ML18092A999

From kanterella
Revision as of 18:45, 12 December 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Forwards Rev 0 to Vol I of NFU-0039, Salem Reactor Physics Methods Model Qualification for NRC Review by 870601.Rept Will Be Used in Reload Analysis Submittals After Sept 1987. Vol Ii Will Be Provided in Mar 1986
ML18092A999
Person / Time
Site: Salem  PSEG icon.png
Issue date: 01/20/1986
From: MCNEILL C A
Public Service Enterprise Group
To: BERKOW H N
Office of Nuclear Reactor Regulation
Shared Package
ML18092B000 List:
References
NLR-N86010, NUDOCS 8601280218
Download: ML18092A999 (83)


Text

Public Service Electric arid Gas Company Corbin A. McNeill, Jr. Vice President

-Public Service Electric and Gas Company P.O. Box236, Han cocks Bridge, NJ 08038 609 339-4800 Nuclear January 20, 1986 NLR-N86010 Off ice of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Bethesda, MD 20014 Attention:

Herbert N. Berkow Standardization and Special Projects Directorate Gentlemen:

TOPICAL REPORT -"SALEM REACTOR PHYSICS METHODS" (NFU-0039)

SALEM GENERATING STATION UNIT NOS. 1 AND 2 DOCKET NOS. 50-272 AND 50-311 PSE&G requests that the NRC review its licensing topical report "Salem Reactor Physics Methods" which will be used in reload analysis submittals for Salem Units 1 and 2 after September 1987. To permit us to meet this schedule your review and acceptance should be completed by June 1, 1987. The report identification symbol is NFU-0039 and the issue date is January 10, 1986. Enclosed are twenty-three copies of Volume 1: MODEL QUALIFICATION.

This document describes the comparisons of physics calculations to measurements, and the determination of associated reliability factors. These factors are applied as uncertainties in the calculation of physics parameters associated with reload safety evaluations.

Revision 0 of this document does not include verification of transient Power Distribution Simulation Capability. , This section, together with Volume II, will be provided in March 1986. These documents are described below. /* i 8601280218 860120 . I PDR ADOCK 05000272 P PDR 1-* Mr. H. N. Berkow Section 3.7 Verification of Transient Power Distribution Simulation Capability 1/20/86 This revision describes the comparisons of physics model calculations to measurements of non-steady state power distributions.

VOLUME II: RELOAD SAFETY EVALUATION This document describes the methods and procedures for calculating physics parameters associated with reload safety evaluations for the Salem cores. These procedures utilize the models and reliability factors determined in Volume I. With regard to the application fee, it is requested that you apply the fee transmitted with LCR 85-20 dated October 16, 1985, which was withdrawn by letter dated November 19, 1985 (C. A. McNeill, Jr. to s. A. Varga). We would appreciate your acknowleging receipt of this submittal and advising if you can meet the schedule discussed above. If you require additional information please let us know. Enclosures C Mr. Donald c. Fischer Licensing Project Manager Mr. Thomas J. Kenny Senior Resident Inspector Sincerely, Public Service Electric and Gas Company Corbin A. McNeil!, Jr. Vice President

-Public Service Electric and Gas Company P.O. Box236, Han cocks Bridge, NJ 08038 609 339-4800 Nuclear January 20, 1986 NLR-N86009 Off ice of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Bethesda, MD 20014 Attention:

Mr. Steven A. Varga, Director PWR Project Directorate

  1. 3 Division of PWR Licensing A

Dear Mr. Varga:

FINAL RULE lOCFR 50.61 FRACTURE TOUGHNESS REQUIREMENTS FOR PROTECTION AGAINST PRESSURIZED THERMAL SHOCK EVENTS SALEM GENERATING STATION UNITS 1 AND 2 DOCKET NOS. 50-272 AND 50-311 As required by lOCFR 50.61, PSE&G submits the enclosed report, NFU-060 Revision 0 dated January 10, 1986, which gives values of reference temperature for pressurized thermal shock at present , and at the expiration of the operating licenses for Salem Units 1 and 2. The report includes the bases for the projection including assumptions regarding core loading patterns.

If you need additional information, please let us know. Sincerely, Enclosure .Ml -J. KNIGHT (ltr only) EB (.BALLARD}

E:ITCSB (ROSA) PSB (GAMMILL) ,r -------------

-RSB (BERLINGER)

I 8601280209 860120 PDR ADOCK 05000272 P PDR FOB (BENAROYA)

, ... Mr. Steven A. Varga C Mr. Donald c. Fischer Licensing Project Manager Mr. Thomas J. Kenny Senior Resident Inspector 1-20-86 I I I I I I I I I I I 'I I 0 The En rgy People SALEM REACTOR PHYSICS METHODS VOLUME I MODEL QUALIFICATION NOTICE -THE ATTACHED FILES ARE OFFIC I AL RECORDS OF T HE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NO T SEND DOCUMENTS OHARGED OUT THROUGH THE MAIL. REMOVAL OF PAGE(S) FROM DOCUMENT FOR REPRODUCTION M S T BE REFERRED TO FILE PERSONNEL. DEADLINE RETURN DATE NFU-0039 Revision 0 July 31, 1985 1 __ _____ I I I Docket# DI I -Oontrol # C:Z lo O I 'Z-"2" 0 '2.-/ l Date cf* Z.Q

  • 46 Document RF.GULATORY DOCKET FILE RECORDS FACILITY BRANCH mtATORY oorm f1L( COPY I I -I I I I I I I I I I I I I I I I Prepared by: Prepared by: Reviewed by: Approved by: NFU31/l 1 SALEM REACTOR PHYSICS METHODS VOLUME I MODEL QUALIFICATION R. T. Brown Senior Engineer Nuclear Department R. S. Kent Senior Staff Engineer N ear zrtm k A. Blake clear Tee nology Engineer c-* .4 /L *#* clear t :;* ' /1 /* / -;,,.., / ..!-* t/
0. E. S. Rosenf ld Manager -Nuclear Fuel Nuclear Department NFU-0039 Revision 0 July 31, 1985 Date: Date: 12/!t/es-, . Date: /-1C-8fc, -----Date: I. /1/ I (;:. ' ._ .. ,_. J Copy UtATORY*DOCKET .FILE COPY I 'I I I I I I I' I 1* I I ABSTRACT NFU-0039 Revision 0 July 31, 1985 This topical report describes the methodology used by Public Service Electric and Gas Company (PSE&G) to determine tional uncertainties and the resultant reliability factors associated with the PSE&G ARMP reactor physics model of the Salem pressurized water reactors.

NFU31/l 2 i I I I I .I I I TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 OVERVIEW

OF THE CALCULATIONAL MODEL NFU'-0039 Revision 0 July 31, 1985 PAGE 1 2 3.0 MODEL VERIFICATION AND RELIABILITY DETERMINATION 5 3.1 Rod Worth Benchmarking

3.2 Isothermal

Temperature Coefficient Benchmarking

3.3 Doppler

Coefficient Benchmarking

3.4 Isotopics

3.5 Reliability

Factors for Delayed Neutron Parameters

3.6 Power

Distribution Benchmarking

3.7 Verification

of Transient Power Distribution Simulation Capability

4.0 REFERENCES

APPENDIX A APPENDIX B NFU31/l 3 Statistical Methods for the Determination and Application of Uncertainties Computer Code Summary Description ii 7 13 16 20 25 29 59 60 A-1 B-1 Table 3.0.l 3 .1.1 3 .1. 2 3 .1. 3 3.2.1 3.3.1 3.4.1 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6 3.6.7 NFU31/l 4 LIST OF TABLES Reliability and Biases for PSE&G Model Applied to Salem Dilution Mode Rod Worth Comparisons Rod Exchange Rod Worth Comparisons Rod Worth Reliability Factors Measured and Calculated Isothermal Temperature Coefficients Comparison of Measured and Calculated Doppler Test Comparison Between EPRI-CELL and SAXTON Experimental Data Reactor State Points Reactor State Points Reactor State Points Mean Observed Differences Axial Model Bias Axial Region Definitions Limits for X(i,k,m) bution by Subgroup Confidence Limits for X(i,m) Distribution by Subgroup ,-iii NFU-0039 Revision O July 31, 1985 6 9 10 12 15 18 21 36 37 38 48 49 52 53 *1. .11 I ii I l I I I I .I I Figure 2. 0. 1 3. 3. 1 3.4.1 3. 4. 2 3.4.3 3. 6. 1 3.6.2 3.6.3 3.6.4 3. 6. 5 3.6.6 3.6.7 NFU31/l 5 LIST OF FIGURES Salem Physics Model Comparison of Measured and Calculated Doppler Test Parameters Comparison of EPRI -CELL to Yankee Pu239/Pu240 Isotopic Ratios Comparisons of EPRI -CELL to Yankee Pu240/Pu241 Isotopic Ratios Comparisons of EPRI -CELL to Yankee Pu241/Pu242 Isotopic Ratios Salem Unit 1 and Salem Unit 2 Moveable Incore Detector Locations Axial Locations of Grids and Detectors Measured and Calculated Integrated NFU-0039 Revision 0 July 31, 1985 4 19 22 23 24 34 35 Detector Responses Salem 1 Cycle 4 MAP 1411 39 Measured and Calculated Detector Responses Salem 1 Cycle 4 MAP 1411 Measured and Calculated Detector Responses Salem 1 Cycle 4 MAP 1411 Measured and Calculated Integrated Detector Responses Salem 1 Cycle 5 MAP 1522 Measured and Calculated Detector Responses Salem 1 Cycle 5 MAP 1522 iv 40 41 42 43 Figure 3.6.8 3.6.9 3.6.10 3.6.11 3.6.12 3.6.13 3.6.14 3.6.15 3.6.16 3.6.17 3.6.18 NFU31/l 6 LIST OF FIGURES (continued)

Measured and Calculated Detector Responses Salem 1 Cycle 5 MAP 1522 Measured and Calculated Integrated NFU-0039 Revision 0 July 31, 1985 44 Detector Responses Salem 2 Cycle 1 MAP 2133 45 Measured and Calculated Detector Responses Salem 2 Cycle 1 MAP 2133 Measured and Calculated Detector Responses Salem 2 Cycle 1 MAP 2133 Distribution of Errors X(i,k,rn)

Distribution of Errors for Integral X(i,rn) Confidence Levels for X(i,k,rn) versus Reactor Power % Confidence Levels for X(i,k,m) versus Cycle Exposure Confidence Levels for X(i,k,rn) versus Axial Height Confidence Levels for X(i,rn) versus Reactor Power Confidence Levels for X(i,m) versus Cycle Exposure v 46 47 50 51 54 55 56 57 58 I 1* I 1* I I I.

I I I I I I* I I

1.0 INTRODUCTION

NFU-0039 Revision 0 July 31, 1985 This report describes the Salem reactor physics model and addresses the qualification and quantification of reliability factors for application of the model to operations and reload safety evaluatio*ns of the Salem Nuclear Reactors.

A summary description of the computer codes used to model the Salem reactors is given in Section 2. The qualification of the model is described in Section 3. Whenever possible, directly observable parameters (such as rod worths, and incore detector fission rates) are utilized for this qualification.

The data used in this evaluation span seven (7) reactor operating cycles. The reactor cycles included are Cycles 1 through 5 for Salem Unit 1, and Cycles 1 and 2 for Unit 2. After the measured data to be* used in the benchmark process are defined, the model calculations are performed and are compared to measurements.

These comparisons are presented in this report as part of the quantification of the PSE&G model calculational uncertainties and reliability factors. A statistical approach is used to derive the uncertainties and reliability factors. These uncertainties and reliability factors are consistent with the model application procedures and methodology.

The uncertainties and reliability factors are evaluated by direct comparison to experimental data. In. order to provide. a continuing verification of t.he conservatism of the reliability factors determined herein, ongoing comparisons are made each cycle using statistical methods consistent with those described in this report. NFU31/l 7 1 I *1 I. /I, ., I 1* I I 2.0 OVERVIEW OF THE CALCULATIONAL MODEL NFU-0039 Revision 0 July 31, 1985 The model used to analyze the Salem Units was constructed using the Advanced Recycle Methodology Program (ARMP) system developed under EPRI sportsorship by UAI. (Reference l) A flow diagram for this model is shown in Figure 2.0.l. The spectral code, EPRI-CELL (ARMP, Part II, Chapter 5), produces initial nuclide concentrations, depletion and fission product chain data, and tables of microscopic and macroscopic cross sections varying with burn-up for input to the XY diffusion

-depletion code, PDQ7/HARMONY (Reference 2 and 3). Lumped absorber data for PDQ7/HARMONY are generated by a capture fraction matching procedure between PDQ7 and either EPRI-CELL (ARMP, Part I, Chapter 6, Section 4) for burnable poisons or CPM (ARMP, Part I, Chapter 6, Section 3) for control rods. PDQ7/HARMONY is run both in the full core (XY) geometry representation and the fuel type (color set) representation.

The full core representation is used for nodal code normalization, local peaking factor generation, and for the establishment of assembly loading patterns.

In the fuel type (color set) mode, PDQ7/HARMONY supplies input data for PSE&G's nodal code, TRINODE, a derivative of the EPRI-NODE-P program (ARMP, Part II, Chapter 14). The TRINODE program contains improvements over the EPRI-NODE-P program which include input/output changes, execution options, and file management.

However, the primary calculational sequence and physics methodology have been preserved from the EPRI-NODE-P program. It is recognized that the methods used the construction and application of the Salem model are as much a part of the model definition as are the codes. It is essential, therefore, that the methods used to calculate core safety margins be consistent with those used in the model benchmarking and qualifications process. This is particularly true in the calculation of core power distribution and local peaking factors in which the results are heavily dependent on the methods used to normalize the nodal model. NFU31/l 8 2 2.0 f'i!FU-0039 Rev is ion .0 ,Tu 1 y 3 1 , 1 9 8 5 OVERVIEW OF THE CALCULATIONAL MODEL (continued)

The TRINODE model is normalized to the PDQ model. A consistent methodology is used for this normalization throughout the benchmark calculations and will be used in future safety related calculations.

In addition to the main sequence computer codes, a number of auxiliary computer codes are employed to provide a user tailored code package. These auxiliary computer codes are not basic to the physics methodology, but are vital for automation and transformation of the large volume of calculated and measured parameters required for core analysis.

The auxiliary computer codes are in Appendix B. All comparisons to measurement data presented in this topical report are based on TRINODE calculations.

NFU31/l 9 3 I I I *1 I I I I ,I, -1 I ,i /I 1-1 I. 1 I ,. I* Ii I I I I FIGURE 2.0.1 SALEM PHYSICS MODEL NFU-00 39 Revision 0 July 31, 1985 EPRI-CELL

NUPUNCHER PDQ/HARMONY FUEL TYPE (COLOR SET) , EPRI FIT ' . SUPER LINK TRI NODE 4 CPM \ EPRI-CELL LUMPED ABSORBER PROCEDURE " FULL CORE ' I NORMALIZATION REACTION RATES PIN TO BOX SIGMA 1<11-r-----'

r PLANT MEASUREMENTS I I I ,, I ,,, /I I I _I, ,, . 1. I I I; I I I I 3.0 NFU-0039 *Revision 0 July 31, 1985 MODEL VERIFICATION AND RELIABILITY DETERMINATION The PSE&G model is benchmarked against Salem Unit 1 measurements made during Cycles 1 through 5, and Salem Unit 2 measurements made in Cycles 1 and 2. This benchmark serves as the basis to quantify the reliability factors to be used in safety related calculations.

The term reliability factor (RF) is used to describe the allowances (either absolute or relative) to be used in safety related calculations to assure conservatism.

The term uncertainty factor is used to describe the actual model precision and is defined as the standard deviation (a). The reliability factor is always larger than the uncertainty factor. The term bias is used to describe the statistical difference between an observed.or measured distribution and the calculated value. Table 3.0.l summarizes the model reliability factors and biases computed as a result of ihe model benchmark.

The remainder of Section 3 is a detailed account of the derivation of these factors. The statistical metQods employed are described in Appendix A to this report

  • NFU31/l 11 5 TABLE RELIABILITY FACTORS .AND APPLIED PARAMETER . Rod worth MEAS>600 PCM MEAS(600 PCM TOTALS . Temperature Coefficient Moderator (MTC) Isothermal (ITC) Doppler Doppler Defect . Delayed Neutron Parameters B eff Q., * . Power Distribution FQ P> .so P< .so F /':, H P> .30 -P< .30 ** See Table 3.6.4 NFU31/l 12 3.0.1 NFU-0039 Revis.ion o July 31, 198S BIASES FOR PSE&G MODEL TO SALEM RELIABILITY FACTOR BIAS RF ROD = 1S% 0 RF ROD = lOOPCM 0 RF ROD = 10% 0 RFMTC = . 2.1 PCM/°F 0 RF ITC = 2. 1 PCM/°F 0 RFDC = 10% 0 RFDD = 10% 0 RFB = 4% 0 RFL = 4% 0 RFFQ = 0.10 ** RFFQ = 0.16 -(0.12*P)
    • RFF H = 0.08 0 RFF H = 0.09 -(P/30) 0 6 I I .J I \I I I I I. ,, I t I :1 !I I I *1 I. I I I I I I I NFU-0039 Revision 0 July 31, 1985 3.1 Rod Worth Benchmarking NFU31/l 13 The purpose of this section is to benchmark the PSE&G model to rod worth measurements.

This is accomplished by first presenting and qualifying the available measurements and second by computing model reliability factors. Rod worth measurements have been performed at Salem usinq two techniques; the boron dilution method and the rod exchange technique. (Reference

9) Boron dilution rod worth measurements were performed on Unit 1 Cycles 1 through 5 and Unit 2 Cycles 1 and 2. The results of these measurements are summarized on Table 3.1.1 along with PSE&G model predictions.

Rod exchange measurements were performed on Unit 1 Cycles 1, 3, 4, and 5, and Unit 2 Cycle 2. These results, along with model calculations are tabulated on Tables 3.1.2 (a) and (b). For purposes of model benchmarking, some rod worth measurements are disqualified on the basis of known measurement.

errors. Measurements disqualified are the boron dilutions for Unit 1 Cycles 1 and 2, and Unit 2 Cycle 1. Additionally, rod exchange measurements for Unit 1 Cycle 1 are disqualified.

The basis for this disqualification is measurement errors discovered in dilution measurements made prior to Cycle 3. These errors are due to the effects of spatial flux redistribution caused by rod motion during the dilution (Reference 9). Test procedure changes were implemented prior to Cycle 3 measurements to reduce these effects. Since rod exchange measurements use the reference bank dilution measurement to interpret exchange worths, rod exchange measurements for Unit 1 Cycle 1 are disqualified on the same basis. Support for the disqualification of dilution measurement made prior to Cycle 3 is available using comparisons to calculated worths. The average difference between measured and calculated rod worths for dilution measurements performed prior to Cycle 3 and those using the improved test procedure are 11% and 1% respectively.

This difference is significant at the 99.9% confidence level, and is attributed to the known measurement errors. 7 NFU-0039 Revision 0 July 31, 1985 Rod worth reliability factors were obtained by bounding the results of the comparisons between measured and calculated rod worths. These factors are tabulated on Table 3.1.3. Comparisons were taken from 7 dilution measurements and 24 exchange measurements spanning 4 reactor cycles, and represent all measurements through Cycle 5 of Unit 1 and Cycle 2 of Unit 2, except those disqualified above. Using a bounding value for the reliability factor is _ fied due to its conservatism relative to normal *tics. Calculation of reliability factors representing 95/95 confidence levels using normal statistics yields a 91 PCM reliability factor adder for rods worth less than 600 PCM, and 12% reliability factor for rods worth more than 600 PCM. The exception is the reliability factor for rod worth totals, which is computed to be 16%. However, this large value is due to the small sample size of only 5 values. Since the error for rod worth totals can be no larger than the largest error for the individual rod banks, the reliabilty factor for rod worth totals should be bounded by the maximum observed error for individual banks with worth greater than 600 PCM; 10%. Thus, the factors tabulated on Table 3.1.3 conservatively bound the observed data, and will be used as model rod worth reliability factors. NFU31/l 14 8 I I .1 I I J, I I ,. J, I I: *1.* .I I' I ,, *1 I J I 1 /I ,, /I ,, 1, ,,, I I I I I TABLE 3. 1. 1 DILUTION MODE ROD WORTH COMPARISONS DATE UNIT/ BANK MEAS CALC CYCLE (PCM) (PCM) 12/76 1/1*** D .1107 1030 c 1183 1005 B 766 724 A 1241 1114 SD 745 681 SC 1181 1060 TOTAL 6223 5614 12/79 1/2*** D 1041 924 c 938 846 B 534 599 A 1163 973 TOTAL 3676 3342 8/80 2/1*** D 1391 1241 c 1185 1026 B 1359 1262 A 501 385 SD 750 712 SC 1052 961 TOTAL 6238 5587 12/80 1/3 D 834 797 c 960 900 B 565 600 A 1023 1058 TOTAL 3382 3355 4/82 1/4 D 862 860 2/83 1/5 D 926 939 7/83 2/2 0 878 835 * % = ( ( M-C) /C)

  • 100 for measurements

>600 PCM. {:, = (M-C) for measurements (600 PCM. *** Data disqualified as discussed in text. NFU31/l 15 9 NFU-0039 Revision 0 ,July 31, 1985 DIFFERENCE**

M>600 M<600 % {:, 7.5 17.7 5.8 11. 4 9.4 11. 4 10.8 12.7 10.9 -65 19.5 10.0 12. 1 15. 5 7.7 116 5.3 9. 5 11. 7 4. 6 6.7 3.3 0.8 0.2 -1. 4 5.1 I NFU-0039 I Revision 0 July 31, 1985 l TABLE 3.1. 2 I ROD EXCHANGE ROD WORTH COMPARISONS I DATE UNIT/ BANK MEAS CALC DIFFERENCE .I CYCLE PCM PCM M>600 M< 600 -% t::. I 12/76 1/1*** *D 1107 1030 ( 7. 5 ) c 825 741 11. 3 B 522 467 -55 ,, A 924 858 7.7 SD 469 403 -66 SC 351 305 -46 ,, TOTAL 4198 3804 10.3 12/80 1/3 *D 834 797 ( 4. 6) J, c 696 674 3.3 B 395 450 --55 A 816 789 3.4 ,, TOTAL 2741 2710 -1. 1 4/82 1/4 *D 862 J 860 ( 0. 2) c 596 588 -8 B 370 407 --37 .A 818 789 3.7 SD 265 316 --51 ,,, SC 285 281 -4 SB 614 649 -5.4 SA 750 733 2.3 TOTAL 4560 4623 -1. 4 I 2/83 1/5 *D 926 939 (-1.4) c 613 617 -0.6 ,, B 331 361 --30 A 784 814 -3.7 SD 269 292 --23 SC 317 291 -26 II* SB 769 793 -3.0 SA 735 779 -5.6 TOTAL 4 744 4886 -2.9 *I' (continued) i NFU31/l 16 10 I



I I I ----------TABLE 3. 1. 2 I 'I .I. ROD EXCHANGE ROD WORTH COMPARIOSNS (continued)

.,. ,I I f, I* J I" I DATE 7/83 UNIT/ BANK CYCLE 2/2 *D c B A SD SC SB SA TOTAL MEAS (PCM) 878 770 660 252 299 292 787 562 4500

  • Measurement perfor!l1ed by dilution ** % = ((M-C)/C)
  • 100 for measurements = (M-X) for measurements

<600 PCM *** Data disqualified as discussed in I 11 NFU31/l 17 CALC (PCM) 835 731 603 233 287 275 757 491 4212 >600 PCM text. NFU-0039 Revision 0 July 31, 1985 DIFFERENCE*

M>600 M<600 % ( 5. 1) 5.3 9.5 19 12 17 4.0 71 6.8 TABLE 3. l. 3 RODWORTH RELIABILITY FACTORS Individual Rod Worth a) Rod worth <600 pcm RF ROD = 100 pcm b) Rod worth >600 pcm RF ROD = 15% Total Rod worth RF ROD = 1U% NFU31/l 18 12 NFU-0039 Revision 0 July*31, 1985 I I 1 I I I I I \ *I ,,, I' I ., \I ,, I ,, *i I t I f, l I I/ I I I* l 11 I I NFU-0039 Revision 0 July 31, 1985 3.2 Isothermal Temperature Coefficient Benchmarking NFU31/l 19 The objective of this section is to benchmark PSE&G model to measured isothermal coefficients (ITC). Based on comparisons between measured and calculated coefficients, a reliability factor for both the isothermal and the moderator temperature coefficient (MTC) is inferred.

  • A total of 19 ITC measurements are tabulated on Table 3. 2. 1. These measurements span 7 reactor cycles and range from unrodded conditions to all control banks inserted.

The PSE&G model calculations for ITC are presented on Table 3.2.1 along with the corresponding measurement.

Statistical tests were performed on the comparisons to evaluate normality and pooleability.

Normality was demonstrated using the W-test (Reference 8), while pooleability was assured using the Bartlett test (Reference 4). The computed standard deviation of the comparisons between measured and calculated ITC's is 0.85 PCM/F. The observed standard deviation of 0.85 PCM/F ( oOBSV) is assumed to be made up of three independent components; measurement uncertainty, model calculational uncertainty on moderator coefficient, and, model calculational uncertainty on Doppler temperature coefficient.

This relationship is expressed as: a 2 + a 2 + a2 a 2 = (0.85)2 MEAS MTC DC OBSV Since each component is greater than or equal to zero,each component is bounded by the observed error, Therefore, a conservative estimate of the model uncertainty ( a ) for both the isothermal and moderator temperature coefficients is 0.85 PCM/F. This is summarized as: 13 = 0.85 = 0.85 NFU31/l 20 NFU-0039 Rev is ion 0 Ju 1 y 3 1 , 1 9 8 5 PSE&G model reliability factors for both ITC and MTC are computed as the product of the standard deviation and the one-sided critical factor (K c) for a 95/95 confidence level using nineteen (19) samples. This product yields reliability factors for.ITC and MTC of 2 .1 PCM/F. RFITC = 0.85

  • 2.42 = 2.1 PCM/F RFMTC = 0.85
  • 2.42 = 2.1 PCM/F 14 I I J 1*: I\ J I\ l\ ,,, J, I' ,,

I;* NFU-0039 I Rev is ion 0 July 31, 1985 I' I TABLE 3. 2. 1 MEASURED AND CALCULATED ISOTHERMAL I TEMPERATURE COEFFICIENTS I/ ROD POSITION ITC PCM/°F UNIT CYCLE BANK (STEPS) BORON MEAS CALC DIFF 1 1 D 197 1369 -3.51 -3.59 0.08 'I c 201 1264 -4. 11 -4.34 0.23 B 175 1151 -6.17 -6.45 0.28 A 175 1085 -7.85 -9.06 1. 21 ,, SD 175 965 -11.25 -11.90 0.65 1 2 D 219 1137 -6.06 -4.45 -L61 c 214 1025 -5.79 -5.45 -0.34 ., 1 3 D 219 1258 -3.33 -3.26

-0. 07 c 206 1157 -4.85 -4.10 -0.75 .I. 1 4 D 202 1309 -3.61 -5.29 1. 68 1 5 D 214 1499 -1. 52 -2.60 1. 0 8 *1 2 1 D 205 1334 -0.65 -0.59 -0.06 D 188 1329 -0.84 -0.70 -0. 14 I D 102 1285 -2.68 -1. 89 -0.79 c 184 1197 -4.34 -4.85 -0.51 B 203 1083 -10.53 -9.09 -1. 44 A 198 955 -10.50 -9.83 -0. 67 ., SD 192 910 -13.48 -13.22 -0.26 2 2 D 218 1362 -4.16 -4.55 0.39 .I Mean 0.00 Standard Deviation

0. 8 5 I\ l NFU31/l 21 15 I I I: I I 1 I ,, I l I I .-.I I I I 1 I 3.3 Doppler Coefficient Benchmarking NFU-0039 Revision 0 July 31, l<:J85 The objective of this section is to make comparisons between measured and calculated Doppler coefficients and establish reliability factors for Doppler reactivity calculations.

Doppler reactivity coefficient measurements have been performed at the Salem Units using two measurement techniques.

Both test procedures require the compensation of a reactivity imbalance induced by a reactor power change. The first test procedure balances reactivity using control rods and measures the reactivity changes using a reactimeter.

This technique was used in Cycle 1 of both Salem Units. The second measurement procedure maintains reactivity balance with changes in moderator temperature.

The ratio of power change to moderator temperature change is then converted to reactivity using an isothermal temperature coefficient.

This technique has been used for Cycles 2 through 5 on Unit 1, and Cycle 2 for Unit 2. The measurements using rod banks for reactivity control are not used for purposes of model benchmarking.

The basis for this disqualification is the large uncertainties associated with reactimeter interpretation for at-power measurements.

The results of all Doppler coefficient measurements performed using the moderator temperature control procedure have been tabulated on Table 3.3.1. This measurement technique requires calculated isothermal temperature coefficients to infer the Doppler temperature.

Since it is the ratio of the changes of these two quantities that is actually measured, this ratio is tabulated along with the inferred Doppler coefficient on Table 3.3.1. The precision associated with each measured ratio has been determined based on the standard deviation of multiple measurements.

NFU 31/1 22 16 NFU -0 0 39 Revision 0 July 31, 1985 Calculations of the ratio of power to moderator temperature changes have been made using the PSE&G model. Comparisons of the measured and calculated ratio are shown on Table 3.3.l and also Figure 3.3.1 in which the vertical bars represent the measurement precision.

Figure 3.3.1 demonstrates that the measured and calculated ratios typically agree to within the measurement precision, and therefore confirms model capability to calculate these ratios. The scatter in the data shown in Figure 3.3.1 is due primarily to the poor measurement precision.

It is apparent from Figure 3.3.1 that the measurement precision is of the same order of magnitude as the observed differences between measurement and calculation.

Thus, the model calculational uncertainty is assumed to be small. For purposes of assigning a model reliability factor for*Doppler coefficient (RFDC), a conservative value of 10% is assumed. The same reliability factor will be -assigned to the moael for Doppler only power defect (RFDD). Thus: NFU 31/1 23 17 RFDC = 10% RFDD = 10% I t J I I I I f I t I z t-z:j d w f-' '-.. f-' N Vl UNIT/ PWR CYCLE % 1/2 39 93 f-' 1/3 44 ()) 94 1/4 43 99 1/5 46 97 2/2 98 TABLE 3.3.1 COMPARISCN OF MEASURED AND CALCULATED DOPPLER TEST PARAMETERS NUMBER an ( 6 p ) MEAS OF MEAS PCM/% (6 T )MEAS PRECISION 6 -13.67 -0.95 0.04 6 -13 .15 -1.39 0.09 6 -13 .31 -0.77 0.02 6 -10.91 -1.40 0.17 4 -10 .11 -0.90 0.23 4 -11.49 -1.28 0.09 4 -11.45 -0.66 0.04 4 -12.01 -0.99 0.11 2 -11.33 -1.34 0.35 (6 P) rrT"JCALC

-0.86 -1.41 -0.83 -1.28 -0.84 -1.31 -0.70 -1.10 -1.33 MEAS-CALC

-0.09 0.02 0.06 -0.12 -0.06 0.03 0.04 0.11 -0.01 y !:ti z i::: CD t-z:l f-' -G d I Ul 0 Wl-'*O f-' 0 w .. ::J f-' 0 ()) Vl

µ.. 0 ..........

0\0 .. E-i <J ..........

r:i.. <J 'd Q) H ::l Ul rd Q) :2: 1. 7 1. 6 1. 5 1. 4 1. 3 1. 2 1.1 1. 0 0.9 0.8 0.7

0.6 FIGURE

3.3.1 NFU-0039 Revision 0 July 31, COMPARISON OF MEASURED AND CALCULATED DOPPLER TEST PARAMETERS 0.5 ..

.......

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Calculated %/°F 19 I l1 I I J I ,I *( ,,, I ,., l ,, *f I ., I I I I I I I *1 I 1* I ., .. '-..." l I I I 3.4 Isotopics NFU-0039 Revision 0 July 31, 1985 Isotopic compositions calculated by EPRI-CELL have been compared with spent fuel isotopic data obtained from Yankee Rowe fuel rods irradiated beyond 35 GwU/MTU. The reactor representation used for the EPRI-CELL benchmarking in the calculations is described in the ARMP documentation (Part 1, Chapter 1, Section 4.0). Experimental and analytic isotopic ratios for plutonium from the Yankee Rowe spent fuel are plotted versus accumulated fissions in Figures 3.4.1-3.4.3.

The dots are experimental results and the line the EPRI-CELL results. The agreement between calculated and experimental isotopic ratios is good. The calculated ratios Pu-239/Pu-240 and Pu-240/Pu-241 are within the scatter of the experimental results and the ratio Pu-241/Pu-242 is slightly over-predicted.

Calculated and measured isotopic compositions for MU2 fuel (6.6w/o) irradiated in the Saxton Core II (pellet, rod MY, zone 6) are compared in Table 3.4.1. The agreement is good for the most important uranium and plutonium isotopes as well as for americium and curium. The measured burnup ranged from 7 to 22 GWD/MTU. The reactor representation for the EPRI-CELL benchmarking is described in the ARMP documentation (Part 1, Chapter 3, Section 4.) NFU31/l 26 20 TABLE 3.4.l NFU-00 39 Revision 0 July 31, 1.985 COMPARISON BETWEEN EPRI-CELL AND SAXTON EXPERIMENTAL DATA EXPERIMENTAL UNCERTAINTY

  • 100% NUCLIDE EXPERIMENT

% Exp. ATOM U-234 .00465 28.7 -3.7 U-235 .574 .9 + 1. 7 U-236 .0355 5.6 -7.6 U-238 99.386 0 0 Pu-238 .109 2.2 -32.1 Pu-239 73.77 0 + 0.6 Pu-240 19.25 .2 -3.5 Pu-241 6.29

  • 3 + 4.6 Pu-242 .579
  • 9 -11.7 ATOM RATIOS Np-237/ 1.14 x lo-4 15 -26.9 U-238 Pu-239/ .04383 .7 + 2.0 U238 lo-3 Pu-238/ 1. 75 x .4 -17.6 Pu-239 Am-241/ .0123 15 + 2.4 Pu-239 lo-4 10 + 0.4 Cm-242/ 1.05 x Pu-239 1.09-4 Cm-244/ 20 -3.2 Pu-239 NFU31/l 27 21 I I l I' 1* I I ,, *I' I, I ,, I ,I_ if *1; ' I I I I I I I I I I I I FIGURE 3.4.l NFG -0039 Revision 0 July 31, 1985 COMPARISON OF EPRI-CELL TO YANKEE Pu239/Pu240 ISOTOPIC RATIOS 0 H 10.0 9.0 s.o 7.0 0 6.0 '<l' N ::> A< .........

O'\ ...., N ::> A< 5.0 4.0 3. 0 o. J o.o 5.0 ., ,. ' \ \ .. \ **' \ . . . ' . \. '\ . *' 10.0 15.0 20.0 25.0 30.0 -1 5 Accumulated Fissions (barn-cm) x 10 22 FIGURE 3.4.2 NFG-0039 Revision 0 July 31, 1985 COMPARISON OF EPRI-CELL TO YANKEE Pu240/Pu241 ISOTOPIC RATIOS 0 H 9.0 a.a 7.0 6,0 5.0 3.0 2.0 . 1.0 \ I I* i *\ I o.o -.* \ \ \* .. I 1..:* \\ . . . . . .... . . . . p. . .... .. . -. s.o 10.0 15.0 20.0 25.0 30.0 -1 5 Accmnulated Fissions (barn-cm) x 10 23 I I l I ,,. I. I l I I I 'I I II .I f I I -'

I I I, I I I 'I ,f 'I ,I I I ,, I* I t I I I FIGURE 3.4.3 NFG-0039 Revision 0 July 31, 1985 COMPARISON OF EPRI-CELL TO YANKEE Pu241/Pu242 ISOTOPIC RATIOS 10. a .. . . .. " 9. a *' --8. a .\ u:i 0 H 7. N '<l' N 0 .. \ .. ::i . Pl ....__ '<l' N ::i 6. Pl a I\ .. 0 "" : ... 5. ... 4. 0 a. a a.a 5.0 10.0 15.0 2a.a 25.0 3a.a Accumulated Fissions (barn-cm)-l x ia 5 24 I I I I I I .I I .l I I I I NFU-0039 Revision 0 July 31, 1985 3.5 Reliability Factors for Delayed Neutron Parameters This section deals with determining reliability factors for the effective delayed neutron fraction and the effective neutron lifetime which are values which can be calculated but whose measurement is not practical.

In these cases, an argument is made for the general magnitude of the reliability factor without making direct comparisons between measured and predicted values. The importance of the reliability of the values of the delayed neutron parameters primarily associated with the core Beff* uncertainties in the calculation of Beff composed of several components, the most of which are listed below: calculated is The are important

a. Experimental values of S, and A, by nuclide; b. Calculation of the spatial nuclide inventory;
c. Calculation of core average S as a flux weighted average over the spatial nuclide inventory;
d. Calculation of Beff from the core averaqe as Beff = I*S, where I = importance factor. The experimental determination of the S's and A's are assumed to be accurate to within 1%. The most important nuclide concentrgtions with respect to core S are u23 8 , u 235 , and Pu 23-* Tables 3. 4. 1 and 3.4.2 indicate that the difference in the calculation of these is about 1.7% for ECELL. Therefore, components (a) and (b) above are combined as 2. 7 %
  • NFU31/l 31 25 NFU-0039 Revision 0 Ju 1 y 31 , 1'9 8 5 The uncertainty in the calculation of a core average S depends on the relative flux weighting of the individual assemblies in the core. For demonstration purposes, consider a three region core, each with a different average burnup and average S. This is typical of advanced PWR cycles in that about a third of the core has seen two previous cycles, a third only one previous cycle and a third is the feed fuel. Typical regional B 's are given below: Region 1 (third cycle fuel) Region 2 (second cycle fuel) Region 3 (feed fuel) S (1) = 0.005 S (2) = o.006 B (3) = 0.007 The effect of errors in the calculated flux distribution can be evaluated in terms of the effect on the core average s. As a base case, flux weighting factors (FWF) are all set to 1.0. In this case, the core average S = 0.006. Using a maximum error in the calculation of the core average is obtained by increasing the weight of the Region 1 fuel and decreasing the weight of the Region 3 fuel. The revised S is calculated as follows: (l)xl.07 = (2)xl.O (3)x0.93 = .00535 = .0060 .00651 S = .00595, which yield a -0.8% error for component (C) above. NFU31/l 32 26 I, I I. I I I I I I I I I I I I 1 I I l J I I t I I I NFU-0039 Revision 0 July 31, 1985 The last uncertainty component, (d), concerns the reduction of core average B to obtain Beff by using the importance factor. Since this reduction is typically about 3% to 4%, an error of 10% in this component would lead to an error in Seff of less then 0.5%. The sum of the errors for these four factors for ECELL are as follows: 2.7%(a+b)

+ 0.8%(c) + 0.5%(d) = 4.0% So the reliability factor for delayed neutron parameters (RFB)is set at 4%. An argument similar to the delayed neutron parameter argument is applied to the determination of the effective neutron lifetime ( i*) uncertainty.

The uncertainty components which go into the of i* are as follows: (a) Experimental values of microscopic cross sections; (b) Calculation of the spatial nuclide inventory; and (c) Calculation of the core average effective neutron lifetime, i*, as a flux weighted average over the spatial nuclide inventory which includes the effects of leakages.

Uncertainties for components (a) and (b) are assumed to be the same as described for the calculation of S eff, that is, a combination of 1% uncertainty in the experimental determination of nuclear cross sections and 1.7% uncertainty in the determination of NFU31/l 33 27 NFU-0039 Revision 0 Ju 1 y "3 1 , 1 9 8 5 the spatial nuclide inventory of ECELL. The core average neutron lifetime depends on flux weighting of local absorption lifetimes i*. If a conservative estimate of the error in regional power sharing (7%) is used in determining the impact on the core average lifetime ( i*), the error in lifetime is on the order of 1.0%. Combining all of these uncertainties linearly results in a total uncertainty of 3.7%. Therefore, a 4% reliability factor (RFL) will be applied to the neutron lifetime calculation when applied to safety related calculations.

NFU31/l 34 28 I I I I I I I I I I l ., " I *I ,. I I I I I I I I I I I I I I I I I t I I I 3.6 Power Distribution Benchmarking NFU-0039 Revision 0 July 31, 1985 It is the purpose of this section to quantify the PSE&G Salem model power distribution calculations.

This is accomplished by first presenting the measurement data base, followed by a description of the calculational_

methodology.

Second, comparisons are made between the measured and calculated quantities, and lastly, model reliability factors for power distribution calculations are computed.

The primary source of power distribution measurements for Salem Units 1 and 2 is the incore detector system. This system consists of moveable incore fission chambers which respond to neutron flux. These neutron detectors traverse through instrument guide thimbles which are located at 58 positions throughout the core as shown in Figure 3.6.1. Measurement signals from these detectors are taken at 61 axial positions up the fuel assembly as illustrated in Figure 3.6.2, and are corrected by the on-site process computer to account for detector sensitivity, drift, and background.

The corrected signals are then -usetj to compute "measured" power distributions using analytical data to convert the detector signals to interpreted powers in both instrumented and uninstrumented assemblies.

A total of forty-nine (49) flux maps were chosen for the purpose of benchmarking the PSE&G Salem model. These flux maps span six reactor-cycles and represent typical steady state operation conditions.

These include maps taken at powers ranging from near zero to 100 percent, and cycle exposures of zero to end of cycle, including some coastdown state points. A description of reactor conditions for each flux map chosen is given in Tables 3.6.1 through 3.6.3. The approach taken to benchmark and qualify the PSE&G Salem models for power distributions was to compare calculated and measured detector signals. The basis for this is twofold. First, the detector signals NFU31/l 35 29 NFU-00 39 :Revision 0 July 31, 1985 represent raw measurements and do not include interpretation, unlike "measured" power distributions.

Second, the ability of the model to compute the detector signal requires the same processes as required to compute pin powers. Both calcuations require the prediction of the localized fission rate, one in a pin pellet, the other in a fission chamber. The accuracy of the two calculations is essentially the same. The only difference is that there is a small self-shielding or flux depression in the pin which is not in the detector. impact of this difference on the power distribution reliability factor is assumed to be negligible.

The simulated detector signals are calculated in a manner which is consistent with the calculation of local power peaking factors for the purpose of safety evaluation.

The first step is to compute the power distribution under consideration.

The resolution used is one node per fuel assembly, with 12 axial levels. The simulated detector signals are obtained by using the nodal power at each axial level to predict a signal power density for that assembly that level. This power is then converted to a relative reaction rate. The conversion factors are calculated for each asembly location as a function of assembly exposure using a two-dimensional, full core PDQ7, fine mesh model. The 12 axial values in each assembly location are then synthesized using a truncated fourier sine series. Grid flux depressions are then superimposed on the synthesized function using an empirical function designed to match the characteristics of flux depressions measured with in-core fission detectors.

The effect of the grid flux depressions is to raise the flux level in the axial region between grids while depressing the flux in the grid region. Consistency between the above calculations of instrument signals and the calculation of local peaking factors is assured by: NFU3l/l 36 30 I I I I I I I t I I I I I I I J. I I I I ., I I I I I ,. I I NFU-0039 Revision 0 July 31, 1985 A. Using a common full core PDQ7 model, B. Using a common nodal model, and C. Using a common procedure to account for axial flux gradients and grid effects. Typical comparisons of measured and calculated detector signals are shown in Figures 3o6.3 through 3.6.11. The figures are in sets of three and are representative of various core exposures including coastdown conditions.

For each statepoint the first figure of the set presents the differences between the measured and predicted signal integrals for all instrumented locations.

The instrumented core locations are indicated with circles in each of the figures. The second and third figures of each set present axial comparisons in two specific instrumented core locations.

The measurements are shown as a solid continuous line over 61 axial levels. The predicted reaction rates are represented as open circles. The two core locations were chosen as typical of regions on the interior of the core and on the core periphery.

In all comparisons, both the predicted and measured reaction rates have been normalized to a core average value of unity for each map. For purposes of quantifying comparisons, it is convenient to define the variable ORR (I,K,M) which represents the difference between measured and calculated detector signals or reaction rates at location I,K, and map M.

  • Thus, NFU31/l 37 DRR(I,K,M)

= RRM(I,K,M)

-RRC(I,K,M)

Where I = Radial Detector Location K = Axial Detector Location M = Map Index RRM = Measured Detector Reaction Rate RRC = Calculated Detector Reaction Rate 31 NFU-0039 Revision 0 July 31, 1985 An average difference between measured and calculated reaction rates can be computed for each axial level as: I I D RR ( I , K , M )

DRR( K) = I M I I 1 I M where the summation over I is performed for each available radial location, and M represents all flux map data except zero power maps. The mean observed differences thus computed are the axial model bias and are listed in Table 3.6.4. since it is easier to describe the model uncertainties in terms of aeviations relative to the observed bias, a second variable can be defined as X(I,K,M) = ( RRM ( I , K, M) -RRC ( I , K , M) ) -b RR ( K ) Where X(I,K,M) = The difference between measured and calculated reaction rates adjusted for the observed bias. All model power distribution behavior can now be characterized by quantifying the difference population X(I,K,M) or the integral of X(I,K,M);

X(I,M). This latter quantity is the biased c ifference between the measured and calculated detector signal integrals.

To better evaluate the behavjor of the distributions of X(I,K,M) and X(I,M), the difference population was divided into selected subgroups.

The subgroups were chosen to parameterize the difference behavior as a function of axial height, reactor power level, and cycle exposure.

These subgroups were defined in a manner to exclude the axial points at grid locations and the upper and lower six axial points. The axial regions are defined on Table 3.6.5. The difference population was evaluated for normality using the chi-squared test. This test demonstrates NFU 31/l 38 32 I I J ,, I J I I *a, I I I I I I I I I I


I I I I I I. I\ I I I I I I I I I I I ,, NFU-0039 Revision 0 July 31, 1985 that most of the subgroups cannot be considered normal. Typical comparisons of the difference population and a normal distribution is illustrated in Figures 3.6.12 and 3.6.13. As indicated in Tables 3.6.6 and 3.6.7 and Figures 3.6.12 through 3.6.17, 95/95 confidence limits assuming normal statistics and 95/95 confidence limits based on non-parametric statistics are in good agreement.

In some cases the non-parametric limit is somewhat lower than the normal limit which simply indicates that the actual (not normal) distribution is slightly more peaked with fewer samples in the upper (higher M-C values) tail of the distribution than is predicted by the normal distribution.

To be conservative, 95/95 confidence limits were evaluated using both normal and non-parametric statistics as described in Appendix A. Confidence limits (95/95) were computed for each subgroup.

These results are summarized on Tables 3.6.6 and 3.6.7 and Figures 3.6.14 to 3.6.18. Inspection of the figures show that the confidence limits are a function of axial height, reactor power level, and cycle exposure.

Generally, the confidence limits decrease with increased power and exposure.

The approach taken to compute PSE&G model reliability factors, was to bound the computed confidence limits. Thus, the model reliability factors are: RFFQ = 0.10

-(0.12*P) RFF ti H = 0. 0 8 0.09 -(P/30) p > .so p <

  • 50 P>
  • 3 0 P< .30 In order to assess the impact of possihle dependence among data samples on reliability factors for local peaking factors, the effects of reducing the sample sizes by two thirds (2/3) were evaluated.

It was found that the reliability factors are relatively insensitive to this reduction in sample 'size resulting in an increase1 rel iab il i ty factors of approximately

  • 0 02 units for X(I,K,M) and .004 for X(I,M). As can be seen in Figures 3.6.14 through 3.6.18, the PSE&G reliability factors remain bounding and are therefore not impacted significantly by possible dependence arnonq data samples. 33 FIGURE 3.6.l SALEM UNIT l AND SALEM UNIT 2 MOVABLE INCORE DETECTOR LOCATIONS R p N M L K J H G F E 28 15 4 3 51 10 30 5 36 43 11 38 31 17 54 14 6 44 32 16 . 23 58 29 46 48 57 . 22 9 4 l 33 40 26 21 41 55 45 35 20 18 27 42 53 2 34 D 39 50 12 7 37 NFU-0039 Revision 0 July 31, 1"985 c B A 52 24 8 47 49 34 56 13 25 I I I I I I l ti 2 1**: 3 4 I' 5 I 6 I 7 8 I 9 I 10 I 11 12 I 13 I 14 *I 15 I I I I I I I I I ,, I I I I I I I I AXIAL GRID LOCATIONS FIGURE 3.6.2 AXIAL LOCATIONS OF GRIDS AND DETECTORS NFU-0039 Revision 0 July 31, 1985 T 21!l.5<:11!l 21!l.661!l 21!l.551!l 2111.55111 21!l.551!l 21!l.551!l 24.43QI 1.-----v 1.243 I-Zli i:i:i ::r: LlJ a: 0 u LlJ I-u <C en LlJ ::r: .... :!; 35 AXIAL DETECTOR SIGNAL LOCATIONS ALL ARE IN INCHES BOTTOM OF FUEL ROD I NFU-0039 .I 0 July 31, 1985 I TABLE 3.6.1 I REACTOR STATE POINTS I SALEM 1 CYCLE 2 I MAP NO. CYCLE EXPOSURE POWER LEVEL D BANK POSITION 11 ( MWD/MTU) ( % ) (STEPS) 174 0 o.o 228 I:'. 188 2160 100.0 228 190 3097 100.0 228 194 4382 100.0 228 196 6250 100.0 225 I 198 7275 82.0 206 1201 7945 67.0 218 SALEM 1 CYCLE 3 I MAP NO. CYCLE EXPOSURE POWER LEVEL D BANK POSITION I ( MWD/MTU) ( % ) (STEPS) 1300 0 0 212 I 1313 500 100 228 1315 1040 100 222 1324 3165 99.5 22"3 I 1330 4100 97.0 220 1333 5670 97.0 228 1338 7060 96.8 228 I 1342 8800 75.0 202 I I t NFU31/l 41 36 I ., --------

I I NFU-0039 Revision 0 July 31, 1985 I I TABLE 3.6.2 I REACTOR STATE POINTS I SALEM 1 CYCLE 4 ,,, MAP NO. CYCLE EXPOSURE PmvER LEVEL 0 BANK POSITION ( WtID/MTU) ( % ) (STEPS) I 1400 0 o.o 211 1408 180 84.0 228 1411 560 100.0 228 I 1412 1580 100.0 225 1413 2589 98.6 228 1414 3715 100.0 215 I 1416 3836 100.0 228 1417 4998 100.0 228 ,, SALEM 1 CYCLE 5 MAP NO. CYCLE EXPOSURE POWER LEVEL 0 BANK POSITION I ( MWD/MTU) ( % ) (STEPS) 1500 0 o.o 216 I 1503 25 47.3 228 1507 140 99.3 228 1509 1391 100.0 228 1512 2531 99.9 226 I 1517 4662 99.5 228 1520 5444 100.0 218 1522 7185 99.9 228 ,, 1524 8923 100.0 228 I I I NFU 31/1 42 37 I' I NFU-0039 I Revision 0 July 31, 1985 I TABLE 3.6.3 I REACTOR STATE POINTS I SALEM 2 CYCLE 1 I MAP NO. CYCLE EXPOSURE POWER LEVEL D BANK POSITION 'I. ( MWD/MTU) ( % ) (STEPS) 2004 0 o.o 206 I\ 2102 2435 100.0 222 2115 4677 96.7 228 2120 7386 99.8 228 2122 9196 100.0 224 I 2127 11755 82.2 21*9 2129 13357 82.0 220 2131 14192 82.8 228 I 2133 15403 82.5 219 SALEM 2 CYCLE 2 *I MAP NO. CYCLE EXPOSURE POWER LEVEL D BANK POSITION I ( MwD/MTU) ( % ) (STEPS) 2201 0 o.o 220 2203 21 48.6 180 I 2205 47 72.1 214 2209 292 98.4 228 2210 564 99.0 228 I 2213 1120 99.0 228 2214 2106 99.1 228 2217 3195 99.2 228 I I I Nl:-,U 31/1 43 38 I I I I I I I I .I I I I I I I I I I R / ' 4.6 [\.,_ ..I / ' 3.2 ' ,/ v '\ 4.4 \.. ,/ p , ' .t*4 .J v '\ 3.3 r--.. / FIGURE 3.6.3 NF'U-0039 Revision O July 31, 1985 Measured and Calculated Integrated Detector Responses SALEM 1 CYCLE 4 MAP 1411 Absolute Differences Power = 100.0% Exposure 560 MWD/MTU N M L K J H G F E D c B A / ' Abs. Dif f = ,4.1/ (Meas.-Calc)*lOO l v ' I ' , ' z*9...1 \!. 8..1 -0.1 ' ./ 2 /' ' / ' "" ' v '\ -2.3 -0.5 0.6 3.3 3 '-,) \.. / I\.. ,) r'\. ./ / ' / ' 1. 5 -2.l 4 / ' / v ... / '\ / "\ v ' 1. 5 -2.7 1. 8 1. 2 5 [\.,_ / r'\. / ' / ..I / ' I ' /' ' / "\ -O.l 2.9 -1.1 1. 7 \.. / r\. ..I ' ,) ' ./ 6 / '\ / ' v ' / ' -1.2 -1.8 -1. 7 -1. 3 7 ' / " ,) \.. / ' / v ' v ' / '\ v '\ / "\/ ' v ' -2.3 2.1 -2.7 -1. 3 -1.8 '-2. 7 -0.5 8 ' ,) I\.. / ' / ' ,) ' /'\. ./\.. ,) v ' v '\ / ' -4.2 ... 4.0 2.6 9 ' ,) r\. / ' ,) v ' / ' / ' -1.4 -3.3 2.1 10 r'\. ,) '-/ I\.. / v ' v ' /' ' -2.3 ... 2. 6 2.9 11 I\.. / r\. / \... / / ' v ' -2.7 -1.3 "-,) I\.. ,) 12 , ' v " r ' ./ ' 0.4 -1. 2 -3.8 / / "-,/ 13 / " / " v ' v " 2.9 0.4 -2 .6 -0.l ' ,) I\.. / I\.. ./ I\.. / 14 v ' / ' 3.5 1.1 15 ./ ./ 39 LU (/) i I z 0 ',I c.. , I (/) I LU a:: a:: g u LU LU c LU > .....J LU a:: FIGURE 3.6.4 Nf'U-00 39 Revision 0 July 31, MEASURED AND CALCULATED DETECTOR RESPONSES SALEM 1 CYCLE 4 MAP1411 Legend MEASURED ll-t.8.£:

Lt> 0 PREDICTED 2 ..............

,,;;;;m;;;;;-....,;;;;

_____ __._ ............

        • -***************
                    • ----

1.5 ........ * ..........

                • -********.
              • -:-********:********:*********
              • -*****************

I I I I I I : : : : : : I I I I I I I I I I I I I I . 1 ......**.

        • .* * **...* ***.*... .**..*.* ! ........

........ * .........

........*

..... -:-***************** . . . . . . . . . . 0.5 .. ...... ...........................

........ ........ *******-********

...................

              • -*******

0 o_...., __ ..__,.. __ ...,.. __ .,.__,....._,.._...,..

__ ...---..--...--

......

0 5 10 15 20 25 30 35 40 45 50 55 60 65 AXIAL POINTS 40 . l_ I I I I I I 1-1 I ,, I I ,, I I I I, I ,,


*------

  • I I : w Vl z 0 0-FIGURE 3.6.5 NFU-0039 Revision 0 July 31, 1985 MEASURED AND CALCULATED DETECTOR RESPONSES SALEM 1 CYCLE 4 MAP1411 Legend MEASURED 0 PREDICTED 2 * * * ** * *
  • 11-taE = N13 .........
              • -*******

.........

                • ----1.5 ....*.*.........*................**......**.**....*
              • -*******
  • ................*
              • -*******

a::: a::: 0 t> w Cl w > _J w a::: 1 ........ **************

0 5 . ' . * .. ...... *********

.......

                                    • 41
              • -***
o 0 .......

__ _,,_ __ ;..---;.--

......

0 5 10 15 20 25 30 35 40 AXIAL POINTS 4 J_ 45 50 55 60 65 R v '-/' ' 1. 2 I\.. / / ' 1.3 '-/ v "\ 1.1 '-,) FIGURE 3.6.6 NFU-0039 Revision 0 July 31, , 1985 Measured and Calculated Integrated Detector Responses SALEM 1 CYCLE 5 MAP 1522 Absolute Differences Power = 99. 7% Exposure 7185 MWD/MTU p *N M L K J H G F E D c B A /' ' / ' Abs. Di ff = 0.3 -0.0 (Meas.-Calc)*lOO

\,, ,) \,, ) v ' I' ' 0.8

'-..I v ' /' "\ I' " -1. 7 -1.8 0.6 ...,_ ,) '-.J ...,_ ,) ,,,, ' v ' 1. 7 0.1 0.6 .J I\.. ..I '-/ /' v ' / ' 0.9 '-,) ..I '9*1/ /' ' ' /' ' -0.0 0.9 2.2 '-.J ' ) \,, ) v ' I' / " /' ' -0.4 0.6 0.3 \,, .J \,, ...I \,, ,) /' ' /' ' /' ' /' ' /' ' -1. 7 -0.1 '1. 7,; ... 3.0 0.7 \,, ,, \,, ,) f\... ,) '-.J /' ' /' '

1. 2 '-..I /' ' v " v .... 1.5 -1.5 0.8 I\. ,) I\.. ,J '-..I /' ' /' ' /' '

0.9 \,, 0. 5.J \,, .J /' ' v ' . 0.7 -0.9 \,, .J I\.. ./ v "\ v ' /' ' / '\ -1. 9 0.6 -2.3

'-./ I\.. ,,) '-/ v ' v "\ /' ' /*,' 0.7 -1.5 -1.9 0.3 '-/ '-,) I\.. / !\,. / /' '

42 I I I I ,, I 1 I 2 I 3 I> 4 5 I 6 I 7 8 I 9 I 10 I 11 12 I 13 I 14 I 15 I I I I I I i I I ' I I I w (/) z .0 a_ FIGURE 3.6.7 NFU-0039 Revision O July 31, 1985 MEASURED AND CALCULATED DETECTOR RESPONSES SALEM 1 CYCLE 5 MAP1522 POWER= 99.73 EXPOSlff:

= 7185 MWD;MTU Legend MEASURED 2 .. . . ... . lHM3L£ = LD 0 PREDICTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ................ . ...... *: .................

-:* ............... ....... . 0 o I o o . 1.5 ........ ****************

0::: 0::: 0 t5 w 1-w Cl w > ......J w 0::: o o I o o I o o o I . . . . . 0 I o I o 0 0 f 0 I . . . . . . . . . . . . . . . o o 0 0 I . . . . . . . . . . . . . . . . . . . . 0 I o I . . . . . 0 5 *********

........ ; .................. .................................................................................... . . : : : : : :o . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . .

. . . . . o o o I o . . . . . 0 I 0 I 0 . . . . . . . . . . . . . . . . . . . .

. . . . .

o o I o I . . . . . . . . . . . . . . . . . . . .

o..,.-._ __ . ___ _.,, ___ . __ _.. ____ . __ ,.._ ___

___ . __ .._ ___ ,..___. 0 5 10 1S 20 2S 30 35 40 AXIAL POINTS 43 4S so SS 60 6S I i I I Lt.I (/) z 0 a_ (/) Lt.I 0:: 0:: 0 I-(.) Lt.I I-Lt.I 0 Lt.I > ....J Lt.I 0:: *------*I FIGURE 3.6.8 Revision 0 July 31, 1985 MEASURED AND CALCULATED DETECTOR RESPONSES SALEM 1 CYCLE 5 MAP1522 I I I ,, POWER= 99.73 MEASURED Legend EXPOSlR: = 7185 MWD/MlU 11-M31...E:

N13 0 PREDICTED 2 ........ *****************

......................... ........ I I I I *

  • I * *
  • I ................

-:* .................

  • ................ ................... ................

-:* .........

. ....... ........ . I I o I o I o o I o 0 o
: : : : : . 1.5 . . . . . . . . . . . . . . . ' . . . . . . . . 1 1 1 I I 0 o 0 I o o I o o I O . . . . . . . . . . . I I o I o *
  • I
  • I 6 . . .1 0 5 I o I 0 I O I I * ...............

T ........ ........ r ................

T ........ ........ r .................

r ....... T ..... *r ...... . I I I I I o o I o o I o I o o I I o o o I o I o 0 o I o I . . . . . ' I O O O O I o o o o I I o o o o o I . . . . . . :o . . . . . . . . . . . .. . . . . . . o o I o o I 0 o 0 o I I o o o o o I . . . . . . o I o o o I o 0 o o I 0 o I o o o I o o o o o I . . . . . . . . . . . . I O O O O I o--. __ ..._..,_..

__ _..., __

__ ..._.

__ _, 0 5 10 15 20 25 30 35 40 AXIAL POINTS 44 45 50 55 60 65 I I I I I I I I I I I I I I I I I I I R / ' -1. 5 '-.I p FIGURE 3.6.9 NFU-0039 Revision 0 July 31, 1985 Measured and Calculated Integrated Detector Responses N ' 0.5 \.... / M L / ' 2.2 "-/ SALEM 2 CYCLE 1 MAP 2133 Absolute Differences Power 82.5% Exposure = 15403 MWD/MTU K J H / ' 0.1 \.... / / ' -5.5 '-/ / ' 1.4 '-.I G F v ' -1. 3 ,) E I' ' 1. 8 \.... / D c B A Abs. Diff = (Meas.-Calc)*lOO

/' ' 0.8 i\.. / v ' -1.4 \.... / I '\

/ ' -0.8 "-./ v ' 0.7 '-./ v ' -0.0 i\.. ,) / ' / ' -3.0 '-1.5 '-/ i\.. / v ' 0.1 I'.. / / ' -0.7 '-/ / ' 0.2 \,,. / / ' 1. 9 / ' -1.1 '-.I 45 / ' -0 .1) '*...... _/ /' ' I' ' -1.5 2.2 \.. / '-.J /' ' / ,, ' 0.8 0.1 -2.2 \.. ,/ /'\. ./ v ' 2.4 / /' ' 2.1 \.... / v ' 3.2 ", / / ' .... 0 5 ['-,_. / / ' / ,r ' 1. 2 "' .I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 w (/) z 0 a.. (/) w a:: a:: 8 f-w 0 . w > -' w a:: FIGURE 3.6.10 NFU-0039 Revision Q. July 31, 1985 MEASURED AND CALCULATED DETECTOR RESPONSES SALEM 2 CYCLE 1 MAP2133 ::::-"5403 Legend MEASURED 1}"'8.E = lJ) UI 0 PREDICTED 2 ........ . .......* *******-********

........ ********-----

1.5 ee *************

  • -:*** **** e D** ******* e *********

e 0 e .... ** * * **-** ** e ** ********

  • e ** * * * * ** e * *** *<>-:-Cl**
      • e *fl>******** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0.5 .........

.........

              • -*****************
              • -********:******** . . . . . . :o . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

..... --'9i---ti---i---..;.---t 0 5 10 15 20 25 30 35 40 AXIAL POINTS 46 45 50 55 60 65 I i I I I I I ,, I I I I I I I I I I I I

' I I ' ' ' ' I

  • I ' :
  • w (/) z 0 a.. (/) w a:: a:: 0 t> w I-w Cl w > _. w a:: FIGURE 3.6.11 NFU-0039 Revision O July 31, 1985 MEASURED AND CALCULATED DETECTOR RESPONSES SALEM 2 CYCLE 1 MAP2133 POWER= 82.5% Legend MEASURED 2 --------11-Ml.E = N13 0 PREDICTED

*


*

    • --**--________ ...__ __ __ 1.5 ...........................
                                                    • -

............................

........ . 0 5 . . . . o .......................................................

r ............................................. , .. .. :o

__ '"'-" __

.......

.... 0 5 10 15 20 25 30 35 40 AXIAL POINTS 45 50 55 60 65 I

_____ _

I .NFU -0 l) 3 9 I Revision 0 July 31, 1985 I TABLE 3.6.4 I MEAN OBSERVED DIFFERENCES AXIAL MODEL BIAS AXIAL LEVEL MEAN DIFF AXIAL LEVEL I MEAN DIFF I X( I) I X (I) I (TOP) 61 .119 31 -.012 60 -.024 30 -.014 59 -.023 29 -.016 I 58 .005 28 -.062 57 .018 27 -.039 56 .015 26 -.015 I 55 .018 25 .007 54 -.031 24 .010 53 -.020 23 .009 52 -.021 22 .010 I 51 -.009 21 .031 50 .003 20 -.041 49 -.001 -.033 I 48 -.005* 18 -.018 47 .011 17 -.009 46 -.016 16 -.003 45 -.040 15 -.001 I 44 -.024 14 -.001 43 -* 011.J 13

  • l) 12 42 -.017 12 .029 I 41 -.023 11 -.024 40 -.033 10 .015 39 -.033 9 .035 38 -.004 8 .052 I 37 -.069 7 .066 36 -.036 6 .068 35 -.009 5 .064 I 34 -.001 4 .056 33 .005 3 .038 32 .007 2 .024 1 .016 I I I NFU31/l 53 48 I I I I I I I I REGION I l 2 I 3 4 I 5 I 6 I I ,I I I I I I NFU 31/1 54 I TABLE 3.6.5 AXIAL REGION DEFINITIONS AXIAL POINTS 7 -10 14 -18 22 -27 31 -35 39 -44 48 -52 49 NFU-0039 Revision 0 July 31,

.. -.. o .. ,-.. ------------------i () 0.5 0.4 z w 0.3 Ul ::::> 0 0. w a::: LL. w > 0.2 w a::: 0.1 NORMAL DISTRIBUTION FIGURE 3.6.12 DISTRIBUTION OF ERRORS X(i,k,m) OBSERVED DISTRIBUTION I I \ \ \ NON PARAMETRIC STATISTICS 95/95 CONFIDENCE LIMIT I NORMAL STATISTICS 95/95 CONFIDENCE LIMIT I I PSEG RF FQ

____ 3 1 0 1 2 3 4 STANDARD ERROR UNITS (Z) :Al z c (1) '"IJ f-' < c '< I en o w f-. 0 w .. ::i \.!)

l I I I I


.. _ .. ____ _ --------.. -..

0.5 0.4 >-() z 0.3 l..&J :..11 :::> I-' 0 l..&J e:::: La... w > 0.2 _J l..&J e:::: 0.1 0.0 -4 FIGURE 3.6.13 DISTRIBUTION OF ERRORS FOR INTEGRAL X(i,m) ,,--"' . OBSERVED DISTRIBUTION I I I \ I \ I \ I NORMAL I DISTRIBUTION I ----3 1 0 1 STANDARD ERROR UNITS (Z) NON PARAMETRIC STATISTICS 95/95 CONFIDENCE LIMIT NORMAL STATISTICS 95/95 CONFIDENCE LIMIT PSEG RF FAH *2 3 I c..i ::0 z c: ro "1 I-' <: c I rn o Wl-'-0 I-' 0 w ::J l.C' I-' 0 l.O O'.l U1 4 TABLE 3.6.6 NFU-00 39 Revision 0 July 31, 1985 CONFIDENCE LIMITS FOR X(I ,K,M) DISTRIB.JTION BY SJBGRaJPS REACTOR CYCLE AXIAL i'UMBER ST. DEV 95/95 CONFIDENCE LIMITS POWER (%) EXP0SJ RE ( G/T) R.EX;ICNS SAMPLES NORMAL NON -PARAMETERIC 0 ALL 1-6 10075 .075 .125 .139 50< p <70 ALL 1-6 8059 .045 .076 .063 100 ALL 1-6 49573 .036 .059 .063 100 E<2.5 1-6 22966 .041 .067 .072 100 2.5<E<6 1-6 19105 .031 .051 .052 100 6(E 1-6 7502 .028 .047 .040 100 ALL 1 6396 .036 .061 .069 100 ALL 2 7991 .033 .055 .065 100 ALL 3 9587 .034 .057 .069 100 ALL 4 7995 .035 .059 .067 100 ALL 5 9595 .037 .062 .079 100 ALL 6 8009 .039 .066 .073 NFU 31/l 57 52 I I I I I I I , .. , I! I I I I I I ,, I. I I I I I I I I I I I I ! I I I ,I I I REACTOR POWER (%) 0 50< p <70 100 100 100 100 NFU 31/1 59 NFU 31/1 58 TABLE 3.6.7 NFU-0039 Revision 0 July 31, 1985 CONFIDENCE LIMITS FOR X(I,M) DISTRIBUTION BY SUBGROJP CYCLE NUMBER ST. DEV 95/95 CONFIDENCE LIMITS EXPOSURE (G/T) SAMPLES NORMAL NON -PARAMETERI 1 ALL 322 .045 .081 .075 ALL 258 .034 .062 .056 ALL 1593 .028 .048 .055 E<2.5 . 739 .033 .057

  • 066 2.5<E<6 614 .CJ24 .042 .042 6(E 240 .021 .038 .045 53 (Jl _J w (.) z w 0 G: z 0 (.) .. 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 . 0.04 0.02 FIGURE 3.6.14 CONFIDENCE LIMITS FOR X(i,k,m) VS REACTOR POWER % ' PSEG RffQ NORMAL STATISTICS 95/95 CONrlDENCE LEVEL ::---.__ ----- -------' ' ----------==-==---L NON-PARAMETRIC STATISTICS 95/95 CONrlDENCE LEVEL o 25 50 REACTOR POWER % 75 -. 100 :;o :z C: .CD t'IJ I-' <: c: . '< I-'* I Ul 0 Wl-'*0 '1-'QW ::l l.D

(/) I-Ul Ul __..J w u z w 0 LL z 0 u FIGURE 3.6.15 CONFIDENCE LIMITS FOR X(i,k,m) VS CYCLE EXPOSURE 0.14 0.12 PSEG RFFQ 0.10-r-----------------------------------

0.08 NON-PARAMETRIC STATISTICS 95/95 CONFIDENCE LEVEL -=------r-0.06 l L NORMAL STATISTICS ------__ *l ---95/95 CONFIDENCE LEVEL---.

---1 0.04 0.02 o 2 4 6 8 10 CYCLE EXPOSURE (GWD/MTU)

--, 12 :;cl z c (]) '"" f-' <: c '< I-'* I Cfl 0 Wt-'*C f-' 0 w .. :J \!) .._. 0 l.O cc lJ1 I ,. Ul O"\ _J w (.) z w 0 G: z 0 (.) FIGURE 3.6.16 CONFIDENCE LIMITS FOR X(i,k,m) VS AXIAL HEIGHT 0.14 0.12 PSEG Rf"FQ 0.10-1------------------------------------

0.08 0.06 0.04 0.02 ---...... / " ...... NON-PARAMETRIC STATISTICS 7 95/95 CONFIDENCE LEVEL / ---------------...... -------------------. ..........___

--N-ORMAL STAT-15-TIC_S_

-+ 95/95 CONF"IDENCE LEVEL_j 0 1 2 3 4 5 6 7 8 9 10 11 12 AXIAL HEIGHT (FEET) ::0 z i:: <D t"JJ I-' <: c '<.I-'* I en o Wl-'*0 I-' 0 VJ ' ::J l.D f-'0 l.C CXl Ul I I j I I ' I !

E -...J ::J w (.) z w 0 u.... z 0 (.) 0.12 0.10 0.08 -0.06 0.04 0.02 -.. -------FIGURE 3.6.17 CONFIDENCE LIMITS FOR X(i,m) VS REACTOR POWER % PSEG RF F"AH ---------NORMAL STATISTICS --_ ----------95/95 CONFIDENCE . \_ ----. NON-PARAMETRIC STATISTICS ---:--.------* -95/95 CONFIDENCE LEVEL ---c:... ::0 z c:: ro r-r; I-' <: c: '< I-'-I en c Wl-'*0 I-' 0 w ' ::i 0 25 50 75 100 PERCENT REACTOR POWER%

Ul 00 -_J w u z w 0 G: z 0 u 0.12 0.10 0.08 ----0.06 0.04 0.02 FIGURE 3.6.18 CONFIDENCE LIMITS FOR X(i,m) VS CYCLE EXPOSURE 1 I PSEG RF" F"AH NON-PARAMETRIC STATISTICS\

95/95 CONF"IDENCE LEVEL

  • NORMAL STATISTICS " 95/95 CONF"IDENCE LEVEL_/

0 2 4 6 8 10 12 CYCLE EXPOSURE ( G/T) :;c z c: C1l 'Tl f-'<:C '< I-'* I (fl 0 Wt-'-0 t-' 0 w :J \.0 t-' 0 \D cc Ul -------------------

I I I I I I I I I I I 1* I I I I I I I 3.7 NFU-0039 Revision 0 July 31, 1985 Verifiication of Transient Power Distribution Simulation Capability (To be completed later) NFU31/l 61 59 I I I I ,, I I I I I I I I I I I I I I 4.0 References

1. Advanced Recycle Methodology Program (ARMP) NFU-0039 Revision 0 July 31, 1985 System Documentation CCM-3 Research Project 118-1, September 1977. 2. Pfeifer, C. J., "PDQ-7 Reference Manual II", WAPD-TM-947(L), Westinghouse Electric Corporation, February 1971. 3. Breen, R. J., o. J. Marlowe, and c. J. Pfeifer, "HARMONY:

System for Nuclear Reactor Depletion Computation," WPAD-TM-478, Westinghouse Electric Corporation, January 1965. 4. Walpole, R. E., Myers, R. H., "Probability and Statistics for Engineers and Scientists, MacMillan Publishing Company, New York, 1978. 5. Owen, D. B., "Factors for One-Sided Tolerance Limits and for Variables Sampling Plans", SCR-607, Sandia Corporation, March 1963. (Available from office of Technical services, Department of Commerce, Washington D.C.) 6. USNRC Regulatory Guide 1.126, "An Acceptable Model and Related Statistical Methods for the Analysis of Fuel Densification.", March 1978. 7. Somerville, P. N., "Tables for Obtaining Non-Parametric Tolerance Limits", Annals of Mathematical Statistics 29, 599 (1958). 8. Assessment of the Assumption of Normality (Employing Individual Observed Values), ANSI Nl5.15-1974.

9. Safety Evaluation of the PSE&G Rod Exchange Methodology, NFU-004, Revision 2, August 22, 1984. 60 NFU 31/l 61 I I I I I I I I I I I I I I I I I I I NFU 31/1 62 APPEND IX A NFU-0039 Revision 0 July 31, 1985 STATISTICAL METHODS FOR THE DETERMINATION AND APPLICATION OF UNCERTAINTIES A

APPENDIX A NFU-0039 Revision O July 31, 1985 STATISTICAL METHODS FOR THE DETERMINATION AND APPLICATION OF UNCERTAINTIES The purpose of using statistical methods is to compute the value X such that there is a 95% probability at the 95% confidence level that XR will be conservative with respect to X (true value) when applying the calculational to safety related reactor analyses.

The first step is to determine whether or not a distribution is normal. If it is, the methods described in Section A.l are used. If the distribution cannot be treated as normal, but the distributions are known, then the methods described in Section A.2 are used. NFU 31/1 63 Al I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I NFU-0039 Revision 0 July 31, 1985 A.l Application of Normal Distribution Statistics Treatment of Measurement and Calculational Uncertainties Comparison of measured and calculated reactor parameters include the effects of both the measurement and calculational uncertainties.

Methods used in this report to isolate the calculational uncertainties are described below in terms of the following definitions:

XT = true reactor parameter XM = measured reactor parameter XC = calculated reactor parameter eM = XM XT = measurement error ec = XC XT = calculation error eMC = XM -Xe = observed differences

µi = ei =mean error (i = M, C, or MC) If eM and ec are independent, then the following relationships exist. (Note that these relationships apply for non-normal distributions as well)

  • where 2 2 aMC = a c µ = µ MC M 2 + aM µ c (A-1) (A-2) NFU-0039 Revision .0 July 31, 1985 These equations can be solved for andµc. Once ar and µC are calculated from hitor1cal data tney can be used to apply conservatism to future calculations of reactor parameters, XR, as follows: xR = xc -Mc +/- Kc ac The factor Kc is defined as described in Table A.l to proviae a 95% probability at the 95% confidence level that XR is conservative with respect to the true value, XT. Alternatively, as done in most instances this report, it can be noted that since each term in equation (A-1) is greater than or equal to zero each term is bounded by the variance in the observed differences.

Thus the calculational uncertainty can be conservatively estimated as the uncertainty in the observed differences between measured and calculated values: 2 2 a =a MC (A-3) or c ac -a MC (A-4) In the later alternative, once crMc and µMC are calculated from historical data they can be used to apply conervatism to future calculations of reactor parameters, XR as follows: (A-5) RF = Kc aMC The quantity µMC is used as a bias on the calculated parameter and K is as defined above. The term RF is called the reliability factor as described below. NFU31/l 65 A3 I I I I I I I I I I I I I I I I I I I ------

I I I I I I I I I I I I I I I I I I I Reliability Factors NFU-0039 Revision 0 July 31, 1985 It is the objective to define reliability factors which are to be used to increase or decrease calculated results to the point where there is a 95% probability at the 95% confidence level that they are conservative with respect to actual parameters.

For any given application, we are only concerned with one side of the component; that is, if the calculated value is too large or too small. we may therefore use one-sided tolerance limits based on normal distributions to find a Kc which will give a 95% probability at the 95% confidence level to the reliability factor defined by RF = Kc* 0c Numerical values of Kc for various sample sizes used to calculated crc are provided on Table A.l (Reference 5). NFU31/l 66 A4 I NFU-0039 I Revision 0 July 31, 1985 I TABLE A. l I SINGLE-SID ED TOLERANCE FACTORS I N Kc --2 26.26 3 7.66 I 4 5.14 5 4.20 6 3.71 I 7 3.40 8 3.19 9 3.03 I 10 2.91 11 2.82 12 2.74 15 2.57 I 20 2.40 25 2.29 30 2.22 I 40 2.13 60 2.02 100 1. 93 200 1.84 I 500 1. 76 OJ 1.645 I N = Number of samples used to calculate oc I I I I I NFU 31/l 67 AS I I I I I I I I I I I I I I I I I I I NFU-0039 Revision 0 July 31, 1985 A.2 Application of Non-Normal Distribution Statistics This section documents the procedure used to determine the value XR such that there is a 95% confidence level that XR will be conservative relative to the actual value (X ) when the distribution of X is not to be a normal distribution.

The approach taken is consistent with non-parametric methods given in reference 6 and 7. In general, the procedure requires the ordering of N samples taken from a continuous but unknown function.

The statistic "rn" is determined such that, at the 95% confidence level, 95% of the population lies between the rth smallest and the sth largest value in the ordered N samples, where m = r + s. The statistic m can be determined from Table A.2 (Reference 7). Since, for any given application we are usually only concerned with one side of the component, one-sided tolerance limits are required.

Therefore, for upper one-sided tolerance limits, r is set to zero, and m = s. This procedure has been implemented to obtain reliability factors using following steps. First, the mean error µMC = eMc was determined, where eMc = XM -Xe. (See Section A.l for definitions).

Next, the population of N errors eM -µ was computed, and the resulting ordered. Using Table A.2, the mth value of the error distribution defines error eR,which, at the 95% confidence level, 95% of the error distribution will be less than eR. NFU31/l 68 A6 once e and µMC are calculated from data they can be used to apply conservatism to future calculations of the parameter, XR, as follows: XR = XC + µ MC .:!:. RF (A-6) where RF = eR. NFU-0039 Revision o July 31, 1985 rector The term RF is the reliability factor which provides the desired 95% probability at the 95% confidence level for the com'puted parameter X. NFU 31/1 69 A7 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I TABLE A.2 NFU-0039 Revision 0 July 31, 1985 Values of m for 95% Confidence and 95% Probability Tolerance Limits Number of Observations (n) For n> 1000 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 170 200 300 400 500 600 700 800 900 1000 Increase m by 4 for each additional 100 observations NFU31/l 70 AB m 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 5 9 13 17 21 26 30 35 39 NfU -00 39 Revision U July 31, 1985 COMPUTER CODE CPM EPRI-CELL INTEGRAL NU PUNCHER PDQ7/ HARMONY NFU 31/l 72 APPEND IX B NFU-0039 Revision 0 July 31, 1985 COMPUTER CODE

SUMMARY

DESCRIPTION DESCRIPTION CPM is a multigroup two-dimensional collision probability code for depletion and branch calculations for a single assembly.

Reference 1 EPRI-CELL computes the space, energy and burnup dependence of the neutron spectrum within cylindrical cells of light water reactor fuel rods, It is used to generate cross sections for PDQ on a E CD AT A f i le

  • Reference 1 INTEGRAL edits PDQ files to obtain pin and assembly powers. Pin to box ratios are then input to TRINODE. NUPUNCHER prepares HARMONY cross section tables from cross section data on an ECTIATA file. Reference 1 PDQ7/HARMONY is a nuclear reactor analysis program which solves the neutron diffusion equations and performs depletion calculations.

Reference 2, 3 Bl I I I I I I I I I I I I I I I I I I 1-I I I I I-I I I I I I I I I I I I I COMPUTER CODE SHUFFLE SIGMA TRINODE TAU . NFU 31/l 73 DESCRIPTION NFU-0039 Revision 0 July 31, 1985 SHUFFLE is the same as EPRI-SHUFFLE and will read a PDQ7 concentration file and write a new updated concentration file. It is used to simulate assembly movement between cycles. Reference 1 SIGMA calculates the predicted detector reaction rates using nodal power distribution and PD07 detector reaction rate to assembly power factors. The predicted detector reaction rates are then compared to measured detector reaction rates. TRINODE is a modified version of the EPRI-NODE-P computer code program. Modifications are summarized as follows: a) Automated file management b) User friendly input c) Rod search for constant axial offset control d) Separate BP reactivity insertion equations e) Flexible edit options TAU is a computer code used to compute statistics from residual reaction rates generated by SIGMA. B2