ML20038B941

From kanterella
Revision as of 04:48, 15 March 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
180-day Rept in Response to IE Bulletin 80-11.
ML20038B941
Person / Time
Site: Dresden, Quad Cities  Constellation icon.png
Issue date: 11/23/1981
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20038B936 List:
References
IEB-80-11, NUDOCS 8112090336
Download: ML20038B941 (59)


Text

's ,

.i '

< i 7

/

180-DAY REPORT IN RESPONSE TO IE BULLETIN 80-11

FOR QUAD CITIES NUCLEAR POWER STATION

/

UNITS 1 AND 2 COMMONWEALTH EDISON COMPANY DOCKET NUMBERS 50-254 AND 50-265

/

- I t

/

r,

,' PREPARED BY: Bechtel Power Corporation

( *i

,' t Report Date: November 23, 1981 Revision 1 ,

I

(

8112090336 811130 DR ADOCK 05000237 PDR I

l 12 - - , ~ 1Lr

o A

TABLE OF CONTENTS Page

1.0 INTRODUCTION

1 2.0 SCOPE 1

3.0 DESCRIPTION

OF MASONRY WALLS 1 3.1 LOCATION 1 3.2 FUNCTION 1 3.3 WALL CONFIGURATION 2 3.4 CONSTRUCTION MATERIALS 2

, 3.5 CONSTRUCTION PRACTICES 3 s 3.6 RECONCILIATION WITH 60-DAY REPORT 3 1

4.0 REEVALUATION OF MASONRY WALLS 3 4.1 POSTULATED LOADS 3 i 4.2 ALLOWABLE STRESSES 6 4.3 JUSTIFICATION OF THE REEVALUATION CRITERIA 6 4.4 SEQUENCE OF ANALYSIS 6 4.5 METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA 7 4.6 ASSUMPTIONS AND ANALYSIS CONSTRAINTS 8 4.7 MASONRY WALL TESTING PROGRAM 10 5.0 RESULTS OF MASONRY WALL EVALUATION 10 5.1

SUMMARY

10

6.0 REFERENCES

10 TABLES 1 Masonry Walls - Function and Physical Properties 2 Allowable Stresses in Concrete Masonry Walls 3 Applied Loads and Evaluation Results APPENDIXES A Masonry Wall Plans B Additional Justification of Reevaluation Criteria

~

l l

ii

s 4

1.0 INTRODUCTION

This 180-day report is being issued in response to NRC IE Bulle-tin 80-11, dated May 8,1980 (Reference 6.2) . This report has been prepared by Bechtel Power Corporation, Ann Arbor, Michigan, for Commonwealth Edison Company's Quad Cities Nuclear Power Station, Units 1 and 2. It is subsequent to the 60-day report dated July 3,1980 (Reference 5.8), which furnished information requested in Items 1, 2a, and 3 of the above NRC IE Bulletin 80-11.

2.0 SCOPE The 180-day report furnishes information requested in Item 2b of NRC IE Bulletin 80-11. It deals solely with masonry walls iden-tified in this report as safety-related. Any masonry wall is considered safety-related when it is in proximity to or has attachments from safety-related piping or e'quipment such that wall failure could damage a safety-related system.

The analyses are based on as-built conditions identified during site surveys of June and July 1980 and July and September 1981.

3.0 DESCRIPTION

OF MASONRY WALLS 3.1 LOCATION The figures in Appendix A show the location of all safety-related masonry walls.

3.2 FUNCTION The function of each masonry wall is identified in Table 1 according to one of the following categories.

3 2.1 Fire Wall These walls were constructed to prevent the spread of fire from one side of the wall to the other according to the appropriate fire rating associated with the wall's thickness.

3.2.2 Partition Wall The partition walls are interior dividing walls whose sole pur-pose is to separate a portion of a room from the remainder.

3.2.3 Shielding Wall The masonry shielding walls are typically made of solid units which are required to restrict radiation exposures.

1

- -- ,,- ,,-n-- - - - - - - , - . - - - , - ,, .- - - - - , , , - , - - - - - , , - - ------.e -,

l 4

3.2.4 Blockout A blockout, made of masonry, seals an opening in a larger con-crete wall. These openings are lef t in the concrete walls to provide for equipment installation or pipe penetrations before the opening is sealed with the masonry.

)

3.2.5 Exterior Wall Exterior walls have at least a part of one face exposed to the outside . Only exterior walls are subject to wind or tornado loads.

3.3 WALL CONFIGURATION Wall dimensions and boundary conditions for each wall are indi-cated in Table 1. Each boundary is categorized as either a fixed support capable of providing both moment and shear resistance, a simple support resisting only shear forces, or a free edge through which no forces can be transferred.

3.4 CONSTRUCTION MATERIALS 3.4.1 Hollow Masonry Units The hollow masonry units, which are identified on the' design drawings, are three-core blocks conforming to ASTM C 270, Grade N-I, Lighthaight Aggregate, with a minimum test compressive strength of 1,000 psi on the gross area. Masonry walls, which are not shown on the design drawings, are assumed to consist of hollow units of the same type and strength specified above (see Section 4.7).

3.4.2 Solid Masonry Units The solid masonry units identified on the desing drawings conform to ASTM C 145, Grade N-1 with a unit weight of 140 pcf, compressive strength of 1,800 psi, and mortar strength of 2,500 psi. The solid units which are not shown on the design drawings are assumed l

to be of the same type and strength specified above, with a mortar strength of 750 psi.

l 3.4.3 Mortar l-The mortar used in the construction of the hollow masonry walls conforms to ASTM C 270, Type N, with a 28-day compressive strength of 750 psi. This type of mortar is also assumed for all walls not shown on the design drawings. The mortar for the solid masonry walls shown on the design drawings is a special, high-density mortar (185 pcf) whose compressive strength was taken as 2,500 psi.

l 2

.--r- - e..% -.-_9 -- ---._-..-..,,w. - _ . - _, _ _ . - , - .%,,_ -,,_ ..._. ..m,,. - - - ..- .

3.4.4 meinforcing Steel According to the design drawings and specifications, the masonry walls are reinforced in the bed joint of every other course.

This joint reinforcement consists of heavy-duty, continuous, rectangular, ladder type steel reinforcement, whose minimum yield strength is 65 kai. Deformed bar steel, where shown on the drawings, has a minimum yield strength of 40 kai.

3.4.5 Anchors Masonry anchors have been used in certain locations to tie the masonry wall to an adjacent structural element. These anchors consist of two types: corrugated metal ties (dovetail anchors) which are used for connections to concrete walls or columns and 3/16-inch diameter adjustable bar ties welded to the supporting structural steel.

3.5 CONSTRUCTION PRACTICES The masonry walls at the station were constructed in accordance with the applicable job and standard specifications for masonry work and have a high quality of masonry workmanship. Conformance to applicable ASTM specifications was required for concrete Storage and blocks, mortar, reinforcing ties, and anchors.

protection of blocks and walls, as well as cold weather protec-

- tion, were specified. The mortar joints of solid masonry walls were required to be constructed with full mortar coverage on all vertical and horizontal faces. The vertical joints were to be shoved tight. A full mortar bedding was specified for webs and face shells of the hollow masonry walls. Face shells were required to be fully buttered and pressed into place to ensure full, well-compacted horizontal and vertical mortar joints.

3.6 RECONCILIATION WITH 60-DAY REPORT The 180-Day Report identifies 82 safety-related masonry walls.

The 60-Day Report identified 93 safety-related and potentially safety-related walls. Because of analysis considerations, wall Ql-595-14G-111 was divided into walls Q1-595-14G-111a and Q1-595-14G-111b. Wall Ql-595-18H-138 was added and declared safety-related based on a survey performed after completion of the 60-Day Report. The remaining difference is made up of walls which were either declared nonsafety-related or were dismantled by Commonwealth Edison Company.

4.0 REEVALUATION OF MASONRY WALLS 4.1 POSTULATED LOADS The loads which were considered in the evaluation of each wall are identified in Table 3.

3 3

I 4.1.1 Dead Load (D)

This load includes the dead weight of the wall and all permanently attached equipment, piping, conduit, and cable trays. The con-struction sequences have allowed the permanent dead load deflec-tion to occur prior to the erection of the masonry walls. There-fore, the dead loads from the floor above are not transferred to

> the masonry walls.

4.1.2 Live Load (L)

This load includes applicable live loads which can be transferred to the masonry wall through the floor framing. The live loads are not considered in those load combinations when they would relieve wall stresses.

4.1.3 Attachment Loads (Rg and R,)

The attachment loads are localized loads which are a result of the reactions from the supports of piping, cable trays, conduits, HVAC ducts, and other systems. The reactions are determined for the normal operating or shutdown condition (R ) and for the accident condition (R ) which results from th8 thermal conditions generated by the post 61ated pipe break and includes Rg .

4.1.4 Wind Load (W)

Exterior walls are subject to a uniform pressure load corres-ponding to the design wind speed. The design wind speed is 110 miles per hour.

4.1.5 7brnado Load (Wt )

Exterior walls are subject to velocity pressures, differential pressures, and tornado missiles of the design tornado identified in the plant FSAR.

The maximum tornado wind speed is 300 miles per hour. The maxi-mum differential pressure is 170 psf.

The following missiles are generated by the design tornado:

a. A telephone pole 35'-0" long , with a butt diameter of 13 inches, a unit weight of 50 pef, and total weight of 1,200 pounds, and having a velocity of 150 miles per hour
b. A 1-ton mass with a velocity of 1n0 miles per hour and a contact area of 25 square feet 4

m

P The original design considered the buildings housing safety-related piping, conduit, cable trays, and equipment as sealed; therefore, tornado loadings do not affect interior walls.

4.1.6 Operating Basis Earthquake (E )

This load represents the seismic load generated by the operating basis earthquake (OBE) . The design ground accelerations are as follows:

a. Borizontal = 0.12 g
b. Vertical = 0.08 g 4.1.7 Safe Shutdown Earthquake (E,) -

1 l

This load represents the seismic load generated by the safe shutdown earthquake (SSE). The design ground accelerations are twice those shown for the OBE.

4.1.8 Thermal Loads (T, and T,)

Thermal loads account for the effects of thermal gradients under normal operating (Tg ) and accident (T ) conditions. The operating loads represent the most critical steldy-state condition, while the accident condition is a short-term thermal transient resulting from the postulated pipe break, including T . g 4.1.9 High-Energy Pipe Break The effects of a postulated high-energy pipe break outside the primary containment have been identified and their applicability to the masonry walls were established. In the analysis for a high-energy pipe break, the following loads are considered:

a. Differential Pressure (P,)

This load is represented by an equivalent static pressure across a wall generated by the postulated pipe break and includes an approrpiate dynamic load f actor.

b. Local Loads Generated by Fipe Break (Yp)

These loads are equivalent static loads resulting from the pipe break and include an appropriate dynamic load factor.

These loads consist of the following:

1) Broken pipe reaction (Y rI
2) Jet impingement (Y )
3) Pipe whip (Y,)

5

. ~ . . _ . - _ _ _ _ _ _ _ - _ - _ _ . _ _ . _ _ _ . _ __ _ _ . _ - - _ _ _ _ - - _ - _ _ _ . . . - - .

4.2 ALLOWABLE; STRESSES The allowable masonry stresses, excluding collar joi... stresses, under normal load combinations are in accordance with those given by the Building Code Requirements for Concrete Masonry Structures (ACI 531-79) ( Re ference 6.1) . Allowable stresses for extreme and abnormal load combinations are increased by a factor of 1.67 over 3 the above ACI code allowable stresses.

For the mortar collar joints, the allowable shear and tension stresses are 14 psi for normal and 18 psi for abnormal and extreme environmental load combinations subject to confirmation by tests (see Section 4.7).

Allowable stresses applicable to the different types of masonry are given in Table 2<

4.3 JUSTIFICATION OF THE REEVALUATION CRITERIA Except as noted, allowable stresses of masonry units and mortar are based on the code values as published in ACI 531-79. These values are considered reasonable and conservative. References to tests and other codes are provided in the Commentary to ACI 531-79.

It is noted that the allowable stresses are used for the evalua-tion of existing masonry walls and not for the design of new walls.

Because building codes do not address abnormal and extreme environ-mental conditions, a factor of 1.67 was used to provide allowable stresses under these loading combinations. Based on available margins of safety, this factor is considered to be reasonable.

Published data on tension and shear strength of collar joints are almost nonexistent. Allowable stresses are based on field test data obtained by others and are in the process of being verified by the sampling and testing program as noted in Section 4.7 of this report. Additional justification of the reevaluation cri-teria is provided in Appendix B.

4.4 SEQUENCE OF ANALYSIS Each wall is initially analyzed considering only dead and seismic loads or dead and wind loads, whichever appears most critical.

For all walls which are found to be acceptable, the following applicable loadings are considered: live load, attachment loads, pipe break loads, tornado loads, and interstory drif t.

6

l 1

l 4.5 METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA 4.5.1 Stress Analysis Based on the walls' boundary conditions, each wall is idealized as either a cantilever, one-way strip, or two-way plate which is supported along at least two adjacent edges. The wall is then considered acceptable if all wall stresses under all load combi-nations are less than or equal to the established allowable stresses.

4.5.2 Stability and Sliding Analysis cantilever walls which do not meet the acceptance criteria for allowable stresses are analyzed with regard to overturning stability and sliding movement. Using energy balance methods, a factor of safety against overturning is determined for bcth OBE and SSE loads. The minimum acceptable factors of safety are 2.0 for OBE and 1.5 for SSE conditions. Before the wall is considered accep-table, the total wall movement, including rocking and sliding ,

must not adversely affect any safety-related items.

Mortarfree cantilever walls are analyzed with regard to over-turning and sliding movement. The minimum acceptable safety factor against sliding has been determined to be 1.5 for OBE and 1.0 for SSE conditions, based on a coefficient for static friction of p ' O.33.

f 4.5.3 Analysis of Arching Effects Masonry walls with mortared joints at both the top and bottom boundaries that do not meet the acceptance criteria for allowable stresses are investigated for arching effects. The wall's capability of resisting horizontal loads, after ultimate tension stresses are exceeded, is developed when the wall jams at the top and bottom against the supporting structural members. The center of the wall cracks due to tension stresses, and a three-hinged arch is formed to resist the loads through compression stresses only.

Design seismic loads generated by the safety shutdown earthquake are based on peak acceleration in the applicable response spectra and the damping factor of 10% of critical.

The stiffnesses of the wall and of the supporting elements must be accounted for in the analysis. The deflection at the center hinge must be less than or equal to one third of the wall thick-ness. If an arching wall meets this requirement, it is consi-dered acceptable when the compression stress developed in the arch is less than or equal to the allowable flexural compression stress shown in Table 2.

7

4 4.5.4 Interstory Drif t Under Seismic Loads The effects of interstory drif t are considered by determining the in-plane shear strain in the wall due to the relative displace-ment between the top and bottom of the wall. The allowable in-plane strains equal 0.0001 of the wall height for unconfined walls and 0.001 of the wall height for confined walls. An uncon-fined wall is defined as a wall supported only on two adjacent sides. A confined wall is supported on any three sides or at the top and bottom of the wall (References 6.5, 6.6, and 6.7) .

These acceptance criteria are considered to be justified because none of the masonry walls carry a significant part of the buildings' story shear or moment. Also, test data indicate that the gross shear strain of walls is a more reliable indicator for predicting the onset of cracking than loads or stresses.

The out-of-plane relative displacement creates a bending moment in the wall only in the case where the top and bottom boundaries are supported, and at least one represents a fixed condition.

None of the masonry walls in the Quad Cities station are effec-tively fixed at the top or at the bottom. Therefore, the out-of-plane interstory drif t is not considered.

4.6 ASSUMPTIONS AND ANALYSIS CONSTRAINTS The following assumptions and constraints were employed in the reevaluation of the masonry walls.

4.6.1 Nonsafety-related walls, anchor bolts, and embedments were not within the scope of the reevaluation.

4.6.2 All loads and load combinations outlined in the plant FSAR are considered in the reevaluation.

4.6.3 The seismic loads on masonry walls are dependent on the damping characteristics of the material, which are expressed in percentage of critical damping as follows (References 6.3 and 6.4):

a. Uncracked Masonry Wall, Out-of-Plane Acceleration
1) OBE: 24
2) SSE: 24
b. Piping Systems, Horizontal and Vertical Accelerations
1) OBE: 0.5%
2) SSE: 24 4 8

The plant FSAR specifier, damping of 0.5% under OBE conditions for vital pi' ping systems. For the purpose of this evaluation, vital piping is defined as all safety-related r/ iping.

c. Other Attached System 4, Horizontal and Vertical Accelerations
1) OBE In
2) SSE: 24 This category includes nonsafety-related piping and safety-related and nonsafety-related conduit, cable trays, and HVAC ductwork.

4.6.4 A masonry wall is considered an isotropic, elastic material. Its natural frequency is calculated using standard plate formulas. For a wall with an opening ,

the calculated frequency is reduced by 9% if the size of the opening equals or is greater than 15% of the wall area. The reduction is proportionally less for a smaller opening. For multiple openings, the largest one is considered. To account for variation in stiff-ness and mass of the wall, the above frequency is varied by + 10% and the maximum response is used in the analysis.

4.6.5 In accordance with the plant FSAR, the effects of the seismic loads of one horizontal and the vertical direc-tion are added arithmetically.

4.6.6 Dead loads from the floor abos s are not considered being transferred to the masonry walls. A part of the live load from these floors is transferred to the walls; however, it is not considered if it will relieve wall stresses.

4.6.7 Shear and tensile stresses are not transferred across the continuous vertical mortar joints of walls laid in stack bond or the vertical mortar joints of a wall boundary adjacent to a concrete structural member.

4.6.8 Standard, prefabricated sectior.s of the horizontal joint reinforcing steel are provided at all corners of masonry walls. However, their contribution to the strength capacity of this ir.tersection is not con-sidered.

9

b 4.7 MASONRY WALL TESTING PROGRAM A sampling and testing program is in progress and intends to accomplish the following:

4.7.1 Verify the type and strength of block used for the walls which do not appear on any design drawings.

4.7.2 Justify the assumed stresses used for the mortar of solid masonry walls.

4.7.3 Determine the allowable stress which can be transmitted across a mortared collar joint.

4.7.4 Justify the use of inspected allowable stresses.

5.0 RESULTS OF MASONRY WALL EVALUATION Table 3 lists the results of the masonry wall reevaluation. The criteria used to justify the wall'as acceptance or mode in which it does not meet criteria are identified.

5.1

SUMMARY

The following summarizes the results of the reevaluation of 82 safety-related masonry walls:

5.1.1 Total number of walls meeting the acceptance criteria:

50 5.1.2 Total number of walls which do not meet the acceptance criteria: 29 5.1.3 Total number of walls which are still under further evaluation: 3

6.0 REFERENCES

6.1 Building Code Requirements for Concrete Masonry Structures, ACI 531-79, American Concrete Institute, Detroit, Michigan, 1979 6.2 USNRC IE Bulletin 80-11, dated May 8, 1980 6.3 Final Safety Analysis Report (FSAR) for the Quad Cities Nuclear Power Station Units 1 and 2 10

6.4 Damping values for Seismic Design of Nuclear Power Plants, U.S.

Nuclear Regulatory Commission Regulatory Guide 1.61, October 1973 Becica, I.J. and H.G. Harris, Evaluation of Techniques in 6.5 the Direct Modeling of Concrete Masonry Structures, Drexel University Structural Models Laboratory Report M77-1, June 1977 0.6 Fishburn, C.C. , Effect of Mortar Properties on Strength of

, Masonry, National Br.reau of Standards Monograph 36 U.S.

Government Printing Office, November 1961 6.7 Mayes, R.L. ; Clough, R.W. ; et al, Cyclic Loading Tests of Masonry Piers, 3 volumes, EERC 76/8, 78/28, 79/12 Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, California 6.8 60-Day Report in Response to IE Bulletin 80-11 for the Quad Cities Nuclear Power station Units 1 and 2, Commonwealth Edison Company, Docket Numbers 50-254 and 50-265, dated July 3, 1980 O

11

  • .f ..

, ll .I,- iIj I' .! . j , ;; :

a a.

s k .

r .

a .

m u.

e .

t n

oag s

gn sii s s usw s s s s s s s s e e s s e e e oea e e e Y

e e Y Y e e Y Y Y Y Y Y S Dr D Y Y Y y = g g a

'l - "I "g "I il rt ' " _

ar " " ' a.

S do ~ -- "

np "

E I up ~~ - "

7l "l

. g n

T BS ou l 1 -

R E

P O

R )h t " "

F l "

d " " 1 L i 2 2 "2 " 1 l "8 "

0, l

A w - - - "0 7 - - - "0 l "0 C e ' - - ' ' - - - -

I sa '2 '1 1 '1 1 5 '

'9 S i 2 2 2 '8 '8 2 2 1 8 x x 4

x 9

x Y St x x x x x x x "

x " "

E h " " "

"0 6 "6 P g "0 "6 6 7 7 "0 "0 5 5 i - - - - - - - - - -

D e ' .' ' '

'0

'3 1

N h

(

'5 '5 '5 '8 8 5 5 1

3 L

I' 2 2 3

1 1 A 1 1 1 1 1 1 -

g g g g g g g g g E N g g g n n n n n n L O n n n n n n i i i i i B I d i i i i i A T n i n

i n n n n n n n n n n n T C o n n n n n n n n n n n n N B u u u u u u u u u u u u U R R R R R R R R R R R R

F

- s e 1 1 8 2 2 S h 1 1 1 1 1 1 1 L t L y A W W

Y w w R w w w w w w w o o o o o o o d d d N

O S

s1 l l

o l l

o l l

l l

l l

l l

l l

l l

l l l i i l l i

A T o o o o o o o o o o o o M H  !

l l H H H H H H S s S

_ k-cs is - " " " " " "

"8 "2 "2 2 2 2 he "8 "8 "8 8 8 2 1 4 1 1 tm 1 1 1 n n g g g n n

_ n o i on i o i o i o i o ,

i n i n

i n

t t t t t d d d t l l l

_ t i i i i e i t t e e t t e e e e e t m t r r r r r r r r i i i r t r a a h h h S o r u a F P P a

P a i F

i F P P i

F i

F S S S T p p

op N

O e u p 1 1 8 9 3 4 P g s u 2 3 4 2 2 2 3 3 P d s 1

2

- 3 1

- 1 1 1 - - - - U e e M H - - D H H K- K S l d M -

H M M 4 9 8 8 8 e p e l 0 0 M 9 1 1 1 1 1 Y e m x 1 1 9 1 7 9 8 r l - - - - - - - - - - - R i i a -

7 7 7 7 7 7 1 3 3 3 3 A F S F 7 D H 4 4 4 4 4 4 4 1 2 6

2 6

2 6

2 6 N 6 6 6 6 6

6 6

6

- - - 6 - U l

f

- - - l 1 l 1 1 O 2 2 2 1 2 2 2 Q Q Q Q Q Q Q Q Q Q Q Q B

,f, * ..

'If fi1l,i ,- .

6 F

n 7

s k r r '

a a a m

e  %

R a

sng s gn sii s s s s s s usw oea s s s e

s e o o o o o o s

e e e e e e e t

Dr e e Y N N N N N N Y Y Y Y Y Y Y Y Y Y S D y g -

'. h,

." B, rt "

g i " - . ,

ar r "

r

~

r S do i " -" - r "

e v " " --

E np up rw - " -- - r r " - "

I - " -"I- g gf r

h T ou g I BS S

F O )

R h "

F t " 0 " "0 d " "0 " " "0 8 " "1 - 5 -

L i 4- " " -

"5 "4 "4 8 8 - 0 1 -

A e

w 0 0 '

' - - '2 ' '0 C - - 2 "8 - - -

'- ' 1 4 1 I su '6 ' 1 - '

'3 4

9 x

7 x 4' 3 x x x S i x '4 4 x ' 7 x x 5

x 6

x x " " x x " "

T St x x 2 x " " " 6 1 " " "0 6 6 E h "6 " "0 "

"5 0 0 - '-

P s - "0 0 - 6 6 1 5 i ' "6 - - - -

'0 4 ' 2 3 3 D e '3 '- '- 2 ' ' ' ' ' '

5 2 2 7 7 1 1 1 N h 1 7 7 1 5 5 5 4 5 1 A (

g g g g g g g E N g g g g n n n n n n n L O n n n n k k k k i i i i i i i B I d i i i i k k c n n n n n n n A T n n n n n c c c c c a a n n n n n n n T C o n n n n a a a a t t u u u u u u u N B u u u u t t S S t t S S S R R R R R R R U R R R R S F

- s e 1 1 8 1 8 8 8 2 2 S h 2 8 8 8 1 1 1 1 L t L r A U W

Y w E o d d d d d N

O g d i

d i

d i

d i

d i

d i

d i

d i

d i

d i

l d

l i l l

i l

i l

i l

i l

i l

l l o S 1 l l l l l l o

l o o o o o o o o o o

& T oS o o o o S S S S S H S S S S S M S S S S S k-cs " " " " " " " "

is "2 8 "8 8

8 b" "!

f "3 8" 8 8 2 1

8 4

8 4

8 4

2 1

2 1

'. 4 he

't m 1 4 4 4 g g g g g g g g g g g g n g g g g n n n n n n se n n n n i n i n i n

i n

i n i i i i i i i i i i i d d d d d d d i d d d d d d d d d l l l l l l l l t l l l l l l l l e e e e e e e e e c e e e e e e e e r i i i i n i i i i i i i i i i i h i i

h h h h h u h h h h h h h h h S

h S S F S S S S S F s s S S S s S S 7 8 9 0 1 2 3 4 1 2 3 5 6 4 4 4 4 5 6 7 3 3 3 3 3 4 4 5 5 5 6 6 6

- - - - 5

- - L- - -

K- K- L L M M M L- L - -

K- L K- K-B 5 5 5 5 5 5 H H J 8

8 8 8 1 1 8 7 8 8 8 8 l 1 1 1 1 1 1 1 1 l - - - - - -

- - - - - 3 3 3 3 3 a 3 3 3 3 3 3 3 3 3 3 2

3 2

3 2 2 2 2 2 2 M 2 2 2 2 2 2 2 2 6

2 6 6 6 6 6 6 6 6 6 6 6 6 _6 6 6 6 - - - - -

- - - - - - - 2

- - - - - l l 2 2 2 2 2 l 1 l 1 _2 Q Q 1 l l l Q Q Q Q Q Q Q Q _Q Q Q Q Q Q Q

,I *I I l!  :  : ) i l j I

' l l l

~

! 't f
j.l .- .:

6 .

f o

3 s e e t k e e e .

r '

r r e _

a f ,f h m - - S _

m r r _

E a a t t r _

r o o M M _

m e een gn s s s s s s o o o o o e e sw " o o o e e e e o o N Y Y hii Y N N N N N N ee ' N N N Y Y Y Dr D .

y 'B k g g , "g I rt E-- ~l w  ;, . .

m -

S E

ar do np -

y w

rg

. , R E

'gu wn "l

I up _ g"M

, g g .

F R

ou BS 3- ~l .

8 $ ,

E F

O R )h t "

P "5 "9 d "0 "5 " " " "3 7

- "8 "

"8 L

A i

w 4" "

4 "O "4 1

- - - 8* 4 4" 4 1

C s -

- - - ' '9 ' ' - -

- ' ' l 7 5 I eu '7 '8

' 9 x

x 8 x

9 x

6 'l l '3 4 8 x 1 x

2 x

S i x '3 3 x

x x x x x x T St h

x x " l l

6 5" "

"1 "0 " "

8 E g "6 " " 5

- - - "0 "0 "6 "4 4 1 5 P - 4 "4 4 -

i - '

D e '3 '

- ' '2 2 7 '6 '

'8 '4 '5 '5 '8 l '8 '9 h 2 2 2 2 5 N 1 5 5 5 1 A ( g g g g g g g g g g g n n E. N g n n n n n n n n O n n i k i i i k i i n

T B I d k k k i i i i n

i n n c n n n c n A T n i n c c c n n n n n a n n n a n n T C o n a a a n n n n u u u t u u N B u u u u u u t R R R S R R u t t S

t R R R R R R S U R S S F

- e e 1 1 1 1 1 1 1 1 1 1 1 S h 2 1 1 1 1 1 L t L y A U W

d d w w T

P w w w w we we d d d d o o N g d d d d o o o o ot ot l u d

i i i i i l l l l l l l u l l l l 0 i i i i l l o l o l l l o o 8 1 l l l l l l l o o or or o o o o o A T oS o o o o o t G HG S S S S S H H M S S S H H H H l k "

_ cs io "8 "2 - 2 "2 "2 "8 8 8 8" "8 "8 "8 "2 1

2 1

"2 "8 "8 1

_ he 1 1 1 1 Tn

_ g g g g g g n

g n

g n t t se g g g n n n n u u n n n n i i i i i i i o o i i i i d d d d d d d i d d d d l l l l l l k k t l l l e

l e e e e e e e c c e l e e e e e e e i i i i i o o m i i i r r r r i i h h h h h l l u i h h i i i i h h S S S S B B h h F F S S S F S S S S F F l

s 3 7 0 1 2 0 0 1 l 3 0 1 1 1 i 5 6 7 6 7 8 9 0 0 0 -

4 6 6 6 7 4 1 1 1 - -

- - 7 9 9 9 9

- - - N L- G G 6 H - - - 4 4 L- L L- -

H J M N N 1 9 K- 1 l 1 9 R H- J 7 7 9 9 1 1 1 1 l 1 1 7 7 7 7 - - -

8 1 l - - - - -

l - - - - - -

5 5 5 5 5 5

- - 5 o -3 3 3 3 3 3 5 5 5 5 9 9 9 9 9 9 9 9 H 2 2 2 2 2 2 6

9 5

9 5

9 5 5 5 5 5 5 5 5 5

6 6 6 6 6 - - - - - - - 1 2 2 2 2 2 l l 2

2 2 1 2 2 2 2 Q Q Q Q Q Q Q 2

Q Q Q Q Q Q Q Q Q Q

!llI 'i!i i

!i 4 ill 4 l.;;  ; l)j l!1 j1 t] . I l

t 8'i .' .'

' * ,  ! l' 6

f n

s r k e e r e e e e r r h a

m f f R

s - -

E r r a a t t r r o o M M s

aag e

gn s mii s s s s s o o o usw s o o o o o o o e e e e e e e N N weeDr Y Y Y N N N N N N N Y Y Y Y N S D ,

y s g e, E h x rt ar l

g " g, ,

g I s a r

v

,. a

-= . v x m , ~

m .

o S d o

m. m E

I np up a nl>

,- "'- g,

, g I,

, v g.

- qL q% a B ,I C m

ou = ~

N E

BS F

O ) "

R h " 3 F t " " "

d 5 "0 8 "0 '

" 8 4 L i "6 " " " " " - - -

- 2 4 - -

A C e w . "9 - ' - 4 "4 7 4

1 "4

0 2

8 2 1 na 0 - - 2 x 4 7 I '5 1 '8 ' '

'1

~ ' 2 x

3 x x l x x S i 2 x x 'l 7 4 x

'l x x 3

x 4

x "0 x " "

T St hg x " x x "

"0 6 1 - 0 0 H "5 5 " " " " " "

4 6

- - - B - -

F "8 - - 0" O 6 6 4 4 -

D i

e - ' ' - -

'3 '2 3 '9 ' '0 '0 6 6 '

1 7 1 1 N h '3 2 '8 8 2 2 5 5 5 1 1 1 1 A ( ~z g g g g g g g g g E N g g 'g g g n n n n L O n n n n n n n n n n i i i i d i i i i B I i i i i k k k i n n n n n A T n i n n t n c c c n n n n n n n n T C o n n. n n a a a n n n n n u u u u N B u r

u u u u t t t u u u R u R u R R R R U S S S R R R R R R R R F

- e e 1 1 1 1 1 S h 1 1 1 1 1 1 1 1 1 1 1 1 L t L y A W U

Y d d w w w w R w w w we we w o

w o

w o o o o o I

C g l o l o

l o ot l u ot l u d

i d

i d

i d

i d

i l l l l l

l l

l l

l l

S 1 l l l l l l l l o l o l l l l o o o o o o o o o A T o o o or or o o o H H H H H H l M S l

H H l l HG HG S S S S k " "

cs " " " " " " " "

"2 2

2 "8 8 8 ie "2 2 2 "8 8 . "8 8 8 8 8 2 1

he 1 1 1 1 1 1 tn g g g g g n n n n n n n n g g n n o o o o o o o n n n n n i i i ito uto i i i i i i i i i i i t t t d t t t t d d d d d d i i i i i l l l l l l l i i t t

c k e e e e e e e e e t t t t t r r n

u o c r r i i i i i h

i h

i h

r a

r a

r a

r a

r a a a i i h h h h P P P P F l B F F S S S S S S s P * >

t 1 2 3 4 8 0 1 2 i 3 4 5 6 7 8 9 0 3 3 3 l l l 1 l 1 2 2 2 2 2 2 1 l l 1 1 1 1 1 1 1 1 l l l l l 1 l 1 - - -

N F F G E G G G G H H J J L L- M N 6 5 3 3 3 9 9 9 9 9 9 7 7 6 6 2 l 4 9 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 - -

i 1 - - - - - - - - - -

s - 5 5

5 5

5 5 5 5 5 5 5 5 5 5 5 9

5 9

U 59 9 9 9 9 9 9 9 9 9 9 5

9 5

9 5

9 5

9 5 5 5 5 5 5 5 5 5 5 5 5 5 - -

- - - - - - - - l l l l l l 1 l l l L l l Q

l l 1 l Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q jI ,ll  :

h r 1I ,. } i..

'! .1 t.

e n

C s

k e r n a a

. ss h c

E e

sag s gn s s s s ati s s s s s usw s o e e e e e e e e e s ea e o o o o o o Y Y Y Y Y Y Y Y

N N N N N N N Y Y

SuDrD y g E ,.

l .

~

]m-w]a]-

I rt l- ."

ji ar .

e b-m .

S E

do np 7"gn "

" "g, .

[w" n

up , ." "  !.

I T ou g-r ('I I

" 3 ""  !

E BS E

F O )

E h " "6 "

F t " l - " " 0 "4 d " 6 l ' 4 6" 1 1 6 "8 L i 7 " " - - 3 - - - - "5 - - -

w - " "

A 5 "0 'O 9 0 ' 0 '

9' 8' 4' '2 4 4 C e su '1 0 - - - '2 . 0 2 3 '

9 x 1 1 I -

'- ' 1 1 x 2 3 x

5 x

3 x x x x S i x 3' 4 4 '4 4 x x "

x " " "0 "

Y St x x x x x 0 "8 1 "0 8 H hg " " "5 "0 1 8 "0 0 9 P "0 '

"0 0 - - - - - - - - -

i - "1 0 O ' ' ' ' '

D e - - - - -

'0 '0 3 3 '4 4 3 '5 7 4 3 h '0

' ' ' 1 1 1 l 1 1 1 1 1 1 1

l A ( 1 '8 '4 4 8 2 1 1 g g g g g g g g g E t g g g g n n L

t 0 g g g g n n n n n n n n n n n B I d n n n n i i i i i i i i i n

A T n i i i i i i n

i n

i n n n n n n n n n C o n n n n n n n n n n n n n n T n n n n n n n n, u u u u u u u N B u u u u u u u u u e R R R R R R R U R R R R R R R R R R

F

- e e 1 1 1 1 1 1 1 S h 1 8 8 1 8 1 1 1 1 L ty 1 L

A W W

Y d w w w w w w m w we w w o

w o

w o

w o o o o o o o 0

0 8

sil o d i

d i

d i

ot l u d

i l o

l l l l

l l

l l

l l

l l

l l

l l

l l

T lo l l l l o l l l o

l o o o o o o o o o A o o o or o o H H H H H H H M H S S S MG S H H H H k- " " "

cs " " " " "

"2 8 8 "8 6 is 8" 8" "8 .

8 8 2 "2 "6 2 2 he "8 8 4 1 1 1 1 1 tn 4 4 n n n n n n n n g g n o o r r r o o o o n n t o o o i n o o i i t

u d t

i u i i i i i

o o i i i

t i

t i

t t i t d o o d o t i

t t i

t i r r r i i i i k i t t i l k k l e c t t t t e e e t t r

t r r c t e c c o r r r r t t t r a

n r i o o i a a a a x x x a a a P

u a h l l h l P P E E E P P P F P S B B S B P P 1 2 3 4 5 6 7 8 6 8 0 l 2 8 8 8 3 4 l 7 8 8 8 8 8 3 3 5 3 7 3 7 1 1 1 1 1 1 1 3 1 1 l 1 1 -

1 1 3 1 - - - - - - -

- 1 - - - - H H H H

- - 1 H J J G G G H J 7 E N - F -

8 9 / 1 7 8 8 8 7 7 7 2

l 2 l F 7 J 2 2 2 2 2 2 2 2 l 1 l 9 1 7 1 1 1 - - - - - -

- - - - - - - 3 3 a - - - -

5 5 8 6 0 3 3 3 3 3 3 2 2 2 H 5 9

5 9

5 9

5 9 9 9 7 6 8 2 2 6

2 6

2 6

2 6 6 6 6 5 5 5 5 6 6 5 6 - - -

5 5 - - - - - - -

- - - - - - - l l 1 l l l l 1 2 l l l l Q Q Q Q 2 2 2 l Q Q Q Q Q Q Q Q Q Q Q Q Q i,

l. .

.  ;! * , ,r 1 l' . t 1 6

r n

6 s r k

r .

a a h e

m s s

E e

s e eag gn nii s usw oea s

e e Y Y hDrD '

y rt ar

g. E.

S do np , .

E up I

F ou i I E BS E t F

O )

R h F t d "2 L i A w . "7 C e -

'3 I

i su '9 1 S x x Y St "

E h g 3 "2 P i - -

D e '3 '2 N h 1 1 1 A (

E N g g L O n n B I d A T n i n

i n

T C o n n N B u U R u R F

- s e

S h 1 1 L t L y A W W

Y R w N w O 61 l o

l o

S A T l o

l o

M H R k-cs ie '

"6 "6 nen n n m o o d o i i t t t t i i e t t m r r a

u a P F P 9 0 8 9 1 1 G G l 7 7 i 2 2 n - -

U 32 3 2

6 6 l 1 Q Q

TABLE 2 ALLOWABLE STRESSES IN CONCRETE MASONRY WALLS IN PSI Type 1 Wall Type 2 Wall Type 3 Wall LoadingIII Loading loadingIII Condition Condition (II Condition Type of Stress Normal Abnormal Normal Abnormal Normal Abnormal Flexural compression, F, 340 560 310 520 420 700 Transverse and punching shear, V 35 59 34 57 39 66 (2) 14 18 14 18 14 18 Shear in mortar collar joint, V, $

Direct or F 14 23 -- -- -- --

U II " Normal to bed joints, Parallel to bed joints,tgn 27 46 -- -- -- --

flexura tension {3) Normal to bed joints, F 8" -- --

27 46 40 67 Solid - Parallel to bed joints,tpntsp -- -- 41 69 75 125 14 18 14 18 14 18 Mortar collar joints, Ftcj Axial compression allowable (F,) is dependent upon the height and thickness of the wall F, = 0.225 f, [1 - ( Ot I Type 1 Wall I4I -

Type 2 Wall I4I Type 3 Wall I4I verified and unverified Unverified solid and/or . Verified solid-hollow-unit wall grouted unit walls unit wall f' = 1,020 psi f' = 950 psi f' = 1,270 psi m =

  • 750 psi m = 750 psi m" = 2,500 psi I1I (2) Shear Abnormal andloading tensioncondition capacities includes accident in mortar andjoints collar extreme must environmental be verified by loads.

field tests.

I3I For walls laid in stack bond, shear and tensile stresses shall not be transferred across the (4) continuous vertical joints. is shown on the design drawings, unverified wall is a wall that is verified wall is a wall that not shown on the design drawings.

n . s i

o s 1 i

t y 1 l

s a a f k

u n o r l a a n 1 e v d e e e t R r d e e

i e h

a h S

t r r u e t

f u p

r m e o d C

~

n U

a i

r t e g e t g g e i n n n M r i i i C h h h t c c c s o e r r r S t N c a a a T l n a a a L u s a si si si d r U s o p e t d r d r ee S e ee ee et E R D e et et ci R c ci ci xr n c xr xr E c N o A E c E c O i I t T a e e e e A u c l U l n l l g b L a a b b n a 3 A v t 'a a a w i w V E p i w o h o E E e r o c l L c e l l s l

l s ra l s B D c t ae ai ae A N A i ae s r s T A r s ss s C ss ss se S t t e t e t t t e D e er er ei er A e et et er 1 c et 4 s O M Ms M s L p D I E

I a L

P P l a A a m

r a o

s n d b s a A o

L t d

e #

. i l

p o p

A o

l a

m r

o N

1 1 2 1 2 3 4 1 2 1 1 1 -

- - 3 - - D H - -

'l M M -

H M M 4 l 0 0 M 9 7 9 8 1 a 1 1 9 1 -

W 7- 7 7

7 7

7 7

4 1

1 4 4 4 4 4 4 6 6 6 6 6 6 6 6 - -

- - 2 2 2 1 2 2 1 Q 2

Q Q Q /- Q Q Q Q

!i ' , , i!

. d e

g -

d e or s l s y l

l i t a d e 1 f 1 w

t a f t es g o s n g et yn 2 k

r cr a ao jp ai.

mr t ss d p et e aus sgn e E gne h n uam ld p S

ol a pni euq t r ne e et t t e d a eu nl r od e

pr che nt t

~

- eo oia Df C wl a

i r e t e e l l b e t b a e i M r a w C w o t

o l l l S

s o e l a T

t N c n a L

l u s a sn U s e t sn d o d o ei S e o p ei es E R D e es cn R c cn xe n c xe Et N o A Et O i I t T a e e e e e e e A u c l l l l l l U l n b b b b b b L a a a a a a a 3 A v tp i'a wa w w w w w V E o o o o o E

L E e r o c e ll s l l l l s l

l s l

l s l s l s B D c t ae ae ae ae ae ae A N A i s s s s s s T A r ss ss ss ss ss ss s C t e t e t e t e t e t e S t er er er er er er D e et et et et et et A e Ms Ms Ms Ms Ms M s D M I

p D Y E

I L

P P J a

P A

l a

m J

r a o

s n e

d b a A o

J V L t d

e

  • i l

p p

o A

o l

a J m

r o

N L

J 8 9 3 4 5 6 7 8 _

2 2 3 3 3 3 3 3

'l H H K K- K- K L L-l 9 8 8 8 8 8 8 8

- a 1 1 1 1 1 1 1 1 W - - - -

3 3

3 3

3 3 3 3 2 2 2 2 2 2 2 2

. 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 Q Q Q Q Q Q Q Q g li!jI )i . }i <4 Ii jl iEj  ! il; )J)i!  !.l,I!  ;;iI

'f 1

s 1 i

s y

f -

n s l -

k a 1 r n a a r m e e d e

e R h d R i

s r

e t

u p

m o

C g g g a n n n e i i i i r n n n l b

t e r t e t r u s a e i u e t r w M r t r t r ro ro o C ro et et l

et l s

t o e vc vc vc a S t N c oa oa oaf T l i n

s f

s f

s s" L u s a d y d y d y d e

U s e t et et et e' S e o p ee ee ee c '"

E R D e cf cf cf x' R c xa xa xa n c Es E' N o A Es Es O i I t T a e e e e e l

A u c l l l b

U l n b b b a

L a a ~ a a a 3 A v t a w w w w o

V E p i o o o E

L E e r c e l

l s l

l s l

l s l

l s B D c t ae ae ae ae A N A i s s s s T A r ss ss ss ss s C t e t e t e t e S t er er er er D e et et et et A e Ms Ms Ms Ms S M -

I p

D Y E

I L P

, J P

P A

t n T

, J

_ a

_ r ,

o R s n d b a A e J

- o L t d

i e # J l

p p

o J A

l a

o J m

r o

N

  • J 1 2 3 4 9 0 4 4 4 4 5 3 4 4 5 5

'l -

M L L- L- - -

l M M 5 5 5 H H 5 5 8 7

- a 51 1 1 1 1 1 W - - -

3 3

3 3

3 3 3 3 2 2 2

_ 2 2 2 2 6 2 6 6 6 6 6 6 6 - - -

- - - - 2 2

. - 1 1 1 1

_ 1 1 Q Q Q Q Q Q Q Q i ,'  ;'

i

2 ?I d

e-ge d r o

l y l s

st l i e a 1 df w 1 a f t s t e n o s gg et k n cr 4 r yi ao jp t n

s ar . d p e metgn au e e s h R sne n S

' ua m ld p ol pni a euq t r ne e et t t e eu d a nl rod c ;t e e pr nt t oia eo Cwl Df a

i e r l t e b e t a e i w M r o C l t l e o e a S t N c T l i s sn L u s at d o U s e ei S e o p es E R D e cn R c xe n c Et N o A O i I t e T a e e e e e e e l l l A u c l l l l b b U l n b b b b b a a a L a a a a a a w w 3 A v t 'a w w w w o V E p i w o o o o o o l E E e c e r l l l l s l

l s l

l s l

l s l s L l s l s ae ae ae B D c t ae aes aes ae s s s A N A i s s ss ss T A r ss ss ss ss ss t e s C t e t e t e t e S t e t e er er er er er er D

t e er et et et et et et A e et Ms Ms Ms Ms Ms Ms O M Ms L p D Y E

I ,

L P P

P l a A a m

r a o

s n d b a A o

s h

L t W

d i

e D

r y l

A p

p R

/

l a

E

/

m r

o W

N L

D j 5 6 2 3 4 6 6 6 7 1 -

5 6 6 6 6 -

.l 5

- - - L L l - K- K K 1 1 J K- L 8 8 1 1 a 8 8 8 8 -

W 3

- 3 3

3 3

3 3

3 2

2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 - -

- 2 2 2 2 2 2 2 2

Q Q Q Q Q Q Q Q

!f l

l :

1 n 1 s o i i f s t o y a s l u 5 k a l r n a t a a v e m e e e d h R e r S d e i h s t r

r u e f t -

u r p e m d o n C U g

a i n

i r n t e r e t u e i t r M r ro C et t vc oaf S

a t

o e N c T l n s d y L

U S

u s s e e o p u et ee cf E R D e c xa R Es n c N o A O i I t T a e e e e e e A u c e l l l l l U l n l b b b b L a a b b a a a 3 A v t 'a a a a w w w V E p i w w w o o o o E E e r o o l l l l l l l s L c e l s l s l s l s l s ae ae B D c t ae aes ae ae s s A N A i s s s ss ss T A r ss ss ss ss t e s C t e t e t e S t t e t e er er er er D e er er et et et et A e et et Ms Ms Ms Ms M Ms Ms D

I p

D Y E ,

I L P P

P t ,

A s T n

r ,

o R s n d b s a A o

L t d

W e r i D l

p ,

p R A ,

l E a

m r

o W

N L

D 0

7 3 7 8 9 0 6 7 4 6 9 9 1 7 9 9 -

.l - - - -

l L- H -

H H J J M

- a 11 9 H 7 7 7 7 1 7 7 - -

W - - -

5 5

5 5 5 3 3 3 9 9 9 2 2 9 9 5 5 2 5 5 5 6 6 6 - - -

- - - 2 2

- - 2 2 2 1 2 2 Q Q Q Q Q Q Q Q

l

1 1

f n o s s o _

i i i t 6 _

s y

s y a t s l l u e -

k a a l e r

n n a h a , v m a a e S e d R d e e r d d e

i i h

t s s r r r u f

e e t t r u

p u

p e d

m m n o o U C C a

i r e ,

l t e b e t a e i w M r o C l t l S

s t

o e N c a T l n sn .

L u s a d o U s e t ei S e o p es E R D e cn R c xe n c Et N o A O i g I t a e n e T e e i e e A u c l l n l l l U l n b b rr b b b L a a a uo a a a 3 A v t 'a a w w t t w w w V E p i o rc o o o E E e r o c e ll s l ea l l l L l s vf l s l s l s B D c t ae aes o y aes ae ae A N A i s s T A r ss s ss st ss ss ss s C t e t e t e t e t e t e S t er er ef er er er D e et et ea et et et A e Ms Ms Ms Ms Ms Ms D M I

p D Y E

I ,

L P P

P l ,

A a T m

r ,

o R s n d b s a A o

L t d

e '

i l

p p

o A

o l

a m

r o

N a b 3 7 0 1 1 3 1 2 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 - - - - - -

'l - - N L 6 G G H l 4 9

- a N N 1 9 4 4 1 1 1 9 9 1 1 1 W - - - - -

5 5

5 5 5 5 5 5 9 9 9 9 9 9 9 9 5 5 5 5 5 5 5 5 1

1 1

2 2 2 1 1 Q Q Q Q Q Q Q Q

, i i l l , ' '  :

1 1

f o

s 7 k

r r a e m e e h R S a

i r

t e e t e i M r C

t S

s t

o e N c T l n L u s a U s e t S e o p E R D e R c n c N o A O i g g I t n n T a e e e e i i e e e A u c l l n n l l l U l n l b b b 'r r rr b b b L a a a a a uo uo s a a 3 A v t 'a w w w t t tt w w w V E p i o rc rc o o o E E e r o c e l l o

l ea ea l l l L l s l s l s vf vf l s l s l s B D c t aes ae ae o y o y aes aes ae A N A i s s s T A r ss ss ss st st ss ss ss s C t e t e t e t e t e t e t e t e S t er er ef ef er er er D e er ea ea et et et A e et et et Ms Ms Ms Ms Ms Ms Ms Ms A M l I

p D I E

I a L

P P l a A a

_ m

_ r a o

s n d b e a A o

L t d

e #

i l

p p

o A

o l

a V m

r o

_ N 5 6 7 8 9 0 1 _

4 1 2 2 _

1 1 1 1 1 1 1 1 1 1 1 1 1 - -

'l H J J L L M N N l 9 9 9 9 7 7

- a 9 9 1 1 1 1 1 1 1 1 W - - - -

5 5

5 5

5 5 5 5 9 9 9 9 9 9 9 9 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 Q Q Q Q Q Q Q Q

- l ,

1 1

f o

s 8 k

r t s e e e _

e h S

R

~

a e i

r le e e e l l l l _

t e b b b b b a

e t a a a a '

w e i w w M r w w o o o o C o l l l l l l

t l l s o e l a

l a a a a S t N c sn T l n sn sn sn L u s a dsn o d o d o d o d o ei U s e t ei ei ei ei es S e o p es es es es cn E R D e c cn cn cn cn xe R

c xe xe xe xe Et n Et Et Et N o A Et O i I t T a e e e e A u c l l l U l n b b b a

L a a a a 3 A v t 'a w w o

w o

V E p i o E E e c e r l l s l

l s l

l s L aes ae B D c t aes s A N A i ss ss T A r ss t e s C t e t e S t er er er D e et et et A e Hs Ms M s D M I

. p D Y E

I ,

L P P

P l a A a m

r a o

e n d b s a A o

L t d

i e I W l

p o p

A o

l a

m r

o N

b Y

0 1 2 3 2 3 4 8 3 3 2 2 3 3 2 2 1 1 1 1 1 1 1 1 - - -

'l F- - -

E G G G E l

F G 5 3 3 3 2 6 6 2 1

- a 62 2 2 2 2 2 W - -

5 5

5 5 5 5 5 5 9 9 9 9 9 9 9 9 5 5 5 5 5 5 5 5 - - - -

- - - 1 1 2

- 1 1 1 1 1 Q Q Q Q Q _

Q Q Q

~

1 1

f

- a

~

a 4 k e r

s s e e e h t

R a

i e e

. r '

l l t e b b e t a a e i w w M r o o C l l l

t l s o e a a S t N e T l i n

sn sn L u s a -

d o d o ei

. U s e t ei

~~ S e o p es es E R D e cn cn R c xe xe n c Et Et N o A O i I t T a e e e e e e A u c l l l l l g

U l n b b b b b J L a a a a a a n 3 A v t 'a aw w w w w i V E p i o o o o o h E

L E e c e r l l l l s l

l s l

l s c

r l s l s B D c t ae ae ae ae ae a A N A i s s s s s s T A r ss ss ss ss ss st ti s C t e t e t e S t t e er t e er er er er em D e et et et et et ei A Ms Ms Ms Ms Ml Me ; J Ms A

T p

D Y E j I

L P P

P l ,

A a T m

r a o

s n d b s

. a A I o

L t d

e f D' i

p o p I A

o l

,_w r "

o N

- d 6 8 0 1 2 4 3 7 7 7 3 5 3 7 1 3 1 1 1 1 1 3 - -

1 - 1 - -

'l -

F - H J J G l N -

J 8 9 7 1 1 F 7 2

- a 9 1 7 1 1 1 W 15- 5 5

5 5

8 6

0 9 9 9 7 6 8 9 9 6 6 5 5 5 5 5 5

- - 1 1 1 _

2 1 2 1 2

Q Q Q Q Q Q Q Q _

,  ! j ' :II j'

. I lfl ll i

{ I i ' c l .

1 1

f o

0 s 1 k

r t a e m - e e h R S

~

a

' i r le e e e e e e e _

l l l l l l l .

t e b b b b b b b b e t s a a e i a a a a a w

M r w w w w w w w _

o o o o o o o _

C o l l l l l l l l t l l l l l l l S

s t

o e N c l

a a a a a a a a T l n sn sn sn sn sn sn sn L u s a dsn o d o d o d o d o d o d o d o U s e t ei ei ei ei ei ei ei ei S e o p es es es es es es es es E R D e cn cn cn cn cn cn cn R c cn xe xe xe xe xe xe xe n c xe Et Et Et Et Et Et Et N o A Et O i I t T a e A u c n

U l L a a ~

3 A v t a V E p i E E e c e r

L B D c t A N A i T A r s C S t

_ D e A e

_ D M '

_ I p

_ D Y

_ E I a L

P P l a A a m

r a o

s n d b e a A o

L t d

W e r i D l

p ,

p R A ,

l E a

m l i

r W o

N L

D M Y 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1

-l G H J H H H H l G- 8 7 7 7 7 7 8 8

- a 2 2 2 2 2 2 2 2 W - - - - -

3 3

3 3 3 3 3 3 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 Q Q Q Q Q Q Q Q l .

6 1

1 s t i a s

y s l 1

1 k a r n

  • a a -

m .

e d t R e e d

i s

r e

t

~

u p

m o

C a

i r e e t e l l e t b b e i a a .

M r w w C o o l l t l l S

s t

o e N c a a T l n sn sn L u s a d o d o U s e t ei ei S e o p es es E R D e cn cn R c xe xe n c Et Et N o A O i I t T a e A u c U l n L a a 3 A v t ~a V E p i E E e c e r

L B D c t A N A i T A r s C S t D e A e D M I

_ p D

E I a L

P P l a A a m

r a o

s n d b s a A o

L t d

W e r i D l

p ,

p R A , i l

a E W m

r o

W N

L D

9 0 y 8 9 1 1 r

-l - - o l G G t 7 7 s

- a 2 2 rt W - - ef 3 3 D ti 2 2 N nr 6 6 E ID

- - G -

1 1 E r Q Q L D

5 1

sum

=

  • e e

4 $ $

d 4 i

as ,

l i

I ' I k ,~l m u

) 1

,I, .

3

  1. = _ _..

O p i

i

j I s3, P  !. e-

- r [<r m -

j-)i,is u ---

_q._; .,L,s z

n l- - -

i. xd .- 1 o  ;

d .y2.3

[1 '

. ,H r_ ia jj _  !' , .t. .

,, . .i ,

,'!.!, g .m '

l ,'

[-i

/

1. ,.a[ - I c.ig-ad.- r. ' l1l%. [j

$ i il on Zs a

c

..e,

,i

g I I I gg i%p - N N-E IIIy s *~ ~

li_

L j{r' iu

.] p

-lj Eh'" 3 .

7fdjj,gi

,I , ,

d 5g A

_j; OM;-@p- M iJ 5 _O I j I * -

_Ee E an! =.v L,jryf %_ n..._ . h_. .p (gHy.,,pr; * .

w.

N; s

'--L gr

, ehl$l.pil.p=%,.)hW hi!M;17ZTQ$9 jf r

3"f0 Iz

iak%

k s jv f3 -

fy W m/1AJ,1eg/pJ!i_9:$,rv

" 1. ~ y 6l_ 4 bt p u_ pe t

x

.mp E4h;).D'A,l i

b

!rl Wl

    1. ! @." _i 2 ml(i pgol &

p h .i;lM, DJje39 vP

_l!Re.E 3 s4, %c %i r t.-

il i ,: a,.e

.I  ?

i m e g p igln:,.c.e 4.sv 4'xgiu_ e.C

,n t(e1' ggep;h i

l

[is .i ._ gs,t9:1_i$ [o wg g p&

pJ I %ry$f0((

i' I3: LUl i ll $9.hIMi N .- '

hif@fiir#g#ggb'&j$jg@i

< U di"X_]!! ).

=  ; o p g iv p 2 a%3u h -

5l iWeOII',kux 3$) is .g -I!h,O6 ,- .

F! N@a}l-)R fM.C_,_ 3 , ,M Mpls. -ffi +VIhr,__R r .

,~

Ie w 0

y. :r  !!!1  ; _ _- _r g*

= ...

g g J;q

+-+-  ;*;

t: + -

ll0 -' _

g

} @i a* e [ 0- gL y ,4 fW j[lg(gt! ip h  ;

y. g <g z s . .ar b i.d. -. I. m _t h_ -

z g _

e mm = ~ .c.e -

,,,, o y ,

-o

^C j . ; g_,.T L_ 'h}1 TCCR M T(a?'q . _ _f e

]r#

,t =

c; # E di l ..

_: -r-

_idtG.ij Ri _. J e ly $ 5 t  !!.

j li .

,ij.l'lb. l$50j

.a fid) lfb 'l l_ li ' q$.

1 J

)# $ % .- i.I i ,'

i ,h 'E O h' g'---f' i j i -

- [;j I,

[g f g d S. h ppg; L '"a

- q 2 e.

y6 + ___. ____,

A

+ a 4_

  • e

l

" :':~'-- +- .d

., c. .

h' 3@Ehl Q E.

g1 ) 1

! o $

i e _ ~ &a o, ,.,r_ .

i t _,

z _

I I g )<

u m

+

0

, im -

h

'I p- E $$

b[b'b%h -P! E" li _U3 ' _ . Af i ,,P

'- . . gC -f- i n.n g e ;n' um i .y v ,

mx ,;-

l'A o

PIs # d. ,J 4

, };!

' EM i

.:I V

-i s i: 15 3,:~ * -4 .

'[Sp!!k.p f!" P-E _4 p

'ij (, L5 p e.go pg2 5{

1, c $.,

ngw .

r- >mo -n.

h ' ::", h.ZC+ 8, ' e

'* I ,l f %a =A.8.

~

I y $ g Drk l ,

.'d@70 n -TM, 4 7

[ o w W' Mn** ,-; n yTm.F h,i,.9 Q+

' g. \k>~,' "v--y.__ -

s. ~ n

' 6

-  ;- e s .- .. ,

! l! M L d

$~9 :J.t_i G - --

?

c m e

, b V , h -

$-P1 h ,

4ifE

-.A tI!i papur g, yi' - g mpi e - -

ms .*: 19_. ..}'

4 m f y +! $g3OfF~N" !!j !W4 -- P I, "

llT iir h

~%s ;!$.

bd' [ 5. i M u;. A *. k g!}Ar $ a il L n

y N. x s L.vn_!*c s.m mm.= .__ g v

  • ~~~"

3.z

,_...,s' 1 4g -

h> ba,L. ,a {jt_ w' w

.].- j*n

_h.IEj;jdg

-4e-.

ffj m [- l= I-""" N'4- - o g g._4 !!hlj f!.h h ;Ir.-' h..,,'

t . _ . . ,#_u -

y o s y,!

it j

4

  1. wat NsY <1J'g:i ti p  !

.l, 2hi i

a. 4 aj tN e$cw 49, g5ag 1 9PMTj'po " g y p$y

.,, " ,3; y j ,

a~:

., w W ,* f . Qi.

a r-mA z w

L

%gj!O , ki. ~ .e' .r g 1_

ii n i Cg .f M ,$ .'sI,)} 7,t p SIIk.!C.st19 dyh.g! .Mkj ' :"a '

i -  !,

!!! i g} o.  ;!thi Q '._=--J I

' #2 % y 511 1 _*

8 j

+.r d 4 @m 9:1:-2-5l _

L ,

\*  ! ,b,. .

M* r c.

L> -4 Ft-4--

17!w (( o W a;u p e".pu iiJ -

J il -ti-J g M e ==. s a

,g o j ' *I ijh! . -k g --:T!,y~ f u kw ld=M -. _r:

y% ,!

) '~

,-Q. f y./S

, l;E.,,$ -

Qa --

3 #E S E k.e R [! t-

7. E.~ #%J: U. .lL I

, b.l _

-4 .,

ti,!%jM

$lici F' h  ?. . I7 t, 5. y  !

-i

  • o e

F a:

- V; .O P&.__N" ' ', J.

n  : _m q

E p.! _4 g ,

"' d$,h ..[ *ilf b f,y #

x I N

m hd!yu tl ._ ._ _,-

n

_ q .,.

I*

e b.,- 3 $ M' w.:

o c r gyr: (( . .' . .

.i lj h I I l>l u iV i 'lt'-

> $ 0 a '

,s 3 r r3

v. - -s e ,; wi. - - - .

... . l.'

) @ ) $

g} ,

1, s O

7iCF g

~

i  ;

In!! c q d.yEMINQ M,I ._

. a up 4 m ._

i

@:djj i m'ci $i!$ f W pw r. N7' E

R

,5 F, i gh'e,eP UJ A J@fE@y)p, !!.. ...

- mS

.. + - v.p -% in-4?"$' W . ~ .

rm e i -

i,Mi;FW !@il ' p??% h r2f7

  1. p s , e .
  2. o 55 . l. :

Z = i i h,F--- !TJ i y

. ,, g ,. .. _ j . iq.

~~ i u.. ,

M. . .. .- hg.

-_.,b_ . _ W

, y , 1.,, y .

J+ ] Oy - ,--

p (U' .f. .,. b I

  • t.3 .

" g ;'

o, p q ' O y}0'W 4

.. 1 j 5g --"3 ' j j

' WW- ~ d ;;,3 ..

> e !;i.

'M i 'lj9 '

O '. k- Ih

  • h % .

h$ L h h5M. j CJ5.)fdd2 ra

.nn. ew c s+ d gd g (s d a -

N d h.t e m~ m sD ._

. w .. jpe vr  !

pQ , E.5;M; i;;n- d il D Q4 4 I ijQ:gg(1llj u n .. M 4

?.y{g,! g7.opy,'if.m gj g gpp p%.,pbj;tLg ,p y j c

N,, g sr---il -- 3J gm

,f. tag.u~g,v m 'i

,3 ,

g.

y -, ,:q

. i 1

p; a q[ ;],* gp[li3I! D\ . 7 i--~k U

E 1

3 EM. i y; L M nY f 6.M+ te 2.s ;i :iWD' '

  • lgi;pM4

, i i

gi

'Ip :

i~r' r

b4!i 1W. 7..s.

^il.[m_W !C y-II s_

~

Ig4 l l r~2 e - m 9[e.Cr ' J. d'$ ,g .- 4'S

i. g . . J,7 ,.o:l il

~ s .

o' E ..V li 1 wt i}Q_l 2.p>

e A _.-

c

.,, g y7 e...q, . .u M.==f q; g= ,

. 1 r-.%L .

[ .

~

t. ' @n is ag y-;. *t.j^ }f~' 9\*\' - ~sF4f1_ y[T .lq@ w. . .

j +n. -

il a i 2  : . n-J f . M r.y.J.p .

eo e y o _, .

. , ~ .

m y.

". N 5

) l,l,1 '@ i M 1 .Pcks

-py

+

%y lel 5 'ili

.lPgl, -

M- B B S

.m.

N !Ehilj_.lji\

N;;!v.iDil"lpkk \. l

-?~*""~~~ 'S

, 3 ,, c F

, u y !ji> u a n Meec- .: b -i--i > \ . ,3  :

E  !

w z.!s I I l C ew ; - ec .:.c a . .a 4 to,p

  1. 6 s o.

i

. e. : e

. . ' . l, .

, -y -

r- .i m ~

O O ,

m I

o --

e

'*' (* f@ 'a -

@ d v g ,,,.4 , og gy

-- -- - -- .  ;._ . .- _ 9 ... 3 ... .

~

F%

I r*.5 51l ro $# -

.a;, F'.d l 3 i

1li gh. - L -

I r""

.a' er &l ir g:i ....

un -

yD r-

y n .'

W 2

.y

,.' *9

- - -l"'4 , 4, gp

- I . ;

rn ri ef

,l J

{ .! ._.er

. 1.ta INi

'e g v

L g/; )D. .

,i

)g

- H -

L0 _g ,.

J p: g7 _. 7i .,i.-gU!!!Njjij zi,,,U;i.t, 4u W_finc e-- i. .- >

, 3 h _' g.fi D

. 4r n ..A p: s .: -

. . - :1 n' er-! 3_-f l- . YI g

,1 hf; LI  : p p , .

i

/ I x :n ig:

wn ';

su m  ! .n t l.

.s' m ep! q li -

, bn ., , l:. . ,

e -J-

.- u mp ' .- 3.. ,g )g-.- Ji; j 3.; gq g,' >g . .; ,

f - n> y_s..

.\ L .n,;t .u _c ,  ; m:n:i:, . ,

,\;

.. - a j e . ) i"t'; &,i -}

J } .

2 j? I;FcI j I .: -.

te- - --

.h }!.

p" m 4 3;

-)g 7ig N ;

.;.--L c M; 11.9f:rE '" ,

yf

,!! .; hy!

1

.'l ' M

. 3 l

i e--

r-v- Js. 3- ..;

i

!!g q a '

l mv .- .. a

.; y. h . tt '1+2 i

pc

. ,, : .1 i ,

!.I! ,_, f;'.

f B I, } .,!

. "jh 4

v. , ,

,2--

[1 O l -

4 .L .!' ! !
-E. .IW%y- li  ! h .i if t, f.  ; >g : :r i j;d,.,

. 9  :

4 c

i.L _l m c[; # ,

f i.

= . J; n ;. ,

~~f.

L ,.

ni y a:--- u  :

L%y33.'d.d.,

l

.I J}.-

5-@I'. ). il Fe

t ' li i [' '

b.,..t,L{LE:99, i J i I.  ! -1 i_ bp2 i N!! m2 h~~nw ci---

4. M -u, wI w *i Sit ;: . y q h- ":.h - i fi. h, -- =

(.. l_L . g , } l L ._ j ' 41S@h:!! hhip Jg[ 'l r- .,kghi O 'l

[)i:%.

q x
  • M  ;;g;.

g- L

u. Ei < . y Mry Eh ~. 3Mtit 'r};

j!;? MitSE r h.p' I

!-a .,M; 1I- '.' ir' p!I i ji ln,.

e. < - - ,

,: l!! i 4 ..

i-..

e,1 4 i Ll ,..W .i1lt s

d

c. -- . .-- - 5p 4l! -

r A- , '4. L+-l. {. n,L i,{'., .!

_ .. t - -

l5 t'wl:

j---

7. ; .

=  ! 9 s  :  : 3 t j <_ i,r

.L i  ! '

! .4 i'l 1 tj .

J ,F'I.t -Ls .; J ..:.... ..

A !j LT ;

Lee i r y G ys _L .

I p-. _ _ _ _,fI-i ;

is P. D. ;'! ..

m

~

e i '; 3 h,i 1 i-  ::;p-t"k.n . .. ; .

?5 b, iii. i.s I i .:.

n f ...i *

" "p

{ #/ g i ,.  !' Ilfi : l W pf O @O @ l l b[ .{

I i I

k * .4 g i q* i e'

E e >g l 'k.e et .

t

, L ,.

., L ,. j

.a.

z n ,

f 9 iP ~s N i i w e +'

x ^ 4 i.Ih.;j -> l4

'M e;;f p'* *t l

Eg 7 *;-

. I* [ a f'!

i ..

1. ,

l I *$

30 0 1 P

'e l

9 e e p 4 ~ E.-

o . O.

9 +

  • $ 6 9

. e r-

. m O D p , m O.r ~.

n I O

. . , _ . . . _. . ,, , i

.- - . . .r: . . . _ . . . . . . - .. _ e

_n. . - . . .- , - , ,-,

k .-; re J- O i.

.:; . l .

I ,p

,a

.. c. r . ,, .. . . = ' - .. g4 4 V'. s. i Q

l. . e e :* .

1.', . , E ("'

p* . . s,,s 93 p3 f

3.! .:r

. ..e $. e. I p rn nt i , ...' : , j:

m . . .

ii e c.J ' N

. G .  ! *O 8

_ , t.

  • 2 ;au.
4.L .,

. . .. .L

,1 g, a <

> .e . .a. s ... .._p... .

im lm w. .

. ,v. .

. f f- , e. .

c a t

t. t. :.,2;: i. .., .- . .

s, . . .

~

I_ >

l g- . . . .... . .

,r. a.-

  • ._re .%; z.. i e -

4  :

.a. .pi ,: . :..-.

,o. .i,.. +/ i.:-..

c .. i a.a.. .

y g

e c --. -

0- ..

4 *

:: ' .l' : g -

e.: p.;.:ig7 e, . jy .,

< .: ' g, ,

cj

70

.u .- i, .g L. . ;u. L.t;: . .

I

.c. .

e  :.,i _ . - -_^ L[ . . .3 e - ..- . i  !

r # b2 <y A.- .o O _ ......'9 - ... .. ...'.'t-

. A_. "":."_ (<

0 4.s, . e g..

' K. . -

c.g

. . . ..- ,3 n e. ..o- 4 ., ,,

t.. n :c fr gf.1.4 e

  • i*.......

^ _a - v. 5.p  :. . -

' - . 5 .t. .".:7;. ;-

,,. a. _ - ,. _ . ,

~% .

, )- f M' ,

  • '3--7
  • -..i: f

. . ._ . . s C1 6

~ s' 3

w. ~

Zl n ',t.. fl c... -

) 4, :. i .,  : { " .;, .- -

i; . +  :-; it i, p. . ..

i

,u, . . _m, .

  • .in g.u.

E . . , .:

. l . l1

.a... , ,.

, il 3.;

. p,

.. .a P .a W.J,. _d 4- /

.r I

i' i. I

  1. .,. I. 't (

i: . . .

U? g f IC **. ~ .i.- l

' I I 1 j 'i I. $' j*

k f. ... ..

  • l *j . y.-a ,~ s . , ._:' y

.I s ea

t 8_8 t

{ d, , {:

-ltlI r.i ;-Mi *. *j

.."J ,'s p ti : l ..

2; 1 4 i{. 1h ti  ;! p ~ e. r: .;; '~~ i 7,E . 5 !!! if d M. r i:

M dp L i:

' i  !!

p. . . ' .C @ ~_ :

l . .c a i;

r B

n

s. ,..}9 1. .

p e-c ___.

. _2

,. , y . ..

.c .c i . ...

. 1 N.7,ei -

i  ! . -'!, .

s. .- a, cl u. , . . , .; -

= , -~3..;l,i 1 F

,il. . + -

g s;.

n . .

f

?

e .,.

.~. .

1-i-

, ._is. .- - [

cI1 4 j$

. \ _'. ._.

. Ti _

s ;; -7:. t.:3: ..f  : r- , .

, e *l '

, 4 , t . 6_  !

4

-- --- ~

  • _.e D . l__T Sz a 2' . .e_. _. {

{. ..'....- . 4 so o .

<c . ,,

e $,

s . .  : '~ - i 8

  1. 3 ; a t 1 i .

>, ^ ,c ,. ..__

.- , i -

1

.- . m e q. m t . w- .

.,. ._ . \

rn g  :._

U > . l . .

gI -

1 IO y' 9 -.--.--....f;... l

)e I= c P og 5 e

-p *

. .- a a l e.

. y . ... .. .- . _ _ _ _ . _,, e

. YE .- '. ,. e d' g ^g 0, s n: o g e

-. . m = -

D APPENDIX B ADDITIONAL JUSTIFICATION OF THE REEVALUATION CRITERIA i

4

  • l

)

j l

)

i l

l 1

\

Appendix B, Page 11 of 11 J l

TABLE OF CONTENTS Page

1.0 INTRODUCTION

1 2.0 ABBREVIATIONS 1 3.0 ALLOWABLE STRESSES 1 3.1 AXIAL COMPRESSION 1 3.2 FLEXURAL COMPRESSION 3 3.3 BEARING 3 3.4 SHEAR 3 3.5 TENSION 4 3.6 SHEAR AND TENSILE BOND STRENGTH OF MASONRY 6 COLLAR JOINT 4.0 IN-PLANE EVALUATION CRITERIA 7

4.1 INTRODUCTION

7 4.2 TEST RESULTS 8 5.0 ALTERNATIVE EVALUATION CRITERIA 8 5.1 ARCHING 8 5.2 ROCKING 9 5.3 SLIDING 9

6.0 REFERENCES

11 TABLES B-1 Compressive Strength of Axially Loaded Concrete Masonry Walls B-2 Flexural Strength - Single Wythe Walls of Hollow Units, Uniform Load, Vertical Span B-3 Flexural . Strength, Vertical Span Concrete Masonry Walls, From Tests at NCMA Laboratory 8

B-4 Flexural Strength, Horizontal Span, Nonreinforced l Concrete Masonry Walls l

Appendix B, PIga 1 of 13

1.0 INTRODUCTION

The following discussions and test results are intended to pro-vide additional justification of the reevaluation criteria for the safety-related masonry walls. This information has been extracted from the references identified in Section 6.0.

2.0 ABBREVIATIONS Abbreviation Title ACI American Concrete Institute ASCE American Society of Civil Engineers ATC Applied Technology Council EERC Earthquake Engineering Research Center NBS National Bureau of Standards NCMA National Concrete Masonry Association 3.0 ALLOWABLE STRESSES 3.1 AXIAL COMPRESSION The objective was to develop reasonable and safe engineering design criteria for nonreinforced concrete masonry based on all existing data. A review in 1967 of the compilation of all avail-able test data on compressive strength of concrete masonry walls did not, according to some, provide a suitable relationship between wall strength and slenderness ratio. From a more recent analysis, it was noted in many of the 418 individual pieces of data that either the masonry units or mortar, or in some cases, both units and mortar, did not comply with the minimum strength requirements established for the materials permitted for use in

" engineered concrete masonry" construction. Accordingly, it was decided to reexamine the data, discarding all tests which included materials that did not comply with the following minimum requirements:

Compressive Strength Material (psi)

Solid units 1,000 '

Hollow units 600 (gross)

Mortar 700 e

Appendix B, PIga 2 of 13 5

Also eliminated from the new correlation were walls with a slenderness ratio of less than 6; walls with an h/t ratio of less than 6 were considered to be in the category of " prisms." For evaluation of slenderness reduction criteria, only axially loaded walls wer.e used. The data that were available consisted of tests on 159 axially loaded walls with the h/t ratio ranging between 6 and 18. With this as a starting point, the data were analyzed

~

assuming that the parabolic slenderness reduction function (1-(gh7)3) is valid.

The basic equation used to evaluate the test data was:

test _y ,, g3 _

,h 3 3g y)

S.F. ~ 'o ~m '~ '40t' '

est " (2) h o x S.F.

f' (1 - (40t'3, #

Cg x S.F. =K (3) wncre f' = Xssen:M. masonry strength, net area, based on

" strength o'r units f = Net area compressive strength of panel test S.F. = Safety Factor Cg = Strength reduction coefficient h = Height of specimen, inches t = Thickness of specimen, inches The net area used in the above formulae is the net area of the masonry, and does not distinguish between type of mortar bedding.

In the evaluation, mortar strength was assumed to be constant and was not considered a significant influence on wall strength.

It was determined that the objective of reasonable and safe criteria would be met if 90% of the K values were greater than the K value selected and gave a minimum safety factor of 3.

Accordingly, the K values were listed in ascending order and the value satisfying the above conditions was K = 0.610 for the 159 tests as seen from Table B-1 Therefore, from Equation (3):

1

Appendix D, Paga 3 of 13 i

Cg x S.F. = K Cg x 3 = 0.610 C =

0.610 = 0.205 o 3 This value (0.205) agrees very closely with the coefficient 0.20 which had been used for a number of years with reinforced masonry design. An analysis of the safety factors present with the formula:

f,= 0.205 f; u - 4 >3) indicates the following:

A safety factor greater than 3 is available in 93% of the tests, greater than 4 in 51% of the tests, greater than 5 in 15% of the tests, and greater than 6 in 5% of the tests.

In ACI 531, the factor of 0.20 was . increased to 0.225. The recommended value of 0.22 for unfactored loads has factors of safety comparable to those given above.

3.2 FLEXURAL COMPRESSION It is assumed that masonry can develop 85% of its specified compressive strength at any section. The recommended procedure for calculating the flexural strength of a section is the working stress procedure, which assumes a triangular distribution of strain.

For normal loads, an allowable stress of 0.33 f' has a factor of safety of 2.6 for the peak stress, which only eIists at the extreme fiber of the unit and has been used in practice for many years. The recommended value for factored loads also only exists at the extreme fiber and is the value recommended in the ATC-3-06 provisions.

3.3 BEARING These values for normal loads are taken directly from the ACI 531-79 code.

3.4 SHEAR The most extensive review on shear strength literature appears to have been done by Mayes, et al (Reference 6.1), and published in Earthquake Engineering Research Center Report EERC 75-15 which was performed for both brick and masonry block.

Appendix B, P2ga 4 of 13 This report attempts to summarize some of the findings that appear to be pertinent towards defining permissible shear stress values that can be used for reevaluation of the nonreinforced concrete masonry.

A number of tests have been identified as being the primary basis for permissible shear stress values in both NCMA Specifications for the Design and Construction of Load-Bearing Concrete Masonry (References 6.4 and 6.5) and the ACI Standard Building Code Requirements for Concrete Masonry Structures, ACI 531-79 (Refer-ences 6.2 and 6.3).

Out-of-plane flexural shear is defined by the code (References 6.2 and 6.3) as equaling 1. l sdP~.- The derivation of this value is analogous to the permissibl@ shear value of concrete, disregarding any reinforcement, of 1.1 Vf' . Although this is somewhat different (there is no tension steel b@ which to determine the appropriate j distance), the actual value is a mute point because tension will be the critical value for determining out-of-plane accept-ability of a flexural member.

Because of the nature of the stresses, however, and the various concerns with regard to the correctness of interpretation of the effects on boundary conditions, as well as such conditions as actual mortar properties, absorbtivity of the mortar, confinement or lack of it on the test specimen during test, and arrangement and effect of actual load, it does not seem warranted to increase these stresses beyond a factor of 1.67 under abnormal and extreme environmental loads.

35 TENSION 3.5.1 Normal to the Bed Joint A summary of the static monotonic tests performed to determine code allowable stress for tension normal to the bed joint was given in the NCMA specifications.

Stresses for tension in ficxure are related to the type of mortar and the type of unit (hollow or solid) . Research used to arrive at allowable stresses for tension in flexure in the vertical span (i.e. , tension perpendicular to the bed joints) consisted of 27 flexural tests of uniformly loaded single-wythe walls of hollow units. These monotonic tests were made in accordance with ASTM E 72. Table B-2 summarizes the test results.

From Table B-2, the average modulus of rupture for walls built with Types M and S mortar is 93 psi on net area. For Type N mortar, the value is 64 psi. Applying a safety factor of 4 to these values results in allowable stresses for hollow units as follows:

i

Appendix D, pig 3 5 of 13 Mortar Type Allowable Tension in Flexure (psi)

M& S 23 N 16 These values are consistent with those published in the 1970 ACI

- Committee 531 report, which have been only slightly altered in the ACI 531-79 code.

Based upon these tests, the minimum factors of safety for each mortar type are:

Mortar Type Factor of Safety M 3.87 S 2.60 N 2.81 To establish allowable tensile stresses for walls of solid units, the 8-inch composite walls in Table B-3 were used. These walls, composed of 4-inch concrete brick and 4-inch hollow block, were greater than 75% solid, and thus, were evaluated as solid masonry construction. The modulus of rupture (gross area) for these walls averaged 157 psi, giving an allowable stress of 39 psi when a safety factor of 4 is applied. The composite wall tests in Table B-3 used Type S mortar. To establish allowable stresses for solid units with Type N mortar, the mortar influence estab-lished previously for hollow units was used.

323 = q39; f = 27 psi The minimum factor of safety for these tests for Type S mortar was 2.33.

Recent dynamic tests have been performed at Berkeley and the values of tension obtained at cracking at the mid-height of the walls are as follows: 13 psi, 20 psi, 23 psi, and 27 psi.

The recommended values have a factor of safety of 2.8 with respect to the lower bound of the static tests for the unfactored loads and are towards the lower limit of the initiation of cracking for the dynamic tests. An increase of 1.67 appeared reasonable for factored loads based on the static tests.

- - - , . - - - . , . , - ,. .- _ --n.. --

9 Appendix D, PIga 6 of 13 1

3.5.2 Tension Parallel to Bed Joints Values for allowable tension in flexure for walls supported in the horizontal span are established by doubling the allowable stresses in the vertical span. While it is recognized that flexural tensile strength of walls spanning horizontally is more a function of unit strength than mortar, it is conservative to use double the vertical span values. Table B-4 lists a summary of all published tests and indicates an average safety factor of

~

5.3 for the 43 walls containing no joint reinforcement and 5.6 for the 15 walls containing joint reinforcement.

It is important to note that the factor of safety for those walls loaded at the quarter. points (Reference 6.6) have an average factor of safety of 2.02 with a minimum value of 1.22, while those loaded at the center had an average factor of safety of 6.08 with a minimum value of 3.59. However, it should be noted that the values tested at the quarter points were also tested at 15 days.

The results associated with the early date of testing and the use of quarter-point loading are difficult to explain other than to state they are at variance with all other test results.

An increase in the allowable stresses by a factor of 1.67 is recommended for abnormal and extreme environmental loads. The recommended values could be increased because of the larger factors of safety in the test results; however, the value of 1.67

was chosen to be compatible with the increase in other stresses for unreinforced masonry.

3.6 SHEAR AND TENSILE BOND STRENGTH OF KASONRY COLLAR JOINT The collar joint shear and tensile bond strength is a major factor in the behavior of multi-wythe masonry construction, particularly with respect to weak axis bending. A widely stated position is that for composite construction, the collar joint However, even if this must be completely filled with mortar.

joint is filled, there must be a transfer of shearing stress across this joint without significant slip in order for full composite interaction of the multiple wythes to be realized.

Because the cracking strength, moment of inertia, and ultimate flexural strengh of the wall cross-section are significantly influenced by the interaction of multiple wythes, it is crucial to establish the collar joint shear bond strength.

The only applicable published data on the shear bond strength of collar joints is that determined by Bechtel on the Trojan Nuclear Power Plant (Reference 6.29) .

l

Appendix B, Psge 7 of 13 There are conflicting data available on the relationship between the shear and tensile bond strengths. In most tests performed on mortar bed joints (couplet tests), the shear bond strength was approximately twice the tensile bond strength. In a more recent method of evaluation by means of centrifugal force, the shear bond strength was found to be 60% of the tensile bond strength

( Re ference 6.16 ) . The authors of the report consider the test procedure to be an improvement over present methods because joint precompression is essentially eliminated as a result of the testing procedure.

Because of the conflict in the test data, it is recommended that the values for tensile bond strength be the same as for shear bond.

Unless metal ties are used at closely spaced intervals (less than 16 inches on center), it is recommended that their contribution to chear and tensile bond strength be neglected.

4.0 IN-PLANE EVALUATION CRITERIA

4.1 INTRODUCTION

Much of the effort to deff ne a permissible in-plane shear stress may be somewhat academic in that the normal case for unreinforced walls being used in nuclear plant structures, the nature of the shear, is one of being forced on the structural panel as a result of being confined by the building frame and not one of depending on the panel to transmit building shear forces. This forced drift or displacement results in shear stresses and strains, but because of the complex interaction between the panel and the confining structural elements, strain or displacement is a more meaningful index for qualifying the in-plane performance of the panel.

In-plane effects may be imposed on masonry walls by the relative displacement between floors during seismic events. However, the walls do not carry a significant part of the associated story shear, and their stiffness is extremely difficult to define. In addition, because the experimental evidence to date demonstrates that the apparent in-plane strength of masonry walls depends heavily upon the in-plane boundary conditions, load or stress on the walls is not a reasonable basis for evaluation criteria.

However, examination of the test data provided by the list of references of Section 4.2 indicates that the gross shear strain of walls is a reliable indicator for predicting the onset of significant cracking. A significant crack is considered here to be a crack in the central portion of the wall extending at least i 10% of a wall's width or height. Cracking along the interface between a block wall and steel or concrete members does not limit l the integrity of the wall.

I

Appendix B, Pcg2 8 of 13 4.2 TEST RESULTS Test results indicate that to predict the initiation of signi-ficant cracking, masonry walls must be divided into two categories:

4.2.1 Unconfined Walls: Not bounded by adjacent steel or concrete primary structure. Significant " confining" stresses cannot be expected.

4.2.2 Confined Walls: At a minimum, bounded top and bottom or bounded on three sides.

For unconfined concrete block masonry walls, the works of Fishburn (Reference 6.18) and Becica (Reference 6.17), yield an allowable shear strain of 0.0001. . It should be noted that Fishburn's test specimens were an average of 15 days old.

~

For confined walls, the most reliable data appears to be that of Mayes et al (Re ference 6.20) . In static and dynamic tests of masonry piers (confined top and bottom) varying block properties, mortar properties, reinforcement, vertical load, and grout con-ditions, significant cracking was initiated at strains exceeding approximately 0.001. It should be noted here that reinforcement can have no significant effect on the behavior prior to cracking.

Similarly, the presence of cell grout should have no effect on stress or cracking in the mortar joints at a given strain. Both predictions are confirmed by the data in Reference 6.20. In addition, the data shows that the onset of cracking is not sen-sitive to the magnitude of initial applied vertical load.

Klingner and Bertero (Reference 6.19) performed a series of cyclic tests to failure and found excellent correspondence with a nonlinear analysis in which the behavior of an infilled frame prior to cracking is determined by an equivalent diagonal strut.

While the equivalent strut technique has been used by many investi-gators to study the stiffness and load-carrying mechanisms of infilled frames, Klingner and Bertero found that the quasi-compressive failure of the strut could be used to predict the onset of significant cracking.

5.0 ALTERNATIVE EVALUATION CRITERIA 5.1 ARCHING An extensive test program performed by Gabrielson (Reference 6.21) on blast loading of masonry walls provides validation of the concept of arching action of masonry walls subjected to loads that exceed those that cause flexural cracking of an unreinforced

! masonry wall. An analytical procedure was developed to predict with reasonable accuracy the ultimate capacity of the unrein-forced walls tested.

--_--__,..e.,_,_.m.,m_ _ .__ ,_ -.,__r m ,- -rm_,,~,,,__-,,-m.,,_,,,,_.,.cmm.m._..,_m.rmr. .r. , , _ . - , . , . , . , - - . . - , . . , - - - , .

Appendix D,'PIga 9 of 13 5.2 ROCKING Freestanding block walls may rock or slide as rigid bodies during an earthquake. Such rocking and sliding of walls in nuclear plants is permissible as long as it is within certain tolerance limits . Only when the rocking of a wall increases to a critical, value does the wall become unstab'.e and overturn.

A freestanding wall starts to rrck about an edge when the su porting floor moves horizontally with an acceleration greater than ( Jg, where t = thickness of wall, h a height of wall, and g = acc leration due to gravity. If the coefficient of friction p between the wallandfloorislessthan(j), the wall will obt rock, but will slide instead.

The rocking behavior of cantilever structures has been studied and reported in References 6. 23, 6 24, and 15. 25. In References 6.24 and 6.25, a nonlinear differential equation for the rocking motion is formulated and solved numerically for different support excitations. Some test results on the rocking of block specimens are reported in Reference 6.24. A simple energy balance method is used to predict the rocking of block walls. The method is similar to the one in References 6 22 and 6.23 for cantilever structures. Application of the method to seismic rocking of structures has been justified in Reference 6.26 based on the numerical results using ANSYS program.

A rocking wall switches from one edge to another and a consider-able amount of energy is dissipated whenever the wall impacts the floor. Thus, the seismic rocking behavior of a wall is ncalinear and the frequency of rocking varies as a function of the maximmn rocking angle in a cycle (Reference 6 23) .

5.3 SLIDING Sliding is the horizontal movement of a wall as a rigid body with respect to the supporting floor. In general, a wall will either It appears that a rocking rock or slide during an earthquake.

wall will not slide and vice versa. Sliding resistance and .

sliding displacement of a wall depend on theThe coefficient of following are l

l friction between the two contact surfaces.

reasonable friction values for concrete depending on the surface roughnesses:

p = 0.33 - between smooth surfaces

- p = 0.67 - between smooth and rough surfaces ,

p = 1.0 - between rough surfaces i

j I

1 l

Appendix B, Pcgn 10 of 13 Seismic sliding of crantilever structures is studied in Refer-ence 6.28 by nonlinear seismic analyses using ANSYS program.

This study substantiates the simple energy balance method given in References 6.22 and 6.27 to predict sliding.

A wall begins to have sliding oscillations whenever the hori-zontal seismic floor acceleration in g-units exceeds the friction coefficient.

D I

Appendix B, Prga 11 of 13

6.0 REFERENCES

6.1 Mayes and Clough, " Literature Survey - Compressive, Tensile, Bond, and Shear Strength of Masonry," Earthquake Engineering Research Center, University of California,1975 6.2 ACI Standard, " Building Code Requirements for Concrete Masonry Structures" (ACI 531-79) e 6.3 Commentary on " Building Code Requirements for Concrete Masonry Structures" (ACI 531-79) 6.4 " Specification for the Design and Construction of Load-Bearing Concrete Masonry," NCMA, 1979 6.5 Research Data and Discussion Relating to " Specification for the Design and Construction of Load-Bearing Concrete Masonry,"

NCMA, 1970 6.6 Fishburn, "Ef fect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Monograph 36, NBS, 1961 6.7 Copeland , R. E. and Saxer, E.L., " Tests of Structural Bond of Masonry Mortars to Concrete Block," Proceedings, American Concrete Institute, volume 61, Number 11, November 1964 6.8 Richart, Frank E. , Moorman, Robert B.B. , and Woodworth, Paul M. ,

" Strength and Stability of Concrete Masonry Walls," Eulletin 251, Engineering Experiment Station, University of Illinois, 1932 6.9 Hedstrom, R.O., " Load Tests of Patterned Concrete Masonry Walls," Proceedings, American Concrete Institute, Volume 57,

- p 1265, 1961 6.10 Menzel, Carl A., " Tests of the Fire Resistance and Strength of Walls of Concrete Masonry Units," Portland Cement Association, 1934 6.11 Nylander, H., " Investigation of the Strength of Concrete Block Walls," Swedish Cement Association, Technical Communi-

' cations and Reports of Investigations,1944, Number 6

( (October) 6.12 Copeland , R. E. and Timms, A.G., "Ef fect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Proceedings, American Concrete Institute, Volume 28, p 551, 1932 ,

i l 1

)

l I

t

Appendix D, P2g212 of 13  ;

l 6.13 Be ye r , A. H. and Krefeld, W.J. , " Comparative Tests of Clay, Sand-Lime, and Concrete Brick Masonry," Columbia University, l Department of Civil Engineering, April 1923 6.14 Livingston, A.R. , Mangotich, E. , and Dikkers, R. , " Flexural l Strength of Hollow Unit Concrete Masonry Walls in the Hori- i zontal Span," Technical Report 62, NCMA, 1958 6.15 Cox , F.W. and Enneng a , J. L. , " Transverse Strength of Concrete Block Walls," Proceedings, ACI, Volume 54, p 951,1958 6.16 Natzinkolas, M. , Longworth, J. , and Wararuk, J. ,

" Evaluation of Tensile Bond and Shear Bond of Masonry by Means of Centrifugal Force," Alberta Masonry Institute, Edmonton, Alberta 6.17 Becica, I.J. and Harris, H.G. , " Evaluation of Techniques in ,

the Direct Modeling of Concrete Masonry Structures," Drexel l University Structural Models Laboratory Report M77-1, June 1977 6.18 Fishburn, C.C., "Ef fect of Mortar Properties on Strength of Masonry," National Bureau of Standards Monograph 36, U.S.

Government Printing Office, November 1961 6.19 Klingner, R.E. and Bertero , V.V. , " Earthquake Resistance of Infilled Frames," Journal of the Structural Divison, ASCE, June 1978 6.20 Mayes, R.L. , Clough, R.W. , et al, " Cyclic Loading Tests of Masonry Piers," 3 volumes, EERC 76/8, 78/28, 79/12, Earth-quake Engineering Research Center, College of Engineering, University of California, Berkeley, California

6. 21 Gabrielson , G. , Wilton , C. , and Kaplan , K. , " Response of Arching Walls and Debris from Interior Walls Caused by Blast Loading ," URS Report 2030-23, URS Research Company,1975 6.22 Topical Report, " Seismic Analyses of Structures and Equip-ment for Nuclear Power Plants," BC-TOP-4, Revision 4, Bechtel Power Corporation, 19S0 6.23 Housner, G.W., "The Behavior of Inverted Pendulum Structures During Earthquakes," Bulletin of the Seismological Society of America, Volume 53, Number 2, February 1963 6.24 Aslam, M. , et al, " Earthquake Rocking Response of Rigid Bodies," ASCE, Journal of the Structural Division, ST2, February 1980

Appendix D, Paga 13 of 13 6.25 Yim, C-S. , et al, " Rocking Response of Rigid Blocks to Earthquakes," Report UCB/EERC-80/02, University of California, Berkeley, January 1980 6.26 " Seismic Loading Criteria for Base Mat Design," Bechtel Power Corporation, San Francisco, Internal Report, Revision 2, November 1976 6.27 Newmark, N.M. , "Ef fects of Earthquakes on Dams and Embank-ments," Geotechnique, Volume XV, Number 2, pp 139-159, June 1965 6.28 Kausel, E. A. , et al, " Seismically Induced Sliding of Massive Structures," ASCE, Journal of the Geotechnical Engineering Division, GT12, December 1979 6.29 Report on Tests of Shear Strength of C' o llar Joint Mortar in Double Wythe Masonry Walls, Trojan Nuclear Power Plant, Portland General Electric Company, April 14, 1980

~

U' -

.; ,.,y M.l.**((h L.

y;i i.' J h ,'i. M .*

- . Ehzt 1 of h .

5 : , f, : ., p

. TABLE B-1 ,
i .,

\

i 00MPRESIVE STRENGTH OF AIIALLY LOADED CON 01 TIE MASONRY WALLS t *

~

Concrete Masonry Units Mortar Walls Strength. Strength,

,' Percent psi, net Str.- psi, net Ref. Solid area fE, psi psi Bedding h/t f test ffC K - S.F.

6.8 63 1160 980 1180 Full 6.0' 750 978 .798 3.83 63 1160 980 1180 Full 6.0 685 978 .701 3.49 63 1160 980 1160 FS 6.0 670 978 .686 3.42 63 1160 980 900 FS 6.0 555 978 .568 2.83 63 1200 1000 1230 Full 6.0 860 995 .863 4.30 63 1200 1000 730 Full 6.0 625 995 .627 3.12 63 1200 1000 960 FS 6.0 580 995 .582 2.89 63 1200 1000 780 FS 6.0 650 995 .652 3.25

- 63 1320 1060 880 Full 6.0 1110 1055 1.050 '5.25 63 1320 1060 810 Full 6.0 970 1055 .918 4.58 63 1320 1060 810 FS 6.0 780 1055 .738 3.69 63 1160 980 1080 Full 6.0 800 978 .818 4.08 63 1160 980 1080 Full 6.0 670 978 .686 3.42 63 1810 1275 1270 Full 6.0 940 1270 .739 3.67 63 1810 1275 1270 Full i 6.0 940 1270 .739 3.67 63 1505 1150 1670 Full 6.0 825 1145 .719 3.00 63 1505 1150 1670 Full 6.0 820 1145 .715 3.57 63 1240 1020 980 Full i 6.0 1010 1015 .993 4.95 63 1240 1020 980 Full 6.0 870 1015 .856 4.26 63 1720 1230 880 Full l 6.0 1035s 1225 .844 4.21 63 1720 1230 880 Full 6.0 940 1225 .766 3.81 63 1380 1090 1730 Full i 6.0 1000 1085 .920 4.58 63 1380 1090 1730 Full 6.0 1010 1065 .930 4.63 63 1780 1262 1870 Full 6.0 1450 1257 1.152 5.75 63 1780 1262 1870 Full 6.0 1570 1257 1.248 6.22 43 3300 1790 1230 Full , 6.0 1560 1782 .874 4.36 43 3300 1790 1230 Full j 6.0 1730 1782 .969 4.84 70 1645 1208 1140 Full i 6.0 1000 1200 .830 4.15 1645 1208 1140 Full i 6.0 1220 1200 1.013 5.06 70

. l 4.12 63 509 458 3140 Full ; 6.0 303 455 .664 3.30 i

63 509 45B 1610 Full j 6.0 295 455 .646 3.21 458 1060 Full , 6.0 295 455 .646 3.21 63 509

'63 840 756 3140 Full 6.0 532 753 .706 3.52 756 1610 Full 6.0 550 753 .716 3.52 63 840 840 756 1060 Full 6.0 505 753 .670 3.35 63 63 875 788 3140 Full j 6.0 438 785 .558 2.79

/

.q

Sh st 2 cf k Table B-1 (continued)

Concrete Masonry Units Mortar Walls Strength. Strength, Percent psi, net Str., psi, net Ref. Solid . area fE, psi psi Bedding h/i: f test ff C K S.F.

875 788 1610 Full 6.0 430 785 .547 2.74 g:p 63 63 875 788 . 1060 Full 6.0 500 785 .637 3.17 63 1080 940 3140 Full 6.0 605 936 .646 3.22 63 1080 940 1610 Full 6.0 715 936 .763 3.81 63 1080 940 1060 Full 6.0 765 936 .817 4.07 6.0 1160 1010 1.146 5.70 63 1230 1015 3140 Full 63 1230 1015 1610 Full 6.0 1000 1010 .988 4.92 63 1230 1015 1060 Full 6.0 1110 1010 1.097 5.46 63 1410 1105 3140 Full 6.0 1140 1100 1.030 5.16 63 1410 1105 1610 Full 6.0 985 1100 .893 4.45 6.0 1030 1100 .935 4.66 63 1410 1105 1060 Full 63 1520 1157 3140 Full 6.0 660 1152 .572 2.85 63 1520 1157 1610 Full 6.0 740 1152 .642 3.20 .

63 1520 1157 4780 Full 6.0 830 1152 .719 3.58 63 1860 1295 3140 Full 6.0 1476 1290 1.143 5.70 63 1860 1295 1610 Full 6.0 1539 1290 1.192 5.94 63 1860 1295 1060 Full 6.0 1365 1290 1.058 5.27 63 2510 1554 3140 Full 6.0 1698 1550 1.096 '5.47 63 2510 1554 1610 Full 6.0 1365 1550 .881 4.39 63 2510 1554 1060 Full 6.0 1325 1550 .856 4.27 1710 3140 Full 6.0 2222 1705 1.304 6.50 63 3030 1705 1.304 6.50 63 3030 1710 1610 Full 6.0 2222 3030 1710 1060 Full 6.0 1984 1705 1.164 5.80 63 1918 .969 4.82 63 3740 1923 3140 Full 6.0 1857 3740 1923 1610 Full 6.0 2523 1918 1.316 6.56 63 1918 1.209 6.03 63 3740 1923 4780 Full 6.0 2317 6640 2400 3140 Full 6.0 35E7 2392 1.499 7.48 63 63 6640 2400 1610 Full 6.0 3856 2392 1.612 8.04 2400 4780 Full 6.0 5031 2392 2.102 10.49 63 6640 1383 1557 2562 Full 7.0 1140' 1254 .910 4.13 13 100 7.0 1358 1635 .830 4.57 100 1383 1640 3017 Full 1892 1853 2317 Full 7.0 1469 1846 .795 4.52 100 1625 .858 4.29 100 1923 1630 2153 Full 7.0 1394 2508 2390 2427' Full 7.0 1947 2380 .817 4.56 100 2620 .820 4.68 2529 2630 2347 Full 7.0 2151 100 2120 .909 4.17

"~ 2545 2130 2143 Full 7.0 1930 100 2210 .939 4.71 2610 2220 3195 Full 7.0 2078 100 2020 .905 3.99

[.

2678 2030 2322 Full 7.0 1832 i 100 2200 .821 4.10

  • 100 4474 2210 2792 Full 7.0 1810 4474 2540 2154 Full 7.0 2157 2530 .937 4.09
100 i
    • fa values from this reference Testwereresultsdeterminedmultiplied frombyprism factortests in-of 1.2 ,

stead of assumed values. l I -

.c ..

a, m .w usem sum eemunae w e e e misuum e pe*e ame s aan w

.... . '

  • Shsst 3 of k

.. E Table B-1 (continued)

Concrete Nhsonry Units Mortar Wells Strength, Strength.

Percent ' psi, net Str., psi, net Raf. Solid area ff, psi psi Bedding h/t f test ffC K S.F.

6.10 62 2547 1556 1400 FS 9.0 1241' 1540 .807 4.05 62 1886 1305* 1400 FS 9.0 1153 1290 .894 4.50 62 1999 1350 1400 FS 9.0 967 1335 .724 3.63 62 1499 1150 1400 FS 9.0 685 1135 .603 3.02 62 1934 1325 1400 Full 9.0 1354 1310 1.033 5.19 62 2305' 1473 1400 FS 9.0 1096 1455 .752 3.78 62 2136 1405 1400 FS 9.0 1128 1390 .812 4.07 62 1773 1260 1400 FS 9.0 1088 1245 .873 4.38 62 1298 1049 1400 FS 9.0 854 1037 .823 4.14 62 1241 1031 1400 FS 9.0 685 1010 .678 3.41 1180 .838 4.20 62 1612 1196 1400 FS 9.0 991 .

62 1805 1273 1400 FS 9.0 1088 1260 .864 4.33 62 1491 1146 1400 FS 9.0 854 1133 .754 3.78 62 1088 944 1400 FS 9.0 629 933 .673 3.38 62 1918 1318 1400 FS 9.0 1072 1302 .822 4.12 62 1169 985 1400 FS 9.0 605 975 .621 3.12 45 2655 1598 1400 FS 9.0 989 1578 .626 3.15 62 1088 944 1400 FS 9.0 564 933 .604 3.03 1032 .678 3.41 62 1290 1045 1400 FS 9.0 701 62 1999 1350 1400 FS 9.0 1104 1335 .826 4.16 1296 1400 Full 9.0 1378+ 1280 1.075 5.44+

62 1862 62 967 870 1400 Full 9.0 758 860 .881 4.42 62 1967 1338 1400 Full 9.0 1241 1320 .938 4.72 57 2280 1463 1400 FS 9.3 1228 1450 .849 4.27 6.10 9.3 836 1302 .642 3.23 67 1917 1318 1400 FS 1090 1400 FS 9.3 724 1078 .672 3.37 67 13.80 67 1902 1312 1400 FS 9.3 1223 1300 .943 4.74 67 1246 1023 1400 FS 9.3 739 1010 .731 3.67 57 2087 '1386 1400 FS 9.3 1193 1370 .871 4.38 57 2087 '1386 830. FS 93 1298 1370 .948 4.76 57 2385 1505 1400 FS 9.3 719 1485 .484 2.44 57 2385 1505 1400 FS 9.3 789 1485 .530 2.67 i !

57 2385 1505 1400 FS 9.3 1105 1485 .743 3.74 I .' 1400 FS 9.3 1140 1485 .766 3.85 2385 1505 l?

is 57 6.8 1590 1187 1130 Full 9.5 885 1170 .756 3.79

. k. 39 1170 .853 4.28 39 1590 1187 1010 . Full 9.5 1000 i

1718 1238 1070 Full 9.5 949 1220 .777 3.89 i Y 39 1220 .745 3.73 )

39 1718 1238 840 Full ,9.5 910 n ,

~

k. ._..y . _ . , . .

7 Sh2st k cf k 3,fo , .

~

Table B-1 (continued)

Concrete Masonry Units Mortar Walls Strength,

~ Strength, psi, net Percent psi, net Str.,

E S.F.

e Ref. Solid area fd, psi psi Bedding h/t f test f' C 1159 985 1180 Full 14.3 683 940 .726 3.62 6.8 63 3.66 63 1159 985 1440 Full 14.3 690 940 .734 985 1440 Full 14.3 738 940 .784 3.91 63 1159 1159 985 1060 FS 14.3 532 940 .565 2.82 63 63 1159 985 900 FS 14.3 563 940 .599 2.98 1159 985 1920 FS 14.3 563 940 .599 2.98 63 3.80 63 1206 1020 1230 Fuli 14.3 738 974 .758 4

1206 1020 730 Full 14.3 683 974 .702 3.51 63 974 .765 3.83 63 1206 1020 1130 Full 14.3 746 960 PS 14. 3 .. 571 974 .586 2.94 63 1206 1020 780 FS 14.3 603 974 .619 3.10 63 1206 1020 63 1206 1020 1250 FS 14.3 595 974 .610 3.05 .

880 Full 14.3 905 1030 .877 4.38 63 1317 1080 1317 1080 750 Fuli 14.3 1063 1030 1.030. 5.14 63 63 1317 1080 810 Full 14.3 929 1030 .901 4.49 63 1317 1080 .1020 FS 14.3 714 1030 .692 3.45 1317 1080 .1020 FS 14.3 667 1030 .647 3.23 63 63 1159 985 1120 Full 14.3 579 940 .616 '3.07 1150 Full 14.3 635 940 .675 3.37 63 1159 985 1080 Fuli 14.3 635 940 .675 3.37 63 1159 985

, 12,70 Full 14.3 873 1218 .717 3.54 63 1810 1274 940 Fuli 14.3 881 1218 .725 3.58 63 1810 1274 1120 Full 14.3 817 1218 .671 3.32 63 1810 1274 1380 Full 14.3 706 1100 .641 3.17 63 1508 1153 1380 Full 14.3 746 1100 .677 3.34 63 1508 1153 2.88 1508 1153 1670 Full ,14.3 643 1100 .584 l 63 978 .851 4.24 63 1238 1025 1920 Full '14.3 833 980 Full 14.3 802 978 .819 4.09 63 1238 1025 I

1280 Full 14.3 617 978 .835 4.15 63 1238 1025 4.73 1714 1230 800 Full 14.3 1111 1172 .946 63 1172 .959 4.79 63 1714 1230 800 Full 14.3 1127 750 Full j14.3 1079 1172 .918 4.59 63 1714 1230 4.64 1090 1730 Full : 14.3 968 1040 .930 63 1381 4.61 1090 2200* Full 14.3 960 1040 .923 63 1381 5.21 63 1774 1245 2100 Fuli 14.3 1240 1190 1.043 14.3 936 1385 .675 3.42 63 2253 1450 1230 Full 14.3 920 1385 .664 3.37 63 2253 1450 1270 Fuli 1180 Full 14.3 807 1150 .701 3.55 70 1643 1206 4.33 986 1150 .857 70 1643 1200 1300 Full l14.3 993 .732 3.66 55 1273 1040 1220 Full (14.3 727 '

Full l 14.3 764 993 .770 3.84 55 1273 1040 1220 .

1475 Full 15.0 1250 1565 .801 3.93 100 2900 1665

! 1400 Full ,18.0 1108 1135 .975 4.87 6.10 65 1746 1250 4.25 1246 2015 (1400 Full 18.0 785 925 .850 65 5.66 1175 jl400 Fuli 18.0 1203 1065 1.131 y

65 1562 ,

. . Shnt 1 cf 1 7-Ca TABLE B-2 FLEXURAL STRDIGTH-SINGLE WYTHE WALLS OF HOLLOW UNITS-UNITOR!I LOAD-VERTICAL SPAN Mortar Type Proportion Modulus of Rupture

- ASDI C 270 psi, Net Ares Reference M 110 6.7 108 NCFA

-M M 102 6.7 M 97 6.7 95

$CPA M NCys S 94 91 NCVA ,

M NCyA M 89 N 88 6.9 I

S 84 6.7 83 NCVA S

S 81 6.7 75 NOMA ,

S NCFA S 69 67 6.9 N 6.9 N 62 60 6.7 5

58 6.9 N 9 N 45 60 67 6.

' O 6.9 0 41 36 6.9 0 6.9 0

~

36 33 6.9 0 6.9 0 32 30 6.7 0 6.9 0 '

27

\

. . - e. y . - ,.

( 4

T i

% TABLE B-3 caser. A oz 1

' TLtXURAL STREXCTIG"YZRTICAL SPAN CONCRETE MASONRY WALLS -

FRO >i TESTS AT SC):A 1A30RATORY Wall

  • Modulus of RuOture
  • ' ~ ~~

. , Wet

- Max. Net Mortar ASTN Nominal

  • Uniform Section Cross Sedded Horcar Thickness . load Mod lus Area. Area, ,

Type

  • in. psf. in 3/ft psi  ! psi ,

Honowythe Walls of Hollow Units -

M 8 85.15 80.97 61.74 88.73 M 8..- 87.10 80.97 63.15 90.76 M -

8 91.00 .80.97 65.97 I 94.82 M 8 103.35 80.97 74.93 l 107.69 5 8 62.40 80.97 45.24 ! 69.47 5 8 72.15 80.97 52.31 l 75.18 5 12 . 183.3 164.64 57.11 4 93.94 S 12 161.2 164.64 50.22 . 82.62 I

~

Composite Walls of Concrete Brick & Hollow CHU S -- 4 8 222.3 103.82 161.16' f 180.67 5 8 219.7 103.82 159.29 , 178.55 :

S 8 187.2 78.15 135.72 : 202.09 !

S 8 228.8 10.~s . 62 165.58 185.95 i 5 8 218.4 78.*i6 158.34 ~ 235.77 l 5 8 223.6 78.16 162.11 ~

241.33 i S 12 171.6 139.83 53.46 103.55 l .

S 12 150.8 139.83 . 46.98 91.00 1 5 12 156.0 139.83 48.60 94.14 3 12 213.2 139.83 66.42 ,

128.66

. Cavity Valls .

! I

. l . 50.36 15C.52 165.55 !

S 10 - -

98.8

$ . 10 156.0 50.36 250.44 261.38 j 10 88.4 48.16 141.91 154.ES ,

S. 200.40 i 5 10 119.6 50.3G 192.01 5 10 , 114.4 50.36 183.66 191.65 .

109.2 40.16 175.30 3S1.32 '

S 10 145.6~ I 50.35 233.73 213.91. i S 12(4-4-4) 233.73 2 0 .94 .

5 12(4-4-4)  ! 145.6 l 50.3G 135.2 j 77.80 127.3s 1:6.63 -

- S 12(6-7-4) '

  • 112.68 77.C0 329.70 l S

12(6-2-4) 119.6 ~

! l-

  • Mortar type by propertice requirements

' Sh;et 1 cf 2 J

  • g3(7g. .U** .

p' '.,

s.

- TABLE B-k -,.

FLEXURAL STRENGTH, HORIZONTAL SPAN, WO" REINFORCED CONCRETE MASONRY WALLS I., bb

  • Modulus 3*y*

Mortar Loading of Rupture Net Ares

  • psi ACC*/ Allow Ref.

,d

," 4 Construction Type Type psf Uniform 127 132 -4.13 - .6.9 Monowythe E" N 6.9

.^ N'

" 136 141 4.41 Hollow, 3-Core 6.9 N

" 127 132 4.13

" 169 176 5.50 6.9 N 6.9 N

" 173 180 5.63

" 123 128 4.00 6.9 Y 0

" 164 5.13 6.9 0 158 .

1

" 155 4.84 6.9 Monowythe 8" N 149

" 166 5.19 6.9 Hollow, Joint N 160

" 201 6.28 6.9 Reinf. 4 16 in.cc N 193 s " 156 4.88 6.9 0 150

" 186 193 6.03 69

' o

" 211 6.59 6.9 Monowythe 8" N 203

" 204 6.38 6.9 N 196 lbliow Joint " 210 6.56 6.9 Reinf. 9 8 in.cc 0 202 6.9 0

" 195 203 6.34 1.81 6.6 Monowythe 8" N 1/4 pt '56 58 6.6

" 38 39 1.22 Hollow N

" 1.97 6.6 N 61 63 6.6

" 60 62 1.94 N

" 2.22 6.6 N 69 71 6.6 N

" 93 96 3.00 199 217 4.72 6.15 8" Monowythe M Center 6.15 M

176 192 4.17 Hollow, 2-Core 6.15 M "

. 151 165 3.59 210 4.57 6.15 4-2-4 Cavity M 111

. " 255 5.54 6.15 Wall, Hollow M- 135 6.15

" 95 180 3.91 Units M r 8" Monewythe M "

159 173 3.76 6.15 159 173 3.76 6.15 Hollow 2-Core M Joint Re. t 8"oc M " 191 208 4.52 6.15 4-2-4 Cavity of M "

159 300 6.52 6.15 Hollow Units Tied M

" 159 300 6.52 6.15 w/ Joint Re. 3 8oc M 159 300 6.52 6.15

. l e

me

  • *
  • se e r .o ee w

pN,g-Sheet 2 ct 2 .

i. ,

g .'. , - .

R

.? -

Table B-4 (contitiued)

,g ;:, . Modulus ,*p*

' * * *4 , Loading of Rupture Morur Construction Type ' Type psf N'et Area: psi kAct /Allev i +Ref 11.41 6.1h g

([" '

  • 4" Hollow Honowythe W

N Center 138 157 -

365 415 268 12.97 8.38 6.1h 4,1h N 301 g,,

" 20'2 A.39 4.1h 8" Hollow H 268

  • " 314 237 5.15 6.1h Monowythe' M 6.1h M

" 314- 237 5.15

" 277 210 6.56 4.1h 8" Hollow N 6.1h N

" 314 237 7.41

- Honowythe 6.1h N " 314 237 7.41 .

" 259 195 6.09 6 lh 8" Hollow 0 o " 277 210 6.56 6.1h Honowythe " 6.56 0 277 210

. 6.1h i

" 268 202 4.39 6.1h 8" Hollow M

" 224 4.87 6.1h Honowythe M 297

" 277 210 4.56 6.1h M

" 277 210 6.56 6.1h 8" Hollow N

" 195 6.09 6.1h Honowythe N 259

- N

" 297 224 7.00 6 1k

" 360 27i 8.45 6.1h

8" Hollow 0 6.1h 0

" 297 224 7.00 -

  • Honovythe " 6.31 6.14 0 268 202

" 352 142 4.44 6.1h 12" Hollow N

" 127 3.97 6.1h Honowythe N 314

, 134 4.19 6.1h N ," 333 e.

1

/

e S

w - .- . .. -.- _

t