H 4 6 I AS FOUiG (SCFH) AS LEFT (SCFM) VRVE(S)/ MINitAnd IWulltem MINitset igullleel DESOllPTION PEN THATION oATE TOTAL PATleAY PATIGAY oATE TOTAL PATisAY PATieAY _ 9.ANALYzEn i Ao eso1A. " ?A 12-851 o.O l 0.o l o. O l2 d El d ol C. d l 60 l i Ao esoie. < = 12-Ax l 0.0 i o.o i O.o iMKi o. Oi O. O i O.0 l gMYzEn g'.mnYzEn I Ao anoic m e-zt%\\ 00 l o.0 l 0. 0 gxXIo.0 n.qo g0,0 l 9AnuYzEn i Ao esoio teos 12-2731 N. 3 1 3.E i /2.5 LT-/7xi 3.8 i O.o 3 8 { g'AnuYzEn i Ao esos. esos 13-6 41 5.( l26 i.3.0 in-K 5 4 i 2. ( i.3. o l i TIPenLvuVE I 733-1 12+# l 0. F 1 0.5 l 0.5 15-441 d8 i O. 8 C.5 l TIP eALL VALVE I 733-2 12+# 10 0 10.0 l 0.0 13-(-F16. / l C./ l 0,/ l TIP mal [ VALyg l 733-3 12 t K l o. 6 10,25 l C. 2.7 Of-K l o. 8 l d cP l t'). 8 l TIP eALL VALVE l 733-4 12 1-X l C. o I d. O l o. O 13f-K16,7 l d. 7 l o. 7 l Tip ou t VALVE l 733-5 IZ-t Il o.d I o.O l 0. 0 l3-4-JIIl o.O l C.d l o.0 l TIP PURGE OEEOL l 7f0-743 V-4 E 7.T l 2.7 12.7 lN#12.7 l 2. 7 1 2 7 l l cm I so 24ee-1A.2A 12-5 El O. 0 l C.O l d. d l2 e 5 l o. o j o. o l 6.d l cm I so 24es-te.2n 12 lo-M o.O l o.O i O. O it-asiO.O l O O i o.o i cm I so 24ee-3A.AA lz.20-5\\ 0.0 l 0,0 l 0.0 l2.x-ag o. o l 0. 0 g o. 0 g gm I so 2*ee-a.e IIk %Io.0 l o.0 l 0.0 I/-X Kl 0.0 l 0. 0 l00 l ACAD I A0 2see-2A.23A Il 2f Klo. 3 l d. O l 0. 30 l/-2f Kl 0. 3 1

0. O l d, 3 l AcAo I A0 2see-a.23e II-2f-K i 2. 2. I o.o l2..Z l/.2f El 2. 2. I o, o i 2. 2 l

AcAo I Ao esse-3A.24A I t 5 51 0. 0 1

0. 0 i0.0 1/ bmi O.0 1 0,0
o. O l l

Acm I e 2see-an.2e it

  • Kl o.O l o.0 g o. O \\/-xgl 0.0 l o.0 l o.o l

Acao l Ao 2see-44.sA U 21-Ki O. O i 0,0 i O.0 1/-27 4 o o l O. o i o. o l AcAo i Ao 2see-e.s is-z/-si 70 i /. l i 71 inrsi 7.0 i //i79 l I 22 3 I lg.xl goo ll l l 3 265l ll.15 Ign,5 5 l l ,3 PAGE TOTAL l NA l l l l iga l 0483H.

REFUEL OUTAGE LOCAL LEAK RATE TEST SimeARY AS FOL3e (SCFH) AS LIFT (S(fM) 1 ~_ VALVE (S)/ m itaas axinas measm teAxinam CESCRIPTI0N PEwTwil018 DATE TOTAL PATWAY PATlGAY DATE TOTAL PAflGAY PATisAY EQUIPMENT mim I x-1 IN'El O' d I d. O l OO 31-//410.01 0.0l O.0 l os ACCESS m TcH lx4 L7+# l /,6 I O.8 i /. ( p-+alO.o l O.o 1 0. O i cRo micH l x-e 12+K l o. O l 0, 0 l O. 0 l3-(A3 c.o l c.O l o.O g Tir new Tm Tian l x-3sA 123-ul0.0 l 0,0 i o, O iz-3 z i o. o i 0. O i o. o i TIP PEETRATim 1 x-388 12 J-K l O. 0 l d, O l C.O l2-3-Kl 6. O l C. O l C. C l TIP PEETwil(3d I x-35C IZ-3 %l d.O l C,0 10.0 12-Mi O.01

6. C l O, O [

Tir pew im TioM l x-3so 12-3 K i 0,0 I O.o l 0,0 12-Ml d. O i O. C I O. O l TIP PEW TRATi(ps 1 x-35E 12-3 Xl O. O I O. O l C.O l2 3-#l 6 O l C. O I C.O l l2-3-X O,C l O. 0 1 d, 6 l b.7-Kl O. O l C. O I O. C l TIP PEETRATI(38 l x-35F I Tir pew Tm Tion I x-3ao 17-3 Kld,0 i O.0 i O, O ig-rat a O l o. O i O. o i TonuS m icH I x-ao0A lN #1 0.0 l O.0 l 0,0 ;3-ast 0.0 i o.O i o,o i TanuS mTm I x-acos 1/-(-#1 0.0 i o,0 i 0,0 1 y l/-4l 0, 0 l O. 0 10,0 g o m Ett nEAo I l/ 6 Ml> M l > M l MO lux l 0,0 1 0. 0 l

o. O g Sm AR tua insp. m TcH I SL-i i/-yKl O. o 1 0, o l O. 0 t/- s-s i 0. 0 1 0 0 l o.o l Sm En tua inse. m TcH l SL-t V-y M I O. 0 I O. O l C.o ir-s-cio.o l o.o l C.o l Swan tuo lase. m TCH I SL-3 t/-3/-Kl O. M l 6. O l 0,O p-S WlC.O I O.O l g,o l geEn Luo lusr. m TCH l SL-4 1/-##l C.O l d.d l C.O l/-##l 0, O l
d. O l C. O l SHEAR LUG INSP. m TCH l SL-5 V.F-#lO.O I d.O l C.O

/l J/ #l O. O I O. C l o.O l SHEER LUG INSP. m TW l SL-8 V-3-WI O.6 l C. C l C.O l/-EKl C.O I O.C l C. O l SHEAR LUG INSP. HATCH l SL-7 ll-3/ N l C. O l C. O l C. O l/ N-#l C O l C.O l C.O l l/-J/ K) O.O l C.O l C. O l/-J Wl C.C l

d. d l o, O l

SHEEN LUG INSP. HATCH l SL-8 T l lg/,f I gd.F l g/, f I lo.O l o.O I O,o 1 PAGE TOTAL l NA l l l l NA l l l dl t. -4 0483H REFUEL OUTAGE LOCAL LEAK MTE TEST SLAAWlY AS FOLDO (bFH) AS LEFT (SCFH) VALVE (S)/ ulNitam MAXitaAI stilistas IAAxilaal DESCRIPTION PBETMil0N OATE TOTAL PATHNAY PATHWAY DATE TOTAL PAT MAY PAfteAY wCH. pew TRATION l X-7A ll*&# 1 0.0 l C.O l O.O l /- e - 4 l o. O l C.O l O.6 l wm. PENETMTION l X-79 l / */d-E l /.O l O. 8 l /O l/-O EI /.O l oF I /,0 l ww. vnmiMil0N I X-TC l! e-K l 6 0 l C.O l O.O l/-M41 0 0 l O.0 l o.0 l wCH. PEwi n tion I X-70 II e-# I 0. O l d. O l O.O l/ e #l O. O l C. O l 00 l wCH. PENETM TION l X-8 lt-/d-K l C. O l 0, o l C.O l Nog l 0,o l O. O ldO l w m. PEwTRAfl0N l X-9A U-OX l 0 0 l C. O l O. O 1/- 4 K1 0. 0 l o.O l O.0 l wCH. PEm m il0N l X-se U +# O.0 l 0, O I O.O I/-#4140 : O. O l 0,0 I I wa. PEwTMTiON l X-30 li-e. x l O. O 1 0, O i O.O i/- e-s l o. O i o. O i o.0 ; w a. PewTMTIGN l X-11 Ir to M I O. O I d. O l o.O l/-M Kl 0 0,

0. 0 l 0,0 l wCH. PENETRATION l X-12 l8-'d-K l 8 0 l Y.O l80 1/ MKl 8.0 l M. O l 8.0 l

w @. PENETMTION l X-13A l/-/0810.0 i O.01 0.0 l/-bal d.O l O.0 l C.O l w@. PENETRATION l X-138 1/-MXl C.O l d,0 l 60 l/-Mgl 0.0 l C.O l d,0 l mcu. PEwTMTiON l X-14 P-eEld.O l C. o l 0. 0 I/-N-Fi d O I O.O l 0.0 l w CH. PENETRAT10N l X-23 ll-WKl2.8 l J. 3 l2.6 l(-OKI 2. 6 l /. 3 s 2.G g wCH. PENETMTION l X-24 l/ e-5 l O.O l 8. O l O.O U-#-M l d. O l O.O l 6.8 l wCH. PENETRATION l %-25 U-MK l /.8f I d.73 l /.86' l/-#41/.88 l O. 93 l /,7 l wCH. pew TRATION l X-26 l/ ##l O.26 l C. /3 lO.2S l/-Msl0.2Fl d /3 l C.ZF l NEm. pew TRAfl0N l X-38 l/-#KIO.O l C.O l C.O l /- M a1 O. O l d O I O,6 l wCH. pew TM il0N l X-47 ll-#El 60 l O.0 lC.O ll-e Kl O. O l 0,O l O.0 l w CH. pew TM TION l X-17 11 5 1 0- 0 l C. O l C.O Pbsl 0.0 l O.0 ldC l wCH. pew TRATiON l X-iaA s,aQrl C.o i O.O iO.O p+xt o.O l o.o i o. o i l 3. 70l 6 86 l /3 70 l l 13.70 l 6. 86 l l3. 70 l i 1 l l l l NA l l l ,d PAGE TOTAL l NA .Y 1 0483H -.

~ i REFUEL OUTAGE LOCAL LEAK RATE TEST SIAAAARY AS F0ule (SCFH) AS LIFT (SCFN) VALYE(S)/ NINIIAtt E Xittal NINissas N4XIesas OEscilPTION PEE TM TION DATE TOTAL PATlWAY PATisAY DATE TOTAL PATIGAY PATIGAf MECH. PEIIETRATION l X-188 ll-D El //. O I 5.5 l //. O 1/-/G Kl //. O I E. 5 l //, 0 l li-24-K O.O l 00 10.0 l/-MEl O. 0 l d. d l 0,0 l l ELECTRICAL PENETMil0N l X-100A ELECTRICAL PENETMil0N l X Wlqs lf->510 0 l O.O l O.O 1/-mal O.O l C. 6 i C.O l ELECTRICAL PeNETMTION l X-100C lNT-% l O.O l OO l O.0 l/-/S Kl 0, 0 l O. 0 l C.O l ELECTRICAL PENETMil0N lX-1000 l l l l l l l l l (unit ONE ONLY) l li-6-K l o.O i O. O i O.0 i/-sui o.O i C. O i o,f7 _,; ELECTRICAL PEIETMTION l X-100E li-5-Kl O.O l O.0 l O. O l/-bgl O.0 l d O i g,0 _ _ l ELECTRICAL PEETRATI0lt l X-100F 1/-7 5 l 6.0 l C.O l O.O 1/-/7#l O.C l dO l /j,O l ELECTRICAL PENTMTION l X-100G 11-7-#l C.O l C. O l O. O Il-/7 X l O. O l O.O l d,O l I *K 2./O I 40I i 2./ l ELECTRICAL PEIETMTION l X-101A 1h #- 5 1 2./ O l /.0 7 l 2,10 / I ELECTRICAL PEETRATION l X-1018 1/4% l O.O l O O l C.O I /-6Kl C.O l C.Ol C. O l ELECTRICAL PEETRATION I X-1010 Il-6K l O.O I C.O l C. O l/ 6KI d.O I O, O l 0, d l l l l C.F l/Mlo.F l O3 l l ELECTRICAL PENETRAfl0N lX-102A IN5-X l d'Il O' l l i i i i O.wl (UNIT ONE ONLY) l ELECTRICAL PENETRATION lX-1028 l l l l l l MN l l l M l 8/[ l (UNIT Tuo ONLY) l 1 l l l l l l ELECTRICAL PEE *aATION l X-103 II 5-EI O,0 l C.O l C. O l /5-K O.0 l O. O l 0,0 l b l ELECTRICAL PENETRATION lX-104A l l l l l l l l M ll #d ,l #A (UNIT Tuo ONLY) l l 1 l l l l l ELECTRICAL PENETRATION l X-1048 lhM51 0 0 l C.0 l O.C lNDKl O.O l C. O. ll 0. O l I -MK C.O l O.O l O,d 1/*Kl 6,0 l

6. O l 0,0 l I

l ) ELECTRICAL PEE TMTION l X-104C i l13. 6 l d'.25'I/3. 6 l l13. 6 I (85 l13A5'l PAGE TOTAL l NA l l l l NA l l l 4, l i 0483H _40-

~ i REPuEL OUTAGE LOCAL LEAK RATE TEST SIAAAARY AS P018e (SCPH) AS Lj FT (SCPH) VALVE (S)/ NINittas IIAXitaat giggggg tiAXittai DESCRIPTION PENETRATION DATE TOTAL PATleAY PAneAY DATE TOTAL PADeAY PADeAY ELECTRICAL PE N TRATION lX-1040 l l l l IM l l l l l l i l l l A/M l (Isili Two 011LY) l l l l ELECTRICAL PENETRATION l X-104P IN7#1 00 l CO l do l/-FAfl C. O l C.d I o,d l ELECTRICAL PEETRAil0N lX-106A l l l l l l O'O l l g OO OO l O.O l (uMIT ONE CIILY) I l lOO l l l l l ELECTRICAL PE M TRATION lX-1068 l l l l l C. 2-l'D4 O*O l O*O l 0' l 2' ^ l l l 1 i l l l (uMIT ONE ONLY) I ELECTRICAL PENETRATION l X-106C ll-b-K l 2./ I /.05 1 2./ l/4Kl2. / l /.df l 2./ l ELECTRICAL PEBETRATI0li lX-1060 l/'64 l/O 0 l 3 6 l#d l/'##l /dO l S O l /d.d ll (unit Cw CNLv) 1 I 1 i i I s i ELECTRICAL PE9ETRAT10N lX-106A l #A l #A l ///1 l#d l l #A l A# l #4 l (uMIT Tuo ONLv) I i i i i i ELECTRICAL PEETRATION lX-1005 lM lM i M l#2 l l l #A l l #A g i A// (unit Two ONLv) i I i i i i l ELECTRICAL PE9ETRATi(Ni i X-107A l/@VI O. O l d.d l C. C l/-JD-Kl d.O l C. d l 0. 0 l ELECTRICAL PENETRATION lX-1078 lM l l /IA l l l l l l l l l MA l (UNii Tuo CNLY) l I i i l l Toluss PEwiRATION I X-n7A I/* 51 d.O l 0,0 l 0. 0 l/-Egl d.o l o.O lo,o g Tom s PEm TRATiON l X-n78 ti-Adi O.0 i O.0 i 0.0 /t:* xi o.o i a o i o,o i A TORUS LEvEt PuNaEs lN-Kio.O i o.o i o. o 0+Ei o.o i 0.o i o,o i 1 /2.30 I (./5- ! u. I 1 1l12.l lI g, o f Il g./ lI PAGE TOTAL l NA NA l l l l% l l 0483H _41_ m

4 REFUEL OUTAGE LOCAL LEAK RATE TEST SLAAAARY AS FOUW (SCFH) AS LEFT (SCFH) VALVE (S)/ MIN 14tal leAxitaAs MINilAAI leAXittai DESQtlPfl0N PENETRATION DATE TOTAL PATWAY PATMAY DATE TOTAL PATWAY PATHWAY '5' T0ftas LEVEL FLANGES I ld' Ml d'O l O.0 ! o.0 lJf 4 l 0. 0 l

0. 0 l ao l

SRu/ises ruRGE l l l l l l l l l l (LMli TWO ONLY) l l l l l l l l l l PEnSomEL INTEntocx x-2 l x-2 13 7-361 3 43 l / 72. l 3. 't.3 0 7-4'l 3 Y3 l /. 72 l 3.9) l H /0 MONITORING SYSTEM l---- l,p gl7,7 l 7, 7 l 7, / ly.q l j, j l 7, j l 7, 7 l 2 2 y (TOTAL) l l l i l l l l l l l I 453 l 2.22 l 4 53 l \\ 453 l 2. P2. l 4 53 i PAGE TOTAL l NA l l l l NA l l l l l I35to.87l1233 23 l278135 l l28d.35l 155 23 l 280 87 l TEST TOTAL + l NA l l l "I NA l l l l

  • To determine the corrected leakage of the IASIV's (as if they had been tested at 48 PSIG), multiply by 1.58.

"When the maximim pathway leakage exceeds 0.6 La (293.75 SCFH). write an LER imeediately. +The test total is the sua of all page totals in the checklist (exclude IASIV's from all test totals). (final) 10/0168s 0483H L

e e APPENDIX B TEST CORRECTION FOR SUMP LEVEL CHANGES 6 0483H - - - -

The total time measured leak rate, given by equation 3 in QTS 150-T9 (see Appendix C), assumes that the containment free air space is 288,737 ft3 at a water level in the reactor of 35" and that any change in reactor water level is due to a water leakage from the containment changing the free air volume. If the water leakage is from the containment and due to the operation of the shutdown, cooling mode of RHR to maintain reactor water temperature, this leakage would not be representative of accident conditions when shutdown cooling would be isolated. During the stabilization phase of the test considerable effort went into tr ing to reduce the rate of level decline from the 1.18 inches / hour (27.1 ftg/hror3.7GPM) that was experienced during the test. Since the leakage could not be reduced further and level indication for the suppression pool indicated that most of the water leaving the reactor was entering the suppression pool, not leaving the containment, the data input to the computer program was duplicated except for leaving the reactor water level constant at 35". The effect of this alteration was to remove the free air space volume correction from the leak rate calculation. To do so was conservative in that it increased the leak rate value and, if some of the water was leaking from the containment, the actual air leakage was less than the computed value. The calculations ignoring the vessel level change were available during the test and have been used for the reported leakage in this report. The test verification during the induced phase of the test demonstrates the accuracy of this model and the change was completely explained to the NRC inspector witnessing the test. A hand calculation, using a complete water balance, is included in this Appendix to show that the leak rate reported is not significantly affected by a more detailed analysis, including changing subvolume free air space due to water leaking from the reactor vessel to the drywell sumps and suppression pool. To perform a leak rate calculation with a changing containment free air space, the dry air mass for each containment subvolume is calculated using the following equation: Hj - 2.6995 X Pj X Vj (Tj + 459.69) where Pj = dry air pressure in i th subvolume, Vi - free air space in the I th subvolume, and T = average temperature in the i th subvolume. L The total containment dry air mass is given by the sum of the dry air masses for all of the subvolumes. 11 Wt, y Ng i=1 0483H -

r The computed leak rate will be the total time leak rate and is given by: Lt - - 2400 X -t _ w. W H W* where W* - dry air mass of the containment at the start of the test, Wt - dry air mass of the containment at time t, H - duration of the test from start to time t in hours, and Lt - total time leak rate at time t. There are 3 subvolumes to consider in evaluating the effects of water leakage from the vessel: the vessel itself (subvolume 11), the suppression pool (subvolume 10), and the subvolume for the drywell equipment drain sump (DWEDS) and the drywell floor drain sump (DWFDS) (subvolume 9). Any water leaking from the vessel in excess of that added to the sumps and suppression pool will be assumed to have leaked from the containment through the shutdown cooling mode of RHR. DATE TIME DWEDS* DWFCS* REACTOR LEVEL TORUS LEVEL 03/22/86 1330 13" 17" 50" .15" 03/26/86 1654 36" 20.5" 17.6" .75" Rate of level change .9489 .1277 -1.1825 .0219 (in/hr) Rate of free air vol -3.206 .4879 +29.56 -18.914 3 change (ft /hr);

  • The sumps are assumed to have filled at a constant rate during the period when the containment was fully pressurized.

Each sump holds 1200 gallons and is 42" deep. The following table gives the extrapolated values of the subvolume free air spaces using the above data: 12 HOUR TEST INDUCED TEST SUBVOLUME t-0 t=12 t=0 t-6 NO. (1) Vi yj vg vg 1 10,066 10,066 10,066 10,066 2 9,165 9,165 9,165 9,165 3 10,494 10,494 10,494 10,494 4 3,612 3,612 3,612 3,612 5 23,039 23,039 23,039 23,039 6 30,808 30,808 30,808 30,808 7 26,373 26,373 26,373 26,373 8 24,754 24,754 24,754 24,754 9* 8,754 8,704 8,698 8,685 10* 134,549 134,333 134,307 134,203 11* 6,456 6,807 6,844 7,006 TOTAL 288,070 288,155 288,160 288,205 0483H _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ -

V9 - 8,901 - OHFOS X 1200 X.13368 - ONEDS X 1200 X.13368 42 42 3 V o - 134,808 - 863.75 (ft ) X Torus level (in) i in V j - 6571.7 - 25(Level -35) i Using the subvolume vapor pressure, subvolume temperature, and the subvolume free air space, the dry air mass for each subvolume can now be calculated. The following table gives the necessary data for the start of the test as 21:31:28 on 3/22/86. DRY AIR SUBVOLUME SUBVOLUME VAPOR PRESSURE PRESSURE TEMPERATURE DRY AIR MASS NO. (PSI) (PSIA)

  • F (1bs. mass) 1

.579 63.685 102.385 3078.81 2 .465 63.799 110.114 2770.16 3 .465 63.799 102.539 3214.59 4 .465 63.799 102.473 1106.58 5 .416 63.848 100.398 7089.87 6 .419 63.845 98.198 9517.58 7 .419 63.845 94.498 8201.87 8 .342 63.922 85.624 7833.08 9 .342 63.922 83.264 2782.12 10 .290 63.974 78.234 43196.28 11 2.642 61.622 136.549 1801.20 11 W*= I Hj - 90,592.15 1-1 The following table gives the necessary data for the end of the 12 hour test at 09:33:06 on 3/23/86. DRY AIR SUBVOLUME SUBVOLUME VAPOR PRESSURE PRESSURE TEMPERATURE DRY AIR MASS NO. (PSI) (PSIA)

  • F (1bs. mass) 1

.578 63.596 102.911 3071.63 2 .487 63.687 111.623 2757.99 3 .487 63.687 104.842 3195.85 4 .487 63.687 104.818-1100.05 5 .424 63.750 102.556 7051.81 6 .429 63.745 100.099 9470.41 7 .429 63.745 95.210 8178.51 8 .338 63.836 84.825 7834.02 9 .338 63.836 82.489 2766.46 10 .269 63.905 77.033 43176.82 11 2.634 61.540 136.436 1896.96 W12 - 90500.51 0483H 1

I The leak rate for the 12 hour test is: L12th - - 2400 X 90,500.51 - 90,592.15 12.027 90592.'5 L12h,r .2019 wt % / day (compared to.2372 computed assuming constant reactor water level and ignoring sump level changes) The following table gives the necessary data for the start of the induced phase of the test at 10:53:17 on 3/23/86. ORY AIR SUBVOLUME SUBVOLUME VAPOR PRESSURE PRESSURE TEMPERATURE DRY AIR MASS NO. (PSI) (PSIA) 'F (1bs. mass) 1 .582 63.560 103.071 3069.02 2 .486 63.656 111.648 2756.53 3 .486 63.656 105.041 3193.17 4 .486 63.656 105.013 1099.13 5 .426 63.716 102.749 7045.63 6 .430 63.712 100.241 9463.10 7 .430 63.712 95.255 8173.61 8 .340 63.802 84.843 7829.59 9 .340 63.802 82.489 2763.09 10 .268 63.874 77.045 43146.56 11 2.634 61.508 136.436 1906.28 start 90445.71 W = induced The following table gives the necessary data for the end of the induced phase of the test at 16:54:01 on 3/23/86. DRY AIR SUBV0LUME SUBVOLUME VAPOR PRESSURE PRESSURE TEMPERATURE DRY AIR MASS NO. (PSI) (PSIA)

  • F (1bs. mass) 1

.597 63.385 104.128 3054.84 2 .496 63.486 112.247 2746.28 3 .496 63.486 105.968 3179.42 4 .496 63.486 105.936 1094.41 5 .428 63.554 103.533 7017.94 6 .436 63.546 100.876 9427.76 7 .436 63.546 95.635 8146.74 8 .345 63.637 84.942 7807.92 9 .345 63.637 82.579 2751.36 10 .267 63.715 77.162 42996.46 11 2.670 61.312 136.961 1943.47 end 90166.60 W = induced 0483H The leak rate for the induced phase is L (induced) - - 2400 X (90166.60 - 90445.71) 6.012 90445.71 - 1.2319 wt % / day (compare'd to 1.2691 computed assuming constant reactor water level and ignoring sump level changes) The above calculations show that the leakage from the reactor vessel did not significantly effect the reported leak rate and that those reported values are conservative values with respect to the actual leakage. 0483H -48

G APPENDIX C COMPUTATIONAL PROCEDURE l i 0483H l

APPENDIX C CALCULATIONS PERFORMED FOR IPCLRT DATA Data collected from pressure sensors, dew cells and RTD's located in the containment are processed using the following calculations. If the test is concluded with a test period of <24 hours, additional calculations given in QTS 150-T9 will be required. A. Average Subvolume Temperature and Dewpoint. Tj - E(all RTD's in the jth subvolume)

  • F (1)

Number of RTD's in jth subvolume D.P.j = E(all dew cells in jth subvolume)

  • F (2)

Number of dew cells in jth subvolume where Tj - average temperature of the jth subvolume D.P.j - average dewpoint of the jth subvolume B. Average Primary Containment Temperature and Dewpoint. NVOL T-E (VFj) (Tj)

  • F (3)

NVOL D.P. - E (VFj) (D.P.j)

  • F (4) where T - average containment temoerature D.P. - average containment dewpoint VFj - volume fraction of the jth subvolume NVOL - number of subvolumes If Tj is undefined then Tj - Tj,1 for 1 1 j 1 (NVOL - 2)

Tj - Tj_j for j - NVOL - 1 Tj - estimate for j - NVOL If D.P.j is undefined 0.P.j - D.P.j,j for 1 1 j i (NVOL - 2) 0.P.j - D.P.j_j for j - NVOL - 1 0.P.j - estimate for j - NVOL 0483H C. Calculation of Dry Air Pressure. D.P.(*K) = 273.16 + D.P.'*F) - 32 1.8 X - 647.27 - D.P.(*K) 3 EXPON - X * (Y + Z

  • X + C
  • X )

(D.P.(*K))*(1 + D

  • X)

Py- (218.167) * (14.696)' (PSI) e(EXPON

  • In(10))

P - I(all absolute pressure gauges) (5) Number of absolute pressure gauges - Py (psla) where Y - 3.2437814 Z - 5.86826 x 10-3 C = 1.1702379 x 10-8 D - 2.1878462 x 10-3 Py = volume weighted containment vapor pressure P = containment dry air absolute pressure C, D, X, Y, Z, and EXPON are dewpoint to vapor pressure conversion constants and coefficients. D.. Containment Dry Air Mass. W = (28.97) (144) (P) * (288737 - 25 * (LEVEL - 35)) (6) 1545.33 * (T + 459.69) where W = containment dry air mass LEVEL = reactor water level 289506 - primary containment volume NOTE This volume is the summation of the subvolumes calculated in OTS 150-T2. These subvolumes calculated in QTS 150-T2. These subvolumes were calculated using QTS 150-T8. 0483H _ - -.

E. Measured Leak Rate. Lm(TOTAL) = (NBASE - H )

  • 2400 (7) 1 DAY tj
  • HBASE Lm(POINT) = (Hj_j - Wj)
  • 2400 (8) 7./ DAY (tj - tj_j )
  • Hj_1 where NBASE = containment dry air mass at t = 0 tj = time from start of test at ith data set t _1 - time from start of test at (1-1)th data set t

Hj = dry air mass at ith data set Hj_j = dry air mass at (1-1)th data set Lm(TOTAL)= measured leakage from the start of test to Ith data set Lm(POINT). measured leakage between the last two data sets F. Statistical Leak Rate and Confidence Limit. LINEAR LEAST SQUARES FITTING THE IPCLRT DATA The method of "Least Squares" is a statistical procedure for finding the best fitting regression line for a set of measured data. The criterion for the best fitting line to a set of data points is that the sum of the squares of the deviations of the observed points from the line must be a minimum. When this criterion is met, a unique best fitting line is obtained based on all of the data points in the ILRT. The value of the leak rate based on the regression is called the statistically average leak rate. Since it is assumed that the leak rate is constant during the testing period, a plot of the measured containment dry air mass versus time would ideally yield a straight line with a negative slope (assuming a non-zero leak rate). Obviously, sampling techniques and test conditions are not perfect and consequently the measured values will deviate from the ideal straight line situation. Based on this statistical process, the calculated leak rate is obtained from the equation: H = At + 8 where H = contained dry air mass at time t 0483H.

B = calculated dry air mass at time t - 0 A = calculated leak rate t - test duration The values for the Least Squares fit constants A and B are given by: A = {N

  • I(ti) * (W1) - Ett
  • IWi} = I(ti - t) * (Wi 5)

{N

  • I(t))2 - (It )2}

I(t) - t)2 t 8 - IW1 - A

  • Iti = {I(ti)2
  • I(Wi)} - {I(ti) * (Wi)}

N N

  • I(tj)2 - (It )2 t

where t = the average time for all data sets R = the average air mass for all data sets The second formulas are used in the process computer program to reduce round-off-error. By definition, leakage out of the containment is considered positive-leakage; therefore, the statistically average leak rate is given by: L5 - (-A) * (2400) (9) B (weight %/ DAY) 0483H STATISTICAL UNCERTAINTIES In crder.to c.11culate the 95% confidence limits of the statistically average leak rate, the standard deviation of the least squares slope and the student's T-Distribution function are used as follows. I N

  • E(Wj)2 _ (zwj)2 o-{
  • (

) - A }l/2 2 N

  • E(t )2 - (It )2 (N-2) t t

When performing these calculations on the process computer, E(Hj)2 and (IWj)2 become so large that they overflow. To avoid this problem aWi is substituted for W. 4W1 is the difference 1 between Hj and WBASE-The single sided T-Distribution with 2 degrees of freedom is approximated by the folicwing formula from NBS Handbook 91: T.E. - 1.646698 + 1.455393 + 1.975971 (N-2) (N-2)4 The upper confidence limit (UCL) is given by UCL = ls + o * (TE) 2400 B (weight %/ DAY) (10) 0483H.

CALCULATIONS PERFORMED FOR IPCIJt? DATA FOR TEST DURATION LESS TRAN 24 HOURS Data collected from pressure sensors, dew cells, and RTD's located in the contain===t are processed using the following equations. Some data needs to be analyzed using equations in QTS 150-T3 prior to using these equations. Those equations are referenced by equation number. The primary reference for these calculations is the Topical Report BK-TOP-1 Revision 1. A. MEASURED LEAE RATPi (Total Time) From BN-TOP-1 Rev. 1, Section 4.5 the following equation is given for the measured leak rate using the total time procedure: i = 2400, f,T E\\ o i M g (3) 9,) t T g g th where Ng = measured leak rate in weight % per day for the i data point assuming r), R, and V are constant in the Ideal Gas Law equations;,, time since the beginning of the test period to the i tg = data point in hours; T,, Tg = mean, volume weighted containment temperature at the beginning of the test and at the data point i in 'R (Reference EQ. 3 in QTS 150-T3 and convert to *R (*F + 459.69 = 'R) ). F,, e = calculated dry air pressure in PSIA at the beginning of g i the test and at the data point i (Reference EQ. 5 in QTS 150-T3). Using the following relationship derived in ANSI N45.4-1972 Appendix B given below: W W T P i, o i o-g, (2) o i o where W, Wg = dry air mass of the containment at the beginning of the test and data point i, respectively. 4,

And substituting in the calculation of the containment dry air mass that corrects for a change in reactor water level given in QTS 150-T3 EQ. 6 gives the following expression for the measured leakage: i

  • 2 W 'i ([I T

T, Pg (288737 - 25 (M - 35)) g (3) g g P, (288737 - 25 (3, - 35)) t where 2,, LEg = beginning of the test and the data point i, reactor water level i respectively. B. CALCULATED LEAK RATE The method of Least. Squa.res is a statistical procedure for finding the "best fit" straight line, commonly called the regression line, for a set of measured data such that the sum of the squares of the deviations of each measured data point from tle straight line is minimized. To determine the calculated lets (L,) rate at time t, the regression line g is determined using the measured leak rate data from the start of the test to time t The calculated leak rate is the point on this line at g. time t. g Lg=Ag+Bg g (4) t where tg = data point; time in hours since the beginning of the test to the i aIt M (I t ) (I M ) 1 g g 1 i* n I (t )3 - (It )3 t g 2 (IM ) (Itt ) _ (yg ) (ze g ) g Ag= ,ygz, (7g )z a I=I i=1 a = number of data sets to time tg C. CONFIDENCE LIMITS UCLg=Lg + TD

  • a (5)

LCLt=Lt + TD

  • a (6)

~ Where, Lg = calculated leak rate for the i

  • data point (Reference EQ. 4);

TD = value of the T - distribution for the 95% confidence limit and (n -2) degrees of freedom; i = 1.95996 + 2.37226, 2.8225 TD (n-2) (n-2)3 a = number of data points including the i data point;,


~ --

o = standard deviation of the measured leak rate from the regression line calculated using the first a data points; (t - t)8 ) 1+2+[I(tz)-1(It3]2)} i a =.s

  • 2 n

n I=I J=1 '*t t= n ([( (M I -N)2)g y I i a= (n - 2) ) N

  • t j=Ag+Bf j

th Mj = measured leak rate (total time) at the j data point. l r i i i l l l

O e e APPENDIX D INSTRUMENT ERROR ANALYSIS 0483H.

O IPCLRT SAMPLE ERROR ANALYSIS FOR SHORT DURATION TEST A. ACCURACY EPROR ANALYSIS Per Topical Report BN-TOP-1 the measured total time leak rate (M) in weight percent per day is computed using the Absolute Method by the formula: / T P i M (% / DAY). 2400

  • 1_

1 N (1) H ( T P N 1 where: E = total (volume weighted) containment dry air pressure 1 _ PSIA) at the start of the test; ( PN = total (volume weighted) containment dry air pressure (PSIA) at data point N after the start of the test; H = test duration from the start of the test to data point N in hours; Tj = containment volume weighted temperature in *R at the start of the test; TN = containment volume weighted temperature in *R at the data point N. The following assumptions are made: A A Pj = E = P where P is the average dry air pressure of the N containment (PSIA) during the test; A A Tj - TN=T where T is the average volume weighted primary containment air temperature (*R) during the test; Pj - PN where P is the total containment atmospheric pressure (PSIA); Pyj = PVN Where Py is the partial pressure of water vapor in the primary containment. l 0483H.

Taking the partial derivative in terms of pressure and temperature of (1) equation and substituting in the above assumptions yields the following equation found in Section 4.5 of BN-TOP-1 Rev. 1: e e 1/2 eg = 1 2400

  • 2 ( D )2 + 2 ( _1_)2 H

A A P T where ep - the error in the total pressure measurement system, (epy>2 ] 1/2 p-t [(epy)2 e ePT = (instrument accuracy error) / / no. of inst. In measuring total containment pressure; epy - (instrument accuracy error) / / no. of inst. In measuring vapor partial pressure; eT = (instrument accuracy error) / / no. of inst. In measuring containment temperature; eg - the error in the measured leak rate; H = duration of the test. NOTE Subvolume #11, the free air space above the water in the reactor vessel, is treated separately from the rest of the containment volume. The reason for the separate treatment is that neither the air temperature or the partial pressure of water vapor is measured directly. The temperature of the air space is assumed to be the temperature of the reactor water, as measured in the shutdown cooling or clean-up demineralizer piping before the heat exchangers. The partial pressure of water vapor is computed assuming saturation conditions at the temperature of the water. Volume weighting the errors for the two volumes (Subvolume #11 and Subvolumes #1-10) is the method used. 0483H _

~ B. EQUIPMENT SPECIFICATIONS FLOHMETER THERMOCOUPLE INSTRUMENT RTD (*F) PPG (PSIA) DEWCELL (*F) (SCFM) (*F) Range 50-200 0-100 140 0.9-11.05 Accuracy 2 50 2 015 il 1 111 10 2 Repeat-ability 2 10 1 001 1 50 1 02 t.10 C. COMPUTATION OF INSTRUMENT ACCURACY UNCERTAINTY 1. Computing " eT " Volume Fraction for Volume #11 =.02276 Volume Fraction for Volumes #1-10 =.97724 er - 1 (.97724 * .50 +.02276

  • 2 )

/30 /1 eT = 1 1347*R 2. Computing " epT " l epi - i.015 /2 ePT = 1 0106 PSIA 3. Computing " epy " At a dewpoint of 65'F (assumed), an accuracy of 1 l'F corresponds to !.011 PSIA. For subvolume #11 at an average temperature of 140*F, an accuracy of 1 2*F corresponds to 1 150 PSI. Opy - 2 (.97724 a.011 +.02276 *.150 ) /10 /I epy = 2 0060 PSIA 4. Computing " ep " ep - 2 [ (.0106)2 + (.0060)2 )1/2 ep - t.0122 PSIA 0483H -. -

A 5. Computing total instrument accuracy uncertainty " eg .1347)a}1/2 eg -+2400*f2*(.0122 )2 +2*( H \\ 63.0 544.7 / A assuming P - 63.0 PSIA A T - 544.7*R Therefore, for a 12 hour test (H), A eg - t.0889 wt 7. / DAY D. COMPUTATION OF INSTRUMENT REPEATABILITY UNCERTAINTY 1. Computing " er " er = 1 10

  1. 31 eT = 1. 0180*R 2.

Computing " epT " ePT = +.001 E ePT = 1 0007 PSIA 3. Computing " epy " epy - t (.97724 *.006 +.02276 *.008 ) /10 /1 epy - t.0028 PSIA 4. Computing " ep " p - [ (.0007)2 + (.0028)2 3 1/2 e ep - t.0029 PSIA 0483H R 5. Computing the total instrument repeatability uncertainty " eM" eM=2400*[2(.0029 ja + 2 (.0180 ): 1/2 H ( 63.0 544.7 Therefore, for a 6 hour test, 'f R eM = 1 0160 wt % / DAY E. COMPUTING TOTAL INSTRUMENT UNCERTAINTY A R eM = i 2 * [ (eg): + (eM): ) 1/2 eM = 2

  • I (.0889)2 + (.0160)2 ]l/2 eM = 1.

181 weight % / DAY for a 12 hour test. 4 e 8 L 4 h 4 0483H < w w-, .,,r ,,,n -~r- -- -, - - + - - - - - -, - - - - -

O APPENDIX E BN-TOP-1, REV. 1 ERRATA The Commission has approved short duration testing for the IPCLRT provided the Station uses the general test method outlined in the BN-TOP-1, Rev. I topical report. The primary difference between that method and the ones previously used is in the statistical analysis of the sessured leak rate data. Without making any judgments concerning the validity of this test method, certain errors in the editing of the mathematical expressions were discovered. The intent here is not to change the test method, but rather to clarify the method in a mathematically precise manner that allows its implementation. The errors are listed below. EQUATION 3A, SECTION 6.2 Reads: L. = A + B t. 1 1 Should Read: Lg=Ag+Bg g t Reason: The calculated leak rate (L ) at time t is computed g using the regression line constants A,g The summation signs la(equation 6 are B. computed using g equations 6 and 7). n defined as I = I, where n is the number of data sets up until i=1 time t.. The regression line constants change each time a new daka set is received. The calculated leak rate is not a linear function of time. PARAGRAPH FOLLOWING EQ. 3A, SECTION 6.2 Reads: The deviation of the measured leak rate (M) from the calculated leak rate (L) is shown graphically on Figure A.1 in Appendix A and is expressed as: Deviation = M -L g g Should Read: The deviation of the measured leak rate (M.) from the regression line (N ) is shown graphically on Figure A.1 in Appendix A and is g expressed as: Deviation x M -N g g where N. = A +B

  • t 1

P P i, A,B = Regression line constants computed from all data P P sets available from the start of the test to the last data set at time t t = time from the start of the test to the ith data set. g '

Reason: The calculated leak rate as a function of time during the test is based on a regression line. The regression line constants, A and B, are g g changing as each additional data set is received. Equation 3A is used later in the test to compute the upper confidence limit as a function of time. For the purpose of this calculation, it is the deviation from the last computed regression line at time t that is.important. EQUATION 4, SECTION 6.2 Reads: SSQ = I (M L )2 g g Should Read: SSQ = I (M N )2 t g Reason: Same As Above EQUATION 5, SECTION 6.2 Reads: SSQ = I [ M (A + Bt )]2 g Should Read: SSQ = I [ M. - (A +B

  • t )]2 1

P P i Reason: Same As Above EQUATION ABOVE EQUATION 6, SECTION 6.2 Reads: B = (Di )( i } ~ ~ I(t. - t)3 L I("i )("i Il ~ ~ Should Read: B = I(t - t)3 g Reason: Regression line constant B. changes over time (as a function of t ) as each additional data set is received. BEr of "t" lef t out of denominator. Summation signs omitted. EQUATION 6, SECTION 6.2 ( i} ( "i) Reads: B=" i "i ~ n It 3 (I tt)3 g ( i} Should Read: B =" i "i i ~ n It 3 - (I tt)* g i Reason: Same As Above i '-

EQUATION 7, SECTION 6.2 Reads: A=5-Bt g=E-B Should Read: A t g Reason: Same As Above EQUATION 10. SECTION 6.2 Reads: A=( i) ( *i ) ~ (I t ) (I t M) i g i nit 3 - (I t )z g =( i) (I D ) - (I t ) (I t M) Should Read: A i g i i g nit 3 - (I t )z g Reason: Same As Above EQUATION 13, SECTION 6.3 [g + 1 + (t - tF ) Reads:

7232 p

(t - t)2 g [3 + 1,(t -@) Should Read: a2=32 p I (t - T)2 g where t = time from the start of the test of the last data P set for which the standard deviation of the measured leak rates (M() from the regression line (N ) is g being computed; E g= time from the start of the test of the i data t set; n = number of data sets to time t ; a I = I and l I i=1 fit I= g. l l Reason: Appears to be error in editing of the report. Report does a poor job of defining variables. l _

EQUATION 14, SECTION 6.3 s[1+1+(E ~') Reads: a= p ] (t - t)2 g s[1+1+(U ) ~ Should Read: a= p ] t)2 I (t g Reason: Same As Above EQUATION 15, SECTION 6.3 Reads: Confidence Limit = L t T Should Read: Confidence Limits = L 2 T x a where L = calculated leak rate at time t p, T= T distribution value based on n, the number of data sets received up until time tp; a= standard deviation of measured leak rate values (M ) about the regression line based on data from g the start of the test until time t P Reason: Same As Above EQUATION 16, SECTION 6.3 Reads: UCL = L + T Should Read: UCL = L + T

  • a Reason:

Same As Above EQUATION 17, SECTION 6.3 Reads: LCL = L - T Should Read: LOL=L-T*a Reason: Same As Above.

Vdd3dNCIX 3 o 1Ad3 V 13S1 113S0115 nSIND WVSS - di'01 W31H00 H3VSnu30 lTW W13 dHV53 fffO 3!atit nhta I e.:egtte srh* tt Wta teWW

        • SneufsA DJ otiT 53th eW 1HsA tte ****

3f13 nit 130 m3WS 13y3 e913 3v13 13va 6sa hde34 W3.v & ne 30 te 1T13 tsk3 aJ51 12ud uoA tiu es RTIJW etS ht55 teiT1 delht utt3 3 ohs 03h32 JA onavatoh pu4 db 3SSnu J 13AJ1 tneS( ld51sa sthe aae i t OTA 1/ OV A % / OTA 1 mlA e*otsees see*eetse,t'vsots ts*eesse 6*esets3+et o*eseso3-ot e* esse 0*0808 e* esse o*ecoc es ees stst1:t.a ec ese atset:r s't9966( see*tett9 9t*06esa ts'essos e*seetr3+ee e*sesee3.ot e* sees e* sets e* eses' s'occa st*emlas. ts'ecoce m*esotE3 ot 6*ee0463.so s'tsse e*e9se s'ts06 e* test sa ese atsht:g6 e*tst9ts sev*eozed et*uv69 ts*osaes.*evoec3+ee .*oseve3+ee e*ttet e*9tse e* tete s 9516 si ses ttits:ti e'*99tsea ses'*etsss er'e6tse ts'60oca c*046nn3+oe 6*esae*3+oe s ttE6 s'tssa e*t9ts o'*0691 61 000 22:etats s ssessa sev eestr si ese dt:ttise o*etteet ses*oeets st*sete9 ts*oesse t*o&6vt3+co 6*eseet3+ot e'*re6s s'tss6 s'ttis e*ezor st ose tasttirt t*081991 ses**tefa vt*sestu tsacoeta e*etnat3+ee 6*se6143+ee e

  • tit t ~~

e *tiis 0=tetu e*tato esses e*e46993+06 6*esett)+ee e*ree6 a+eter e*tatr s'ttta ~ ts'eesse ss 000 23:et:te t*tterts sev*et966 st*sete6 stseu1*ae 6*e se t e3 + ee s'tter e*6tes e+tets e*tsae .'etet63+et 6*see413+et s ts06 t691 8*ttes 59 ses ratst:t6 t

  • t t9 tes ste*eetse st*settE ts' se 000 25:11:02 taitesss see*elvtt st*etssa ts*eseco e*046ev3+ee 6*eset63.so s'tset ~ !e*4162 ~~~ s'rets si ese tr:etsee 1*settte see**reot et*sesse ts'occos 6*

s'et6s e* o*tsto se eno tt:tt:ee

  • etat 49 se=*etrat vravitar tsaececo 6*ots63+et 6*esets3+ee e'*t9da e*tets s'tte9 e*teit aT 632164 o* rete ~

s'liel-~~-'e*C&te + .'etats3+ee ett6s ts'eca&c **046553 e+ -6*esets3*se se e'et6ta ' 9t*vtset 98 eso ts:tt:os t+osettE 's'tets e*tese eser s'tsae tter

  • etsteJ et sev*

9t*etee6 ts esses 6.' e te t 5 3 + o t 91 ete ittettes z*ttttes tees s'tsos e* 6*sette3+se s'ttse -s'etit 93 008 atshttes 2

  • tt u usa set *eetse vt*vart6 ts'00006 ses**enie wr*etit6 ts ecoce

.*04e013 06 e*0004:3+e* o*t9os -c'* e s6 e~~~~~e6ltse e*teet s 9E 681 setet:ee r*sesGGe see**te62 9t*eltte ts*oesse 6*etset2*et 6*esete3+ee ~ s'ts91 e*tise~~ ~'s't6tI 96 uet nostt:em s'91#se.t ts'oocce.*otase3+se 6*asett3+ee s'ttet set 96( e*4491 e*26ro a'ttetS s e s ** e 9et st*essev 1s tot eestt:e. 99 est~oostsise t*eostit see*eesse 9t*e96se t s'* o c o c o ** stas:1+ot 6*ese963+et e** sat e*etta e*tts1~~~ i*rese s assa e**tet e*rtst 0=teet" 94 ts1 ee etisi t*tatese ses*etsre 9t*e9tse ts'ecese *

  • s a t se 3 + e t' 6*ese943+et setis

-e*lets s*rts9 s'ztit eesse 6*oitse3+se 6*seett3+ee ts'oceso 3e oot 00:61:s5 C*ttert6 ses*tset6 tt*ettit tset o*ts9o ' e*6669~~ ~F'tsis 03 ts* 6*o14513 0+ 6*se09e3+co e*rese 96 001 03:01:65 C*setsae see*tet61 9t*ese06 9tette sew **otes 9t*s9 tot ts*oceoc.*ottet3.ce n*esett3*oo e

  • t 9 01 '-

tet6 e* s't99t ta eot stitt ss t' set 991 ce o*t911 e*16*e o*zsrE e*:9se 6*esott3'oo r* setatsret 9t*s9 tis ts*oocse a*otsne3*ot ti oot et:tl:se 6*4ecsu2+ e*3t41~~ ;oTIlew b ili /c s ttse ti oot at:tt:s6 e*onetis see*titet sravstis ts*ococa <*otale3+ot st9es' ts eecas s'0459c3+ee 6*eesse3+oo s't91$ s'e. taS s'rese 1t eot otset:oc

    • tassse sev*ts6*e 9t*essec t so c o s e 6*otes:3*ot 6*ese9e3+ot e*tsae e*

s'reet e*cs6e -e

  • s'9s u te sel 01:s4:01 e*tet666 see*tsees st*es409 ets o*rets s'tsis is oot 03:0t:01
    • se6191 ses' tat 6e st*essis t5*00004 6*o19513*00 6*sesse3+06 s'ttes tsae s stsE a*rets s'tsat 49 oot 03:13:10 e'91etis seb*tvres st*essot ts'oocca t'otvts3+oe n*0e05e2*03 s'rert

-st9se s' rest s'tseg ti mot G3:44:11

    • tesrt9 ses'tst91 et*esrof ts'ococe

.*045263 06 6* eses 93+os o* te 001 02:t<:ti h*oitset ses*tteet ot*estse ts*ococo.*otsoc3+ee s'esess)+ee s'tsos--~~ 46e911~-" f #zs e s ~ s'tsis oaose.' cams 93+ee 6*esess3+se e*E*66 s'ttat e*zoet s'tsre ts'oessa s tamees see'tssat 9t*esoso 1.e set 04:e4:te s'te99ev ses t9561 st*esett ts' n*o15163+00 6*sesse3+ee s'reve e*tets e* rots s'ts e t se oot er:stst9 el 601 at:ed:16 s'stette tes't9 eel 9r*seete 55*00008 s'tret - o*rert e*2661 s . etss63+oe 6*eseG:3+oe o* rete .etstt3+es ot osI 05:12816 s9tewrc s e w '* t 919 e vt'v*tst ts' osone rots a*zert o*re64 etst43+et 6*esest3+oo s'tser -stsos o*ceot 4* rots 6*esos13+oo e*ats6 .ot 001 of:tt:ro s'wetats seb*tstsa 9t've969 ts*oocco ts16 6269 D*rets o*E ez po sol at:tt:zt 9

  • o t e tas seb*tatte vt*seets ts*ocope.*etede3+oo

.'eesst3+oo ~s'tsre~-~~ l'es9e e* e*rets e*reot os aot otteZ:tt 9*tstnec set *t9tt9 st*self t ts'esees 6*etese3+se 6*esest3+ot s' se9 e*t e*teit o*2ets o*roet ot oot etzsE:re 9*tseets ses'tsaL6 et*ettet ts'ecase 6*etett3+ee 6*esest3+ee

  • etest3404 s tsae

't* set 6 ~ e*rets o*re61 rt 9t*st66t ts*essee.6*ete053+ee

6. ' e s e s 13 + e es'teer'~~~-e*0664

'e*reit s'tte9 ot 001 80:04:25 9*stsets ses't9e.9 sem*rGG

  • r*sttes ts'ecese 6*otted3+oo se 201 ee: ::ts 9*9vrese o'*teGt e*ttut o*rets e* rots we666e seb*tett9 9t*et491 55*00e00 6*etet63+et 6*esosc3+et 6c oot 6e:22:ta 9'ot9999 b tesJ 6*e' tis 96 ot*tte*6 tt*ecnal 6*01*613ile 6*663153sb*

A'2 fit -e' TT2I e ite et~ ~ 'o'*reot s' et9es 6c eot oostt:rv 9ete s tt62 s' stat e '* E t s E e*teef 1*t see*tette t t *et ats ts*ccocs 6*etett3*se 6*see063+et o*zt6e 61 ees oe:eZ:26 6* seton e*te95 e* s'e ts e.3 +e t ~ 4

  • r e 91 ~~' e
  • f f if----' br t t 6 2'~~~ a
  • t e e t~

se oot ee:sr:ta 1*tsessE seb*tstt4 9t*etser ts'eesse 6*ette63*se 3+ee 4t oot esset:ta 4*stiart see*te9el tt*ett98 ts ocsee.*e1f443400 ~ 6*secee3+ee s'ttte -e*teit s'tter e*rets ococs 6*ottet3+ot 66 oot oG:12:tI 4*98e899 ses'te963 1t*etesa ts'occos ts* a*ottee3*et 6 008643+c+ e*zes6 e*erts s'ttet e* ret 6 is oot es:tz:ts t*ustteL ses*tstet 9t*etdot -e'TZT 9 I*! tis ~ 6F2ets .*e452 3+e0'" 4*453F93TTe6

  • e s e e 93 +e e"~ ~ ~ F
  • 2 f 56 s' tit 55lste ttuet~.6t*ettel'ts*00001 69 tot 05:tc:te u*ottttt seg'tsier e*reta s

e *r t s e'~ e*teit ts'enoce s'etes eocse ses* et*etit6 64 sel essedate s tse66e 6e 001 0s srat9 w'* ts zt ta ses*tsrts 9t*eteZs tE*

    • satt93+ee 6*esets3+se e* tees eets e*4596 e* tele 66 oot 09:et:se s'st6*et sesatsete 9rautset ts*ococs 6*eltt43+ee 6*sese+>+ee s'rtse

-s e t e s s'tt56 s'rese tse oot evild:sw t 999 tit ses*tstut 9tautat2 ts'00 ooc t*0431m3*ot e*eseet3+et o*2esI e*t91$

    • 2t92 8*t681

,tsi 001 09:td:56 w'*tstose seu*temta 9t*vE912 ts'002vo 6*o12183*0+ 6*oetet3+ee s'tf6e

  • e'eted o*ztse e**t69 teR 001 01:52:e0 e*ordeoc seu*tstre ef'vess6 55*00000 6*etiG13+se 6*seDe23*ot s'letE s'tt96 e*Etsi o*2t61 l

0t8EH.

e MEASURED LEAK RATE PHASE (cont'd) JJAO CIf!C$ U41T I 09:46:32 sJee 23 Ret 1904 ++++ sunnA4v 0F DATA stis en IM8U 120 *+++

  1. ATA TAPE f!NE fts?

Ytmp ORv AIR RE WA f t A MCASU4CO CALCWLATED REAS LEAR Raft CALC Lt&M 95: OPPtt s r r __,, _.. oun4T 04 en Patssunt Ltvet mess n&ss _ter A( - Po. sf mAft CDer Otmet swass spsian ange t e

e car

/ oav s e car Limit tes 00 06:42:40 9.386r65 see.34see as.ai462 3S.00000 +.07246t+04 e.0a042t+04 0.2sp5 s.On=3 0.2353 0 23ne let 001 06:S2:41 9.353611 548 33e01 63 92345 35.00000 9.07249C.04 9.08040C+04 0.2349 0.0371 0.2345 0 2380 835 001 07:02:42 9.9205S7 548 34009 43.82272 35.00000 3.07230t+04

9. 0 8 0 3 9t
  • 0 4 0.2346 0 2179 0.233P 0 2373 103 001 07:12:44 9.687775 $48 34216 63 42237 35.00000 9.07224C+04 9.0003SE*04 0.2320 0.0440 0.2330 0.2364 137 001 07:22:49
  • .RSSR35 548.34570 63 82208 35 00090 9.07211t+04 9.08037t*04 0.2315 0.2041 0.2321 0 2355 104 001 07:32:49 10.022503 544.3%596 63.82117 35.00000 9.0718tt+04 9.08036t+04 0.2356 0.4762 0.2318 0.2351 009 tot 07142:S0 10.189442 548.34424 63 61958 35.00030 9.0717st+34 9 08035t404 0 73 25 ----~t.5 4 9T -- ~ 8.2 312 tit 34 4 -

010 SS1 07:52:59 10.356110 548.35059 63.81087 35.00000 9.07158t+04 9 00034t+04 0.2340 0 3249 0 2307 8 2339 til Ott 08802:51 10.523052 548 35278 63 81822 35.00000 9.07145t+04 9.0 0 0 3 3t + 0 4 0 2336 0.2000 0.2303 e.2334 C12 tot 08:12:$4 10.690556 548 34827 63 81774 35.00000

  • .07145t+04 9.0P032t+04 0.2297 - =149323 ea2296-

-9 2327 CIS 081 08:22:54

10. A5 7220 548 36389 63.81734 35.00000 9.07114t+04 9.en031t+04 0.2339 0 5035 0 2293 0 2323 014 001 08:32:55 11.024166 544.36096 63 81599 35.00000 9.07100t+04 9.0 0 03 0C +0 4 0 2337 0 2204 0 2290 0.2320 015 081 85142:58 11.191662 548.3770s 63.51551 35.50B00 9.s7066t454 9.ess30t*04 0.rsel - r;S307 es2292 e.232s 015 991 08:52:S* 11.354698 S49.378tS 63.81536 35 00000 9.87062t+04 9 88029t+04 0 2356 0 0644 0 2291 0.2319 017 001 07:02:59 11.525200 548.38977 63.81557 35.80908 9.97046t+04 9 00030t+04 0.2359 8 2555 0 2291 0 2317 014 901 09313:00 11.692219 548 39001 63 51522 35.00000 9.07041t404 9.08030C404 0.2337 0 0842 0.2289

- 0.2313 019 001 09:23:01 11.459365 544.39197 63.81541 35.00000 9.07040t+ee 9 00029t+04 0.2306 0 0099 0.2284 0 2310 020 081 89:33:06 12.027218 S48.41138 63.81451 35.00000 9.06995C+04 9 00030t+04 0.2373 0.7118 0.2206 0.2311 0483H.

TYPE A TEST RESULTS USING MASS - PLOT HETH00 INDUCEQ LEAX PHASE Quae C4ftES UN87 1 17:04s23 SUN, 23 panA 1936 eeee

SUMMARY

OF DATS SETS 124 TH4J 4 64 * *

  • e 473 TAPE YlpE TEST TEpp D4Y Alm R1 WATER MEASURED CALCULATE'D MEAS LEAK RATE CALC LEAM 955 UPPER SET DUAATION GRt PReiSSURE LEVEL MASS MASS TOTAL POINF RATE CONFIDENCE IMAet 1988A9

(!NI T=4 5 / DAY % / DAY 5 / DAY LIMIT 424 ee1 10s53 I7 e.880080 544.44912 63.78199 15.essee 9.0643eE+44 8.eteeeE-e4

e. Gees

.% 0e00

e. sees G. sees 125 eet 11:43sta e.166946 544.44291 63.77473 N 9.0636eE+44
e. secede-88 1.e978 8.4974 0.0000 e.eece 426 ee1 18e13st9 e.333445 544,49451 6J.77344 35.seese 9.e628eE+64 9.0644eE+64 1.245 1.3953
1. 2%S
1. M3 &

IL7 80t 11s23sde e.580439 548,49189 63.77944 35.eeece 9.e6233E+44 9.e6434E+44 8.4421 4.7534 1.1134 1.3557 124 est 11:33s24

c. M7778 544.51644 63.76524 35.00000 1.9612tE+44 9.0644tE+64 1.2564 8.7797 1.22*e 1.4444 129 eet 11:43:21 e.834442 544.513e6 63.76814 35.eeece
9. 96esL9E + 44
9. M439E+44 1.4711 0.8214 3.1947 4.349e 13e Get 11:5J:24 1.801945 548.53498 63.75761 35.00000 9.95942E+04 9.0644eE+e4 1.2432 1.3639 1.2934 1.281e 131 Set 1*!seJs24 1.164610 544.55642 63.75269 35.eeees 9.e5447E+e4 9.06443E+44 1.244J 1.5199 1.2334 1.2947 132 888 89s13a25 1.335556 544.56323 63.74796 35.eeece 9.9579eE+44 9.8644eE+44 1.2672 1.44ie 4.2549 1.315t i33 Se1 LT; 23s26 8.50250s 544.36665 63.74426 35.80004 9.4574ef+44 9.86447Ee44 1.2291 e.9256 1.2534 1.297&

134 401 at:33 28

1. M9724 548.57031 63.73996 35.00004 9.85673E+44
9. M444E +44 4.2121 4.e597
1. 241 si 1.2794 135 set 12:43s29 t.834662 544.59277 63.73615 35.eeece 9.45542E+44 9.86445E+44 1.23J7 1.4518 1..s427 1.2739

'136 est 1Ss53:49 2.eW3334 544.54728 63.73199 35.eeece 9.05532E+44

1. M44 t E+04 1.1975 e.4048 1.2249 1.2547 137 Get 13 43:34 2.174284 548.64485 6J.72746 35.eeees 9.05429E+44 9.db44eE+d4 1.2Je9 8.6322
1. 2J t em 8.2571 134 est 83st3s31 2.337219 544.61572 63.72249 35.eeede 9.95347C+44 9.46443E+@4 1.2353 1.2958
1..t344 1.2571 139 888 13:23 33 2.544444 548.6J462 63.71822 35.Seece 9.85265E+44 9.86443E*44 1.2442 1.3183 1.2348 1.2545 Lee del 13:33:34 2.671387 544.632wo 63.7443J 35.cesse 9.052e7E+d4
9. M44&E+44 1.2496 e.9887 1.2354 1.2527 141 Get 13:43:35 2.8Ja333 548.64be6 bJ.7d843 35.desee 9.85&e/E*d4 9.db442E+44 1.2418 1.5441 6.2345 8.2545 B42 eet 13:53s36
3. M5284 548.66895 63.78473 3% detee 9.95dteE+d4
9. M445E +e4 8.2579 1.5468 8.2454 8.2619 M3 set 14:0J:38 3.172541 548.bdJ96 63.Teded 35.00006 9.e4988t+d4
9. M*4eE +@4 8.2681 1.4521 1.2548 1.2707 3M eet 14st3s39 3.339439 544.6939/ 63.69659 35.seece 9.84853E+94 9.e6449E+d4 4.2563 1.0358 1.2573 1.2726 M3 edt 14:23 39 3.586418 548.7136.2 63.b3116
35. ddMe 9.d*743E+d4
9. M 45JE*de t.2794 1.7455 1.2655 1.2815 34 Mt 14:33:48 3.673454 546./1198 b l. t.e / lb 35.ddeet 9.d469dE+de
9. M 454E+d4 8.2664 e.8565 1.2672 1.282e MF Mt 14 stas 41 3.839996 548./1844 6J.t.ed25
45. MM4 9.d462dE*W4
9. des 453E +d4 1.2534 3.d175
4..M'3 4.2343 MS @@t 14:53:41
4. deM64 548.73486 63.67766 35.@dece 9.d4589E+44
9. M454k ed4 L.2677 1.6492 8.2697 1.2824 143 M t 13:44:44 4.174864 54es./5tS9 6J.67J96 J5.deece 9.d4436E+d4
9. M 456E+d4 1.2695 1.3164 1.2743 8.2843 15") Gen 15:4Js45 4.34111e 548.75429
63. Ma52 45.00004 9.d435"J+d4
9. 46457E + e4 1.2765 3.2949 1.27 4 1.2459 151 Gen 15:23:45 4.547782 544.76758 63.66451 35.40006 9.44276E+44 9.06457E+e4 1.2699 1.2564 1.2764:

1.2868 352 eet 15sJJs47 4.675443 548.78284 63.Me2/ 35.Geeee 9.d419tE+@4

1. M 459t~+44 1.2726 L.349L 1.2784 1.2884 T5J Mt 15:43:48 4.641942 548.78284 bJ.65518 35.@ dees 9.d4ttut+de
3. 0645asE + e4 4.6643 4.85d3 8.4787 1.2848

$54 eel 15:53:56 5.099171 548.79663 63.6522e 35.ceece 9.04453E+G4

9. M458E +J4 1.2684 8.*J43 8.2777 1.2865

,55 M t 15:43:51 5.176109 548.84347 f,J.64725 35.eeece

9. 839 72E +44
9. M 45/E+44 1.2613 1.2921 1.2774
1. 24s5 2 56 M t 1$stJs51 5.342773 548.82593 63.64J22 J5.e6464
9. 038 77E +@4 9.46458E+d4 4.2668 1.5459 1.2775 1.2853 57 Mt 16:23:54 5.51@284 548.88372 63.63828 35.00864 9.eJ827E*d4 9.@6456E+44 1.2543 d.7926 1.2756 1.2833 58 edt 16sJJs58 5.678955 548.81592 63.63222 25.ddeee 9.03738C+@4 9.46456E+@4 1.259e 1.4495 1.2746 1.2817 59 det R$s43:59 5.845ddl 548.88592 6J.62674
35. Mdee 9.436beC*d4
9. M455E+e4 1.2583 1.2J78 3.4736

'.28@4 Ed eet &&s54 set 6.482222 548.81299 63.61949 35.* Mee 1.83556E+d4

9. M456E,44 8.2694 1.6503 1.2743 8.2846 0483H

~ c 0 I l C' L cd LbK LK.'A X RMC da I I I ,q, l UJTEAl CON vs utNCE Lons," t Lw n, naves i l f l .I h, ,.. f _. g l j ] j .f Weser_.23 /f#5 3 l l I j r y ...4 .n. _q l-x { l M ?e i O. C.L. A i l l i l M_. N . _ E* SfA TJ Lf f.G Aa.f .f _ A duu*h.$.LLK. A M -Al. \\ ht .) DSMl l : 4l } 1. j ^ g i + E-j j j _p. j 9 i v .. __ _7. _ l ._p. ,2e ._p j j j j j a_ a_ l'. } ._k .i_ ... _.I ac i i i f. s 4 g i - -t .f { L. __... {. f. t J i i j ,39 l l. I I { h. j._.. f f l l, -l- -j l j f-f- - l -- { I i l l I 3 S 4 5 6 7 1 se

s sa, Tl M E FAon STAnr or 7tsr (Hons) i FIGURE F-1 l

0483H (final) ..}}