ML17266A489

From kanterella
Revision as of 10:36, 3 May 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards Response to NRC Request for Addl Info Re Fsar.Info Will Be Incorporated in Future Amend
ML17266A489
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/19/1981
From: UHRIG R E
FLORIDA POWER & LIGHT CO.
To: EISENHUT D G
Office of Nuclear Reactor Regulation
References
L-81-362, NUDOCS 8108250481
Download: ML17266A489 (310)


Text

DOCKET05000389.NOTES!'EGULATORYWNFORMATIONISTRIBUTIONS-EM(RIDS)ACCESSIONNBRi8108250481DOC~DATE;!81/08/19NOTARIZED;:NOFAGILi050'89st+Lucie-PlantiUnit2'E,FloridaPowerLL'ight>>coB.'UTHBNAME'~AUTHORAFFILIATIONUHRIGpR,K','loridaPower-LLightCo~'ECIP~NAMKIRECIPIENTAFFIL>>IATIONKiISKNHUT'~D.G,DivisionofLicensingSUBJECTForwards-responsetoNRC,requestforaddiinfo.re>>FSAR~;I'nfowillbe.incorporatedinfuture'mend;.DISTRIBUTIoNCODESBOO>>0COPIESRECEIVED:LTRLEN'CL'IZE::'g-ITLKl:"PSAR/FSARAMDTSandRe.latedCorrespondenceRECIPIENT'Di'ODE'/NAMElACT>>ION~'/O'ICENSNGLICIBR¹3LAINTERNALi:ACCIDEVAL'R26'HKMENGBR'lCOREPERPBR10,EMRGPRPDEV35EQUIP,QUALBR13>>GEOSCIENCES28.HYD'/GEOIBR30~ILE)06LIC'UALBR32!MECH.ENGBR18OELDPOAKRSYSBR19QABR21>>REACSYSBR23>>SIT'NALBR24COPIESLiTTRENCL>1-01011111>>1113?2223>>311111.01111111RECIPIENTIDCODE/NAMEL>>IC'R¹)BCNKRSESr.VS04AUXSYS'R27CONTSYSBR09EFF,TRSYSBR12'MRGPRPLIC36.FEMA~REPDIV39HUMFACTENG40ILCSYSBR16L'IC'UIDBR33MATL>>ENGBR17MPAOPLilCBRPROC/TSTREV20RAS8R22'EGF"01TRUCTENGBR25COPIESLTTR'-ENCL>>101111111~331111'110.-1111111111>>EXTERNALi:ACRS"NRC'ORENT'IS41>>161602!111=1LPDRiNSIC03051111L/Hahb~T;TOiTAL'UMBER>>OFCOPIES'EQU1RED::L>>TTR62'NCL<57 nq4~i~s~n~iq'14nI"'IrrIq~'~gh~,i71yf4ryli4/1I.'ill'ly9gqIllyqIq'y1Iql If%OX529100MIAMI,FL33152r,QFLORIDAPOWER&LIGHTCOMPANYAugust19,1981L-81-362OfficeofNuclearReactorRegulationAttention:Nr.DarrellG.Eisenhut,DirectorDivisionofLicensingU.S.NuclearRegulatoryCommissionWashington,D.C.20555

Dearttr.Eisenhut:

+ci/gRe:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsforAdditionalInformationAttachedareFloridaPower8LightCompany(FPL)responsestoNRCstaffrequestsforadditionalinformationwhichhavenotbeenformallysubmittedontheSt.LucieUnit2docket.TheseresponseswillbeincorporatedintotheSt.LucieUnit2FSARinafutureamendment.Verytrulyyours,RobertE.UhrigVicePresidentAdvancedSystems8TechnologyREU/TCG/cfAttachmentscc:J.P.O'Reilly,Director,RegionII(w/oattachments)HaroldF.Reis,Esquire{w/oattachments)poolg/~z;:lkJP>tt8i0825048i8i0819PDRADOCK05000389A,...POBPEOPLE...SERVINGPEOPLE

  • 1~E'1If1~/';'l).p-"

AttachmentstoL-81-362A.InformationonECCSpumpNPSHrequestedbyN.Rubinon8/3l/8l.B.Revisedresponsesto492.7,492.9and492.15C.Additionalinformationsuppliedinresponseto490.1D.DraftwriteuponCEAEjectionwithLossofOffsitePower.E.Revisedresponseto440.1,440.5,440.9,440.14,440.25,440.39,440.41and440.44F.DraftTechnicalSpecificationforsteamgeneratorinspec'tion3/4.4.6G.Revisedresponseto251.8and251.10.H.MEBreviewmeetinglistofconfirmatoryitems.I.Revisedresponsesto420.3,420.4,420.14,420.54and420.56J.Neetingminutesandcommitmentsfrom8/11/81meetingonpreserviceinspection.K.FlordiaPower5LightCompanypositiononfeedwaterhamnertesting.L.Recordofconversationandcommitmentsmade.withtheAccidentEvalua-tionBranch(MaltPasedag)on8/18/81.H.DocumentationandproposedFSARrevisionstoincorporateadditionalundergroundcabledata.N.St.LucieUnit1(proposedSt.LucieUnit2)designcriteriatobeusedforreevaluationofthemasonrywallsperSEBquestion220.370.Revisedresponseto430.498108250481

REcl.aCvt.AvZOMPUMPhPSHDATAElevationofPumpSuction,FtElevationofSource,FtFluidTemperature,FFluidVaporPressure,FtHeadLossDuetoFriction,FtNPSBAvailable,FthPSHRequiredatPumpRunout,Ft-6.bd21.$23.5245QO.C.ohJTAXAME.MYSPPAYPvvP-6.432J.4224060.9J,526.352l.oThefollowingformulaisused:8PSH(available)Pt-PvPa+Ps+Pe-Pi-Pvwhere:Pt~pressureatpumpsuctioncenterlinePv~vaporpressureofpumpedwaterPa~airpressurePs=steampressurePe~elevationpressureP,.~Headlossduetofrictioninthesuctionpiping.,'igOTE!Znatcorho~q.~'<4gcpgp4.g.gpic.conto.ines<~~p<MS<<+>>sassu>>>>>>>>'l>>qua'I+oe4e0'lv'>>.d,>>fop>>>>>>p>>ess~ca.(>>e..Pa+P~=P)>>IS>>'

0C

~otsrso~~~rrsoI>4L~~'I.'4~rorI~~~s>*1.~Co~~>gib/{~Pg/I'PS'>L'pat'!'>ll~ler<<L,&Nt'>fr'>4<<ffhfa~-Lj~(,srf!sre~>A~<<cCI~>aco97rer'or.fsf'of;Sfk}aol.bGUSTO4/fof>CO/p+~~~ggIg//p'ES}GNCOND1TIONS=CPM284dKFF78PbT.H,IFT.)V~d.BHP-Sfo,~'PM/780:bRIVFRHP~cso///I/FOrCg;Mrr/J/./44/'-w88,v,oPUMP8QQ3~g/leaepstt'anil<<ltcattacS.1PROPOSALNO.OJ/-g~gfITEMSPECIALNOTESPumac~jopcyygCurves~roopfsrorimoto.Pump1<guorontkedforono<OfOfCOndil>OLS.Copoe>ty.hOOJOndepieienCyOver.onlkei~reboaodon~>sop}elfondas>cnhend>in@eicos,colJ,I>~l>iasolkr~Iofcmperofuskofnotoverf>$Ckgree<On<tnOtOrkrt5>r<<C}saffs!t.Dc}ANNBYg,/>.~,DATEJ,.Pg-)8+sr~'~1'jf;!Iitj~itt~~~~~s>>er>1j<~~sitill>>>Ifl~~I4;3I3i3,'I>>f4aalu4'I~tI~I~ltsIr;If~T>~!~I~sirr~~~s>>]~,1!s>>>>I4'IItf~~roeII">>~~i.~'QH)pa.'ttl:'II~4~~~P>>IIIIf~I-I~~>oil<1}IIII~~141~>>44~>>L~4~~<ro'art.}I4,1~~iQfflI>siat.'-'3jI.i'g4~~4S~~Zf~'3"rUth>I.3~r-.IiltL~I>~~l.tt'si!IIti.'qQe1ff.w~>~~~>w"3r~I~~,I"44~Lr~I~st>~~I~1It~olI~}~~}~11I41~~rl>>tehlsl4.~>II:at.I<>>~4>rt>4it4>>'>tf~~e>Lie~I>~I~>1gt~~~j."~IIl~>ill~TT~~~s~~~~~i>>stI<~}'t~~tfo~~ILLA'~~~~Iohos~s~o~~~~~os~~oejl.o>hei>>1ia'4~~<iiiI'>I~1~~os'~>h~~eh>se1141s,oo>~~s1Ies~~II~'Ie>iIrtewg~>~1'hr~~s'4>ST~ah>>44~~~3ejh>>I%IIssf~4>>'lit:I,Dfl-tI'.ft3:~~~I's'1~~Ihl~~~~I44Lt~'>>~~~~~tes11>>~r>a~~4<~4~4I~~so~~~.s~~~~ee~Ilt~~':'fl:rllrf~~IItf';..It'<~ah.htg$>>~ITtsflIoil~fmol~oeI>L>><4<II~4~~>>~f~~.~44>>lojf~T~>W>>4~~~sf>~L4>>~Issllm1>=}:44;fitj.tlt'ithohorjiI~4~eh1~'~4~s'I.t"Ias~LEo.hr\~80a>>s~>~~~4>~tfileoff~4~r}pt~~4>>~pr-;IgniIlk:14f~sk>~>'Ij.'I,'~L4~~t~4tLilt~~~~~~~~4444llot,~tt~iilI'th>>~'~~.~wLITT,'~hj~boo>4>lwi~illis~~>>44~~'{..jl<w>>.-'l'i.t.tIr<4rjogl~h>>4t~4~L{jf,~i,frfftkjg,tfrfoooj5I~~~4f~sfj3j~lrn)pP,~o~~IiI~4>>fofoo~rf>4r.j.~oro>>~~4~'Or>>f>>LoloaII--~4~ho14I<Qel~>>4I~>I~Ls~>~~s4>>o4'I6jITI+gTwlooIate~LLI~pro~~~.>4ff4~~rihtij't{}ol~f>l<4'affIj~a~~4(~>>44~~~<<14~>4tr>>>~4i.s>>4~f~~~shr4~~~~\<rf~re~.I>,>f34.Z~3}gil.~.IIsfl>>~ll~>>lh~f~>~4>>r.ts,f>>41I4~~.Lo>f>s4TO~aflf~44<4~~~IoeL>L<eof4~>>h4fhieI.I>L+44>>tI'",I~Hf,':43rs8<+gIrjffr',iall~IoIILitlfo~Ir~fge~4ol4>>4tw4~~~I~'3.'IWt~hla<IlltsLe~>44tpt~~~4o~ofa>lt~I~Iev.'4~Ia~~'~~O.8O..'.4~~~~L4~~r~4>>l>>e>>~>4<t~I.I:1:I~y,,'I.;"4}If'LLo{jofac4~~~4~1~~~~11~~I.'jl'f-s~aoert<<.~~fo14IL4~~LLh4~~~>hfjmssT4>w>>h>WL>44.~1I'eljt~.IIo~nor>>Lj;gg;rf~SlLp><<eOLe-4~Vo4'It~il4~I~~1~ao~s~oi~4Lilhorft~~~f'~h4~~h>>O>>h4~Ltlft~~I1'TLIto~ft+t.L~ol~~~e-+.r--L-'.jrjrr;.lhr4tlL41f>f4gjo;L~~~4~~>~~~~<>th)theirs~'fs1rL}tja'IrjttfIt!'~1~Ij4'aal4Sot4th~a~hIih74>.r,'rIjse~1eoh>>~icos::84>>43~}AD~It;;ltfggp.,~>3~TLLf~>LLIraI>>~'pp~L~4oo~~1eI's~<'ss~ee~~st>>4.~relL4~I~~>>TL~e~o).<Lo~4>>.>fort~h,pdp;,I~~Tt>>4>>~L~>Ioole>>fthm~,Lee4eeo~~~.agigags~ol~1rs:~~shLL~4~I~I~~~~~4t>f>>il\~ho>>or4~>>~>>>Sh~+LaJttl4Q~~~~~IsI~io~I~Lra>~~4>lI~~I~~ttolot1~4~4>l4~~~4~I4oo44>I~~a4~WI~Lso~~44oe~~>>>>~oo~ot~~4~'isr>~f<!t>~LlIII~~I~4>gi.>twI>~~~~~4t~.Whjm.r~e>>1~r>i~4sell.IVI)~~r>4~f'~4s>>~Il~.atlLII~~I~s~~~'i!},"-'ggjl~~~p>ig'tt'f1jt~ffsrL"-}4~ooqadiw>>>>~~4>4IIrh~tl.{fr'llI~~~>>~IIlf~oo~~~~StlI~t>>4<<.~hh~1tA4ia>>4~~\aho~hg>sl'gg+fr>'~1~1I>>rialgt1~Iols~~4~%1~so~4LL>>>>I~Tel~~ia4t~I'4~~IiW's:"<-O..',';:~'".'.":.-l'"4/4gpI-.':L-.*I,'..cpOOOI.".GALLONSP}RhflNQT5Qooo"...:;..-fOd0 8<<~~+I>oaIVER.a.i+I~l~cGUST~~rCffffQcPI'%cAI~Rcfmfcl.DESIGNCONDLTLONS)fsgj~-FFFi~PeT.H.(FT.}$70fff(P-~SC.>>ReSt/<st+~'lRf)(aafffacfooi<<4<)NoTERalrWi.iS-C/CURVE+-$'89PUMP.ggPQ~g)/=Pf}OPOSALNO03/-qgPggfTEM~SPECfALNOTESPun/fjaW/O7>ll>~to<eeeeppre<srte<eFurrpr~gs>eanteed(eroee~etefcond>)son<Cape<>)y)ced~<4c)Ictn'Yps<a<~n)eelerebaaedont)soptc<)end<<'scn)'end<it))a<eat.caa)d,)<ale<<ale<~Ietens(sera)cse0(notoct<ejda)!<oe<endnetOeot)1'LCI>en1))t.DATEDRAWN"!BYp,p~.:~0I111'tsf~I~L.I~I)jj~I~~I~<I~I~~I(fflit~f(LI~le~044rrIrew~4I~0~O~<4<'4~~Q~twI~~~'I~~'I~f.tlfff1rff~~~~1tat<~~sJe1~~<1~~'sl'1lBlwe~4~~I0<~if~.<~sae1{~~I~<~I~I<14~~I~J~'~J~I~I~',cI1~~~r,I~I,"".",-'.0~~r::1'f4cs',I(:".1tI~~~)1014I~~~rrr~~~~IceI~~~'f("lf~<~111~r4~~4~411~.~~~I4~s~~1~~'~~~~~<4~IL)f1f~~~tsIp~~~<~~JefIIJg~-t(i~iiAA~~L~4<i;(~0j'.0~~I~~4f~~<srridMij.>1.~0>ltOC~<IM~~~4~~4~tlp~'d'.Je..~1Jr>LsI:ftfff;1:~~Jas<10<t'rrf...fa~~tf~<O1:,'~i'iFaf!:I~~SOWSfi;;;Jf'0t~~1~~~Ii~If-srII-~~40<I~IwtI~~I~I~\<~>4~~11~~~1.1.LeM~Jtw~>4M~'t"I~Ia~r~~.I~l~I~'IJr~tCJJ<ot~.~~~~1I~t.ta~~L.<fI'.<pr~~~~~~Pf~~r<~~0I~tfa.~I~1<4Js~L~OI4gl4~0'I~~~I~~rrr~~~~t14~~SJOW~~4141~1\~Ji>441~oa~<f111I~~M~I~I111(1Ir~<Iratet~~if<>p1~t1~slss1<IIIIs~'!t~I~~ft<'ff11-ffI;~ass<~4~~~'<Itf1)~0<e"J>I~~s'<<'f(:1'.1~1~~e~~I~~~4~.r.-i~~~t~I<4Jr~~~r~~40~~~~1f11111jiff~1li,'a1fLI~efw~~~~JItffiaf[lM<,(sta.tM4<4~'1JM~ttjtj~.wtf(11ja.1.f1e'lit~~f'1.L'.14I"'(Itf"!.g4~~~141-"-80'1~IL(~IawJi~IeIJI~4swIfIgw"fi~~~~M~~~~0~~f]4~tgf~~Mr~ttt~~f(~~~IIi',c:I";].f<L';1<Ljfear0~~>~eI'sala~~~1~~~I40<<<tf'fei'($$14(g~'~~~~~I44L(CL>1LL<<'LLLM-~~.~~rwL~Ž<4~<4~alt~~~1~~<Japr~1~~f)~~400I4~~4~~~414<re~~~reta'1I~e1~~~toJs41<eg1~~~I~r".'Ht;~~f(.10~4~'}ILI~I~~~~/(1',1..f(fI~\~>14rrlJJ~~~14~~~tl~1~'J~~0+~~44>F4LI)L4P~40~1~~la~~~tm(pl<440~~fo(fP)fwt<~~0~f~1I~Lw~WJ4w'af~~~Irf1I4<14~<oilI~4~0~t~~~~~>o4,>fag4~L;Bt~i~I)41~~~4~<60!!l"L1fiiLfai~<4<~g<]:pf'1(sFrb's~4~~I~~atie4~1)4'<I(4I'~<.1".ifl~sf~I~~'o~4~4rJ<~rsI~I~I'1<~~444~4-<74sa~se~~JrI~>~1f~~)J41.I<ace<<le~<<4~4'.LtlfKI~~~~~~~I~0~rto~l~~~~rrf~~~~4~~~<0'54:,0~~aewrsr(4a'4~~4~atIM~M~Iwr~~~~4.>~<I~4~wa<yw4~~~Jlw11rMr<W~~~~~4Is~~Jle~~...l,1.:tufa<<eI~4~z~O'(itfff'(ill('Ji'LI.:ff'.(lt<~if~~tI~~t~4.~~~Q1r~I~~~~~MlILlIft(L~t~~~~'~.(Mfa~rsa4~~t'"I'I~e~~~4~~~-~r441<a/~11ta~~W1if<<iarotattlet1444sirif1}~J<~~.~Jt~~~I~~Itltg.<<wai041I~fff!i~i'~eeCw4~<0~we90~4I~004~~r11~I~0wtLir4~~~HHl"'oatnfl~alLimnirrr~<Jestte4~rg4~~r~,Litto4~~~0~4<<M~.1..<<"a>>oftgstCJI~)4>l4taltl~Lf':Ftt~:,tt{~I~4L'1'~+mA"~~QQ~m~n~>4~ws<r3Ie~11~I~ay)~1Iq,PIV>~sftt~~~~Mt~Me:<,fs'b'j/41~iI@-!2r~DPI'.410?l-10(lI",fff.TJlrrafeP'4<JLF~~<4~~II1~~~~4~rs~la>f~L,(.PX'>~I~~~~~:I'f4/4at~~r~~~~ra~~~~~144)~~t~:f(1rfffOQa.41-"L~<rls~41~~f~~Il'ri~','f(;ti:tf~t-ft~~er~~si>yJL(<4~~t'~tr~~4<t~1~Iv44~rt4~~~k~jjAN8:.w<<11~<JetsMtL\~v~1IMM-fPayJg>~~~~Wfc.r4~Lt4(\~0~1l,a.wet-~-fIme~~<.cff..4.11(~~<aJal)(t4tt~M~'L~'~~~~~<4~~4f1~0I'~'l}(.1'~rt4~w444te~f)t~Lla4ilatsr4~~4~LO'lf<'t01<'r>I/i~JL+1AQftt>1~~Itre~4t~f~1I~~~~eSa~>.M~4~MwWetw'~44r.0&>>OMaM>>~4t<wt~'44~41~jet'PP'P'.,(<(f44og~~~<4~lti0$I10:looo.:-..',":.-.-.:-::-.Qo.-,,...:gaooI.-,'-.....:...:.":yooo,.-.:::,.".-',)2/OA~'<ifigi'c.iRve!s/re&~'g~i'0000~~~'ais~~

0 e492.7.(4.4.3.1)Apparentinconsistenciesareshownforcoolantconditons.Pleaseexplainormakecorrections.Theseinconsistenciesareasfollows:Table1.3-1indicatesthatthetotalflow-rateinthereactorvesselis139.4x10~lb/hrwhileTable4.9-10indicatesthatthevalueis139.5x106lb/hr;Table4.4-10indicates'hatthereactorflowrateperloop(hotleg)andsteamgeneratorprimaryside(tubeside)is61x106lb/hr.Table1.3-1alsoshowsavalueof61x10lb/hrastheflowratethroughthesteamgenerator{tubeside).Whenthisvalueismultipliedbytw~forthetwoflowloops,thetotalflowrateequals122x10lb/hrshowninTable4.4-10forthetotalflowthroughthereactor;Thecoolantoutlettemperatureislistedas597.6FinTable,4.4-10butappearstobegivenas596oF(548Fnominalinlet+48oFaveragerise)inTable1.3-1;~Resense4.2.Thevaluegivenforthereactorcoolantpumpflowis81,200GPH(324,800GPMforfourpumps)inTable4.4-10andTable1.3-1fortheratedcapacityofthecoolantpumps.Thisislessthantheminimumflowvalueof369,947GPHshownin'Table4.4-1;A'Iso,usingtheaverageinletcoolantdensityof47.0Ib/ft3isgiveninTable4.4-10theconversiontolb/hrflowislessthanthevalueof139.5x10lb/hrgiveninTable4.4-10forthetotalfourpumpflowthroughthereactor.Thetotalflowrateis139.4x10lb/hr.Thetypographicalerrors6inTable4.4-7,4.4-10,5.1-1,and5.1-3havebeencorrected.The122x10lb/hrflowrateisbasedupontheminimumdesignreactorcoolantflowrateof324,800gpm.Thisminimumdesignflowisfourtimestheminimumpumpdesigncapacity.The139.4x10lb/hrisbasedupontheminimumallowablereactorcoolantflowrateof369,947gpm.Theminimumallowableflowrateisdefinedasthelowerflowratelimitontheexpectedflowrateprobabilitydistributionbelowwhichtheactualflowratehasonlyafivepercentchangeofexisting.Thisminimumallowableflowisusedfotthethermalmarginanalyses.3.Thecoreexitaveragecoolanttemperatureis598Fandthereactorvesseloutlettemperatureis596oF.CorrectionshavebeenmadetoTables1.3-1,4.4-10,5.1-1,and5.1-3andtoFigure4.4-10"Theminimumdesignflowrateforthereactorcoolantpumpsis324,800gpm,whiletheminimumallowablereactorcoreflowrateis369,947gpm,asdiscussedinitem2ofthisresponse.

/M/

0SL2FS~hRTABLE1.3-1(Cont'd)ItemPrincialDesinParametersnftheReactnrCoolantSstemOperatingpressure,psig0cetr'y+IQPISH~actnrinletfemperature>FOPCh,'reactorndelertemperature,FNumbernfloopsDesignpressure,psig~~2,2355482'85St.LurieUnit2ReferenceSection5.15.)5.I5.15.1'anOnofreUnits2and32,235553611.2.2,485hNO22,235553.5612.52,485St~LucieUnit12,235539.7595.72,485DesignTemperature>FeHydrostatictestpressure(cold),psigPrincialDesinParametersoftheReactorVessel6503>110'~5.15.16503,110650/3,1106503,110Haterial~Designpressure,psigDesigntemperature,FOperatingpressure,psigInsidediameterofshell,in.Outsidediameteracrossnoxsles>in.SeeTable5,232,485650.2>2351722535,24.44.45.35.3SeeTable5.2-22>4856502>235172253Sh533>GradeB~ClassI,lowalloysteel,internallycladwithType304austeniticSS2,48565021235157238Sh533,GradeB,Class1,lowalloysteel,internallycladwithType304austeniticSS2,4856502,235172253Overallheightofvesselandenclosurehead,ft-in.totopofCEDMnosxleHinimumcladthickness,in.PrincialDesinParametersoftheSteamGeneratorsNumberofUnits41-103/81/85.35.35.4~43-6-1/21/8"43-4-1/61/841-11-3/45/16

SL2-FSARTABLE4.4-7.RCSFLOWRATESFlowPathTotalRCSflowCorebypass'lowCoreflowHotlegflowColdlegflow~Flow(ibm/hr)139.P'105+x10l134.3x1069.)fx10634.x10Qs-*T'inlet~548F4,446

(

SL2-FSARTABLE4.4-10REACTORCOOLANTSYSTEMCONPONENTTHER.'fALANDHYDRAULICDATA~CooanentDataReactorVesselRatedcorethermalpower,MWtDesignpressure,psia,Operatingpressure,psia2560.25002250Designtemperature,FCoolantoutlet'emperatureF650,$46~gt..CoolantinlettemperatureCoolantoutletstate'otal,coolantflow,ibm/hr'oreaveragecoolantenthalpyInlet,Btu/lb'utlet,Btu/lbeAveragecoolantdensityInlet,Ib/ft33Outlet,lb/ft548Subcooled139;fx1054561047.043.4SteamGeneratorsNumberofunitsg~h~t',t+'~~side{tubeside)Designpressure/temperature;psia/FOperatingpressure,psiaInlettemperature,FOutlettemperature,FFlowrate,10lb/hr2500/6502250Rh'-45gg548~-61Designpressure/temperature,psi;a/FOperatingpressure/temperature,psia/F(warranted)To)alsteamflowpergenerator,10lb/hrSteamquality,1000/550815/520.3~5.60399.84.4-52 TABLE4.4-10(Cont'd)~ComonentPipesize(insidediarneter),in.HotlegSuctionleg(coldleg)Dischargeleg(coldleg)Designpressure/temperature,psia/POperatingpressure/temperature,psia/FHotlegColdleg.a.FullpowerconditionsData4230302500/6502250/Sem250/5484,4<<54 SL2-FSARTABLE5.1-1DESIGNPARAMETERSOFREACTORCOOLANTSYSTEMDesignThermalPower,Mwt(IncludingnetheatadditionfromRCP's)2570ReactorCoolantFlowRate,O~~fe~ColdLegATemperature,F+~1a~WAverage~'Femperapture,:.Fi.'-.I~.C)(erafi'~HotLeg+Temper8ture,Flb/hrNormalOperatingPressure(psia)ThermalPower,Btu/hrtk.signPressure,psia'esxgnTemperature(exreptPressurizer),FPressurizerDesignTemperature,F8.77x102500650700'f6139.x10548.572/~MS9c22505.1-3 4

6059hot58057R.570ALAJ'I560I-I550OCEDLCJ540averagecold548.532530'5200'550STEANGEt/ERATORPOWER,~75looFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TEMPERATURECONTROLPROGRAMFIGURE4.4-)0

ParameterSL2PSARTABLE5.1-3PROCESSDATAPOINTTABULATIONSOCn2A1RCP2hlR.VeRCP2A2peuuuutitee~xidintOutlet~xidointOutletS.ue2BlRCP281RCP282~xsdointoutletoutletDataPointPigures5.1-3and5.1-4Pressure,psiaTeaperacure,PAassPlowRace,iblnr2250653234223722962277.372)(S46372d774E69.7]{x!034.6/x!O139.4)xlO22962237548372+74.6/x!O69.7+16229654822955485S3>>9)bid.348)PI06VoluaecricPlowRace,gpss191985092,5003839700'929500.191985092~50092~500lAsdl863e8Ono (D

uestionInSubsection7.2.1.1.2.4,AnalogCoreProtectionCalculators,youstatethatanalogcomputersprovideinputtothermalmargin/lowpressuretrip,.thelocalpowerdensitytrip,andthehighpowertrip.'oufurtherstatethatacalculatedlowpressurelimitrelatedtodeparturefromnucleateboilingratio{DNBR)isdeterminedusingpresetcoefficientsasafunctionofthemeasuredcoldlegtemperature,axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculatedlowpressurelimitisaninputtothethermalmargin/lowpressuretrip.Providethefunctionalrelationshipofthelowpressuretripsetpointandtheaboveparameters;anddescribeh'owthesefunctionsareobtained.ProvideinformationtoindicatethesimilarityoftheAnalogCoreProtectionCalculatorusedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrentlyunderreviewforthenextcyclereloadsinceastatisticalcombinationofuncertainties(SCU)isproposedinconjunctionoothcalculationsusedintheAnalogCoreProtectionCalculator.IsthissameapproachplannedforSt.LucieUnit2currentlyorfor,futurecycles?Answer(~eepe+p~e)

rAnswer9'72'Ia)Thefunctionalrelationshipforthelowpressuretripsetpointis:Pvar=e~A1~gR1g~TC+gwhere:P=calculatedlowpressurelimit,varT'measuredcoldlegtemperature,<~p,p=scfq:+cNP;i4s)C=functionofaxialshapeindex(seeattachedfigure),gR1=functionofthehigherofthethermalpowerorneutronfluxpower.'heattachedfiguresshowA1,gRI,a,8andyforSt.LucieUnit1~2560MWt.AtpresentthesearethetargetsforSt.LucieUnitII.ThisanalysisiscurrentlyunderwayaspartoftheSt.LucieUnitIITechnicalSpecificationeffort(+~g~~~(~~Q>~.-fAgeneraldiscussionofthemethodologyusedtogeneratetheThermalMargin/LowPressure(TM/LP)LSSSiscontainedinCENPD-199-P"C-ESetpointMethodology,"withfurtherinformationavailablein"ResponsetoFirstRoundquestionsontheStatisticalCombinationofUncertaintiesProgram,Part1andPart3(CEN-124(B)-P."PerNRCrequest,C-EiscurrentlyupdatingCENPD-199PforfinalNRCreviewandapproval.-b)TheattachedfunctionaldiagramsfortheSt.LucieUnit1(FSARFigure7.2-14)andtheSt.LucieUnit2(FSARFigure7.2-5)ThermalMargintripsshowthatthesecalculatorsarefunctionallyidentical.c)ApplicationofstatisticalcombinationsofuncertaintiesforSt.LucieUnitIIisnotnowplannedforthefirstorfuturecycles;however,itmaybeappliedinfuturecyclesafterNRCapproval.

1.40'l.30A11,201.101.00~O.G(Ii!I~IIIIIjI.O.n~~Iljji.IYIllii'IilII(VJ}IANDpT"'P-1)GSxO"VA))t~~+~0I~~4I'.:II)i~~~~~04~~~~I~~~~~~04~~~~~~~~~~~to0~~~~~~~~~~~~~~~~~~~\~~~I'~~~~~~~i~~~~~~~~~~I'~~II~~~~~~~~~~~~I~~~~~~~0~!~+14.13xTIN-7586:.::~~ll~~'Ii',!+jjiI'Ii!Il~.~l~~~~~~~~!IJ.i[)iItt~lI~~~~~~I~Ij!jIlliI!)I'~~~~IjjijlIl!IIll',!.')IlI~~slI~I)II'.II!!:ill:I~I)~~2QII)II~~I',!lll!IIlllIsill,I~.!I).TINCOIIE~I)~Iieet.r'.IINLIII(!,IIi'i')Ii!..IIl)I~~~[i([I'iriI)I~~~~~~~I~~~~~~~~~~~~~))I:..:I.~~~~~~~~~~~~I~~~ETTE)'A)&4~~~I~~~~a~~~~~~~~~0~~~~~k4~~~4~~~~~)IllII~~.II)i)Ill:::I:~~~~~~~~~~~~~~~~~~)~~~~~I~~~~~~~~~~~~~~~I~I~)',I[li:!I1)IiIIIIA025'lI~~~II'I,.~~~~~~~~~I~~~~~4M~~~~~~~~~I~I~t'~~~~~~~~~~~)~I~I~~~~~~~ill::.:Iill!Ill,lIlI~)I~~~F2'~0.20.2O.nlll!ljjlji:,li!Iii)iii.il!.:jill'il'::'lt'EB'E'"'XO)tDNB1~~~I~~~~~4~)~~;,lt:;I:~I~~~~~I~~~~~~~~.'::I~III'Ililt~~~~It:I)~~~~~~~~~~~~~~0~~~~~~~~~~;tt)~~~~~~).llIII'IO.GAXIALGI)A)'EINDEX,Ylt2I~IFIGURE2.2-3n)ermalMargin/LowPressureTripSetpoint~Part1(YIVersusA1)~~I~'I~~

~0VfHEBEtA>xQR1QosN~'ND'>~><~1765xQow++14.13T<<-75861.00.541.0==-=0.80.60.40.320.2OA0.60.8FRACTIONOFRATEDTHERMALPOY(ER1.0ThermalMargin/LowPressureTripStoointPart2(FractionofRATEDTHER.'ilALPOi')ERVersusQR1)ST.LUCIE-Ui'lITg,~~~.o~~

0 0cnW2.cg0~fQ~0A0z0'U"UCYIV0I0'CPiPSCIL)AXIALOFFSETYICAL~TC+KCB3~S3{RPSCIP)PTCALS3:FLOYDDEPENDENTSETPOINT5=LECTORSV~ITCHINRPSCIPPOSITIONS-I.4PUMiPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPl5.2PUMPS-LOOP2PiPSCIP)~'0Q-QRI]~~~asAXIALFUNCTION~DNBCAL~PvCa(CONTB"LO'>>')CEAFUNCTIONS"(RPSCIP)~34~i3VARP{ABOVE)MAXSELMINTRIPPRETRIPP=PRIMARY0"i.c<UgETRIPUNIT7ALARM:-PRETRIPTP.IP:P<PTPIPCALCULATION:VARDNB~CALWHERETCALTC+KCB,Q~MAX(O,B)TRIPVAR'IN'RETRJP'RP 0

Cyz~0D'UI&~0ClXKCQPSCI?)2CALT'c'"c'XIALOFFSETY3',~2~S3(RPSCIP):~TCAXS3:FLOWDEPENDENTSETPOINTSELECTORSWITCHlNRPSCIPPOSITIONS-l.4PUMPS2.3PUMPS3.2PUMPS-OPP.LOOPS4.2PUMPS-LOOPI5.2PUMPS-LOOP2'I'PSCIP)QQRI)~wee~~lQAXIALFUNCTIONQRlQONSCAI.NQDNa5-(RPSCIP)'VA..(CONT.8ELOW)CEAFUNCTION~42I3'PVAR'(A8OVE)MINMAXSEl.TRIPPRETRIPIOOP=PRIMARYPP.ESSURETRIPUNIT7ALAPA:PRETRIPTP.IP:P<PTPIPCALCU.l.ATION:VARDNSPCALWHERCALC+C8'RIPŽX~VARMIN)PRETRIPTRIP

~~uestionInSubsection7.2.1.1.2.4,AnalogCoreProtectionCalculators,youstatethatanalogcomputersprovideinput.tothermalmargin/lowpressuretrip,thelocalpowerdensitytrip,andthehighpowertrip.Youfurtherstatethatacalculatedlowpressurelimitrelatedtodeparturefromnuc1eateboilingratio{DHBR)isdeterminedusingpresetcoefficientsasafunctionofthemeasuredcoldlegtemperature,axialoffset,andthehigherofthethermalpowerorneutronfluxpower.Thiscalculatedlowpressurelimitisaninputtothethermalmargin/loupressuretrip.~)providethefunctionalrelationshipofthe'lowpressuretripsetpointandtheaboveparameters;anddescribeh'owthesefunctionsareobtained.lo)ProvideinformationtoindicatethesimilarityoftheAnalogCoreProtectionCalculatorusedforSt.LucieUnit2tothatusedinSt.Lucie1.St.LucieUnit1iscurrentlyunderreviewforthenext'cyclereloadsincea~~~~~~~~~~~~~~~~~~~statisticalcombinationofuncertainties(SCU)isproposedinconjunctionc)withcalculationsusedintheAnalogCoreProtectionCalculator.IsthissameapproachplannedforSt.LucieUnit2currentlyorforfuturecycles?AnswerTheAnalogCoreProtionCalculatorusedznStLuc.ieni't2iit2isfunctionallyidenticaltothatused>tLucie.Unitl.SONjTheStatisticalCombinationo+ncertinties(methodologycanbeappliedtoSt,LucieUnit2.d'C'elisnot~Wrrelyemployedzhowauar>If~~f4c.JC.dc4L+ea~4&gC~(wasa>4'~W2y+4ffd/a, eSL-2RoundOneuestions492.15(15.0)ProvidejustificationforusingtheMacbethcorrelationintheCHFcorrelationforChapter15transients.Dotheapplicabilityrangesofthecorrelationcoverallexpectedconditions?~Resonse:TheMacbethcorrelation(Ref.I)isusedonlyforthedeterminationofDNBRduringthepost-tripreturntopowerportionofthemainsteamlinebreak(NSLB)transientspresentedinAppendix15AoftheFSAR.('lotsofDNBRversustimeforthesetransientshavebeenfurnishedintheResponsetoguestion440.14).ForallotherChapter15tran-sientstheCE-IcorrelationisusedintheTORCcode(References2and3)tocalculateDNBR.FordeterminationofDNBRduringthepost-tripreturntopowerportionofNSLBtransientsthemethodsappliedbyLee(Ref.4)areemployedinordertousethethcbethcorrelationforrodbundlestopredictburnoutasafunctionofaxialheight,accountingfornon-uniformaxialheatflux.=Macbethdemonstratedthatfiveparameterswerenecessaryforcorrelationofcriticalheatflux(CHF)dataforrodbundleswithverticalupflow:massflux,G;inletsubcooling,hH;pressure,P;heateddiameter,dh,andchannellenght,1.HoweverthechannellengthiseliminatedfromthecorrelationbyapplicationofLee'smethodtopredictCIIFasafunctionofaxialheight.Todetermineapplicability,theheightatwhichminimumDNBRoccursiscomparedwiththechannellengthsfortheexperimentsfromwhichMacbethdrewhisdata.ThedatausedfortheMacbethrodbundlecorrelationswithverticalupflowhasarangeof'aluesforGoffrom0.18to4.1millionlbm/hrft2(Ref.5).TheuniformityofthecorrelationoftheCHFdataforrodbundlesasafunctionofGoverthisrangeandthedataandcorrelationsforCHFinheatedtubesgiveconfidencetoextendthelowerendoftherangeofapplicabilityoftherodbundlecorrelationtoatleast0.09x106Ibm/hrft~.(TheMacbethcorrelationsforheatedtubesarebasedondatafor0.01<Gx10-6<7.8lbm/hrft2.)TherangeofvaluesofhHuponwhichtherodbundlecorrelationsisbasedis-150<hH<380BTU/lbm(Ref.5).TherodbundlesfromwhichtheCHFdatawasobtainedhadvaluesofdhbetween0.113and0.902inchesandlengthsof.from17to72inches(Ref.1).Thedatausedfortherodbundlecorrelationsisallfor1000psia.HoweverapplicationofMacbeth'scorrelationsforheatedtubesindi-catesthatusingthecorrelationdevelopedfor1000psiaatlowerpressuresproducesvaluesforDNBRwhichareconservative.Further,othercorrelationsforrodbundles,suchasthoseofBowring(Ref.6),yieldavariationinDNBRoftheorderof10$aspressurevariesfrom500to1000psiafortherangeofGandhHofinterest.ThisisofthesameorderastheuncertaintyinMacbeth'scorrelationandismuchsmaIlerthanthemargintoDNBcalculatedforthepost-tripreturntopowerportionoftheMSLBtransientspresentedintheFSAR.

Table492.15suomerizestheaboveapplicabilityrangesandcomparesthemwiththevaluesof'heparametersobtainedfortheMSLBtransientspresentedinAppendix15AoftheFSAR.Theapplicabilityrangescoveralltheexpectedconditionsforthepost-tripreturntopowerportionoftheseMSLBtransients.

References:

l.Macbeth,R.V.,"AnAppraisalofForcedConvectionBurn-outData,"Proc.Instn.Mech.Enrs,Vol.180,Pt3c,pp37-50,1965-66.2."TORCCode-AComputerCodeforDeterminingtheThermalMarginofaReactorCore,"CENPD-161-P,July1975,ProprietaryInformation.3."TORCCode-VerificationandSimplifiedModelingMethods,"CENPD-206-P,January1977,ProprietaryInformation.4.Lee,D.H.,"AnExperimentalInvestigationofForcedConvectionBurn-outinHighPressureWater-PartIV,LargeDiameterTubesatAbout1600psia,"A.E.E.W.ReportR479,1966.5.Macbeth,R.V.,"Burn-outAnalysis-Part5:ExaminationofPublishedWorldDataforRodBundles,"A.E.E.W.ReportR358,1964.6.Bowring,R.W.,"ANewMixedFlowClusterDryoutCorrelationforPressuresintheRange0.6-15.5!IN/m2(90-2250psia)-ForUseinaTransientBlowdcr~~nCode,"IMechEConferencePublications1977-8,pp175-182,1977,

~~Table492.15-1ComparisonofapplicabilityrangesforMacbethCHFcorrelationforverticaluplfowinrodbundleswithvaluesobtainedfortheMSLBtransientspresentedinAppendix15AoftheSL-2FSAR.AParameterG(106ibm/hrft2)hH{BTU/ibm)P(Psia)dh(inches)(inches)RangeofAvailability0.09-4.1-150-380500-1000.113-.90217-72RangeofValuesObtainedforMSLBsDuringPost-tripReturntoPower.*0.09-.3.0(.16)'I00-250{244)545-960(956)0.47122-33(26)***ValuesinparenthesisarethoseforminimumDNBRpredicted.**HeightatwhichminimumDNBRispredictedtooccur.

Highburnupperformanceexperience,asdescribedinSubsection'iaspovidedevidencethatthefuelwillperformsatisfactorilyunderdesignconditions.Thecurrentcoredesignbasesdonotincludeaspecificre-quirementfortestingofirradiatedfuelrods.However,thefuelassemblydesignalloi:sdisassemblyandreassemblytofacilitatesuchinspections,shouldtheneedarise.-Afuelrodirradiationprogramhasbeendevelopedto.evaluatetheperform-anceoffuelroddesignedforuseinthe16x16fuelassembly.Thepro-gramincludestheirradiationofsixstandard16x16assemblies,twoeachfor1,2,and3cycles,respectively,ntheArkansasNuclearOne-Unit2reactor(ANO-2).Eachssemblywillcontainaminimumof50precharacter-ized,removablrodsdistributecwithintheassemblytoobtainaspectrumofexposurelevelsforevaluationpurposesintheinterimandterminalexaminations.Interimexaminationofallsixassembliesisplanneddur'ngrefuelingshutdownsaftereachcycle.Th'eANO-2fuelrcdandspecificcompcnentsofthefuelrcdshavereceivedadetailedpre-characterization.Theprogramcallsforsubstantialclad-dingcharacterizationtoincludemchanicalproperties,texture,hydrideorientationandoutofreactorlowstrainratebehavior.InadditiontotheIDandODdiiensionaldatanormallyobtainedonthecladtubingmaterial,aminimumof300fuel'rodswillbemeasuredtoobtainasloadeddimensions.Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurementssuchthatchangesintheseparameterscanbetrackedbysimilarmeasurementsduringinteriminspections.Also,arandomselec-tionofappro..im"tely100UOpelletsfromeachlotper.batchusedvillbecharacterizeddimensionalityandthedensitydistributionvillbedeter-mined.Aboutonehalfofthesepelletswillbeplacedinknownaxiallocaticnsinselectedfuelrodswliiletheremainderwillbesetasideasarchives.izedrodswillberemovedfromthereactcrateachrefueiingandmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisua1.inspection.Thelengthofthea"semblyandperipheralrod"willbemeasured.Duringtheshutdown,atargetof20pre-charactPrizedrod"perbatchwillhescheduledforexaminationandmPasurement.Atsometime~aftertherefuelingoutage,pre-characterized'odsretainedindischargedassemblieswillbemeasured.Atargetof100rodswillb"edditesterlaftPPaclishutdni.w.8+A-ostirradiationaeLsurvLllagZ,~nce~gramforStLucie=Knit2is,beingYeplanned.Spec'~erequirementsth~P.pl"nvillJe-'determinedbhsedontheresultsftheANO-2Dr"an.~liow'.acrF!~24~r:irrontlv~lanstowhentheoui~assemblicsapl~re-.ovo<lfriztheDreOldDlac.dPwintespentfuelstor-gi.pool.s>n.3(,I%seesApoolsidenondestructiveexaminationvillbemadeduringeachofthePfirstthreerefuelingSatANO-2.Tnesix16x16asseiablieswithcharacter-

SL2-FSAR4.2.1.5SurveillanceProrra4.2.1.5.1~~~~RequirementsforSurveillanceandTestingof'rradiatedFuelRodsHighburnupperformanceexperience,asdescribedinSubsection4.2.3hasprovidedevidencethatthefuelwillperformsatisfactorilyunderdesignconditions.Thecurrentcoredesignbasesdonotincludeaspecificre-quirementfortestingofirradiatedfuelzods.However,thefuelassemblydesignallowsdisassemblyandreassemblytofacilitatesuchinspections,~shouldtheneedarise.Afuelrodirradiationprogramhasbeendevelopedtoevaluatetheperform-anceoffuelroddesignedforuseinthe16x16'fuelassembly.Thepro-gramincludestheirradiationofsixstandard16x16assemblies,twoeachfor1,2,and3cycles,respectively,intheArkansasNuclearOne-Unit2reactor(ANO-2).Eachassemblywillcontainaminimumof50precharacter-ized,removablerodsdistributedwithintheassemblytoobtainaspectrumofexposurelevelsforevaluationpurposesintheinterimandterminalexaminations.Interimexaminationofallsixassembliesisplannedduringrefuelingshutdownsaftereachcycle.TheANO-2fuelrodsandspecificcomponentsofthefuelrodshavereceivedadetailedpre-characterization.Theprogramcallsforsubstantialclad-dingcharacterizationtoincludemechanicalproperties,texture,hydrideorientationandoutofreactorlowstrainratebehavior.InadditiontotheIDandODdimensionaldatanormallyobtainedonthecladtubingmaterial,aminimumof300fuel.rodswillbemeasuredtoobtainasloadeddimensions.Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurementssuchthatchangesintheseparameterscanbetrackedbysimilarmeasurementsduringinteriminspections.Also,a.randomselec-tionofapproximately100UOpelletsfromeachlotperbatch'usedwillbecharacterizeddimensionalityandthedensitydistributionwillbedeter-mined.AboutonehalfofthesepelletswillbeplacedinknownaxiallocationsinselectedfuelrodsWiletheremainderwi)lbesetasideasarchives.Apoolsidenondestructiveexaminationwillbemadeduringeachofthe'~~firstthreerefuelingSatANO-2.Thesix16x16assemblieswithcharacter-izedrodswillbexemovedfromthereactorateachrefuelingandmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisualinspection.Thelengthoftheassemblyandperipheralrodswill.bemeasured.Duringtheshutdown,atargetof20pre-characterizedrodsperbatchwillbescheduledforexaminationandmeasurement.Atsometimeaftertherefuelingoutage,pre-characterizedrodsretainedindischargedassemblieswillbemeasured.Atargetof100rods.willbeeddycurrenttestedaftereachshutdown.Z<~sg7-gY~~R:&1&~qApost~xrradiatpdnfuelsurveysanceprogramo-a~~~~,planned.Sacr'.Eicrequireme~tsoftheplanwild~bedeterminedbusdon,.theresuloftheANO-2program.However~+PSLcurrentlypfanStoper-~~~~~fonotAtiiospootioZ<pre~ramQc~sYcJckrool<ocroio3-CzinitcorewhenthWfuel.assemble,areremovedfrt'ecorean~laced~oe:.spentfuel;-storagepool."=-".-.=ma'~L4,2-30 Apostirradiationfuelsurveillan'ceprogramfor54lucre4+/isplanned.,Thisprogramshallconsistofavisualinspectionofaminimumofsix.irradi-atedassembliespriortoreplacementoftheReactorVesselHeadateachofthefirstthreerefuelingoutages.Thesixassembliesinspectedshallcon-sistoftwoassembliesof'eachfueltypeandwillbefromcorelocationswhicharenonadjacent.VisualinspectionsshallconsistofviewingthetopandsidesofeachfuelassemblyviaanunderwaterTVCameraorPeriscope.Thevisualinspectionwillincludeobservationwithspecialattentiontogrossproblemsinvolvingcladdingdefects,spacergriddamageandothermajorstructuralabnormalities.Nospecialmeasurementdevicesfortheseaffectsareintendedtobeprovidedfor'hisvisualinspection.Ifmajorabnormalitiesaredetectedduringthisvisualinspectionorifplantinstrumentationindicatesgrossfuelfailures,"thefuelvendorwillbein-formedandfurtherinspectionsshallbeperformed.Dependingonthe'atureoftheobservedcondition,furtherexaminationcouldincludefuelsipping,singlerodexamination,andotherexaminations.The16x16fueldesignen-.ab)esreconstitution.Individualfuelrodsandotherstructuralcomponentsmaybeexaminedandreplaced,ifrequired.Underunusualcircumstances,de-structiveexaminationofafuelrodmayberequiredbutthiswouldnotbeaccomplishedonsiteorduringtherefuelingoutage.TheNRCshallbecontactedregardinggrossfuelfailuredetec'tedbyplantin-'strumentationormajorabnormalitiesobservedduringthepostirradiationin-.spectionsdescribedabove.Thepostfuelirradiationfuelsurveillanceprogramshallbecontinuedfol-'owingthefirstthreecyclesofoperationofSf:Lu;.el';$~,Sixassembliesshallbevisuallyinspectedduringeachrefuelingoutage,notnecessarilypriortoreplacementofthereactorvesselhead.Thevisualinspectionshallconsist.ofviewingthetopsandsidesofeachfuelassemblyviaanunderwaterTVcameraorperiscope.Thevisualinspectionwillincludeobser-vationwithspecialattentiontogrossproblemsinvolving.claddingdefects,spacergriddamage,andothermajorstructuralabnormalities.TheNRCwillbenotifiedofmajorabnormalitiesnotedasaresultoftheseinspectionactivities.

15.C.3CEAEjectionwithLossofOffsitePower.~~~~~The.followingCEAejectioncaseswererequestedtpower:I(1)CEAejectionwithcontrolelementhuigblowdownintocontainment.,banlj'zedwithoutoffsiteuptureandsubsequentrapidII(2)CEAejectionwherethecontrolelementhousingdoesnotruptureandtheprimarysystemleakstothesecondarysystemthroughleaksinthesteamgeneratortubes.-TheanalysisofaCEAejectionwitharapidblowdownintocontainmentispre-sentedinSection15.4.5.1.Thisanalysisalsoassumedafailureofthe4.16KYbustofasttransferfollowingturbinetrip.Themainimpactofthisistheassumptionthatthecondenserisunavailableforonehour.TheanalysisofaCEAejectionwherethehousingdoesnotruptureisdiscussedinthis'section.Thiscasewasanalyzedwithoutoffsitepower.Figures15.C.3-1and15.C.3-2arethepressureversustimecurvesforprimaryandsecondarysidepressures,respectively.Table15AC.3-1presentsinformationassociatedwithradiologicalreleasecalculations.

Table15.C.3-1CEAEjectionwithLossofOffsitePowerRadiologicalReleaseInformationl.SteamReleasedtoAtmosphereDuringCooldown(ibm)0-2hours:NSSYs':ADVs74400'51000EntireEvent;NSSVsADVs2.FuelPinFailure(/)(SeeSection15.4.5.1)3.PrimaryIodineConcentrationBasedon9.5%FailedFuel(pCi/gm).4.SecondaryIodineConcentration.BasedonTech.Spec.Limits(pCi/gm).5.DecontaminationFactorforSteamGeneratorIodineTransport6.TwoExclusionBoundaryThyroidDosefromSecondaryReleases(Rem).744005720009.58.3x1031016.7 0

gazooI+OPgaoeizOdlcOop-sn)g,5FC'nMbX

10501000.~~KD0~KQUJI~950900850~~~~~~~~8007500100200.300TIME,SFCONOS500\~~~~~~~~~FLORIDAPO>U5R8LIGHTCOMPANYST.LUCIEPLANTUNIT2STEAMGEH.PRESSUREij'S.TIME

XP5+L78"Gsppnce+~+a'I)g~(g(NIOnthebasisofexperience,thehTvalueof100'FusedintheanalysisislargerthananyhTthatmightbeexpectedduringplantoperation.DuringRCScooldownusingtheshutdowncoolingsy'tem,coolantcirculationwiththereactorcoolantpumpsservestocoolthesteamgeneratortokeepthetemperaturedifferencebetweenthereactorvesselandthesteamgeneratorminimal.aSteamdumpsareusedtoreducesteamgeneratorsecondaryfluidtobelow220'F.Ifthesteamgeneratorwereheldat220'Fandthereactorvesselwerecooledtotherefuelinqtemperature,thesteamgenerator-reactorvesselATwouldstillbelessthan'l00'F.Infact,procedureswilldirecttheoperatortomaintaintheh,Tbelowapproximately20F.QLTOPtransientshavenotbeenanalyzedforthesimultaneousstartup.ofmorethanonereactorcoolantpump(RCP).Suchoperationisprocedurally.precluded,sincetheooeratorstartsonlyoneRCPatatimeandasecondRCPisnotstarteduntilsystempressureisstabilized.Additionally,thereisanLTOPtransientalarmthatshouldindicatethatapressuretransientisoccurringandthatasecondRCPshould'notbestarted.TheresultsoftheanalysesprovidedinFigures5.2-24and5.2-25showthattheuseofthePORYsprovidesufficientpressurereliefcapacitytomitigatethemostlimitingLTOPeventsidentifiedabove.~l<<l>fgCJiSr'rrL.ATechnicalSpecificationwillbewrittentorequire~mfa.o~~r~f2~5-'~RAifthebTexceeds100F.However,asmentionedabove,administrativeprocedureswillensurethatthehTismaintainedbelowapproximately20F.Also,aTechnicalSpecificationwillbewrittentoensurethatappropriateactionistakenifonePORVisoutofserviceduringtheLTOPmodeofoperation.

J

'L2-FSARecapabi)itytodetermineheatremoval,coo)downrate,shutdowncoolingflow,amdthecapabilitytodetect.degradationinthef)oworheatremovalcapacity.TheinstrumentationprovidedfortheSDCSconsistsof:e1)Temperaturemeasurements-Shutdowncoo)ingheatexchangerinletandthetemperatureoftheshutdowncoolingf)owtothe)owpressureheader.A).1temperaturesareindicatedinthecohtrolroom.Theshutdowncoolingheatexchangers'nlettemperature,andthelowpressureheadertemperatures"arerecordedtofaci)itatecontrol'ftheReactorCoolantSystemcoo)downrate.2)PressureHeasurement.s-LPSIheaderpressureandshutdowncoolingheatexchangerinletpressure.Thesepressuresareindicatedinthecontrolroom,and,whenusedwiththe).ow-pressurepumpperformancecurves,provideanieanal>>ternatemeansofmeasuringsystemflowrate.3)PlowHeasurements-Totalshutdowncoolingflowratexsmeasuredbyflowindicator/control)ersFIC-3301and3306.Theinstiumentationisdiscussedfurtherin5e4.7.2.3OverpressureControlSections7.4and7.6.'ctionagainstoverpressureoftheSDCS~~~~~~rlocks.Adescriptionofreliefvalvessection6.3.2.2.6.1.isprovidedbyreliefvalvesandisprovidedbelowandinSub-TherearesixreliefvalvesintheSDCSsuctionlines.Thesevalvesaresizedtoprotectthecomponentsandpipingfromoverpressureduetothermalexpansionofthefluid.ValvesV-3482andV-3469haveasetpressureof2485psigandacapaci:ty'offivegpm.Relieffluidfromthesevalvesiscollectedinthequenchtank.Theseva)vesarelocatedinSectionsE-4andD>>5ofCEP&IDE-13172"310-131andaredeeienedto1974AS>E,SectionNBGuelityGroupA(~eeF~ure.ValvesV<<3483andV-3468haveasetpressureof335psigandacapacityof155gpm.RelieffluidfromthesevalvesiscollectedinaholduptankintheMast.eHanagementSystem.ThesevalvesarelocatedinSectionsD-7andD-6ofCEP&IDE-13172-310-131andaredesignedto1974ASHE,SeCtionBC,GuelityGroupB(zaep;~are.'4y/S)~5e4-24Inadditiontoprotectingthecomponentsandpipingfromoverpressureduetothethermalexpansionofthefluid,valvesV-366andto'otectthecomponentsandpip-ngfromoverpressureduetoaresizeto'roecsandressurizerinaverendrtentstartingofthechargi'ngpumps,HPSIpumps,anpedacaac1theaters,Thesevalveshaveaset.pressureof335psiganapy2300m.Relief'fIuidcol)ectedfromthesevalvesiscollectedgpm.exethotainmentsump.ThesevalvesarelocatedinSectionsC-6>dD-6ofCEP&IDE-13172-310"131andaredesignedto1974ASeconSHEYC(to1975summeraddenda)QualityGroupBMhencalcu)atingSectionothecapacityofvalvesV-3666andV-3667,thecap.styoes<~F'q~03-l<)~AmendmentNo.4,(6/81)

SL2-FSAR9Vo(e(~$8~TMo-manual~cefa1eJ~~.ovineRCSdepressurizationiscarriedonormallyaftertheSITsareeither.isolatedordcpressurized.~PrimaryBorationandInventoryMakeupTheSt~LucieUnit2designincorporatesthreesafetygradechargingpumps(SeismicCategory,oeIASMECodeClass2),redundantsafetygradechargingpumpi"iCategoryIASMECodeClass2boricacidmae-upans),numdeliverredundantchargingpumpsuctionpaths,andredundantchargingpumpeverypaths.Thechargingpumpsandallrelatedautomaticcontrolvalvesareconnectedtovitalpowerifthenormalpowersupplysystemshouldfail,'xcept1V-2504hargingpumpsuctionfrom,theRMT.Duringtheboronlantcooldown,thechargingsystemboratestheRCStocoldshutdownoronconcentrationand.accommoaesd.dtthereactorcoolantshrinkage,takingsuctionfromeithertheboricacidmakeuporrefuelingwatertanks.Theminimumamountofstoredorcacsoudbiidlutionthatismaintainedineitherboricacidtank'issufficienttobringtheplanttoasafeshutdowncondition.ThecapabilityoftheChemicalandVolumeControlSystem(CVCS)toborateandtomakeupisnotcompromisedbystoppingletdownflow.Ananalysisofborationwithoutletdownhasbeencompeteanhb1tedandisconfirmedinFSARSubsection9.3.4.3.Asinglefailureofoneemergencypowertrainwouldleaveatleastonechargingpumpoperaeonblthotheremergencypowertrain.Onechargingpumpstillalowsteo111hRCStobeboratedtoacoldshutdownboronconcentrationthetwohoursthattheplantisinitiallyheldathotstandby,evenwithouttheletdownsystemoperable.Thus,thechargingsyswithinthetwooursae.sstemsatisfiesthesinglefailurecriteria.SeeFSARSubsection9.3.4formoreinformation.4.SecondarytfakeupDuringcooldown,theauxiliaryfeedwatersystem(ASS)andatmosphericdumpvalvesprovie.ameanson'brigthereactorcoolantsystemtemperaturedowntotheshutdowncoolingsystementrytemperature-Theauxiliaryfeedwater~pump(s)arestartedandthesafetygradeauxiliaryfeedisolationvalves,~5-09-9,-10-11,-12,areopenedfromthecontrolroom.Theauxiliaryfeedwatersystemisdesignedsuchthatnosingleactivefailurecoupledwithalossofoffsitepower,preventsplantcooldown.Afailuremodesandeffectsanalysisi.sprovidedinthe.St.LucieUnit2FSARTable10.4.3.TheAPTScontainsonesteamdrivenandtwomotordrivenauxiliaryfeedwaterbi,tlfiapableofmaintainingtheRCSinhotstandby.Also,thesteamdrivenoreitherofthemotordrivenauxiliaryfeedwaterpumpsiscapableofdeliveringenoughfeedwatercondensateforaplantcooldown.TheAPTSisdesignedtosafetygraderequirements{SeismicCategoryISafety13AS'KCdSectionIII).Eachofthemotordrivenauxiliaryfeedwater~pumpsutilizeaClasslEacsafetyrelatedpowersupplyandtheturbinedipumptrainreliesstrictly-ondcpowersupply.Xfthemotordrivenauxiliaryh.5.4-28eAmendmentNo.4,(6/81)

)

SL2-FSAR+9o(NCHPOSITIONepreoperationalandinitialstart'uptestprogramshallbeinconformancewithRegulatoryGuide1.68'heprogramforPHRsshallincludetestswithsupportinganalysisto(a)confirmthatadequatemixingofboratedwateraddedpriortoorduringcooldowncanbeachievedundernaturalcirculationconditionsandpermitestimationofthetimesrequiredtoachievesuchmixing,and"(b)confirmthat'hecooldownundernaturalcirculationconditionscanbeachievedwithi'nthelimitsspecifiedintheemergencyoperatingprocedures.Comparisonwithperformanceofpreviouslytestedplants'fsimilardesignmaybesubstitutedforthesetests.RESPONSE:ThepreoperationalandstartuptestprogramswillconformtheRegulatoryGuide1,68(R2).Boronmixingundernaturalcirculationconditions,willbedemonstratedinaprototypicaltestattheSanOnofreNuclearGeneration~50>MS~1g~~~4oFHtt's$4'IVY~a~/~i~e4"cpothlc.4Mc.W~'i2.Ps8PAnaturalcirculationtestandsimulatortrainingwillbeperformedforSt.LucieUnit2todemonstratethecapabilityofcoolingtheplanttoshutdowncoolingsysteminitialconditionswithinseveralhoursunderminimumcoolingcapability.AdetailedplanwillbereportedtotheNRCinaforthcomingFSARamendment.St.LucieUnit1submittalstotheNRCconcerningNaturaliculationcooldownhavebeenreviewedwithresPecttoth'eiraPPlicabilitytoStrhueieUnit2.XtisFPL'sopinionthatthesuheittalsprovidedtothe'istaffforUnit1aredirectlyapplicabletoUnit2.Insummary,Unit2willreviseemergencyoperatingprocedurestoreflectamorestringentcooldownratethantheexisting75F/hrrate.However,itisourpositionthatthemorestringentcooldownrateisnotrequiredtoprecludesafecooldownorplantshutdown.All,evaluationscompletedbyourNSSSUendor(C-E)concurwithouriiThStLucieUni,t2responsetotheabovequestionisaddressedin30FPL'lettersL-80-343datedOctober17,1'980andL-80-431datedDecember1980.5.4-28nAmendmentNo.4,(618'1)

PucsL'>.<>r>440.5Provic)o<letails<>>>t)realr>>msa>>clir>dicatior>sw)richwoul<liriformthu<>)>orate>rst:hat:aSDCsuet:ionli>>eir;o-lationvalve)rawclosedwhiletheplanti.ir>sh<<Lclowr>cooling.Istherear>ycommor>failurewhichwouldre.-sult:i>>hot:hvalvesbeingclosedwhileinslruLdowrrcoolinc)~ItlhenLPSI)>sm)>miniflowisolationvalv<<sarec3oscddurir>gsl>ut:down<:oolir>g,whatworrldpr<.vor>tpumpclamageiFaprcssuretransie>>Cweret.ooccurwhichcausesRCSpressure:toexccc.dLPSIdeadheadpressure?Nher>t:heplantisintheSDCSmode,isthc:reanysir>gluFailurewhichwouldc:a0sethesuctionofbothSDCp>>mpstobuswitchedfromthehotlegpipingtothedrysumps?Respor>se:TheSDCis'olationvalvesareV-3480,-3481,-3651,and-3652.Chenanyofthesevalvesareclosed,alightisdisplayedonapanelintherontrolroom.ValvesV-3480and-3481areir>linewithLPSIpump2A.ValvesV-3651and-3652areinlinewithLPSIpump2B.Valves.V-3652a>>d-3481areon<.lectricalTrainA.ValvesV-3651ar>d-3480areonelectricalTrainB.Itshouldalsobenotedthatthereisacrossconnectbetweer>thetwoLPSIpumpt:rains.Thiscrossco>>>>cctissituatedbetween,thetwoisolationvalv<<soneachtrain.Thiscrossconnectpipi>>gisopenedandclosedviavalveV-3545.Powerissuppliedtothevalvefromeithercl<<c:-tricalTrainAorBviathc.swir>gBus.Thiscrosscor>neetvalvecanbeopenedfromtheco>>trolroomandalsofromaloc:alcontrolstation.Openandclosedpositionsarc.shownbycorrespondingliglrts.Theselicrhtsarepowered.fromelectricalBusA.Ir>adc)ition,thereisa0-100";indicationfort)>isvalvepowc:redfromclcctrica)BusB.Thrrs,ifoneofthevalvesfailedoxifoneofthedieselger>eratorsFailed,therewouldstillhconefunctioningLPSIpumptrain.Forexample,ifvalveV-3481failedclosed,thepil>inglinetoLPSIpump2Awouldnolongerbeopc.nrhowever,t:helinetoLPSI)><>mp2AwouldsLillbeoper>a>>dopera)>le'.Asasecond<<xamplerclu<.tri<ralTrainAfailed-t:hediesel<3er>eratorfailedt:ostart-thesevalve:sV-3652andV-3481wouldnotopen.Fl<.ctri-.calTrair>BisfuncLionalar>disus<<dtoopc>>LheSDCcrossconr>ec:tvalve(V-3545).tinterflow:-throught.heLPSI)>ump2Atrair>(u)>tot:hecrosscon>>ccLpoirrt),flowsthro>>ght:hecrosscc>r>>>e<<t.pipir>ga>>dintothe),PSIp<<mp2Bpipingtrain,thussupp)yir>gLPSIpump2Bwiththenecessaryflow.

e/~/z(Thereisnr>s>>><i)cfbi)u>'ewhichprevoritsSDCentryandth<rcisiiosi>><))efailurewhichclosesbothv>ivesi>>asiii<iletrai>>orpruveiitsonevalvefrombci>>g<:lo.,cd.Thesecondt>artofthisouc.tioriaddressesthesi,tu;itioiiwhu>>theLPSIpumpminiflowisolationvalvesareclosed(di<ri>>qtheshutd<iwn'coolingmode)aridapres-suretrinsiento<><<ursintheRCSwhichexceedstheLPSIpumpdeadheadpressure.rFortheShutdownCoolingMode,theLPSIpumpsuctionisalignedtothehotlegoftheRCS.TheflowCromthedischargesideofthepumpgoesintothecoldlegoftheRCS.Duetothisarrangement,theLPSIpumpwouldnotbedeadheadedbyanRCSpressuresurge.Reliefvalvesintheshutdowncoolingsuctionlinespreventisolationofthelineforanycredibleoverpressureevents.ThereisnosinglefailurethatwouldcausebothoftheLPSIpumpstobealignedtothedrysumpduringtheShutdownCoolingMode.TheSt.LucieUnit2hasanum-beroffeaturesincorporatedinitsdesignwhichpre-cludesthis.ForthyLPSXpumpstobealigned.intheaccidentconfi-gurationsitedinthequestion,thewatersupplyfromtheRCSwouldhavetobecutoffandthepathfromthecontainmentsumptotheLPSXpumps,wouldhivetobeopen.AninadvertantRASwo>>ldopen-theisolationvalvesfromthecontainmentsump(I-MV-07-2AandB).However,anRASalsoturnsofftheLPSIpumpsanddoesnotclosetheSDCsuctionisolationvalves.ValvesV-3444andV-3432,oneineachline,areclosedduringshutdowncoolingandmustbcopenedtoaligntheLPSXpumpstoadrysump.'I7g<existingdesignpermitsasa>>glefailureoftheAorBbatterytocloseasuctionvalveineachtrainnftheshutdowncoolingsystem.7~~<>QP;gg,P~P~/g<+>Ol/~VAw(+-35+5)uzi/fbmd+Pa.iM50g4imhs44rc.+~~/y 0/

('gr'IOfthepossiblesingleactivecomponentfailuresf'rtheSt.Lucie2Plant,onlytwocanimoactthepotentialforpost-tripreturntopowerandconsequentpossibledegradationinfuelperformance:(a)'reofamainsteamisolationvalvetocloseonactuationofinsteamisolationsignal{MSIVfa(lllure)and(h)failureofhighpressuresafetyinjection(HPSI)pumporfailureofonePSIpumpandonelowpressuresafetyinjection(LPS!)pump(thetercasebeingpossibleonlyifoffsitepowerisunavailable).heonlysignificantimpact'hesesinglefailurescanhaveisontentialpost-tripdegradationinfuelperformance.Table440e9-1showsthemaximumpost-tripreactivities,coreaveragepowers,andcoreaverageheatfluxeswithanassumedMSIVfailureandwithanassumedHPSIporn~orHPSIpumpplus'LPSIpumpfailure,asappropriate,for6.36ft~mSLBs.CasesarepresentedforSLBsinitiatedatfullpowerandatzeropower,withandwithoutlossofoffsitepower.Forcaseswithlossofoffsitepower,failureofoneHPSIpumpplusoneLPSIpumpisseentopresentthegreatestpotentialforpost-tripdegradationinfuelperformance.ThereforethiswasthesinglefailureassumedforthecaseswithlossofoffsitepowerwhicharepresentedinAppendix15AoftheFSAR.Forcaseswithoffsitepoweravailable(noreactor'coolantpumptrip)theimpactofthetwopossiblesinglefailuresisnearlyidentical.TheanalysespresentedinAppendix15AoftheFSARassumedaMSIVfailureforcaseswithoffsitepoweravailablesincethisfailureyieldsslighltyhighercoreaverageheatfluxes.Noconclusionswouldbechangedbyassuming,instead,oneHPSIpumpfailureforthesecases.{15.A)Forthelargesteamlinebreak(SLB)eventspresentedinApoendix15Atheconcernisthepossibilibyofdegradationinfuelperformanceduringpotentialpost-tripreturntopower.Pre-tripfueldegradation:.forSLBeventsisaddressedinSection15.1.(Seetheresponsetoguestion440.80(a)).RadiologicalreleasesforSLBeventsareboundedbytheLF-3eventtobe.presentedinSection15.1.5.1.Thereisnoapproachtothe110"ofdesignpressurecriterionduringSLBevents.

(9 TABLE440.9-1EFFECTOFSINGLEFAILUREOFMSIVORONEHPSIPUMPORONEHPSIPUMPPLUSONELPSIPUMPONMAXIMUMPOST-TRIPREACTIVITY,COREAVERAGEPOWER,ANDCOREAVERAGEHEATFLUXFOR6.36FT2MAINSTEAMLINEBREAKS.AUTOMATICACTUATIONOFAUXILIARYFEEDHATERISASSUMED.MAXIMUMPOST-TRIP:INITIALPOWERLEVELFF-SITEPOWERSINGLEFAILUREREACT/VITY('106p)COREAVERAGECOREAVERAGEPOyiERHEATFLUX(XOFFULLXOF2570MH)POgERVALUFULLLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVtONEHPSIPUMPMSIV+0.003-0.05-0.3'0.38.36.810.410.28.511.2ZEROLOSSOFAVAIL-ABLENEHPSIANDONELPSIPUMPMSIVONEHPSIPUMPMSIV+0.3+0.1-0.5-0.50.81.6X101.1X101.1X101.00.41.41.5 01 3mr-IC.5'u.if~n,w-g//9(F/SL-2RoundOneuestions440.14OneofthekeyparametersinLOCAanalysesispeakcladtemperature.{15.0)Fornon-LOCAtransients,minimumDNBR(departurefromnucleateboilingratio)isofprimaryimportance.ForthosetransientsanalyzedinSection15oftheFSAR,providegraphicaloutputoftheDNBRasafunctionoftime.~Resense:DHBRplotsareprovidedforeventswhichshowaDNBRdecreasingbelowitsinitialvalueforallsectionsofChapter15.15.1.2.115.1.4.315.1.5.3A-~2rs-a,s-3(~~g~ar.scd)HoeventoreventcombinationminimumDHBRlessthan1.19.attachedFigure15.1.2.1-13FSARFigure15.1.1.3-9'FSARFigure15;1.5.3-9attachedFigure15A-l.lsattachedFigure15A-+5peal'Jpp'm~&dlrppcJb..PAlgRzc~Micorea8.addressedinSection15.2resultsina15.2.1.115.2.1.215.2.2.115.2.2.215.2.3.215.2.5.2DNBRremainsabove3.0.NodecreaseinDHBR.DHBRremainsabove3.0.attachedFigure15.2.2.2-12.attachedFigure15.2.3.2-12attachedFigure15.2.5.2-21EventspresentedinSection15.3oftheSt.LucieUnitHo.2FSARwhichinitiateadecreaseinreactorcoolantpumpflowratearelossofoff-si'tepower(15.3.2.3),andonepumpresistancetoforcedflowwithalossofoffsitepowerasaresultofturbinetrip(15.3.4,3).GraphicaloutputofDNBRversustimeforthelossofoffsitepowereventispre-sentedasFigure15.3.2.3-1intheFSAR.Fortheonepumpresistance,toforcedfloweventwithalossofoffsitepowerasaresultofturbinetrip,=graphicaloutputofDNBRversustimewillbeforwardedby.theendofAugust,1981(seeresponsetog440.11).15.4.1.315.4.2.315.4.2.415.4.3.115.4.4.215.4.4.315.4.5.1'5.4.5.3FSARFSARFSARNinimumDNBRisattachedattachedFigure15.4.1.3-7Figure15.4.2.3-7NodecreaseinDNBRFigure15.4.3.1-8greaterthanfor15.4.4.3.Figure15.4.4.3-8.Figure15.4.5.1-11..Tobesubmittedwithanalysi;Therearenoeventsin15.5forwhichtheNBRdecreasesbelowtheinitialvalue.{15.6)TheeventsanalysedinSection15.6ofSt.LucieUnitNo.2FSAR,whichresultinadecreaseintheRCSinventoryaresteamgeneratortube

SL-2ROUNDONEUESTIONS;440.25(15.3.3)ProvideadetailedanalysisontheconsequencesofaRCPshaftseizureevent.Justifyselectionoflimitingsinglefailures.Thetimeattemperaturestudieswhichjustifyyourclaimsofpeakcladtemperaturebeinglimited'to1300oFarenotacceptedbythestaff.Inassessingfuelfailures,anyrodwhichexperiencesaDNBRoflessthan1.19mustbeassumedfailed.ConfirmthattheresultsoftheanalysismeettheacceptancecriteriaofSRP15.3.3.(2).Provideyourassump-tionsonflowdegradationduetothelockedrotorinthefaultedloop,andreferenceappropriatestudieswhichverifytheseassumptions.Alsoprovideasimilaranalysisforthelockedrotoreventpresentedinsection15.3.4.1,andshowthatacceptableconsequencesresult.~ResenseThemostseveresinglefailureinconjunctionwiththeRCPshaftseizureeventisthelossofoffsitepoweronturbinetrip,asdiscussedintheresponseto440.9.ResultsshowaminimumDNBRof0.36at3.6seconds,resultingin13Kofthefuelrods'experiencingDNB(seetheresponseto440.11).The2-hourthyroiddoseassuming13Ãfailedfuel'sapproximately30remsandthepeakRCSpressureis'lessthanorequalto2694psia(seetheresponseto440.8).~W+s-W:~d<p~:4.~i.~gg)~~(~kgc.Theflowcoastdownswhichwereusedintheanalys'isoftheonepumpresistancetoforcedflowarepresentedinFigures440.25-1and440.25-2.Theseizedshaftisassumedtoinstantaneouslystopattime0.0withtheseizedrotor'ctingonlyasaresistancetoflow.ThiscoastdownwasgeneratedusingtheCOASTcodeasdocumentedinCENPD-98(seeReference1).

Reference:

1.'CoastCodeDescription",CENPD-98,April2,1973.AchangetotheFSAR,Appendix15.C.3willbesubmittedinSeptember1981.

440.41Identifytheplantoperatingconditionsunderwhichcertainautomaticsafetyinjectionsignalsareblockedtoprecludeunwantedactuationofthesesystems.Describethealarmsavailabletoalerttheoperatortoafailureintheprimaryorsecondarsstemduringthisphaseofoperationandthetimeavailabletomitigatetheconsequencesofsuchanaccident.~ResonseWhiletheplantisinpoweroperation,thesafetyinjectionsignalsmaynotbeblocked.Duringtheinterimphase,whileRCSpressureisbeingreducedtore-fuelingmode,itbecomesnecessarytopartiallyblocktheSIAS.AsafetyinjectionblockisprovidedtopermitshutdowndepressurizationoftheReactorCoolantSystem(RCS)withoutinitiatingsafetyinjection.Thisblockisaccomplishedmanuallyafterpressurizerpressurehasbeenreducedandaper-missivesignalisgeneratedbytheEngineeredSafetyFeaturesActuationSystem.Thisblockingprocedureisunderstrictadministrativecontrol;blockandblockpermissiveisa'nnunciatedandindicatedinthecontrolroom.Itisnotpossibletoblockabove'apresetpressure:ifthesystemisblockedandpressurerisesabovethatpoint,theblockisautomaticallyremoved.Theblockcircuitcom-plieswiththesinglefailurecriterioninIEEE279-1971.TheSIASblockremovesonlythepressurizerpressuresignalfromtheSIAStriplogic.Thehighcontainmentpressuretransmittersstillremainindirectcon-nectionwiththetriplogic.Shouldaneventoccurwherebythecontainmentpressureissufficientlyraised,highcontainmentpressurealarmssoundonRTGB-206andtheSIASisinitiatedautomatically,regardlessofthepressurizersignalblock.TheTechnicalSpecificationswillpermitblockageof'heSIASinplantmodes5and6,whiletheshutdowncoolingsystemisinoperation.Inthesemodespro-tectionagainstoverpressurizationoftheReactorCoolantandShutdownCoolingSystem,'duetoaspuriousactuationoftheHPSI,isprovidedbyreliefvalvesV-3666andY-3667intheSDCsuctionlines.FSARTables7.5-1and10.4-5in-dicatesthedisplayinstrumentationandtheiralarms~4:~h<availabletotheoperatortoestablishprimaryandsecondarysystemconditions.~CDuringcoldshutdownorrevueingmodes~and6)shouldalossofcoolantoccur,levelguagesinthecontainmentandcavitysummandthesafeguardsroomsumpwithalarmswouldalerttheoperatorofsuchanaccident.Duringtheplantcooldown,operatoractionisrequiredtocontinuallymonitortheS.G.secondarywaterlevelandfeedwaterflow.Becauseofthistheoperatorisa&areofthesecondarysystemconditions.Duringarefueling,forspecificmaintenancetasks,itisexpectedthatsomeinstrumentationwillbeinoperable.Administrativeprocedureswillassurethattheoperatorwillbeabletoassessthestatusoftheprimaryandsecondarysys-emsforthespecificsituations.HoFSARchangeisrequired.

440.44AreportedeventhasraisedaquestionrelatedtotheconservatismofNPSHcalculationswithrespecttowhethertheabsoluteminimumavail-ableNPSHhasbeentakenbythestaffasafixednumbersuppliedthroughtheapplicantbyeitherthearchitectengineerorthepump"-manufacturer.Sinceanumberofmethodsexistandthemethodusedcanaffectthesuitabilityorunsuitabilityofaparticularpump,itisrequestedthatthebasisonwhichtherequiredNPSHwasde-terminedbebranded(i.e.,test,HydraulicInstituteStandards)foralltheECCSpumpsincludingthetestinginaccuraciesbeprovided.~Res'onseTherequiredNPSHoftheSt.LucieUnit2ECCSpumpsisconfirmedbytest.ThehighpressuresafetyinjectionpumpsaresuppliedbyBingham-HillametteCo.ThesepumpsaretestedinaccordancewiththeASNEPowerpestCode8.2(cen-trifugalpumps).SimilarpumpswerealsosuppliedforSt.LucieUnitl.EachoftheSt.LucieUnit1pumpswerealsotestedfortheNPSHre-quired.Theresultsshow(seefollowingtable)littlevariancebetweenpumpsforsimilarflow.q7e,HP>Xla~~a~arePuwf~dsspradwo-o4'P~fdn~eAo~$;ue;O%J~r<+ro~.'heLPSIpumpsaresuppliedbyIngrsol-Rand.TheNPSHcharacteristiciscon-'irmedbytest.BothoftheSt.LucieUnit2LPSIpumpsweretested.TheHydrualicInstituteStandardswereusedforthytests.+~mf~~QJ~gijVP5$wf~prswr~~iaJp'Y,J~rn.L,.-~.NPSHTESTRESULTSFORST.LUCIEUNITS1AND2St.LucieUnit1HPSIPumsf200113j/200114ICI200115St.LucieUnit2HPSIPumsGPH'NPSHft64019.7640,19.964019.6$14210014(sparepump).f14210015Ii'1421001664063163919.919.019.4St.LucieUnit2LPSIPumsII1076149f1076150TheNPSHvs.flowcurvesforinFigures6.3-3a,6.3-3b,6.45CC"sPfi~>s&CLta~a'ggloyf.Iqf3$'oc(5-,~3000.13qCao300011.0=4~/+0/7~theSt.LucieUnit2HPSIandLPSIpumpsareshown3-4a,and6.3-4b.Hpg~~~Lp~~'.-4~.7-t(

440.39IdentifyallECCSvalvesthatarerequiredtohavepowerlockedout;(6,3)confirmtheyareincludedundertheappropriateTechnicalSpecifications,withsurveillancerequirementslisted.s~ResonseTheECCSvalvesthatarerequiredtohavepowerlockedoutarelisted"below.TheTechnicalSpcificationsectionoftheSt.Lucie-2FSARiscurrentlybeinggen-erated.Surveillancerequirementsforthesevalveswillbelisted.0V-3614,V-3624,V-3634,Y-3644-SITIso1ationValves."Ponerrackouttomotorrequiredwhenpressurizerpressuregreaterthan700'psig."~~V-3613,Y-3623,V-3633,V-3643-SITVentValves.Powertothoseval'vesisremovedinthecontrolroomduringnormaloperation.NoFSARchangeisrequired.

REACTORCOOL>>3rrS.ST-,~3STE>>MGc."lFRATOPSLJHITZ3(GCO,'(OITZOt<FOROP+RATIO,'J.3.4.6EachsteamgeneratorshallbeOPERABLE.APPLICABILITY:MODES1,2,3and4.ACTION:Mithoneormoresteamgeneratorsinoperable,restoretheinoperable.generator(s)toOP""itABLEstatuspriortoincreasingTabove200~F.avgSURVEILLANCEREOUIRBIEHTS4.4'.6.0EachsteamgeneratorshallbedemonstratedOPERABLEbyperformanceofthefollowingaugmentedinservice.inspecionprogramandtherequirementsofSpecification4.0.5.4..4.6~1SteamGeneratorSampleSelectionandInspection-Eachsteam.generatorshallcedetarmineaOPERABL:-duringsnutccImoyselectingand-inspe~ctingat.leas.theminimumnumberofsteamgeneratorsspecifiedin.TDle4.4"1.4.4.6.2SteamGeneratorTubeSampleSelecticnandInsoecicn-Thesteam.generatortu"eminimumsamplesie,inspec-ionresul-classification,andthecorrespondingactionrequiredshallbeasspecifiedinTable4.4"2.The-inservicinspectioncfsteangeneratortubesshallbeperformedatthefr'equenciesspecifiedinSpecificaion4.4.6.3andtheinspec.edtubesshall:beverified=acepablepertheacceptancecriteriaofSpecfication4.4.6.4.Thetubesselectedforeachinsc~icainspectionshallincludeatleast3Xcf.thetotalnumberoftubesinallsearngenerators;thetubesselectedfo-theseinspectionsshallbeselectedonarandombasisexcept:'a4)thereexpe'rienceinsimilar'lan+mwithsimilarwaterchemisryindicatescriticalareastobeinspec-ed,thenatleast50ofthetubes'inspectedshallbefromthesecriticalareas.b.Thefirstsampleoftubesselectedfcreachinserviceinspection(subsequentothepreserviceinspection)ofeachsteamgeneratorshallinclude:-C~Sh3/44"10Og01lcSO

/

REACTORCOOLANTSYSTE.'1-SVRVEILlAt(CEREOVIREHEHTS(Continued)Co.Allnonpluggedtubesthatpreviouslyhaddetectablewallpenetratiors(greaterthan20~).2.Tubesinthoseareaswhereexperiencehasindicatedpotentialprob1ems.3.Atubeinspection(pursuanttoSpecification4.4.6.4.a.8)shallbeperformedoneachselectedtube.Ifanyselectedtubedoesnotpermitthepassageoftheeddycurrentprobeforatubeinspection,'i'.thisshallberecordedandanadjacenttubeshallbeselectedandsubjectedtoatubeinspection.Thetubesselectedasthesecondandthirdsamples(ifrequiredbyTable4.4-2)duringeachinserviceinspectionmaybesubjectedtoapartialtubeinspectionprovided:2.Thetubesselectedforthesesamplesincludethetubesfromthoseareasofthetubesheetarraywheretubeswithimperfectionswerepreviouslyfound.-Theinspectionsincludethoseportionsofthetubeswhereimperfectionswerepreviouslyfound.Theresultsofeachsampleinspectionshallbeclassifiedintooneofthefollowingthreecategories:Cate~os'"2InsectionResults=Lessthan5Ãofthetotaltubesinspectedaredegradedtubesandnoneoftheinspectedtubes'redefective..Oneormoretubes,butnotmoreChan1Ãofthe'otaltubesinspectedaredefective,orbetween,SXand10Ãofthetotaltubesinspectedaredegradedtubes.'"3Norethan10~ofthetotaltubesinspectedaredegradedtubesormorethan1Ãoftheinspectedtubesaredefective.Note:Inallinspections,previouslydegradedtubesmustexhibitsignificant(greaterthan10~)furtherwallpenetrationstobeincludedintheabovepercentagecalculations.3/44"11OCroa'-'

\0 REACTORCOOLANTSYSTE."1SSUILLANC"P."U~ReMc'O'SContinued4.4.6.3InsnecionFreouencies-Theaboverequiredinserviceinspectionsofsteamgenerator-uaessnailoeperformedatthefollowingfrequencies:a.b.cThefirstinserviceinspectionshallbeperformedafter6ffectiveFullPowerMonthsbutwithin24calendermonthsofinitialcrit"kality.Subsequentinserviceinspectionsshallbeperformedatintervalsofnotlesshan12normorethan24calendarmonthsafterthepreviousinspection.IftwoconsecuziveinspectionsfollowingserviceunderAVTconditions,notincludingthepreserviceinspection,resultinallinspectionresultsfallingintotheC-1categoryorifwoconsecutiveinspcionademons"atethatpreviouslyobserveddegradationhasnotcontinuedandnoadditionaldegradationhasoc"urred,theinspectionintervalmaybeextendedtoamaximumofonceper40months.Ifthe.resultsoftheinserviceinspecionofasteamgeneratorconductedinaccordancewihTable4.4"2at40monthintervalsfallintoCategoryC-3,theinspection,requencyshallbeincreasedtoatleast.onceper20months.Theincreaseininspectionfrequencyshallapplyuntilthesubsequentinspectionssatisfyhecri.eriaofSpecification4.4.6.3.a;theintervalmaythenbeextendedtoamaximumofonceper40months.lAdditional,unscheduledinserviceinspectionsshallbeperformedoneachsearngeneratorinaccordancewi.hthefirssampleinspecionspecifiedinTable4.4-2duringtheshutdownsubsequenttoanyofthefollowingcond-itions:1.Primary"to-secondarytubesleaks(notincludingleaksoriginatingfromtube-to"tubesheetwelds)inexcessof.helimitsofSpecification3.4.7.2.2.3.AseismicoccurrencegreaterthantheOperatingBasisEarthquake.rAloss-of-coolantaccidentrequiringactuationoftheengineeredsafeguards.4.Amainsteamlineorfeedwaterlinebreak.3/44-12

-t00 REACTORCGOLAHTSYSTEM0dSURYEILLAHCEREOUIREHEHTSContinued4.4.6.4AcceptanceCriteriaa.Asusedin'hisSpecification2.Imoerfectionmeansanexceptionto'hedimensions,finishorcontourofatvbefromthatrequiredbyfabricationdrawingsorspecifications.Eddy-currenttestingindicationsbelow20~ofthenominaltubewallthickness,ifdetectable,maybeconsideredasimperfections.~0iI-Idgeneralcorrosionoccurringoneitherinsideoroutsideofatube.3.5.'.8.~PPthanorequalto20Ãofthenominalwallthicknesscausedbydegradation.K~diuPaffectedorremovedbydegradation.Oefectmeansanimperfectionofsuchseveritythatitexceedstheplugginglimit.Atubecontainingadefectisdefective.~P1ILIthetubesnailberemovedfromserviceandisequalto(40)~"ofthenominaltvbewallthickness.'nserviceabledescribestheconditionofatubeifit'leaksorcontainsadefectlargeenoughtoaffectitsstructuraiintegrityintheeventofan,Operating8asisEarthquake,aloss-of-.coolantaccident,orasteamlineorfeedwaterlinebreakasspecifiedin4.4.6.3.c,above.ITubeInspectionmeansaninspectionofthesteamgeneratortubefromthepointofentry(hotlegside)completelyaroundthe'-bendtothetopsvpportofthecoldleg.PreserviceInspectionmieansaninspectionofthefulllengthofeachtuneineacns-earngeneratorperformedbyeddycvrrenttechniquespriortoservicetoestablishabaselineValuetobe-determinedinaccordancewiththerecommendationsofRegulatoryGuide1.121,Augvst.1976.SF~L.~c.,g3/44"13OCT01loeO It REACTORCOOLANTS'(ST="HD~~EILi&HCcREOUIREH""!ITS(CcntinuedIb.econditionofthetubing.Thisinspecionshallbeperformedfl7.4priortoinitialPOWEROPERATIONusingtheequipmentandtechniquesexpec-edtobeusedduringsuosequentinserviceinspections.ThesteamgeneratorshallbedeterminedOPERABL~aftercompletingthecorrspondingactions(plugalltubesexceedingtheplugginglimitandalltubescontainingthrough"eallcracks)requiredbyTable4.4"2.4.4.6.5Renorte-0b.Followingeachinserviceinspectionofsteamgeneratortubes,thenumberoftubespluggedineachsteamgenera-'orshallbreportedtotheCormnissionwithin15days..ThecompleteresultsofthesteamgeneratortubeinserviceinspectionshallbesubmittedtotheCommissioninaSpecialReportpur'suanttoSoecification6.9.2~sithin12monthsfollowingcom-pletionoftheinspection.ThisSpecialReportshallinclude:1..Numberandextentoftubesinspected.2.3.Locationandpercentofeall-thicknesspenetrationforeachindicationofanimperfecion.eEdentificationoftubesplugged.cResultsofsteamgeneratortubeinspecionswhichfallintoCategoryC"3andrequirepromptnotificationofheCommissionshallbereportedpursuanttoSoeciication6.9.1priortoresumptionofplantoperation.The~!rittenfolio~upof4hisreportshallprovideadescriptionofinvestigationsconduc4edtodeterminecauseofthetubedegradationandcorrectivemeasurestakentopreventrecurrence.~'l44"14 00 TABLE4;4-]lglNIiYiUMNUMBEROFSTEAI'4GEQEQATOPSTOQE.INSPECTEDDURINGINSERVICEiflSPPCT)ON0PrescrvlceInspectionNoYesNo.ofSteamGeneratorsperUnitTwoThreeFourTwoThreeFourFirstln-rvicaInspectionSecond5SubsequentInscrvlceInspectionsAllOne>OneTwoOna2TwoOne3TableNota'.Ion:1.TheinscrvicaInspectionmaybelimitedtoonesteamgeneratoronarotatingscheduleencompassing3N'IolthetubesIwhcreNisthcnun>bcrofstcamgeneratorsIntheplan!)IftheresultsofthefirstorpreviousInspectionsindicatethatallstcamgeneratorsareperforminginalikemanner.Notethatundersomecircumstances,theoperatingconditionsInoncormorestcamgeneratorsmaybetoundtobemorascvcrethanthoseinotherstcamgenerators.Undersucltcircum.stancestiresanrplesequencesltallbemodifiedtoInspectthemostscvcreconditions.2.Titcotl>crsteamgeneratornotinspectedduringthefirstinscrviceInspectionshallbeinspected.Thethirdandsubsequent:inspectionsshouldfollowtl>cInstructionsdescribedin1above.3.Eacl)oftheothertwosteamgcncratorsnotinspectedduringthefirstinservlceInspectionsshallbaInspectedduringthesecondandthirdinspections.Thafourthandsubsequentinspectionsshallfoltowtlteinstructionsdescribedin1above.~CDnI 0

TABLE4.$-2n)STSAMPLEINSPECYfONSTEAMGENERATORTUB'EINSPECTION2NDSAMPLEINSPECTION3RDSAMPLEINSPECTIONSampleSleeAeiultActionRmtufrcdResuitActionflcqulrcdResultActionAcquiredAmlnhnumofSTubesperS.G.C-IC-2C-3NonePlugdclcctlvotubesendInspecteddltlonal2StubesIntlilsS.G.InspectalltubesInthisS.G.,plugde-fectivetubasandInspect2StubosIneacliotli<<rS.G.ProniptnotlllcatlontoNRCpursuanttosl>cclllcatlon6.0.lN/AC-IC-2C-3AllotherS.G.saroC-lSomeS.G.sC-2butnoadditionalS.G.araC-3AdilitionalS.G.IsC-3NonoPlllgdefectivetubesendInspectadditional4StubasIntlilsS.G.PerformactionforC-3resultofflrsl.sampleNonePerformactiontorC-2resultofsecondsaniploliispcctelltubesIncadiS.G.andplugdefectlvotubes.ProniptnotlllcatlontoNRCpursuanttospecifleetlon6.0.lC-1C-2C-3N/AN/AN/AN/AN/A'/APlugdefectivetiibcsPerformaciionforC-3resultoffirstsiWliplaN/AN/AN/AN/A.3N~V/heroNIsthonund)erof'stcamgen<<ratorslnthoUnit,andnlsthonumberofsteamgcncratorslnspcctcdduringenInspcctlon<DCDCD zs>.IProvideaconservativedemonstrationforPressurizerManwayNuts(NumberC-5364)andPressurizertlanwayStuds{NumberC-5365)thatthematerialwhentested.at40"Forlowerwillmeetorexceed25milslateralexpansion.LowerboundCVNcurvesforSA-193Gl'.8-7andSA-540Gr.B-24materialsareconsideredacceptablemethodsforextrapolatingtheCVNimpactdatafromthetesttem-peratureto40'F.Inaddition,demonstratethatthemetallurgical.conditionofthematerialsusedto'generatethelowerboundcurvesforSA-193Gr.B-7andSA-540Gr.B-24materialsareequivalentto'hemetallurgicalconditionoftheSL-2material.Thiscanbeac-complishedbyprovidingtheheattreatmentinforma'tionforthematerialusedtogeneratethelowerboundcurvesandforSL-2PressurizerHanwayStudsandNuts.Reply:A.CVNdataforSA-193Gr.B-7aregiveninTable251.g-l.Sincefullcurvesarenotrequiredforthismaterial,testingoverarangeoftemperaturesisnotnormallydone.Resultsfor.thepressurizermanwaynuts,codeno.C-5384,were:~Tem'F+10+10+10Ft-lbs5325'lIShear804060oilsLat.Ex.331827't10'F,twospecimensmetthemilslateralexpansionrequire-ment,25mils,whileone.didnot.Sincetwospecimensexhibitedover50%shear,thisisthecenterofthetemperaturerangeinwhichthetoughnessincreasesrapidlywithtemperature.Bytestingat-atemperature30'Fhigher.-40'F,C-Eexpectsthatall:specimenswouldexhibit75-100%shear.Fromthedatapre-sentedinTable251.8-1,C-Eexpectsinexcessof25milslateralexpansionat75Kshear.Heattreatmentforcodeno.5364isgivenbelow;heattreatmentdataforTable251.g-lisgiveninTable251.$-2.C-Efeelsthateachoftheseheattreatmentsproducesimilarmetallurgicalstructuresinthisalloy.AustenitizedTemperedStressRelieved1550'F,oilquenched1000F7hsprowl~d.k~)~4i4,5>gk~eeg.~-(.t*4'l~~~s~.i,.4~.l~7u'F.~l>>l<<4vifii

~'51.PThematerialssurvei1'lanceprogramusessix'specimencapsulesthatshouldcontainreactorvesselsteelspecimensofthelimitingbasematerial,weldmetalandheat-affected-zonematerial.TodemonstratecompliancewithAppendixf{,10CFRPart50,provideatablethatin-cludesthefollowinginformationforeachspecimen:l.Actualsurveillancematerial;2.Originofeachsurveillancespecimen(basemetal:heatnumber,plateidentificationnumber;weldmetal:weldwire,heatoffillermaterial,productionweldingconditions,andplatematerialusedtomakeweldspecimen);3.Testspecimenandtype;4.Chemicalcompositionofeachtestspecimen.Providethe.location,leadfactorandwithdrawaltimeforeachspeci-mencapsulecalculatedwithrespecttothevesselinnerwall;I0Reply:Table251.$-1lis'tstherequestedinformation.TheweldandHAZspecimensareproducedusingthesameweldprocedureasisusedtoweldthevessel.TheHAZspecimensare1/2weldmetal,and.1/2limitingbasemetal,plat'e,H-605-1.TheweldmetalspecimensareproducedbyweldingplatesM-605-2andM-605-3together.1CVlSio4

'ThesurveillancecapsulewithdrawalscheduleforSt.LucieUnit2wasestablishedinaccordancewith10CFR50,AppendixH,paragraphII.C.3(b).Thefirstcapsu'leisscheduledforwittidrawalwhentheencapsulatedbasemetal'aterialisconservativelyestimatedtoexhibitareferencetemperatureshiftof50'F.Thisispredictedtooccurafterapproximatelyoneeffectivefullpoweryear(EFPY)whichcorrespondsi:oaneutronfluenceofabout1.3x1018n/cm2(E>ltleV).Thesecondandthirdcapsulesarescheduledforwithdrawalafter12and24EFPY,respectively.Asignificantadvantagewillresultfromwithdrawalofthefirstsur-veillancecapsuleafter1EFPY,becauseitwillprovideanearlyindicationofthevalidityofthereactorvesselfluenceandreferencetemperatureshiftpredictions.usedtosetthevesseloperatinglimits.Actualdosimetryandshiftmeasurementswillthenbeavailableforprojectingradiationinducedchangesinthetougnnesspropertiesofthevesselbeltlinematerials.\ThiswithdrawalscheduleisconsistentwiththeobjectivesofASTHE185-79(StandardPracticef'rConductingSurveil'lanceTestsforLight-WaterCooledNuclearPowerReactorVessels)and10CFR50,AppendixH:-"...toverifythe'nitialpredictionsofthesurveillancematerial'responsetotheactualradi-\jationenvironment..."and"....todeterminetheconditionsunderwhichthevesselcanbeoperatedwithadequatemarginsofsafetyagainstfracture.

0COHPTRNZTORY.XTQKSL-2-81-700Page1ofPMQRKSOuestion435-Completiono6Z;sysrznetricLoadingAnalya&ECCBPiping<<EE/8EECCSPip&a@Supports6Restraints-11/3ECKBHs-lJ,/BEReactoXnternols-12/81Fuel->f82guestion435mpreviouslycar%'ed-s"HeetingOpenResponse"duetot1:e.fec~,Chat&formationconcerningovalityttesMllssing.onI/3]/83.enovslitydiagramantheappropriatedescriptionwaspovidedCoHx'eVNerses>>~aestionf3fi-Ve"ificationoftnefunctionalcapabilityofC1sss263austeniticpipebendendelbows.additionalinfoaaatioaonfaultedallomblestressesforbolts.BeerevisedresponseCoQuestion,f41.1(b)ResponsetoQuestionNE.3.(b)hasbeenrevisedtoreflee"theadditionalin-fo~ation~~cautionfii2-Justificationofsufficien"nsrginagainstbucklingfailureforanycase~here~eexceed2/'3ofcriticalbucMXng,stressorvhreEbasco'sXncreaseFactorviolatestheconditionsoftheresponsetoQueaUon40>>l(a)(2).Questionpi9-providearesponse{cispartoflg'Qon1stores'tiononperiodicleaktestingofprim~rycoolantpressureisolationvalves.{{cautionASS"Cgtoarrangeea{ecting,todiscussthestatusofscLucreUntc2withreapecccoche8Gfg.ed~sterringevencrecentlyexperiencedacSONGS.i-""'"eventprnbabdldtyofoccurenceforasmallfeedvacerlinebreakshouldberevievedbytheNRCProba&i3,isticRevie~Group<oracceptance.Theoutcomeofthatrevuecanaffeceitefn8339/3O/81Peek.of9/21/8EHRCtorespondRoT.iceneee"NRC"toreviewresponsestoReactorSystemsbranchQuestion440.8E(Z)(tMsresponseisattachedtoQuestion8553.'

COB"1PRAZOR'ST'ZlMSTRZSPNiSEDATETQNRCPageZoiREMI'KKSI~~Oostion956-XRBullets79-02-Pxovidedesigncz'itexiaan6sarpleCG1cl1LatiGEL,+caption841.L(c-CompareTable'.9-5withthel.eadingtaMesofSection,3.8.3aa4identffynayareaewherediapezitybetvaenAXSC.andASK'.Oupportrequfrerentaateeigaificant.81'25/81PLelhaiasry<<nbaOndeaf,'gpgivettoBooBoaaekon?jpiIII4lVIIvI~I4'jI~1I4)4I4.>I4I;J$..)~\ctiteriajBL,~g~I'I,~12:!4~&.~VV8::IVV~I4I)1I-I

Question41.1JustifytheuseofSRSSforcombinationofSSPlandSSFOintheflu)tedCanditianeb)Providethefaultedal3,ozablostressesforhalts.CompareTable3.9-5withtheloadingtablesofSectian3.8.3.Definet:hematerialsforvhichalla~sblesaregiveninT'ablesofSection3.8.3.Resoonsea)WherethefundamentalfrequencyofthepipingsystemisbeyondtheresonantretfonofthesupportlnSstructu-.ethaSSEwillbccombinedfnt'efolloufnSmanner:SSEA'K'~+SSEhMherethepipingfundamentalfrequencyisnotbeyondthestructuralresonantregiontheSSEvillbecombinedinthefo11cn"bingmanner:SSE=lSSEXt+ISSSDl>)Faultedallo~13.esforboltsateestablishedas1.6XAXSl:allo>>wbles(noanal).HatcrfclA-925AISCAllowableTensileStress40KsiAllo@abletensilestressPorFaultedCondition64Ksi,gOf.Ult93JZjte53K(gll1lldie}61K(1l(818dias)Requirementsforcomponentsupports'axeaddressedinSection3.8.3.AnyareasvheredisparitybetvcenAXSCandAS>$supportrequirementsissigniHcsntvillbeMsntified.This~illbsperformedsotbatgoverningloadingcasesaddressorenvelopetheloadingcasesgiveninTable3.9-5.A11ovamestressesarebasedonSection1.5ofAISCvhichinturnarebasedonASTHmaterialvalues.AISCfactorsofsafetyvaryfrom1.67ta2.0onyieldstrength.i,~edevelopmentoffactorsofsafetyisdocumentedintheCmrmentarytotheA'LSCCode; sl 420e3tLualificationofContro~lSstemsIEInformationNotice79-22OperatingreactorlicenseeswereinformedbyIEInformationNotice79-22,issuedSeptember19,1979,thatcertainnon-safetygradeorcontrolequipment,ifsubjectedtotheadverseenvironmentof.a~highenergylinebreak,couldimpactthesafetyanalysesandtheadequacyoftheprotectionfunctionsperformedbythesafetygradeequipment.IntheattachmenttothisEnclosurethereisacopyofIEInformationNotice79-22,andreprintedcopiesofanAugust30,1979WestinghouseletterandaSeptember10,1979PublicServiceElectricandGasCompanyletterwhichaddressesthismatter.OperatingReactorlicenseesconductedreviewstodeterminewhethersuchproblemscouldexistatoperatingfacilities.Weareconcerned'thatasimilarpotentialmayexistatlightwaterfacilitiesnowunderconstruction.Youare,therefore,requestedtoperformareviewtodeterminewhat,ifany,designchangesoroperatoractionswouldbenecessarytoassurethathighenergylinebreakswill.notcausecontrolsystemfailurestocomplicatetheeventbeyondyourFSARanalysis.ProvidetheresultsofyourreviewsincludingallidentifiedproblemsandthemannerinwhichyouhaveresolvedthemtoNRPbyJuly6,1981.Thespecific"scenarios"discussedintheabovereferencedWestinghouseletteraretobeconsideredasexamplesofthekindsofinteractionswhichmightoccur.Yourreviewshouldincludethosescenarios,whereapplicable,butshouldnotnecessarilybelimitedtothem.ApplicantswithotherLHRdesignsshouldconsideranalogousinter-actionsasrelevanttotheirdesigns.Re~sense:AreviewofpotentialcontrolsysteminteractionsduringhighenergypipebreakshasbeenconductedforSt.LucieUnit2.ThereviewisbasedontheCombustionEngineering(C-E)genericrevieweffort.ThereviewconsideredboththespecificsystemslistedinIEInforma-tionNotice79-22andothernon-safetysystemswhichcouldpossiblyinteractwithsafetygradesystems.

I, t.Ppciy.Unit2(Ihstrfment~ationdontrolSays~krmnch+uestions)Despitethelowprobabilityofahighenergylinebreakagenericreviewhasbeenperformedofthirteencontrolsystemsinvolving'fouraccidentsscenarioswhichencompassthespectrumofpostulatedhighenergybylinebreaks.Amatrixwasestablishedofthehighenergylinebreaksandcontrolfunctions(Attachment1).Inthetimeavai'lable,thematrixwasreducedtoincludeonlythosesystemsandeventswhichrequir'efurtherevaluation.Ageneraldescriptionoftheprocedureusedtoreducethismatrixislistedbelow:I.AninitialreviewofeachpostulatedControlFunctionfailureforeachpipebreakwascompletedandservedasthebasisforconsideration.Hhereapostulatedfailurecouldpotentiallyincreasetheseverityofahighenergypipe,break,thefollowingcriteriawereemployedtoresolvetheconcern:IsthepostulatedControlFunctionfailuremodecredible72.IstheControlFunctionEquipment(Sensor,Cable,etc.)qualifiedtooperateproperlyinthepostulatedenviron-ments3.MherethepostulatedControlFunctionfailureiscredible,coulditsimpactpotentiallyaffecttheconclusionspre-sentedintheSAR?Considerationssuch.asMaximumControlFunctioncapabilities,anddelayed,butproperoperatoractionwereemployedinthiseffort.Inseveralcases,mostnotiblythePORVfailureintheopenposition,nospecificfailuremechanismhasbeenidentified.Theonlymannerforsuchafailuretooccurwouldbeforpo~ertobeinadvertentlyappliedtothevalvesolenoidandnotberemoved.Partoftheshorttermrecomendationsistoevaluatewhetherornotafailuremechanismofthistypeiscredible.Thepotentialadverseimpactofhighenergypipebreaksonreactorcoolantpumpswasconsidered.Boththeseizedshaftandthesimultanteousthreeorfourpump'lossoffIowweree1iminatedfromconsTderat>onbasedondudgementthatthesefailuresarenotcon-sideredcrediblewithinthetimeframelimitedbyoperatoraction'(30minutes)duetoenvironmentalimpactalone.Theimpactofotherpotential'lossofflowevents(e.g.,oneortwopumplossofflow)during.highenergypipebreakswasreviewedanditwasjudgedthattheresultingrapidreactortripwassufficienttoensurethattheconclusionsoftheSARwouldnotchange.

0 ucigUnjt2(&54rGlne~~nContAhysChmWrw5&~estions)Attachment2detailsspecificevent/interactionsscenariosanddefinesspecificshorttermrecoranendations~hichhavebeenestablished,on.agenericbasis,tominimizetheprobabilityandimpactofthepostulatedevents.Thisattachmentalsodiscussespotentiallongtermalternativeswhichhavebeenidentifiedonagenericbasis.TheresultsofareviewoftheC-EgenericevaluationappliedtotheSt.LucieUnit2designarealsoprovidedinAttachment2.Theseresultsarediscussedafterthegenericshortandlongtermrecoomendationsforeachpostulatedeventaddressed.8asedontheseresultstheitemsshownonthegenericmatrix(Attachment1)havebeeneliminated.ThereforenodesignchangesarenecessarytoassurethathighenergylinebreaksdonotcausecontrolsystemfailurestocomplicateeventsbeyondtheFSARanalysisforSt.LucieUnit2.

CONTROLFUNCTIONSANDEVENTSControlFunctionsConsideredPressurizerLevelPressurizerPressurePowerOperatedReliefValves8BlockValves;ReliefandClosureReactorCoolantFlow(RCPs)RodPosition(RRS,CEINCS)BoronConcentration(BoronControlSystem)FeedwaterFlow(FHRS)SteamFlowtoTurbine(TGCS)SteamBy-PasstoCondenser(SBCS)SteamDumpstoAtmosphereUpstreamofHSIVsSteamDumpstoAtmosphereDownstreamofHSIVsSteamGeneratorBlowdown(SGBS)SafetyInjectionTankDepressurization/IsolationThelistedfunctionswereevaluatedin'conjunctionwiththefollowingevents:SmallSteamlineRuptureInsideContainmentSmallSteamlineRuptureOutsideContainmentLargeSteamlineRuptureInsideContainmentLargeSteamlineRuptureOutsideContainmentSmallFeedlineRuptureInsideContainmentSmallFeedlineRuptureOutsideContainmentLargeFeedlineRuptureInsideContainmentLargeFeedlineRuptureOutsideContainment'mallLOCAInsideContainmentSmallLOCAOutsideContainmentLargeLOCARodEjectionICJUL24SN 00

~~'~~~~~I~~.~C~~~~C~~IsI~Ie~~~~o~~~~~~~

ATTACHMENT2DESCRIPTIONSOFREMAININGEVENTSANDCONTROLFUNCTIONSI.AssessmentofControlSystemFailuresonSteamLineBreakEventgg~~~A.SequenceofEventsforGenericSARSteamLineBreakatFullPowerinsideorOutsideContainmentDouble-endedsteamlinebreakoccurs2.Reactortriponlowsteamgeneratorpressure3.HSISinitiatestoisolatethesteamgenerators4.RCStemperaturedecreasesduetoexcessivesteamremoval5.Totalreactivityincreasesduetomoderatorcooldowneffect6.HSIVsclose7.Pressurizerempties8.LowpressurizerpressureinitiatesSIAS9.MFIYsclose10.Safetyinjectionboronreachescore11.Affectedsteamgeneratorempties,terminatingcooldowneffect,thetransientreactivityreachespeakanddecreasesgradually'duetoboroninjection12.*Limitedornopost-tripreturn-to-power13.NofuelinDNBB.SteamLineBreakWithPORYControlSstemFailure1.SignificantInteractionEffects:a.IncreasedContainmentPressureb.AstuckopenPORVincombinationwithasteamlinebreakhasnotbeenanalyzed.2.Assumptionsa.Steamlinebreak(largebreakinsidecontainmentforItem1.Aabove,anysizeorlocationforItem1.Babove).b.InadvertentlyPORVsopenandremainopenc.PORYBlockvalvealsofailstoclosewhenrequiredd.Initialcondition:fullpower3.ItmustbeemphasizedthatnomechanismhasbeenidentifiedforthePORVtoinadvertentlyopenandremainopensinceitssignaltoopencomesfromsafetygradeequipmentandtheGarrettvalvesandsolenoidsarequalifiedforanenvironmentinexcessof400'F.

4.SequenceofEvents5:;fa.Largesteamlinebreakoccursinsidecontainment.,gg~~~b.Reactortripoccursonsteamgeneratorlowpressurewithin$98i5seconds.c.ShouldtheadverseenvironmentcausethePORVto'nadvertentlyopenandthenremainopen,thefollowingstepsmayalsooccur.Itshouldbenotedthatnomeachnismhasbeenidenti'fiedwhichwo'uldcausethistooccur.d.SteamfromPORVfillsquenchtankandburstsrupturediskreleasingsteamtothecontainmentandcuasingadditionalcontainmentpressurization.e.MassremovalviaPORVcausesadditionalvoidformationwithinthereactorcoolantsystem.5.Actionsa.Shortterm:l.UtilitiescontinuetoinvestigatequalificationlevelsandlocationofpowercablestoPORYsandPORYblockvalvestoassesscredibilityofthisfailuremode..2.Ensureoper'atorstakeactiontoshutPORVandPORVblockvalveifPORVfailsopen.b.Longterm:1.CompleteassessmentofPORVsandblockvalves.Dependentontheresultsofthatassessmenta.upgradeenvironmentalqualificationlevelofPORVsandblockvalves;orb.performdetailedanalysisofeventifrequired.6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch,issafety-gradeandpost-LOCAqualified.MedonotbelievethisitemisapplicabletoSt.LucieUnit2.C.SteamLineBreakHithFeedwaterFlowControlSstemFailure1;SignificantInteractionEffectsa.Steamgeneratorfilling-causingpotential,pipingstructuralproblems2.Assumptionsa.Smallsteamlinebreakinsidecontainmentthatdoesnotcauseanirwediatereactortrip 0

b.Feedwaterflowexceedssteamflowduetofailureofsteamgeneratorlevelinstrument,indicatingflowc.SARconservatismInooperatoractionwithin30minutes'.SequenceofEventsa.Smallsteamlinebreakoccurswhichdoes:notcauseaniomediatereactortrip5g~b.Steamgeneratorlevelinstrumentfails,causinganincreaseoffeedwaterf'lowinexcessofsteamflowc.SteamgeneratorbeginsCofillcausingincreasedmoisturecontentofsteamd.Ifnooperatoractionoccursundefinedpipingstructuralproblemscouldresult.e.Itshouldbeemphasizedthatthiseventcanbepreventedbypromptoperatoraction.Safetygradesteamgeneratorlevelinstrumentationexists,enablingcomparisonwithcontrolgradelevelinstrumentsofthefeedsystem.4.Actiona.ShorttermEnsuretheoperatorisawareofthispotential,interaction,.sothathemaytakepromptcorrectiveactionshouditoccurb.LongtermAssesstheneedofupgradingsteamgenerator'levelindi-cationtothefeedwater'controlsystemii.AssesstheneedtoinsCallasafetygradehighsteam,generatorlevelalarm5.EvaluationforSt.LucieUnit2Theconcerninthisareaassumesafailureinastea'mgeneratorlevelinstrumentcausingtheFHRStosupplyfeedwaterinexcessofsteamdemand,therebyfillingtheaffectedsteamgeneratorpotentiallyleadingtoexcessivemoisturecarryover.TheSt.LucieUnit2designincorporatesadesignfeatureChatautomaticallyclosesthefeedwaterregulatingvalvesatthehighsteamgeneratorlevelandtripstheturbineandmainfeedwaterpumpsatthehigh-highlevel.Theinstrumentationtransmittingthesignalisafourchannelsystemwithportionsqualifiedtowithstandtheadverseenvironment.Thoseportionsnotqualifiedwillnotbeexposedtotheadverseenvironment.MethereforeconcludethatthisconcernisnotapplicabletoSt.LucieUnit2.

flan-a, D.SteamLineBreakHithFailureofHainSteamPathsDownstreamofMSIV'sl.SignificantInteractionEffects'INa.Increasepost-tripreturn-to-power2.Assumptionsa.Largesteamlinebreakinsidecontainmentb.HSIVonunaffectedsteamgeneratorfailstoclose.Thissequenceofeventsispertinentonlyifthisassumptionismade.c.DownstreamofNSIV'smainsteampathsfailopend.Initialcondition:fullpowere.SARconservatismsendofcyclecoreii.themostreactiveCEAstuckoutRL2<$81iii.steamblowdownthroughsteamlinebreakI3.Thenumberoffailureswhichmustoccurduringthiseventaresignificant.Firsttheremustbethelargebreak.ThentheHSIVontheoppositesteamgeneratormustfailtoclose.Thereisastuckrodonreactortrip.ThensteampathsdownstreamoftheHSIV'smustbeaffected.Theseincludeturbinecontrolvalvesandsteamdumpandbypassvalves.Theprobabilityofthiseventoccurringismuchlessthan10-6perreactoryear.4.SequenceofEventsa.Largesteamlinebreakinsidecontainmentb.Reactortriponlowsteamgeneratorpressuretripsignalc.HSIVonunaffectedsteamgeneratorfailstocloseonHSISd.HainsteampathsdownstreamofHSIVopenorfail,tocloseduetocontrolsystemmalfunctioncausedbyadverseenvironemntfollowinglargesteamlinebreak.e.Openmainsteampathsincreasethesteamblowdownandincreasemoderatorcooldowneffectwhichaddspositivereactivitytocore.Apost-tripreturn-to-powerismoresevereundertheseconditions.

0 5.Actionsa.,Shortterm'j~0<2<<g8)shouldasteamlinebreakoccur,ensureoperatortakesactiontoisolateallalternatesteamflowpathsii.determinewhetherthiseventwarrantsfurtherconsideration,inlightoflowprobabilityofallconsequentialfailureswhichmustoccurfortheeventtobesignificantb.Longtermi.*utilitiesinvestigateenvironmentalqualificatjonlevelofthesystemsinvolvedii.upgradequalificationlevelofaffectedequipmentifthis'sdeterminedtobenecessary6.EvaluationforSt.LucieUnit2ThesystemswhichmustfailinordertoopenthemainsteampathdownstreamoftheMSIVaretheturbinegeneratorcontrolsystem(TGCS)andsteambypasscontrolsystem(SBCS).ReviewoftheSt.LucieUnit2designshowsthattheTGCSandSBCSwouldnotbeexposedtotheadverseenvironment.However,theTaveinputtotheSBCS.generatedbytheRRScouldgeexposedtotheaccidentenvironment.TheTaveinputthough,isusedonlytoblockinitiationofaquickopeningsignalandcannotcausetheSBCSvalvestoopen..AquickopeningsignalwouldnotbegeneratedduetothelowsteamflowandpressureinputstotheSBCSsothe'alveswouldremainclosed.l<ethereforeconcludethatthisisnotapplicabletoSt.LucieUnit2.E.SteamLineBreakwithAtmoshericDumValveControlSstemFailure1.SignificantInteractionr~a.Post-accidentcontrolledcooldownh2.Assumptionsa.Steam.linebreakoutsidecontainmentandupstreamofHSIVb.Atmosphericdumpvalvesonoppositesteamlineopenandremainopen*,c.SARconservatismnooperatoractionwithin30minutes3.SequenceofEventsa.AsteamlinebreakoutsideofcontainmentbutupstreamoftheNSIVoccurs*Thefailuremechanismidentifiedfsafa'i,lureoftheinputsignalsthatwouldcausethevalvetoopenifoperatingintheautomaticmode.Althoughnooperatoractionisassumedfor30minutespromptoperatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.

b.Reactortriponlowsteamgeneratorpressurec.AtmosphericdumpvalvesupstreamofHSIV'sopenandremainopenduetocontrolsystemfailurep'2joperateatmosphericdumpvalvesinmanualde,or4.Actionsa.Shorttermd.'Ifnooperatoractiontakesplacetherewouldbe,thepotentialfordry-outanddepressurizationofbothsteamgeneratorse.Failuretoshutatmosphericdumpvalvescouldinhibitacontrolledplantcooldownbylimitingtheabilityoftheauxiliaryfeedpumpstodelivertothesteam'generator(s)~Qensureoperatorshutsatmosphericdumpvalvesonsteam'iineuntilcontrolisassuredJUL2<~98b.Longtermi.Continueinvestigation.todetermineifthisfailuremechanismisplausibleIupgradeatmosphericdumpvalvecontrolsystemtowith-standtheadverseenvironment,ifrequired8~>>'<Appal>~valuationforSt.LucieUnit2i'0sp~&/Aevi'~~~gy~~Ac,<j.p~~~~gheatmosphericdumpvalvesarelocatedupstreamof,themainsteamisolationvalvesatSt.LucieUnit2,andthepostulatedfailureinthisareawouldbeavalidconcernwerethesystemtobeintheautomaticmodeduringpoweroperations.However,"*~consistentwiththeanlaysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperationsAMebelievethismethodofoperationadequatelyaddressesany'oncerninthisarea.'I.AssessmentofImactofControlSstemFailuresonFeedLineBreakEventand~EAA.SARFeedLineBreakr1.SequenceofEventsa.f4infeedlinebreakoccursdownstreamofreverseflowcheckvalve,dischargingmainfeedandsteamgeneratorfluidb.RCSheatupduetolossofsubcooledfeedflowc;Reactortripoccursonsteamgeneratorlowwaterlevelorhighpressurizerpressure.Turbinetripoccursonreactortrip.

'0 d.RapidRCSheatupandpressurizationduetolossofheattransferastherupturedsteamgeneratoremptiesIe.Depressurizationoftherupturedsteam'eneratorinitiatesHSISandisolatestheintactgeneratorf.RCSpressurizationterminateswithopeningofpr'imaryrelief/safetyvalvesanddecreasingcoreheatfluxg.RCScooldownbegins,'ontrolledbythemainsteamsafetyvalvesh.Auxiliaryfeedisinitiatedautomaticallyorbyoperatoraction8.FeedLineBreakWithRCSInventorControlFailure1.SignificantInteractionEffect.a.IncreasedRCSpressurizationduetoliquidfilledpressurizer2.Assumptionsa.Smallfeedlinebreakinsidecontainmentb.Adverseenvironment,impactspressurizerlevelinstrumentcausingindicationtofaillowwhichcausesthecontrolsystemtoincreaseinventory(andpressurizerlevel)c.Initialconditions102Ãpowersteambypasscontrolsysteminmanualmodebeginning-of-cyclecoreparametersd.Analysisconserva'tismsnooperatoractionforat1east30minutesii.nocreditforsteamgeneratorlowwaterleveltripinrupturedunituntilemptyiii.heattransferinrupturedsteamgeneratorinstantaneouslyterminatedonemptyingiv.failureofthefeedlinereverseflowcheckvalve,ifggp~48~thebreakoccursupstreamofthevalveIq

s'$~ting3.SequenceofEventsa.Feedlinebreakincontainmentb.Hainfeedspillsfrombreakc.Adversecontainmentenvironmentcausespressurizerlevel'indicationtofaillowcausingRCSinventorytoincrease(d."Reactortripoccursonsteamgeneratorlowwaterlevelonhighpressurizerpressure.Turbinetripsonreactortripe.RCSheatupresultsfromrapiddecreasein,SGheattransferduetolossoffluidfromtherupturedsteamgeneratorf.Pressurizereliefand/orsafetyvalvesopeng.Potentialforpressurizertofillwithliquidexistsduetohighlevelinpressurizerpriortoheatup.Relief/safetyvalvereliefcapacityreducedbyliquiddischargeh.ExtentofincreasedRCSpressurizationisdependentontimeofpressurizerfillingrelativetotherapidheatup4.Actionsa..Shortterm'lertoperatortothispotentialfailuremode,sothatpromptcorrectiveactioncanbetakenb.LongtermPerformplantspecificanalysestodetermineupperlimitallowableforpressurizerlevelwhichisconsistentwiththemaximumrateoflevelincreaseandthemaximumRCSexpansionduringthepotentially.rapidheatupassociatedwithfeedlinebreaksupgradepressurizerlevelinstrumentation5.EvaluationforSt.LucieUnit2TheC-Econcernpostulatesthefailureofapressurizerlevelinstrumentinthecontrolsystem,which.intheabsenceofoperatoraction,causesthepressurizertofill,therebyallowingthereactorcoolantsystemtogosolid.AsdiscussedinourresponsetoIEBulletin79-01,thelevelinstrumentsarepost-LOCAqualified.Wethereforedonotbelievethereisaconcerninthisarea.

C

'blC.FeedLineBreaklilithPORYControlFailureSignificantInteractionEffectsa.AfailedopenPORII'incombinationwithafeedlinebreakhasnotbeenanalyzed2.Assumptionsn.Feedlinebreakinidecontainmentb.PORV's.inadvertentlyopenandremainopenc.PORVblockvalvealsofailstoclosewhenrequiredd.Rooperatoractionuntil20minutes3.PORYwouldnotbeexpectedtoremainopenduetoactuationmalfunctionsinceGarrettvalvesandsolenoidsarequalified'ortemperatures.inexcessof400'F4.SequenceofEventsia.Feedlinebreakoccursinsidecontainmentb.Steamgeneratorfluidand/ormainfeedspillfrombreakc;RCSheatupandpressurizationresultsfromlossoffeedflowd.PORVopensonhighpressureandfailstorecloseduetoadverseenvironmente.Reactortripoccursonhighpressurizepressure.Turbinetripsonreactortripf.RCSdepressurizationoccursifPORY'sfailtorecloseg.HassremovalviaPORYcausesvoidformationwithinRCSh.FeedlinebreakincombinationwithafailedopenPORVhasnotbeenanalyzed5.Actionsa.Shorttermutilitiesinvestigate.qualificationlevelandlocationof.powercablestoPORV'sandPORVblockvalvestoassesscredibilityofthisfailuremodeensureoperatorstakeactionstoshutPORV'sandPORVblockvalves,shouldthisfailureoccur

b.LongtermCompleteassessmentofPORV'sandblockvalves.Dependentonresultsofthatassessment.A.upgradeenvironmentalqualificationlevelofPORV'sandblockvalves,orB.performdetailedanalysisofevent,ifrequired6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch,issafety-gradeandpost-LOCAqualified.WedonotbelievethisitemisapplicabletoSt.LucieUnit2.D.FeedLineBreakWithFeedwaterControlFailure1.SignificantInteractionEffectsa.Overfillingofthesteamgenerator(s)causingpotentialstructuralproblems2.'Assumptionsa.Smallfeedlinebreakinsidecontainmentb.Feedcontrolinautomaticmodec.Adverseenvironmentcausessteamgeneratorlevelindica-tiontofaillowwhichcausesthefeedcontrolsystemtoincreasefeedflowabovethesteamflowd.No'operatoractionfor30minutes3.SequenceofEventsa.Asmallfeedlinebreakoccursinsidecontainmentb.'ainfeedspillsfrombreakc.Steamgeneratorlevelinstrumentfailsindicatinglowandcausesincreasedfeedflowinexcessofsteamflowd;Steamgeneratorbeginstofillcausingincreasedmoisturecontentofsteame.Ifnooperatoractionoccursundefinedstructuralproblemscouldresult 0th pgf.ItshouldbeemphasizedthatthisevenCtl~.~nbypromptoperatoraction.Safetygradelevelinstru-mentationexiststocompare'tocontrolgradeinstruments.Thefeedsystemcanthenbecontrolledmanually4.Actionsa.ShorttermueL24Ig~ensuretheoperatorisawareofthepotentialfailuremodesothehemaytakepromptcorrectiveaction,shoulditoccurassesstheneedtoinstallsafetygradehighsteamgeneratorlevelalarm5.EvaluationforSt.LucieUnit2hTheconcerninthisareaassumesafailureinasteamgeneratorlevelinstrumentcausingtheFWRStosupplyfeedwaterinexcessofsteamdemand,therebyfil'lingtheaffectedsteamgeneratorpotentiallyleadingtoexcessivemoisturecarryover.TheSt.LucieUnit2designincorporatesasafetygradedesignfeaturethatautomaticallyclosesthefeedwaterregulatingvalvesatthehighsteamgeneratorlevelandtripstheturbine'andmainfeedwaterpumpsatthehigh-highlevel.Theinstrumenta-tiontransmittingthesignalisafourchannelsystemwithportionsqualifiedtowithstandtheadverseevnironment.Thoseportionsnotqualifiedwillnotbeexposedtotheadverseenvironment.HethereforeconcludethatthisconcernisnotapplicabletoSt.LucieUnit2.E.FeedlirieBreakHithAtmosphericSteamDumpControlFailure1.SignificantInteractionEffectsa.Controlledplantcooldown2.Assumptionsa.Feed'linebreakoutsidecontainmentanddownstreamofreverseflowcheckvalveb.Adverseenvironmentimpactstheatmosphericsteamdumpcontrolonunaffectedsteamgeneratorcausinganun-controlledsteamreleaseupstreamoftheHSIV'sc.Nooperatoractionuntil30minutes**Thefailuremechanismidentifiedisafailureoftheinputsignalsthatwouldcausethevalvetoopenifoperatingintheautomatic'ode.Althoughnooperatoractionisassumedfor30minutes,prompt.-operatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.

2p~$3.SequenceofEventst.a.Feedlinebreakoccursoutsidecontainmentdownstreamofcheckvalveb.Steamgeneratorfluidand/ormainfeedspill:frombreakc.Reactortripoccursonsteamgeneratorlowwaterlevelorhighpressurizerpressure.Turbinetripoccursonreactortrip~+><<ss<d.Steamgeneratorpressureincreasesfollowingturbinetripe.EnvironmentcouldcauseatmosphericdumpvalvesupstreamofNSIVinunaffectedsteamgeneratortoopenandremainopenf.Ifnooperatoractiontakesplacetherewouldbeapotentialfordryoutanddepressruizationofbothsteamgenerators9.Depressurizationofbothsteamgeneratorsmaylimittheabilityoftheauxilairyfeedpumpstadelivertothesteamgenerator(s)4.Actionsta.Shorttermoperateatmosphericsteamdumpvalvesinthemanualmode.'orensurethattheoperatorisawareofthispotential'interactionsothatpromptcorrectiveactioncanbetakenb.Longtermcontinueinvestigationtode'termineifthisfailuremechanismisplausibleupgradeatmosphericdumpvalvecontrolsstemenvirmentalqualificationifrequired:,.'~>~~c"l~5.EvaluationforSt.LucieUnit2~P'."+.4"<~"'~r/'TheatmosphericdumpvalvesarelocatedjYsS;rehNothemain.steamisolationvalvesatSt.LucieUnit2,andthepostulate'.failureinthisareawouldbeavalidconcernwerethesystemtobeintheautomaticmodeduringpoweroperations.However,consistentwiththeanalysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperations.Webelievethis-methodofoperationadequatelyaddressesanconcerninthisarea.

jap~~I!IPttFfftfRR~ltSt~0iHih~EBreakEventsPiesc.Adverseenvironmentresultsinalowindicatedpowerlevelfromtheex-coresensorinputtotheReactorRegulatingSystemcausingCEAstobewithdrawn3.Sequenceofeventsa.Highenergypipebreakinsidecontainmentofasmallenoughsizewhereinwiediatereactortripdoesnotoccurb.Controlgradeex-coresensorindicationfails'lowduetoadverseenvironmental.impactc.ReactorregulatingsystemcausesCEAstobewithdrawnd.Reactorpowerexceedsthepowerpreviouslyassumedduringthetransiente.Reactortripoccursduetohighenergypipebreakatconditionsnotconsideredinpresentanalyses4.Actionsa.ShorttermA.CEApositionmalfunctionsdueto.steamandfeedlinebreaksandCEAejectionJOt.2)@8)1.Significantinteractioneffect:a.Potentiallyhigherreactorpowerlevelspriortoreactortripthanpresentlyanalyzed2.Assumptionsa.Smallhighenergypipebreakinsidecontainmentb.Reactorregulatingsysteminautomaticmodeplacethecontrolelementdrivesysteminmanualii.Modifyemergencyprocedurestostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeex-coredetectorsduringhighenergypipebreaksb.Longtermf.-evaluatetheconsequencesoFsmallhighenergypipebreaksincontainmentwithCEAwithdrawl,ifrequiredifrequired,upgradetheenvironmentalqualificationlevelofthecontrolgradeexcoredetectorsystem

6.EvaluationforSt.LucieUnit29dgTheC-EconcernregardingcontrolrodwithdrawalwiththeReactorRegulatingSystem(RRS)inautomaticcontrolisconsideredvalid.However,consistentwiththeanalysesintheFSAR,tAs-syst~~~nta.ized-in-the-manual-modeduring-normalmperaiions.Nebelievethismethodofopera-tionadequatelyaddressesanyconcerninthisarea.Qe~~3(cyoJu)if(drawJ.+A'~oft><<~"~'6f$aS(~~Lyc6'scencosyI4u<7es<~~4cvtt,d'ya~Ms~<(~M<<<~~+C~~~.<~~'~~@<..4~'v<<-<->>7~"<'~~g,(g~I-Selec,4~),

((.g 8.SmallBreakLOCAMithCEAControlSystemHalfunctiof,IJ(f\~1.Significaritinteractioneffects>PL,"y"4(98]a.Potentialexistsforincreasingpower.Thiswouldcausepressuretoremainabovelowpressurizerpressuretripforalonger'periodthanpreviouslyassumed2.Assumptionsa.SmallbreakLOCAinsidecontainmentb.CEAcontrolsysteminautomaticmodec.AdverseenvironmentimpactsCEAcontrolsystemorrelatedsensorsresultinginconsequentialfailure.d.ControlsystemcausesCEAtowithdrawe.StandardLOCAlicensingassumptions3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainmentb.CEAcontrolsysteminautomaticmodec.Adverseenvironmentcausedby.rupturepotentiallycausesexcorepowerindicationtoindicatelowpowerleveld.SliouldCEAsbegintowithdraw,themagnitudeoftheover--powerexcursionpriortoscramwouldbeincreased.ThiscouldproduceahigherprimarysystempressurewhichcouldthendelayreactortripandSIASandresultinhigher-peakcladtemperature4.Action,,a.ShorttermPlacethecontrolelementdrivesysteminmanualModifyemergencyprocedurestostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeexcoredetectorsduringaLOCA.b.LongtermEvaluatetheconsequencesofasmallbreakLOCAwithCEAwithdrawal,andifrequiredupgradetheenvironmentalqualificationlevelofthecontrolgradeexcoreinstrumentation

tss5.EvaluationforSt.LucieUnit2/PITheC-Econcernregardingcontrolrodwithdrawalwiththe~84Q0~ReactorRegulatingSystem(RRS)inautomaticcontrolisconsideredvalid.However,consistentwiththeanalysesintheFSAR,thH-system-is-mHntainedN~~anuaMed~uring..normal-,operations.Hebelievethismethodofoperationadequate1yaddressesanyconcerninthisarea.',~~c.we/~>d<<~gyLNRS~si'.SmallBreakLOCAwithSITIsolationYialfunction$A1.SignificantinteractioneffectsW~'-'~0<,Ž~g~aas+-t'DklYD4JDsa.Potentialexistsforinjectionofnon-condensiblegas'ntotheRCS.Thiscouldcauseproblemswithnaturalcirculationandheattransferinthesteamgeneratorsshouldthegascollectthere.~--p,-'zz7F44<'edgesd.NIQd2.Assumptionsa.SmallbreakLOCAinsidecontainmentb.Adverseenvironmentimpactssafetyinjectiontank(s)isolationresultinginconsequentialfailure.c.Operatorcannotisolatethesafetyinjectiontank(s)d.StandardLOCAlicensingassumptions3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainmentb.AdverseenvironmentcausedbyrupturedisablesSITisolationmechanismc.OperatorisunabletoisolatetheSIT(s)andnon-condensiblegas(nitrogencovergas)enterstheRCS.Ad.Possibilityexistsfordegradednaturalcirculationflowand/orbuildupofgasesinthesteamgeneratorscausingheatupofRCS.'4.Action.a.,ShorttermInstructoperatorthatthepossibilityofgasformationexistsifSITsarenotisolated.IdentifydrainlinesthatcouldbeusedtodraintheSITsandtheirqualificationlevels b.LongtermEvaluateoptionsforprovidinganothermeansofise1atingtheSITsandrevisethedesignasnecessargPLP4I@5.EvaluationforSt.Lucie2Thevalvesandinstrumentationandcontrolsystemsareenvironmentallyqualifiedtowithstandtheadverseenvironment.Backupmeans'arealsoavailabletode-.pressurizetheSITsandtherebypreventnon-condensiblegasesfromenteringtheRCS.

.

420.4ControlSystemFaflursTheanalysesrapor;ad'fnChapter15oftheFSARarfntendedtcdemons.ratetheacauacyGsaaiysystemsinmiigatingan"ici."atedOperationaloccurrencesandaccicents.BoshCongressandACRSnaveraisedaaissuefnhisarea.CcmmissicnerAhear.".ehasrasgoncadtoCongressregardngthisissue(~=ertcattacho~nttcthisenclosure)andpartofhisresponsereferredtocontrolsys-;amrevieus:obeperi'armedinconnectionseithOLlicensing.irisedontheconserjativeassumptionsmadeindei'icingtheseChapter16desfgn-basiseventsandthedetailedreviewoftheanalysesbythestaff,ftislikelythattheyadequatelyboundtheconsequencesof'Sfnglecontrolsystemfailures.'Yeprovideassurancothatthedesignbasfs~antanalysesadequately--boundothermorefundarrentalcrediblefailuresyouararequestedtopMYfdethe.followinginformation:(1)Identifythosecontrolsystemswhosefailureormalfunctioncouldseriouslyimpactplantsafe~.(2}Indfcatwhich,ffany,of~controlsystemsfdenstiffedfn(1)lacefvepouerfromcommonpowersourcs.Thepowersourceconsideredshouldfnc'.ucaallpouersourcesunosafailurormalfunctioncouldlea'dofailureormalfurc.icnof;orethanonecontrolsystemandshculdextendto"heefactsofcascadingpowerlossesduetcthefailureofhigherlevel',dfstrfbutionpanelsandloadcnters.~a3).Tndfcatawhich,ffany,ofthecontrolsys.msidentifiedfn.0)-receive;.inputsignalsfromcoamonsensors.Tnesensorsconsideredshouldinclude,butshouldnotnessrilybelimitedto,cca-.,cnnydraulicheaderscrimpul.salinesfeedingpressure,tamper@tora,levelorothersignalstotwoormore.controlsystms.-(4)Providefust'ffcatfcnthatanysimultaneousmal,unctionsofthecontrolsystemsunidntifiedin(2)and(3)resultingfromfailuresor7al.unc.fonsoftheapplicableccr;...onpcwersourceorsensorare"oundaabyheanalysesinChaptarl~and>Auldnotrequireac-ionorrsponsabeycnd.hecapabilityofoperatorsorsafetysys.ms,s.

~Resonse:.(1)Thecontrolsystemswhosefailureormalfunctionmayimpactplant,safety'areshownbelow:FEElNATERREGULATIHGSYSTEMTURBINE-GENERATORCONTROLSYSTEMSTEAMBYPASSCONTROLSYSTEMADVCONTROLSYSTEf1BORONCONTROLSYSTEM'IREACTORREGULATINGSYSTEf1CONTROLELEMENTDRIVEMECHAHISf4CONTROLPRESSURIZERPRESSURECONTROLSYSTEMPRESSURIZERLEVELCONTROLSYSTEMREACTORCOOLANTPUMPSPOWEROPERATEDRELIEFVALVESSTEAMGENERATORBLOMDOHNSYSTEM(2)E(4)Thecontrolsystemsidentifiedin(1)that,receivepowerfromcommonpowersourcesareidentifiedbelow.Theeffectoflosingthepowersourcesandanevaluationofplantresponsearealsoprovided.Theresultsofthisevaluationprovidejustification~thatanysimultaneousmalfunctionsofcontrolsystemsidentifiedherein,resultingfromcowmenpowersupplymalfunctionsareboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.

420.4(2)II(4)ImactofLossofCornnonPowerSourcesLossof120VACfromPowerPanel220I,Thispowerlosswillimpactthepressurizer:levelcontrolsystem(PLCS),thepressurizerpressurecontrolsystem(PPCS),thereactorregulatingsystem(RRS),theboroncontrolsystem(BC6),andthesteambypasscontrolsystem(SBCS).Specifically,thePLCSwilllosecontrolpower,assumingtPeselectorswitchisonthatchannel(itwillbeunaffectedifontheotherchannel).Theletdowncontrolvalvewillgotoitsfailclosedpositionaridthechargiogpumpswillremainpowered,andavailableformanualcontrol.ThePPCSwilllosecontrolpower,assumingtheselectorswitchisonthatchannel.Thepressurizersprayvalvewillgotoitsfailclosedpositionandthepressurizerheaterswillremainpoweredandavailableformanualcontrol.Addition-,allythelow-lowlevelautomaticcut-offofthepressurizerheaterswilllosecontrolpower.TheRRSwilllosepowerassumingtheselectorswitchisonthatchannel(it.will.beunaffectedifontheotherchannel).Thecontrolelementassemblieswillremainintheirpositionpriortothepowerloss.TheBCS.willnotcompletelybelost.Thereactormakeupwaterflowcontroller)silllosepowerwiththeboricacidflowcontrollerunaffected.Theletdownlinewillbeaffectedwiththetemperatureelementsfortheregenerativeandletdownheatexchangerslosingpower,.howevertheletdownlinewillbeiso-latedbytheletdowncontrolvalvesmentionedpreviously.TheSBCSwillnotreceiveaTy.veinputfromtheRRSwhichmaycausetheturbinebypassvalvestoremainclosed.SecondarypressurereliefandRCSheatremovalcontrolcanbeaccomplishedthroughthemainsteamsafetyvalvesandatmosphericdumpvalves.EvaluationofPlantResponse:ThelossofthePLCS,PPCS,RRS,BCS,andSBCSduetolossof'20VACfrompowerpanel220'willnotseriouslyimpactplantsafety.Thereactorcouldfunctionforatimewithoutoperatoractionbeforeareactortripwouldresult(mostlikelyonhighpressurizerpressure).Theoperatorcanchoosetoselectthe N

otherchannelforcorrectoperationofthePLCS,PPCS,andRRS.Howevermnualcontrolofthechargingpumps,pressurizerheaters,auxiliarysprays,andturbinebypassvalvesisavailable.Theoperatorwillstillhavecontroloftheboricacidflowtothechargingpumpsandhecanchoosetoaligntherefuelingwatertanktochargingifnecessary..IQg~/yg~'~gi'6VCStnC/+un@'QB/}BÃCcS'JinSec'.6+nr~.J-.z.2Joe.nels'/xJccn~~'+~//~++<46Pn/'s,~.P.2c2$$cc~egAlga~&44~Pcpgcu/A/~oaqIsJra.+4,nipi~*r~~/e~v'~ps4e~gHz)~sots+preckg/arenn,4g4f'<~ssccroui-~c:dc/><+varipr+re~g/+qi"ear.$r6ij0+<~j4~id~

Lossof120VACfromPowerPanel221Thispowerlosswillimpactthepre~wurizerlevelcontrolsystem(PLCS).thepressurizerpressurecontrolsystem,(PPCS)andthereactorregulatingsystem(RRS)',theboroncontrolsystem(BCS),andthesteanbypasscontrolsystem(SBCS).Specifically,thesameimpactaswiththelossof120VACfrompowerpanel220willoccurwiththefollowingexceptions:Thereactormakeupwaterflowcontrolwillremainpowered,howevertheboricacidflowcontrollerwilllosepower.Additionallythetemperatureelementontheletdownheatexchangercontrollingthecomponentcoolingwatercontrolvalvewilllosepower.ThevolumecontroltanklevelinputstotheBCSwilllosepower.Alsothestationalarms(annunciators)willtransferto125YDCpower.Evaluation'ofPlantResponseTherewillbenoseriousimpacttoplantsafetyfortheeventpresentedabove.Intheabsence'ofoperatoractionthereactorwouldeventuallytrip(onhighpressurizerpressure).However.,theOperatorwouldbealertedtosuchaneventduetoincorrectpressurizerpressurelevelindicationsinthecontrolroom.HemaychoosetoswitchtheredundantchannelforcorrectoperationofthePLCS,PPCSandRRS.However,manualcontrolofthechargingpumps,pressurizerheaters,andauxiliaryspraysisavailable.,Theoperatorcanalsobypasstheboricacidflowcontrollerandprovideboratedwaterdirectlytothecharginpumpsoraignterefuelingwatertank.7"~Ad4<l4<<~sfolP>lS~t.ownoeo/~an~(8~@~plj+.3/i>-ge4gqrQ,Lossof480V]CC2A6non-essentialortionTheimpactoflosingthismotorcontrolcenter(MCC)issimilartothelossof120VACfrompowerpanel220,sincepowerpanel220receivespowerfromthisHCC.EvaluationofPlantResponse:Theplantresponseforlossofpowerpanel.220(120VAC)applies.

Lossof480YtiCC286non-essentialortionTheimpactoflosingthisHCCissimilartothelossof120YACfrompowerpanel221,sincepowerpanel221receivesitspowerfromthisHCC.CvaluationofPlantResponse:'heplantresponseforlossofpowerpanel221(12CVAC)applies.Lossof120VACVITALPANEL2A1hislossofpowerwillimpactthefeedwaterregul<ltingsystem(FHRS),steambypasscontrolsystem(SBCS)andtheturbinegeneratorcontrolsystem(TGCS).Specifically,intheFWRScontrolpowertooneregulatingvalveandbypassvalvewillbelost.Additionally,mainsteamflowinputtotheSBCSfromtheFMRSisnottransmittedfromonechannel.Theturbinerunbackmechanismwillbewithoutpower.EvaluationofPlantResponse:Thefeedwaterregulatingsystemwillstillcontroloneregulating'ndbypassvalve.Thelossoftheturbinerunbackfunctionisbackedvpbyinstr~mentationon120VACvitalPanel2Bwhichwillrunbacktheturbineinrespo'nsetothedecreasedfeedwaterflow.Shouldtherunbacknotoperateproperly,areactortripmayresultonlowsteamgeneratorpressure.Manualoperationoftheatmosphericdumpvalvesandauxiliaryfeedwaterisavailable.ShouldtheSBCSoperateproperlyorreactortripnotoccurtheplantwouldstabilizeatadecreasedpowercondition.8CLSb/aj60g0F~4<5ihN+4~7I4SCCQOQ+,Q,/Q8O4chOXKisC'~e~c~1'O.f4a~alys.~inSecAo.e:gy.gass~~ciI+ibine+Ip4lln~cJ<y0r~~pSsG4of$z,g@~f~~+r~~i'>s'~<%net+64snueriJ'+6rafeardZ~p~~g6~nygnsgr~su/$igpy/-cd'/Prmy~@5gpondy'~w4Ar4<<c',~JAlqg~A.iydcACSyes~c.7&inp/toc~dr'p,)4rA'~~~s/e~~gp~ss8cohoa~s'd'r'w>~hilda>"wP'</o~ica/Pons'cgu<~<<445cgnnri'grAsso/lQ8v'Acpl7glpqg~Z.g8chic.snoreSI~~ha.pPep~46OncFV/V&CPe~6

120VACVitalPanel2BThislossofpowerwillimpactthefeedwaterregulatingsystem(FHRS),steambypasscontrolsystem(SBCS),andtheturbinegeneratorcontrolsystem(TGCS).'pecifically,intheFNRScontrolpowertooneregulatingvalveandonebypassvalvewillbelost.Additionally,controloftheSBCSwouldbelost.TheTGCSwouldremainfunctional,butwouldsufferalossofthebackuptotheturbinerunbackfunction.EvaluationofPlantResponse:TheFMRS.willstillcontroloneregulatingandonebypassassvalve.TheSBCSwillbewithoutcontrolpowetandtheturbinewouldrunbackinresponsetodecreasedfeedwaterflow.Shoulditnotrunbackareactortripmayresultonlowsteamgeneratorpressure.re.TheauxiliaryfeedwaterandatmosphericdumpvalvesareavailableforRCSheatremoval.Shouldareactortripnotbegeneratedanewsteyadstateatadecreasedpower4(Pc/c4(cth.~i&t4+PspsC/~v/f4levelwouldoccur.7~eoac.l~>'c~-38')4I)&Wjsscgna~s5~Lossof120VACVitalPanels2Aand28ThispowerlosswillimpacttheRIRS,SBCS,and.pTGCS.Secifically,feedwaterandsteambypasscontrolwouldbelostandtheturbinerunbackmechanismwouldlosepower.EvaluationofPlantResponse:,Areactortripon'lowsteamgeneratorlevelwillresult.Automaticactuationofauxiliaryfeedwaterandopeningofthemainsteamsafetyvalveswillrel:ievesecondarysystempressure.Theatmphatmoshericdumpvalvesand'auxi18aryfeedwaterwillbeusedtocontrolRCSheatremoval.Lossof125VOC.Bus2ABThispowerlosswillimpac~elltheRRS,thePPCSandtheTGCS.Specifically,controloftheRRSandPPCS,bothchannels,wouldbedisabled.Theturbinetripsolenoidsandgeneratorunderfrequenyclockoutrelayswouldbedisabled.Theturbinetripsolenoidsandgeneratorunderfrequencylockoutrelayswouldbewithoutpower{f{failedclosed)~ance/gis/'Fw/onlOs'rnulf0ace.(emn&e/4<4~4'8.3fyOSS4'tn8ocJzTnis5ccna~l~.nnulpsis<<&cd+~/~2.4E~ssum4'c/ogr/l~~J'*v~'/~4%AoF'MA~4.ne&.'p.4l~4~rrCJCC>>dg+4Hd.yg/'-cAwf~~io(dg/c~l(n>>w<gm~cwg.F'4>>4~I~~W

VUIEvaluationofPlantResponse:TheCEAswouldremaininthepositiontheywere-inbeforethepowerlossandcouldbecontrolledthroughtheCEDHCSbytheoperator.l(ithoutthePPCS,pressurecontrolwouldbemaintainedbymanualcontrolofthechargingpumpsandletdownandaU.xiliaryspray.Shouldareactortripresult,theturbinewouldnottripelectricallybutwouldbetrippedautomaticallyonamechanicaloverspeedtrip.IfrequiredthemainsteamisolationvalveswouldcloseisolatingtheturbineandmaintainingRCSheatremovalfunctions.9T4II/esso+~F&gkeQo~~"~~)'-~(~sp~4enp.3,Q.Q/pcs>,d5ggsca~r~8../Q/p.>5j~p/4Ac'Pks~4+~>+~c~l'~~+~'opspos~I"cS4r~o(~~Vg/o~~n4~isor~!~~y'pj'c5pgcgs8C5P'gyqkgc'J/I/cia'*np/deolo)Ic)bCrCrV~e,L~as~>prggAC/Y,S/$~~~~NA/pe4,4,oAPrA~~~<Ca.

.84.ImactofFailureinComnonSensorsThecontrolsystemsidentifiedin(1)thatreceiveinputsignalsfromcommonsensorsareidentifiedbelow.Oescriptionsof,theeffectofthemalfunctionsonthecontrolsystemsandanevaluationofplantresponseandbackupsystemavailabilityarealsoprovided.Prudentengineeringjudgmentbasedonknowledgeofsystemdesignandtransientanalysiswasusedtodevelop'thesedescriptions.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsofcontrolsystemsidentifiedherein;resultingfromcommonsensormalfunctionsareboundedbytheanalysesofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.ftalfunctionofPressurizerPressureSinalfailslowtotheRRSandPPCSIf.malfunctioncausesalowpressurizerpressursignaltobe,trans-@])mitted,thepressurizerheaterswouldturnon~hepressurizersprayswouldshutoff+an4-0h~11,apgi~W~+~EvaluationofPlangresponse:dSyydunkr'h~rdh.;~AT>4all~iThereactoruouid]tnPonhighpressurizerpressure/tt1tdd-dttt1manuallyandcontrolpressurewiththechargingandletdownsystems.andauxiliarysprays.Shouldthereactornottrip,becausetheappropriatetripsetpointswerenotreachedbytheaffectedparameters~(pressureandpower),anewsteadystatewouldbereached.Operator,actioncouldmaintainpoweroperationuntilthesensorcouldberepairedq~LpAg'Csonario~~c~Ipp4agafpsrsgg~$prgre,gdl,pGLjhu'4c~rpDcw7P~S/rdr'd4r.rPrgz/ae~pryrrrrtISdtrli5~Drrss~r.A'>fgzbe~c~awrJr,~dsl~D@Sr'gee4'rSk5rrhr4+rart

,t'q~Qtl~0MalfunctionofPressurizerPressureSinalfailshihtotheRRSandPPCSIfthemalfunctioncausesahighpressurizersignaltobetransmitted,thepressurizersprayswouldcomeonandthepressurizerheaterswouldbede-energized.TheRRSwouldadjusttherodsinresponsetothehighpressuresignaltherebydecreasingreactorpower..fEvaluationofPlantResponse:+~@,~<4"g+6'1stThereactorwouldtriponAloupressurizerpressure,andaSIASmayresult.Theoperatorcouldclosethesprayvalvesandusethechargingandletdownsystemsandauxiliaryspraytocontrolpressure.Shouldthereactornottripduetoaffectedparametersnotreachingthetripsetpoints,anewsteadystatewouldbereached.Operatoractioncouldmaintainpoweroperationuntilthesensorcouldberepaved.MalfunctionofPressurizerLevelSinalfailslowtothePLCSandPPCSIfmalfunctioncausesalowpressurizerlevelsignaltobetransmitted,thechargingflowwouldincreaseandletdownflowwoulddecrease.Thepressurizerheaterswouldbede-energizedifalowenoughsignalwastransmitted.'valuationofPlantResponse:IncreasingprasurizrlevelwouldbeidentifiedbytheoperatoronCf.~C@ffleveliud~ceticCn)alarminthecontrolroom.Iianuaicontrolofthechargingandletdownsystemscouldpreventtheoverfillingofthepressurizera}}dprecludeareactortriponhighpressurizerpressure.y~'gz~~>+>~boun)edQqP~eP'em/4lorylhyeve~legyp/r'ri2giMalfunctionofPressurizerLevelSinalfailshihtothePLCSandPPCSI'fmalfunctioncausesahighpressurizerlevelsignaltobetransmitted,thechargingflowwoulddecreaseandletdownincrease.

N'~lf"p~r/g(f4gg+r+/p0A/ocJ/~4ri3<r'rt'sSore~cJo~(gpneYi.n7y4('~ih~,A~~8A~z-.yA~~g~~/Wc,~o~~noWr~(pJygs>+QRl'ps'gy('gAp(/j4t)Chic/+/Cw'I/.4/4/Is4>1anyplIn<ergzysgk~7(<ig~cn~/pxrJ'FWb/oej4.pc6~'lIcil41<>/+C'nSechCnrE.4.g.(goanJJ4a~o~rSc'/imari~--EvaluationofPlantResponse:AdecreasingpressurizerlevelmayleadtoapossiblereactortripIIonlowpressureandSIASiftheoperator.doesnotintervene.TheSIASwouldisolateletdownandchargingwouldbeavailabletorestorepressurizerlevel.Operatorcouldavert'areactortripandSIASthrough.manualcontrolofchargingandletdownbasedonlevelindication'ncontrolroom.MalfunctionofFirstStaeTurbinePressureSinalfailslowtotheRRSIfthemalfunctioncausesalowpressuresignaltobetransmittedtheRRSwillinserttheCEAstoproduceaTavecommensuratewiththelowpressuresignal.ThisTaveoutputsignalistransmittedtotheSBCSaffectingitsoperation.Evaluation"ofPlantResponse:ThereducedheatoutputfromtheRCS~duetotheinsertingoftheregulatingCEAsreducesthesteamflowtotheturbine..TheSBCSreceivesalowTavesignalfromtheRRSsothevalveswillnotopen.Areactor.tripwouldoccuronlowsteamgeneratorpressurewithapossibleMSIS.ThemainsteamsafetyvalvesandatmosphericdumpvalvesareavailableforcontrollingRCSheatremoval.MalfunctionofFirstStaeTurbinePressureSinalfa'ilshihtotheRRSIfthealfunctiancausesahighpressuresignaltobetransmitted~theRRSPmwithdrawregulatingCEAstoproduceaTavecommensuratewiththehighpressuresignal.4865'I'~QO(CcWOEPF7~$Olg4~7/gJ4~~0/Sg,i',g40(egg4/>~<++>c2dog0A~spy~ge(orcorpr$/J4r4cicnCrC~SryQyI-e<<p)ASSCC4&~r~CcPrgq~/',~~<~~<C-r4'$A./6/n0$54gcfp/rssy~gyQgh(ssJd~Ae7CI'ediYPKcSgc'S~4j4,/no.~/~jp~~~gQre/~Fipcj+ill~Tubed(44pl'+Jpggw)sp$og/(Ega%/yyJfgg~r

yg~~>~,>>~</uJ~y'A~t~~~i/'~cd~wp/sI5(+st//JtrsPe~/eJS')gayAi'SeVe~dW<~/+nodDC(<~AStareS~C4an64~+a/A6,C+k~H('/IjV2CZ,~A/Cvl//damdan@'C/Cy)4Qppsan5'H.Wci'e4C<r'tEvaluationofPlantResponse:Theicreased~eatoputfomtheRCSdutowithdrawgtheegultingCEAsincreastheteamowto~hetuine.heSSreceveshiTavesignalomtRRS.Amistchbween,,aveapresureitheeamheerasmeasurdbyeSBCopen/thetrbinypas/valve.Theeningoftheevalvssenantomat'cwi~drawproibittohecorol.elmentrivechaniconolsstestopp'ngCwithdral.eopeatornmanllyowernerosorswittotheotherRRSchanneltresuastablendition.MalfunctionofMainSteamFlowSinalfailslowtotheFMRSandSBCSIfthemalfunctioncausesalowsteamflowsignaltobetransmitted,themFHRSwillreducefeedwaterflowandtheSBCS'meropentheturbinebypassvalves.EvaluationofPlantResponse:Themismatchbetweenfeedwaterflowandturbinedemandwouldproduceareactortriponlowsteamgeneratorlevel.TheauxiliaryfeedwatersystemandmanualcontroloftheSBCSoratmosphericdumpvalvesisavailabletoachieveastabilizedplantcondition.T4Zsa/~Ab~d~/taipeiyhi.5'4047IA~8CjrOn/S.4a'.8~dtaadS4isS'<tmggs/dna<aSyHO'Sst/seamerSr((recc'nasl/s~yoldeQngl'on&/ir<'prQ/casa.+/rapDm4)4/srecur<,pwas/assg~MalfunctionofMainSteamFlowSinalfailshihtotheFIIRSandSBCSIfthemalfunctioncausesahighsteamflowsignaltobetransmitted,w'(Il.mttheRNSwillincreasefeedwaterflowandtheSBCSmay<opentheturbinesvpa-,s~e~~a-w~p~.EvaluationofPlantResponse:Thesteamgeneratorlevel.wi'11increaseandthee-may-be-asteamtrill)Ml~ct.~.g""pd~l~"N~p71operatorcouldmanuallycontroltheFURSandSBCSbasedonsteamgeneratorlevelandpressureindicationsinthecontrolroom.Shouldtheoperatornottakeactionahighsteamgeneratorlevelsignalwouldclosethefeedwaterregulatingvalvesandtriptheturbine.Areactortrip

onturbinetripwouldfollowwithactuationofauxiliaryfeedwateronsteamgeneratorlowlevelsignal.AuxiliaryfeedwaterandmanualoperattonoftheSBCSoratmosphericdumpvalvesprovideamechanismfor;RCSheai;removaltostabilizetheplant.rncrcchQpgnFC+plccJ44'*tP4~cue<~is-.1~tgg~~'5~~~~,~.fh<<~/ySIsinI>~f.3.IQSSWACS~maxi'a~~>ncrC~epqQ+Mcr'locoace6giRlgreIn4I-QrE'sAirmaxi'aiea,s.>40"84spn(Le7I'gnowe/ASpu<A'7W+wnyiCcg>A,~/klc046k,/*Ill'-gPDIcAJgUPgo~n~~c4c'p,'~g+g~d,ice6-~psaysg~.erich~lg<</a~AnDgrpJzgpsAa~SLqrrylecsc2/winshe~s~>~$ua/~a~o~pZg

Coo+onLines/Sensors13172-310-110Rev.103/4-RC-127Ins.P,T,L,FPDT-1121CPDT-1124'ZPDT-1124YPProcess/SachetSSIndicationOn1yIndicationOn1y1-RC-104PT-1104PT-1102(C)SS1-RC>>?05PT-1103PT-1108PT-1102(A)PT-1100(X)LT-1105LT-1110XSIndicationOnlySPIndicationOnlyPKS1-RC-130'T-1110V'T-1100YPT-1102(B)PT-1107PT-1105SIndicationOn)yS1-RC-107PT-1106PT-1102(0)S2998-6-074Sh'.1SG2811-1"-l51-108LT-9023ALT-9021SPindicates

Co@nonTaEns.PT.LFPPl"ocess/Sachet',2998-6-079Sh.1SG2AII-1"t51-100LT-9013A.LT-9011'E-I"lSI-101I-I"MSI-102PT-8013ALT-9013ALT-9011PT-8013BLT-9013BSSS.I-1"f4SI-103LT-9013BE-1"l61-104'T-8013CPT-8113D-9013CSSindicationSE-I"NSI-104LT-9013LSI-I"t61-106PT-8013DLT-9005LT-9013DLT-9113LT-9012SPSSindicatePI-1"HSI-116LT-9012LY-9013I-1"f51-107LT-9005LT-9013DPS

Ins.PTLFPProcess/SafetSLT-9021LT-9023APT-8023APindicates,SSPT-8023BLT-9023BS'.SLT-9023BSPT-8023LPT>>8123LT-9023CSSindicationSLT-9023CPT-80230LT-9006LT9023LT-9022.LT-9123SPindicates$tPPindicatesLT-9123LT-9022,PindicatesPindicates.LT-9023LT-9006SPindicates

ImactofFailureofConmonInstrumentLineorTaTheattachedTableidentifiestheComonLine/Tapforprotectionchannelandcontrolchannels(ormultiplecontrolchannels)thatareservingmultiple--channels.Thistablehasbeenreviewedandthoselinesortapswhichweredeterminedtobelimitingintheireffectonplantresponse'reidentifiedbelow.Theeffectoflosingprotectionchannelsduetoasinglefailureonacommninstrumentlineortap,asidentifiedintheresponsetoquestion420.06doesnotdefeatrequiredprotectionsystemredundancy.Thereforetheeffectoflosingpnotectionchannelsisnotaddressedhere.Descriptionsoftheeffectofthemalfunctionsonthecontrolsystemsandanevaluationofplantresponseandbackupsystemalailabi'lityarealsoprovided.Prudentengineeringjudgement..basedonknowledgeofsystemdesigndandtransientanalysiswasusedtodevelopthesedescriptions.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsof-controlsystemsidentifiedherein,resulting~~~~~~fromcordoninstrumentlineortapmalfunctionsareboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.PressurizerPressureSinalPT-1100XandPressurizerLevelSinalLT-1110'TI-RC.IIISystemsaffectedareI'P8;PPCS,PLCS,andSBCSEvaluationofPressureSinalandLevelSinalFailinLowduetoInstrument74OamaeonP'lantResonse:d'fmalfunctioncausesalowpressureandlevelsignaltobetransmitted,.thepressurizerheaterswouldturnon~,hepressurizersprayswoulddecreaseflow.T4e-R~e~~4yM~4he~~emes~eg~e1T.N~pl~&"-RBcc5&~tff~~H~~i~~n~pew~IA~dddp.TRPCC~IddIddincreasecharging.Duetotheincreaseincharging>andpressurizerheatingthereactormaytriponhighpressurizerpressure,~I'OIRIIRP~~kipddTRpI;IICyId

mntationfromwhichtoevaluateeventprogress;Manualcontrolofcharging,atttasphericdumpvalvesandauxiliarysprays,withouttheuseofPLCS,PPCS,andSBCSwillbringtheplanttoastablecondition.I4.P+~>>tf)geafi'e/eIASl943sueg6g/5gc/fridnS//rer//flr~6'nrl>'re//W<<ncr'erEvaluationofPressureSinalandLevelSinalFailinHihduetoInstrumentTaDamaeonPlantResonse.::Ifmalfunctioncausedahighpressureandlevelsignaltobetransmitted,thepressurizerheaters,wouldde-energize,thesprayswouldincreaseflow.TheRRSwouldadjustrodsinresponsetothehighpressuresignaltherebydecreas-ingreactorpower.TheSBCSwouldreceivealowerTaveinputduetothedecreaseinreactorpowerandnotopentheTBVs.ThePLCSwouldircreaselet-'ownanddecreasecharging.AlowpressurizerpressuresituationwouldoccurleadingtoapossiblereactortripandSIASonlowpressureoranewsteadystateatlowerpowerandpressure.Theoperatorhassafetygradeinstrumentationsfromwhichtoevaluateeventprogress.IsolationofletdownonSIASorbytheoperatorandmanualcontrolofchargingwithpressurizersprayi<~>solationwillbringtheplanttoastableconditionwithoutusingthePLCS,PPCS,andSBCS.EvaluationofPressure"Sinal'.FailinHihandLevelSinalFailinLowduetoInstrumentTaDamaeanPlantResonse:TheplantresponseissimilarforthePPCS,RRS,andSBCSasdiscussedaboveforthepressuresignalfailinghigh.ThePLCS,howeverwouldincreasecharging('fanddecreaseletdown.,Theincreaseinchargingandpressurizersprayflowwithnopressurizerheatersmayleadtoalawpressureconditionorasteadily!increasingpressurizerlevel.Theoperatorhas,safetygradeinstrumentationIfromwhichtoevaluateeventprogress.thnualcontrolofchargingandturningoff.pressurizersprayswillbringtheplanttoastablecondition.'7$c,~nMski<4oe"Qe-j/cssfere'eig~a/feqmcfg~vclgpfm/@/li/pfPi~Lwj/Q/lP/P/9gd@h+P/0+/'/'*+/pyq~~pr+ssurv~ow/cg/pcgvgg7wary~Gcu/er/enc/egnper@re/cr~~n//V(c'p-/~geerre/nA'nn)Aters49ovt:rpr/ssur/2'~grcv//;Sic%fggrg~ggpjgc/pc~grpI'@I84r88offri7PQ,pl.Q4~OJ/4e,+bpenrwpoFa/+nen.rc/frrrc/eee>>ki/eence/nnen'(Sec//cn/e$.Z/)Q/~V,/go~qgp,WF4gji0IS0wCw/pg<SGenkggC+2 8pprHisJCCharoa+A'edrA~<~ooQ~+'P~o~onom~e~~Croendlong4ooG.y~~'II"a/m>eDHgoo14I"P0/enoFo(G.Qowwo8/r'estv4/~d'GAt'6f'l(o'SSCdO'O1AOID.Idaoo]0/'CS/4o'CAMjPSonCCWr(Is'd~/76AAsp44+++lISd'<>n7J~n4/neo.n7oo'nsooc~bn/s'.c',QoSDNz+s-IIII'P~ÃIFIFIIdl1di~IFili818duetoInstrumentTaDama~eonPlantResonse:AsdiscussedintheevaluationforbothsignalsfailinglowthePPCS~~~andSBCSresponseissimilar.ThePLCS,howeverwouldincreaseletdownanddecreasechargihg.,-~.~.r,888'FFIIA~~~~Iw~muve.Theoperatorcanmanuallycontrol'chargingtoincreasepres-surizerrlevelandisolateletdownflow.The,plantcanbebroughttoastableconditionthroughoperatoractionandmanualcontrolofthePPCS,PLCS,~andS8CS.IPressurizerPressureSinalPT-1100YandPressurizerLevelSinalLT-1110Y~TaI-RC-130.PThesystemsaffectedandtheevaluationofplantresponsearethesameasthosedescribedaboveforpressurizerpressuresignal(PT-llOOX)andpres-surizerlevelsigna'i(LT-1110X)--SteamGeneratorLevelSinal.LT-9021andLT-9011TaI-1"NSI-108.SystemaffectedistheRlRSEvaluationofLevelSinalsFailinLowduetoInstrumentTaDamaeon~PlIIIfthemalfunctioncausesalowsteamgeneratorlevelsignaltobesentfrombothtransmittersthentheflo'wcontrolvalvewouldopentaincreaselevelforbothsteamgenerators.AsfeedwaterflowincreasedtheB(RSwouldnoteamismatchbetweenmain,steamandfeedwaterflow.Thiswouldclosetheflowcontrolvalvetomatchfeedwaterandsteamflow.Anoscillationoftheflowcontrolvalvewithinc&easingsteamgeneratorlevelresultsleadingtoahighsteamgeneratorlevelsignalbeingsentfromthereactorprotectionsystemtoclosethecontrolvalvesandtriptheturbine.Shouldthecontrolvalvesnotcloseandturbinenottriptheoperatorcouldtakemanualactiontoclosethevalvesorstopthefeedwaterpumps.Finallyahigh-highsteamgeneratorlevelsignalwouldclosethefe'edwaterpumpdischargevalvesshouldtheaboveactionsnotoccr.~~luwyc4fMMa-f/>c'y~Ur+/4&+Iw)fr/rf<)k>II'/ISgnac-pn~oodnnnrIIonIdopi'lvknr/jIo'.IooFMInf/oooa'uo/anfox/ul~nIpcdo.oQgEvaluationofLevelSinalsFailinHihduetoInstrumentTaDamaeon~PIfthemalfunctioncausedahighsteamgeneratorlevelsignaltobesentfrombothtransmittersthentheflowcontrolvalvewouldclosetodecreaselevelforbothsteamgenerators.AsfeedwaterflowdecreasedtheFHRSwouldnotea5@<.,

et, mismatchbetween'mainsteamandfeedwaterflow.Thiswouldopentheflow1controlvalvetomatchfeedwaterandsteamflow.Anoscillationoftheflow'controlvalvewithdecreasingsteamgeneratorlevelresults,leadingto'areactortriponlowsteamgeneratorlevel.Auxiliaryfeedwaterwouldbeautomatically1actuated.toaccountfortheinsuH'icienteedwaerflow.i~~~'>~"0"4-/age/lP'gjhff.cf~8r-zEs.g.(PauzAPAis,deicero694$54fP<~+~~>+~+</~~<~'4'~s>'vantihnotOneLevelGial.iaslinIi5andneLevelSinalFailinLowduetoInstrumentTaDamaeonPlantResonse:,Onesteamgeneratorwo'uldexperienceadecreasinglevelduetoclosingofthecontrolvalveonreceiptofthefailedhighlevelsignal.Theothersteamgeneratorwouldexperienceanincreasinglevelduetoopeningofthecontrolvalveonreceiptofthefailedlowlevelsignal.Theresultwouldbeeitherareactortriponlowsteamgeneratorleveloraclosureofthecontrol.valveonhighpsteamgeneratorlevelwithaturbinetrip.Additionally,theoperatorcantakeappropriateaction(manualreactbrtripwithauxiliaryfeedwateractuation)basedonsafetygradesteamgeneratorlevelinstrumentation.Qi'yjdfgsiSSm~b'av~~eepapja'djug)y~a~~)sSteamGeneratorLevelSinals'LT-9005andLT-9012Tal-l"-NSI-106SystemaffectedistheFWRSEvaluationofLevelSinalsFailinLowduetoInstrumentTaDamaeonPlant~Resonse:Hiderangesteamgeneratorlevelwillindicatealowlevelconditionononesteamgenerator.Theoperatorwillstillhavesafetygradesteamgenerator.levelindicationstorelyon(onesafetychannelofthefoursafetycharm'elswillalsobelost.foithatsteamgenerator).Additionally,onthesamesteamgeneratoYtfijgfnst'cementationandcontrolof.thefeedwaterbypassvalvesendsasignaltoopenthevalveandactuatesalowlevelalarminthecontroltroom.Howeversince,aturbinetrip,signalisnotpresentitwillnotopenthevalve.,Forconservati,smitisassumedtoopenincreasingflowtothesteamgenerator.TheintactportionoftheFWRSonthatsteamgeneratorwillseetheincreasedlevelandclosetheregulatingvalveenoughtomain'tainlevel.Shouldthisregulatingvalvecontrolworkimproperly~ahighsteamgenerator'evelwillcauseclosureofthefeedwaterregulatingvalvesandturbinetrip.Theoperatorcanuse.theauxiliaryfeedwatersystemtomaintainadequateinventoryintheaffectedsteamgeneratorandmaychoosetomanuallytriptheplantbasedonsafetygradeinstrumentationreadingsconflictingwithprocessinstrumentationandcontrolactions.-]$d.dld4sfiqvjyj5jmoupsdscEpci+i1d+nmlma5~+F~~v>~f/~~dmvmffff-P~55c+i'mn.l~~/uIfubj"E~mi55uw&'Pi~@"~<1,~+~~Ž~~ii~fpmr+ilull~Q~F~g~~

EvaluationofevelSinalsPailinHihduetoInstrumentationTa~DaaaeonPlantResonse:HiderangesteamgeneratorlevelIilli'ndicateahighlevelconditionononesteamgenerator.Theoperatorwi11stillhavesafetygradesteamgeneratorlevelindicationstorelyon(onesafetychannelofthefoursafetychannelsivillalsobelostforthatsteamgenerator).Thecontrolandinstrumentationforthebypassvalve>villseethehighlevelsignalandactuateahighlevelyla'larminthecontrolroom.TheoperatorbasedonsafetygradeinstrumentationwillseenormallevelbecausetheFHRSvalvesarenotactingimproperly.However,duetoerronouslevelsignalshemaytakemanualcontroloftheRJRSandeventuallytripthereaCtorusingauxiliaryfeedwatertocontrolsteamgeneratorinventdry.EvaluationofOneLevelSinalFailinHihandOneLevelSinalFailinLou<OnetoInstrusentTaOamaeonPlantResense:~~~~~~~~~~~~~Hiderangesteamgeneratorlevelindicationdoesnotcontrolasystemandtheoperatorwillcompareittosafetyrelatedinstrumentationtoascertainthetruereading.Failureoftheinstrumentationandcontrolofthefeedwaterbypassvalveis~~+br+discussedpreviously.SteamGeneratorLevelSinalsLT-9006andLT-9022Tal-l"MSI-114ThesystemsaffectedandevaluationofplantresponsearethesameasforsteamgeneratorlevelsignalsLT-9005andLT-9012forinstrumenttap1-1"tlSI-106.

CondenserStoraeTankLevelSinal.sLT-12-llAandLT.-12-11BTheothercontrolchanneltransmittersshavingacommontapnotidentifiedinthetableare'theCondensateStorageTankleveltransmitterLT-12-11Aand118.Individualrootvalvesandexcessflowcheckvalvesareaddedtoensurethatinstrumentlineruptureinonechanneldoesnotaffecttheotherchannel.Theonly,failure.affectingbothchannelsisthebreakofthetap.Fordiversity,bnsafetyrelatedlevelswitchesprovidelowlevelalarmsonthesafetyannunciators.SincethefunctionofLT-12-11Aand118isonlyindicationandalarmandsincealarmbackupisprovidedatapfailure.wouldnotcausesystem.actions,requiredtobeanalyzedbyChapter15oftheFSAR.t

0803M-4420.14(7.2)Thereactorprotectionsystem(RPS)includestwotripinputs(turbinetripandlossofcomponentcoolingwatertrip)whichareclassifiedasnotbeingrequiredforreactorprotection.Itisthestaff'sposition(BTPXCSB26)thatallreactortripinputstotheRPSarerequiredtomeetthedesignrequirementsofIEEE279withoutexceptionsThisincludestheentiretripfunctionfromthesensortothefinalactuateddevices'SARChapter15showsthattheaccidentanalysistakscreditforreactortriponturbinetrip.FSARSubsection7.2.2.2.11statesthattheturbinetripistakenfromnon-ClassXEhydraulicoilpressureswitches.Theuseofnon-ClassIEswitchesisnotacceptable.Also,itisnotclearthatthecomponentcoolingwatertripmeetstherequirementsofXEEE-279.Therefore,provideadescriptionoftheseandothersuchRPSinputswithrespecttotheirconformancetoBTPICSB26.Thisdesigndescriptionshouldbesupportedwithelectricalschematics,logicdiagrams,pipingandinstrumentdrawings,testproceduresandtechnicalspecifications.sponoeTheChapter15accidentanalysisdoesnottakecreditforreactortriponturbinetriptomitigatetheresultsofanyevent.Thisissostatedinnote7toTable15.0-7.ThesequenceofeventsanalysespresentedinChapter15recognizethatsuchatripexistsandmayoccur.FortheIncreasedFeedwaterFlow(withfailuretoachieveafasttransferata4.16kVbus)eventpresentedinSubsection15.1..2',itwasmoreadversetotripthereactoronturbinetrip.Thiswasdonetoincreasethecooldownforthisincreasedheatremovalevent.ThiseventisdiscussedintheresponsetoQuestion420.11,~/,IMhouggthapvoa:repsat/notraq~sMa~wgr~azeqyggq>cQpis~Cia,XEaccoacwipt~&ERg2V9.~+&oint.on,e:vic6~Ad,$c4-t~irine~tr.~ptits-to~Efie-RPS-accordance-wi~gu3.atpCy'6Qp~li:Ugf.:9420.14-1

a-LossofCCWTripFour(4)flowtransmittersFT-14-15A,B,CaDarelocatedontheCCNcommonreturnheadertomonitorCCWflowfromtheRCP's.Thesefour(4)transmittersarepoweredfromredundantClasslEpowersupplies(MA,MB,MC6MD)andarephysicallyandelectricallyseparatedinaccordancewiththeRG1.75.CCWflowoutoftheRCP'sarecontinuouslymonitoredanddisplayedonRTGBoard206inthecontrolroom.UpondetectionoflossofCCWfromtheRCP'sanalarminthecontrolroomwillalerttheoperatoraboutthelowflowconditionsothatapropercorrectiveactioncanbetakenimmediately.Xfflowisnotreestablishedin10minutestheRPSisactuatedtotripthereactor.ThetestswitchesarealsoprovidedontheRTGBoard206toenabletestingtheindicator-bistable.PleaserefertotheCWDsheet206(2998-B-327)forthecompletecircuit.hecomponentcoolingwatertripmeetstherequirementsofIEEE-279-71asdescribedintheFSARChapter7.2.

Isolationdevices(rated2000V)areprovidedfortheturbinetripinputstotheRPSinaccordancewithRG1.75andareroutedasdescribedbelowsuchthattherearenocredibleeventsthatcancompromisethefunctionoftheRPS.GeneralTheturbinetripinputcablesareterminatedatTB'A'ocatedatthenorthendoftheTurbineGeneratorBuildingpedestalandareroutedtoEL43.00oftheReactorAuxiliaryBuilding(directlyundertheReactorProtectionSystemCabinet).EachofthefourcablesareroutedinitsowndedicatedconduittheentirelengthandisuniquelyidentifiedNMA,NMB,NMC,NMD.Noothercableispermittedtoberoutedwiththesecables.1Thecablesconcerneda~identifiedasfollows:ChannelNMA20710U(NMA)ChannelNMB20710V(NMB)ChannelNMC20710W(NMC)ChannelNMD'0710X(NMD)~SecificCableRoutinTB'A'slocatedatthenorthendoftheTurbinepedestalatEL.62.00.Eachcableisroutedinitsownembeddedconduitinthepedestalanddownthepedestalleg.Theconduitsexitthepedestallegandrunembeddedtoanelectricalmanholesasfollows:-MH256-ForCables20710U(NMA)and20710W(NMC)-MH257-ForCables20710V(NMB)and20710X(NMD)Insidemanhole256,cables20710Uand20710Wareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttotheeastwalls.Highvoltagecables,6.9kVand4.16kVareroutedinthismanhole,howevertheflexiblecondui.tsareroutedinsuchamannersoastomaintainaminimumseparationof18inchesfromallhighvoltagecables.Thisseparationisreducedto12inchesatthewestfaceforadistanceof6inches,astheflexibleconduitconvertstoanembeddedconduit.Insidemanhole257,cables20710Vand20710Kareroutedintheirownflexibleconduitonoppositesidesofthemanholefromthewesttothenorthwalls.Againaswasthecasefrommanhole256,high'oltagecablesofthe4.16kVand6.9kVclassareroutedwithinthemanhole.However,theflexibleconduitsareroutedinsuchamannersoastomaintainaminimumseparationof24inchesfromallhighvoltagecables.

EachmanholealthoughnonsafetyrelatedandthereforecategorizedasnonseismiccategoryI,isdesignedsimilarto,ie.rebaretcaseismicmanholesuchthatduringaseismicevent,MH256orMH257willbehavesimilartoaseismicallydesignedmanholeandwillnotfail.Itmustbenotedthatthe4.16kVand6.9kVcablesaredesignedwithmetallicleadsheathsandallcableisclassIEqualified,meetingtherequirementsofIEEE383.ThecablesexitthemanholesintheirownembeddedconduitsandareroutedintotheReactorAuxiliaryBuildingbasementwheretheyenterpullboxes.,Fromeachpullbox,thecablesareroutedintheirownseparateandindepen-dentconduitsupthewestReactorAuxiliaryBuildingwalltotheisolationboxesmountedunderEL62.00gustbelowtheRPScabinet.Fromtheisolationboxes,theclassIEcables20710H-(MA)20710JMB)20710K(MC)and20710C(MD)areroutedintheirownconduitsandentertheirrespectivesectionsoftheRPSCabinet.Onthebasisofthespecialtreatmentofthesecables,beyondtherequirementsofRG1.75,asdescribedabove,wecanseenocredibleeventwherecablesofhighvoltage(6.9kVand4.16kV)cancomeincontactwiththeturbinetrip'cablestotheRPS.TurbinetripinputstotheRPSareproperlyisolatedthroughseparate-mountedisolationrelaybox.Therelay-boxisaNEMA4typecon-struction,withadequatemountingandphysicalseparationdesignthatmeetIEEE-344-1975andRG1.75requirement.pry,cfd'heisolationrelayisAgastatEGPtypewhichhabeenqualifiedtoXEEE-323-l974..Asdescribedintheattachedsystemcontrolreport,@he'Mw9.eel='a~x~~4bz~'heEGPtyperelay~atleast2000volt,RMSisolationfromthecoilsidetothecontactside.

0 OnOctober30,1980,SystemsControlconducted.43al:eel.r~testsontwoAgastatEGPrelayswhichareIEEE-323prequalifiedtyperelays,Thefirstrelay,describedhereafteras"TestVehicleNl,"wasatypeEPG1001,serialnumber80411508,andwitha120VAC,60HZcoil.Thesecondrelay,describedhereafteras"TestVehicle12<"wasatypeEPGD001,serialnumber80411510,andwitha125VDCcoil.Thetestwasdividedintotwoparts."Inpartone>>bothrelaysweresubjectedtoupwardsof5,000VDCandtheleakagecurrentmeasured.AHipotronicsseries300HipotandMegohmeter,lastcalibratedonMarch18,1980,wasusedtosupplythevoltageandmeasuretheleakagecurrent.EachtestvehiclewasattachedtoatypeCR0095socketandproperlyseatedinplacewithtypeCR0155lockingstraps.(SeetheattacheddatasheetonAgastatsocketsandstraps).Therelaysandsocketswerethenmountedona2x6woodboard.Thetestwaseffectedbyattachi.ngthehotleadfromtheHipotandMegohmetertoonesideoftherelaycoilwhilethegroundleadwasconnectedtooneotthecontactconnections.Thevoltagewasthenincreasedfromzerotoeither5,000voltsoruntiltheHipotandMegohmeterautomatically.shutitselfdownwhentheleakagecurrentexceeded5.5milliamperes.Thevoltagewasthenreducedtozeroandthegroundleadattachedtoanothercontactconnectionandthetestrepeated.Nhenallthecontactconnectionshadthuslybeentested,theHipotandMegohmeterhotleadwasconnectedtotheothersideofthecoilandthewholeseriesoftestsrepeated.Duringautomaticshutdown,thehighestattainablevoltagewasrecorded.Attachedpleasefindthedataresultsfromtheabovedescribedtests.P~Inviewoftheabove,wemustconcludetheAgastatGPtyperelaywillqualifytothespecified2,000voltsRMSisolation.Inaddition,themanufacturerguaranteesa2,000voltRMSisolationfortheAgastatrelay.

TestVehicleP2EGPDOOIRelayS/N80411510125VDCCoilConnectionsBetweenTerminalsVoltageAC(RMS)DCCurrentACDC84to82~84toT284toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBl5,0005,0004,2004)3004,0003,9004,2005,0005)0004,2003,9003)6003,6004,400not+~tested5,0005,0005)0005,0005,0005,0005)0005)0005,0005,0005)0005,0005,0005,000not"~tested100ua1000aeoua100ua.IOua.IOua.095ua.095ua.120ua.115ua.IIOua.090ua.IiOua.115ua.105va.120ua.120ua..115uaBltoTlBltoMlBltoRlBltoR3BItoM3BltoT3Blto83BltoT4BltoM4BItoR4BltoR2BltoM2BltoT2Blto82Bito844,4003)5003,5003,9003,9005,0005,0004,2004,0004,2004,5004,3005,000,5)000not""tested5,0005,0005,0005,0005,0005,0005,0005)0005,0005,0005,000',0005,0005)000not~~testod120ua100ua120ua110ua.I30ua.125ua.120ua.IIOua.105ua.100ua.095ua.105ua.120ua.125ua.095ua~095ua.IOOua.IIOua~'ndicatescurrentexceeded5.5milllamporos84toSlrefgre~+

0

~~TestVehicle/llFGPIOOIRelayS/N804ll508l20VAC/60H;.ColiConnectionsBetweenTerminalsVoltage.AC(RMS)DCCurrentAcDCC84to8284toT484toM284toR284toR484toM484toT484to8384toT384toM384toR384toRl84toMl84toTl84toBlBltoTlBltoMlBItoRlBltoR3BltoM3BltoT3Blto83BltoT4BltoM4BltoR4BltoR2BltoM2BltoT2Blto82Blto845,0005,0004,3004,3004,2004,3004,3005,0005,0004,0003,9003,8003,8004,500noW>tested4,4003,8003>8004,IOO4,0005,0005,0004,5003>9004,0004,2004,0005,0005,000not+4,testedhh5,0005,0005>0005,0005>0005,0005>0005,0005>0005,0005>0005,0005,0005,000not"~tested5,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,0005,000notW<tested120ual20ual20ual20uaI20ual20ua/$20ual20ua.055ua.065ua.065ua.060ua.070ua.075ua.065ua.050ua.060ua.050ua.050ua.065ua.065ua.070ua.060ua.065ua.060ua.050ua.055ua.060ua.045ua.055ua.075ua.070ua.060ua.060ua.065ua.055ua~+IIndicatedcurrentexceeded5.5millfamperesp<4.8IreL~ycoQh1~~

uestionNo.0.54FSARSubsection7.6.3describesadditionalsystemsre-quiredforsafety.Overall,theFSARinformationsuppliedtodatedoesnotsufficientlydescribetheinstrumentationandcontrolsassociatedwithmostofthesesystems.There-fore,pleaseprovidethefollowinginformation:a.Identifyanddescribetheinstrumentationand'controlsassociatedwitheachsystemlistedbelow:Fuelpoolcoolingandpurification.systemProcessandeffluentradiologicalmonitoringandsamplingsystemContainmentvacuumreliefsystemShieldbuildingventilationsystemb.Foreachinstrumentandcontrolidentifiedin(a)~above,designatewhethertheequipmentisClass,1Eornon-Class1E.c.Foreachsystemlistedin(a)above,discussthequalificationcriteriaappliedtoitsassociatedinstrumentationandcontrols.Asaminimum,youarerequestedtoincludeforeachsystem,adis-cussionofhowtheinstrumentationandcontrolsforthatsystemconformstotherequirementsofIEEE279-1971,IEEE308-1974,IEEE323-1974,andIEEE344-1975.~Reeonsa8)I)FUELPOOLCOOLINGANDPURIFICATIONSYSTEMThefuelpoolinstrumentation.systemisdescribedin"Section9.1.3.2.4.Atabulationoftheinstrument~~channelsxsincludedxnTable9.17.II)PROCESSANDEFFLUENTRADIOLOGICALMONITORINGANDSAMPLINGSYSTEMTheradiation'monitoringsystemiscomposedofthreeprocess,seveneffluent,fortyonearea,andfourinplantairbornemonitors.TabulationsofthesemonitorsaregiveninTables11.5-1,12.3-2,and12.3-3.III)CONTAINMENTVACUUMRELIEFSYSTEMTheinstrumentationprovidedforthissystemisinaccordancewiththerevisedFigure3.8-8andcontainsthefollowingequipment:-PDT-25-1A(lB)withitselectronicPDIS-25-lA(lB)isinterlockedwithpCV-25-7(8)byenergizingSE-25-10(ll)toopenFCV-25-7(8)whenthedifferentialpressurebetweenthecontainmentandannulusreaches-9'5",H20+0.25"H20PDIS-25-1A(lB)alsopro-

videsindicationontheHVCBforgPrangeof--25"H20to+25H20.-PDT-25-'13A(13B)withitselectronicPDS-25-13A{13B)isinterlockedwithFCV-25-7(8)bydeenergizingSE-25-10(ll)tocloseFCV-25-7(8)whenthedif-.'-'ferentialpressurereaches-7.75"H20.-PDIS-25-llA(11B)provideslocalfullrangeindicationandahighalarmontheHVCBat11.5"H20.-PDT-25-15A(15B)withitsPDI-25-15A(15B)provides.fullrange{-25"H20to25"H20)indicationontheHVCB.IV)SHIELDBUILDINGVENTILATIONSYSTEMTheShieldBuildingVentilationSystemisR,AE5FSystemandislistedinSection7.3oftheFSAR.TheSBVSswitchcve<fromFuelHandlingBuildingistheonlyportionofthissystemlistedinSection7.6.Qg@5PQQisdescribedinSection6.2.3.2oftheFSAR.TheinstrumentationrequirementsareprovidedinSection6.2.3.5andTable6.2-51oftheFSAR.b)I-Tc(legf-7('g<Qi'p'GsegggQ1'YliM~i~~~~'o~'"'"~~&P~Soli'~aVgri'$h4e~5ys/~~~II-Teassuntmonitorsaretheplantstack,asdescribedinsubsection11.5.2.2.8,andtheECCSexhaustmonitors,asdescribedinsubsection11.5.2.2.10.TheClasslEareamonitorsincludethefours]QSand6spentfuelpoolmonitors,aswellastwopost-accidentmonitors.Allthesemonitorsaredescribedinsubsection12.3.4.1.4.TheClasslEin-plantmonitorsincludethecontainmentatmospheremonitors,asdescribedinsubsection12.3.4.2.3.1,thecontrolroomairintakemonitors,describedinsubsection12.3.4.2.3.2,andtheECCSexhaust,monitors,asdescribedinsubsection12.3.4.2.3.3.rIIIŽAllPDT's;PDIS's;PDS'sand.PDI'sdiscussedinitema)aboveareClass1E.IV-InstrumentationandcontrolsdiscussedaboveforSBVSsystemareClasslE.Alarmsareahnoun<ta~onnon-safetyannunciationwindowSthroughproperisolationdevices.v>

c)XHEE323-19'/4ANDIHEE344-1975I-jigQ~IE'/nSQ~J-Wmidc,~<'b~~i<~l~"ibTubal<j'<Alo7ECt"9z3-'79a+9<<oH7>Xr-AllClass1Einonitorsarecjualifi.edtoXEEE323-1974andIEEE344-1975.XXX-AllpressuretransmitterslisteQinitema)abovearequalifiedtoIEEE34'4-,1975andXEEE323-1974intheenvironmentinwhichtheyoperate.TheremotemountedindicatorsandbistablesaremountedontheseismicallyqualxfiedHVCBinthecontrolroom.'lIV-AllcontrolsandinstrumentationsforSBVSisqualifiedtoIEEE32-1974apdXEEEp4g-l)7$T'4~~o~i+twdi~+0<S~IO[>S~4l+~ŽpgIEEE279-1971KeuheNe.EdigM<ca(LfP.c[>Pi+~/nT<Q~/eThefourcontainmentareasradiationmonitorswhichinputintothe&$5MEAe55ISXEEE279-1971similarlywiththeESPASasdescribedinScti.3.1.2oftheFSAR.C~There@i,amenfIEEE79-1971for'gAectffiedsI/5fE'~N'Ey'egiue4QmWefy'~e.<<sfr~plefsfgapF7itabldkeC~.uSdthisinstrumentationisnotpartofaprotectionsystem.However,theintentofthedesigncriteriacontainedthereinhasbeenappliedinthedesignofthesesystemstothefollowingextent:4.1-GeneralFunctionalRequirementsThesafetyrelatedinstrumentationfortheabovesystemsisdesigneQtoprovidemonitoringandactuationasapplicableduringnormaloraccidentconditions.Theinstrumentperformancecharacteristics,responsetimesandaccuracyareselectedforcompatibilityfortheparticularfunction.4.2-SingleFailureCriterion.ThisisfunctionallyidentiCZ~tothatdescribedinSubsection7.4.2.2.4.3-QualityControlofComponentsandNodulesSeeChapter174.4EquipmentQualificationTheinstrumentationandcontrolsforthesesystemsmeettheequipmentqualificationrequirements.discussedinSections3.10and3.11.SUL34')98)sIs/i 4.5-ChannelXntegrityThe"ChannelIntegrity"isfunctionallyidenticaltothatdiscribedinSubsection7.3.2.1.2.4.6-ChannelXndependenceThechannelindependenceisfunctionally~'denti~tothatdescribedinSubsection7.3.2.1.2.4.7.-"ControlandProtectionSystemInteraction"Noportionofthesesystemsisusedforbothcontrolandprotection.4.8-"DerivationofSystemXnputs"Themonitoringsignalsfortheabovesystemsareadirectmeasurementofthedesiredvariables.4.9-"CapabilityforSensorChecks"Themonitoringsensorsarecheckedbycomparingthemonitoredvariablesofredundantchannelsorbyob-servingtheeffectsofintroducingandvaryingasub-stituteinputtothesensorsimilartothemeasuredvariable.4.10-"CapabilityforTestandCalibration"XEEE338-1971andRegulatoryGuide1.22,"PeriodicTestingofProtectionSystemActuationFunctions"2/72(RO)providesguidanceforthedevelopmentofprocedures,equipmentanddocumentationofperiodictesting.Themeasurementsignalsrequiredfortheabovesystemshavethecapabilityofbeingtestedandcalibratedunderthedesignrequirementsofthesystem.4-11-"ChannelBypassorRemovalfromOperation"Anyoneofthechannelsmaybetested,calibrated,orrepairedwithoutdetrimentaleffectsontheotherchannels.4.12-,,"OperatingBypasses"Thereareno"OperatingBypasses"forthesesystems.4.13-"IndicationofBypasses"AdiscussionofbypassandinoperablestatusindicationisprovidedinSubsection7.5.1andalistingofin-operableorbypassedcomponentsiscontainedinTable73-104.14-"AccesstoIleansforBypassing"Thissectionisnotapplicable.'i,vO<a<ms<

I 4.15-"MultipleSetpoints"Thissectionisnotapplicable.4.16-"CompletionofProtectiveActionOnceitisInitiated"Thissectionisnotapplicable.4;.17-"ManualInitiation"Manualinitiationofthecomponentsinthesesystemsisavai.'lable,4.18-"AccesstoSetpointAdjustments,Calibration,andTest,Points"Thissectionisnot,applicable.4.19-"XdentificationofProtectiveActions"Thissectionisnotapplicable.QJ(oo~lyQyLks~'QJlGn.Is~*p,(~~c~veaW(%vcrAY~~QnhlA6++~goo4.20-"XnformationReadouts"Themonitoringandcontrolchannelfqr~esesystemsareindicatedinthecontrolroom+'%~+it~'~"&~4.21-"SystemRepair"Replacementorrepairofcomponentscanbeaccomplishedinreasonabletimewhenthesystemsarenotactuated..OutageofsystemcomponentsforreplacementorrepairarelimitedbytheTechnicalSpecifications.li4.22-"Identification"SafetyequipmentanQcablesassociatedwiththesesystemsareuniquelyidentified.XEEE308-1971TheStLucieUnit2FSARiscommittedtoRegulatoryGuide,1.32Rev.0whichaddressesIEEE308-1971.ForafurtherdiscussionofXEEE308-1971refertoFSARSection8.3.1.2.AllclasslEelectricalcomponentsareelectricallyandphysicallyseparatedinaccordancewithRegulatoryGuide1.75asdiscussedinFSARSection8.3.1.2.Electricallyredundant,andphysicallyindependent,powersuppliestotheabovesystems,electricalcom-.~ponents,andtothesafetyrelatedpowerpanelsthatprovidepowertocontrolandinstrumentationdevicesareprovided.C'

IAllClasslEelectricalsystemcomponentsareuniquelyidentifiedinaccordancewithFSARSection8.3.1.3.Thefuel*poolpurificationpumpisanon-safetypumpandassuchisphysicallyindependentandelectricallyseparatedfromClass1Ecomponents.

SL2-FSARh)PipingandValves~~AllthepipingintheFuelPoolSystemisstainlesssteelwithmostlyweldedconnectionsthroughout..AllthevalvesintheFuelPoolSystemarestainlesssteeel,atleast150poundclass.9.1.3.2.4InstrumentationRequirementsAtabulationofinsrumentchannelsisincludedinTable9.1"79.1.3.2.4.1TemperatureInstrumentationa)Fuelpooltemperatureindicationsareprovidedlocallyandhightemperaturealarmsareactuatedinthecontrolroomtowarntheoperatorofasystemmalfunction.Twoseparateinstrumentchannelsareusedduetotheimportanceofpreventingthefuelpoolwaterfromboilingresultinginalossoffuelpoolwater..)FuelPoolHeatExchangerInletTemperature:Localindicationofthefuelpoolheatexchangerinlettemperature(tubeside)isprovided.Thisindication,inconjunctionwiththeheatexchangeroutlettem-peratureandcomponentcoolingwatertemperature,servesasameasureoffuelpoolheatexchangerperformance.FuelPoolHeatExchangerOutletTemperature:Localindicationofthefuelpoolheatexchangeroutlettemperature(tubeside)ispro-vided.9.1.3.2.4.2PressureInstrumentationa)FuelPoolPumpDischargePressure:Thedischargepressureofeachfuelpoolpumpisindicatedlocally.FuelPool'PumpsDischargeHeaderPressure'%Adischargeheaderpressureswitchforthefuelpoolpumpsservestoactivatealowpressurealarminthecontrolroomtowarntheopera-torofsystemmalfunction.c)FuelPoolPurificationPumpSuctionPressureSuctionpressuretothefuelpoolpurificationpumpisindicatpdlocally.Thisindication,"inconjunctionwiththefuelpoolpurifi-cationpumpdischargepressuregageservesasameasureoffuelpoolpurificationpumpperformance.FuelPoolPurificationPumpDischargePressureindicated:JU<s<~Dischargepressureofthefuelpoolpurificationpumpislocally.

SL2-FSARe)FuelPoolPurificationFilterandFuelPoolionExchangerDiCferen-~~~~~tialPressureDifferentialpresureofthefuelpoolpurificationfilterandthefuelpoolionexchangerareindicatedlocally.Periodicreadingsoftheseinstrumentsindicateanyprogressiveloadingoftheunits.9.1.3.2.4.3LevelInstrumentsa)Fuel1'oolWaterLevelThefuelpoolwater,levelismonitoredbytworedundantlevelswitches.Theseswitchesactuatehighorlowalarmsinthecontrolroomtowarntheoperatorofsystemmalfunction.Twoseparatelevel"'nstrumentchannelsareusedduetotheimportanceofmaintainingfuelpoolwaterlevel.9.1.3.3~EgretEvalua".luaWithone-thirdofacorebatch,whichisassumedtohaveundergonefiniteirradiationofthreeyears,placedinthespentfuelpoolsevendaysafterreactorshutdownandsixpreviousannualrefuelingbatches,theheatload's12.48x10BTU/hr.Undertheseconditions,withonefuelpoolpumpoperatingandthefuelpoolheatexchangerinservice,thespentfuelpooltemperaturedoesnotexceed125F.Duringafullcoreunloading,itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown.One-thirdofacorefromapreviousrefuelingisassumed'tohavebeenstoredinthespentfuelpoolfor90dayswithsixpreviousannualbatches.Theresultant.)eatloadfromonefullcozeandsevenannualrefuelingbatchesis2.99x10BTU/hr,themaximumheatloadinthefuelpool.Undertheseconditions,boththefuelpoolpumpsareinservicetolimitthemaximumfuelpoolwatertemperatureto150F.Withonefuelpoolpumpinoperable,thefuelpoolequilibriumtemperatureis160F.Allconnectionstothefuelpoolaremadesoastoprecludethepossibilityofsiphondrainingofthefuelpool.Anyleakagefromthefuelpoolcool-ingsystemisdetectedbyreductioninthefuelpoolinventory.Makeuptothefuelpoolisfromtherefuelingwatertank.MakeupinventorytothefuelpoolisprovidedinSubsection9.1.3.3.1~Duringaccidentconditions,theFuelPoolCoolingSystemisisolatedfromtheComponentCoolingWaterSystem.lfowever,multiplesources(seismic,andnon-seismic)ofmakeupwaterexistnsdiscussedinSubsection9.1.3.3.1.ThepurificationloopnormallyrunscontinuouslyduringfuelpooloperationComaintainthefuelpoolwaterpuri.tyandclarity.ltispossibletooperatethepurificationsystemwitheitherthefuelpoolionexchangerorfuelpoolfilterbypassed.Localsamplepointsareprovidedtopermitana-lysisoffuelpoolionexchangerandfuelpoolfilterefficiencies.9.1-13

2-FSARTABLE9.1-7FUELPOOLSYSTEHINSTRUMENTATIOHInstruantIdentificationÃuaberTI"4420TI-4421TI-4404TI-4405SystcnPar~ter6LocationFuelPoolTemperatureFuelPoolTemperatureFuelPoolHeatExchangerInletTeslpfuelPoolHeatEXChangerOutletTerip.LocalControlitsslsIndicationhlaraControllessIRoonHiHiInatruisent~RCCC0-200F0-200F0-200F0-200FHomalOperating~RcsC120-150P120-150F120-150F108"128FInstrune~RCC'JCC+4F+4PASSIN~IELS-4420LS-4421Pl-4402FuelPoolMaterLevelfuelPoolMaterLevel'FuelPoolPuapZBDischargeHi6LoHi6Lo0-60psig40-50psig+1"Cla5SIC+199CpnbSI~+1.2psiNcmlfPI-Ii401Pl-4411PS-49403P1-4412PDI-4415FuelPoolPunp2ADischargePressureFuelPoolPurificationPvilipSuctionPressuri~Fu>>lPoolPiupDiscliargcll,ad>>rI'ressur>>FuelVcipl.PurificationPu:.2)!.'C..scharg>>Pres..ureFi'i'lPs)22~Pu'rLf'LestiisnFill.cr')ifI>>r>>ntialPressure0-60psig0-25psig0-100psig0-30psid40-50psig+1.2psiIilrbl+5-10psig+.5psiId40-50psig+1psig{(~IF95-90psiis2psiiCis2+'I5-30paid+.6psiPDI-4416Fuel9"olionExr'.Rn:9:.erDiI!iirin'a'IPr"2.222I:0-30psid7-10psid+.6psidlifeIE

PJ5GiVTmIQ~<y.-..smsmmmvazau;~mrs.~~~+tn~PDM'1A00'4X~FC4t9'lPOTs,5-(9WOrtZ<<~f~r-8~TZS.t54~IFV.tb7POT'H>tI1MI'~-V,T.II,IPCC25lWIO4Z.DI:V~Ã0/oh2585te4XKVtf.'5GNHVIIIAlAQ&OM~a~D!'A5oQ>f'ig.A.CIQIIC.b!6.POISP>-IV&XPC%%5-ff3'WS25-IO~4.PC'lfCG0Q~~~~i.~iT.DCV.$j7hf0AY'.I-KVy~QSIR-ACCMI4VLATOf~r1~mL,1.r4+-.X-qVO-Iaefa.FOROAT5UDYaQO5>rHyGF<<(~I)M95-.1OFn~X-PclI-26-1-~~gg-II1t:5.-.-fC4<<"~r<<IlII'PrIPC"".A~:atO0;-6IIA<I~!I'.,Frt>G<5tbI4C.IbtWOFOS~HII+IQQf~4AQ7g-05III.WQ'Q'QJA~.R,OIgr=MA$3.~~X?-p.p5iNw9AOKKmfllAicoI:ICOmfmIITI0t~oA<<-IIIfTiIgeXC~AN>g'XvhfKKVK.z-y-t5-c~X-X-ZG-tlatFL4lKXgClf.gy'llPSOD>IK4~54CON%7;RTf7CHttlt45i8ALDDTLS~IDD~I+4F-..-'f~.rOCNNVf.DPIRTENT~CTl04Qy-geFClf<<'ZS'7FC$-c.p+5...err;~.E.>C6C5I'llIsaa.teax.F'c4-t'$'-8~"KS.WPi.fmtZ~CV-C",4.~<<<EVhfaIIIINi~~f'.LIE1rfV4,LV.X.FCV-2$-7Fe4Pt-P'Cg@QPIJ@VCR.

SL2-FSARvalveisopenedautomaticallywhentheannulusdifferentialpressurereachesonein.wgnegative.Thecheckvalveinthecoolingline-isdesignedtohaveapressuredropofnotmorethan2.5in.wgandtoo"..nat1.4in.wgnegativetoprovidevacuumcontrolinthesystemandtoallowoutsideairtocoolthefilters.TheSBVSisalsointerconnectedtothespentfuelpoolareaexhaustduct.Uponreceiptofahigh-highradiationsignalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltrationunits.Thec'"toroperatedbutterflyvalvesI-FCV-25-30and31openandtheexhaustfansstartautomatically.ThemotoroperatedvalvesI-FCV-25-32and33clos.tnisolatethe,annulus=;Althoughafuel.handlingaccidentinsidthconcurrentwithaLOCAisnotconsideredadesignb"isevent,aCi.'~SoverridestheFuelHandlingBuildinghigh-highradiationsignalainitiatesthedepressurizationoftheShieldBuildingannul".TheFu.lHandlingBuildingVentilationSystemisfurtherdiscussedinSub"etio.~.4.2.EachoftheSBVSintaketrainsisalsoconnectedtotheContinuousCon-tainment/HydrogenPurgeSystem.Thisconnection,manuallyin'.tiatedfromthecontrolrocm,provideshydrogenpurgecapabilitywhilemini.:.iz-ingoffsiteradiologicalconsequences.TheContinuousContainment/HydrogenPurgeSystem.descriptionisprovidedinSubsection9.4.8.8.BothSBVSsubsystemsareautomaticallystartedbyaCIASorhigh-highradiationsignalfrantheFuelHandling'uilding.Onecanbemanuallyshutdownandplacedinthestandbymode.Thestandbysubsystemauto-maticallyrestartsiftheoperatingsubsystemshouldfail.Thcrosscon-nectionvalveisopenedfromthecontrolroomtoassureairflowthrou:hthefailedsystem.Detectorsinthecharcoalbedsannunciatetempr"..""".-.:exceeding200F.6.2.3.3DesinEvaluation6.2.3.3.1PerformanceRequirementsandCapabilitiesEachofthetwofullc-pacityEan-filtertrai..softheShieldBu'entilationSystem,alongwiththeShieldBuilding,aredesignedtofulfilltheperfonnancerequir'ementsstatedinthedesignbasesinSubsection6.2.3,1.TheanalysisoftheEunc'tionalcapabilityoft'.;"S3VStoi:,:)re."s".andmaintainauniformnegativepre."2."withinth"Sh=!":.annulusisperformedEorthe9.02E-doublecnddsu:tion1s3::breakLOCAusin~tholiATFHPTcomputerco'ed=si1';1inThedescriptionoEthedevelopmentofthepipebreakmassandreleaserateandthecontainmntinitia1conditionsarecontain:..lin"section6.2.1.AnyadditionalinitialconditionsorchangesEre~t':.o.=.listedinSubsection6.2.1arecontai>>cdinT-~6.2-49.T)is:.transfercoeEicientsareappliedwhetherthesurfacetemperaturecxccdstheannulusatmosphereortheannulusatmo""her"t..:iaratu:.u"x.'"!st!:::surfacetemperature.JULpygg6'-47A SL2-FSAR6.2.4COllTAIhMCtlTISOLATIO",SYSTEMThecontainmentieolationsystemprovidesthemeansofisolatingfluidsys-temsth-.tpassthroughcont=~"..-...cntpcnctrationssuchthatanyradioactivitythe.1.r-ybereleasedintotheccntainmentatmospherefollowingapostulateddesignbasisaccident(DEA')isconfined.Thereisnoo~eparticularrv;."':";co:..1."etcconlasl>>neifolation,butisolationdesignisprovideda1'plyin-::-".cecr-'terico;..-.;;ontopenetrationsinmanydifferentfl<<idsystems.6.2.4.1DesignL'cesTnedesignbasesgo;crningthecontainmentisolationsystemarediscussedbelow.valvesI,.cttherenuxxeme~,l.sofmanufatu.c.sstandardc"Bu1.terf1yValves".asI6.2.4.1.1ConditionsRequiringContainmentIsolationThccontsinl-entisolationvalvesaredesignatedseismicCategoryIandde>>signedtoAS[KCode,SectonIIIandequalityGroup8requirements.Con-tainmcntisolationvalvesaredesignedtoensureleak-tightncssandrc.liabilityofoperaton.Containmentisolationglobe,checkandgatevalvesmeettherequirementsofmanufacturerssta:ldardsMSS-SP-61>"HydrostaticTestingofSteelValves"andcontainmentisolationbutterflyiiAA~'SS-SP-67Automaticinitiationofacontainmentisolationactuationsignal(CIAS)occurswhenahighcontainmentpressureof5pcigor,ahighcontainmentradiationlevelgf10R/hrisdetected.Thisprovidesdiversityofparameterssensedfor.theinitiationofcontainmentisolation.b)TheCIASclosesfluidlinepenetrationisolationvalvesnotrequiredforoperationoftheEngineeredSafetyFeatures.c)Thecontainmentisolationsystemisdesignedsuchthatnosingleac-.tivefailure(inconjunctionwithlossofoffsitepower)couldresultinoffsitedosesordosestooperatorsinthecontrolroominexcessof10CFR100andGDC19,respectively.d)ThemainsteamandfcedwatervalvescloseonMSISandthevalvesfor'hecomponentcoolingwaterforthereactorcoolantpumpmotorscloseonSIAS(seeSection7.3andSubsection6.2.4.3.2).6.2.4.1.2CriteriaforIsolationofFluidSystemPenetratingtheContainmentIa)Thecontainmcntisolationprovis'onsforthefluidsystempcnetrations(excludingtheESFsystems)aredesignedinaccordancewithGeneralDesignCriteria54;55,.56and,57(refertoTable6.2-52).Excep-tionstoGDCprovisionsarediscussedinSubsection6.2.4.3.6.2-52goal11'.

SHIELDBUILDING@SL2-FSARTABLE62-51VENTILATIONSYSTENINSTRUHENTATIONAPPLICATION.?I2~SstemParameter&Lnratinnhnaulus/atanspherepressurediffcrenrialFuelpnnlarea/atchsphereprcssurediEferentialLnralCna<rnlReIndirarinnAlaredCnnrrnlIIHi-LnHi-LnCnntrnlRnna~RdrrdinhutnnctirCnntrnlFunrtinnEaergicesfand<crhargcdampercRnrnrandrepu-laresflnvrnpreddctvalueandeaergi=enutsidernnliagairvalveEnergizesEandicrhargcdampermnrnrandregu-laresflnvrnpresetvalueandeacrgiaenurside'nnlingairvalve'nstrumentRcnce-lntn+30in,-ll20-10rn+30in.H20-1tn-3in.H20-1tn-3ia.H20Instrumenthrrurcry+1.0X+1.0X,3~hirflnvremperct'urednvnstreasnfdemiaterInlettemperatureUpstreamnffiltertrain*0250F0-250F40-111F40177F+2.0X+2.0X5.Demistcr&ElertrirHearersdifEerentialpressure6dhirflnvtemperaturednvn-strccmnf30Kvhearingcnil0250F40-177F+2.0X78.9.Prc-HEPAfilterdiEfereatialprcssureAfter-HEPAEilterdifferent'ialpresddurehirElnvcRniaturednvasrrcamnfHEPAfilterHiHi0-10iaH200-10ia.H200-100X1tn3ia.H201tn3inH2050-10X+1.0X+1.0Xo2.0X10ChcrrnclcdsnrbcrdifferentialpressureindiratnrllCharrnalcdRRnrbcrrwper~rurel2,hirflnvtemperaturednvn>>streamnErharrnaladcnrbcraHi0-lOia,H200-250F0-250F1tn1.15in.+1.0XH20+2.0X40-'I77F40-117F+2OX Sl.2-FSARTA51E6.2-51(Cnnt'd)Snremparamerer6LclrnrinnIndicurinn.CRRnrrnlRralR*,AlarmCRRnrm)II**.CnnrrnlRncRa~aar*alaAutnmarirCcRnrrnlFvncrinnInarrument~RR"EHnrma1Operating~aarInatru-ent~arrarhirflnvdnvnatruamnifan~~nrhirflnMnffiltertrainKnergiaeaidlefantnRRrarratlcRvflnvandalarma0-10,000.cfee6000cfaPiltertraindifferentialpresaureCrnaa-rnnnec'tflnuenntrnlvalvepnairinn015in.H204tn8ia.~.+1.0XH0OutaidecnnlingairflnutnntrnlvalvepnritinnSbieldbuildingaurtinnvalvepnaitinnFuelhandlingbuildingauctinnvalvepnsitinnPurgediachargevalvepnaitinn

~>~~~s-""'""'20.56PositionCe8ofRegulatoryGuide1.45statesthat"leakagedetectionsystemsshouldbeequippedwithprovisionstoreadilypermittestingforoperabilityandcalibrationduringplantoperation".Discusshoweachofthesystemsdescribedin.Subsections5.2.5.1.1thru5.2.5.11complywiththeaboveposition.~ResesseAsrecommendedbyPositionC.8'fRegulatoryGuide'1.45,thethreeseparateunidentifiedleakagedetectionmethodsutilizedonSt.Lucie-Unit2are(1)sumplevelandflowmonitoring,(2)airborneparticulateradioactivitymonitoring,(3)airbornegaseousradioactivitymonitoring.('gTheContainmentAtmosphereRadiationMonitoringSystemwnichincludestheairborneparticulateandgaseousradioactivitymeasurementshaveradioactivechecksourcesforthedeterminationoftheoperabilityofeachoftheradiationchannelsduringfullpoweroperation.CalibrationcanalsobeperformedduringpoweroperationintheReactorAuxiliaryBuildingat19.5ftelevation.Theinstrumentationforthethirdmethodofleakdetection,sumplevelandflowmonitoring,cannotbetestedandcalibratedduringplantoperationduetothelocationoftheequipment(insideContainmentBuilding)~However,acomparisonwiththereadingsoftheothertwomethodsdescribedaboveprovidestheoperatorwithsufficientinformationtodeterminechannelinoperabilityormalfunction./ITie~ik~'~g'I,'///eb'K<1+e~<>Gal+kl/(XdMPlfl//bs/e/bestbsd'Me~+sA~Žp(~<efJ'gn~JtJLgg~Ib,1's'4"(420.56-1 PRE-SERVICEINSPECTIONRe:PSIMeetingbetweenFPLandNRC8/ll/81PursuanttotneabovereferencedmeetingFlordiaPower5Lighthasagreedtothefollowing:l.AmeetingbetweenFPLandNRCtoaddressRegulatoryGuide1.150'obeheldon,orbefore,10/I/81,2.AnarrativedescriptionofwhatwillbedoneforReactorvesselinspectionby9/I/81,3.Aprocedure,forinformationonly,ForReactorvesselinspectionbyweekof11/I/81,4.'heultrasonicxaminationprocedurewillbechangedby8/15/81toincludethefollowing:"Examinerswillrecordallcrack-likeindicationsregardlessofamplitude""P.1pld1hP-71~di~P+ontheestimatednumberofweldstobeinspectedusingSectionXI,1977edition,Summer78Agenda,ASMECodeselectedcriteriaforclass2pipingonorbefore8/31/81,6.Toprovideasummaryofallweldsatlocationswheretnestressesundertheloadingsresultingfromnormal.andupsetplantcondi-tionsascalculatedbythesumofequations9and10inNC-3652whichexceed0.8(1.2Sh+Sa)onorbefore9/31/81,7.Ph-71~i~711pl11h7-mentedISIrequirementsofSRPsections3.6.1and3.6.2orjustifyexceptionstakenbyFPL,8.Touse,asguidance,theweldreliefrequestproceduresoutlinedinBandCoftheattachment,9.By8/31/81provideanestimateofPSIareasthatmayrequirereliefrequests,10.ProvideacopyofthePre-ServiceIns~ection~SosnmrtoNRC'sB.J.Crowley(RegionI~I.

~r 121.13TheASHECode,SectionY!.1977Editionwi:hAddend~throughtheSummer1978AddendaspecifiesuseofAppendixIIIofSect~on):Iforferri.icpipingwelds.Ifthis:r".Jirementisnotapplicable(forexample,forausteniticpipingwelds),ultrasonicexaminationisrequiredtobeconductedinaccordancewiththe2plicable'equiSection".,asamendedbyI~'A-222.DiscussyourAr.icle5of'ectionV,asamendedby'.LA-2232.cationforanyalternaivesusedsuhasSectionrementsofArticle5ofcriteriaforapolyingProvideatechnicaljustifi-XI,AppendixIII,Supplement7forauszenitlcpipingweldsanc"icusssthefollowing:All..dificationsper.-;.itted'ySupplement7.b.Yeh""sofassu.in"adequateexaminationsensitivity'vertherequiredexar,'inationvolume.c.hethccsofqualifvingtheprocedureforexaminationthroughtheweld(ifco.-.deleteexaminationistobeconsideredforexaminationsconductedwi+l.onlyonesidaccess).Whenus'-"~poendixIIIofSectionX'.forinserviceexaminationofeitherfer.-.=ic:-aus=eni.icoipineweld=-hefollowingshouldbeincorporated:d.A.v-.=f:-r>I="in"1caior.,"-careen:oDACorgreater,discoveredsnou.-xot-..=o=t'<examinationofoipinewellesoradjacentbasemetalmaterialsberecorde'ndinves:ig-.edbyaLevelIIofLevelIIIexaminerextentnecessarytoce-.-e..-..inetheshape,identify,andlocationre.lector.Tne';.Ia~v~shouldevaluat=.htake,correc.iveactionforthedispo-ofanyindicationrvsti".atedandfoundtobeotherthangeo-.-..e=r'."alormetallur"'calinnature.

ThePS:r"gra-.'ouidincludethefollowinginformation:A)ForASHECodeClass1and2co-.,ponents,providea.ablesimilartoIMB-2600andIWC-2600confinninothateitherth~entireSectionXIpreserviceexa;..inationwasperfor,.edontnecor.:""nnorreliefisrequestedwithatechnica'1justificationsuppor='."..cyourconclusion.~B)Wherereliefisrequestedf".pressureretainin"weldsinthereactorvessel,identifythespeciicweldsthatdidnotreeivea100+pre-serviceultrasonicexamira:-'cr.ar"estimatethe>:=antcftheexaminatior.thatwasper;-"r.-.:ed..C)hherereliefis'requestedforpipingsystemweld=-(=xaminationCateooryB-~,C-F,andC-G),"rovidealistofth=specificweldsthatdidnotreceiveacompleteSectionXI-preservicexaminationincludingadiawingoriscretriciden.i-.icationnumber,sy=-'.=;,'eldnumber,andphvsicalconiguration,.g.,pipetonozzle;:eld,etc.Estimatetheextento-.thepreserv'.ce=xa.-.,inaionthatwa:-."~rformed.Whenthorvolumetricex=-.,-.nationwas".erfor;-..edfromonesi-=oftheweld,discusswhe"hertheen-.-'rewelcv-'u-.andthehea:=e"=="'"n=(HfZiandbasehietalor.-.'".efarsideo-,theweldwereexa.-...'.:ed.S:=-tetheprimaryreason.hatas=="ificexa-.ira.ionisi;..oractical,e.g.,supportorcc.-..p,"-nentrestric-sac=ess,.itingpreventsadequateultrasoniccouplingononeside,cc-...""nntoco-...".onentwidpreventsv:-.=-sonicexamination,etc.Indica'=="..'lterna-.i;=orsupp;-.,e".italexa-..irationsperformedandmethods(s:.".abricaionoxamination.

IOnpage2ofyourprogramdescription,regardingClassIIexaminations,you'havefailedtoincludetherequirementfromTableIHC-2500-1ofthe77Code,S-78Addendato-includein-theweldsselectedforexamination"allweldsatlocationswherethestressesundertheloadings,resultingfromnormalandUpsetplantconditionsas.calculatedbythesumof,Eqs."9and10inNC-3652exceed0.8{1=-.2'pa)."ExplaintheaboveandsubmitarequestforreliefifallS-78Addendarequirementsarenotfollowed.2)3)ProvidesampleresultsofPSIUT.examinationincludingresultsofinevestigatingcausesof'ltrasonicrejectivesandrepairresults.Tocompleteourreview,itwouldbehelpfultohaveyourproceduresforautomatedexaminations.Inparticular,submityour,plans,schedule,andprocedureforimp'lementingRegulatoryGuide1.150forreactorvesselweldPSI.DiscussyourplansforcompliancewithaugmentedISIofStandardReviewPlans6.6,3.6.1and3.6.2..,(~j5)InParagraph4.1.2ofyourgeneralNUTprocedureyouindicateaminimumofonLevelIIinacrewofLevelI'sorLevelITrainee's.Yourexampleexaminationresultsaresignedboth'byaLevelIIandLevelI.Sinceyourproceduresinvolvedevaluationofindicationsastogeometricornon-geometric,itwouldbegoodpracticetohaveatleastoneLevelIIdirectlyperformingorobservingeachexamination.Pleaseexplainyouractualpractices.InExhibit1ofyourprogramdescription,youhavea30"to12"joint'hichutilizesa12"calibrationblocks.Providejustificationfornotalsousinga30"block.

FLORDIAPOWER&LIGHTCOMPANY'SPOSITIONONFEEDWATER1MSIERTESTING1.St.Lucie81&82Feedwaterpipingisnotonlysimilar,itisessen-tiallyidentical.-Isometricsofbothunitswerecomparedandthedifferencesaremeasurableinfractions.Forexample,thehorizon-talsectionsofpipingenteringthestreamgenerator,whicharethesections'ofpipingmostlikelytoexperiencewaterhammerareallequalinlength(2feed),withonsectiononUnitf/1being3/8"shorterthanonUnit//2.St.Lucie1performedfeedwaterhammertestingbydrainingthefeed-ringforupto2hoursandthenmanuallyinitiatingauxiliaryfeed-.water.Thisdrainingofthefeedringisconsideredtheworstcasetotransientand,sinceithasbeenperformedonanidenticalunit,willnotberepeatedhere.2.Three(3)testswillverifythattheAuxiliaryFeedwaterSystemwillperformitsdesignfunction.a~Aux.FeedPumpInitialRun.Thistestisarecirculationfrom/totheCondensateStorageTanktoinitiallyrun.intheequipment.b.C~AuxiliaryFeedwaterFunctionandEnduranceTest.ThistestwillbeperformedpriortoandduringHotFunctionalTestingtocheckoutsystemoperation,toverifythemanufacturersendurancerun.AuxiliaryFeedwaterAutomaticInitiation.C.1.Objective.'.Toverifyauxfeedau'toinitiationb.Toverifytheabsenceofwaterhammerstothefeedwaterpipingduringautoinitiation.C-2InitialConditions'a~b.c~ReactorCoolantSystematnormal,no-loadoperatingtemperatureandpressure.SteamGeneratorSecondarySideatnormalno-loadoperatingtemperatureandpressure.MaintainingSteamGeneratorlevelswithmanualaux.feedwatercontrol.C-3TestOutlinea~b.csStationanoperatorincontainmenttolistenforanysymptomsofwaterhammer.StopfeedingSteamGeneratorsReturnAuxiliaryFeedwatertoa"NormalStandby"lineup.

C.3(cont.)d.e.AllowSteamGeneratorstodrain.WhentheAux.,Feed-waterActuationSignaloccurs,observeproperoperationsofAutomaticAux.Feedwaterinitiation(ie.pumpsstart,valvesopen,steamgeneratorlevelsrise)-FeedSteamGeneratorstodesiredlevelsResumeManualAux.FeedtoSteamGeneratorsVisually'examinepipingexternaltotheSteamGenera-torsforeffectsofwaterhammer.Theadditionoftheautomaticactivationfeatureensuresthatthesteamgeneratorswillnotbesubjectedtoalongperiodofsteamingdown,suchashappenedatTMIandwastestedfoxonSt.Lucie//1.Xnstead,thesystemwillactivateattheactualtimeitwouldintheeventofanaccident.Thisisconsistentwiththetestbeingpex-formedattheSanOnofre2&3unitsaftertheixfeedingmodification.3.Pi'pingvibrationwillbemonitoredduringthevaxiousphasesofstart-up.XnaccordancewiththeFPLapprovedvibrationmonitoringprogram.4..Becauseofthefollowingreasons:a)ThePipingarrangementforbothunitsisalmostidentical,Eb)ExtensiveFeedwatexHammertestingwasperformedonSt.LuciefIl(5separatetestsatvarioussteam-downinternalsupto2hours)andnoresultantFeedwaterHammer,c)TheSt.LucieI2PxeoperationalTestProcedurewillverifyauto-maticinjection,whichwillbetheworstconditionforUnit/I2,d)AnoperatorwillbestationedtospecificallymonitorforFeed-waterHammer:,FloxdiaPower6LightfeelsthatouxpresentproposedprogramadequatelydemonstratesthatSt.Lucie//2will.notencounteranyFeedwaterHammerproblemsandhopesthissatisfystheNRCBranchposition.

RegardingquestionsraisedbyWalterPasedag(RadiologicalAnalysisBranch,SectionAccidentEvaluationBranch)onthehydrazineadditivesyst:emandTSPlocatedinsidecon-tainment,theapplicant,willrevisetheFSAR,asnecessary,viaamendmentto,documentthefollowing:1-Aminimumof,2hoursofhydrazinewillbestoredforcontinuousinjectionataratethatwillinsureaminimumconcentrationof50ppmisavailableatthespraynozzles.2-Aslongasdosesareacceptableintheapplicablepor-tionsoftheReactorAuxiliaryBuilding,thereisthecapabilitytopermit,therefillingthehydrazine,tank.3-AquantityofTSPwillbe10acatedinsidecontainmentsuchthatthewaterpostaccidentwillhaveaminimumpHof7.0.P4.-TheTSPbasketdesignwillbesuchthataninadvertantcontainmentspraywillnotdissolvetheTSP.5-TheTSPbasketswillbelocatedinthevicinityofthe*ECCSsumpanddesignedsuchthataflowofwaterwilldissolvetheTSPwithinthebaskets.

SL2-FSARtI6.5.2COH'fAINlEN'fSPRAYSYS'fEH/IODINERE"lOVALSYS'fl;H(CSS/IRS)TheContainmentSprsySystem(CSS)isprovidedtoperfnrmthedrralfrrnc-tinnsofremovingheatandfissionprodrrctsfromapost-accidentcontain-mentatmosphere.Theheatrein>valcapabilityoftheCSSisdiscussedinSubsection6.2.2.Thefissionproductremovalfrrnctionir.carriednrrtbytheIodineRemovalSystem(IRS),nperatinginconjunctionwithtireCon-tainmentSpraySystem.TheIRSremnvesradio-indinesfromthecnntainrnentatmospherefnllowingaloss-of-coolantaccidentbyaddingcontrolledamn'untsofhydrazinetocontainmentspraywater.6.5.2.]~DecinBhCehThedesignbasesfortheCSS/IRSasafissionproductremovalsystemareasfo1l.ows:a)Tnprovidecapabilityfnrthefissionproductrcrubbingofthecontainmentatmcspherefol.lowingaDBA-LOCAsuchthatnffsitednses,anddnsestonperatorsinthecnntrolronm,arewithintheguide-linesof10CFR100andGDC19respectively.TheradioactivematerialreleaseassumptionsofRegulatoryGuide1.4"AssumptionsUsedfnrEvaluatingthePntentialRadiologicalConsequencesofaLnssofCnnlantAccidentforPMRS",6/74{R2)areusedindeterminingsystemcapability.TheradioiodineandnoblegasactivityinventoryinthecnntainmentatmnspherefollowingaDBA-LOCAisgiveninSection15.6.b)Tnmaintainaminimumhydcc;ntainmentspraynnzzlespercentbyweightindemiToachieveacontainmentrpraychemicalmixeswithrazinecnncentratinnof50-65ppmatthebasednnastoragecnncentrationof.neralizedwater.7~sumppitbetween7.0and7.5afteralltetheavailablewaterinventory.h/~hthh'"~0~hh4.d)ElementalhTnperformitsfunctionfollowingaLOCA>assumingasingleactivecomponentfailurecoincidentwithlnssofnffsitepower.BedesignedtnseismicCategoryI,QualityGroupBstandardsasapplicable.Tnremoveelementalandparticulateindineswiththefnllowingmini-mumfi~~)orderremcval.cnefficients(inaccordancewithHUREG/CR-009hIodineForm'irstOrderRemovalCrefficient-110hnursParticulate,'-~""-~,~0.45hnurshTnmeetiodineremnvalrequirementsbasedonaneffectivespraycoveragenf85percentofthecontainmentfreevolume.6.5-6 e0 Sl.2-FSARToperformitsfunctionunderthepostaccidentenvironmentalconditionsspecifiedinSection3.11.Toprovidesystemmaterialswhicharecompatiblewithfluidche;nistry.TheContainmentSpray/IodineRem<valSystemsaredesignedtoQualityGroupBandseismicCategoryIrequirementsinaccordancewiththerecommendationsofRegulatoryGuide1.26,"QualityGroupClassificationsandStandardsforWaterSteanandRadioactiveWasteContainingComponentsofNuclearPowerPlants",2/76(R3)andRegulatoryGuide1.29,"SeismicDesignCl.assifi-cation",(R2),respectively.p'4F,F6.5.2.2.1DesignDescription',~FBoththeCSS/IRSconristoftwoindependentandredundantloops.EachCSSloopismadeupofaspraypump,shutdowncoolingheatexchanger,piping,val.ves,headers,andnozzles.ConnectedtoeachCSSloopisanindependenttrainoftheIodineReraovalSysteaconsistingnfaconstantvolumemeteringpump,soLennid-operatedisolationvalve,IRStankandassociatedpipingandvaLves.TheflowdiagramsfortheCSSandIRSappearasFigure6.2-41.ThedesigndataforIRScomponentsisshowninTable6.5-2.SimilardatafortheCVSSisgiveninTable6.2-38.,4Ir4F-.4~44CV~~F\I~ThedesignoftheIRSisbasedontheadditionofhydrazinetothecon-tainmentspraywaterataratethatensuresaminimumhydrazineconcentra-tionof50ppmatthespraynozzlesaBasedontheoffsitedoselimitsasdefinedin10CFR100,andaspraycoverageof85percentoEthetotalcontainmentnetfreevolume,hydrazineadditionproceedsforaperiodofappraxiipstatyg'rpiautas./8<Aconstantvon~iydrazineadditionpumpisselectedforsystemsimpli-ficationandeaseofoperation.Overtheentirerangeofsprayflowratestheconcentrationofhydrazineirnolessthan50ppraandnogreaterthan65ppm.Uponreceiptofacontainmentsprayactuationsignal(CSAS)the.solenoid-operatedisolationvalvesopenandthehydrazinepumpsstart.Hydrazinei.xnjcedintothesuctionsideofeachcontainmentspraypumpatarateo-'gallonsperminute(gpra)untilalowlevelswitchinthehydrazinestaetanksiraultaneouslystopsthepumpsandclosesthesolenoidvalves.ThesystenisdesignedtobefullyautnraaticyetiscapablenfLocal-manualcontrol.4sIo.gitsA<<sa.renc~~b4~W~pofi'~cfWW4>/lv'I'~8't4:p,9<~e.4~~p4Iip*p'~reW'~l'~Ly>sy'~6k..OninitiationnftheCSAS,thecontainraentspraypumpstrikesuctionfromtherefuelingwatertank(RMT)andsprayboratedwaterdirectlyintothecontainmentatmosphereAlowleveLintheRWTisreachedinapproxiraately20minutes(seeSubsection6.2.2).Alowlevelswitchinitiatestherecirculationactuationsignal(RAS)transEerringcontainmentspraysuctiontothecontainmentsump.Spraywaterinthesumpisbufferedwithtrisodiumphosphatedodecahydrate(TSP)6.5-7 SJ.2"YSARmodes<<ndeffectsan<<Lysishasbeenrpadeon<<11activecomponentsoftheIrdineRernov<<lSystemtosin'wthatasaminimumthereis<<v<<il<<bleone100percenthydrazinesprayadditivesubsystemafteranysingleactivefailure.Forafailuremodesandeffects<<n<<lysisoftheContain!nentSpraySystensee6.2-41'.5.2.3.1TheoryofIodineRemovalbyContainmentSprayThesprayremovalcon~tant~,EoriodineisevaluatedusingthemodelsdescribedinNUREG/CR-009~Themodelassumesabal.ancebetweeniodineenteringandleavingthecontainmentatmospherewithfirstorderremovalproducedbythespray.TheresuLtingequation,asgiveninNUREG/CR-009,fortheremov<<Lrateis:A~LEHwhere'acHVViodineremovalrate~hrsprayflowrate,Et/hrabsorptionefficiencyequilibriumpartitioncoefficient3netfreevolumeofcontainment,ftTheabsorptionefficiency,E,isevaluatedbyusingthestagnantEiLmmodel.FurtherguidanceonthedeterminationofthisparameterisgivenbyParsiyandhasbeenfollowedinthisevaluation.Theparametersusedinthecalcu-lationaregiveninTable6.5>>5.Forelemental.iodine,aremovalco-efficientof37hrhasbeencalculated.However,inordertoaccountforre-evolutionofiodine,creditistakenforsprayrernovaLuntil.theinitialiodineconcentrationhasbeenreducedbyafactorof100.Further,intheevaluationofthepost-LOCAoffsitedoses,theasssumptionismadethat50percentoftheinitialairborneiodineinstantaneouslyplatesout.Consequently,theremoval.ratesforelemenfaLandparticulateiodineusedintheLOCAdosecalculationsare10hrand'0.45hr,respectivel.y.6.5.2.3.2'prayandSumpMaterpHHistoryThepHoELiquidsolutionsthatarerecirculatedwithinthecontainmentfoiiowingadesignbasis~ccidentisstabilizedatapproximately7.0to7.5ThepHismaintainedwiththeuseoftrisodiumphosphatedodecahdrste(TSP)whichisstoredinnineopenbasketsLocatedinth8contarnment..ump.EachbarketisapproximateLythreeft.bythreeft.byoneft.Theareconstructedofstainlesssteelwithmeshscreensides>and-ope~pyBoratewaterfromthecontainmentspraydissolvestheTSPandthusraisethepMixingisachievedasthesolutioniscontinuousLyrecirculatedfromthesumptothespraynozzles.Thespraywaterdissolves'theTSPwithinthreehoursfollowingCSAS.Approximatelyone-thirdoftheTSPdissolvesduringtheinjecticnmade~Fordetailsofflowpathstothesump,seeSubsectionYtC.>IN=0"Cd6.2,2.'An-++PID(ls4+I)Jn.s!Qr>>~ilbr)s~c(>>~I>>tl+%wrrlaJyQe'ta)ltcalztohl~~~<$~>>IIaa'td>>ss~lve.44l~sp6.5-9 SL2"FSARTABLE6.5"2IODINEREMOVALSYSTEMCOMPONENTStlydrazineSt~oraeTankr'Volume,gallons"Mi'nimum:LiquidVolume,gallonshDesignTemperature,FDesignPressure,psigOperatingTemperature,FOperatingPressure,psigFluidMatrrialCode80~8).201007.%f10.byweighthydrazinesolutionwithnitrogen(N)covergas31%4SSASMEXII,CodeClass2B-HdrazinePums~-~~rerrr~Js~rrwwdSuQuantityTypeCapacity,gpmDischargePressure,psigDesignTemperature,FOperatingTemperature,FNPSHn,ftofwaterFluictMaterialCodeRatingSolenoidValvesQuantitySize,inche"sTypeDesignPressure,ps15DesignTemperature,FANSIClassEndConnectionPipeScheduleMaterialFluidOperatorCode2PositiveDisacgrant,Metering3s0maximum12010030QXlyweighthydrazinesolution304SSASMEIII,CodeClass2480VACr~.2.1/2Globe120600SW80s304SS)Z~yweighthydrazinesolution125Vdc*solenoidASMEIXI0CodeClass20*125V,DC6.5-19AmendmentNo.0,(12/80)

SL2"l'SARTABLE6.5-3CONTAIN!1ENTSPRAYANDSPRAYAOI)ITIVEI'LOPRATESTheflovratesforthecontainmentsprayandsprayadditiveflovratesaregivenforthefollowingthreecases:Case1:Hinimumsafeguardflow,minimuminjection(i.e.,onecontainmentspraypump+oneHPSIpump+oneLPSIpump)withlossofoffsitepowerandonedie"elgeneratorfailure.Case2:Maximumsafeguardflov(i.e.,twoHPSIpump+twoLPSIpumps)andsinglefailureofonecontainmentspraypump,(i.e.,onlyonecontainmentspraypumpoperating)withoffsitepoweravailable.'Case3:Maximumsafeguardflov,maximuminjection(i.e.,twocontainmentspraypumps+twoHPSIpumps+twoLPSIpumps)vithoffsitepoweravailable.rCaseTotalTotal.Total>SafeguardSystemContainmentSprayAdditiveHydrazineAddition~Oeral.ionRodeSrettlou(m)ttlou(~m)Time(minutes)0InjectionLongTermRecirculation280035603.583.5802InjectionLongTermRecirculation280035603.583.583Injection56007.1620LongTerm7120716ggQRecirculation*BasedonRATatminimumTechSpeclevelandrunoutflowsforHPSI,LPSIandCSpumps.Thecontainmentsprayflovof2800gpmincludesaminimumrecirculationflovof150gpmrequiredduringtheinjectionphase.I3'tss4~'Vs1s~e~*'k'\e~~'g,~,6,5-21AmendmentNo,3~(6/81)

FLORIDAPOMER6LICHTCOMPANYSTLUCIEUNIT2DOCKET50-389ENVIRONMENTALDATAFORUNDERROUNDCABLEEXPOSEDTOMET/DRYNNVINNrNNNTUI.~TeeofCablesUs.dInUnderroundDuctss~c(l44wocablevendorssupplycablesforus>inundergroundducts.TheyaretheOkoniteCompany.andSheKeriteCompany~,Okonitesupplies5KV&.15KVpowercabledKaritesupplies600Vpower,controlandinstruaeetationcable~.('.RL.rs]:~PP)s'~C~~~dgCC.'&-~The5KVand15KVpowercablesareinsulatedwithunfilled,crosslinkedpolyethylene,wrappedwithanextrudedlayerofsemiconducCinginsulationshieldmaterialcompatiblewiththeinsulation,andcoveredwithaleadsheathandaheavydutyoverallneoprenejacket.The600Vpowercablesare'nsulatedwithahightemperatureKeriteinsulation(HTK)andcoveredwithblackheavydutyflameresistant(FR)jacket.The600VcontrolcablesareinsulatedwithKeriteflameresistant(FRII)insulationandcoveredwithheavyflameresistant(FR)jackets.'he600Vinstrumentationcablesconsistsoftwistedpair'edshieldedandunshieldedcables.'UnshieldedcablesconsistoftwistedpairswithKeriteflameresistant(FRII)insulationcoveredwithanextrudedpolymerlayerandhavinganoverallflameresistant(FR)jacket.Shieldedcablesinaddition'otheabovehaveadrainwirewitheachpairindirectcontactwithalumimummylartape.EachshieldedpairisseparatedbyglassmylarCape.CoaxialcablesareconstructedwithaRockbestosFirewallIIIPolymerLDfirstinsulation,radiationcrosslinkedcellularmodifiedpolyolefinorradiationcrosslinkedmodifiedpolyolefinsecondinsulation,'overedwith(atincoatedcoppershieldandaradiationcrosslinked,noncorrosive,Iflameretardantmodifiedpolyolefinoveralljacket~Thesecablesareratedforcontinuousserviceupto110C.I XI.TestDataVendordata(Keriteend>0konitequalificationoftheircablesexposedforyouruse.regardingtheenvironmentaltoawet/dryenvironmentareattachedInadditiontotheabove,aprocedurewasdevelopedonStLucieUnit-1totestcertainundergroundcablesto'onfirmtheirfunctionability.Thefol'lowingisabriefsynopsisofthisUnit1procedure.Atleast-onceper18months,duringshutdown,byselectingonarotatingbasisatleastthree(3)cables,onefromswitchgeartointakecoolingwatermotor,onefromswitchgeartocomponentcoolingwatermotorandonefromswitchgeartodieselgeneratoraretestedwitha2500VDCmegger.Controlcablesthatareassociatedwitheachoftheabovemotorsanddieselgenerptorsaretestedwith1000VDCmegger.ThethreesparecablesareDCpro%<testedat25,000voltsandmeasuredforleakagecurrentat30secondsintervalsfor10minutes.Allreadingsmustmeettechnicalspecification4.8.1.1.3,IfanyinstalledsparecablefailstheHitPottest,theNRCwillbenotifiedandcorrectiveactiontakepertechnicalspecification4.8.1.1.3.AttachedarecopiesofactualtestdatatakenatStLucieUnit1

~a~s0PeferenceIfff383Parag~rah2.3.3.2Pg.2(tSaoiplesAthroughEiveretheiioally,agedinacirculatingairovenfor168hoursat150"Ctosimulate40yearinstalledlifeat75'C.III.gsferenceIEEE383ParaELraph2.3.3.3SamplesAthroughEifIeresubsequently'subjectedinairtogamma~Ilradiationfromacobalt-60sourceatarateof0.5x10radsperhourtoacumulativedosageof2x10rads.8IV.ReferenceIEEE38~3para~rah2.4(TestingforOperationDuringDesignBasssfventInordertodemonstrateserviceabilityofFire>railIIIcoaxialhAga~~constructionsduringandafteraLOCA,theagedandirradiatedsamplesIMeresubjectedtotheLOCAprofile'forcombinedPWR/BWRasspecifiedinIEEE323,Fig.Al.Ouring'thisentireprofilethesampleshada600voltrmsvoltageappliedbetweentheinnerandouterconductors,theV.electricsandthesplicedsample(SaoiplesAthroughE).onlyexceptionbeing'whenleadsvieredisconnectedtoprovideforinsula-.'ionresistancemeasurements...-":.-:.'-';...*;ReferenceIEEE383Para~rah2.3.3.4AftercompletionofLOCAUiefo11oivingvvasaccomplished:=~~1l..InsulationResistanceWasoieasuredafterthe'autoclave.Mls~,sopenedandtemperaturereturnedtoambient..~..2.Sampleswereremovedfromautoclaveandwrappedona40Xmandrel(10inchdia.).3.Whilestillwrappedo>>theBOXmandrel,adielectrictestWas-performedWherea60cycleroisvoltagegasappliedbetiveenthe..innerandouterconductorsoftheco1xialconstructionsforoneminute.The'estvoltagewas2000voltsforthesoliddielectrics,thecellulardi-~t~~~a-Nes1PhrhlLthVh~h1<<~%WVEWf%~hueeh\h%1%H~tIPa~\,~~eh1eler&hhatl%lthlla~ht~el~h.h~~hY 0

Pg.34.Theinsulationresistaircewasmeasuredwhiletiresampleswerestillwrappedonthemandrel.5.The'entiremandrelwiththecablesstillwrappedthereon'asthenimmersedinwaterandthevoltagewithstandtestwasagainapplied.6.Aftertheimmersionandvoltagetestsoftheprecedingpara-graph,samples"A"through"E"inclusivewere'madeinto40Xcoilsandputintoa200'F100>>relativehumidityenvironment.Sincethisen'-vironmentwas.notprovidedbytheautoclave,thetestvoltagewasnotappliedduringtjristestperiod.Afteroneyearinthedescribedenvironment,allsampleswere4subjectedtoaninsulationresistancetestandthenimmersedinwater.Adielectrictestwasthenperformedwherea60cyclermsvoltagewasappliedbetweentheinnerandouterconductorsofthecoaxialcon-structionsforoneminute.Thetestvoltagewas2000voltsforthesoliddielectrics,thecellulardielectricsandthesplicedsample(SamplesAthroughE).Allsamplespassedthistest.Performanceofthepreviouslydescribedtests,indicatesthatboththecellularandsoliddielectriccoaxialconstructionswillbeservice-~~~-/'ablefortheirintendedpurposebothduringandafteraLOCAwhichmayhappen"anytimeduringtire40yearlifeofthe,generatingstation.ReferencelFEEPa~ra~rahP..5(FlameTests)-Althoughpassageoftheverticalcabletraytestof1FEE383isnotarequirementforcoaxial,triaxialaridspecialinstrumentationcable,Aockbestos,nevertheless,subjectedtireASS6-102cabletoandsuccessfullypassedthistest.Note:Rockbestosbelievesthatmostcablesinitsadverseservicecoaxialcableproductlinewillpassthisverticalcabletr~ytest,butasoftlrisdateother.cableshavenotbeensubjectedtothistest.~~~~~'"~4H~~\)<mVSa.~+~..<;~'e5&lfrryyy:~~i~rig\assn;~as,%i~!vrmcer<\s~~pvma.~arra<rrqrewe+n.as~i<sswreewrmraeeeearrhs~~.~v 0

~gPg.4QgCFATIFIEDCONCLUSIONFirewallIIIcoaxialconstructionsutilizingeithersolidor-cellulardielectricmaterialshavesuccessfullywithstoodthetests.andconditionsintheprecedingpages.Therefore,wecertifythattheywillfunctionforatleasttheirnodalintendedapplications.inanuc1ear40yearsingeneratingplant,includingconditionsofLOCAtestingand200megarads.ofcumulativeradiationdosageoccurringduring40yearlifeoftheplant.theexpected:~XilgvGeoygeS.BuettnerTechnicalOirector~z~~~':,',.KennethJ.Ginnotti:..'~TestEngineer'~sISTATEOFCONNECTICUT;COUNTYOFNEWHAVEN.Subscribedandsworntobeforemethisj~Q~dayof~~~~1979.'.~','~~~~~i"~'I1~0'

~~~~+t'UC[EAP,ElfVlROlillNTALSCRVICECYCLEREPORT(r;ESCR)ReportPreparedforEbascoServ,icesInc.l9RectorSt.t(e>vYork,N.Y.l0006Re:FloridaPower5LightCo.EbascoSpec2ll-73St.LuciePlantUnitP2HutchingsonIsland,Fla.-.q1\1VS%SPrReportPrepared~b:"-.':4-::"":"=::.:-:-'":-."~-':~.::.'."~-..,"-..";;r~~;",;:TheAockbestosCo.".,"'*Newlfzven,Ct.06504Hayl5,1980Rev.III's-~~~',q)qasee')'t)1eat,~stL~qiPypsgp~<+go~Wf(f1P5$'~t~rrrw.PP,"%QQ;tg.+iiZC55~+~+w~04i~%+iV.h5%TQQQ

~~ae'~6.eAccc1ursteaMaterAbsorptionTest(lnsulition)Ref:Para.G.I.l.dRockbcstoshasperformedlong(ermvlaterabsorptiontestingonRSS6-102corewhichusesasolid,cross-linkedpolyolcfindielectric.MaterTeuperature-90'CContinuousEnergizedVoltape-600VAC60HzDurati'onofTest-26weeksResults-ReportedinAppendix"D"AcceleratedMaterAbsorptionTest(Jacket)Ref:Para.6.l.l.eTestswereconductedonthejacketmaterialsusedontheRockbestos-coaxialconstructionsaccordingtoICOSAS-19-81Para.6.9.3.There-suitswereOs58milligramspersquareinchandarewellwithinthere-~~quired20.0mil1igramrequirement.t~I~~~s.'r'ssla~rrHoistureResistanceRef:Para.6.l.l.fnTheRockbestosCompanyhasperformedacceleratedmoistureresistanceitests.forcontinuouslywetandalternatelywetanddryconditionswiths/,goodresultsonitsFirewall1.11instrumentcables.ThesetestsnormallyIutilizeairovensandasteainautoclave.Sinceitisnecessaryto"pot"thepenetrationoftheautoclave,it'isnotfeasibletousethismethodoftestingforcoaxialconstructions.,ltshouldbcnotedhercthatthe'.'s~s'Firewal1ll1instrunlentationcablestested'utilizeflameretardedcross"1inl'ed.polyolefincompound,asdothcjacketsofourcoaxialconstructions.'r~~~~~r~~s~~s~1~~~~~

0

'r~~~7.Coaxialcablefunctionsasanintegralunit.Thejacketisusedtokeepthenioistuiefrowntlieinteiiorofthecable.WhilelongtermmoisturetestsoncoreinsulationwillservetoshowthecablewillmaintainvoltageandIRcharacteristics,itmustberenieinberedthatcoaxialcablesaredesignedtobebasicallydry.Therefore,theouterjacketisveryiniportant.Toprovethejacketintegrity.overandabovetherequirementsofref.para.6.1.l.band6.1.1.eRockbestosputasampleofjacketedcablein75"CwaterandmeasuredIRfrominnerconductortofirstQiI,I'L'~it'~'4~~5~~~~,'~E,shield.Aftersixinonthsthesampleshowsaninsulationresistanceof720gigohmsfor20ft.'hesampletestedwasRockbestosRSS6-208Cwiththeouterjacketandaluininumsheathremoved.Themoistureresistanceoftheconstruction,includingwetanddry,isfurtherdemonstratedbytheairovenaging,autoclavesprayconditionsandhumidityenvironment,asdocuinentedinthequalificationreport(Appendix8).AlsoattachedasAppendix"F"isdatapreviouslyreportedbyRockbestosonitsFirewallIIIcross-linkedpolyolefinasfurthersupportinodata.'ElectricalCharacteristics.'..:".',:"::"'"~-'."~fRef:Para.6.l.l.gTtieelectricalcfiaracteristicsshownonourRSSdrawingsforI~~cablestobesuppliedonthisorderwerederivedusingtestmethodsofMIL-C-170.aSincethattimetlIL-C-17Ehasbeenissued;andwhileitjsmorecomplexandinmanycasesunworkable,testingisstillaccomplished'accordingtoHJL-C-170.J*=Sincethecables.usedfornucleargeneratingstationsare.60IQz~~orless,testingtoeitherthe"0"or"f"revisionshouldnotcon-stituteanyIirob1enis.

~~i<PFeV>1>Cr~gICJ""BT(OV"IB}'".8cCh.'E$T..ECO.nrvIsIIrrr<IrCl.'.ILBOCOIII'OIIATIONOctober14,1975ROCKBI':SI'OS'ltOI)UC'I'S0ll0cnosSI'ICSr*AKCAIVESVI1E?22?roncnoss.econw900?I~I404)449I96II'ABATISI800I?<ICA5ioASCOServices,inc.21McstStreetRoom1310thewYork,tlY10006Attn:Ir.DennisCronin-cloPhilgobileRECEDEDERq:Firewallill-FloridaPower6Light----<-..ST-,-LuC1C-2-----:---.:'-.~Qt;T2-':CTSinquiryFLO-211I8.CerroProposal20-3113inquiryFLO-2lII9CerroProposal20-3II4~~~~r4Gentlemen,FurthertoourlettersofAugust18,1975andSeptember26,1975,wcareFurnishing~~~~additionalinformationonthetestswehaveperformedandnotingchangesinouroriginalproposedprogram.Thepurposeofthetestwastomeasuretheeffectsofdifferentenvironmentsonthe':FirewallIllcableofferedinourproposal."llighlyacceleratedtestprocedureswereusedtoobtainmeaningful'esultslnareasonablyshortperiodoftime.~l'Samplesweresubjectedtothefollowing:'1~r.Samplel.-ContinuouslyDry:Samplewas'placedlnanairovenfor360hoursandmeasuredatregularintervalsforchanges'nIA,'SlC,andPo~erFactor.,Sample2.-ContinuouslyMet.:Samplewasplacedinastcamautoclaveat'II2Cand40PSIG.Thetestonthi'ssamplewasterminatedafter,260hoursbecau=eo'lectricaifailure,Thcsameelectricalmeasurementswercperformed.Sample3'llernatclyMet6DrySamplewasplaced'inasteaIAau'toelaveat1I2Cand~IOPSIGfor16hours,1houratroomtemperature,6hoursinanairovenat121C,1houratroomtemperatureandthen'thecyclerepeated.Thctestwascontinuedfor360hourswiththesamemeasurementsbeingmadeatregularintervals.Theresultsofthesetestsaresho'wnontheattachedchart.Samples.l03wereelectricallysoundaftercompletionoFthetestprogram.~~~~

A\(IJp$'vvlJVCE~lJPJCV0IV<50H0fCEBROCOBPOBA'IIONCGHzlHlll~~ALilt(4iQEBASCOServices~lnc,~~oAlcnOctober14~1975rAoc,2CUponconpletionoftheprogram,anadditionaltestwasperformedonsample0'3,tode;erinineif,anychangev~ouldoccuronthesampleifitwereplacedinacontinuouslydryenvironment.Thesamplewasplacedinanovenat121Cfor115hoursandtheresultsareasFollows:lRSicPowerFactor45000MegohmsH33.80Youwillnote,thisaccelerateddryingcycle'causedthesampletoreturntoitsapproximateorigina)value.Franthistestprogram,itcanbeconcludedthatacontinuouslywetenvironmentisthemostsevere,thealternatelywetanddryisthenextmostsevereandthecontinuously'dry'isthcleasts'evere.ThissupportsyearsofactualexperienceonmanytypesoFinsulationusedinactualfieldinstallations.~~~~~~~1tshouldberemembered,thateachofthetestsdescribed;'arexceedconditionswhichwouldbeexperiencedinnormaloperationandwereconductedspecificallytomeasuredifferencesinseverity,ofenvironmentalexposurers..*ln'ourletteroF9/2ol/5,wefurnishedtestresultsonourFirewallillcablesthathavebeenimmersedinwateratboth75oCand90CFor,longperiodsoftime.Acomparisoncanbeeasi'lydrawntotheperfonnanceof.Butylandotherearliervintageinsulationsthathavedemonstratedanabilitytoperformforforty(40)yearsInactualservice.Thesetestresultsclearlyshow,the.vastlysuperior.performanceofFirewallill,permittingaconclusiontobereached,thattheendlifeofthisinsulationshouldfarsurpassexperiencesobtainedoncablesthat'havehad"actual40yearservicelife.RockbestosProducts'I'.R.Postma~C'~~~F.AP/gwcc:Wm.Thuc~W~~,~~'<~~~~>'aN)'pi~pi'~ygq'~'~~"w~i:cay">)~'~t~~spi,~gg~~+yg~<loÃl'lpT~7$+~g>'ts~&-~'v6Y77P pdCi~B,,S~.OS,,i.l>>..4.<L..-...,,,-,-P.,JC,))..>,Pi...i.,i.g'>.l...i..-::."'."-.":-'j""""i."'..""::.":::"."::-":::."."'."~.".""i:.":."i."'.".":::::.":i."i,"CY7f~'uOU'Sl'Y."."GAY::".l~fC"4iP'.":.";:.".":::.'."-::::.:-:.-.::.:::-:..":::::::.::.=';-':::,"..":'"-"'QOi.-.",...C.:"'.""'E11~rqI~"""":":::::"'""":.:":,:".".,~......<p<tij'....~~...:.,j~~'a~."~fbi~)'lil"]:/1~g'L~~~~~~q(IsL+0Ol~0)~l~~~~~~~~~tJ~~~~~~~~~~~I

npv~reft'"rv44%av4~~VNvvnvr,'.',:.)r..-."'7')':')a")'l)I)4'vt'")I.~t.<<i'SL2-FSARe)EmergencyCore'oolingSy"ternpipingIcontrolroddrivemechanismsfuelassembliesandspacer-grids1.9.4reactorinternalsreactorcavityshieldvallssecondaryshieldvallsI.LOWTEMPERATUREOVERPRESSUREPROTECTION(LTOP)Lowtemperatureoverpressureprotectionwillbpberovidedviatheinstalla-tionofpower-operatex'ee'vavedlif'ves{PORVs)qualifiedforbothsaturateddesteamandliquidreeservce.dlifrvice.ThePORVswillbesizedtoaccommoatewa1thepressuretransientassocaet.soci~tedwithaControlledRodWithdrawsd1{tt1lowpressuresetpoint)tomitigatethepressuretransientresultingfromeitheraspuriousinitiationofsafetynginection,1trtwithanexcessivetemperaturedifferencesisdescribedbetweentheRCSandthesteamgener'atox'.Thefi'naldesignisdescreinSubsection5.2-6.CorrespondingtransientsanalyseswillbeprovidedinSection15.8earlyin1981.1.9.51HDROLOGICALDATAecion2.4.additionalinformationforPutchinsenXslandAsdiscussedinSection..aibeingevaluatedontheseparatesub)ectsofurtereaon2~4willbefie1dpossiblepotablewelllocations.AnamendmenttoSectkoonoraboutMarch1981incorporatingtherelevantinformation.01.9.6UNDERGROUNDCABLEREVIEWKeriteinsuaepowe1tedposerandcontrolcableshaveb'eenrevievedal))~approvedjpbtheNRCforundergroundvet/dryenvironmentalqualificatonxovv4)nwl)oaaderdroandtneer44ena4)vbytleamandmenn-ot~bov"Feb".ca~98&.~Atlc~5%8~$~3,tl.4,1.9.7ENVIRONMENTALANDSEXSHICQUALXFICATION0CLASSlEEQUIPMENT0(10)-1978theNRCissuedaletterrequestingadditionalioalinformationns3.10and3.11havebeenonClasslEequipmentqualification.Sectionsdinformationonseismicandenvironmentaorganizedtoprovidetherequeste<<foqualificationtestresults.11ovever,atthedateoftenderingtieualificationtestsummax'iesandreportsofresultsares,'eceived.Therefore,amendmentsstillbeinggenex'atedandhavenotyetbeenreceve~etoSections3.10and3.11villbefiledperiodicallyinordertoprovie'ultsofrelevantanalysesthenecessaryinformationandalsotoprovideresusoewhenavailable~PeramemorandumandorderissuedonMay23,'9231980,,theNRChasorderedapplicantsforoperatinglicensestomb.etqm~tthereuirementsoff10aA4n SL2-FSARintegratedradiationexposurecombining40yearsnormal.operationandtherequired'termoffunctionalityduringthepostdesignbasisaccident(DBA)period(upto1year).Tables3.11-1presentthedesignparametersforradiationforeachspecifiedenvironmentalcondition~ThenormaloperationsexposuredoseforequipmentiseitherderivedmoreexplicityfranthedesignsourcetermspresentedinChapterlltakingaccountofequipmentarrangementandshieldingconfiguration,nrbasedonthemaximumdoserateanticipatedfortheradiationzoneinwhichtheequipmentisgenerallylocated.SeeSection12.3andthezonaldosemapsonFigures12.3%through12.3-12.Forequipmentinlowerradiationzones(I&IE)thecumulative40yearexposureisconservativelytakenas10Rads.ForZonaVequipmentwithafewexceptions,(theCVCSionexchanger,spentresintank,spentfueltransfertubeandvolumeccntroltank)thedoserateis100R/hr.'ortl>eaforementioned~~exceptiona,thedesigndose'rateishigherthan100R/hr.TheDBAexposuredoseaffectingESFsystemsandassociatedsafetyrelatedcenponentsisdependentonequipmentlocation.TheDBAconsideredforthecontainment,ReactorAuxiliary,Turbine,andDieselGeneratorouilaingsisthep~~)ulationofaLOCAinaccordancewiththerecommendationsnfTID-14B44andRegulatoryGuide1.4,"AssumptionsUsedforEvaluatingthe3PotentialRadiological,ConsequencesofaLossofCoolantAccidentforPressurizedPaterReactors",June1974(R2).TheDBAaffectingequipmentintheFuelHandlingBuildingisbasedonthepostulationofafuelIiandlingacciden'toThefeworganic,materialsthatexistwithinthecontainmentarediscussedinSubsection6,1.2.TheradjatinnexposuredoseratesgiveninTable3.11"1isbasedongammaradiationexposure.Etisrecognizedthatthebetaenergyreleasefromnoblegasesisasmuchas2.5tip'~greaterthanthegammaenergyreleasewithin30dayspostaccident.HoweverarepresentativecablegeometryinsidecontainmenthasprotectivecoversheathingtheinsulationlayerandanoverallcoveroffireprotectiveFlamemasticorequivalent.,Thereforetheintegratedbetaradiationdoseforaoneyearpostaccidentperiodislessthan10percentoftheintegratedgammaradiationdoseoverthesameperiod.Thiscomparisonincludestheconservativeassumptionofconparingeffective2.2Nevbetaswitheffeet've2,2~fevgammasandassumesasphericalcloud,radius40ft,ofairbornenuclides.Othercnnponentsinsidecontainmentareconsideredsufficientlyshieldedfrombetaradiationsinceitiseffectivelyattenuatedbyonlyafewmillsthicknessofmetal.Thereforebasedontheaforementioneddiscussionbetaradiationisnotconsideredanenvironmentalqualificatinnproblem.~~/pc>fogQ~P~3.11.6SUBMERGEDCABLES~'afetyrelatedcableslocatedoutdoorsthatcoulbesubmergedinwaterarequalifiedforoperabilityundersubmergedcnditions..P~:~<~v;r~j<'0:0i~Pok;4.Cp~y)~Ke>'4.Cp~ym(4.~<~4+~~4~r.~4~(~.~g~~&/ovaryw~t<~t~'k~s4ws~L~fl<(i~~'<</~"~+~~~f,~i<VS.C.I3.11-5

+<F4<<+~~,!'~<<dWdi>.'<<~/~BCl'AQCLPCV~NWXdWNA%%4QNACWJAMP&hNCÃr<<KAJrdlQ~&hgMVCCf40fZ'dr,lQBMF<RCVI<WAiM~\'Lrr~<<'r*SI2-FSARSECTIONF11:NFERENCES(1)D6Vassalo,(HRC)lettertoDr.,REUhrig(FPL),"EnvironmentalandSeismic(/ualificationnfClassIEEquipment"datedJuly-28,1978.(2)DryREUhrrig(FPL)letterL-78-334toDBVassalo(NRC)datedOctober16,1978.(3)JJDiNunnn,"PDAnderson,REBakerandRLK~terfield,"CalculationofDistanceFactorsforPowerandTestReactor'Sites,"TED-14844,USAEC,March23,1962.I(4)1976ANSPaper:"In-containmentRadiationEnvironmentsfollowingtheNypothetical.LOCA(LMR)."Cr)y,Kr-v4j(>->'<<3>W<<>.<-'5-3Vg4DF'<<<<'~<~Ct>d~)~W8-~~+i/,mf.(d)pggd;0t>>)-l<<A4-Rt-6'0b>~I'Agk>>-c.)4+MPr~u<<+>/W<<~.~~g'PI.',w'II~~.F11-6P

FLORIDAPOWERANDLIGHTCOMPANYSTLUCIEUNITNO.1DESIGNCRITERIARE-EVALUATIONOFCONCRETEMASONRYWALLS&rearedBReviewedBArovedBDateOriginalR1<2/7/8G

TABLEOFCONTENTS1.0'.0ItemINTRODUCTIONAPPLICABLECODE~Pae3.04.0MATERIAL$-LOADSANDLOADCOMBINATIONS5.0ANALYSISANDDESIGN5,1"GENERAL6.07.05.2DYNAMICANALYSIS5.3STATICANALYSISALLOWABLESTRESSESANALYTICALPROCEDUREF1UNREINFORCEDWALLS-REEVALUATEDBYCOMPUTER7.2REINFORCEDWALLS-RE-EVALUATEDBYC(NPUTER15l7'71723No.TablesIOADCOMBINATIONTABLEFORCATEGORYIMASONRYWALL6ALLOWABLESTRESSINUNREINFORCEDMASONRYALLOWABLESTRESSINREINFORCEDMASONRYMASONRYWALLSSECTIONPROPERTIES19 rt,e 0IFI'RODUCTIONThedesigncriteriacontainedhereinisapplicabletosafety-relatedcon-cretemasonrywallsaswellasnon-safetyrelatedconcretemasonrywallswhosefailurecouldadverselyaffectthesafetyrelatedsystemsandcom-ponentsintheirproximityinaNuclearPowerPlantfacilityandestablishesthedesignrequirementsforevaluationofthestructuraladeauacyofexistingconcretemasonrywalls.Thescopeofthiscriteriacoversallmasonrywallsinproximitytoorhavingattachmentsfromsafety-relatedpipingorequipmentIsuchthatwallfailurecouldaffectasafety-relatedsystem.Safetyrelatedequipmentorsubsystemstobeconsideredasattach-mentsorinproximitytothewallsshallinclude,butarenotlimitedto,pumps,valves,motors,heatexchangers,cabletrays,cable/conduit,HVACductwork,electricalcabinets,instrumentsandcontrols.2eoAPPLICABLECODESANDGUIDELINES2.1Thefollowingcodesshallbeusedforthere-evaluationofmasonrywalls,subjecttoclarificationscontainedinthecriteria.CodeTitleACI531-79AmericanConcreteInstitute"BuildingCodeRequirementsforConcretemasonryStructures"AISCAmericanInstituteofSteelConstruction"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"ACI318-77AmericanConcreteInstitute"BuildingCodeRequirementsforReinforcedConcrete"

2.'2GuidelinesRecommendedGuidelinesfortheReassessmentofSafetyRelatedConcreteMasonryWalls,PreparedbyOwnersandEngineeringFirmsInformal'lGrouponConcreteMasonryWalls,October6,1980.3'MATERIALSThematerialswhichhavebeinspecifiedintheprojectspecificationsanddrawingsshallbeused.4,0LOADSANDLOADCOMBINATIONS4.1LoadsDescriCionTheloadsaregroupedintothefollowingcategories:(a)normalloads(b)severeenvironmentalloads(c)extremeenvironmentalloads(d)abnormalloadsThedetaileddescriptionoftheseloadsisasfollows:(a)NormalloadsNormalloadsarethoseloadsthatareineffectduringnormalplantoperationandshutdownconditions.Forthewalls,theyincludethefollowing:(1)DeadLoad(D)Deadloadincludestheweightofthewall,andanystructuresorequipmentsupportedbythewall.(2)LiveLoad(L)Liveloadsincludealltemporaryloadingsthatactonthewall,bothintheplaneandoutoftheplaneofthewali'

4.1LoadssrsA(Cont'd){3)ThermalLoad(T)0Thesearethermaleffectsloadingsonthewallduring'--norma)operatingorshutdownconditions,andshallbebasedon.themostcriticaltransientorsteadystate..condition.'(4).PipeReactionLoad(R),Tjiis,is.the.~'eactionofpipessupportedbythe-'~-'wallduringinformalmperatingorshutdowncondition,,~v,-='a'n8shall'-beibased=:onth'e'mostcriticaltransient--':sg--,',or'f6adyetatetco'ndit'ice;<i...{b).%ever'eEnvironmental'Loads',~.;-'.\Qev'ereenvironmental1oads.axethoseloadsthatcouldinfre-rfs-guen'eely-Se-"encos4ntereddurin~tlieplantlife.Includedin==-.-41);;-fr~ind&ad:.{8)---:.:'.g:-;..~=,:.-'-'~"-'...Tlirt"hsIte~~gsfjjn:Qesgs.:"shodjpejifiedfor,the.'-siteof~;;.":=';~,the..plant==-:-.Xtis-applicableonly'to'thosewallsfor2=.:",.~";.R~".~;;.+-.."~+.~which~gFdes3.oql:-"iN,'speci'fiepp':~~-'~~';.'-:.~='-':..-":(2)<<.Seismxc'Load',-'P-."".=):..'.~~"-.'..'*'"-",..-",.Q=;::"';=.~(if-For".,jiasonr'yfwal1sgag'uilhingsfoxwhich'dynamic.'.-:=',~-'"":=",'~-".;";4n'alvsess.areperforme8:-':"'.'--:--.,-:Tt'i's'sth'e"loadg'ednegatedbytheoperating.basis='~.'--:~',~~'-..=-:,~:';:=.;:,~;;jYrthqiiqke'COBB).'sŽpe'cfXi'ed,;feartfiesite.ofthe'lant,.".-:-~-~x'4'>>-".~p~s::;-s""=.-"'.-'and'ge'velopEZ:.for.':t4'0>'~ill.~Is-th)dynamics"-'Analyses.'.-"..',-'"-".-.'..-,-,,~.-'m.-',,'-'--petformq'd'or'-%lie:bgi4cf5ng.;;-.-'Zn-plaiie.and'ut>>of-plane'"=:--"::r.K;=,':.':,g~".,;:.;..'~:6:..">.>>=4-',.'=-,::..=..ljadfngs'".-'and.4>4.efCdirt'sof:I)terai:.Bisplacementsofjj'a.gl"endsrerla7'iye"t'o-'each"oth~areWonsideied.v,.~~,tr',mwe~~s,,i,~,'d,s~~.~..

LoadsDoso~rition(Cont'd).(ii)Formasonrywallsinbuildingsforwhichearthquakeloadingsaredevelopedfromempiricalequations:Unlessnotedotherwise,thisistheloadduetoearthquakecalculatedtoactonthewallaccordingtotheprovisionsoftheapplicablebuildingcodeorstandard,(c)ExtremeEnvironmentalLoadsEstremeenvironmentalloadsarethoseloadswhicharecrediblebuthighlyimprobable.Theyinclude:(1)SeismicLoad(F)eqsForseismicCategory1buildings,andthosenon-seismicCategory1buildingsforwhichtheloadisspecified,thisistheloadgeneratedbythesafeshutdownearthquake(SSE)specifiedforthesiteoftheplant,anddevelopedasdescribedforseismicload(F)~ego(2)TornadoLoad(W)Ifatornadoevent,orsimilarhigh-intensitywindpheno-menonisspecifiedforthesite'ftheplant,thisistheloadgeneratedbytheevent.,Itincludesloadsduetowindpressure,barometricpressuredropsbetweentheexteriorandinteriorsidesofthewall,andimpactloadingsduetowindgeneratedmissiles.Theseloadsareapplicableonlytothosewallsforwhichthisloadisspecified.(RL

AbnormalLoadsIAbnormalloadsareloadssuchasthosegeneratedbythefailureofhighenergypiping,orequipmentfailurewhichgeneratesmissiles.Thiscategoryofloadsincludesthefollowing:(1)PressureLoad(P)Thisisthepressureequivalentstaticloadwithinthemasonr'ywallcompartmentcausedbyfailureofhighenergypipingorequipment.Theloadincludesanappropriatedynamicloadfactordeterminedbyanalysis,orbasedonempiricaldata.IRi(2)ThermalLoad(T)Thisisthethermalloadunderthermalconditionsgeneratedbytheabnormalevent,andincludesTeffects.0-(3)ReactionForce(R)aThisisthepipereactionunderthermalconditionsgeneratedbythepostulatedpipebreak,andincludesReffects.Theload0shalltakeintoaccountanychangetoRduetoredistributionofpipereactionscausedbydiscontinuitiesinthepipeduetothebreak.(4)PipeLoad(Y)Thisistheequivalentstaticloadonthewallgeneratedbythereactionoftheescapingfluidonthebrokenhigh-energypipeduringthepostulatedpipebreak,andincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.(5)JetImpingement(Y)Thisist'e)etimpingementequivalentstaticloadonthewallgeneratedbythepostulatedpipebreak,andincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.

0 (d)AbnoarulLoads(Cont'd)(6)MissileLoad(Y)Thisloadisthemissileimpactequivalentstaticloadonthewallgeneratedbyequipmcntorpipefailure,andincludesanappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload,4.2LoadCombinationsSeismicCategoryIorotheraffectedmasonrywallsshallbere-evaluatedfortheloadsasgiveninTable1.TABLE1LoadCategoryLOADCOMBINATIONTABLEFORCATEGORYICONCRETEMASONRYWALLYrBValueY]tforAllowableDLTRWPWFeqoRFeqsYmT0QataaStresses(Note1NormalXXXXSevereEnvironmental(1)SevereEnvironmental(2)XXXXXXXXXXExtremeEnvironmental(1)ExtremeEnviron"mental(2)AbnormalXXXXXXXXXXXXX'UUAbnormal/SevereEnvironmentalUAbnormal/ExtremeEnvironmentalXXXXXXU'Note1ValuesforSandUarespecifiedinTable2and3forunreinforcedandreinforcedmasonry,respectively..

Table2;AllowableStressesinUnreinforcedtlasonryDescription*Al1owableY1axinum(psi)(p>>)Al1owable(psi)t'oaximum(ps'i)CompressiveAial(1)FlexuralBearingOnfullareaOnone-thirdareaorlessShearFlexuralmembersShearwalls1TensionNormaltobedjointsHollowunitsSolidorgroutedParalleltobedjoints(4)HollowunitsSolidorgroutedGroutCoreCollarjointsShearTension0.22f'.33f'.25f'.375f'.1Jf0.9P'.6Jm,1.0Jm1.0Jm1.6/m2.6P,'00012009001200503425405080'4"m""m0.62f'.95f'~7m1.350.83m1.67P1.67/m2.6Jm,4.2/f'000300022503000755162.67841341212 0

40tes(l)(2)(3)(4)toTable2:h3Thesevaluesshouldbemultipliedby(l-'4>))ifthewa.lrasasignificantverticalload.Usenetbeooecareawiththesestresses.Forstackedbond-constructionusetw.-thirdsofthevaluesspecifieC.Forstackedbondconstructionusetwo-thirdsofthevaluesspci=ie"'ortensionnonraltothebeCjointsintheheadjointsof.stackedbondconstruction.

Table3:AllowableStressesinPeinforcedMasonryDescriptionAl1owablet1aximum(psi)(psi)Al1owableMaximum(psi)(psi)CompressiveAxialFlexura1BearingOnfullareaOnone-thirdareaorless0.22f'.33f'.25f'.375f'000120090012000.44f'.85f'.62f'.95f'000240018002400ShearFlexuralmembersShearHalls(~)MasonryTakesShearM/Vd+1M/Yd~0ReinforcementTakesShearM/Vd)>1M/VdOReinforcementBondPlainBars~DeformedBarsTensionGrade40'Grade60JointMireCompression1.1Jf'9J'm2OJfm5074751206014020,00024,000.5F,30,0000.4F17f'5'612312518080186~60-9Fy0.9F0.9F0.9F

otstoTable3:(1)Thesevaluesshouldberiultipliedby(1-(--))i'hewallhasasign',icaritverticalload.(2)Thissressshouldbeevaluatedusingthee'fectiveareashownir,figurebelowexceptasnotedinPar.7.2.1(a).w'sor6lOiSpacingffwhicheverillr'SSlprtvnnrnlfbonrfI~v/r~yrr:rr~':r'.ri.rr~Arrrlr'i~~~~~~~~a~~~~Aresassvmesfeffecsiveinfleavralcompression,forcenormalloface(3)Netbeddedareashallbeusedwiththesestresses(4)ForYi/Vdvaluesbetween0and1interpolatebetweenthevaluesoivenfor0andl.

0 ANAI.YSISAN)DESIGN,General5.1.1Concretemasonrywallsshallbere-evaluatedaccordingtoworkingstressdesignprinciples.5.1.2TheResponseSpectrumMethodshallbeusedforestablishmentofseismiceffectsonmasonrywali'.2Ib""""5.2.1FreuencAnalsis-SectionCrackinConsiderationFrequencyanalysisshallbeperformedusingeithercomputerorhandcalculationinordertodeterminetheout-of-planefrequenciesofmasonrywalls.Theuncrackedbehaviorandcapacitieso'fthewallsshallbeconsideredforunreinforcedwalls.Forreinforcedwalls,bothcrackedanduncrackedbe-Jhaviorandcapacitiesofthewallsshallbeconsidered.5.2.2UncrackedSectionFortheuncrackedsectionoftheunreinforcedmasonrywall,theequivalentmomentofinertiashallbeobtainedfromatransformedsectionconsistingoftheblock,mortar,cellgroutandwherepresent,coreconcrete.Fortheuncrackedreinforcedwall,thereinforcementareashallalsobetrans-formedincalculatingthemomentofinertia.

5.2.3.CrackedSection~~Xftheappliedmoment(Ma)exceedstheuncrackedmomentcapacity(Hcr),thewallshallbeconsideredtobecracked.Theequivalentmomentofinertia(Ie)ofthereinforcedcrackedwallsshallbecomputedasfollows:where,McrIUncrackedmomentcapacity=Mcr=fr(-),Ma~AppliedmaximummomentonthewallI~MomentofinertiaofthetransformedsectionastdescribedinPar.5.2.2.IcrMomentofinertiaofthecrackedsectionModulusofruptureTensilestressdefinedinTable2formortarorgroutifthemasonryJointisassumedtobecracked.Distanceofneutralplanefromtensionface5.2.4MethodofFreuencAnalsisForthemasonrywall,whichissubJecttoseismicloadonlyandhasnolargeopenings,thestandardexpressionsforsingledegreeoffreedomsystemscanbeusedforcomputingthenaturalfrequencyofthewall.ForothertypesofwallssubJectedtodifferenttypesofloads,afiniteelementmodelshallbeused.One-waybehaviorcanbeassumediftheaspectratio,h/1(heighttolength)islessthan0.5;otherwisetwo-waybehaviorshouldbeassumedforthewallwithfour-sidesupport.

5.2~5Damp~inThecriticaldampingvaluestobeusedshallbeasfo11ows:A.Forreinforcedandunreinforceduncrackedwallsuse2%forOBEandSSE.B.Forreinforcedcrackedwallsuse4%forOBE,7%forSSE.5,2.6BoundaConditions,Boundaryconditionsforconcretemasonrywallsshallbeselectedwithregardtotherelativestiffnessofthemasonrywallstotheir\suppo'rtsandalsotothestructuraldetailswhichprovidetheinter-facebetweenthewallandsupports.Theguidelinesfortheselectionandqualificationofboundaryconditionsare:A,SileSuort-Asimplesupportconditionmaybeassumedatthetoporsidesofamasonrywallifsheartransferacrossthejointcanbedemonstratedunderallloadingcondi.tions;however,nomomenttransferisexpected.Thesheartransfermaybeaccomplishedbyeithermechanicalmethods(embedments,dowels,masonryties,supportangles,etc.),orbywedgingactionofthemasonrywallwithitssupports.Aplainmortarjointonthebottomsupport(bedjoint)mayprovidethenecessarysheartransferiftheshearfrictionconceptcanbejustifiedasfollows:V~NQwhere:V~shearresistanceofmortarjointN~forcenormaltothebedjoint(netdownwardload)~~u~,coefficientoffriction,1.0forconcrete,0.8formortarRlplacedagainsthardenedconcrete,and0.7forcon-creteagainststructuralsteel.Aplainverticalmortarjointatsidesofthewallisnotquali-,fiedasasimplesupport.

0 5.2.75~2~8.5.2.9B.Fixed~Suport-Fixedsupportconditionsmaybeassumedpro-Ividedthe)ointcantransfertheflexuralstressestothesupport.Poisson'sRatioPoisson'sratioequalto0.2isappropriateforbothreinforcedandnon-reinforcedconcretemasonrywalls'eismicaccelerationshallbeselectedfromeitherthefloorresponsespectrumatthebottomofthewall,orthefloorresponse\spectrumatthehigherelevation,whicheveryieldsthemaximumresponsewiththefrequencydeterminedinPar.5.2.4.ModalParticiationForhandcalculation,seismicaccelerationshouldbe,increasedbyafactorequalto1.05toaccountfortheparticipationofhighermodesforout-of-planeflexuralcalculations.WhenthelowestfundamentalfrequencydeterminedinPar.5.2.4isgreaterthan33hertz,thefactorisunity.5,2.10InterstorvDriftEffectsIn-planeorout-of-planeinterstorydisplacementsshallbeobtainedfromtheoriginalbuildingstructuredynamicanalysis.Themaximumdiiferentialdisplacementduetoout-of-planedriftshallbeappliedatthetopsupportofthewallinstaticanalysis.'\

Sta~ticAnalsisandSerosaEvaluation5.3.1StressCombinationStressesduetoin-planeloadsandout-of-planeloadsshallbecombinedusingthesquarerootofthesumofthesquaresmethod(SRSS).5.3.2Multi-theWallsIndividu'alwythesofamultiplewythewallshallbe,assumedtoactindependentlyundertheactionofseismicloadsunlessbondedbyreinforcement,boltingorotherdevicesthattrans-fershearatthewytheinterface.5.3.3AttachmentInertialLoadsStressesduetoattachmentloadsshallbecombinedwithwallinertialloadsusingtheabsolutesummethod.Blockpulloutshallbecheckedlocally.5.3s4In-PlaneStrainDuetoInterstorDriftIn-planeeffectsmaybeimposedonmasonrywallsbytherelativedisplacementbetweenfloorsduringseismiceventsasdescribedinPar.5;2.10.However,thewallsdonotin-tendtocarryasignificantpartofthebuildingsstoryshear.Thestrainacceptancecriteriashallbeusedforin-planestorydriftwhileareasonablemarginremainsforoutofplaneloading.<<15-

Thegrossshearstrainisdefinedtobe:Y-+{whereg=strainrelativedisplacementbetweentopandbottomofwallHheightofwall.Thepermissiblein-planeshearingstrainsare:=0.0001forunconfinedwallsuY=0.001forconfinedwallscTheabove.valuesshallbeusedfornormalandsevereen-vironmentalloadcombinations.Forotherloadcombinations,thestrainsshallbemultipliedby1.67.Anunconfinedwallisattachedononeverticalboundaryanditsbase.Aconfinedwallisattachedinoneofthefollowingways:(a)onallfoursides;(b)onthetopandbottomofthewall(c)onthetop,bottomandoneverticalsideofthewall(d)onthebottomandtwoverticalsidesofthewall.

AllowableStresses6.1GeneralThevaluesgiveninTable2shallbethestressallowableforunreinforcedmasonry.The,valuesgiveninTable3shallbethestressallowableforreinforcedmasonry.ThevaluesofSgiveninbothtablesshallbeusedforNormalandSevereEnvironmentalloadcombinations,whereasthevaluesofUshallbeusedfor.otherloadcombinations,asindicatedinTable1,Wherethebendingduetoout-of-planeinertialloading-causesflexuralstressesinthewalltoexceedthedesignallowables,thewallcanbeevaluatedbythe'ArchingAnalysis'ortheunreinforcedcrackedwallsandbythe'Yield-LineTheory'r'EnergyBalanceTechnique'orthereinforcedcrackedwalls.7.0ANALYTICALPROCEDURE7.1UnreinforcedWalls-Re-evaluatedbComuter7.1.1FiniteElementModelforFreuencAnalsis(a)Dividethewallintoquadrilateral,rectangularortri-angularplateelements.Aminimummeshsizeof4x1isrequiredforonewaybehaviorand4x4isrequiredfortwowaybehavior.Thenumberofelementsshouldbeincreasedwhereopeningsandhighstressconcentrationsarepresent.Thecapacitiesoftheelementsshouldinclude17"

7.1.1FiniteElement1fodelforFr~euenc~An~elsis(Cont'd)(a)bothout-of-planebendingandin-planeshear.ANSYSpro-gramSTIF43orSTIF63willsatisfytheserequirements.Theaspectratiooftheelement(longsidetoshortside)shallnotexceed3.]7~~P~gZCIzzF-rd8/~g.r~g)c//I/rIC>>burghSt!Fc(b)Theweightsofattachments(W.andW2)shallbeconsidered1asmassesuniformlydistributedovertheareaswheretheat-tachmentsarelocated.Theinputsofthemassesatthenodalpoints(9,10,14,13)mayusegeneralizedmasselements(STIF21inANSYSProgram).(c)Defineeachelementandnodalpointlocation.InputmaterialpropertiesEx,Ey,+xy,P(x,P(y,fasexplainedintheANSYSmanual.Anequivalentthicknessoftheplateelement(t)shallbeeobtainedforhollowblockwallssuchthatthesamemomentofinertiacanbekept.SeeTable4fort.Theequivalentdensityoftheelement(fz)shall'lsobeobtaineddhchthatthetotalweightremainsthesame."18-TABLE4-lNSONRYWALLSSECTIONPROPERTIES3'M'I.ir"BLOCKWALLDIMENSIONSEUIVALENTTHICKNESSNominalDesigntswUnreinforced12btT=87-5/81-1/417-1/23~815.31439.936.89610129-5/81-3/81-1/87-1/24.817.06876.818.67711-5/81-1/21-1/87-1/25.818.811503.4510.384Forblockwallsfilledwithmortar,theactualthicknessofthewallsmaybeusedfortheelement.(d)Twodynamicdegreesoffreedom(UZandROTX)shouldbeassignedtoeachnodalpointexceptatthe-boundary=wherethenumberofdynamicdegreeoffreedomwillbereducedtoone(ROTX),ifitissimplysupportedor0ifitisfixed.'(e)InputothernecessarydatatoperformMode-Frequencyanalysisfortheuncrackedwall.(f)Selectseismicaccelerationeitherfromthefloorresponsespectrumatthebottomofthewallorthefloorresponsespectrumatthehigherelevation,whicheveryieldsthemaximumresponsewiththefre-quencydeterminedfromtheabove.A251ofthefrequencyrangeshallbeconsideredduetovariationsofmasonrymaterialandotherfactors.-19" 7.1,2StaticAnal~sis(a)Prepareinputloadings,i.e.dead,live,seismic,equipmentloads,etc.andapplytothesamemodel.Concentratedloadsshallbeappliedtothenodalpoints,(b)Thedeadweightofthewallcanbegeneratedautomaticallyin.thecomputerifthadensity(f)hasbeeninputinrthedata.(c)SeismicloadscanbeappliedstaticallybyusingapressureloadwhichisequaltotheproductofdeadweightandtheaccelerationcoefficientselectedfromPar.7;1.1(f).(d)'heoutofp-lan-einterstorydriftofthewalldueto~R!differentialdisplacements'etweenthetwofloorsofthebuildingdynamicanalysiswillalsobeinputaspartoftheseismicloadsinthemodelbydefiningnewdisplace>>mentatthetopboundary.(e)LoadswillbecombinedintheStaticAnalysisaccordingto'heloadcpmbinationsspecifiedinPar.4.2.Themaximumbendingmomentoftheelement(Ma)shallb'ecomparedwiththemomentcapacityoftheuncrackedsection(Mcr).(f)IfMa(Mcr,i.e.sectionuncracked,allotherallowablesshallbechecked.IfMa>Mcr,thesectioniscracked.AnArchingAnalysisshallbeperformed.

7,1,3Archin~Anal~sis(a)Thebehaviorofthecrackedwallmaybeconsideredasthatofathreehingedarchwithhingesformedatmidspan,topandbottomsupports.Ifagapexistsatthetopofthewall,agappedarchingactionshouldbeassumed,otherwise,arigidarchingisassumedforanalysisas'llustratedinFig.l.(b)Thereacti'onsofthethree-hingedwallcanbesolvedbyconsideringarigidbodyinequilibriumasshowninFig.2.(c)Thecompressivestressoftheblockshallbeassumedasarectangularstressdistributionoveradepth'a'ssumedequalto't'ftheblockwall.Itsmagnitudesshallbelessthan0.85f'm.(d)Thedeflectionofthemidspancanbedeterminedbythemethodofvirtualworkassumingthatarchmembersareanalogoustocompressionmembersinatruss.Thecal-culateddeflectionshouldnotbemorethan0.3t,where't'sthethicknessofthewall.(e)Checkfrictionshear,localstressesandcomparewiththeallowablesasstatedinthedesigncriteria.

~~~~~1IrglDDlJICO'Ll/ACE(LLC1I~11t,OAD)MCVVTiVTlTI~INlAOII>CgalCAIICDIIIOII<<Flgt'1~Stetch111ustretl~theDifferenceslnlotionSetrccnklyldandGappedkrchl<.5~>>flaHRlCIDklCNIMCClrltgIIYIIIMCfly.2,freeSodaDiagramShmlnyForceslnk15ldandCoppedArchly.<<22>>

7.2Reinforced4'alls-Re-evaluatedb~C~omuter(a)Theeffectivewidthofwall,asdeterminedbySec.9.4.6.1ofACI531canbeusedasthewidthoftheelementin"hehorizontaldirection.IfDUR-0-VALreinforcementisprovidedforstackbondwalls,theeffectivewidthofthereinforcedunitscanbeincreasedtothesameamountasthatusedforrunningbondwalls.(b)Sameasunreinforced.(c)Sameasunreinforcedexceptasnotedbelow:Theequivalentthicknessoftheelementforarein-forcedwallfilledwithmortarscanbeobtainedasfollows:i)Findtransformedsectionareabymultiplyingthereinforcingbararea(A)by(n-l),wherenisthe8modularratioequaltoE/E.smii)Findthemomentofinertiaofthecrosssectionaboutitscentroid(usuallyatcenter),Im+s.iii)EquateI(=-bt)toI13e12em~is~Solveforte.(d)to(f)Sameasunreinforced.7',2StaticAnalsis(a)to(e)Sameasunreinforced.(f)SameasunreinforcedexceptIfMa>Mcr,thesectioniscracked.Acrackedsectioniterationprocedureshallbefollowed,asdescribedinPar.7.2.3."23" t

7.2.3CrackedSectionIterationFindtheequivalentmomentofinertia(I)asstated"inPar,5.2.3ofthedesigncriteria.Themomentofinertiaofthecrackedsection(I)shallbecrobtainedfromthetransformedsectionconsistingofthereinforcementareainthetensionsideandcompressiveareaoftheconcreteblockandanyfilled-inmaterial(i.e.'mortarorcellgrout),(b)Findtheequivalentthicknessoftheelementbyequating1bt=I.Solvefor.t312e'e(c)Rerunthefrequencyandstaticanalysisusingthesameinputdataexceptequivalentdensityandthicknessoftheelement,andsheararea(tensionareashouldbededucted).(d)Themomentcapacityofthecrackedsection,Mcap(~fA)d)shouldbecomparedwiththeappliedssmoment(Ma).IfMa<Mcap,checkcompressivestressofthemasonryandallotherallowablesandverifythecracksize.(e)IfMa0Mcap,thewallcanbeevaluatedbythe'Yield-LineTheory'asedonmechanismsofcollapsewhichisanalogoustotheplasticdesignmethodforsteelframes.7.2.4AnalsisbYield-LineTheo~~Thedescriptionoftheevaluationofawallbythe'Yield-LineTheory'anbefoundinthetextbook,'DesignofConcreteStructures'yGeorgeMinter.

00 7.2.4Aeel~~sisbYield-LineThe~os(Csee'd.)Ifthe'eflectionexceedsthreetimestheyielddeflection,i.e.ductilityratio>3,theresultingdisplacementshallbemultipliedbyafactorof2andadeterminationmadeastowhethersuchfactoreddisplacementswouldadverselyimpactthefunctionofsafety-relatedsystemsattachedand/oradjacenttothewali'heevaluationandjustificationofthewallsinthiscategorywillbeperformedonawall-by-wallbasis."25-

SL2-1'SARuestionNo.430.49Provideadiscussionoftheinserviceinspectionprogramforthrottle-stop,control,reheatstopandinterceptorsteamvalvesandthecapabilityfortestingessentialcomponentsduringtur-binegeneratorsystemoperation.(SPR10.2,PartIII,Items5and6.)~ResonseTheturbinethrottle/stop,reheatstopandinterceptorwillbetestedonaweeklybasis.ThesevalvesconstituteallvalvesrequiredtopreventoverspeedintheunlikelyeventofaMSIVfailuretoclose.490.49-1 i~'\0~4