ML18041A125

From kanterella
Revision as of 03:05, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Rev 4 to, 180-Day Rept in Response to IE Bulletin 80-11 for Dresden Nuclear Power Station Units 2 & 3.
ML18041A125
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 09/14/1984
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML17199F597 List:
References
IEB-80-11, NUDOCS 8601160031
Download: ML18041A125 (122)


Text

H~t180-DAYREPORTINRESPONSETOIEBULIETIN80-11IFORDRESDENNUCIEARPOWERSTATIONUNITS2AND3COMMONWEALTH EDISONCOMPANYDOCKETNUMBERS50-237AND50-249PREPAREDBY:BechtelPowerCorporation ReportDate:September 14,1984Revision4

~"I 1.

02.0INTRODUCTION

SCOPETABLEOFCONTENTSPacae3.03.13.23.33.43.53.6DESCRIPTION OFMASONRYWALLSLOCATIONFUNCTIONWALLCONFIGURATION CONSTRUCTION MATERIALS CONSTRUCTION PRACTICES RECONCILIATION WITH180-DAYREPORT,REVISION34.0REEVALUATION OFMASONRYWALLS4.14.24.34.44.54.64.7S.o5.16.0POSTULATED LOADSALLOWABLE STRESSESJUSTIFICATION OFTHEREEVAIUATION CRITERIASEQUENCEOFANALYSISMETHODOFANALYSISANDACCEPTANCE CRITERIAASSUMPTIONS ANDANALYSISCONSTRAINTS MASONRYWALLTESTINGPROGRAMRESULTSOFMASONRYWALLEVALUATION SUMMARYREFERENCES 667781010APPENDIXES MasonryWallPlansAdditional Justification oftheReevaluation CriteriaTABLESMasonryWalls-Function andPhysicalProperties Allowable StressesinConcreteMasonryWallsAppliedLoadsandEvaluation Results0050c

1.0INTRODUCTION

This180-dayreportisbeingissuedinresponsetoNRCIEBulletin80-11,datedMay8,1980(Reference 6.2).ThisreporthasbeenpreparedbyBechtelPowerCorporation, AnnArbor,Michigan.

forCommonwealth EdisonCompany's DresdenNuclearPowerStation,Units2and3.Revision4ofthisreportincorporates thestatuschangeoftwomasonrywallswhichSerepreviously identified inRevision3asmeetingtheacceptance criteria.

2.0SCOPEThe180-dayreportfurnishes information requested inItem2bofNRCIEBulletin80-11.Itdealssolelywithmasonrywallsidentified inthisreportassafety-related.

Anymasonrywallisconsidered safety-related whenitisinproximity toorhasattachments fromsafety-related pipingorequipment suchthatwallfailurecoulddamageasafety-related system.Theanalysesarebasedonas-builtconditions identified duringsitesurveysofJuneandJuly1980andJuly1981.3.0DESCRIPTION OFMASONRYWALLS3.1LOCATIONThefiguresinAppendixAshowthelocationofallsafety-related masonrywalls.3.2FUNCTIONThefunctionofeachmasonrywallisidentified inTable1according tooneofthefollowing categories.

3.2.1FireWallThesewallswereconstructed topreventthespreadoffirefromonesideofthewalltotheotheraccording totheappropriate fireratingassociated withthewall'sthickness.

3.2.2Partition WallThepartition wallsareinteriordividingwallswhosesolepurposeistoseparateaportionofaroomfromtheremainder.

3.2.3ShieldinWallThemasonryshielding walls.typically madeofsolidunitswhicharerequiredtorestrictradiation exposures.

0050c

3.2.4BlockoutAblockout, madeofmasonry,sealsanopeninginalargerconcretewall.Theseopeningsareleftintheconcretewallstoprovideforequipment installation orpipepenetrations beforetheopeningissealedwiththemasonry.3.2.5ExteriorWallExteriorwallshaveatleastapartofonefaceexposedtotheoutside,orareapartoftheboundaryoftheUnits2and3reactorturbinebuildingcomplex.Onlyexteriorwallsaresubjecttowindortornadoloads.3.3WALLCONFIGURATION Walldimensions andboundaryconditions foreachwallareindicated inTablel.Eachboundaryiscategorized aseitherafixedsupportcapableofproviding bothmomentandshearresistance, asimplesupportresisting onlyshearforces,orafreeedgethroughwhichnoforcescanbetransferred.

3.4CONSTRUCTION MATERIAIS3.4.1HollowMasonrThehollowmasonryunits,whichareidentified onthedesigndrawings, werespecified asthree-core blocksconforming toASTMC90.GradeN-I,Lightweight Aggregate.

Masonrywalls.whicharenotshownonthedesigndrawings, wereassumedtoconsistofhollowunitsofthesametypespecified above.Thisassumption andthematerialproperties ofthehollowblockwereverifiedbyplant-specific tests(seeSection4.7).Sitesurveyshavefoundthatthehollowmasonrywallsconsistofbothtwo-coreandthree-core units.3.4.2SolidMasonrTwotypesofsolidblocks(normalweightandmagnetite) wereusedinthesolidmasonryconstruction.

Plant-specific testsdetermined thematerialproperties ofbothtypesofblock(seeSection4.7).3.4.3MortarThemortarusedintheconst,ructionofthehollowmasonrywallswasspecified asASTMC270,TypeN,witha28-daycompressive strengthof750psi.Testsonthemortarusedinthesolidmasonryfoundthatitwas,asaminimum.comparable tothatspecified forhollowmasonry(seeSection4.7).0050c 0

Reinforcin Steel3.4.4According tothedesigndrawingsandspecifications, themasonrywallsarereinforced inthebedjointofeveryothercourse.Thisjointreinforcement consistsofheavy-duty, continuous, rectangular, laddertypesteelreinforcement, whoseminimumyieldstrengthis65ksi.Deformedbarsteel,whereshownonthedrawings, hasaminimumyieldstrengthof40ksi.3.4.5AnchorsMasonryanchorshavebeenusedincertainlocations totiethemasonrywalltoanadjacentstructural element.Theseanchorsconsistoftwotypes:corrugated metalties(dovetail anchors)whichareusedforconnections toconcretewallsorcolumnsand3/16-inch diameteradjustable bartiesweldedtothesupporting structural steel.3.5CONSTRUCTION PRACTICES Themasonrywallsatthestationwereconstructed inaccordance withtheapplicable jobandstandardspecifications formasonryworkandhaveahighqualityofmasonryworkmanship.

Conformance toapplicable ASTMspecifications wasrequiredforconcreteblocks,mortar,reinforcing ties,andanchors.Storageandprotection ofblocksandwalls,aswellascoldweatherprotection, werespecified.

Themortarjointsofsolidmasonrywallswererequiredtobeconstructed withfullmortarcoverageonallverticalandhorizontal faces.Theverticaljointsweretobeshovedtight.Afullmortarbeddingwasspecified forwebsandfaceshellsofthehollowmasonrywalls.Faceshellswererequiredtobefullybutteredandpressedintoplacetoensurefull,well-compacted horizontal andverticalmortarjoints.3.6RECONCILIATION WITH180-DAYREPORT,REVISION3Thislatestrevisionofthe180-dayreportincorporates thefollowing information:

3.6.1Theinclusion ofwalls37and103tothelistofwallswhichdonotmeettheacceptance criteria.

Thesewallswerepreviously identified asmeetingtheacceptance criteria.

Withtheincorporation oftheabove,atotalof64masonrywallsnowmeettheacceptance criteria.

Thisrepresents adecreaseoftwowallsoverthetotalshowninRevision3ofthisreport.0050c

4.0 REEVALUATION

OFMASONRYWALLS4.1POSTULATED LOADSTheloadswhichwereconsidered intheevaluation ofeachwallareidentified inTable3.4.1.1DeadLoadDThisloadincludesthedeadweightofthewallandallpermanently attachedequipment, piping,conduit,andcabletrays.Theconstruction sequences haveallowedthepermanent deadloaddeflection tooccurpriortotheerectionofthemasonrywalls.Therefore, thedeadloadsfromthefloorabovearenottransferred tothemasonrywalls.Thisloadincludesapplicable liveloadswhichcanbetransferred tothemasonrywallthroughthefloorframing.Theliveloadsarenotconsidered inthoseloadcombinations whentheywouldrelievewallstresses.

4.1.3Attachment LoadsRoandRaTheattachment loadsarelocalized loadswhicharearesultofthereactions fromthesupportsofpiping,cabletrays,conduits, HVACducts.andothersystems.Thereactions aredetermined forthenormaloperating orshutdowncondition (Ro)andfortheaccidentcondition (Ra)whichresultsfromthethermalconditions generated bythepostulated pipebreakandincludesRo.Exteriorwallsaresubjecttoauniformpressureloadcorresponding tothedesignwindspeed.ThedesignwindspeedforDresdenUnits2and3is110milesperhour.4.1.5TornadoLoadWtExteriorwallsaresubjecttovelocitypressures, differential pressures, andtornadomissilesofthedesigntornadoidentified intheplantFSAR.Themaximumtornadowindspeedis300milesperhour.Themaximumdifferential pressureis170psf.0050c

Thefollowing missilesaregenerated bythedesigntornado:~1a.Atelephone pole35'-0"long.withabuttdiameterof13inches,aunitweightof50pcf,andtotalweightof1,200pounds,andhavingavelocityof150milesperhourb.A1-tonmasswithavelocityof100milesperhourandacontactareaof25squarefeetAprobabilistic riskassessment fortornadomissilesimpacting wallsD2-529-43C-74 andD2-517-316-105 wasperformed byothers.Theresultsofthisanalysisshowtheprobability ofatornadomissilestrikingeitherofthesetwowallstobeapproximately 10-7peryear.Therefore, theevaluation includesonlytheeffectsofwindpres'sure anddepressurization.

Theoriginaldesignconsidered thebuildings housingsafety-related piping,conduit,cabletrays,andequipment assealed;therefore, tornadoloadingsdonotaffectinteriorwalls.4.1.60eratinBasisEarthuakeEoThisloadrepresents theseismicloadgenerated bytheoperating basisearthquake (OBE).Thedesigngroundaccelerations areasfollows:a.Horizontal 0.1gb.Vertical=0.067g4.1.7SafeShutdownEarthuakeEsThisloadrepresents theseismicloadgenerated bythesafeshutdownearthquake (SSE).Thedesigngroundaccelerations aretwicethoseshownfortheOBE.4.1.8ThermalLoadsToandTaThermalloadsaccountfortheeffectsofthermalgradients undernormaloperating (To)andaccident(T)conditions.

Theoperating loadsrepresent themostcriticalsteady-state condition.

whiletheaccidentcondition isashort-term thermaltransient resulting fromthepostulated pipeleak,including To0050c

4.1.9Hih-EnerPieBreakThehigh-energy pipingsystemsoutsideoftheprimarycontainment wereinvestigated andtheirproximity tothesafety-related masonrywallswasestablished.

ItwasfoundthatonlyabreakintheRWCSwouldimpactthemasonrywalls.However,abreakinthissystemisprecluded bymeansofleakdetection andadministrative action.Roomtemperature monitorsarecapableofresponding tosmallRWCSleaksbyproviding indication andalarmtothecontrolroom.Atthistime,theoperators shalltaketheappropriate actiontoisolatetheRWCS,therebypreventing afullpiperupture.Theanalysisofthemasonrywallsinproximity totheRWCSaddresses theeffectsofthepostulated pipeleakbyconsidering thethermaltransient discussed inSubsection 4.1.8anddifferential pressure(Pa).Thisloadisrepresented byanequivalent staticpressureacrossawall.4.2ALLOWABLE STRESSESTheallowable masonrystresses, excluding collarjointstresses, undernormalloadcombinations areinaccordance withthosegivenbytheBuildingCodeRequirements forConcreteMasonryStructures (ACI531-79)(Reference 6.1).Allowable stressesforextremeenvironmental andabnormalloadcombinations areincreased byafactorof1.67overtheaboveACIcodeallowable stresses.

Forthemortarcollarjoints,theallowable shearandtensionstressesare10psifornormalloadcombinations and14psiforextremeenvironmental andabnormalloadcombinations.

Allowable stressesapplicable tothedifferent typesofmasonryaregiveninTable2.4.3JUSTIFICATION OFTHEREEVALUATION CRITERIA.Exceptasnoted,allowable stressesofmasonryunitsandmortararebasedonthecodevaluesaspublished inACI531-79.Thesevaluesareconsidered reasonable andconservative.

References totestsandothercodesareprovidedinthecommentary toACI531-79.Itisnotedthattheallowable stressesareusedfortheevaluation ofexistingmasonrywallsandnotforthedesignofnewwalls.Becausebuildingcodesdonotaddressabnormalandextremeenvironmental conditions, afactorof1.67wasusedtoprovideallowable stressesundertheseloadingcombinations.

Basedonavailable marginsofsafety,thisfactorisconsidered tobereasonable.

0050c

Published dataontensionandshearstrengthofcollarjointsarealmostnonexistent.

Theultimatecollarjointstressesweretherefore determined byplant-specific insitutests.Theallowable stress,asgiveninSection4.2,wasobtainedbyapplyingasafetymarginofthreetotheminimumtestresult(seeSection4.7).Additional justification ofthereevaluation criteriaisprovidedinAppendixB.4.4SEQUENCEOFANALYSISEachwallisinitially analyzedconsidering onlydeadandseismicloadsordeadandtornadoloads,whichever appearsmostcritical.

Forallwallswhicharefoundtobeacceptable, thefollowing applicable loadingsareconsidered:

liveload,attachment loads,pipeleakloa'ds,andinterstory drift.4.5METHODOFANALYSISANDACCEPTANCE CRITERIA4.5.1StressAnalsisBasedonthewalls'oundary conditions, eachwallisidealized aseitheracantilever;,one-way strip,ortwo-wayplatewhichissupported alongatleasttwoadjacentedges.Thewallisthenconsidered acceptable ifallwallstressesunder'llloadcombinations arelessthanorequaltotheestablished allowable stresses.

4.5.2StabilitandSlidinAnalsisCantilever wallswhichdonotmeettheacceptance criteriaforallowable stressesareanalyzedwithregardtooverturning stability andslidingmovement.

Afactorofsafetyagainstoverturning isdetermined forbothOBEandSSEloads.Theminimumacceptable factorsofsafetyare2.0forOBEand1.5forSSEconditions.

Beforethewallisconsidered acceptable, thetotalwallmovement, including rockingandsliding,mustnotadversely affectanysafety-related items.4.5.3AnalsisofArchinEffectsMasonrywallswithmortaredjointsat,boththetopandbottomboundaries thatdonotmeet,theacceptance criteriaforallowable stressesareinvestigated forarchingeffects.Thewallscapability ofresisting horizontal loads,afterultimatetensionstressesareexceeded, isdeveloped whenthewalljamsatthetopandbottomagainstthesupporting structural members.Thecenterofthewallcracksduetotensionstresses, andathree-hinged archisformedtoresisttheloadsthroughcompression stressesonly.0050c

Designseismicloadsgenerated bythesafeshutdownearthquake arebasedonthepeakacceleration oftheapplicable responsecriteriaandadampingfactorof10%ofcritical.

Thestiffnesses ofthesupporting structural elementsareaccounted forintheanalysis.

Also,thedeflection atthecenterhingemustbelessthanorequaltoonethirdofthewallthickness.

Ifanarchingwallmeetstheaboverequirementj itisconsidered acceptable whenthecompression stressdevelo'ped inthearchislessthanorequaltotheallowable flexuralcompression stressshowninTable2.4.5.4Interstor DriftUnderSeismicLoadsTheeffectsofinterstory driftareconsidered bydetermining thein-planeshearstraininthewallduetotherelativedisplacement betweenthetopandbottomofthewall.Theallowable in-planestrainsare0.0001forunconfined wallsand0.001forconfinedwalls.Anunconfined wallisdefinedasawallsupported onlyontwoadjacentsides.Aconfinedwallissupported onanythreesidesoratthetopandbottomofthewall(References 6.5,6.6.and6.7).Theseacceptance criteriaareconsidered tobejustified becausenoneofthemasonrywallscarryasignificant partofthebuildings'tory shearormoment.Also,testdataindicatethatthegrossshearstrainofwallsisamorereliableindicator forpredicting theonsetofcrackingthanloadsorstresses.

Theout-of-plane relativedisplacement createsabendingmomentinthewallonlyinthecasewherethetopandbottomboundaries aresupported.

andatleastonerepresents afixedcondition.

NoneofthemasonrywallsattheDresdenstationareeffectively fixedateitherthetoporthebottomboundary; therefore, theout-of-plane interstory driftisnotconsidered.

4.6ASSUMPTIONS ANDANALYSISCONSTRAINTS Thefollowing assumptions andconstraints wereemployedinthereevaluation ofthemasonrywalls.4.6.1Nonsafety-related walls,anchorbolts.andembedments werenotwithinthescopeofthereevaluation.

4.6.2Allloadsandloadcombinations outlinedintheplantPSARareconsidered inthereevaluation.

0050c

4.6.3Theseismicloadsonmasonrywallsaredependent onthedampingcharacteristics ofthematerial, whichareexpressed inpercentage ofcriticaldampingasfollows(References 6.3and6.4):a.Uncracked MasonryWall,Out-of-Plane Acceleration 1)OBE:2%2)SSE:2'4b.VitalPipingSystems.Horizontal andVerticalAccelerations 1)OBE:0.5%2)SSE:2'tTheplantFSARspecifies dampingof0.5'4underOBEconditions forvitalpipingsystems.Forthepurposeofthisevaluation, vitalpipingaredefinedasallsafety-related piping.c.OtherAttachedSystems,Horizontal andVerticalAccelerations 4.6.41)OBE:1'42)SSE'WThiscategoryincludesnonsafety-related pipingandsafety-related andnonsafety-related conduit,cabletrays,andHVACductwork.

Amasonrywallisconsidered anisotropic, elasticmaterial.

Itsnaturalfrequency iscalculated usingstandardplateformulas.

Forawallwithanopening,thecalculated frequency isreducedby9%ifthesizeoftheopeningequalsorisgreaterthan15%ofthewallarea.Thereduction isproportionally lessforasmalleropening.Formultipleopenings, thelargest'oneisconsidered.

Toaccountforvariation instiffness andmassofthewall,theabovefrequency isvariedby+10%andthemaximumresponseisusedintheanalysis.

4~6.54.6.6Inaccordance withtheplantFSAR,theeffectsoftheseismicloadsofonehorizontal andtheverticaldirection areaddedarithmetically.

Deadloadsfromthefloorabovearenotconsidered beingtransferred tothemasonrywalls.Apartoftheliveloadfromthesefloorsistransferred tothewalls;however,itisnotconsidered ifitwillrelievewallstresses.

0050c

4.6.74.6.8Shearandtensilestressesarenottransferred acrossthecontinuous verticalmortarjointsofwallslaidinstackbondortheverticalmortarjointsofawallboundaryadjacenttoaconcretestructural member.Standard, prefabricated sectionsofthehorizontal jointreinforcing steelareprovidedatallcornersofmasonrywalls.However,theircontribution toth4strengthcapacityofthisintersection isnotconsidered.

4.7MASONRYWAILTESTINGPROGRAMAsamplingandtestingprogramwasperformed atthestation.Thisprogramprovidedthematerialproperties necessary todetermine theallowable stressesapplicable forthemasonrywallevaluations.

Thetestingwasalsoconsidered tofulfillthespecialinspection requirements ofReference 6.1;thusallowingtheuseofinspected allowable stresses.

Thefindingsoftheprogramareasfollows.4.7.1Thehollowmasonryblockhasanaveragecompressive strengthof2,100psionthenetarea.4~7.24.7.3Thesolidmasonryblockhasanaveragecompressive strengthof3,400psi.rThemortarusedinboththehollowandsolidmasonryconstruction is.asaminimum,comparable toASTMC270,TypeN.4.7.4Theaverageunitweightofthehollowmasonryis110pcfandtheaverageunitweightforthesolidmasonryis132pcf.4.7,5Insitutestswereperformed ontwowallstodetermine thestrengthofthemortaredcollarjoint.Theresulting failurestresseswere37.6and32.7psi.4.7.6Onewall(D2-534-33G-21) wasfoundtoconsistofmagnetite aggregate.

Testsindicatetheblockofthiswalltohaveacompressive strengthof6,000psiandaunitweightof235pcf.Themortarwasfoundtobecomparable toASTMC270,TypeM.5.0RESUITSOFMASONRYWALLEVALUATION Table3liststheresultsofthemasonrywallreevaluation.

Thecriteriausedtojustifythewall'sacceptance ormodeinwhichitdoesnotmeetthecriteriaareidentified.

0050c10

5.1SUMMARY~~'hefollowing summarizes theresultsofthereevaluation of96safety-related masonrywalls:5.1.1Totalnumberofwallsmeetingtheacceptance criteria:

645.1.2Totalnumberofwallswhichdonotmeettheacceptance criteria:

3

26.0REFERENCES

6.1BuildingCodeRequirements forConcreteMasonryStructures, ACI531-79,AmericanConcreteInstitute, Detroit,Michigan, 19796.2USNRCIEBulletin80-11,datedMay8.1980'.3FinalSafetyAnalysisReport(FSAR)fortheDresdenNuclearPowerStationUnits2and36.4DampingValuesforSeismicDesignofNuclearPowezPlants,U.S.NuclearRegulatory Commission Regulatory Guide1.61,October19736.5Becica,I.J.andH.G.Harris,Evaluation ofTechniques intheDirectModelingofConcreteMasonryStructures, DzexelUniversity Structural ModelsLaboratory ReportM77-1.June19776.66.7Fishburn.

C.C.,EffectofMortarProperties onStrengthofMasonry,NationalBureauofStandards Monograph 36U.S.Government PrintingOffice,November1961Mayes,R.L.;Clough,R.W.;etal.CyclicLoadingTestsofMasonryPiers,3Volumes,EERC76/8,78/28.79/12Earthquake Engineering ResearchCenter,CollegeofEngineering University ofCalifornia,

Berkeley, California 6'60-DayReportinresponsetoIEBulletin80-11forDresdenNuclearPowerStationUnits2and3,Commonwealth EdisonCompany.DocketNumbers50-237and50-249datedJuly3,19800050c

TABLE1MASONRYWALLS-FUNCTIONANDPHYSICALPROPERTIES WallFunctionThick-nessWtheaBondSine(heihtxwidth)ShownonBoundaryDesignSurtDrawinsRemarksD2"570-40M-1 D2-570-39M-2 D2-570-43K-3 D2-570-42J-4 D3-570-45K-7 D-50-5K-8D2-570-38M-11 D2-561-4D-12D-1-D-1D3-545-44D-14 Partition 12"Shielding 12"Partition Partition 6"Partition 12"Shielding 12"Shielding 18"Shielding 12"Shielding 18"Shielding 12"HollowHollowSolidSolidSolidSolidHollowHollowHollowHollowRunning'-0"x9'-6" Running'-1"x17'-1" Running6'-3"x21'-7" Running'-5"x22'-ll" Running-5"x23'-ll" Running'-9"x9'-7" Running14'-9"x22'-0" Running16'-3"x21'-7" Running7e-1"x8'-8"*

Running'-1"xl8'-0 YesYesYesYesYesYesYesYesYesYesD2-570-43K-15 D3-570-5K-16BlockoutBlockout24"24"Hollow*HollowRunning'-6"x2'-0" Running'-4"xl'-ll" NoNo*-Assumed

  • -Assumed BOUNDARYSUPPORTSFreeedgeSimplesupportFixedsupportL%hoot1nf7

TABLE1MhSONRYMhLLS-FUNCTIONhNDPHYSIChLPROPERTIES Mall2-534-33E-20 2-534-33G-21 2-534-33H-22 2-545-38H-23 FunctionPartition BlockoutBlockoutFirewallThick-ness12"18"8ll12"ollowSolidollowollowWtheaBondunningtackunningunningSice(heihtxwidth)26'-10"x9"-1" 9'-9"xl6-4"14'-6"x6'-8" 24'-0"x8'-6" BoundarySurtShownonDesignDrawisYesYesYesYesReaarks2-545-39J-24 2-545-39J-25 2-S45-41H-26 Shielding Shielding Shielding 24"24"16"olidolidolidunningunningtack12'-3"x14'-2 8~-1"x6'-7" 8'-0"x170-2"

)(xx)cYesYesYes2-545-44J-31 2-545-43L-32 2-545-43M-33 3-545-44J-34 3-545-45L-38 3-545-48N-40 Shielding Shielding Shielding Shielding Shielding Firewall180t48tt56"18"48tl12"olidolidolidolidolidollow8unningunningunningunningunningunning8'-0"x6'-0" 10'-10"xll'-4" 10'-0"x4'-8" 8'-1"x6'-0" 10'-8"xll'-6" 12'-8"xl4'-10" QYesYesYesYesYesYes2-545-40N-41 Firewall12"lollowunning12'-8"xl4'-10" Yes E:

ThBLE1MhSONRYMhLLS-FUNCTIONhNDPHYSIChLPROPERTIES MallFunctionThick-nessMthesBondSite(heihtxwidth)ShownonBoundaryDesignSurtDrawinsRemarksD--F-FrewaFirewallD2-549-32F-48 FirewallD2-549-32G-49 FirewallD3-545-49H-42 Shielding D3-545-50H-44 Partition D2-549-32F-45 Firewall24"12"8It8'tt8ttSolidHollowHollowHoowHollowHollowHollowRunningRunningunningRunningRunningRunningunning13'-5"x12"-0" 24'-6"x8'-8" 9'-0"xlO'-4" 1-x10-6x21-810'-6"x9'-8" 10'-6"x20'-9" YesYesYesYesYesYesYesD2-549-32G-50 FirewallD2-549-31G-51 FirewallD2-549-32G-52 FirewallD2-549-33G-53 BlockoutD2-549-33H-54 BlockoutD2"534-33G-55 BlockoutD2-534-33G-56 BlockoutD--M-BocoutD3-55-47M-68BlockoutD2-545-39J-66 Shielding 8I~8I~8II8I~8tt20"8tt24"24"HollowHollowHollowHollowHollowHollowHollowSolidHollowHollowunningunningunningunningunningunningunningRunningunningunning10'-6"xl7'-2" 10'-6"x21'-5" 8'-ll"x17'-3" 12'-0"x6'-0" 12'-0"x14'-8" 14'-6"x4'-8" 14'-6"x6'-9"8'-1"x4'-3" 3'-6"x7'-5" 3'"x7'-5" xxxKxxxxYesYesYesYesYesYesYesYesNoNoTypeofblockandnumberofwtheaassumedTypeofblockandnumberofwythesassumed

ThBLE1MhSONRYMhLLS-FUNCTIONhNDPHYSIChLPROPERTIES MallFunctionD2-534-43H-70 Partition D3-53-5D-71Partition D3-534-44D-72 Partition Thick-ness12"12"12"HollowHollowHollowMtheaBondRunningRunningRunningSise(heihtxwidth3'-5"x26'~0" 13-5'x9-6"13'-5"xl4'-7" BoundarySurtXK)ECShownonDesignDrawisYesYes"YesReasrksD3-534-44D-73 Partition

]2I~HollowRunning13'-5"x9'-7" YesD2-529-43C-74 Partition 12"HollowRunning11'-4"x39'-4" YesD2-545-41J-76 Shielding D3-545-46H-77 Shielding D2-517-33E-80 Partition D2-503-35E-81 Shielding 24M24"12SolidSolidHollow36"SolidRunningRunningRunningRunning8'-1"x4'-0" 8'-2"x4'-1" 15'-ll"x9'-3" 29'-ll"x31'-10" YesYesYesYesD2-517-31F-82 FirewallD2-517-32F-83 FirewallD2-517-32G-84 FirewallD2-517-33H-85 Shielding D2-517-33H-86 FirewallD2-517-38H-87 FirewallD2-517-39H-88 Blockout02-517-39K-89 Shielding 12"12"]2I~12"12"24"24"HollowHollowHollowHollowHollowHollowSolidSolidRunningRunningRunningRunningRunningRunningRunningRunning16'-0"x23'-0" 16'-0"x39'-0" 16'-0"x23'-0" 13'-0"x20'-8" 14'-3"x18'-0" 27'-7"x8'-8" 7'-0"x14'-5" 8'-2"x9'-10" JC)lK)CYesYesYesYesYesYesYesYes

TABLE1MhSONRYILLS-FUNCTIONhNDPHYSIChLPROPERTIES MallFunctionThick-nessWtheaBondSise(heihtxwidth)BoundarySurtShownonDesignDrawisD2-517-426-90 Blockout12"HollowRunning8'-6"x17'"6" YesD3-517-49H-92 Partition 12"D-517"'i9J-93 Shielding 2D2-517-34E-94 Partition 12"D2-Sll-33G-95 Partition 12"D2-517-43H-96 Shielding 18"D3-517-45H-97 Shielding 18"HollowSolidHollowHollowSolidSolidRunning27'-5"x8'-8" Running8-2x-10Running31'-0"x29'-0" Running15'-ll"xS'-9" Running9'-8"x8'-0" Running9'-8"x8'-0" kXXXIXWYesYesYesYesYesYesD3-517-46N-98 FirewallD3-517-46N-99 FirewallD3-517-46N-100 Firewall12"12"12"HollowHollowHollowRunning7'-'"xll'-5 Running7'-0"xll'-5" Running7'-0"xl6'-8" YesYesYesD2-517-38H-101 Partition 12"HollowRunning27'-0"x10'-6" C.:PYesD3-S17-46G-104 Partition 8tlD3-517-50H-102 Partition 12"D3-507-44C-103 Shielding 12"HollowSolidHollowRunning30'-0"x10'-5" Running10'-1"'-3"Running12'-6"xl7'-6" YesYesNoD-G-1BlockoutHollowRunning7-ll"x6'-4" XXXNoD--E-Partition HollowRunning15-11x3-1"Yes

TABLE1MhSONRYWALLS-FUNCTIONANDPHYSICALPROPERTIES MallFunctionThick-neeaeWtheaBondSise(heihtxwidth)ShownonBoundaryDesignSurtDrawisRemarksD3-517-45D-107 BlockoutD2-517-44D-108 Shielding D2-517-44E-109 Partition 12'2"12"HollowHollowHollow1RunningRunningRunning14'-10"x14'-7" 7'-5"x6'-0" 9'-10"xl3'-2."

CyYesYesYeselisfilledwithsandD2-517-43E-110 Partition D2-517-39H-ill BlockoutD2"528-35H-112 FirewallD2-528-34H-113 Firewall12"24"]2'2"HollowHollow*HollowHollowRunning4*RunningRunning1Running9'-10"x9'-6"

.6'-5"x2'-5" 5'-1"xl3'-3" 7'-8"x6'-10" YesNoYesYes*-Assumed D3-528-54H-114 FirewallD3-528-54H-11S FirewallD2-517-43H-116 BlockoutD3-517-49H-117 Shielding D2-S07-45C-118 Shielding D2-517-5A-120 Exterior12"12"12"24"8to12ltHollowHollowHollowHollow*SolidHollow1RunningRunning1Running2*Running1Stack1Running8'-1"x14'-0" 8'-1"x8'-6" 9'-4"x2S'-ll"

'-4"x2'-4" 6'-3"x2'-3" 20I-2"x14'-ll"YesYesYesNoYesYes*AssumedD2-517-3A-121 Exterior12"Hollow1Running20'-2"x14'-ll" y.K)CpCYes

TABLE1HhSONRYMALLS-FUNCTIONANDPHYSICALPROPERTIES MallFunctionThick-nessMtheeBondSiee(heihtxwidthShownonBoundaryDesignSurtDravieRemarksD--H-BocoutD3-476-45H-122 Blockout36ItHollowHollowRunningRunning4'-5"x9'-4" 4-8'9-NoNoTypeofblockandnumberofwythesassumedTypeofblockandnumberofwythesassumedD2-558-43K-35 Shielding D2-558-43K>>36 Shielding b2-558-42K-37 Shielding D3-558-45K-39 Shielding 30"Solid36ItSolid36"Solid12"SolidRunnin6Running2Running6Running5t2ttx13t3II8'-5"x12t-0"5I4tfx3f41I8~5Ilx12IOtlYesYesYesNoasenotmortared 0

TABLE2ALLOWABLE STRESSESINCONCRETEMASONRYWALLSTe1WallLoadinCondition e2WallLoadinCondition TeofStresssiFlexuralcompression, FmTransverse andpunchingshear,VmShearinmortarcollarjoint.Vmc~DirectorNormaltobedjoflexuralHollow-ParalleltobedtensionNormaltobedjoSolid-ParalleltobedMortarcollarjoints,Ftcints.Fthjoints,Fthpints.Ftsnjoints,FtspNormal3403510142710AbnormalandExtremeEnvironmental 5605914234614Normal3903810274010AbnormalandExtremeEnvironmental 6506314466814Axialcompression allowable (Fa)isdependent upontheheightandthickness ofthewallFa=0.225fm[1-(h)3]40tTe1Walle2WallHollow-unit wallfm-1..020psimo-750psiSolid-unit wallfm=1,190psimo=750psi1.Forwallslaidinstackbond,shearandtensilestressesshallnotbetransferred acrossthecontinuous verticaljoints.2.Materialproperties andtheshearcapacityofmortaredcollarjointshavebeenveriTiedbyfieldtests.0191C

APPLIEDLOADSANDEVALUATION RESULTSApliedLoadsEvaluation ResultsWallD2-570-40M-1 NormalE0DLWRDrW0EsRTPaaaAbnormalYPMeetsAcceptance CriteriaDoesNotMeetAccetanceCriteriaExceedsoverturning criteriaRemarksD2-570-39M-2 Exceedsoverturning criteriaD2-570-43K-3 Meetsover-turningcriteriaD2-570-42J-4 eetsover-turningcriteriaD3-570-45K-7 eetsover-turningcriteriaD3-570-45K-8 eetsover-urningcriteriaD2-570-38M-11 Exceedsoverturning criteriaD2-561-44D-12 Exceedsoverturning riteria

ApliedLoadsTMIAPPLIEDLOADSANDEVALUATION RESULTSEvaluation ResultsWallD3-561-45D-13 NormalDLERDr00AbnormalTaWERsaPYapMeetsAcceptance CriteriaDoesNotMeetAccetanceCriteriaExceedsoverturning criteriaRemarksD3-545-44D-14 Meetsallowable stressesD2-570-43K-15 Meetsallowable stressesD3-570-45K-16 Meetsallowable stressesD2-534-33E-20 ilExceedsallowable tensionD2-534-33G-21 J~IJlMeetsallowable stressesD2-534-33H-22 JlExceedsoverturning criteriaD2-545-388-23 J4JJlMeetsallowable stresses

~TABLAPPLIEDLOADSANDEVALUATION RESULTS.AppliedLoadsEvaluation ResultsWallD2-545-39J-24 NormalDLWERDr00WAbnormalERTsaaPaYPMeetsAcceptance CriteriaMeetsallowable stressesDoesNotMeetAccetanceCriteriaRemarksD2-545-39J-25 iJMeetsallowable stresses02-545-41H-26 eetsover-turningcriteriaD2-545-44J-31 J~/Exceedsallowable strain.forinterstory driftD2-545-43L-32 JJ<VJJMeetsallowable stressesD2-545-43M-33 JVdJ4Meetsallowable stressesD3-545-44J-34 dJillExceedsallowable strainforinterstory driftD3-545-45L-38

./4Mlseetsallowable stresses

,~

~TABLAPPLIEDLOADSANDEVALUATION RESULTSAppliedLoadsEvaluation ResultsWallD3-545-48N-40 NormalE0DLWRDrW0AbnormalERTsaaJJPaMeetsAcceptance YpCriteriaDoesNotMeetAccetanceCriteriaExceedsallowable stressesRemarksD2-545-40N-41 Exceedsallowable stressesD3-545-49H-42 Meetsallowable stressesD3-545-50H-44 JdMeetsallowable stressesD2-549-32F-45 JJMeetsallowable stressesD2-549-31F-46 4v'iMeetsallowable stressesD2-549-32F-47 Meetsallowable stressesD2-549-32F-48 JJMeetsallowable stresses

APPLIEDLOADSANDEVALUATION RESULTSApliedLoadsEvaluation ResultsWallD2-549-32G-49 NormalE0DLWRDrW0E8RTPaaaAbnormalYPMeetsAcceptance CriteriaMeetsallowable stressesDoesNotMeetAcceptance CriteriaRemarksD2-549-32G-50 Meetsallowable stressesD2-549-31G-51 Meetsallowable stressesD2-549-32G-52 ilMeetsallowable stressesD2-549-33G-53 Exceedsallowable tensionD2-549-33H-54 Exceedsallowable tensionD2-534-33G-55 Meetsallowable stressesD2-534-33G-56 eetsallowable stresses

~TABAPPLIEDLOADSANDEVALUATION RESULTSApliedLoadsEvaluation ResultsWallD2-545-39J-66 LWER00NormalDrWtESRTPaaaAbnormalYPMeetsAcceptance CriteriaMeetsallowable stressesDoesNotMeetAccetanceCriteriaRemarksD3-,545-47M-67 4v'eetsallowable stressesD3-545-47M-68 Meetsallowable stressesD2-534-43H-70 Meetsallowable stressesD3-534-45D-71 J4Meetsallowable stressesD3-534-.44D-72 Meetsallowable stressesD3-534-44D-73 eetsallowable stressesD2-529-43C-74 JlExceedsallowable tension

TABLAPPLIEDLOADSANDEVUATIONRESULTSApliedLoadsEvaluation ResultsWallD2-545-41J-76 DLER00NormalDrWtERaTPYaapAbnormalMeetsAcceptance CriteriaDoesNotMeetAcceptance CriteriaExceedsallowable strainforinterstory driftRemarksD3-545-46H-77 Exceedsallowable strainforinterstory driftD2-517-33E-80 4JExceedsallowable tensionD2-503-3SE-81 ExceedsarchingcriteriaD2-517-31F-82 Exceedsallowable tensionD2-517-32F-83 Exceedsoverturning criteria92-517-32G"84 JJExceedsallowable tensionD2-517-33H-85 Exceedsallowable tension

AppliedLoads~TABLAPPLIEDLOADSANDEVALUATION RESULTSEvaluation ResultsWallD2-517-33H-86 NormalDL4JERDr00WAbnormalERTsaapaMeetsAcceptance YpCriteriaDoesNotMeetAcceptance CriteriaExceedsallowable stressesRemarksD2-517-38H-87 4JdJlMeetsallowable stressesD2-517-39H-88 4dJMeetsallowable stressesD2-517-39K-89 Meetsallowable stressesD2-517-42G-90 ileetsover-turningcriteriaD3-517-49H-92 llewJJeetsallowable stressesD3-517-49J-93

~iieetsallowable tressesD2-517-34E-94 JvExceedsoverturning criteria

APPLIEDLOADSANDEVALUATION RESULTSApliedLoadsEvaluation ResultsWallD2-517-33G-95 NormalE0DLWRDr0WAbnormalERsaiJTPYaapMeetsAcceptance CriteriaDoesNotMeetAcceptance CriteriaExceedsallowable tensionRemarksD2-517-43H-96 Exceedsoverturning criteriaD3-517-45H-97 Meetsover-turningcriterian3-517-46N-98 Meetsallowable stressesD3-517-46N-99 JJMeetsallowable stressesD3-517-46N-100 liExceedsallowable tensionD2-517-38H-101 Meetsallowable stressesD3-517-50H-102 lJMeetsallowable stresses

APPLIEDLOADSANDEVALUATION RESULTSApliedLoadsEvaluation ResultsWallD3-507-44C-103 DLNormalWER00DrWRaTPYaapAbnormalMeetsAcceptance CriteriaDoesNotMeetAccetanceCriteriaExceedsoverturning criteriaRemarksD3-517-46G-104 ivMeetsarchingcriteriaD2-517-31G-105 MeetsarchingcriteriaD2-517-33E-106 Meetsallowable stressesD3-517-45D-107 Meetsallowable stressesD2-517-44D-108 Meetsover-turningcriteriaD2-517-44E-109 JdMeetsallowable stressesD2-517-43E-110 eetsallowable stresses

TABLEAPPLIEDLOADSANDEVALUATION RESULTSAppliedLoadsEvaluation ResultsMallD2-517-39H-ill NormalE0DLWRDrM0AbnormalERTsaapMeetsAcceptance YpCriteriaeetsallowable stressesDoesNotMeetAcceptance CriteriaRemarksD2-528-35H-112 Meetsallowable JstressesD2-528-33H-113 JJJJJMeetsallowable stressesD3-528-54H-114 JJeetsallowable tressesD3-528-54H-115 eetsallowable tressesD2-517-43H-116 eetsallowable tressesD3-517-49H-117 Meetsallowable stressesD2-507-45C-118 Exceedsoverturning criteria

~TABAPPLIEDLOADSANDEVALUATION RESULTSApliedLoadsEvaluation ResultsWallD2-517-5A-120 NormalDLWJJR0DrWEsRaTPaaJJAbnormalYPMeetsAcceptance CriteriaDoesNotMeetAcceptance CriteriaExceedsallowable stressesRemarksD2-517-3A-121 lJExceedsallowable stressesD3-476-45H-122 iJMeetsallowable stressesD3-476-43H-123 Meetsallowable stresseseetsallowable stressesD2-558-43K-36 eetsallowable stresses.D2-558-42K-37 Exceedsallowable stressesinsupportbracket.D2-558-45K-3 9eetsallowable tressesLEGENDDrInterstory drift

CWNrelr~~Ne~4LE.EHO0OAFE.'iVAE.LATEOHASONRfQAU-S-'!,IP'.'e4N4I~f44~CN~INNNl0"1'I~4thI'I~~~N~N4Ce4NNNCIMOW4~ee144~Ve4>>N>>NNCAhhht~11141hACNENCNQ~~~h~!4444>>Nhlhi&5techNNCCIN>>NINhtNNCNCCNO44~4\'pIL~~\~IICNNNNU1444~NN4444NN44NCCCCCNN'll1NICC~IINCCNNWCCN>><<NCe>>h~I\C~CIANCCC IMXltM5AtllT~TtDRWJ%INONICCNIININNCN4etCNC~INNCMNNC>>4NNIettt444INNNV~hNet~~CNNVCICCVNNNCN4444l~-N~4~~'Iel/~14~N~~w~4>>NCC~INNl1Areseqe+ar008as@.wc~rFLooDRE$l%HNOCLEAt.POI4CC.5TA.OLmisacuate.wAsRGpao~>VQOH94LDNA'HlH&-~

I4

P~~.~I4~F~~I~~'~~4

I~III~t<<~>>NI'0IG'.g~~NNV~I~IN~IVt:4I'(II~LEEN0"-SAFETY%CAELA'TE.CI HASOhlAVHAI.L'5~.~~~I0cssQQIQgasalNAW'rqi.Oftis>~40fyyQ,4JI\I~=~4\~7'~:~Wss01>>0p)EI.'I'Vso.0"lIelI<<~CICV>>4ttI~et~.~tN~.,~T~IININ.,tNO,II~II-4'I>>4%VIIVIosvNOvy/gfvagI!'I~OOOVIIletV~~OOSVN~Nl~>>~itIIeoVI'4)I~P~~\~444I-iII~~IE~I~I~~4IO~~NNV~NNN~N~SN~NNNtooevsooo~~~I>>OC2NNtlVsetNIIN>>IVNNN~INUCSIAESallttEIIAIIOIsssvsossssecwsoNseesasst>>toII~4'C'NOINN>>ttNONIOI~ttO~>>V~a>>9-J-QVNVVI.pIV.4~4el~~.~it-Z0I-Sl HASOI4WIalALI.Se,El.911OiKSDQLHUCLEARFOHERQAIIII5FIGURE.WASREPRODUCED FRONsssITIDRA'l4IHC0 N-+~~EAPPEHDIXAP~E.koFS.

CIIIItiffI~~~~rLECiE.ND0-SAFE.'t'f RE,urEDHA5CIHRMiIALLSI~It>I+~<<et4~~eeooI~II<<I+IIhe>tkeoor>>Oee~<<OI~<<rt~ltOtlt~<<<<~~~<<I~I4~I\I~IlO<<~rro>~IerIe<<>IfIIw<>>~~'tjt~O<oIS(7~le~'<<-d55'=...-EKfire<<I~IV~IjI<<e<<r<<ee'lft~O<<elI~O~I'+i~rrl~4t<<t<<oAI~~IO~el'~>>.,~7'~I~jIflIII~~~!Itrmc..3<<HWee<<4<<<<I0IIOterb:P~>>~<<AT-'pauliOf,LoI;t;L':r~l~g>>~g<<tf4I<<<<7.~II'I.IIaWPOO4WL-<<4IIH'e~el>>lltlehlle tetr<<<<otOK>>tIIIrre>>erIro<<e,HVCLlMOAfIITOIIOIIOmrasool7>>fe>>o>>I>IIcol>>etcore'I~rfLI~oC5lIlee<<~e>>ee>>ooor>eo~~~~olelite4<<4>>xoL~~O+O~Orr<<eeleII~<<&leI>>ej~'rer~eH~eleM~I~>>fI44~4%4>>INASOHRfHALLSCEL.545'-4 OfK5ItEHNJCLEARPONE+STAANTTl4I4RCIUREHA5REPRODUCEP FROH5gLORAI4IHQ8-3

Zis6~iCssri')i6)IQ+4.la~ifbiQlsQofig)A)AlNi)0I)II"Qi)iDIQ)6gaI)0~,I~I~4'a~)~'4)asi)~~)~'~'a~'Ili~JIOJJLOIl'A'i)")<ii~iso.~LIaLEGENDI~<<4ata~IIO~11~I14lal<<'I>>tala(cCSAFETfRE.~>EeHASO&Fl,0hlALlODIW~I~c!~))S>))~~MtvI>>v)II<<IHOLMt<<M~00>>MIV<<Ill)0>>altQIMMOM~M~OtI>>~L0<<aISMIMaaviv'<<ecvs

~IIlII>>I%II<<00))04100<<<<~Olla~ISOII~La,~ava,<<0~~\tIHMI<<0<<I<<I~II~'taLMA11I'>>014<<\4Jtm!~~a)0)oos<<Itlfl)00144)<<M0104LV>><<~OHI.SV)I<<01<<014~M~avlIII~7~4'0Dw'o'a'ILLM0<<M<<at<<4OLAAOI~It<<I'AA)AA)LlRJ

<<M~~MI'0I~'i4>>qa000<<OO~00~0-I-,'C0HI0~~~'IUI)o)Ll).W'-Tit1~il%P,'li%R Rg.'~III~MAI>>'Y~>>I~.000'4<<0>>i~>>4IIQ(1)AASA)l)TAIIAIIOIII<<lLOIS>>400<<4<<lvl44<<0<<4'::-'iLIEIhIIll~II'i/L~.'If=M>>01040<<~,~la>>a*~~0\\MMM>>MM4L/~<<via~a>>LIM0MMIH~~Ž0~0-0I<<I<<I0'Ll~0<<1<<aolII)04<<LIL>>

laaooavOL)a)oil4~0--l0IIII<<tvILOL~>>01~I.T~.I~00104Oa>>0~000,IH~II'T)'IMi'24~~01000l<<M~MM04%44<<4~v>>>>ve00<<toa00tHoomso~mw~8a@10'-oOAErAliEff Hua.ENPaHERATA.U+TZ'TlilSFlivlVRE.

NAARE,PRO>UFRoHO'4(l-DRAMINcgN'R~MM.,0<<,~~~0>>vlMIH~~I

APPENDIXBADDITIONAL JUSTIFICATION OFTHEREEVALUATION CRITERIA0052C

AppendixB,PageiiofiiTABLEOFCONTENTS1.02.

03.0INTRODUCTION

ABBREVIATIONS ALLOWABLE STRESSES~Pae1g13.13.23.33.43.53.6AXIALCOMPRESSION FLEXURALCOMPRESSION BEARINGSHEARTENSIONSHEARANDTENSILEBONDSTRENGTHOFMASONRYCOILARJOINT4.0IN-PLANEEVALUATION CRITERIA4.14.

25.0INTRODUCTION

TESTRESULTSALTERNATIVE EVALUATION CRITERIA5.1'.2ARCHINGROCKINGSLIDINGREFERENCES

'B-1B-2B-3TABLESCompressive StrengthofAxiallyLoadedConcreteMasonryWallsFlexuralStrength-SingleWytheWallsofHollowUnits,UniformLoad,VerticalSpanFlexuralStrength, VerticalSpanConcreteMasonryWalls,FromTestsatNCMALaboratory FlexuralStrength, Horizontal Span,Nonreinforced ConcreteMasonryWalls0052C

AppendixB,Page1of1

31.0INTRODUCTION

Thefollowing discussions andtestresultsareintendedtoprovideadditional justification ofthereevaluation criteriaforthesafety-related masonrywalls.Thisinformation hasbeenextracted fromthereferences identified inSection6.0.~2.0ABBREVIATIONS Abbreviation TitleACIAmericanConcreteInstitute ASCEAmericanSocietyofCivilEngineers ATCAppliedTechnology CouncilEERCEarthquake Engineering ResearchCenterNBSNationalBureauofStandards NCMANationalConcreteMasonryAssociation

3.0 ALLOWABLE

STRESSES3.1AXIALCOMPRESSION Theobjective wastodevelopreasonable andsafeengineering designcriteriafornonreinforced concretemasonrybasedonallexistingdata.Areviewin1967ofthecompilation ofallavailable testdataoncompressive strengthofconcretemasonrywallsdidnot,according tosome,provideasuitablerelationship betweenwallstrengthandslenderness ratio.Fromamorerecentanalysis, itwasnotedinmanyofthe418individual piecesofdatathateitherthemasonryunitsormortar,orinsomecases.bothunitsandmortar.didnotcomplywiththeminimumstrengthrequirements established forthematerials permitted forusein"engineered concretemasonry"construction.

Accordingly, itwasdecidedtoreexamine thedata,discarding alltestswhichincludedmaterials thatdidnotcomplywiththefollowing minimumrequirements:

MaterialCompressive StrengthsiSolidunitsHollowunitsMortar1.000600(gross)7000052C

AppendixB,Page2of13Alsoeliminated fromthenewcorrelation-werewallswithaslenderness ratiooflessthan6;wallswithanh/tratiooflessthan6wereconsidered tobeinthecategoryof"prisms".

Forevaluation ofslenderness reduction

criteria, onlyaxiallyloadedwallswereused.Thedatathatwereavailable consisted oftestson159axiallyloadedwallswiththeh/tratiorengingbetween6and18.Withthisasastartingpoint,theda@wereanalyzedassumingthattheparabolic slenderness reducti4h function[1-(h/40t)3]

isvalid.Thebasicequationusedtoevaluatethetestdatawas:ftest=Cofmfl-(h)3]S.F.40twhereftest40tCoxS.F.~KCoxS.F.](2)(3)fm=Assumedmasonrystrength, netarea,basedonstrengthofunitsftest=Netareacompressive strengthofpanelS.F.=SafetyFactorCo~=Strengthreduction coefficient

=Heightofspecimen, inchest=Thickness ofspecimen, inchesThenetareausedintheaboveformulaeisthenetareaofthemasonry.anddoesnotdistinguish betweentypeofmortarbedding.Intheevaluation, mortarstrengthwasassumedtobeconstantandwasnotconsidered asignificant influence onwallstrength.

Itwasdetermined thattheobjective ofreasonable andsafecriteriawouldbemetif90%oftheKvaluesweregreaterthantheKvalueselectedandgaveaminimumsafetyfactorof3.Accordingly, theKvalueswerelistedinascending orderandthevaluesatisfying theaboveconditions wasK0.610forthe159testsasseenfromTableB-2.Therefore, fromEquation(3):0052C

AppendixB,Page3of13CoxS.F.=KCox3=0.610Co0'100'053Thisvalue(0.205)agreesverycloselywiththecoefficiqyt 0.20whichhadbeenusedforanumberofyearswithreinforcecf masonrydesign.Ananalysisofthesafetyfactorspresentwiththeformula:fm=0.205fm[1-(h-)]40tindicates thefollowing:

Asafetyfactorgreaterthan3isavailable in93%ofthetests..greaterthan4in51%ofthetests,greaterthan5in15'tofthetests,andgreaterthan6in5%ofthetests.InACI531,thefactorof0.20wasincreased to0.225.Therecommended valueof0..22forunfactored loadshasfactorsofsafetycomparable tothosegivenabove.3.2FLEXURALCOMPRESSION Itisassumedthatmasonrycandevelop85%ofitsspeci,fiedcompressive strengthatanysection.Therecommended procedure forcalculating theflexuralstrengthofasectionistheworkingstressprocedure, whichassumesatriangular distribution ofstrain.Fornormalloads,.anallowable stressof0.33fmhasafactorofsafetyof2.6forthepeakstress,which.onlyexistsattheextremefiberoftheunitandhasbeenusedinpracticeformanyyears.Therecommended valueforfactoredloadsalsoonlyexistsattheextremefiberandisthevaluerecommended intheATC-3-06provisions.

3.3BEARINGThesevaluesfornormalloadsaretakendirectlyfromtheACI531-79code.3.4SHEARThemostextensive reviewonshearstrengthliterature appearstohavebeendonebyMayes,etal(Reference 6.1),andpublished inEarthquake Engineering ResearchCenterReportEERC75-15whichwasperformed forbothbrickandmasonryblock.0052C

AppendixB,Page4of13Thisreportattemptstosummarize someofthefindingsthatappeartobepertinent towardsdefiningpermissible shearstressvaluesthatcanbeusedforreevaluation ofthenonreinforced concretemasonry.Anumberoftestshave-been identified asbeingtheprimarybasisforpermissible shearstressvaluesinbothNCMASpecifications fortheDesignandConstruction ofIoad-BR%ring ConcreteMasonry(References 6.4and6.5)andtheACIStandardBuildingCodeRequirements forConcreteMasonryStructures, ACI531-79(References 6.2and6.3).Out-of-plane flexuralshearisdefinedbythecode(References 6.2and6.3)asequaling1.1~m.Thederivation ofthisvalueisanalogous tothepermissible shearvalueofconcrete, disregarding anyreinforcement, of1.1~fc(Reference 6.30).Althoughthisissomewhatdifferent (thereisnotensionsteelbywhichtodetermine theappropriate jdistance),

theactualvalueisamutepointbecausetensionwillbethecriticalvaluefordetermining out-of-plane acceptability ofaflexuralmember.Becauseofthenatureofthestresses, however,andthevariousconcernswithregardtothecorrectness ofinterpretation oftheeffectsonboundaryconditions, aswellassuchconditions asactualmortarproperties.

absorptivity ofthemortar,confinement orlackofitonthetestspecimenduringtest,andarrangement andeffectofactualload,itdoesnotseemwarranted toincreasethesestressesbeyondafactorof1.67underabnormalandextremeenvironmental loads.3.5TENSION3.5.1NormaltotheBedJointAsummaryofthestaticmonotonic testsperformed todetermine codeallowable stressfortensionnormaltothebedjointwasgivenintheNCMAspecifications.

Stressesfortensioninflexurearerelatedtothetypeofmortarandthetypeofunit(holloworsolid).Researchusedtoarriveatallowable stressesfortensioninflexureintheverticalspan(i.e..tensionperpendicular tothebedjoints)consisted of27flexuraltestsofuniformly loadedsingle-wythe wallsofhollowunits.Thesemonotonic testsweremadeinaccordance withASTME72.TableB-2summarizes thetestresults.FromTableB-2,theaveragemodulusofruptureforwallsbuiltwithTypesMandSmortaris93psionnetarea.ForTypeNmortar,thevalueis64psi.Applyingasafetyfactorof4tothesevaluesresultsinallowable stressesforhollowunitsasfollows:0052C

AppendixB,Page5of13MortareAllowable TensioninFlexuresiMSS23NThesevaluesareconsistent Committee 531report,whichtheACI531-79code.16withthosepublished inthe70ACIhavebeenonlyslightlyaltejjdinBaseduponthesetests,theminimumfactorsofsafetyforeachmortartypeare:NFactorofSafet3.872.60'.81Toestablish allowable tensilestressesforwallsofsolidunits,the8-inchcomposite wallsinTableB-3wereused.Thesewalls.composedof4-inchconcretebrickand4-inchhollowblock,weregreaterthan75%solid,andthus,wereevaluated assolidmasonryconstruction.

Themodulusofrupture(grossarea)forthesewallsaveraged157psi,givinganallowable stressof39psiwhenasafetyfactorof4isapplied.Thecomposite walltestsinTableB-3usedTypeSmortar.Toestablish allowable stressesforsolidunitswithTypeNmortar,themortarinfluence established previously forhollowunitswasused.2339;f=27psi16fTheminimumfactorofsafetyforthesetestsforTypeSmortarwas2.33.Recentdynamictestshavebeenperformed atBerkeleyandthevaluesoftensionobtainedatcrackingatthemid-height ofthewallsareasfollows:13psi,20psi,23psi,and27psi.Therecommended valueshaveafactorofsafetyof2.8withrespecttothelowerboundofthestatictestsfortheunfactored loadsandaretowardsthelowerlimitoftheinitiation ofcrackingforthedynamictests.Anincreaseof1.67appearedreasonable forfactoredloadsbasedonthestatictests.0052C

AppendixB,Page6of133.5.2TensionParalleltoBedJointsValuesforallowable tensioninflexureforwallssupported inthehorizontal spanareestablished bydoublingtheallowable stressesintheverticalspan.Whileitisrecognized thatflexuraltensilestrengthofwallsspanninghorizontally ismoreafunctionofunitstrengththanmortar.itisconservative tousedoubletheverticalspanvalues.TableB-4listsaSummaryofallpublished testsandindicates anaveragesafetyfactorof5.3forthe43wallscontaining nojointreinforcement and5.6forthe15wallscontaining jointreinforcement.

Itisimportant tonotethatthefactorofsafetyforthosewallsloadedatthequarterpoints(Reference 6.6)haveanaveragefactorofsafetyof2.02withaminimumvalueof1.22,whilethoseloadedatthecenterhadanaveragefactorofsafetyof6.08withaminimumvalueof3.59.However,itshouldbenotedthatthevaluestestedatthequarterpointswerealsotestedat15days.Theresultsassociated withtheearlydateoftestingandtheuseofquarter-point loadingaredifficult toexplainotherthantostatetheyareatvariancewithallothertestresults.Anincreaseintheallowable stressesbyafactorof1.67isrecommended forabnormalandextremeenvironmental loads.Therecommended valuescouldbeincreased becauseofthelargerfactorsofsafetyinthetestresults:however.thevalueof1.67waschosentobecompatible withtheincreaseinotherstressesforunreinforced masonry.3.6SHEARANDTENSILEBONDSTRENGTHOFMASONRYCOLLARJOINTThecollarjointshearandtensilebondstrengthisamajorfactorinthebehaviorofmulti-wythe masonryconstruction.

particularly withrespecttoweakaxisbending.Awidelystatedpositionisthatforcomposite construction, the'collar jointmustbecompletely filledwithmortar..However, evenifthisjointisfilled.theremustbeatransferofshearingstressacrossthisjointwithoutsignificant slipinorderforfullcomposite interaction ofthemultiplewythestoberealized.

Becausethecrackingstrength, momentofinertia,andultimateflexuralstrengthofthewallcross-section aresignificantly influenced bytheinteraction ofmultiplewythes,it,iscrucialtoestablish thecollarjointshearbondstrength.

Theonlyapplicable published dataontheshearbondstrengthofcollarjointsisthatdetermined byBechtel'n theTrojanNuclearPowerPlant(Reference 6.29).Therefore, tocorrelate theshearbondstrengthofmortaredcollarjoints,plant-specific insitutestswereperformed inAugust1982.Theresultsofthesetestsshowedtheultimatefailurestressestobe37.6and32.7psi.Afactorofsafetyofthreewasusedin0052C I'

AppendixB,Page7of13determining theallowable stressfornormalloadcombinations.

For.abnormal andextremeenvironmental combinations, theallowable stressisincreased byafactorof1.33.Thereareconflicting dataavailable ontherelationship betweentheshearandtensilebondstrengths.

Inmosttestsperrmedonmortarbedjoints(couplettests),theshearbondstrengthwasapproximately twicethetensilebondstrength.

Inamorerecentmethodofevaluation bymeansofcentrifugal force,theshearbondstrengthwasfoundtobe60%ofthetensilebondstrength(Reference 6.16).Theauthorsofthereportconsiderthetestprocedure tobean'mprovement overpresentmethodsbecausejointprecompression isessentially eliminated asaresultofthetestingprocedure.

Becauseoftheconflictinthetestdata,itisrecommended thatthevaluesfortensilebondstrengthbethesameasforshearbond.Unlessmetaltiesareusedatcloselyspacedintervals (lessthan16inchesoncenter),itisrecommended thattheircontribution toshearandtensilebondstrengthbeneglected.

4.0IN-PLANEEVALUATION CRITERIA

4.1INTRODUCTION

Muchoftheefforttodefineapermissible in-planeshearstressmaybesomewhatacademicinthatthenormalcasefozunreinforced wallsbeingusedinnuclearplantstructures, thenatureoftheshear,isoneofbeingforcedonthestructural panelasaresultofbeingconfinedbythebuildingframeandnotoneofdepending onthepaneltotransmitbuildingshearforces.Thisforceddriftordisplacement resultsinshearstressesandstrains,butbecauseofthecomplexinteraction betweenthepanelandtheconfining structural

elements, strainordisplacement isamoremeaningful indexforqualifying thein-planeperformance ofthepanel.In-planeeffectsmaybeimposedonmasonrywallsbytherelativedisplacement betweenfloorsduringseismicevents.However,thewallsdonotcarryasignificant partoftheassociated storyshear,andtheirstiffness isextremely difficult todefine.Inaddition, becausetheexperimental evidencetodatedemonstrates thattheapparentin-planestrengthofmasonrywallsdependsheavilyuponthein-planeboundaryconditions, loadorstressonthewallsisnotareasonable basisforevaluation criteria.

However,examination ofthetestdataprovidedbythelistofreferences ofSection4.2indicates thatthegrossshearstrainofwallsisareliableindicator forpredicting theonsetofsignificant cracking.

Asignificant crackisconsidered hereto0052C

AppendixB,Page8of13beacrackinthecentralportionofthewallextending atleast10%ofawall'swidthorheight.Crackingalongtheinterface betweenablockwallandsteelorconcretemembersdoesnotlimittheintegrity ofthewall.4.2TESTRESUITSTestresultsindicatethattopredicttheinitiation ofsignificant

cracking, masonrywallsmustbedividedintotwocategories:

4.2.14.2.2Unconfined Walls:Notboundedbyadjacentsteelorconcreteprimarystructure.

Significant "confining" stressescannotbeexpected.

ConfinedWalls:Ataminimum,boundedtopandbottomorboundedonthreesides.Forunconfined concreteblockmasonrywalls,theworksofFishburn(Reference 6.18)andBecica(Reference 6.17),yieldanallowable shearstrainof0.0001.'tshouldbenotedthatFishburn's testspecimens wereanaverageof15daysold.-Forconfinedwalls,themostreliabledataappearstobethatofMayesetal(Reference 6.20).Instaticanddynamictestsofmasonrypiers(confined topandbottom)varyingblockproperties, mortarproperties, reinforcement, verticalload.andgroutconditions, significant crackingwasinitiated atstrainsexceeding approximately 0.001.Itshouldbenotedherethatreinforcement canhavenosignificant effectonthebehaviorpriortocracking.

Similarly.

thepresenceofcellgroutshouldhavenoeffectonstressorcrackinginthemortarjointsatagivenstrain.Bothpredictions areconfirmed bythedatainReference 6.20.Inaddition, thedatashowsthattheonsetofcrackingisnotsensitive tothemagnitude ofinitialappliedverticalload.KlingnerandBertero(Reference 6.19)performed aseriesofcyclicteststofailureandfoundexcellent correspondence withanonlinear analysisinwhichthebehaviorofaninfilledframepriortocrackingisdetermined byanequivalent diagonalstrut.Whiletheequivalent struttechnique hasbeenusedbymanyinvestigators tostudythestiffness andload-carrying mechanisms ofinfilledframes,KlingnerandBerterofoundthatthequasicompressive failureofthestrutcouldbeusedtopredicttheonsetofsignificant cracking.

5.0 ALTERNATIVE

EVALUATION CRITERIA5.1ARCHINGAnextensive testprogramperformed byGabrielson (Reference 6.21)onblastloadingofmasonrywallsprovidesvalidation oftheconceptofarchingactionofmasonrywalls0052C 4'

AppendixB,Page9of13subjected toloadsthatexceedthosethatcauseflexuralcra"kingofanunreinforced masonrywall.Ananalytical procedure wasdeveloped topredictwithreasonable accuracytheultimatecapacityoftheunreinforced wallstested.5.2ROCKINGFreestanding blockwallsmayrockorslideasrigidbodiesduringanearthquake.

Suchrockingandslidingofwallsinnuclearplantsispermissible aslongasitiswithincertaintolerance limits.Onlywhentherockingofawallincreases toacriticalvaluedoesthewallbecomeunstableandoverturn.

Afreestanding wallstartstorockaboutanedgewhenthesupporting floormoveshorizontally withanacceleration greaterthan(t/h)g,wheret=thickness ofwall,hheightofwall,andgacceleration duetogravity.Ifthecoefficient offrictionbetweenthewallandfloorislessthan(t/h),thewallwillnotrock,butwillslideinstead.Therockingbehaviorofcantilever structures hasbeenstudiedandreportedinReferences 6.23,6.24,and6.25.InReferences 6.24and6.25,anonlinear differential equationfortherockingmotionisformulated andsolvednumerically fordifferent supportexcitations.

Sometestresultsontherockingofblockspecimens arereportedinReference 6.24.ThemethodusedtopredicttherockingofblockwallsissimilartotheoneinReferences 6.22and6.23forcantilever structures.

Application ofthemethodtoseismicrockingofstructures hasbeenjustified inReference 6.26basedonthenumerical resultsusingANSYSprogram.Arockingwallswitchesfromoneedgetoanotherandaconsiderable amountofenergyisdissipated wheneverthewallimpactsthefloor.Thus,theseismicrockingbehaviorofawallisnonlinear andthefrequency ofrockingvariesasafunctionofthemaximumrockingangleinacycle(Reference 6.23).5.3SLIDINGSlidingisthehorizontal movementofawallasarigidbodywithrespecttothesupporting floor.Ingeneral,awallwilleitherrockorslideduringanearthquake.

Itappearsthatarockingwallwillnotslideandviceversa.Slidingresistance andslidingdisplacement ofawalldependonthecoefficient offrictionbetweenthetwocontactsurfaces.

Basedonthediscussion inReference 6.31,thefollowing arereasonable frictionvaluesforconcretedepending onthesurfaceroughnesses:

0052C

AppendixB,Page10of130.33-betweensmoothsurfaces=0.67-betweensmoothandroughsurfaces=1.0-betweenroughsurfacesSeismicslidingofcantilever structures isstudiedinReference 6.28bynonlinear seismicanalysesusingANSYSprogram.Thisstudysubstantiates thesimpleenergybalancemethodgiveninReferences 6.22and6.27topredictsliding.Awallbeginstohaveslidingoscillations wheneverthehorizontal seismicflooracceleration ing-unitsexceedsthefrictioncoefficient..

0052C

AppendixB,Page11of13REFERENCES Mayes.andClough,"Literature Survey-Compressive, Tensile,Bond,andShearStrengthofMasonry,"

Earthquake Engineering ResearchCenter,University ofCalifornia, 19756.2ACIStandard, "Building CodeRequirements forConcreteMasonryStructures" (ACI531-79)6.3Commentary on"Building CodeRequirements forConcreteMasonryStructures" (ACI531-79)6.46.5"Specification fortheDesignandConstruction ofLoad-Bearing ConcreteMasonry,"

NCMA,1979ResearchDataandDiscussion Relatingto"Specification fortheDesignandConstruction ofIoad-Bearing ConcreteMasonry,"

NCMA,19706.6Fishburn, "EffectofMortarStrengthandStrengthofUnitontheStrengthofConcreteMasonryWalls,"Monograph 36,NBS,19616.7Copeland, R.E.andSaxer,E.L.."TestsofStructural BondofMasonryMortarstoConcreteBlock,"Proceedings, AmericanConcreteInstitute, Volume61,Numberll,November19646.86.9Richart,FrankE.,Moorman,RobertB.B.,andWoodworth, PaulM.,"Strength andStability ofConcreteMasonryWalls,"Bulletin251,Engineering Experiment Station,University ofIllinois, 19321Hedstrom, R.O.,"LoadTestsofPatterned ConcreteMasonryWalls."Proceedings, AmericanConcreteInstitute, Volume57,p1265,19616.10Menzel,CarlA.,"TestsoftheFireResistance andStrengthofWallsofConcreteMasonryUnits,"PortlandCementAssociation, 19346.11Nylander, H.,"Investigation oftheStrengthofConcreteBlockWalls,"SwedishCementAssociation, Technical Communications andReportsofInvestigations, 1944,Number6(October) 6.12Copeland, R.E.andTimms,A.G.."EffectofMortarStrengthandStrengthofUnitontheStrengthofConcreteMasonryWalls."Proceedings, AmericanConcreteInstitute.

Volume28,p551,19320052C

I~~~AppendixB,Page12of136.14Beyer,A.H.andKrefeld,W.J.,"Comparative TestsofClay,Sand-Lime, andConcreteBrickMasonry,~~

ColumbiaUniversity, Department ofCivilEngineering, April1923Livingston.

A.R.,Mangotich, E.,andDikkers,R.,"Flexural StrengthofHollowUnitConcreteMasonryWallsintheHorizontal Span,"Technical Report62,NCMA,19586.15Cox,F.W.andEnnenga,J.L.,"Transverse StrengthofConcreteBlockWalls,"Proceedings, ACI,Volume54,p951.19586.16Hatzinkolas, M.,Longworth, J.,andWararuk,J.,"Evaluation ofTensileBondandShearBondofMasonrybyMeansofCentrifugal Force,"AlbertaMasonryInstitute, Edmonton.

Alberta6.17Becica,I.J.andHarris,H.G.,"Evaluation ofTechniques intheDirectModelingofConcreteMasonryStructures,"

DrexelUniversity Structural ModelsLaboratory ReportM77-1,June19776.18Fishburn, C.C.,"EffectofMortarProperties onStrengthofMasonry,"

National'BureauofStandards Monograph 36,U.S.Government PrintingOffice,November19616.19Klingner.

R.E.andBertero,V.V.,"Earthquake Resistance ofInfilledFrames,"JournaloftheStructural

Division, ASCE.June19786.20Mayes,R.L.,Clough,R.W.,etal,"CyclicLoadingTestsofMasonryPiers,"3volumes,EERC76/8,78/28.79/12,Earthquake Engineering ResearchCenter,CollegeofEngineering, University ofCalifornia,
Berkeley, California 6.21Gabrielson, G.,Wilton,C..andKaplan.K.,"Response ofArchingWallsandDebrisfromInteriorWallsCausedbyBlastLoading,"

URSReport2030-23,.

URSResearchCompany,19756.22TopicalReport,"SeismicAnalysesofStructures andEquipment forNuclearPowerPlants,"BC-TOP-4, Revision4,BechtelPowerCorporation.

19806.23Housner,G.W.,"TheBehaviorofInvertedPendulumStructures DuringEarthquakes,"

BulletinoftheSeismological SocietyofAmerica,Volume53,Number2,February19636.24Aslam,M.,etal,"Earthquake RockingResponseofRigidBodies,"ASCE,JournaloftheStructural

Division, ST2,February19800052C

AppendixB,Page.13of13~~~~~~6.25Yim,C-S.,etal,"RockingResponseofRigi'dBlockstoEarthquakes,"

ReportUCB/EERC-80/02.

University ofCalifornia, Berkeley.

January19806.26"SeismicLoadingCriteriaforBaseMatDesign,"BechtelPowerCorporation.

SanFrancisco, InternalReport,Revision2,November19766.27Newmark,N.M.,"EffectsofEarthquakes onDamsandEmbankments,"

Geotechnique, VolumeXV.Number2,pp139-159,June19656.28Kausel,E.A.,etal,"Seismically InducedSlidingofMassiveStructures,"

ASCE,JournaloftheGeotechnical Engineering

Division, GT12,December19796.29ReportonTestsofShearStrengthofCollarJointMortarinDoubleWytheMasonryWalls,TrojanNuclearPowerPlant,PortlandGeneralElectricCompany,April14,19806.30ACIStandard, "Building CodeRequirements forStructural PlainConcrete" (ACI322-72)6.31PCIDesignHandbook, "PrecastPrestressed Concrete,"

Prestressed ConcreteInstitute, SecondEdition,19780052C

Sheet1ofTABLEB-1COMPRESSIVE STRENGTHOFAXIALLYLOADEDCONQRETEMASONRYWALLSConcreteMasonrUnitsMortarWallsStrength, Percentpsi,netStr.,ef.Solidareaf!t!,psipsiBeddingStrength, psi,neth/tftestf'S.F..863636363636363636363636363636363636363636363636363434370701160116011601160980980980980120012001200132013201320116011601810181015051505124012401720172013801380178017803300330016451645100010001000106010601060980980127512751150115010201020123012301090l.09012621262179017901208120812001000118011801160900123073096078088081081010801080127012701670167098098088088017301730187018701230123013.401140FullFullFSFSFullFullFSFSFullFullFSFullFullFullFullFullFullFullFul.lFullFullFullFullFullFullFullFullFullFull6.06.06.06.06.06.06.06.06.06.06.0j6.0j6.0I6'iG0I6~0.:6.0I6.0'.06.06.0I6'6.06.0I6.0',6.0,'6.0!6.0I6.075068567055586062558065011109707808006709409408258201010870103594010001010145015701560173010001229978978978978995995995995.798.701.686.568.863.627.582.6523.833.493.422.834.303.122.893.25105510559789781270127011451145101510151225122510851065.918.738.818'686.739.739.719.715.993.856.844.766.920.93012571.15212571.2481782.8741782-.959'200.83012001.013'.58 3.694.C83.423.673.673.603.574.954.264.213.814.584.635.756.224.364,844.155.C510551.050'.25636363636363635095095098408408408754584584587567567567883140161010603140.'.61010603140FullFullFollFullFullFollFull6.06.06.06.06.06.06.030329529553540c05438455~55455753753753785.664.646.'646.706.716.670.5583~403,213."13.523583.352.79

Sheet2of4ableB-1Ref.(continued)

ConcreteMasonrUnitsStrength, ercentpsi,netSolidareaf~,psiMortarStr.,psiBeddingWalls,Strength, psi,netftestfillCp.p.636363636363636363636363636363636363636363636363636363636387587510801080108012301230123014101410141015201520788788940940940101510151015110511051105115711571860251025102510303030303030374037403740664066406640129515541554155417101710171019231923192324002400240015201157186012951860129516101060314016101060314016101060314016101060314016104780314016101060314016101060314016101060314016104780314016104780FullFullFullPullFullPullFullFullPullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFull6.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.06.043050060571576511601000111011409851030660740830147615391365169813651325222222221984185725232317358738565031785.547785.637936.646936.763936.81710101.1461010.98810101.09711001.0301100.8931100.9351152.5721152.642rl52.71912901.14312901.19212901.05815501.0961550.8811550.85617051.3041/051.3041>051.1641918.96919181.31619181.20923921.49923921.61223922.1022.743.173.223.814.075.704.925.465.164.454.662.853.203.585.705.945.27'5474.394.276.506.505.804.826.566.037.488.0410.496.13Q)010010010010010010010010010010018921923250825292545261026784L744474185316302390263021302220203022102540138312571388"164025623017231721532427'34721433195232227922154FullFullFullFullFullFullFullFullPullFullFull7.07.07.07.07.07.07.07.07.07.07.01140135814691394194721511930207818321810215712541635184616252380262021202210202022002530.910.830.795.858.817.820.909.939.905.821.9374.134.574.524.294.564.684.174.713.994.104.09fmvaluesfromthisreference weredetermined fromprismtestsin-steadofassumedvalues.Testresultsmultiplied byfactoror.1.2It 0

Sheet3of4ableB-1(continued)

Ref.ConcreteMasonr'niteStrength, ercentpsi,netSolidareafz,psiMortarStr.,psiBeddingWallsStrength, psi,neth/tftestf~C.S.P.6.10626262626262~6262626262626262626245626262-526262254718861999149919342305213617731298124116121805149110881918116926551088129019991862967196715561305'3501150132514731405126010491031119612731146944131898515989441045135012968701338140014001400140014001400140014001400140014001400140014001400140014001400,1400i1400140014001400PSFSFSFSFullFSFSFSFSFSFSFSFSFSFSFSFSFSFSFSFullFullFull9.09.09,09.09.09.09.09.09.09.09.09.09.09.09.09.09.09.09.09.09.09.09.01241115396768513541096112810888546859911088854629107260598956470111041378+75812411540129013351135.807.894.724.60313101.033145513901245103710101180126011339331302975157893310321335.752.812.873.823.678.838.864.754.673.822.621.626..604.678.82612801.075860.8811320.9384.054.503.633.025.193.784.074.384.143.414.204.333.783.384.123.123.153.033.414.165.444.424.726.106.857676767675757575757573939393922801917138019021246208720872385238523852385159015901718171814631318109013121023'386'1386150515051505I'400~14001400140014001400830.14001400,14001505I1400I1187;1130118/'0101238i10701238i840FSFSFSPSFSFSFSFSFSFSFull,FullFullFull9.39.39.39.39.39.39.39.39.39.39.39.59.59.59.51228836724122373911931298719789110511408851000949910145013021078130010101370137014851485148514851170117012201220.849.642.672.943.731.871.948.484.530.743.766.756.853.777.7454.273.233~3/4.743.674.384.762.442.673.743.853.794.283.893.73

Sheet4of4TableB-1(continue6)

ConcreteMasonrUnitsMortarWallsRef.Strength, ercent'psi, netStr.,Solidareafm,psipsiBeddinStrength, psi,neth/tftestf'S.F.6.863636363636363636363636363636363636363636363636363636363636363636363636363707055551159115911591159115911591206120612061206120612061317131713171317131711591159115918101810181015081508150812381238123817149859859859859859851020102010201020102010201080.108010801080108098598598512741274127411531153102510251025123017742253225316431643127312731245145014501206120610401040171412301714'2301381109013811090118014401440106090019201230730113096078012508807508101020102011201150108012.709401120138013801670192098012808008007501730,22002100'270118013001220~1220FullFullFullFSFSFSFullFullFullFSFSFSFullFullFullFSFSFullFullFullPullPullFullFullPullFullFullFullPullPullFullFullFullFullPullPullFullFullFullFullPull4.34.34.314.34.34.314.314.314.314.314.314.3l4.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314.314..314.314.314.314.314.36836907385325635637386837465716035959051063929714667579635635873881817706746643833802817llll112710799689601240936920807986727764940940940940940940974974974974974974103010301030103010309409409401218121812181100110011009789789781172117211721040104011901385138511501150993993.726.734.784.565.599.599.758.702.765.586.619.610.8771.030.90'692.647.616.675.675.717.725.671.641.677.584.851.819.835.946.959.918.930.9231.043.675.664.701.857.732.7703.623.663.912.822.982.983.803.513.832.943.103.054.385.144,493.453.23'.073.373*373.543.583.323.173.342.884.244.094.164.734.794.594.644.615.213.423.373.554.333.663.846'l10029001665II1475PullI,15.012501565.8013.936'0656565174612461562125010151175'400.'4001400FullPullFull118.018.0'18.0110878512081135.975925.85010651.1314.874.255.66

~~~~'I~~~~~~~~~~~~~~I~~~I~~~~~~~~~~~~

y'g~URQ.STRENGZ~~ZRT CALSPANCONCRETEMASOY!P'WALLSFRO.iTESTShTKC."4LABORATORY IST.'f."fortarType*h'ominalThickness fn.Max.~Uniform.LoadpsfWa11RctSectionModlusin3/ftModulusCrosshrcaypsiocRuptureÃctMortarBeddedbrea,psiMonouythe VallsofHollowUnitsMMMMSSSS888888121285.1587.109}..00103.3562.4072.15.183.3161.280.9780.9780.9780.9780.9780.97164.64164.6461.7463.1565.9774..9345.2452.3157.aa50.2288.7390.7694.82107.6969.4775.1893.9462.62Composite ballsofConcreteBrick6Hollo@VlUSSSSSSSSSS88888812121212222.3219.7187.2228.8216.4223.6171.6150.8156.0213.2103.82103.8278.16103.8278.1678.16139-63139.83139.83139.83161.16!159.29135.72165.86158.34162.1153.4646.9648.6066.42180.67178.55202.09185.95235.77241.38103.5591.009414128.66CavityT!allsSSS.SSSSSSSL1010101010.1012(4>>4-4)12(4-4-4)12(6-2-4)12(6-2-4) 98.8156.088.4119.61'4.4109.2145.6'45.6135.2119.6,.50.3650.3648.1650.3650.3646.16S0.3650.36L77.80156.62250.44141.9119'l183.66175.30233.73233'3127.3Sll2.66165.55261.38i>46800.40191.63}91.322C3.9'tq<<V<<~pV146.63}29.70Mortarapebypropertion requirements r0 Sheet1of2TABLEB>>4FLEXURALSTRENGTH, HORlZONTAL SPAN,HO.R.ZNFORCED CONCRETEMASONRYWALLSConstruction Monowythe 8"Hollow,3-CoreMortarQNNN0,0LoadinTeUniformsf127136127169173123158ModulusofRuptureNetArea'i132141132176180128164S.F.Act./Allow

~4.134.414.135.505.634.005.13Ref..6.g6.g6.g6.g6.g6.g6.gMonowythe 8"Hollow,JointReinf.916in.cNNc,N001491601931501861551662011561934.845.196.284.886.036.g6.g6.g6.g6.gMonowythe 8"HollowJointReinf.88in.ccMonowythe 8"Hollow8"Monovythe Hollov,2-Core4-2-4CavityWall,HollowUnits8"Monowythe Hollov2-CoreJointRe.e8"oc4-2-4CavityofHollovUnitsT'edw/JointRe.38"ocINN00NNNNNN$fM.MMMMMM1/4ptCenterII20319620219556386160699319917615111113595159159191159159159211204210203583963627196217192165210255180173L73298.3003003006.596.386.566.341.811.221.971.942.223.004.724.173.594.575.543.913.763.764.526.526.526.526.g6.g6.g6.g6.66.66.66.66.66.66.1g6.156.1g6.156.1:6.156.156.1g6.156.1~6.1g6.15

Sheet2of2~sleB-4(continued)

Construction 4"Hollowonowythe8"H>laowoncwythe8"Hollownowythe8"Hollow.onowythe8"Hollowonowythe8"Hollowonowythe8"Hollowonowythe2"HollowonowytheMortar'iceNNNMMMNNN000MMMNN~N000NNNLoadin'peCenterIIpsf138157$01268314314.277314314259277277268297277277259297360297268352314333ModulusofRupture.tetAreasi365415268202237237210237237195210210202224210210195224271224202142127134SF.:Ac+/Allow

>11.4112.978.384.395.155.156.567.417.416.096.566.564.394.874.566.566.097.008.457.006.314.443.974.19~i.a4(j,14g146.146.14tl.a4tl.a46.146.146.146.146.14I6.145.146.14,146,146.146.146.146.14,14,146.14

.jr~('