ML17326A522

From kanterella
Revision as of 09:06, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Reactor Vessel Matl Surveillance Program for Facility, Analysis of Capsule T.
ML17326A522
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/08/1977
From: NORRIS E B
SOUTHWEST RESEARCH INSTITUTE
To:
Shared Package
ML17326A519 List:
References
02-4770, 2-4770, NUDOCS 8002270331
Download: ML17326A522 (93)


Text

,~~$SOUTHWEST RESEARCHINSTITUTE PostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCE PROGRAMFORDONALDC.COOKUNITNO.1ANALYSISOFCAPSULETbyE.B.NorrisFINALREPORTSwRIProject02-4770toAmericanElectricPowerServiceCorporation 2BroadwayNewYork,NewYork10004JDecember8,1977Approved:

'4$}%$$.$~h$i\'l~h'I~P$~iA',"}:=:"}lCP,Ii EL:.O'IHiC PG"'/IISEl'}VLCC"-

CORi.~cDATE'.S.Lindholm, DirectorDepartment ofMaterials Sciences80f'22V053(i TABLEOFCONTENTSLISTOFTABLESLISTOFFIGURES~PaeriiiSUMMARYOFRESULTSANDCONCLUSIONS BACKGROUND III.DESCRIPTION OFMATERIALSURVEILLANCE PROGRAMIV.V.TESTINGOFSPECIMENS FROMCAPSULETANALYSISOFRESULTS1335VI.HEATUP,AND COOLDOWNLIMITCURVESFORNORMALOPERATION OFDONALDC.COOKUNITNO.1VII.REFERENCES jAPPENDIXA-.TENSILETESTRECORDS47A-1APPENDIXB-PROCEDURE FORTHEGENERATION OFALLOWABLE PRESSURE-TEMPERATURE LIMITCURVESFORNUCLEARPOWERPLANTREACTORVESSELSB-1 I

~~lbLISTOFTABLESTable~PaeDonaldC.CookUnitNo.1ReactorVesselSur-veillance Materials SummaryofReactorOperations DonaldC.CookUnitNo.116SummaryofNeutronDosimetry ResultsDonaldC.CookUnitNo.1-CapsuleT17IVFastNeutronSpectrumandIronActivation CrossSectionsforCapsuleT19CharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselIntermediate ShellPlateB4406-3(Longitudinal Direction) 21VICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselIntermediate ShellPlateB4406-3(Transverse Direction) 22VIICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselCoreRegionWeldMetal23VIIICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselCoreRegionWeldHeat-Affected ZoneMetal24IXCharpyV-NotchImpactDataA533GradeBClass1Correlation MonitorMaterial25NotchToughness Properties ofCapsuleTSpecimens 31DonaldC.CookUnitNo.1XITensileProperties ofSurveillance Materials CapsuleT32XIIProjected ValuesofRTNDTforDonaldC.CookUnitNo.1forUpto12EFPYofOperation 40 I~~TableZIZZXZVLZSTOFTABLES(CONT'D.)

Projected ValuesofRTNDTforDonaldC.CookUnitNo.1forUpto32EFPYofOperation ProposedReactorVesselSurveillance CapsuleScheduleDonaldC.CookUnitNo.1~Pae4142 LISTOFFIGURES~Fture~PaeArrangement ofSurveillance CapsulesinthePressureVessel2VesselMaterialSurveillance Specimens 3Arrangement ofSpecimens andDosimeters inCapsuleT124,CharpyV-NotchProperties ofPlateB4406-3(Long.)DonaldC.CookUnitNo.1Surveillance Program26CharpyV-NotchProperties ofPlateB4406-3(Trans.)DonaldC.CookUnitNo.1Surveillance Program27CharpyV-NotchProperties ofCoreRegionMeldMetalDonaldC.CookUnitNo.1Surveillance Program28CharpyV-NotchProperties ofCoreRegionHAZMaterialDonaldC.CookUnitNo.1Surveillance Program29CharpyV-NotchProperties ofCorrelation MonitorMaterialDonaldC.CookUnitNo.1Surveillance Program30Dependence ofCvShelfEnergyonNeutronFluence,37DonaldC.CookUnitNo.110EffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.138DonaldC.CookUnitNo.1ReactorCoolantHeatupLimitations Applicable forPeriodsUpto12Effective FullPowerYears4512DonaldC.CookUnitNo.1ReactorCoolantCooldown46Limitations Applicable forPeriodsUpto12Effective FullPowerYears C~~

I.SUMMARYOFRESULTSANDCONCLUSIONS Theanalysisofthefirstmaterialsurveillance capsuleremovedfromtheDonaldC.CookUnitNo.1reactorpressurevesselledtothefollowing conclusions:

(1)Basedonacalculated neutronspectraldistribution, CapsuleTreceivedafastfluenceof1.80x101neutrons/cm2

>1MeV.(2)Thesurveillance specimens ofthecorebeltlinematerials ex-perienced shiftsintransition temperature of75'to130Fasaresultoftheaboveexposure.

(3)Theweldmetalandheataffectedzone(HAZ)materials exhibited thelargestshiftinRTNDT.However,becausetheintermediate shellplatematerialhasahighinitial(unirradiated)

RTNDT,itwillcontroltheheatupandcooldownlimitations atleastuntilthenextsurveillance-capsuleisremoved.(4)Theestimated maximumneutronfluenceof6.92x1017neutrons/

cm>1MeVreceivedbythevesselwallaccruedin1.27fullpoweryears.Therefore, theprojected maximumneutronfluenceafter32effective fullpoweryears(EFPY)is1.74x1019neutrons/cm

>1MeV.Thisestimateisbasedonaleadfactorof2.6betweenCapsuleTandthepointofmaximumpressurevesselflux.(5)BasedonRegulatory Guide1.99trendcurves,theprojected maxi-mumshiftinductile-brittle transition temperature oftheDonaldC.CookUnit1vesselcorebeltlineplatesatthe1/4Tand3/4Tpositions after12EFPYofoperation are110Fand50F,respectively.

Thesevalueswereusedasthebasesforcomputing heatupandcooldownlimitcurvesforupto12EFPYofoperation.

(6)Themaximumshiftsinthetransition temperature oftheDonaldC.Cookunit1vesselcorebeltlineplatesatthe1/4Tand3/4Tpositions after32EFPYofoperation arepro)ected tobe180Fand83F,respectively.

(7)SincetheweldmetalandHAZbeltlinematerials aremoresensi-tivetoradiation embrittlement thantheintermediate shellplatematerial, theoperating limf.tations maycomeundercontroloftheweldmetalandHAZmateriallateinthe32EFPY.designlifeoftheplant.(8)TheDonaldC.CookUnitNo.'vesselplates,weldmetalandHAZmateriallocatedinthecorebeltlineregionareprojected toretainsuffi-cienttoughness tomeetthecurrentrequirements of10CFR50AppendixGthroughout thedesignlifeoftheunit.

II.BACKGROUND Theallowable loadingsonnuclearpressurevesselsaredetermined byapplyingtherulesinAppendixG,"Fracture Toughness Requirements,"

of10CFR50.(1)*

Inthecaseofpressure-retaining components madeofferriticmaterials, theallowable loadingsdependonthereference stressintensity factor(KIR)curveindexedtothereference nilductility temperature (RTNDT)presented inAppendixG,"Protection AgainstNon-ductile Failure,"

ofSectionIIIoftheASMECode.()Further,thematerials inthebeltlineregionofthereactorvesselmustbemonitored forradiation-induced changesinRTNDTpertherequirements ofAppendixH,"ReactorVesselMaterialSurveil-lanceProgramRequirements,"

of10CFR50.TheRTNDTisdefinedinparagraph NB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowing temperatures:

(1)Drop-weight NilDuctility Temperature (DW-NDT)perASTME208;(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature; (3)60degFbelowthe35milCtemperature.

TheRTNDTmustbeestablished forallmaterials, including weldmetalandheataffectedzone(HAZ)materialaswellasbaseplatesandforgings, whichcom-prisethereactorcoolantpressureboundary.

Itiswellestablished thatferriticmaterials undergoanincreaseinstrengthandhardnessandadecreaseinductility andtoughness whenexposedtoneutronfluencesinexcessof1017neutronspercm2(E>1MeV).()Also,ithasbeenestablished thattrampelements, particularly copperand*Superscript numbersrefertoreferences attheendofthetext.

phosphorous, affecttheradiation embrittlement responseofferriticmate-rials.()Therelationship betweenincreaseinRT~Tandcoppercontentisnotdefinedcompletely.

Forexample,Regulatory Guide1.99,originally issuedinJuly1975,proposedanadjustment toRT~Tproportional tothesquarerootoftheneutronfluence.westinghouse ElectricCorporation, intheircommentsonthe1975issueofRegulatory Guide1.99(),believedthattheproposedrelationship overestimates theshiftatfluencesgreaterthan1.9x1019andunderestimates theshiftatfluenceslessthan1.9x10Ontheotherhand,Combustion Engineering, intheircommentsonthe1975is-sueofRegulatory Guide1.99,suggested thattheproposedrelationship isoverlyconservative atfluencesbelow1019neutronspercm(E>1MeV).Thereisalsodisagreement concerning theprediction ofCvuppershelfre-sponsetoexposuretoneutronirradiation.(

)Afterreviewing thecommentsandevaluating additional surveillance programdata,theNRCissuedarevisiontoRegulatory Guide1.99whichraisedtheupperlimitofthetransition tem-peratureadjustment curve.Inthisreport,estimates ofshiftsinRTNDTarebasedonRevision1ofRegulatory Guide1.99),issuedinApril1977.Ingeneral,theonlyferriticpressureboundarymaterials inanuclearplantwhichareexpectedtoreceiveafluencesufficient toaffectRTNDTarethosematerials whicharelocatedinthecorebeltlineregionofthereactorpressurevessel.Therefore, materialsurveillance programsincludespecimens machinedfromtheplateorforgingmaterialandweldments whicharelocatedinsucharegion.ofhighneutronfluxdensity.ASTME185describes the(10)currentrecommended practiceformonitoring andevaluating theradiation-in-ducedchangesoccurring inthemechanical properties ofpressurevesselbelt-linematerials.

Westinghouse hasprovidedsuchasurveillance programfortheDonaldC.,CookUnitNo.1nuclearpowerplant;Theencapsulated Cvspecimens arelocatedneartheO.D.surfaceofthethermalshieldatapointwherethefastneutronfluxdensityisaboutthreetimesthatattheadjacentvesselwallsurface.Therefore, theincreases (shifts)intransition temperatures ofthematerials inthepressurevesselaregenerally lessthanthecorre-spondingshiftsobservedinthesurveillance specimens.

However,becauseofazimuthal variations inneutr'onfluxdensity,capsulefluencesmayleadorlagthemaximumvesselfluenceinacorresponding exposureperiod.Forexample,CapsuleT(removedduringthe1977refuelling outage)wasexposedtoaneutronfluenceapproximately 2.6timesthatatthemaximumexposurepointonthevesselI.D.,whileCapsuleX(scheduled forremovalatalaterdate)isbeingexposedtoaneutronfluxabout60%ofthatatthepointofmaximumvesselexposure.

Thecapsules.

alsocontainseveraldosimeter mate-rialsforexperimentally determining theaverageneutronfluxdensityateachcapsulelocationduringtheexposureperiod.TheDonaldC.CookUnitNo.1materialsurveillance capsulesalsoin-cludetensilespecimens asrecommended byASTME185.Atthepresenttime,irradiated tensileproperties areusedprimarily toindicatethatthemate-rialstestedcontinuetomeettherequirements oftheappropriate materialspecification.

Inaddition, thedegreeofradiation hardening indicated bythetensileyieldstrengthisusedtojudgethecredibility ofthesurveil-lancedata.(7)Wedgeopeningloading(WOL)fracturemechanics specimens, machinedfromplatematerialandweldmetal,arealsocontained inthecapsules.

Currenttechnology limitsthetestingofthesespecimens attemperatures wellbelow

~~theminimumservicetemperature toobtainvalidfracturemechanics dataperASTME399~~,"Standard MethodofTestforPlane-Strain FractureToughness ofMetallicMaterials."

However,recentworkreportedbyMagerandMitt~1~mayleadtomethodsforevaluating high-toughness materials withsmallfrac-turemechanics specimens.

Currently, theNRCsuggestsstoringthesespecimens untilanacceptable testingprocedure hasbeendefined.Thisreportdescribes theresultsobtainedfromtestingthecontentsofCapsuleT.Thesedataareanalyzedtoestimatetheradiation-induced changesinthemechanical properties ofthepressurevesselatthetimeofthe1977refuelling outageaswellaspredicting thechangesexpectedtooccuratselectedtimesinthefutureoperation oftheDonaldC.CookUnitNo.1powerplant.

III.DESCRIPTION OFMATERIALSURVEILLANCE PROGRAMTheDonaldC.CookUnitNo.1materialsurveillance programisdescribed indetailinWCAP8047(13),

datedMarch1973.Eightmaterials surveillance capsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcap-suleisoppositetheverticalcenterofthecore.TheneutronfluxdensityattheCapsuleTlocationleadsthemaximumfluxdensityonthe'vessel I.D.byafactorof2.6.(ThecapsuleseachcontainCharpyV-notch,tensileandWOLspecimens machinedfromtheSA533GrBplate,weldmetalandheataffectedzone(HAZ)materials locatedatthecorebeltlineplusCharpyV-notchspecimens machinedfromareference heatofsteelutilizedinanum-berofWestinghouse surveillance programs.

Thechemistries andheattreatments ofthevesselsurveillance mate-rialsaresummarized inTableI.Alltestspecimens weremachinedfromthetestmaterials atthequarter-thickness (1/4T)locationafterperforming asimulated postweldstress-relieving treatment.

WeldandHAZspecimens weremachinedfromastress-relieved weldmentwhichjoinedsectionsoftheinter-mediateshellcourse.HAZspecimens wereobtainedfromtheplateB4406-3sideoftheweldment.

Thelongitudinal basemetalCspecimens wereorientedwiththeirlongaxisparalleltotheprimaryrollingdirection andwithV-notchesperpendicular tothemajorplatesurfaces.

Thetransverse basemetalCspecimens wereorientedwiththeirlongaxisperpendicular totheprimaryrollingdirection andwithV-notches perpendicular tothemajorplatesurfaces.

Tensilespecimens weremachinedwiththelongitudinal axisparalleltotheplaterollingdirection.

TheWOLspecimens weremachined X(220')270'(184')Y(320')Z(356)180'aS(4')V(176')T(40)u(140')900ReactorVesselThermalShieldCoreBarrelFIGURE1~ARRANGEMENT OFSURVEILLANCE CAPSULESRTTHEPRESSUREVESSEL

~~TABLEID0NALDC.C0OKUNnNo.1REACT0RVESSELSURVEn.LANCE MATERZALS<>>)

HeatTreatment HistorShellPlateMaterial:

Heatedto1600Ffor4hours,waterquenched.

Temperedat1225Ffor4hours,aircooled.Stressrelievedat1150Ffor40.hours,furnacecooled.Weldment:

Stressrelievedat1150F.for40hours,furnacecooled.Correlation Monitor:1675F,4hours,aircooled.1650F,4hours,waterquenched.

1225F,4hours,furnacecooled1150F,40hours,furnacecooledto600F.ChemicalComosition(Percent)

MaterialCMnPSSiNiMoCuPlateB4406-3WeldMetal0.241.400.0090.0150.250.490.460.140.261.330.0230.0140.180.740.440.27Correlation Monitor0.221.480.0120.0180.250.680.520.14 withthesimulated crackperpendicular toboththeprimaryrollingdirection andtothemajorplatesurfaces.

Allmechanical.

testspecimens, seeFigure2,weretakenatleastoneplatethickness fromthequenchededgesoftheplatematerial.

CapsuleTcontained 44CharpyV-notchspecimens (10longitudinal and10transverse fromtheplatematerial, plus8eachfromweldmetal,HAZandthereference steelplate);4tensilespecimens (2plateand2weldmetal);and4WOLspecimens (2plateand2weldmetal).Thespecimennumbering sys-temandlocationwithinCapsuleTisshowninFigure3.CapsuleTalsowasreportedtocontainthefollowing dosimeters forde-termining theneutronfluxdensity:TargetElementFormQuantityIronCopperNickelCobalt(inaluminumCobalt(inaluminum)

Uranium-238 Neptunium-237 BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxide5332.211TwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacersinCapsuleT.One(locatedatthebottom)was2.5%Agand97.5%Pbwithameltingpointof579F.Theother(locatedatthetopofthecapsule)was1.75%Ag,0.75%Snand97.5%Pbhavingameltingpointof590F.10 46a44'OIIR.00990~.3I.3I42.I252.I05l.063l.053.35.393(a)CharpyV-notchImpactSpecimen.256.246I.005.995.255.245I6Gagelength256.3954934.2504.2I0.250RI.250'.26 l.495I.80630.I98.I9.790.786.395.375D.37'ECTIONA-A(b)TensileSpecimen.375D..380.439499.437.04'73.0463D.0667.0662.0667l.45l.4PI.I30I.I20.765.745I.005.995I.005-8-~995.SOI.499(c)WedgeOpeningLoadingSpecimenFIGURE2.VESSELMATERIALSURVEILLANCE SPECIMENS fC,COICO.CCSCLttfCtttL~ISLICIIIILICICLttffIItlCLIffIILfC>COICOCISII~IIIIIILOOLllISILCClllttCluttClllt1CIOItlClllt1CllltTCClltlCllltTCILIttClllttCltlttW.LIIIOI~'llI-jlI~SIISSlitSISSSSII4IL4~I4I.l~ISI1SI~SI4SI~SIillILOI~III~IIIIIILLLIII~~'llY-SSI.llI.lt~StWIL~SS~.SlISSI.llI.IS1-~I~I.ILI-~IILS-IILI.I~.II~TOPBOTTOMItICLLC~~IIIIIICIOCtllllILLOI~I(IIIII'ITOIIIL

~IIICIIII)

IItllIC~'LIOI.S(LIILSI(III

~IIICII4I)

ISILLCOIIILLIIOI SaalllaIOILSOCII.IIIICLI

~IOICIIL~ICILLFIGURE3.ARRANGEMENT OFSPECIMENS ANDDOSIMETERS INCAPSULET

~~IV.TESTINGOFSPECIMENS FROMCAPSULETThecapsuleshipment, capsuleopening,specimentestingandreporting ofresultswerecarriedoutinaccordance withtheProjectPlanforDonaldC.CookUnitNo.1ReactorVesselIrradiation Surveillance Program.TheSwRINuclearProjectsOperating Procedures calledoutinthisplaninclude:(1)XI-MS-1,"Determination ofSpecificActivityofNeutronRadiation DetectorSpecimen."

(2)XI-MS-3,"Conducting TensionTestsonMetallicMaterials."

(3)XI-MS-4,"CharpyImpactTestsonMetallicMaterials."

(4)XIII-MS-1, "OpeningRadiation Surveillance CapsulesandHandlingandStoringSpecimens."

(5)XI-MS-5,"Conducting Wedge-Opening-Loading TestsoniMetallicMaterials."

(6)XI-MS-6,"Determination ofSpecificActivityofNeutronRadiation FissionMonitorDetectorSpecimens."

Copiesoftheabovedocuments areonfileatSwRI.Southwest ResearchInstitute utilizedaprocedure whichhadbeenpre-paredforthe1977refuelling outagefortheremovalofCapsuleTfromthereactorvesselandtheshipmentofthecapsuletotheSwRIlaboratories.

SwRIcontracted withToddShipyards

-NuclearDivisiontosupplyappropriate cuttingtoolsandalicensedshippingcask.Toddpersonnel severedthecap-sulefromitsextension tube,sectioned theextension tubeintothree-foot lengths,supervised theloadingofthecapsuleandextension tubematerials intotheshippingcask,andtransported thecasktoSanAntonio.13

~~~~Thecapsuleshellhadbeenfabricated bymakingtwolongseamweldstojointwohalf-shells together.

ThelongseamweldsweremilledoffonaBridgeport verticalmillingmachinesetupinonehotcell.Beforemill-ingoffthelongseamweldbeads,transverse sawcutsweremadetoremovethetwocapsuleends.Afterthelongseamweldshadbeenmilledaway,thetophalfofthecapsuleshellwasremoved.Thespecimens andspacerblockswerecarefully removedandplacedinanindexedreceptacle sothatcapsulelocationwasidentifiable.

Afterthedisassembly had.beencompleted, thespecimens werecarefully checkedforidentification andlocation, aslistedinWCAP8047.(>>)Eachspecimenwasinspected foridentification number,whichwascheckedagainstthemasterlistinWCAP8047.Nodiscrepancies werefound.Thethermalmonitorsanddosimeter cfireswereremovedfromtheholesinthespacers.Thethermalmonitors, contained inquartzvials,wereexamined, andnoevidenceofmeltingwasobserved, thusindicating thatthemaximumtemperature duringexposureofCapsuleTdidnotexceed579F.Thespecificactivities ofthedosimeters weredetermined atSwRIwithanNDC2200multichannel analyzerandanNaI(Th)3x3scintillation crystal.Thecalibration oftheequipment wasaccomplished withappropri-atestandards andaninterlaboratory crosscheckwithtwoindependent count-'inglaboratories onCo-,54Hn-and~Co-containing dosimeter wires.Allactivities werecorrected tothetime-of-removal (TOR)atreactorshutdown.

Infinitely dilutesaturated activities (A8AT)werecalculated foreachofthedosimeters becauseASATisdirectlyrelatedtotheproductofthe

~~'~energy-dependent microscopic activation crosssectionandtheneutronfluxdensity.Therelationship betweenATORandASATisgivenby:E(1-em)(em)ATOR-XTm-XtASATm~1where:m=operating period;decayconstantfortheactivation product,day1;Tmequivalent operating daysat3250MwThforoperat-ingperiodm;tm=decaytimeafteroperating periodm,days.TheDonaldC.CookUnitNo.1operating historyuptothe1977refuelling out-ageispresented inTableII.Thespecificactivityattimeofremoval(TOR)andthespecificsaturated activitycalculated foreachdosimeter arepre-sentedinTableIII.Theprimaryresultdesiredfromthedosimeter analysisisthetotalfastneutronfluence(>1MeV)whichthesurveillance specimens received.

Theaveragefluxdensityatfullpowerisgivenby:SATmNOD(2)where:energy-dependent neutronfluxdensity,n/cm-sec;ASATsaturated

activity, dps/mgtargetelement;spectrum-averaged activation crosssection,cm;NOnumberoftargetatomspermg.Thetotalneutronfluenceisthenequaltotheproductoftheaverageneutronfluxdensityandtheequivalent reactoroperating timeatfullpower.

TABLEIISUMMARYOFREACTOROPERATIONS DONALDC.COOKUNITNO.1Operating PeriodStartDates~DSSOperating

~DSsShutdown~DSSPowerGeneration Equiualent Operating DaysT)DecayTimeAfterPeriod10122/2/752/15/752/17/752/18/752/21/753/19/754/4/756/25/756/27/757/4/757/23/7510/12/7510/15/75ll/1/7511/15/751/2/761/5/764/13/765/10/767/2/767/6/769/11/769/19/7611/21/7611/22/762/14/752/16/752/17/752/20/753/18/754/3/756/24/756/26/757/3/757/22/7510/ll/7510/14/7510/31/7511/14/751/1/761/4/764/12/765/9/767/1/767/5/769/10/769/18/7611/20/7611/21/7612/23/76132682811748536763322,1942281619142729,604200,61615,432201,50640,163116,552256,178143,868205,682196,52092754Total,Cycle11,501,297 0.680.079.1161.l34.7562.0012.3535.8678.8244.2763.2960.4728.54461.94678675646548539439419357255175104330

~~TABLEIIISUMMARYOFNEUTRONDOSIMETRY RESULTSDONALDC.COOKUNITNO.1--CAPSULE TMonitorIdentification Activation-ReactionATOR(ds/mASATds/mFe-Fe-Fe-Fe-Fe-TopTopMid.Mid.Bot.Mid.Bot.54Fe(n,p)54Mn Average193x1031.69x1031.69x1031.69x1031.80x1031.76x1033.34x1032.94x1032.93x1032.93x1033.11x103.3.05x103Cu-TopMid.Cu-Mid.Cu-Bot.Mid.Ni-TopMid.Ni-Mid.Ni-Bot.Mid.Co-TopCo(Cd)-TopCo-Bot.Co(Cd)-Bot.U-238Np-23763Cu(n,a)60Co lltf58Ni(n,p)58Co IfIICo(n,p)CoIIIfII238U(n,f)137C237Np(n,f)137Cs5.14x1015.27x1016.04x1013.83x1043.77x1043.95x1044.87x1061.83x1065.03x1061.64x1061.20x1034.53x1033.43x1023.52x1024.03x1024.46x1044.38x1044.59x1043.25x1071.22x1073.36x1071.09x107N/AN/A17 Theneutronfluxdensitywascalculated fromthe4Fe(n,p)4Mnreac-tionbecauseithasahighenergythreshold andtheenergyresponseiswellknown.TheenergyspectrumforCapsuleTwascalculated withtheDOT3.5two-dimensional discreteordinates transport codewitha22-groupneutroncrosssectionlibrary,aPlexpansion ofthescattering matrixandanS8orderofangularquadrature.

Thenormalized spectrumforCapsuleTandthegroup-organized crosssectionsforthe54Fe(n,p)54Mn reactionderivedfromtheENDF/B-ZV libraryaregiveninTableIV.ThevalueofoisFegivenby:10MeVaF(E)g(E)dE o(>1Mev)-1'110$(E)dEl.00(3)where:VF(>1MeV)thecalculated spectrum-averaged crossFesectionforflux>1MeV,cm2determined forthe54Fe(n,p)54Mn reaction.

Theresulting valueobtainedforfast(>1MeV)neutronfluxdensityattheCapsuleTlocationwas4.50x101neutrons/cm

-sec.SinceDonaldC.CookUnitNo.1operatedforanequivalent 461.94fullpowerdaysuptothe1977refuelling outage,thetotalneutronfluenceforCapsuleTisequalto1.80x1018neutrons/cm (E>1MeV)basedonthecalculated spectrumatthecap-2sulelocation.

Assumingafission-spectrum energydistribution atthecapsulelocation, thecross-section forthe4Fe(n,p)4Mnreaction(E>1MeV)wouldbe98.26mb.Theresulting fluxandfluencevalueswouldbe4.95x10neu-(4)trons/cm2-sec and1.97x1018neutrons/cm2, respectively.

18 TABLEIVFASTNEUTRONSPECTRUMANDIRONACTIVATION CROSSSECTIONSFORCAPSULETEnergyRange(MeV)8.18-10.06.36-8.184.96-6.364.06-4.963.01-4.062.35-3.011.83-2.351~11-1.83Normalized NeutronFlux0.00980.02540.04820.04710.08550.14000.17520.468954Fe(n,p)54Mn CrossSection(barns)0.5819.5770.4910.3540.2050.0990.0230.0014VF0.108barnsFe19 Theirradiated CharpyV-notchspecimens weretestedonaSATECimpactmachine.Thetesttemperatures wereselectedtodeveloptheductile-brittle transition anduppershelfregions.Theunirradiated CharpyV-notchimpactdatareportedbyWestinghouse(13) andthedataobtainedbySwRIonthespec-imenscontained inCapsuleTarepresented inTablesVthroughIX.TheCharpyV-notchtransition curvesforthethreeplatematerials andthecor-relationmonitormaterialarepresented inFigures4throughS.Theradia-,tion-induced shiftintransition temperatures forthevesselplatesarein-dicatedat50ft<<lband35millateralexpansion.

AsummaryoftheshiftsinRTNDTandCvuppershelfenergiesforeachmaterialarepresented inTableX.TensiletestswerecarriedoutintheSwRIhotcellsusingaDillon10,000-1b capacitytesterequippedwithastraingageextensometer, loadcellandautographic recording equipment.

Oneeachplateandweldmetaltensilespecimens wastestedatroomtemperature (RT)andat550F.Theresults,alongwithtensiledatareportedbyWestinghouse ontheunirradi-atedmaterials(1

),arepresented inTableXI.Theload-strain recordsareincludedinAppendixA.TestingoftheWOLspecimens wasdeferredattherequestofAmericanElectricPowerServiceCorporation.

Thespecimens areinstorageattheSwRIradiation laboratory.

TheCharpyV-notchresultsindicatethattheHAZismoresensitive toradiation embrittlement thantheas-rolled andheat-created plateandaboutequaltothatoftheweldmetal.Thisissurprising becausethecoppercon-tentofHAZisreportedtobe'uchlowerthanthatoftheweldmetal.(3)20 TABLEVCHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELINTERMEDIATE SHELLPLATEB4406-3(LONGITUDINAL DIRECTION)

Condition BaselineCapsuleTSpec.No.(a)A-44A-45A-49A-50A-41A-47A-42A-48A-43A-46TestTemp.(p)-40-40-40101010404040767676110110110160160160210210210300300300104082110135160185210250300ImpactEnergy(ft-1b)10ll11.524.53331.557426582707893.510088110131.5115.5120144125131.512613210.5293846.562.58499105110105.5Shear(x)91113232529453737525952951009510010010010010010015203525559595100100LateralExpansion

~Mls13101124292849405467606172777284958389989590929310243138535880838989(a)Notreported.

21 TABLEVICHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELINTERMEDIATE SHELLPLATEB4406-3(TRANSVERSE DIRECTION)

Condition BaselineCapsuleTSpec.Na.(a)AT-44AT-45AT-49AT-50AT-41AT-47AT-42AT-48AT-43AT-46TestTempt~P)-40-40-40101010404040767676761101101101601602102102103003003001O4082110135160185210250300ImpactEnergy~ft-1b)1111.51428233040413783435050845468977790959710094101625353749.55773.5878789Shear~7.)14991823182727322748374190901001001001001001005520302540100100100lOOLateralExpansion

~milt1215152822263635345644464471515780717579798375858233035444763737183(a)Notreported.

22 TABLEVIICHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELCOREREGIONWELDMETALCondition BaselineSpec.No.(a)TestTemps('p)-140-140-140-100-100-100ImpactEnergy~ft-1b1ll211923.52920Shear(X)182011LateralExpansion

~m11s101918222618CapsuleTW-33'-35W-34W-39W-40W-37W-38W-36-70-70-70-40-40-40101010767676210210210>>4010758211016021030045.5515463596983849211410710711011211124.55075.54485759868.5244232473447737175991001001001001005207020951001001003947495253606972758887889087931941673469666666(a)Notreported.

23 TABLEVIIICHARPYV-NOTCHIMPACTDATATHEDONALDCDCOOKUNITNO.1REACTORPRESSUREVESSELCOREREGIONMELDHEAT-AFFECTED ZONEMETALCondition BaselineSpec.No.(a)TestTempo~7)-175-175-175-140-140ImpactEnergy(ft-lb)5.5771622Shear~(/LateralExpansion

~mals1218-100-100-100303345131420252840CapsuleTH-33H-35H-34H-39H-40H-37H-38H-36-70-70-70-70-40-40-40101010767676210210210-4010458211016021030052472730547147978982112'401311291041051040.530.552.562.584111.5832125142055504390436910010010010010010051525254010010010039352124535045836764868482859487930274146657854(a)Notreported.

TABLEIXCHARPYV-NOTCHEPACTDATAA533GRADEBCLASS1CORRELATION MONITORMATERIALCondition BaselineCapsuleTSpec.No.(a)R-33R-37R-38R-39R-40R-34R-35R-36TestTempr-50-50-50-20-20-201010104040408585851101101101601601602102102103003003004082110160210300350400ImpactEnergy~fe-1b)6.5961214.513.522363558.541.55282.585.563.5108.581109117115121125117.512713.518.53555.586.510011196.5Shear~X913132323233329294341425867558485879898100100100100510204095100100100LateralExpansion

~mals)61091514142332325142456071547269798488878783841318324566578484(a)Notreported.

25 e~~160~'II~II1ttI~eiIitI~IIIlIt1IIeII1QtI~I~IIItII~t!It'III~IIeIII120III~I~etI1I~I~IiII!IjI~eIl~i~I~IIIee+lg!IIIeI~IIit~I~IIiI~'If.eIIIf~~~eIIIII1e~ICI~JIIII~'00SIufz1)C38040eIeIe~ItI,II~eI~eI~IIIt1T~I~IIIeII'ItIIIII~III!IIii~IIIIIII'1IIIIi~e~II~~I.'III~I~lt~C~I~t,IItIj:t~IItII!III'~I'-III..L'L.l.e

~~'III'II~~1teI~III~'IIeI~I1J~~I~eteIi,t1IIIIII~I';!IIIiIIIII'I~"ee~-Baseline

~~I~eI'tIII~IjC~IeIeIt',1~I~II,iI'-Irradiated CapsuleTe~~e~~'ICI"~0!*I<eII'III-200-1000100200Temperature, degF300400100~I~I'I'l~I~~~I75IeIee~~I~I~IC050eII~Ie)Cc7251eIe1~IIIIiIIIIIIIII~I~II~'~eI'IIIII~I~jIII~~I!II'.I~jeI'~tiee;iIIIIIe....I,.eI~~eI~Unirradiated Baseline~~eee~,~\-Xrradiated CapsuleT0IeI'I~I~.IIII1II'I~~'~~eeI~eLI-200-1000100200Temperature, degF300400FIGURE4~CHARPYV-NOTCHPROPERTIES OFPLATEB4406-3(LONG-)DONALDC.COOKUNITNO.1SURVEILLANCE PROGRAM26

~c160a~ae120~I~III1,!a,Ia1ajaaI~II7aaa~IaI'Ia,'Iae80II~I.'I7~','II~IC1IIaIIIIIIIII9~I1~aaI~1IItII~a~IIIa~!III.I1II~9I't"I~~'I~'~IIiI1~aI!40~eI\';~II~lIII1III~.'II~1~~eI1~aaaII'-'II~IIII:~tIe~~Ia,1~~-I=~a"~-200-1000100200Temperature, degF300400100co758~'*fe'I1~11II'~I.'dMted&ad~Lat-dd'-Capj I:II'II*a1tI'I~IIIII!IIII~t1,I'I~~Iae1~>>~'1.LOt~J'1a~~~'I"10~501~eeI~'IIaII!~I~.6=-~.IP25I~~at,II'IJaai~t:~!IIIIII+IILJ'1a'.~~I:I't1I!JIIIa~I."'a-HIIIaIII~atIIIIIIIIIIIIIIII~IIII'IiIIaII~IaIII'itiI~.~LjII~Ie~I1."..~t.Ia.IlTI;..LII/I'.aJf)If[I~'IIJIIIIII,I,9-200-1000100200Temperature, degF300400FIGURE5.CHARPYV-NOTCHPROPERTIES OFPLATEB4406-3(TRANS.)DONALDC.COOKUNITNO.1SURVEILLANCE PROGRAM27 1604~>I~~~'4ii>!~IIIijl-r+'!-'.H.I~'III~~I~IIII~IIf:';~II120~!I~III~;IIIIII.IIIiI!>I>1~~~IIIIIII~14>1I~~80i).~jt~~~IIItI>II4i4'I~>>Ii1~III~I~IIII>I~>I~II>~~>II4>II':i'I~~I>,'I~f1I<<I~~,CIIIIIl4I>iI~~4~~1tII>j~.II~~~iiI->II>>tiiiIiI~~400iCtIit~tII>I~II~~~II~4III~II~IIIIII>~>>~U~diatad-'Baseline jiI~~II.IIiIIIIIjiIII.'t1I~~I~I~IIII'I',wj-.'-+-.-&@Bated-CapsuleT-200-1000100Temperature, degF200,300400100II4I~.'1iIII>II:.'4'~t'C;4~I~14II~>I~1,'>~m7581~>~III~~CAjQ50Xc525~~I~1'>'4>I'~~rI4~>~f~fIl.4~'iI~~II~II~I.i.I:III,'1jI>III,1~4I'I;I!~'~fi4tII~'-~Coda-.4II,.II~~~,','~.'-,.":,;&--.UnMrediated BaselineII~adiated CapsuleTI~I;'4iII:III>i'tII..*.~~I>III'.~>4'I~'I-200-1000100200Temperature, degF300400FIGURE6.CHARPYV-NOTCHPROPERTIES OFCOREREGIONWELDMETALDONALDC.COOKUNITNO.1SURVEILLANCE PROGRAM28 160!!~~!II"!~Il!DIW120~II='IIIII~~II~iII~II'!lI~IiIiII:'!IiII'+l~~.III!jIIt"~~!80)CD~~I!!II~!!~ItII!l!."I!~IIIIIII'"Ii!~~Il~I.!+:'III!(~lIP400IIIIIIII~II!IIII'LtfIIl'IIIIIIl:~!I~$J~l(iTi~i(!!,.'I~A~I~!I~ll't~Base1ine.

~I!!,'Xrmdia5edl.

CapsuleI,~III'(-200-1000'00200Temperature, degF300400100!I~Ii.IIiII'~'~J.'lI'IIl~'!II~!075l~I~I',iII(J~lIIIII1I:~jIII!I~IIIIII.'~LAIII~I~~I'II50II,IIIIIlII'jII;I4~tI!I~'I'I~l!jj!~fII(I~wIJu250~!!IIIIlII~~!(Q(IIII;I~"o-'-III'I.lIIII!!I~-~lII!IIrII0I~I'i'IIII~I~1ljt~IItI'~',Unirradiathd Baseline4,'-Irradiated(

Capsu1eTII~!!'!-200-1000100200Temperature, degF300400FIGURE7.CHARPYV-NOTCHPROPERTIES OFCOREREGIONHAZMATERIALDONALDC.COOKUNITNO.1SURVEILLANCE PROGRAM29 160I~'.~IfII,If~fIiIIII~f~I~',IfI'~IIjIII~~I'~II!fI~III~~I~IIIl~~~III~Ij~III~~I120~,IIIrratHQtedj iz1+~.I~~I~~r,fIIIIII~I.t!III~I~II~~~lI~~'I!~~~'"'0"fII~~I80C)o~II~~II~~~r~I1l"'~III'~~~II~I!II!Iil1IIII~ii~IjIIII~I;;~i!IIII~jI!II~I~I'I!II'~IIf~~~'III~I1I~'IIL!I~!!III~I~~!J~~IIIl!'~'Ii~IfII~~I~t!l;I~~~II40III~I~I!~IIIf~jtIf\~jI'~;~III~>'.If~fI!~I~IIIIIII~~I~I~IIl1I~iiIIIfIIII'IT~IIIIIIIIIIIIIII~~IIjj!\I~1,'I0-200t!-1000100200Temperature, degF300400100j.I.2008~i~758~"-~Zrredkited-'Gape

~~j~II~~III'~jI050LIo25I!II~~~!~I~~t!1!IIfI~~-I!,IIII.I~'~~~!~.I~~~I'.I'~lIiIIIjI~IIII~I~I'I~II!!II~I!'I1~I!I~~Ij~!!1!I~~~:jiIiIII~'1iri~~rI!tt,I~!e*0I!I!~I1~~~Ii~Ii!~1I~IrI-200-1000100200Temperature de@F300400FIGURE8.CHARPYV-NOTCHPROPERTIES OFCORRELATION MONITORMATERIALDONALDC.COOKUNITNO.1SURVEILLANCE PROGRAM30 TABLEXNOTCHTOUGHNESS PROPERTIES OFCAPSULETSPECIMENS DONALDC.COOKUNITNO.150ft-lbCTem.(deF)PlateB4406-3WeldWeld~(Lan.)(Trans.)MetalHAZCorrelation MonitorIrradiated Unirradiated AT35milCTem.(deF)Irradiated Unirradiated ATCUerShelfEnerft-lb)150(a)14075(a)6575()135(b)11060(b)4075(b)6070-70-601301305055-80-7513013014575701256065Unirradiated Irradiated hE,ft-lbsAE,1301082216.994841010.61101208093302727.322.51201021815(a)Energytransition at77ft-lb.(b)Lateralexpansion transition at54mil.31 TABLEXITENSIIEPROPERTIES OPSURVEILLANCE MATERIALS CAPSULETCondition SpecimenIdent.TestTemp.('P)0.2XYieldTensileTotalReduction StrengthStrengthElongation inArea~si~sf~I(%)BaselineCapsuleTBaselineB4406-3(Long.)A-1A-2B4406-3(Trans.)RoomRoom300300600600Room550RoomRoom30030060060068,65068,25061,35061,20058,00058,55072,70066,70068,70067,60061,00060,90058,30055,90090,65090,25082,65082,300'87,00087,40099,80093,00090,30089,45082,80081,90086,00086,60027.727.423.422.626.025.424.320.226.625.623.023.324.824.770.469.669.469.765.167.065.764.365.865.065.064.658.858.6CapsuleTW-9M-10BaselineVeldMetalRoomRoom300300600600Room55066,90067,350'9,70059,80057,20056,30086,10075,80081,50082,25074,60074,50079,40078,500103,40095,30028.725.024.023.323.423.623.619.373.265.372.971.865.263.465.060.832

~~Thetensileproperties oftheweldmetalappearedtobethemostaf-fectedbytheradiation exposureinCapsuleTasexpectedfrom.thereportedcoppercontents.

33

'~V.ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillance programspecimens hasthefollowing goals:(1)Estimatetheperiodoftimeoverwhichtheproperties ofthevesselbeltlinematerials willmeetthefracturetoughness requirements ofAppendixGof10CFR50.Thisrequiresaprojection ofthemeasuredreduction inCuppershelfenergytothevesselwallusingknowledge oftheenergyandspatialdistribution oftheneutronfluxandthedependence ofCvuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperational limitations forselectedperiodsoftime.Thisrequiresaprojection ofthemeasuredshiftinRTNDTtothevesselwallusingknowledge ofthedependence oftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdis-tribution oftheneutronflux.Theenergyandspatialdistribution oftheneutronfluxforDonaldC.CookUnitNo.1wascalculated forCapsuleTwiththeDOT3.5discreteordi-natestransport code.TheleadfactorforCapsuleTreportedbyWestinghouse is2.6forthevesselI.D.surface.(

)Thiswassupported bytheSwRIDOT3.5analysis.

TheDOT3.5analysisalsopredicted thatthefastfluxatthe1/4Tand3/4Tpositions inthe8-5/8-in.

pressurevesselwallwouldbe49%and7.8%,respectively, ofthatatthevesselI.D.Thesefiguresareingoodagreement withfluenceattenuation determinations of46%and10%foran8-in.steelplatebytheNavalResearchLaboratory.(

)However,currently theNRCpre-ferstousemoreconservative figuresof60%and15%,respectively, fortheattenuation offastneutronfluxatthe1/4Tand3/4Tpositions inan8-in.

vesselwall.(16)Thisconservatism allowsfortheincreased fractionofneutronswhichmightaccrueinthe0.1to1.0MeVrangeindeeppenetra-tionsituations.

Forthe8-5/8-in.

wallthickness oftheD.C.CookUnitNo.1vessel,theattenuations become57%and12.5%forthe1/4Tand3/4Tpositions, respectively.

Amethodforestimating thereduction inCvuppershelfenergyasafunctionofneutronfluenceisgiveninRegulatory Guide1.99,Revision1.()TheresultsfromCapsuleTarecomparedtoaportionofFigure2of.(7)Regulatory Guide'.99, Revision1,inFigure9.Theembrittlement responseoftheweldmetal,reportedtocontain0.27%Cu(),isingoodagreement withtheprediction ofRegulatory Guide1.99,Revision1.However,theplateislesssensitive andtheHAZismoresensitive thanpredicted forthe0.14%coppercontent.ThebehavioroftheHAZspecimens mayreflectsomecopperpickupintheHAZfromthewelddepositortheplacement ofthenotchunusually closetothefusionline.Usingthedashedcurvedrawnthroughthedatapointfortheweldmetal,itispredicted thattheweldmetalCvshelfenergywillreach50ft-lbsatafluenceofabout2.1x10(E>1MeV).Thiscorresponds toapproximately 38effective fullpoweryears(EFPY)ofoperation atthevesselI.D.,inexcessofthe32EFPYdesignlifeoftheplant.TheplateandHAZmaterials areprojected torequireevenlargerfluencestoreachthe50ft-lbshelflevel.Theseprojections willbereex-aminedafterthenextsurveillance capsulehasbeenremoved.AsimilarapproachcanbetakentoestimatetheincreaseinRTHDTasafunctionofreactorpowergeneration.

Figure10comparestheDonald'.CookUnitNo.1surveillance dataonthethreesurveillance materials toselectedportionsofFigure1ofRegulatory Guide1.99,Revision1.Theresults 6040lsII~I'.]j.!~Ilit!~~IIss!il,!!!'iissRR..OI.'!II.jjsrs'l:lliI!!!itsjlsI!.IisssI't:.sIitiliI)~ilt;}.slsss~I'I~I:I~:list~~IsllIs'III~IlsjssI~Issl4le20W10slI~IflII!IIIjI,-I-I'0IIs,sfili~lstel.j!j.l!jIgloollif)):IIIjig!rIjs\~sIll~~tjj.l.!~I.fjljjjll!~~sl!ji!istIIjjjjs>>IIiiiv)600QtAIII!I~~l~IsIssls)l:;l',I,",

ssli!ltljijl!i,:.lI~IsssssstIjsIs!Isi.;"'Issl:IsliL"lslrss:I>>>>I,I;I,'~s!jlI~!'iill;Isj!II~ssillsssIls>>II>>!'!I'.Illj~Is's~l+IIIj";lsIs!'..'Ill I~ls',~I!'ii!~hl.:mlilllj'-I:jlIt"r,.)j,jltsslllI~IIliI'.,.'jii>>s'.~lIll'is's'IsSIItIss1lill~~s~~lsIlljssil!IlsllI!@pe.-I.s.i"I','s"t.s~'III'lj.~s-j~~~2x101746810182468101924NeutronFluence,n/cm(E>1MeV)FIGURE9.DEPENDENCE OFCvSHELFENERGYONNEUTRONFLUENCE,DONALDC.COOKUNITNO.1 60040020010080604020I~lli.i'~I'IjII.:1~II~>>I-~I'.lji:.Il'II/II,II!'ill"I11~',laitI!I)1jliljIIItjI~IIIIlfjlIgtil;,'"1it!i.,I)KIC4!.I..i.IjIIijlII1IIf.I)I>>.j-III,lllII!lIll~llirl:'11II;!I':jl,1lIIlI)IIjtjt~~I!!IiI,1;r!,il,!,!j'll'lT~).I,I'11~I'II~III'lt.lj,jtll.!IlF~I)1~II':i]jt!IilI:,Ii~'III>>IiiiI.~IIj-II.I~I':I~'IIfI77'~III~~II1'lI!ij!I!1j>>ii,I)::;hiiili:.II-':I~Itl2x1017'4610188101924NeutronFluence,n/cm(E>1HeU)FIGURE1EFFECTOFNEUTRONFLUENCEONRTNDTSIIIFT>>DONALDCCOOkUNITNO' indicatethatthemeasuredshiftinRTNDToftheweldmetalisinagreement withthatpredicted byRegulatory Guide1.99,Revision1,butthatthemea-suredshiftsinRTNDTfortheplateandHAZmaterials areunderpredicted bytheguide.Thepredicted shiftsinRTNDTfortheDonaldC.CookUnitNo.1reac-torpressurevesselobtainedfromFigure10aresummarized inTablesXIIandXIII.Thevaluespredicted atthe1/4Tand3/4Tafter12EFPY(TableXII)areusedtodevelopheatupandcooldownlimitcurvestomeettherequire-mentsofAppendixGtoSectionIIIoftheASMECode,asdescribed inSectionVIofthisreport.Theseprojections forCvshelfenergyreductions andRTNDTshifts,andtheresulting heatupandcooldownlimitcurves,arebasedonextrapolations fromonedatapointrepresenting themostsensitive material.

Afterasecondcapsulehasbeenremovedandtested,onewillbeabletointer-polatebetweentwodatapoints.TheDonaldC.CookUnitNo.1reactorvesselsurveillance programsched-uleproposedbyWestinghouse~

~issummarized inTableXIV.Ithasbeenor-ganizedtosatisfyAppendixHoflOCFR50ascloselyaspossible.

Therearesevenadditional capsulesinthevessel,allofwhichcontainbaseplate,weldmetalandHAZspecimens.

Thereisnoreasontoconsiderchangingtheproposedcapsuleremovalscheduleatthistime.39 TABLEXIIPROJECTED VALUESOFRTNDTFORDONALDC.COOKUNITNO.1FORUPTO12EFPYOFOPERATION LocationMaterialCalculated Fluence(n/cdE>1MeV)InitialRT(deF))Shift12EFPY(aVesselI.D.~~Vessel1/4TVessel3/4TInter.ShellPlateWeldMetalHAZInter.ShellPlateWeldMetalWZInter.ShellPlateWeldMetalMZ6.55x10183.73x101845(b)-52(b)-60(c)45(b)52(b)-60(c)45(b)52(b)-60(c):145245245110185185508787190193185155133125953527(a)1EFPY1,186,250 M&t.(b)Reference 18.(c)References 13and18.

TABLEXIIIPROJECTED VALUESOFRTNDTFORDONALDC.COOKUNITNO.1FORUPTO32EFPYOFOPERATION LocationMaterialCalculated Fluence(n/cm2E>1MeV)InitialRDT(deF))32EFPY(aShiftVessel1/4TVessel3/4TInter.ShellPlateMeldMetalHAZInter.ShellPlatelfeldMetalHAZInter.ShellPlateMeldMetalHAZ'1.0x10192.2x101845(b)-52(b)-60(c)45(b)-52(b)-60(c)45(b)-52(b)60(c)240320320180285285831421422852682602252332251289082(a)1EFPY=1,186,250 MMDt.(b)Reference 18.(c)References 13and18.

TABLEXIVPROPOSEDREACTORVESSELSURVEILLANCE CAPSULESCHEDULEDONALDC.COOKUNITNO.1CapsuleIdentification LeadFactorRemovalTime2.62.60.6Removedandtestedatendoffirstcorecycle10Years(postirradiation test)10Years(reinsert inCapsuleTlocation) 0.610Years(reinsert inCapsuleXlocation) 2.620Years(postirradiation test)0.62.60.620Years(reinsert inCapsuleUlocation) 30Years(postirradiation test)30Years(reinsert inCapsuleYlocation)

~~VI.HEATUPANDCOOLDOMNLIMITCURVESFORNORMALOPERATION OFDONALDC.COOKUNITNO.1DonaldC.CookUnitNo.1isa3250Mwtpressurized waterreactoroper-atedbyAmericanElectricPowerServiceCorporation.

Theunithasbeenpro-videdwithareactorvesselmaterialsurveillance programasrequiredby10CFR50,AppendixH.Thefirstsurveillance capsule(CapsuleT)wasremovedduringthe1977refuelling outage.ThiscapsulewastestedbySouthwest ResearchInstitute, theresultsbeingdescribed intheearliersectionsofthisreport.Insum-mary,theseresultsindicatethat:(1)TheRTNDTofthesurveillance materials inCapsuleTincreased amaximumof130Fasaresultofexposuretoaneutronfluenceof1.80x10neutrons/cm2 (E>1MeV).(2)Basedonaratioof2.6betweenthefastneutronfluxattheCapsuleTlocationandthemaximumincidentonthevesselwall,thevesselwallfluenceattheI.D.was6.92x1017neutrons/cm2 (E>1MeV)atthetimeofremovalofCapsuleT.(3)ThemaximumshiftinRTNDTafter12effective fullpoweryears(EFPY)ofoperation waspredicted tobe185Fatthe1/4Tand87Fatthe3/4Tvesselwalllocations, ascontrolled bytheweldmetalandHAZmaterials.

(4)Theintermediate shellplatematerial, althoughlesssensitive toradiation embrittlement thantheweldandHAZmaterials, isprojected tocontrolthelimitingRTNDTforaconsiderable lengthoftimebecauseofamuchhigherinitial(unirradiated)

RTNDTof45F.(43

~~TheUnitNo.1heatupandcooldownlimitcurvesfor12EFPYhavebeencomputedonthebasisof(4)abovebecauseitisanticipated thattheRTNDToftheprimarypressureboundarymaterials willbehighestfortheplatema-terialatleastthroughthattimeperiod(seeTableXII).Theprocedures employedbySwRIaredescribed inAppendixB.Thefollowing pressurevesselconstants wereemployedasinputdatainthisanalysis:

VesselInnerRadius,riVesselOuterRadius,roOperating

Pressure, PoInitialTemperature, ToFinalTemperature, Tf86.50in.,including cladding95.34in.2235psig70F550'FEffective CoolantFlowRate,Q~135.6x10ibm/hrEffective FlowArea,A26.72ft2Effective Hydraulic
Diameter, D~15.05in.Heatupcurveswerecomputedforaheatuprateof60F/hr.Sincelowerratestendtoraisethecurveinthecentralregion(seeAppendixB),thesecurvesapplytoallheatingratesupto60F/hr.Cooldowncurveswerecom-putedforcooldownratesof0F/hr(steadystate),20F/hr,40F/hr,60F/hr,and100F/hr.The20F/hrcurvewouldapplytocooldownratesupto20F/hr;the40F/hrcurvewouldapplytoratesfrom20Fto40F/hr;the60F/hrcurvewouldapplytoratesfrom40Fto60F/hr;the100F/hrcurvewouldapplytoratesfrom60F/hrto100F.hr.TheUnitNo.1heatupandcooldowncurvesforupto12EFPYaregiveninFigureslland12.44 260024002200~I~~IltII~2000180016001400u12001000800I~~1t]t...I1~tI~lf~~iI~'ffif}l,l600400200lg~:it}r'iy~~II~~~II~~,lI:1t1~<<f~fI.,f~f1~II"I~~lf:1~~1~r~jtit'riHf)L11,~If.[~]~flf60100150200250300350400Indicated Temperature, degFFIGUREll.DONALDC.COOKUNITNO.1REACTORCOOLANTHEATUPLIMITATIONS APPLICABLE FORPERIODSUPTO12EFFECTIVE FULLPOfKRYEARS 2600240022002000800600:.,;I)l)~'le~1~~~~I1~~er~I:.:[::II1I.;I'i>I:;I,-:II}iI'le.l,)IL)"!Ite400200601~~1)~I,.11800Aj1600P41400~QAi12001000~~I.".s~'-se-Is~ll1:~1)I!-.1;I:I!~sij!I'.II)~s~sellI1~I.',:Il'allI~-i):ls~~~Itl~1-:I~~Ii'~~".I)'e~I'!1)~r:li~~ee)ei::I?.Ig!ji'.l)!~.II~~~I~~1t1'eii!l.f~ie)tl~ij~~i~.~)~I~e=-~'1eI~j'I100efje::ff!."Iese>}s)1Is!',Iiae+II;.I,~ll~e)i}'es1~ls.Ilr',ll)~IeI'.>I;.:I~1eI~~I~~1~iI~I1e~gII'..I1~~t~~1501~I~~el>a~Isell~eeaI~~'IRlI~~e~1~ttI\IIs~lafI>1~1)I~tI,.I))~>I:lj11'i"Fig+:I.~'I~1ae,.)Ill~II~~I.';llSel1~1~1itis,';)IeisaIll11~~i:II'I}ll~~g~!'.I!!ilI)1;I)s~~ssei;.1'~~'.Lc'l,!)le~iIi;f})JjlI:,I1~I1-"~e..I:}i.~f:I'I:i!~l)iife'Il

'll;~~~l200s)~Sl'1e~~~1I'~1~~ii~i>lelf:I!.p.)1~le'II)!Ij)se1~I~)I~I~ll!e~~.~11~~'~~~,iiij~Is}esj)rjlliI!1IIllsi),.I'sIf!a~~~s~~I~~~I'.I)ffjfiliI'IssgI11il>!II!e!~)'-ii'sl:::IIlI!Is~~~tp;ifgIA)~I:e)r)')1lel)lsI~~IIej1~~~ee~1I~250s~1s;-1~~~):IssI'l~1f~~Istjt~.I~~1Ieae::ils'Ii,Isls~I1fe".I-'ll:;.L'::.:.-:'I.':.i I~*~el')tsie~IIII):I'll~1sg~1~~')tI-!I'I~)I~-1!(}I1>~~~~I~~eI'.1t!I!It)}?4>IlIrI~~~'.~e~~1I;rf:ItjI~as~300~~>l~I?)j:-j-'~t's1lj:snil'l'll.'glt,1I~~.1ealI~~II'1>f11>~~IIlj~:,IiS1~~I.:;.I1j)II~,Je)~fI.:::)I:!ijI1~eI"~~4~eelgee~4ll::II~~)tj~elTae~e~~s3501g~~rma~i~~~~:i>ist';le)~~I~1I,,~~fII~rglalj)IIjal:s.A~e'1~~{gIItI't'~~I}L>Il}IlirfI'rI400Indicated Temperature, degFFIGURE12.DONALDC.COOKUNITNO.1REACTORCOOLANTCOOLDOWNLIHITATIONS APPLICABLE FORPERIODSUPTO12EFFECTIVE FULLPOWERYEARS VII.REFERENCES 1.Title10,CodeofFederalRegulations, Part50,"Licensing ofProduc-tionandUtilization Facilities." 2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents," 1974Edition.3.ASTME208-69,"Standard MethodforConducting Drop-Weight TesttoDe-termineNil-Ductility Transition Temperature ofFerriticSteels,"1975AnnualBookofASTMStandards. Steele,L.E.,andSerpan,C.Z.,Jr.,"Analysis ofReactorVesselRadiation EffectsSurveillance Programs," ASTMSTP481,December1970.5.Steele,L.E.,"NeutronIrradiation Embrittlement ofReactorPressureVesselSteels,"International AtomicEnergyAgency,Technical ReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInservice Inspection ofNuclearPowerPlantComponents," 1974Edition.7.Regulatory Guide1.99,Revision1,OfficeofStandards Development, U.S.NuclearRegulatory Commission, April1977.8.CommentsonRegulatory Guide1.99,Westinghouse ElectricCorporation,'btained fromNRCPublicDocumentRoom,Washington, D.C.9.PositiononRegulatory Guide1.99,Combustion Engineering PowerSys-tems,ObtainedfromNRCPublicDocumentRoom,Washington, D.C.10.ASTME185-73,"Standard Recommended PracticeforSurveillance TestsforNuclearReactorVessels," 1975AnnualBookofASTMStandards. 11.ASTME399-74,"Standard MethodofTestforPlane-Strain FractureToughness ofMetallicMaterials," 1975AnnualBookofASTMStandards. 12.Witt,F.J.,andMager,T.R.,"AProcedure forDetermining BoundingValuesofFractureToughness KIcatAnyTemperature," ORNL-TM-3894, October1972.13."American ElectricPowerServiceCorporation DonaldC.CookUnitNo.1ReactorVesselRadiation Surveillance Program," WCAP-8047, March1973.14.ENDF/B-IV, Dosimetry Tape412,MatNo.6417(26-Fe-54), July1974.15.Loss,F.J.,Hawthorne, J.R.,Serpan,C.Z.,Jr.,andPuzak,P.P.,"Analysis ofRadiation-Induced Embrittlement Gradients onFractureCharacteristics ofThick-Walled PressureVesselSteels,"NRLReport7209,March1,1971.47 16.Telecon,E.B.NorristoKenHogue(NRCStaff)January19,1977.17.Hazleton, W.S.,Anderson, S.L.,andYanichko, S.E.,"BasisforHeatupandCooldownLimitCurves,"WCAP-7924, July1972.18.DonaldC.CookUnitNo.1Technical Specifications, asofNovember30,1977.48 APPENDIXATENSILETESTRECORDS Southwest ResearchInstitute Department ofMaterials SciencesTENSILETESTDATASHEETTestNo.T-..lSpec.No.-1Est.U.T.S.InitialG.L.PS1r41Z1~MachineNo.Temperature I4'FtsJStrainRate,<2tzpi>InitialDia..Iin.InisialThickness in.DateInitialArea77InitialWidthin.TopTemperature BottomTemperature FinalGageLengthFinalDiameterFinalArea'Fp4Tine/~~Iin.ine20.2'%ffsetLoad889Dlb0.02%OffsetLoadUpperYieldPointlbMaximumLoad40lbrMaximumLoadInitialAreaP2Init1alAreapsicjoy2-~gpsi002/YS0.02%OffsetLoadInitialAreaPS1YSUpperYieldPointUPPer..ItialAreaPS1FinalG.L.-Initialx100=InitialArea-FinalArea1p@~7InitialAreaSignature: A-2 -0;0rZi9ahJA-3 Southwest ResearchInstitute Department ofMaterials SciencesTENSILETESTDATASHEETTestNo.T-.ZEst.U.T.S.psiSpec.No.InitialG.L..Oin.Temperafore~P'Frr/StrainRate.C'~/WInitialDia..gC'n.InitialThickness in.InitialArea.+H/InitialVTidthin.TapTemperature BottomTemperature I'FMaximumLoadS~7Slb02%%uoOffsetLoad52.=.~~lbFinalGageLengthFinalDiameter.l+Jln~0.02%%utf OffsetLoadUpperYieldPointlblbFinalArea.o'722rInitialArea0.2%OffsetLoadInitialArea002%%uYS~02%%u'ffetLoadInitialAreapslUerYieldPointPPer.-ItlalAreaFinalG.L.-Initial%%utlElongation x100'=~~'%%uoInitialArea-FinalArea100InitialAreatt )~~a'0'0g~<A-5 Southwest ResearchInstitute Department ofMaterials SciencesTENSILETESTDATASHEETTestNo.T-Spec.No.Est.U.T.S.InitialG.L.psiddin.MachineNo.)>/J~~Temperature >+'FInitialDia.InitialThieknessin.DateInitialArea'~87InitialWidthin.TopTemperature oFMaximumLoad5.>Glb0.2%OffsetLoad~~n,~>lb~sFinalGageLengthFinalDiamete"FinalArea111~in.sP/74+m.20.02%OffsetLoadUpperYieldPointlblbMaximumLoad0.2'lsOffsetLoadg~gg.InitialArea002$YS=2/oOffsetLoadInitialArea'erYieldPointpp,~telAreaps1p81%uFinG.L.-InitialG.L.%Elongation InitialG,L.%RAInitialArea-FinalAreaInitialAreaSignature: A-6 'A-7 ~~1Southwest ResearchInstitute Department ofMaterials SciencesTENSILETESTDATASHEETTestNo.T-Spec.No.Temperature 5ft<'FEst.U.T.S.InitialG.L.InitialDia.psiProjectNo.MachineNo.Date6<-a>>n-of"/StrainRateInitialThickness InitialWidth1neInitialArea.OHg'7TopTemperature 5~l~'FMaximumLoad+C~~'0lbBottomTemperatureo840.2%OffsetLoad~?~.5ib0.02%OffsetLoadlbin.UpperYieldPointFinalAreaMaximumLoadInitialArea0.2%%uoOffsetLoadInitialAreap02%%uYS0.02%0ffsetLoadInitxalAreaps1UerYieldPointInitialAreaps'inalG.L.-InitialGLlpp0EOIlgation -~.+lGLx-//7'InitialArea-FinalAreaInitialAreaSignature: A-8b,t, A-9 ~1)1 APPENDIXBPROCEDURE FORTHEGENERATION OFALLOWABLE PRESSURE-TEMPERATURE LIMITCURVESFORNUCLEARPOWERPLANTREACTORVESSELS PROCEDURE FORTHEGENERATION OFALLOWABLE PRESSURE-TEMPERATURE LIMITCURVESFORNUCLEAR.POWERPLANTREACTORVESSELSA.Introduction Thefollowing isadescription ofthebasisforthegeneration ofpressure-temperature limitcurvesforinservice leakandhydrostatic tests,heatupandcooldownoperations, andcoreoperation ofreactorpressurevessels~Thesafetymarginsemployedintheseprocedures equalorexceedthoserecommended intheASMEBoilerandPressureVesselCode,SectionIII,AppendixG,"Protection AgainstNonductile Failure."B.BackroundThebasicparameter usedtodetermine safevesseloperational conditions isthestressintensity factor,KZ,whichisafunctionofthestressstateandflawconfiguration. TheKIcorresponding tomembranetensionisgivenbyKIŽm'mwhereMmisthemembranestresscorrection factorforthepostulated flawando.mthemembranestress.Likewise, KIcorresponding tobend-ingisgivenbyKIbŽb0'b(2)whereMbisthebendingstresscorrection factorando.bisthebendingstress.Forvesselsectionthickness of4to12inches,themaximumB-2 postulated surfaceflaw,whichisassumedtobenormaltothedirection ofmaximumstress,hasadepthof0.25ofthesectionthickness andalengthofl.50timesthesectionthickness. CurvesforMmversusthesquarerootofthevesselwallthickness forthepostulated flawaregiveninFigure1astakenfromthePressureVesselCode(ref.FigureG-2114.1).Thesecurvesareafunctionofthestressratioparameter r/r,whereo.(Pyisthematerialyieldstrengthwhichis,takentobe50,000psi.Thebendingcorrection factorisdefinedas2l3Mmandistherefore determined fromFigure1aswell.ThebasisforthesecurvesisgiveninASMEBoilerandPressureVesselCode,SectionXI,"RulesforInservice Inspection ofNu-clearPowerPlantComponents," ArticleA-3000.TheCodespecifies theminimumKIthatcancausefailureasafunc-tionofmaterialtemperature, T,anditsreference nilductility temperature, RTNDT.ThisminimumKIisdefinedasthereference stressintensity fac-tor,KIR,andisgivenbyKIR=26777.+1223.exp0.014493(T-RT+160)NDT(3)wherealltemperatures areindegreesFahrenheit. Aplotofthisexpression. isgiveninFigure2takenfromtheCode(ref.FigureG-2010.1).C.Pressure-Tem eratureRelationshi s1.Inservice LeakandHdrostatic TestDuringperformance ofinservice leakandhydrostatic tests,thereference stressintensity factor,KIR,mustalwaysbegreaterthanB-3 3.83.2MEh<8RAHQ I(mMImm~raMbxMb<2/3hlm,1.00.70.5O.I3.0E2.~i2.22.01.61.21.01.01.2IA1.61,02.02.22.~i2.62.83.03.23A3.63.84.0FIGURE1.STRESSCORRECTION FACTOR I70l30I20II0LgtcoSO70605040I'R26777)V'IIERERTHPT'EFEAFHCE STRESSINTENSITY FACTORTEhIPERATURE ATVIHICHI'IRISPERhIITTED,'F 'EFERFHCE HIL-DUCTILITY TEMPERATURE IO0-240-200-IGO-I20-eO-4004080.I20IGO200240TEIAPERATUAE RELATIYETOATHP,(T-ATHPT), FAHREIIHEI DGREESFIGURE2.REFERENCE STRESSINTENSITY FACTORB-5 l.5timestheKZcaused.bypressure, thusl.5Kl'pKZR(4)or'5Mm<m~K1R(5)Foracylinderwithinnerradiusriandouterradiusro,thestressdistribution duetointernalpressureisgivenbyWith1/4Tflawspossibleatbothinnerandouterradiallocations, i.e.,atrl/4=ri41/4(ro-ri)andr3/<rj+3/4(ro-ri),themaximumstresswilloccurattheinnerflawlocation, thusIrjr+(1/4ro+3/4ri)4.2o.=Pmaxoro2-ri2(1/4rop3/4ri)2Withtheoperation pressureknown,i.e.,Po,wedeter-minetheminimumcoolanttemperature thatwillsatisfyEquation(4)byevaluating KlR='5Mm<maxanddetermine thecorresponding coolanttemperature, T,fromEqua-tion(3)forthegivenRT~~DTatthe1/4Tlocation. Forthiscalculation, Equation(3)takestheformI-*I-6..6.I[-666-'].S-6 Theinservice curvesaregenerated foranoperating pres-surerangeof~96Potol.14Po,wherePoisthedesignoperating pressure.2.HeatuandCooldown0erationsAtalltimesduringheatupandcooldownoperations, theref-erencestressintensity factor,K1R,mustalwaysbegreaterthanthesumof2timestheKlpcausedbypressureandtheKltcausedbythermalgra-dients,thus2.0Klp+l.0Klt<KZR(10)or20Mm0max-K1R-KZtwhereomaxisthemaximumallowable stressduetointernalpressure, andKZtistheequivalent linearstressintensity factorproducedbythethermalgradients. Toobtaintheequivalent linearstressintensity fac-torduetothermalgradients requiresadetailedthermalstressanalysis. ThedetailsoftherequiredanalysisaregiveninSectionD.Duringheatuptheradialstressdistributions duetointernalpressureandthermalgradients areshownschematically inFigure3a.Assumingapossibleflawatthe1/4Tlocation, weseefromFigure3athatthethermalstresstendstoalleviate thepressurestressatthispointinthevesselwalland,therefore, thesteadystatepressurestresswouldrepresent themaximumstresscondition atthe1/4Tlocation. At OUTERRADIUS3/4TZ/4TINNERRADIUSPressurestressdistribution Thermalstressdistribution (a)HeatupOUTERRADIUS3/4T1/4TINNERRADIUSPressurestressdistribution Thermalstressdistribution (b)CooldownFigure3.HeatupandCooldownStressDistribution B-8 the3/4Tflawlocation, thepressurestressandthermalstressaddand,therefore, thecombination foragivenheatupraterepresents themaxi-mumstressatthe3/4Tlocation. Themaximumoverallstressbetweenthe1/4Tand3/4Tlocationthendetermines themaximumallowable reac-torpressureatthegivencoolanttemperature. Theheatuppressure-temperature curvesarethusgenerated bycalculating themaximumsteadystatepressurebasedonapossibleflawatthe1/4Tlocationfrommax(K1Rrjro+(1/4ro03/4r;)2MmroZ-rj(1/4ro+3/4rj)2 (12)whereMmisdetermined fromthecurvesinFigure1andK1RisobtainedfromEquation(3)usingthecoolanttemperature andRTNDTatthe1/4Tlocation. HerewemaynotethatMmmustbeiteratedforsinceitisafunctionofthefinalstressratiotoyieldstrength(0./ay).Atthe3/4Tlocation, themaximumpressureisdetermined fromEquation(ll)asP(3/4T)-KZR-KurjroZ+(1/4rj+3/41o)2MroZr.Z(1/4ri+3/4ro)2(13)whereK1RisobtainedfromEquation(2)usingthematerialtemperature andRTNDTatthe3/4TlocationandKltisdetermined fromtheanalysisprocedure outlinedinSectionD.Mmisdetermined fromFigure1,B-9 Theminimumofthesemaximumallowable pressures atthegivencoolanttemperature determines themaximumoperation pressure. Eachheatuprateofinterestmustbeanalyzedonanindivid-ualbasis.Thecooldownanalysisproceedsinasimilarfashionasthatdescribed forheatupwiththefollowing exceptions: WenotefromFigure3bthatduringcooldownthe1/4Tlocationalwayscontrolsthemaximumstresssincethethermalgradientproducestensilestressesatthe1/4Tlocation. ThusthesteadystatepressureisthesameasthatgiveninEquation(12).Foreachcoo)downrate,themaximumpressureisevalu-atedatthe1/4Tlocationfrommax(riro~+(3/4ri01/4ro)2Mr-r~(3/4ri+1/4r)(14)whereKIRisobtainedfromEquation(3)usingthematerialtemperature andRTNDTat'the1/4Tlocation. KItisdetermined fromthethermalanalysisdescribed inSectionD.Itisofinteresttonotethatduringcooldownthematerialtemperature willlagthecoolanttemperature and,therefore, thesteadystatepressure, whichisevaluated atthecoolanttemperature, willini-tiallyyieldthelowermaximumallowable pressure. Whenthethermalgradients

increase, thestressesdolikewise, and,finally,thetransient analysisgovernsthemaximumallowable pressure.

Henceapoint-by-point comparison mustbemadebetweenthemaximumallowable pressures pro-ducedbysteadystateanalysesandtransient thermalanalysistodetermine theminimumofthemaximumallowable pressures. 3.Core0erationAtalltimesthatthereactorcoreiscritical, thetemperature mustbehigherthanthatrequiredforinservice hydrostatic testing,andinaddition, thepressure-temperature relationship shallprovideatleasta40'Fmarginoverthatrequiredforheatupandcooldownoperations. Thusthepressure-temperature limitcurvesforcoreoperation maybeconstructed directlyfromtheinservice leakand.hydrostatic testandheatupanalysisresults.D.ThermalStressAnalsisTheequivalent linearstressduetothermalgradients isobtainedfromadetailedthermalanalysisofthevessel.,Thetemperature distribu-tioninthevesselwallisgovernedbythepartialdifferential equationPcT<-K[(1/r)T+T.1=o(15)subjecttoinitialcondition T(r,0)=Tandboundaryconditions -KTr(ri,t)=hLTc(t)-T(rit)I(17) andTr(roit)=0(18)whereTc=To+Rt.(19)pisthematerialdensity,cthematerialspecificheat,Ktheheatconduc-tivityofthematerial, htheheattransfercoefficient betweenthewatercoolantandvesselmaterial, Rtheheatingrate,Totheinitialcoolanttemperature, T(r,t)thetemperature distribution inthevessel,rthespatialcoordinate, andtthetemporalcoordinate. Afinitedifference solutionprocedure isemployedtosolvefortheradialtemperature distribution atvarioustimestepsalongtheheatuporcooldowncycle.Thefinitedifference equations forNradialpoints,atdistance6rapart,acrossthevesselare:for1<n<NhtKT=Ll-2(2-)JTQtK~gr+(g)ZL(1+-)Tn+1.+Tn-1J(2o)(21)B-12 andforn=Nt+()tN[pc(()r)ZJNpr())r)2N-1(22)Forstability inthefinitedifference operation, wemustchoosehtforagivenhrsuchthatboth2(2+-)c1()tKZrpc(kr)2r1(23)andhtK(Ih,r~(1+)+C1pc(hr)rlpc(hr)(24)aresatisfied. Theseconditions assureusthatheatwillnotflowinthedirection ofincreasing temperature, which,ofcourse,wouldviolatethesecondlawofthermodynamics. Sincealargevariation incoolanttemperature isconsidered, thedependence of(K/pc),K,andhontemperature isincludedintheanalysisbytreatingtheseasconstants onlyduringevery5'Fincrement incoolanttemperature andthenupdatingtheirvaluesforthenext5'Fincrement. Thedependence of(E/pc)calledthethermaldiffusivity andE,thethermalconductivity, canbedetermined fromtheASMEBoilerandPressureVes-selCode,SectionIII,AppendixI-StressTables.Alinearregression analysisofthetabularvaluesresultedinthefollowing expressions: K(T)=38.211-0.01673~T(BTU/HR-FT-'F) (25)B-13 andk(T)"-(K/pc)=0.6942-0.000432~T(FT/HR)(26)whereTisindegreesFahrenheit. Theheattransfercoefficient iscalculated basedonforcedcon-vectionunderturbulent flowconditions. Thevariables involvedarethemeanvelocityofthefluidcoolant,theequivalent (hydraulic) diameterofthecoolantchannel,andthedensity,heatcapacity, viscosity, andthermalconductivity ofthecoolant.Forwatercoolant,allowance forthevariations inphysicalproperties withtemperature maybemadebywriting~h(T)=170(1+10~T-10~T)v/D(27)wherevisinft/sec,Dininches,thetemperature isin'F,andhisinBtu/hr-ft -'F.Thevaluesfortheheat-transfer coefficient givenbythisrelationship areingoodagreement withthoseobtainedfromtheDittus-Boelterequationfortemperatures upto600'F.Themeanvelocityofthecoolant,v,isgenerally givenintermsoftheeffective coolantflowrateQ(Lbm/hr)andeffective flowareaA(ft).Giventherelationship p(T)=62.93-0.48x102<'-T-0.46x104"T2(28)forthedensityofwaterasafunctionoftemperature, themeanvelocityofthecoolantisobtainedfromv=O/(3600>p(T)~A)(29)Glasstone, S.,PrincilesofNuclearReactorEngineerin, D.VanNostrandCo.,Inc.,NewJersey,pp.667-668,1960. Thethermalstressdistribution iscalculated fromr2+ri2CroaT(r,t)=t[3jT(r,t)rdr-T(r,t)+ 3(33)jT(r,t)rdrj (30)ri01whereaisthecoefficient ofthermalexpansion (in/in'F),EisYoung'smodulus,andvisPoisson's ratio.Thisexpression canbeobtainedfromTheorofElasticit byTimoshenko andGoodier,pp.408-409,whenim-posingazeroradialstresscondition atthecylinderinnerandouterradius.Poisson's ratioistakentobeconstantatavalueof0.3whilenandEareevaluated asafunctionoftheaveragetemperature acrossthevesselT=~(3jT(r)rdrri(31)Thedependence ofthecoefficient ofthermalexpansion ontemperature istakentobea(T)=5.76x10-6+4.4x10-94T(32)andthedependence ofYoung'smodulusontemperature istakentobeE(T)=27.9142+2.5782x10~"T-6.5723x1064T(33)asobtainedfromregression analysisoftabularvaluesgiveninSectionIII,AppendixIoftheASMEBoilerandPressureVesselCode.Theresulting stressdistribution givenbyEquation(30)isnotlinear;however,anequivalent linearstressdistribution isdetermined fromtheresulting moment.Themomentproducedbythenonlinear B-15 r~~stressdistribution isgivenbyroM(t)=bfaT(r,t)rdr(34)wherebis*unitdepthofthevessel.Herewenotethatthemomentisafunctionoftime,i.e.,coolanttemperature viaTc=To+Rt.Foralin-earstressdistribution wehavethatPMc~max=I(35')where0axisthemaximumouterfiberstress,cthedistancefromtheneutralaxis,takentobe(ro-ri)/2,andIthesectionareamomentofinertiawhichisgivenbybhb(ro-r;)31212(36)Combining theseexpressions resultsintheequivalent linearstressduetothermalgradients rorrttaxrbtTJ't'T(r')r~(r.-r)J1i(37)Thethermalstressintensity factorKItisthendefinedasKIt=Mb0bt(38)whereMbisdetermined fromthecurvesgiveninFigure1whereinMb=2/3Mm.Itisofinteresttonotethatasignchangeoccursinthestresscalculations duringacooldownanalysissincethethermalgradients producecompressive stressesatthevesselouterradius.Thissignchangemustthenbereflected intheKltcalculation forthecooldownanalysis.Normalized temperature andthermalstressdistributions duringatypicalreactorheatuparegiveninFigure4.Theradialtemperature isshownnormalized withrespecttotheaveragetemperature, Tavg,by(T-Tavg)max(39)Thethermalstressandequivalent linearized stress,ascalculated byEquations (30)and(37),arenormalized withrespecttothemaximumthermalstress.Herewenotethattheactualthermalstressatthe3/4Tlocationisconsiderably lessthanthemaximumequivalent linearstresswhichyieldsadditional safetymarginsduringtheheatupcycle.Similartemperature andthermalstressdistributions aredeveloped duringcool-down.Thetrendsarenearlyidentical asthoseshowninFigure4whentheinnerandoutervessellocations arereversedwiththeI/4Tlocationbecomingthecriticalpoint.E.ExamleCalculations Thefollowing exampleisbasedonareactorvesselwiththefollow-ingcharacteristics: InnerRadiusOuterRadiusOperating Pressure82.00in.(r)9000in.(r)2250psig(Po) OUTERWALL1.00.80.60.40.2//////-1.01.0-1.0INNERWALL1.0Normalizedtemperature distribution (4T/h,Tma) Normalized stressdistribution (o/omax)Figure4.TypicalNormalized Temperature andStressDistribution DuringHeatup InitialTemperature FinalTemperature Effective CoolantFlowRate70'F(To)550'F100x10Lbm/hr(Q)Effective FlowArea20.00ft2(A)Effective Hydraulic Diameter=10.00in.(D)RTNDT(1/4T)RTNDT(3/4T)200OF140'FInthethermalstressanalysis21radialpointswereusedinthefinitedifference scheme.Goingfrom70'Ftothefinaltemperature of550'F,approximately 12,000time(temperature viaT=To+Rt)stepswererequiredinthethermalanalysisforthe100'F/hrheatuprate.Theresultsofthecomputation areshowninFigures5through9.Figure5givesthereference stressintensity factor,KIR,asafunctionoftemperature indexedtoRTNDT(1/4T).Forthesteadystateanalysis, KIRisconverted directlytoallowable pressureviaEquation12.Duringtheheatupandcooldownthermalanalysesthematerialtem-peratureatthe1/4Tand3/4Tandthermalstressintensity factorsKztarerequiredtocomputeallowable pressureviaEquations (13)and(14).Thematerialtemperatures versuscoolanttemperature duringthe100'F/hrheatupandcooldownanalysesaregiveninFigure6.Thesetemperatures allowcomputation ofthecorresponding reference stressintensity factors,KIR(3/4T)andKIR(1/4T).Figure7givesthecorresponding thermalstressintensity factoratthe3/4Tand1/4Tlocations asafunctionofcoolanttemperature. 200160RTNDT(1i4T) -200F~-120hCItVo804050150200250TEMPERATURE (F)300350400Figure5.Reference StressIntensity FactorasaFunctionofTemperature IndexedtoRTNDT(1/4T ) 400-100'F/HRHEATUPi3/4TLocationi--100'F/HRCOOLDOWN(1/4TLocation)30020010050100150200250COOLANTTEMPERATURE ('F)300350Figure6.VesselTemperature at1/4Tand3/4TLocations asaFunctionofCoolantTemperature 106cuhC-100'F/HRHEATUP(3/4TLocationi--100'F/HRCOOLDOWN(1/4Location)5010Q150200250COOLANTTEMPERATURE ('F)3QQ350Figure7.ThermalStressIntensity Factorat3/4Tand1/4TLocations asaFunctionofCoolantTemperature

Figures8and9demonstrate theconstruction oftheallowable com-positepressureandtemperature curvesforthe100'F/hrheatupandcool-downrates.Thecomposite curvesrepresent thelowerboundofthethermalandsteadystatecurveswiththeadditionofmarginsof+10'Fand-60psigforpossibleinstrumentation error.Figure8alsoshowstheleaktestlimit,corrected forinstrument error,asobtainedfromEquation(9).Thelimitpointsareattheoperating pressure2250psigandat2475psigwhichcor-respondsto1.1timestheoperating pressure. Thecriticality limitisalsoshowninFigure8andisconstructed byproviding fora40'Fmarginoverthatrequiredforheatupandcooldownandbyrequiring thattheminimumtemperature begreaterthanthatrequiredbytheleaktestlimit.B-23 2400LEAKTESTLIIIIIIT2000COMPOSITECURVE-100'F/HRHEATUP(Marginsof+10Fand-60psigforinstrument error)1600I1200STEADYSTATECRITICALITYLIMIT800HEATUP40050100150200250INDICATED TEMPERATURE (F)300350400Figure8.Pressure-Temperature Curvesfor100F/HrHeatup 240020001600COMPOSITE CURVE-100F/HRCOOLDOWN(Marginsof+10Fand-60psigforinstrument error)CXIPJ1200CDCh800COOLDOWNSTEADYSTATE40050100150200250INDICATED TEMPERATURE ('F)300350Figure9.Pressure-Temperature Curvesfor100'F/HrCooldown

ADDENDUMTOFINALREPORTON"REACTORVESSELMATERIALSURVEILLANCE PROGRAMFORDONALDC.COOKUNITNO.1,ANALYSISOFCAPSULET"PlateB4406-3HeldHeld,30ft-1bCTem.'(deT)~(lan.)(Ttana.)MetalMttCorrelation MonitorIrradiated Unirradiated. AT6556090~.-10'020-90-10070801201054560MonitorIdentification Fe-TopFe-TopMid.Fe-Mid.Fe-Bot.Mid.Fe-Bot.Cu*-TopMid.Cu-Mid.Cu-Bot.Mid.Ni-TopMid.Ni-Mid.Ni-Bot.Mid.Co-TopCo(Cd)-TopCo--Bot.Co(Cd)-Bot.U-238NP-237Height~(m)18.215.317.216.616.464.962.970.922.925.524.59.38.79.57.712.0(a)20.0(a)(a)AsreportedinWCAP-8047. iADDENDUMNO.2TOFINALREPORTON"REACTORVESSELMATERIALSURVEILLANCE PROGRAMFORDONALDC.COOKUNITNO.1,ANALYSISOFCAPSULET"Additional TensileTestDataSpecimenNo.FractureLoadsi64,70063,250~FractureStress188,600177,000UniformElongation< >%%u45.002.45W987,600757800250,000193,7004.562.87(a)Usingmethodofchangeincross-sectional areaofunneckedportionofspecimenperASTME184-62.}}