ML17326A522: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(10 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 12/08/1977
| issue date = 12/08/1977
| title = Reactor Vessel Matl Surveillance Program for Facility, Analysis of Capsule T.
| title = Reactor Vessel Matl Surveillance Program for Facility, Analysis of Capsule T.
| author name = NORRIS E B
| author name = Norris E
| author affiliation = SOUTHWEST RESEARCH INSTITUTE
| author affiliation = SOUTHWEST RESEARCH INSTITUTE
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:,~~$SOUTHWESTRESEARCHINSTITUTEPostOfficeDrawer28510,6220CulebraRoadSanAntonio,Texas78284REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.1ANALYSISOFCAPSULETbyE.B.NorrisFINALREPORTSwRIProject02-4770toAmericanElectricPowerServiceCorporation2BroadwayNewYork,NewYork10004JDecember8,1977Approved:'4$}%$$.$~h$i\'l~h'I~P$~iA',"}:=:"}lCP,IiEL:.O'IHiCPG"'/IISEl'}VLCC"-CORi.~cDATE'.S.Lindholm,DirectorDepartmentofMaterialsSciences80f'22V053(i TABLEOFCONTENTSLISTOFTABLESLISTOFFIGURES~PaeriiiSUMMARYOFRESULTSANDCONCLUSIONSBACKGROUNDIII.DESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMIV.V.TESTINGOFSPECIMENSFROMCAPSULETANALYSISOFRESULTS1335VI.HEATUP,ANDCOOLDOWNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.1VII.REFERENCESjAPPENDIXA-.TENSILETESTRECORDS47A-1APPENDIXB-PROCEDUREFORTHEGENERATIONOFALLOWABLEPRESSURE-TEMPERATURELIMITCURVESFORNUCLEARPOWERPLANTREACTORVESSELSB-1 I
{{#Wiki_filter:$
~~lbLISTOFTABLESTable~PaeDonaldC.CookUnitNo.1ReactorVesselSur-veillanceMaterialsSummaryofReactorOperationsDonaldC.CookUnitNo.116SummaryofNeutronDosimetryResultsDonaldC.CookUnitNo.1-CapsuleT17IVFastNeutronSpectrumandIronActivationCrossSectionsforCapsuleT19CharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselIntermediateShellPlateB4406-3(LongitudinalDirection)21VICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselIntermediateShellPlateB4406-3(TransverseDirection)22VIICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselCoreRegionWeldMetal23VIIICharpyV-NotchImpactDataTheDonaldC.CookUnitNo.1ReactorPressureVesselCoreRegionWeldHeat-AffectedZoneMetal24IXCharpyV-NotchImpactDataA533GradeBClass1CorrelationMonitorMaterial25NotchToughnessPropertiesofCapsuleTSpecimens31DonaldC.CookUnitNo.1XITensilePropertiesofSurveillanceMaterialsCapsuleT32XIIProjectedValuesofRTNDTforDonaldC.CookUnitNo.1forUpto12EFPYofOperation40 I~~TableZIZZXZVLZSTOFTABLES(CONT'D.)ProjectedValuesofRTNDTforDonaldC.CookUnitNo.1forUpto32EFPYofOperationProposedReactorVesselSurveillanceCapsuleScheduleDonaldC.CookUnitNo.1~Pae4142 LISTOFFIGURES~Fture~PaeArrangementofSurveillanceCapsulesinthePressureVessel2VesselMaterialSurveillanceSpecimens3ArrangementofSpecimensandDosimetersinCapsuleT124,CharpyV-NotchPropertiesofPlateB4406-3(Long.)DonaldC.CookUnitNo.1SurveillanceProgram26CharpyV-NotchPropertiesofPlateB4406-3(Trans.)DonaldC.CookUnitNo.1SurveillanceProgram27CharpyV-NotchPropertiesofCoreRegionMeldMetalDonaldC.CookUnitNo.1SurveillanceProgram28CharpyV-NotchPropertiesofCoreRegionHAZMaterialDonaldC.CookUnitNo.1SurveillanceProgram29CharpyV-NotchPropertiesofCorrelationMonitorMaterialDonaldC.CookUnitNo.1SurveillanceProgram30DependenceofCvShelfEnergyonNeutronFluence,37DonaldC.CookUnitNo.110EffectofNeutronFluenceonRTNDTShift,DonaldC.CookUnitNo.138DonaldC.CookUnitNo.1ReactorCoolantHeatupLimitationsApplicableforPeriodsUpto12EffectiveFullPowerYears4512DonaldC.CookUnitNo.1ReactorCoolantCooldown46LimitationsApplicableforPeriodsUpto12EffectiveFullPowerYears C~~
,   ~
I.SUMMARYOFRESULTSANDCONCLUSIONSTheanalysisofthefirstmaterialsurveillancecapsuleremovedfromtheDonaldC.CookUnitNo.1reactorpressurevesselledtothefollowingconclusions:(1)Basedonacalculatedneutronspectraldistribution,CapsuleTreceivedafastfluenceof1.80x101neutrons/cm2>1MeV.(2)Thesurveillancespecimensofthecorebeltlinematerialsex-periencedshiftsintransitiontemperatureof75'to130Fasaresultoftheaboveexposure.(3)Theweldmetalandheataffectedzone(HAZ)materialsexhibitedthelargestshiftinRTNDT.However,becausetheintermediateshellplatematerialhasahighinitial(unirradiated)RTNDT,itwillcontroltheheatupandcooldownlimitationsatleastuntilthenextsurveillance-capsuleisremoved.(4)Theestimatedmaximumneutronfluenceof6.92x1017neutrons/cm>1MeVreceivedbythevesselwallaccruedin1.27fullpoweryears.Therefore,theprojectedmaximumneutronfluenceafter32effectivefullpoweryears(EFPY)is1.74x1019neutrons/cm>1MeV.Thisestimateisbasedonaleadfactorof2.6betweenCapsuleTandthepointofmaximumpressurevesselflux.(5)BasedonRegulatoryGuide1.99trendcurves,theprojectedmaxi-mumshiftinductile-brittletransitiontemperatureoftheDonaldC.CookUnit1vesselcorebeltlineplatesatthe1/4Tand3/4Tpositionsafter12EFPYofoperationare110Fand50F,respectively.Thesevalueswereusedasthebasesforcomputingheatupandcooldownlimitcurvesforupto12EFPYofoperation.
  ~
(6)ThemaximumshiftsinthetransitiontemperatureoftheDonaldC.Cookunit1vesselcorebeltlineplatesatthe1/4Tand3/4Tpositionsafter32EFPYofoperationarepro)ectedtobe180Fand83F,respectively.(7)SincetheweldmetalandHAZbeltlinematerialsaremoresensi-tivetoradiationembrittlementthantheintermediateshellplatematerial,theoperatinglimf.tationsmaycomeundercontroloftheweldmetalandHAZmateriallateinthe32EFPY.designlifeoftheplant.(8)TheDonaldC.CookUnitNo.'vesselplates,weldmetalandHAZmateriallocatedinthecorebeltlineregionareprojectedtoretainsuffi-cienttoughnesstomeetthecurrentrequirementsof10CFR50AppendixGthroughoutthedesignlifeoftheunit.
SOUTHWEST RESEARCH                            INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284 REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR DONALD C. COOK UNIT NO. 1 ANALYSIS OF CAPSULE T by E. B. Norris FINAL REPORT SwRI Project 02-4770 to American Electric Power Service Corporation 2 Broadway New York, New York 10004 J
II.BACKGROUNDTheallowableloadingsonnuclearpressurevesselsaredeterminedbyapplyingtherulesinAppendixG,"FractureToughnessRequirements,"of10CFR50.(1)*Inthecaseofpressure-retainingcomponentsmadeofferriticmaterials,theallowableloadingsdependonthereferencestressintensityfactor(KIR)curveindexedtothereferencenilductilitytemperature(RTNDT)presentedinAppendixG,"ProtectionAgainstNon-ductileFailure,"ofSectionIIIoftheASMECode.()Further,thematerialsinthebeltlineregionofthereactorvesselmustbemonitoredforradiation-inducedchangesinRTNDTpertherequirementsofAppendixH,"ReactorVesselMaterialSurveil-lanceProgramRequirements,"of10CFR50.TheRTNDTisdefinedinparagraphNB-2331ofSectionIIIoftheASMECodeasthehighestofthefollowingtemperatures:(1)Drop-weightNilDuctilityTemperature(DW-NDT)perASTME208;(2)60degFbelowthe50ft-lbCharpyV-notch(Cv)temperature;(3)60degFbelowthe35milCtemperature.TheRTNDTmustbeestablishedforallmaterials,includingweldmetalandheataffectedzone(HAZ)materialaswellasbaseplatesandforgings,whichcom-prisethereactorcoolantpressureboundary.Itiswellestablishedthatferriticmaterialsundergoanincreaseinstrengthandhardnessandadecreaseinductilityandtoughnesswhenexposedtoneutronfluencesinexcessof1017neutronspercm2(E>1MeV).()Also,ithasbeenestablishedthattrampelements,particularlycopperand*Superscriptnumbersrefertoreferencesattheendofthetext.
December 8, 1977 Approved:
phosphorous,affecttheradiationembrittlementresponseofferriticmate-rials.()TherelationshipbetweenincreaseinRT~Tandcoppercontentisnotdefinedcompletely.Forexample,RegulatoryGuide1.99,originallyissuedinJuly1975,proposedanadjustmenttoRT~Tproportionaltothesquarerootoftheneutronfluence.westinghouseElectricCorporation,intheircommentsonthe1975issueofRegulatoryGuide1.99(),believedthattheproposedrelationshipoverestimatestheshiftatfluencesgreaterthan1.9x1019andunderestimatestheshiftatfluenceslessthan1.9x10Ontheotherhand,CombustionEngineering,intheircommentsonthe1975is-sueofRegulatoryGuide1.99,suggestedthattheproposedrelationshipisoverlyconservativeatfluencesbelow1019neutronspercm(E>1MeV).ThereisalsodisagreementconcerningthepredictionofCvuppershelfre-sponsetoexposuretoneutronirradiation.()Afterreviewingthecommentsandevaluatingadditionalsurveillanceprogramdata,theNRCissuedarevisiontoRegulatoryGuide1.99whichraisedtheupperlimitofthetransitiontem-peratureadjustmentcurve.Inthisreport,estimatesofshiftsinRTNDTarebasedonRevision1ofRegulatoryGuide1.99),issuedinApril1977.Ingeneral,theonlyferriticpressureboundarymaterialsinanuclearplantwhichareexpectedtoreceiveafluencesufficienttoaffectRTNDTarethosematerialswhicharelocatedinthecorebeltlineregionofthereactorpressurevessel.Therefore,materialsurveillanceprogramsincludespecimensmachinedfromtheplateorforgingmaterialandweldmentswhicharelocatedinsucharegion.ofhighneutronfluxdensity.ASTME185describesthe(10)currentrecommendedpracticeformonitoringandevaluatingtheradiation-in-ducedchangesoccurringinthemechanicalpropertiesofpressurevesselbelt-linematerials.
                '4 $ }%$ $ . $
WestinghousehasprovidedsuchasurveillanceprogramfortheDonaldC.,CookUnitNo.1nuclearpowerplant;TheencapsulatedCvspecimensarelocatedneartheO.D.surfaceofthethermalshieldatapointwherethefastneutronfluxdensityisaboutthreetimesthatattheadjacentvesselwallsurface.Therefore,theincreases(shifts)intransitiontemperaturesofthematerialsinthepressurevesselaregenerallylessthanthecorre-spondingshiftsobservedinthesurveillancespecimens.However,becauseofazimuthalvariationsinneutr'onfluxdensity,capsulefluencesmayleadorlagthemaximumvesselfluenceinacorrespondingexposureperiod.Forexample,CapsuleT(removedduringthe1977refuellingoutage)wasexposedtoaneutronfluenceapproximately2.6timesthatatthemaximumexposurepointonthevesselI.D.,whileCapsuleX(scheduledforremovalatalaterdate)isbeingexposedtoaneutronfluxabout60%ofthatatthepointofmaximumvesselexposure.Thecapsules.alsocontainseveraldosimetermate-rialsforexperimentallydeterminingtheaverageneutronfluxdensityateachcapsulelocationduringtheexposureperiod.TheDonaldC.CookUnitNo.1materialsurveillancecapsulesalsoin-cludetensilespecimensasrecommendedbyASTME185.Atthepresenttime,irradiatedtensilepropertiesareusedprimarilytoindicatethatthemate-rialstestedcontinuetomeettherequirementsoftheappropriatematerialspecification.Inaddition,thedegreeofradiationhardeningindicatedbythetensileyieldstrengthisusedtojudgethecredibilityofthesurveil-lancedata.(7)Wedgeopeningloading(WOL)fracturemechanicsspecimens,machinedfromplatematerialandweldmetal,arealsocontainedinthecapsules.Currenttechnologylimitsthetestingofthesespecimensattemperatureswellbelow
                                ~ h $ i \   'l ~ h 'I ~ P$ ~ i S. Lindholm, Director A',"}:=:"}lCP,Ii EL:.O'IHiC PG"'/ II SEl'}VLCC"-       CORi.
~~theminimumservicetemperaturetoobtainvalidfracturemechanicsdataperASTME399~~,"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials."However,recentworkreportedbyMagerandMitt~1~mayleadtomethodsforevaluatinghigh-toughnessmaterialswithsmallfrac-turemechanicsspecimens.Currently,theNRCsuggestsstoringthesespecimensuntilanacceptabletestingprocedurehasbeendefined.ThisreportdescribestheresultsobtainedfromtestingthecontentsofCapsuleT.Thesedataareanalyzedtoestimatetheradiation-inducedchangesinthemechanicalpropertiesofthepressurevesselatthetimeofthe1977refuellingoutageaswellaspredictingthechangesexpectedtooccuratselectedtimesinthefutureoperationoftheDonaldC.CookUnitNo.1powerplant.
Department of Materials Sciences
III.DESCRIPTIONOFMATERIALSURVEILLANCEPROGRAMTheDonaldC.CookUnitNo.1materialsurveillanceprogramisdescribedindetailinWCAP8047(13),datedMarch1973.Eightmaterialssurveillancecapsuleswereplacedinthereactorvesselbetweenthethermalshieldandthevesselwallpriortostartup,seeFigure1.Theverticalcenterofeachcap-suleisoppositetheverticalcenterofthecore.TheneutronfluxdensityattheCapsuleTlocationleadsthemaximumfluxdensityonthe'vesselI.D.byafactorof2.6.(ThecapsuleseachcontainCharpyV-notch,tensileandWOLspecimensmachinedfromtheSA533GrBplate,weldmetalandheataffectedzone(HAZ)materialslocatedatthecorebeltlineplusCharpyV-notchspecimensmachinedfromareferenceheatofsteelutilizedinanum-berofWestinghousesurveillanceprograms.Thechemistriesandheattreatmentsofthevesselsurveillancemate-rialsaresummarizedinTableI.Alltestspecimensweremachinedfromthetestmaterialsatthequarter-thickness(1/4T)locationafterperformingasimulatedpostweldstress-relievingtreatment.WeldandHAZspecimensweremachinedfromastress-relievedweldmentwhichjoinedsectionsoftheinter-mediateshellcourse.HAZspecimenswereobtainedfromtheplateB4406-3sideoftheweldment.ThelongitudinalbasemetalCspecimenswereorientedwiththeirlongaxisparalleltotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.ThetransversebasemetalCspecimenswereorientedwiththeirlongaxisperpendiculartotheprimaryrollingdirectionandwithV-notchesperpendiculartothemajorplatesurfaces.Tensilespecimensweremachinedwiththelongitudinalaxisparalleltotheplaterollingdirection.TheWOLspecimensweremachined X(220')270'(184')Y(320')Z(356)180'aS(4')V(176')T(40)u(140')900ReactorVesselThermalShieldCoreBarrelFIGURE1~ARRANGEMENTOFSURVEILLANCECAPSULESRTTHEPRESSUREVESSEL
                        ~c           DATE 80 f'2 2V0      53    ( i
~~TABLEID0NALDC.C0OKUNnNo.1REACT0RVESSELSURVEn.LANCEMATERZALS<>>)HeatTreatmentHistorShellPlateMaterial:Heatedto1600Ffor4hours,waterquenched.Temperedat1225Ffor4hours,aircooled.Stressrelievedat1150Ffor40.hours,furnacecooled.Weldment:Stressrelievedat1150F.for40hours,furnacecooled.CorrelationMonitor:1675F,4hours,aircooled.1650F,4hours,waterquenched.1225F,4hours,furnacecooled1150F,40hours,furnacecooledto600F.ChemicalComosition(Percent)MaterialCMnPSSiNiMoCuPlateB4406-3WeldMetal0.241.400.0090.0150.250.490.460.140.261.330.0230.0140.180.740.440.27CorrelationMonitor0.221.480.0120.0180.250.680.520.14 withthesimulatedcrackperpendiculartoboththeprimaryrollingdirectionandtothemajorplatesurfaces.Allmechanical.testspecimens,seeFigure2,weretakenatleastoneplatethicknessfromthequenchededgesoftheplatematerial.CapsuleTcontained44CharpyV-notchspecimens(10longitudinaland10transversefromtheplatematerial,plus8eachfromweldmetal,HAZandthereferencesteelplate);4tensilespecimens(2plateand2weldmetal);and4WOLspecimens(2plateand2weldmetal).Thespecimennumberingsys-temandlocationwithinCapsuleTisshowninFigure3.CapsuleTalsowasreportedtocontainthefollowingdosimetersforde-terminingtheneutronfluxdensity:TargetElementFormQuantityIronCopperNickelCobalt(inaluminumCobalt(inaluminum)Uranium-238Neptunium-237BarewireBarewireBarewireBarewireCdshieldedwireCdshieldedoxideCdshieldedoxide5332.211TwoeutecticalloythermalmonitorshadbeeninsertedinholesinthesteelspacersinCapsuleT.One(locatedatthebottom)was2.5%Agand97.5%Pbwithameltingpointof579F.Theother(locatedatthetopofthecapsule)was1.75%Ag,0.75%Snand97.5%Pbhavingameltingpointof590F.10 46a44'OIIR.00990~.3I.3I42.I252.I05l.063l.053.35.393(a)CharpyV-notchImpactSpecimen.256.246I.005.995.255.245I6Gagelength256.3954934.2504.2I0.250RI.250'.26l.495I.80630.I98.I9.790.786.395.375D.37'ECTIONA-A(b)TensileSpecimen.375D..380.439499.437.04'73.0463D.0667.0662.0667l.45l.4PI.I30I.I20.765.745I.005.995I.005-8-~995.SOI.499(c)WedgeOpeningLoadingSpecimenFIGURE2.VESSELMATERIALSURVEILLANCESPECIMENS fC,COICO.CCSCLttfCtttL~ISLICIIIILICICLttffIItlCLIffIILfC>COICOCISII~IIIIIILOOLllISILCClllttCluttClllt1CIOItlClllt1CllltTCClltlCllltTCILIttClllttCltlttW.LIIIOI~'llI-jlI~SIISSlitSISSSSII4IL4~I4I.l~ISI1SI~SI4SI~SIillILOI~III~IIIIIILLLIII~~'llY-SSI.llI.lt~StWIL~SS~.SlISSI.llI.IS1-~I~I.ILI-~IILS-IILI.I~.II~TOPBOTTOMItICLLC~~IIIIIICIOCtllllILLOI~I(IIIII'ITOIIIL~IIICIIII)IItllIC~'LIOI.S(LIILSI(III~IIICII4I)ISILLCOIIILLIIOISaalllaIOILSOCII.IIIICLI~IOICIIL~ICILLFIGURE3.ARRANGEMENTOFSPECIMENSANDDOSIMETERSINCAPSULET
~~IV.TESTINGOFSPECIMENSFROMCAPSULETThecapsuleshipment,capsuleopening,specimentestingandreportingofresultswerecarriedoutinaccordancewiththeProjectPlanforDonaldC.CookUnitNo.1ReactorVesselIrradiationSurveillanceProgram.TheSwRINuclearProjectsOperatingProcedurescalledoutinthisplaninclude:(1)XI-MS-1,"DeterminationofSpecificActivityofNeutronRadiationDetectorSpecimen."(2)XI-MS-3,"ConductingTensionTestsonMetallicMaterials."(3)XI-MS-4,"CharpyImpactTestsonMetallicMaterials."(4)XIII-MS-1,"OpeningRadiationSurveillanceCapsulesandHandlingandStoringSpecimens."(5)XI-MS-5,"ConductingWedge-Opening-LoadingTestsoniMetallicMaterials."(6)XI-MS-6,"DeterminationofSpecificActivityofNeutronRadiationFissionMonitorDetectorSpecimens."CopiesoftheabovedocumentsareonfileatSwRI.SouthwestResearchInstituteutilizedaprocedurewhichhadbeenpre-paredforthe1977refuellingoutagefortheremovalofCapsuleTfromthereactorvesselandtheshipmentofthecapsuletotheSwRIlaboratories.SwRIcontractedwithToddShipyards-NuclearDivisiontosupplyappropriatecuttingtoolsandalicensedshippingcask.Toddpersonnelseveredthecap-sulefromitsextensiontube,sectionedtheextensiontubeintothree-footlengths,supervisedtheloadingofthecapsuleandextensiontubematerialsintotheshippingcask,andtransportedthecasktoSanAntonio.13
~~~~Thecapsuleshellhadbeenfabricatedbymakingtwolongseamweldstojointwohalf-shellstogether.ThelongseamweldsweremilledoffonaBridgeportverticalmillingmachinesetupinonehotcell.Beforemill-ingoffthelongseamweldbeads,transversesawcutsweremadetoremovethetwocapsuleends.Afterthelongseamweldshadbeenmilledaway,thetophalfofthecapsuleshellwasremoved.Thespecimensandspacerblockswerecarefullyremovedandplacedinanindexedreceptaclesothatcapsulelocationwasidentifiable.Afterthedisassemblyhad.beencompleted,thespecimenswerecarefullycheckedforidentificationandlocation,aslistedinWCAP8047.(>>)Eachspecimenwasinspectedforidentificationnumber,whichwascheckedagainstthemasterlistinWCAP8047.Nodiscrepancieswerefound.Thethermalmonitorsanddosimetercfireswereremovedfromtheholesinthespacers.Thethermalmonitors,containedinquartzvials,wereexamined,andnoevidenceofmeltingwasobserved,thusindicatingthatthemaximumtemperatureduringexposureofCapsuleTdidnotexceed579F.ThespecificactivitiesofthedosimetersweredeterminedatSwRIwithanNDC2200multichannelanalyzerandanNaI(Th)3x3scintillationcrystal.Thecalibrationoftheequipmentwasaccomplishedwithappropri-atestandardsandaninterlaboratorycrosscheckwithtwoindependentcount-'inglaboratoriesonCo-,54Hn-and~Co-containingdosimeterwires.Allactivitieswerecorrectedtothetime-of-removal(TOR)atreactorshutdown.Infinitelydilutesaturatedactivities(A8AT)werecalculatedforeachofthedosimetersbecauseASATisdirectlyrelatedtotheproductofthe
~~'~energy-dependentmicroscopicactivationcrosssectionandtheneutronfluxdensity.TherelationshipbetweenATORandASATisgivenby:E(1-em)(em)ATOR-XTm-XtASATm~1where:m=operatingperiod;decayconstantfortheactivationproduct,day1;Tmequivalentoperatingdaysat3250MwThforoperat-ingperiodm;tm=decaytimeafteroperatingperiodm,days.TheDonaldC.CookUnitNo.1operatinghistoryuptothe1977refuellingout-ageispresentedinTableII.Thespecificactivityattimeofremoval(TOR)andthespecificsaturatedactivitycalculatedforeachdosimeterarepre-sentedinTableIII.Theprimaryresultdesiredfromthedosimeteranalysisisthetotalfastneutronfluence(>1MeV)whichthesurveillancespecimensreceived.Theaveragefluxdensityatfullpowerisgivenby:SATmNOD(2)where:energy-dependentneutronfluxdensity,n/cm-sec;ASATsaturatedactivity,dps/mgtargetelement;spectrum-averagedactivationcrosssection,cm;NOnumberoftargetatomspermg.Thetotalneutronfluenceisthenequaltotheproductoftheaverageneutronfluxdensityandtheequivalentreactoroperatingtimeatfullpower.
TABLEIISUMMARYOFREACTOROPERATIONSDONALDC.COOKUNITNO.1OperatingPeriodStartDates~DSSOperating~DSsShutdown~DSSPowerGenerationEquiualentOperatingDaysT)DecayTimeAfterPeriod10122/2/752/15/752/17/752/18/752/21/753/19/754/4/756/25/756/27/757/4/757/23/7510/12/7510/15/75ll/1/7511/15/751/2/761/5/764/13/765/10/767/2/767/6/769/11/769/19/7611/21/7611/22/762/14/752/16/752/17/752/20/753/18/754/3/756/24/756/26/757/3/757/22/7510/ll/7510/14/7510/31/7511/14/751/1/761/4/764/12/765/9/767/1/767/5/769/10/769/18/7611/20/7611/21/7612/23/76132682811748536763322,1942281619142729,604200,61615,432201,50640,163116,552256,178143,868205,682196,52092754Total,Cycle11,501,2970.680.079.1161.l34.7562.0012.3535.8678.8244.2763.2960.4728.54461.94678675646548539439419357255175104330
~~TABLEIIISUMMARYOFNEUTRONDOSIMETRYRESULTSDONALDC.COOKUNITNO.1--CAPSULETMonitorIdentificationActivation-ReactionATOR(ds/mASATds/mFe-Fe-Fe-Fe-Fe-TopTopMid.Mid.Bot.Mid.Bot.54Fe(n,p)54MnAverage193x1031.69x1031.69x1031.69x1031.80x1031.76x1033.34x1032.94x1032.93x1032.93x1033.11x103.3.05x103Cu-TopMid.Cu-Mid.Cu-Bot.Mid.Ni-TopMid.Ni-Mid.Ni-Bot.Mid.Co-TopCo(Cd)-TopCo-Bot.Co(Cd)-Bot.U-238Np-23763Cu(n,a)60Colltf58Ni(n,p)58CoIfIICo(n,p)CoIIIfII238U(n,f)137C237Np(n,f)137Cs5.14x1015.27x1016.04x1013.83x1043.77x1043.95x1044.87x1061.83x1065.03x1061.64x1061.20x1034.53x1033.43x1023.52x1024.03x1024.46x1044.38x1044.59x1043.25x1071.22x1073.36x1071.09x107N/AN/A17 Theneutronfluxdensitywascalculatedfromthe4Fe(n,p)4Mnreac-tionbecauseithasahighenergythresholdandtheenergyresponseiswellknown.TheenergyspectrumforCapsuleTwascalculatedwiththeDOT3.5two-dimensionaldiscreteordinatestransportcodewitha22-groupneutroncrosssectionlibrary,aPlexpansionofthescatteringmatrixandanS8orderofangularquadrature.ThenormalizedspectrumforCapsuleTandthegroup-organizedcrosssectionsforthe54Fe(n,p)54MnreactionderivedfromtheENDF/B-ZVlibraryaregiveninTableIV.ThevalueofoisFegivenby:10MeVaF(E)g(E)dEo(>1Mev)-1'110$(E)dEl.00(3)where:VF(>1MeV)thecalculatedspectrum-averagedcrossFesectionforflux>1MeV,cm2determinedforthe54Fe(n,p)54Mnreaction.Theresultingvalueobtainedforfast(>1MeV)neutronfluxdensityattheCapsuleTlocationwas4.50x101neutrons/cm-sec.SinceDonaldC.CookUnitNo.1operatedforanequivalent461.94fullpowerdaysuptothe1977refuellingoutage,thetotalneutronfluenceforCapsuleTisequalto1.80x1018neutrons/cm(E>1MeV)basedonthecalculatedspectrumatthecap-2sulelocation.Assumingafission-spectrumenergydistributionatthecapsulelocation,thecross-sectionforthe4Fe(n,p)4Mnreaction(E>1MeV)wouldbe98.26mb.Theresultingfluxandfluencevalueswouldbe4.95x10neu-(4)trons/cm2-secand1.97x1018neutrons/cm2,respectively.18 TABLEIVFASTNEUTRONSPECTRUMANDIRONACTIVATIONCROSSSECTIONSFORCAPSULETEnergyRange(MeV)8.18-10.06.36-8.184.96-6.364.06-4.963.01-4.062.35-3.011.83-2.351~11-1.83NormalizedNeutronFlux0.00980.02540.04820.04710.08550.14000.17520.468954Fe(n,p)54MnCrossSection(barns)0.5819.5770.4910.3540.2050.0990.0230.0014VF0.108barnsFe19 TheirradiatedCharpyV-notchspecimensweretestedonaSATECimpactmachine.Thetesttemperatureswereselectedtodeveloptheductile-brittletransitionanduppershelfregions.TheunirradiatedCharpyV-notchimpactdatareportedbyWestinghouse(13)andthedataobtainedbySwRIonthespec-imenscontainedinCapsuleTarepresentedinTablesVthroughIX.TheCharpyV-notchtransitioncurvesforthethreeplatematerialsandthecor-relationmonitormaterialarepresentedinFigures4throughS.Theradia-,tion-inducedshiftintransitiontemperaturesforthevesselplatesarein-dicatedat50ft<<lband35millateralexpansion.AsummaryoftheshiftsinRTNDTandCvuppershelfenergiesforeachmaterialarepresentedinTableX.TensiletestswerecarriedoutintheSwRIhotcellsusingaDillon10,000-1bcapacitytesterequippedwithastraingageextensometer,loadcellandautographicrecordingequipment.Oneeachplateandweldmetaltensilespecimenswastestedatroomtemperature(RT)andat550F.Theresults,alongwithtensiledatareportedbyWestinghouseontheunirradi-atedmaterials(1),arepresentedinTableXI.Theload-strainrecordsareincludedinAppendixA.TestingoftheWOLspecimenswasdeferredattherequestofAmericanElectricPowerServiceCorporation.ThespecimensareinstorageattheSwRIradiationlaboratory.TheCharpyV-notchresultsindicatethattheHAZismoresensitivetoradiationembrittlementthantheas-rolledandheat-createdplateandaboutequaltothatoftheweldmetal.Thisissurprisingbecausethecoppercon-tentofHAZisreportedtobe'uchlowerthanthatoftheweldmetal.(3)20 TABLEVCHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELINTERMEDIATESHELLPLATEB4406-3(LONGITUDINALDIRECTION)ConditionBaselineCapsuleTSpec.No.(a)A-44A-45A-49A-50A-41A-47A-42A-48A-43A-46TestTemp.(p)-40-40-40101010404040767676110110110160160160210210210300300300104082110135160185210250300ImpactEnergy(ft-1b)10ll11.524.53331.557426582707893.510088110131.5115.5120144125131.512613210.5293846.562.58499105110105.5Shear(x)91113232529453737525952951009510010010010010010015203525559595100100LateralExpansion~Mls13101124292849405467606172777284958389989590929310243138535880838989(a)Notreported.21 TABLEVICHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELINTERMEDIATESHELLPLATEB4406-3(TRANSVERSEDIRECTION)ConditionBaselineCapsuleTSpec.Na.(a)AT-44AT-45AT-49AT-50AT-41AT-47AT-42AT-48AT-43AT-46TestTempt~P)-40-40-40101010404040767676761101101101601602102102103003003001O4082110135160185210250300ImpactEnergy~ft-1b)1111.51428233040413783435050845468977790959710094101625353749.55773.5878789Shear~7.)14991823182727322748374190901001001001001001005520302540100100100lOOLateralExpansion~milt1215152822263635345644464471515780717579798375858233035444763737183(a)Notreported.22 TABLEVIICHARPYV-NOTCHIMPACTDATATHEDONALDC.COOKUNITNO.1REACTORPRESSUREVESSELCOREREGIONWELDMETALConditionBaselineSpec.No.(a)TestTemps('p)-140-140-140-100-100-100ImpactEnergy~ft-1b1ll211923.52920Shear(X)182011LateralExpansion~m11s101918222618CapsuleTW-33'-35W-34W-39W-40W-37W-38W-36-70-70-70-40-40-40101010767676210210210>>4010758211016021030045.5515463596983849211410710711011211124.55075.54485759868.5244232473447737175991001001001001005207020951001001003947495253606972758887889087931941673469666666(a)Notreported.23 TABLEVIIICHARPYV-NOTCHIMPACTDATATHEDONALDCDCOOKUNITNO.1REACTORPRESSUREVESSELCOREREGIONMELDHEAT-AFFECTEDZONEMETALConditionBaselineSpec.No.(a)TestTempo~7)-175-175-175-140-140ImpactEnergy(ft-lb)5.5771622Shear~(/LateralExpansion~mals1218-100-100-100303345131420252840CapsuleTH-33H-35H-34H-39H-40H-37H-38H-36-70-70-70-70-40-40-40101010767676210210210-4010458211016021030052472730547147978982112'401311291041051040.530.552.562.584111.5832125142055504390436910010010010010010051525254010010010039352124535045836764868482859487930274146657854(a)Notreported.
TABLEIXCHARPYV-NOTCHEPACTDATAA533GRADEBCLASS1CORRELATIONMONITORMATERIALConditionBaselineCapsuleTSpec.No.(a)R-33R-37R-38R-39R-40R-34R-35R-36TestTempr-50-50-50-20-20-201010104040408585851101101101601601602102102103003003004082110160210300350400ImpactEnergy~fe-1b)6.5961214.513.522363558.541.55282.585.563.5108.581109117115121125117.512713.518.53555.586.510011196.5Shear~X913132323233329294341425867558485879898100100100100510204095100100100LateralExpansion~mals)61091514142332325142456071547269798488878783841318324566578484(a)Notreported.25 e~~160~'II~II1ttI~eiIitI~IIIlIt1IIeII1QtI~I~IIItII~t!It'III~IIeIII120III~I~etI1I~I~IiII!IjI~eIl~i~I~IIIee+lg!''IIIeI~IIit~I~IIiI~'If.eIIIf~~~eIIIII1e~ICI~JIIII~'00SIufz1)C38040eIeIe~ItI,II~eI~eI~IIIt1T~I~IIIeII'ItIIIII~III!IIii~IIIIIII'1IIIIi~e~II~~I.'III~I~lt~C~I~t,IItIj:''t~IItII!III'~I'-III''..L'L.l.e~~'III'II~~1teI~III~'IIeI~''I1J~~I~eteIi,t1IIIIII~I';!IIIiIIIII'I~"ee~-Baseline~~I~eI'tIII~IjC~IeIeIt',1~I~II,iI'-IrradiatedCapsuleTe~~e~~'ICI"~0!*I<eII'III-200-1000100200Temperature,degF300400100~I~I'I'l~I~~~I75IeIee~~I~I~IC050eII~Ie)Cc7251eIe1~IIIIiIIIIIIIII~I~II~'~eI'IIIII~I~jIII~~I!II'.I~jeI'~tiee;iIIIIIe....I,.eI~~eI~UnirradiatedBaseline~~eee~,~\-XrradiatedCapsuleT0IeI'I~I~.IIII1II'I~~'~~eeI~eLI-200-1000100200Temperature,degF300400FIGURE4~CHARPYV-NOTCHPROPERTIESOFPLATEB4406-3(LONG-)DONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM26
~c160a~ae120~I~III1,!a,Ia1ajaaI~II7aaa~IaI'Ia,'Iae80II~I.'I7~','II~IC1IIaIIIIIIIII9~I1~aaI~1IItII~a~IIIa~!III.I1II~9I't"I~~'I~'~IIiI1~aI!40~eI\';~II~lIII1III~.'II~1~~eI1~aaaII'-'II~IIII:~tIe~~Ia,1~~-I=~a"~-200-1000100200Temperature,degF300400100co758~'*fe'I1~11II'~I.'dMted&ad~Lat-dd'-CapjI:II'II*a1tI'I~IIIII!IIII~t1,I'I~~Iae1~>>~'1.LOt~J'1a~~~'I"10~501~eeI~'IIaII!~I~.6=-~.IP25I~~at,II'IJa''ai~t:~!IIIIII+IILJ'1a'.~~I:I't1I!JIIIa~I."'a-HIIIaIII~atIIIIIIIIIIIIIIII~IIII'Ii''IIaII~IaIII'itiI~.~LjII~Ie~I1."..~t.Ia.IlTI;..LII/I'.aJf)If[I~'IIJIIIIII,I,9-200-1000100200Temperature,degF300400FIGURE5.CHARPYV-NOTCHPROPERTIESOFPLATEB4406-3(TRANS.)DONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM27 1604~>I~~~'4ii>!~IIIijl-r+'!-'.H.I~'III~~I~IIII~IIf:';~II120~!I~III~;IIIIII.IIIiI!>I>1~~~IIIIIII~14>1I~~80i).~jt~~~IIItI>II4i4'I~>>Ii1~III~I~IIII>I~>I~II>~~>II4>II':i'I~~I>,'I~f1I<<I''~~,CIIIIIl4I>''iI~~4~~1tII>j~.II~~~iiI->II>>tiiiIiI~~400iCtIit~tII>I~II~~~II~4III~II~IIIIII>~>>~U~diatad-'BaselinejiI~~II.IIiIIIIIjiIII.'t1I~~I~I~IIII'I',wj-.'-+-.-&@Bated-CapsuleT-200-1000100Temperature,degF200,300400100II4I~.'1iIII>II:.'4'~t'C;4~I~14II~>I~1,'>~m7581~>~III~~CAjQ50Xc525~~I~1'>'4>I'~~rI4~>~f~fIl.4~'iI~~II~II~I.i.I:III,'1jI>III,1~4I'I;I!~'~fi4tII~'-~Coda-.4II,.II~~~,','~.'-,."'':,;&--.UnMrediatedBaselineII~adiatedCapsuleTI''~I;'4iII:III>i'tII..*.~~I>III'.~>4'I~'I-200-1000100200Temperature,degF300400FIGURE6.CHARPYV-NOTCHPROPERTIESOFCOREREGIONWELDMETALDONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM28 160!!~~!II"!~Il!DIW120~II='IIIII~~II~iII~II'!lI~IiIiII:'!IiII'+l~~.III!jIIt"~~!80)CD~~I!!II~!!~ItII!l!."I!~IIIIIII'"Ii!~~Il~I.!+:'III!(~lIP400IIIIIIII~II!IIII'LtfIIl'IIIIIIl:~!I~$J~l(iTi~i(!!,.'I~A~I~!I~ll't~Base1ine.~I!!,'Xrmdia5edl.CapsuleI,~III'(-200-1000'00200Temperature,degF300400100!I~Ii.IIiII'~'~J.'lI'IIl~'!II~!075l~I~I',iII(J~lIIIII1I:~jIII!I~IIIIII.'~LAIII~I~~I'II50II,IIIIIlII'jII;I4~tI!I~'I'I~l!jj!~fII(I~wIJu250~!!IIIIlII~~!(Q(IIII;I~"o-'-III'I.lIIII!!I~-~lII!IIrII0I~I'i'IIII~I~1ljt~IItI'~',UnirradiathdBaseline4,'-Irradiated(Capsu1eTII~!!'!-200-1000100200Temperature,degF300400FIGURE7.CHARPYV-NOTCHPROPERTIESOFCOREREGIONHAZMATERIALDONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM29 160I~'.~IfII,If~fIiIIII~f~I~',IfI'~IIjIII~~I'~II!fI~III~~I~IIIl~~~III~Ij~III~~I120~,IIIrratHQtedjiz1+~.I~~I~~r,fIIIIII~I.t!III~I~II~~~lI~~'I!~~~'"'0"fII~~I80C)o~II~~II~~~r~I1l"'~III'~~~II~I!II!Iil1IIII~ii~IjIIII~I;;~i!I''III~jI!II~I~I'I!II'~IIf~~~'III~I1I~'IIL!I~!!III~I~~!J~~IIIl!'~'Ii~IfII~~I~t!l;I~~~II40III~I~I!~IIIf~jtIf\~jI'~;~III~>'.If~fI!~I~IIIIIII~~I~I~IIl1I~iiIIIfIIII'IT~IIIIIIIIIIIIIII~~IIjj!\I~1,'I0-200t!-1000100200Temperature,degF300400100j.I.2008~i~758~"-~Zrredkited-'Gape~~j~II~~III'''~jI050LIo25I!II~~~!~I~~t!1!IIfI~~-I!,IIII.I~'~~~!~.I~~~I'.I'~lIiIIIjI~IIII~I~I'I~II!!II~I!'I1~I!I~~Ij~!!1!I~''~~:jiIiIII~'1iri~~rI!tt,I~!e*0I!I!~I1~~~Ii~Ii!~1I~IrI-200-1000100200Temperaturede@F300400FIGURE8.CHARPYV-NOTCHPROPERTIESOFCORRELATIONMONITORMATERIALDONALDC.COOKUNITNO.1SURVEILLANCEPROGRAM30 TABLEXNOTCHTOUGHNESSPROPERTIESOFCAPSULETSPECIMENSDONALDC.COOKUNITNO.150ft-lbCTem.(deF)PlateB4406-3WeldWeld~(Lan.)(Trans.)MetalHAZCorrelationMonitorIrradiatedUnirradiatedAT35milCTem.(deF)IrradiatedUnirradiatedATCUerShelfEnerft-lb)150(a)14075(a)6575()135(b)11060(b)4075(b)6070-70-601301305055-80-7513013014575701256065UnirradiatedIrradiatedhE,ft-lbsAE,1301082216.994841010.61101208093302727.322.51201021815(a)Energytransitionat77ft-lb.(b)Lateralexpansiontransitionat54mil.31 TABLEXITENSIIEPROPERTIESOPSURVEILLANCEMATERIALSCAPSULETConditionSpecimenIdent.TestTemp.('P)0.2XYieldTensileTotalReductionStrengthStrengthElongationinArea~si~sf~I(%)BaselineCapsuleTBaselineB4406-3(Long.)A-1A-2B4406-3(Trans.)RoomRoom300300600600Room550RoomRoom30030060060068,65068,25061,35061,20058,00058,55072,70066,70068,70067,60061,00060,90058,30055,90090,65090,25082,65082,300'87,00087,40099,80093,00090,30089,45082,80081,90086,00086,60027.727.423.422.626.025.424.320.226.625.623.023.324.824.770.469.669.469.765.167.065.764.365.865.065.064.658.858.6CapsuleTW-9M-10BaselineVeldMetalRoomRoom300300600600Room55066,90067,350'9,70059,80057,20056,30086,10075,80081,50082,25074,60074,50079,40078,500103,40095,30028.725.024.023.323.423.623.619.373.265.372.971.865.263.465.060.832
~~Thetensilepropertiesoftheweldmetalappearedtobethemostaf-fectedbytheradiationexposureinCapsuleTasexpectedfrom.thereportedcoppercontents.33


'~V.ANALYSISOFRESULTSTheanalysisofdataobtainedfromsurveillanceprogramspecimenshasthefollowinggoals:(1)EstimatetheperiodoftimeoverwhichthepropertiesofthevesselbeltlinematerialswillmeetthefracturetoughnessrequirementsofAppendixGof10CFR50.ThisrequiresaprojectionofthemeasuredreductioninCuppershelfenergytothevesselwallusingknowledgeoftheenergyandspatialdistributionoftheneutronfluxandthedependenceofCvuppershelfenergyontheneutronfluence.(2)Developheatupandcooldowncurvestodescribetheoperationallimitationsforselectedperiodsoftime.ThisrequiresaprojectionofthemeasuredshiftinRTNDTtothevesselwallusingknowledgeofthedependenceoftheshiftinRTNDTontheneutronfluenceandtheenergyandspatialdis-tributionoftheneutronflux.TheenergyandspatialdistributionoftheneutronfluxforDonaldC.CookUnitNo.1wascalculatedforCapsuleTwiththeDOT3.5discreteordi-natestransportcode.TheleadfactorforCapsuleTreportedbyWestinghouseis2.6forthevesselI.D.surface.()ThiswassupportedbytheSwRIDOT3.5analysis.TheDOT3.5analysisalsopredictedthatthefastfluxatthe1/4Tand3/4Tpositionsinthe8-5/8-in.pressurevesselwallwouldbe49%and7.8%,respectively,ofthatatthevesselI.D.Thesefiguresareingoodagreementwithfluenceattenuationdeterminationsof46%and10%foran8-in.steelplatebytheNavalResearchLaboratory.()However,currentlytheNRCpre-ferstousemoreconservativefiguresof60%and15%,respectively,fortheattenuationoffastneutronfluxatthe1/4Tand3/4Tpositionsinan8-in.
TABLE OF CONTENTS
vesselwall.(16)Thisconservatismallowsfortheincreasedfractionofneutronswhichmightaccrueinthe0.1to1.0MeVrangeindeeppenetra-tionsituations.Forthe8-5/8-in.wallthicknessoftheD.C.CookUnitNo.1vessel,theattenuationsbecome57%and12.5%forthe1/4Tand3/4Tpositions,respectively.AmethodforestimatingthereductioninCvuppershelfenergyasafunctionofneutronfluenceisgiveninRegulatoryGuide1.99,Revision1.()TheresultsfromCapsuleTarecomparedtoaportionofFigure2of.(7)RegulatoryGuide'.99,Revision1,inFigure9.Theembrittlementresponseoftheweldmetal,reportedtocontain0.27%Cu(),isingoodagreementwiththepredictionofRegulatoryGuide1.99,Revision1.However,theplateislesssensitiveandtheHAZismoresensitivethanpredictedforthe0.14%coppercontent.ThebehavioroftheHAZspecimensmayreflectsomecopperpickupintheHAZfromthewelddepositortheplacementofthenotchunusuallyclosetothefusionline.Usingthedashedcurvedrawnthroughthedatapointfortheweldmetal,itispredictedthattheweldmetalCvshelfenergywillreach50ft-lbsatafluenceofabout2.1x10(E>1MeV).Thiscorrespondstoapproximately38effectivefullpoweryears(EFPY)ofoperationatthevesselI.D.,inexcessofthe32EFPYdesignlifeoftheplant.TheplateandHAZmaterialsareprojectedtorequireevenlargerfluencestoreachthe50ft-lbshelflevel.Theseprojectionswillbereex-aminedafterthenextsurveillancecapsulehasbeenremoved.AsimilarapproachcanbetakentoestimatetheincreaseinRTHDTasafunctionofreactorpowergeneration.Figure10comparestheDonald'.CookUnitNo.1surveillancedataonthethreesurveillancematerialstoselectedportionsofFigure1ofRegulatoryGuide1.99,Revision1.Theresults 6040lsII~I'.]j.!~Ilit!~~IIss!il,!!!'iissRR..OI.'!II.jjsrs'l:lliI!!!itsjlsI!.IisssI't:.sIitiliI)~ilt;}.slsss~I'I~I:I~:list~~IsllIs'III~IlsjssI~Issl4le20W10slI~IflII!IIIjI,-I-I'0IIs,sfili~lstel.j!j.l!jIgloollif)):IIIjig!rIjs\~sIll~~tjj.l.!~I.fjljjjll!~~sl!ji!istIIjjjjs>>IIiiiv)600QtAIII!I~~l~IsIssls)l:;l',I,",ssli!ltljijl!i,:.lI~IsssssstIjsIs!Isi.;"'Issl:IsliL"lslrss:I>>>>I,I;I,'~s!jlI~!'iill;Isj!II~ssillsssIls>>II>>!'!I'.Illj~Is's~l+IIIj";lsIs!'..'IllI~ls',~I!'ii!~hl.:mlilllj'-I:jlIt"r,.)j,jltsslllI~IIliI'.,.'jii>>s'.~lIll'is's'IsSIItIss1lill~~s~~lsIlljssil!IlsllI!@pe.-I.s.i"I','s"t.s~'III'lj.~s-j~~~2x101746810182468101924NeutronFluence,n/cm(E>1MeV)FIGURE9.DEPENDENCEOFCvSHELFENERGYONNEUTRONFLUENCE,DONALDC.COOKUNITNO.1 60040020010080604020I~lli.i'~I'IjII.:1~II~>>I-~I'.lji:.Il'II/II,II!'ill"I11~',laitI!I)1jliljIIItjI~IIIIlfjlIgtil;,'"1it!i.,I)KIC4!.I..i.IjIIijlII1IIf.I)I>>.j-III,lllII!lIll~llirl:'11II;!I':jl,1lIIlI)IIjtjt~~I!!IiI,1;r!,il,!,!j'll'lT~).I,I'11~I'II~III'lt.lj,jtll.!IlF~I)1~II':i]jt!IilI:,Ii~'III>>IiiiI.~IIj-II.I~I':I~'IIfI77'~III~~II1'lI!ij!I!1j>>ii,I)::;hiiili:.II-':I~Itl2x1017'4610188101924NeutronFluence,n/cm(E>1HeU)FIGURE1EFFECTOFNEUTRONFLUENCEONRTNDTSIIIFT>>DONALDCCOOkUNITNO' indicatethatthemeasuredshiftinRTNDToftheweldmetalisinagreementwiththatpredictedbyRegulatoryGuide1.99,Revision1,butthatthemea-suredshiftsinRTNDTfortheplateandHAZmaterialsareunderpredictedbytheguide.ThepredictedshiftsinRTNDTfortheDonaldC.CookUnitNo.1reac-torpressurevesselobtainedfromFigure10aresummarizedinTablesXIIandXIII.Thevaluespredictedatthe1/4Tand3/4Tafter12EFPY(TableXII)areusedtodevelopheatupandcooldownlimitcurvestomeettherequire-mentsofAppendixGtoSectionIIIoftheASMECode,asdescribedinSectionVIofthisreport.TheseprojectionsforCvshelfenergyreductionsandRTNDTshifts,andtheresultingheatupandcooldownlimitcurves,arebasedonextrapolationsfromonedatapointrepresentingthemostsensitivematerial.Afterasecondcapsulehasbeenremovedandtested,onewillbeabletointer-polatebetweentwodatapoints.TheDonaldC.CookUnitNo.1reactorvesselsurveillanceprogramsched-uleproposedbyWestinghouse~~issummarizedinTableXIV.Ithasbeenor-ganizedtosatisfyAppendixHoflOCFR50ascloselyaspossible.Therearesevenadditionalcapsulesinthevessel,allofwhichcontainbaseplate,weldmetalandHAZspecimens.Thereisnoreasontoconsiderchangingtheproposedcapsuleremovalscheduleatthistime.39 TABLEXIIPROJECTEDVALUESOFRTNDTFORDONALDC.COOKUNITNO.1FORUPTO12EFPYOFOPERATIONLocationMaterialCalculatedFluence(n/cdE>1MeV)InitialRT(deF))Shift12EFPY(aVesselI.D.~~Vessel1/4TVessel3/4TInter.ShellPlateWeldMetalHAZInter.ShellPlateWeldMetalWZInter.ShellPlateWeldMetalMZ6.55x10183.73x101845(b)-52(b)-60(c)45(b)52(b)-60(c)45(b)52(b)-60(c):145245245110185185508787190193185155133125953527(a)1EFPY1,186,250M&t.(b)Reference18.(c)References13and18.
                                                              ~Pa  e r
TABLEXIIIPROJECTEDVALUESOFRTNDTFORDONALDC.COOKUNITNO.1FORUPTO32EFPYOFOPERATIONLocationMaterialCalculatedFluence(n/cm2E>1MeV)InitialRDT(deF))32EFPY(aShiftVessel1/4TVessel3/4TInter.ShellPlateMeldMetalHAZInter.ShellPlatelfeldMetalHAZInter.ShellPlateMeldMetalHAZ'1.0x10192.2x101845(b)-52(b)-60(c)45(b)-52(b)-60(c)45(b)-52(b)60(c)240320320180285285831421422852682602252332251289082(a)1EFPY=1,186,250MMDt.(b)Reference18.(c)References13and18.
LIST OF TABLES                                                  iii LIST OF FIGURES
TABLEXIVPROPOSEDREACTORVESSELSURVEILLANCECAPSULESCHEDULEDONALDC.COOKUNITNO.1CapsuleIdentificationLeadFactorRemovalTime2.62.60.6Removedandtestedatendoffirstcorecycle10Years(postirradiationtest)10Years(reinsertinCapsuleTlocation)0.610Years(reinsertinCapsuleXlocation)2.620Years(postirradiationtest)0.62.60.620Years(reinsertinCapsuleUlocation)30Years(postirradiationtest)30Years(reinsertinCapsuleYlocation)
~~VI.HEATUPANDCOOLDOMNLIMITCURVESFORNORMALOPERATIONOFDONALDC.COOKUNITNO.1DonaldC.CookUnitNo.1isa3250Mwtpressurizedwaterreactoroper-atedbyAmericanElectricPowerServiceCorporation.Theunithasbeenpro-videdwithareactorvesselmaterialsurveillanceprogramasrequiredby10CFR50,AppendixH.Thefirstsurveillancecapsule(CapsuleT)wasremovedduringthe1977refuellingoutage.ThiscapsulewastestedbySouthwestResearchInstitute,theresultsbeingdescribedintheearliersectionsofthisreport.Insum-mary,theseresultsindicatethat:(1)TheRTNDTofthesurveillancematerialsinCapsuleTincreasedamaximumof130Fasaresultofexposuretoaneutronfluenceof1.80x10neutrons/cm2(E>1MeV).(2)Basedonaratioof2.6betweenthefastneutronfluxattheCapsuleTlocationandthemaximumincidentonthevesselwall,thevesselwallfluenceattheI.D.was6.92x1017neutrons/cm2(E>1MeV)atthetimeofremovalofCapsuleT.(3)ThemaximumshiftinRTNDTafter12effectivefullpoweryears(EFPY)ofoperationwaspredictedtobe185Fatthe1/4Tand87Fatthe3/4Tvesselwalllocations,ascontrolledbytheweldmetalandHAZmaterials.(4)Theintermediateshellplatematerial,althoughlesssensitivetoradiationembrittlementthantheweldandHAZmaterials,isprojectedtocontrolthelimitingRTNDTforaconsiderablelengthoftimebecauseofamuchhigherinitial(unirradiated)RTNDTof45F.(43
~~TheUnitNo.1heatupandcooldownlimitcurvesfor12EFPYhavebeencomputedonthebasisof(4)abovebecauseitisanticipatedthattheRTNDToftheprimarypressureboundarymaterialswillbehighestfortheplatema-terialatleastthroughthattimeperiod(seeTableXII).TheproceduresemployedbySwRIaredescribedinAppendixB.Thefollowingpressurevesselconstantswereemployedasinputdatainthisanalysis:VesselInnerRadius,riVesselOuterRadius,roOperatingPressure,PoInitialTemperature,ToFinalTemperature,Tf86.50in.,includingcladding95.34in.2235psig70F550'FEffectiveCoolantFlowRate,Q~135.6x10ibm/hrEffectiveFlowArea,A26.72ft2EffectiveHydraulicDiameter,D~15.05in.Heatupcurveswerecomputedforaheatuprateof60F/hr.Sincelowerratestendtoraisethecurveinthecentralregion(seeAppendixB),thesecurvesapplytoallheatingratesupto60F/hr.Cooldowncurveswerecom-putedforcooldownratesof0F/hr(steadystate),20F/hr,40F/hr,60F/hr,and100F/hr.The20F/hrcurvewouldapplytocooldownratesupto20F/hr;the40F/hrcurvewouldapplytoratesfrom20Fto40F/hr;the60F/hrcurvewouldapplytoratesfrom40Fto60F/hr;the100F/hrcurvewouldapplytoratesfrom60F/hrto100F.hr.TheUnitNo.1heatupandcooldowncurvesforupto12EFPYaregiveninFigureslland12.44 260024002200~I~~IltII~2000180016001400u12001000800I~~1t]t...I1~tI~lf~~iI~'ffif}l,l600400200lg~:it}r'iy~~II~~~II~~,lI:1t1~<<f~fI.,f~f1~II"I''~~lf:1~~1~r~jtit'riHf)L11,~If.[~]~flf60100150200250300350400IndicatedTemperature,degFFIGUREll.DONALDC.COOKUNITNO.1REACTORCOOLANTHEATUPLIMITATIONSAPPLICABLEFORPERIODSUPTO12EFFECTIVEFULLPOfKRYEARS 2600240022002000800600:.,;I)l)~'le~1~~~~I1~~er~I:.:[::II1I.;I'i>I:;I,-:II}iI'le.l,)IL)"!Ite400200601~~1)~I,.11800Aj1600P41400~QAi12001000~~I.".s~'-se-''Is~ll1:~1)I!-.1;I:I!~sij!I'.II)~s~sellI1~I.',:Il'allI~-i):ls~~~Itl~1-:I~~Ii'~~".I)'e~I'!1)~r:li~~ee)ei::I?.Ig!ji'.l)!~.II~~~I~~1t1'eii!l.f~ie)tl~ij~~i~.~)~I~e=-~'1eI~j'I100efje::ff!."Iese>}s)1Is!',Iiae+II;.I,~ll~e)i}'es1~ls.Ilr',ll)~Ie''I'.>I;.:I~1eI~~I~~1~iI~I1e~gII'..I1~~t~~1501~I~~el>a~Isell~eeaI~~'IRlI~~e~1~ttI\IIs~lafI>1~1)I~tI,.I))~>I:lj11'i"Fig+:I.~'I~1ae,.)Ill~II~~I.';llSel1~1~1itis,';)IeisaIll11~~i:II'I}ll~~g~!'.I!!ilI'')1;I)s~~ssei;.1'~~'.Lc'l,!)le~iI}}i;f})JjlI:,I1~I1-"~e..I:}i.~f:I'I:i!~l)iife'I''l'll;~~~l200s)~Sl'1e~~~1I'~1~~ii~i>lelf:I!.p.)1~le'II)!Ij)se1~I~)I~I~ll!e~~.~11~~'~~~,iiij~Is}esj)rjlliI!1IIllsi),.I'sIf!a~~~s~~I~~~I'.I)ffjfiliI'IssgI11il>!II!e!~)'-ii'sl:::IIlI!Is~~~tp;ifgIA)~I:e)r)')1lel)lsI~~IIej1~~~ee~1I~250s~1s;-1~~~):IssI'l~1f~~Istjt~.I~~1Ieae::ils'Ii,Isls~I1fe".I-'ll:;.L'::.:.-:'I.':.iI~*~el')tsie~IIII):I'll~1sg~1~~')tI-!I'I~)I~-1!(}I1>~~~~I~~eI'.1t!I!It)}?4>IlIrI~~~'.~e~~1I;rf:ItjI~as~300~~>l~I?)j:-j-'~t's1lj:snil'l'll.'glt,1I~~.1ealI~~II'1>f11>~~IIlj~:,IiS1~~I.:;.I1j)II~,Je)~fI.:::)I:!ijI1~eI"~~4~eelgee~4ll::II~~)tj~elTae~e~~s3501g~~rma~i~~~~:i>ist';le)~~I~1I,,~~fII~rglalj)IIjal:s.A~e'1~~{gIItI't'~~I}L>Il}IlirfI'rI400IndicatedTemperature,degFFIGURE12.DONALDC.COOKUNITNO.1REACTORCOOLANTCOOLDOWNLIHITATIONSAPPLICABLEFORPERIODSUPTO12EFFECTIVEFULLPOWERYEARS VII.REFERENCES1.Title10,CodeofFederalRegulations,Part50,"LicensingofProduc-tionandUtilizationFacilities."2.ASMEBoilerandPressureVesselCode,SectionIII,"NuclearPowerPlantComponents,"1974Edition.3.ASTME208-69,"StandardMethodforConductingDrop-WeightTesttoDe-termineNil-DuctilityTransitionTemperatureofFerriticSteels,"1975AnnualBookofASTMStandards.Steele,L.E.,andSerpan,C.Z.,Jr.,"AnalysisofReactorVesselRadiationEffectsSurveillancePrograms,"ASTMSTP481,December1970.5.Steele,L.E.,"NeutronIrradiationEmbrittlementofReactorPressureVesselSteels,"InternationalAtomicEnergyAgency,TechnicalReportsSeriesNo.163,1975.6.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNuclearPowerPlantComponents,"1974Edition.7.RegulatoryGuide1.99,Revision1,OfficeofStandardsDevelopment,U.S.NuclearRegulatoryCommission,April1977.8.CommentsonRegulatoryGuide1.99,WestinghouseElectricCorporation,'btainedfromNRCPublicDocumentRoom,Washington,D.C.9.PositiononRegulatoryGuide1.99,CombustionEngineeringPowerSys-tems,ObtainedfromNRCPublicDocumentRoom,Washington,D.C.10.ASTME185-73,"StandardRecommendedPracticeforSurveillanceTestsforNuclearReactorVessels,"1975AnnualBookofASTMStandards.11.ASTME399-74,"StandardMethodofTestforPlane-StrainFractureToughnessofMetallicMaterials,"1975AnnualBookofASTMStandards.12.Witt,F.J.,andMager,T.R.,"AProcedureforDeterminingBoundingValuesofFractureToughnessKIcatAnyTemperature,"ORNL-TM-3894,October1972.13."AmericanElectricPowerServiceCorporationDonaldC.CookUnitNo.1ReactorVesselRadiationSurveillanceProgram,"WCAP-8047,March1973.14.ENDF/B-IV,DosimetryTape412,MatNo.6417(26-Fe-54),July1974.15.Loss,F.J.,Hawthorne,J.R.,Serpan,C.Z.,Jr.,andPuzak,P.P.,"AnalysisofRadiation-InducedEmbrittlementGradientsonFractureCharacteristicsofThick-WalledPressureVesselSteels,"NRLReport7209,March1,1971.47 16.Telecon,E.B.NorristoKenHogue(NRCStaff)January19,1977.17.Hazleton,W.S.,Anderson,S.L.,andYanichko,S.E.,"BasisforHeatupandCooldownLimitCurves,"WCAP-7924,July1972.18.DonaldC.CookUnitNo.1TechnicalSpecifications,asofNovember30,1977.48 APPENDIXATENSILETESTRECORDS SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-..lSpec.No.-1Est.U.T.S.InitialG.L.PS1r41Z1~MachineNo.TemperatureI4'FtsJStrainRate,<2tzpi>InitialDia..Iin.InisialThicknessin.DateInitialArea77InitialWidthin.TopTemperatureBottomTemperatureFinalGageLengthFinalDiameterFinalArea'Fp4Tine/~~Iin.ine20.2'%ffsetLoad889Dlb0.02%OffsetLoadUpperYieldPointlbMaximumLoad40lbrMaximumLoadInitialAreaP2Init1alAreapsicjoy2-~gpsi002/YS0.02%OffsetLoadInitialAreaPS1YSUpperYieldPointUPPer..ItialAreaPS1FinalG.L.-Initialx100=InitialArea-FinalArea1p@~7InitialAreaSignature:A-2
-0;0rZi9ahJA-3 SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-.ZEst.U.T.S.psiSpec.No.InitialG.L..Oin.Temperafore~P'Frr/StrainRate.C'~/WInitialDia..gC'n.InitialThicknessin.InitialArea.+H/InitialVTidthin.TapTemperatureBottomTemperatureI'FMaximumLoadS~7Slb02%%uoOffsetLoad52.=.~~lbFinalGageLengthFinalDiameter.l+Jln~0.02%%utfOffsetLoadUpperYieldPointlblbFinalArea.o'722rInitialArea0.2%OffsetLoadInitialArea002%%uYS~02%%u'ffetLoadInitialAreapslUerYieldPointPPer.-ItlalAreaFinalG.L.-Initial%%utlElongationx100'=~~'%%uoInitialArea-FinalArea100InitialAreatt
)~~a'0'0g~<A-5 SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-Spec.No.Est.U.T.S.InitialG.L.psiddin.MachineNo.)>/J~~Temperature>+'FInitialDia.InitialThieknessin.DateInitialArea'~87InitialWidthin.TopTemperatureoFMaximumLoad5.>Glb0.2%OffsetLoad~~n,~>lb~sFinalGageLengthFinalDiamete"FinalArea111~in.sP/74+m.20.02%OffsetLoadUpperYieldPointlblbMaximumLoad0.2'lsOffsetLoadg~gg.InitialArea002$YS=2/oOffsetLoadInitialArea'erYieldPointpp,~telAreaps1p81%uFinG.L.-InitialG.L.%ElongationInitialG,L.%RAInitialArea-FinalAreaInitialAreaSignature:A-6
'A-7
~~1SouthwestResearchInstituteDepartmentofMaterialsSciencesTENSILETESTDATASHEETTestNo.T-Spec.No.Temperature5ft<'FEst.U.T.S.InitialG.L.InitialDia.psiProjectNo.MachineNo.Date6<-a>>n-of"/StrainRateInitialThicknessInitialWidth1neInitialArea.OHg'7TopTemperature5~l~'FMaximumLoad+C~~'0lbBottomTemperatureo840.2%OffsetLoad~?~.5ib0.02%OffsetLoadlbin.UpperYieldPointFinalAreaMaximumLoadInitialArea0.2%%uoOffsetLoadInitialAreap02%%uYS0.02%0ffsetLoadInitxalAreaps1UerYieldPointInitialAreaps'inalG.L.-InitialGLlpp0EOIlgation-~.+lGLx-//7'InitialArea-FinalAreaInitialAreaSignature:A-8b,t, A-9
~1)1 APPENDIXBPROCEDUREFORTHEGENERATIONOFALLOWABLEPRESSURE-TEMPERATURELIMITCURVESFORNUCLEARPOWERPLANTREACTORVESSELS PROCEDUREFORTHEGENERATIONOFALLOWABLEPRESSURE-TEMPERATURELIMITCURVESFORNUCLEAR.POWERPLANTREACTORVESSELSA.IntroductionThefollowingisadescriptionofthebasisforthegenerationofpressure-temperaturelimitcurvesforinserviceleakandhydrostatictests,heatupandcooldownoperations,andcoreoperationofreactorpressurevessels~ThesafetymarginsemployedintheseproceduresequalorexceedthoserecommendedintheASMEBoilerandPressureVesselCode,SectionIII,AppendixG,"ProtectionAgainstNonductileFailure."B.BackroundThebasicparameterusedtodeterminesafevesseloperationalconditionsisthestressintensityfactor,KZ,whichisafunctionofthestressstateandflawconfiguration.TheKIcorrespondingtomembranetensionisgivenbyKI&#x17d;m'mwhereMmisthemembranestresscorrectionfactorforthepostulatedflawando.mthemembranestress.Likewise,KIcorrespondingtobend-ingisgivenbyKIb&#x17d;b0'b(2)whereMbisthebendingstresscorrectionfactorando.bisthebendingstress.Forvesselsectionthicknessof4to12inches,themaximumB-2 postulatedsurfaceflaw,whichisassumedtobenormaltothedirectionofmaximumstress,hasadepthof0.25ofthesectionthicknessandalengthofl.50timesthesectionthickness.CurvesforMmversusthesquarerootofthevesselwallthicknessforthepostulatedflawaregiveninFigure1astakenfromthePressureVesselCode(ref.FigureG-2114.1).Thesecurvesareafunctionofthestressratioparameterr/r,whereo.(Pyisthematerialyieldstrengthwhichis,takentobe50,000psi.Thebendingcorrectionfactorisdefinedas2l3MmandisthereforedeterminedfromFigure1aswell.ThebasisforthesecurvesisgiveninASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNu-clearPowerPlantComponents,"ArticleA-3000.TheCodespecifiestheminimumKIthatcancausefailureasafunc-tionofmaterialtemperature,T,anditsreferencenilductilitytemperature,RTNDT.ThisminimumKIisdefinedasthereferencestressintensityfac-tor,KIR,andisgivenbyKIR=26777.+1223.exp0.014493(T-RT+160)NDT(3)wherealltemperaturesareindegreesFahrenheit.Aplotofthisexpression.isgiveninFigure2takenfromtheCode(ref.FigureG-2010.1).C.Pressure-TemeratureRelationshis1.InserviceLeakandHdrostaticTestDuringperformanceofinserviceleakandhydrostatictests,thereferencestressintensityfactor,KIR,mustalwaysbegreaterthanB-3 3.83.2MEh<8RAHQI(mMImm~raMbxMb<2/3hlm,1.00.70.5O.I3.0E2.~i2.22.01.61.21.01.01.2IA1.61,02.02.22.~i2.62.83.03.23A3.63.84.0FIGURE1.STRESSCORRECTIONFACTOR I70l30I20II0LgtcoSO70605040I'R26777)V'IIERERTHPT'EFEAFHCESTRESSINTENSITYFACTORTEhIPERATUREATVIHICHI'IRISPERhIITTED,'F'EFERFHCEHIL-DUCTILITYTEMPERATUREIO0-240-200-IGO-I20-eO-4004080.I20IGO200240TEIAPERATUAERELATIYETOATHP,(T-ATHPT),FAHREIIHEIDGREESFIGURE2.REFERENCESTRESSINTENSITYFACTORB-5 l.5timestheKZcaused.bypressure,thusl.5Kl'pKZR(4)or'5Mm<m~K1R(5)Foracylinderwithinnerradiusriandouterradiusro,thestressdistributionduetointernalpressureisgivenbyWith1/4Tflawspossibleatbothinnerandouterradiallocations,i.e.,atrl/4=ri41/4(ro-ri)andr3/<rj+3/4(ro-ri),themaximumstresswilloccurattheinnerflawlocation,thusIrjr+(1/4ro+3/4ri)4.2o.=Pmaxoro2-ri2(1/4rop3/4ri)2Withtheoperationpressureknown,i.e.,Po,wedeter-minetheminimumcoolanttemperaturethatwillsatisfyEquation(4)byevaluatingKlR='5Mm<maxanddeterminethecorrespondingcoolanttemperature,T,fromEqua-tion(3)forthegivenRT~~DTatthe1/4Tlocation.Forthiscalculation,Equation(3)takestheformI-*I-6..6.I[-666-'].S-6 Theinservicecurvesaregeneratedforanoperatingpres-surerangeof~96Potol.14Po,wherePoisthedesignoperatingpressure.2.HeatuandCooldown0erationsAtalltimesduringheatupandcooldownoperations,theref-erencestressintensityfactor,K1R,mustalwaysbegreaterthanthesumof2timestheKlpcausedbypressureandtheKltcausedbythermalgra-dients,thus2.0Klp+l.0Klt<KZR(10)or20Mm0max-K1R-KZtwhereomaxisthemaximumallowablestressduetointernalpressure,andKZtistheequivalentlinearstressintensityfactorproducedbythethermalgradients.Toobtaintheequivalentlinearstressintensityfac-torduetothermalgradientsrequiresadetailedthermalstressanalysis.ThedetailsoftherequiredanalysisaregiveninSectionD.DuringheatuptheradialstressdistributionsduetointernalpressureandthermalgradientsareshownschematicallyinFigure3a.Assumingapossibleflawatthe1/4Tlocation,weseefromFigure3athatthethermalstresstendstoalleviatethepressurestressatthispointinthevesselwalland,therefore,thesteadystatepressurestresswouldrepresentthemaximumstressconditionatthe1/4Tlocation.At OUTERRADIUS3/4TZ/4TINNERRADIUSPressurestressdistributionThermalstressdistribution(a)HeatupOUTERRADIUS3/4T1/4TINNERRADIUSPressurestressdistributionThermalstressdistribution(b)CooldownFigure3.HeatupandCooldownStressDistributionB-8 the3/4Tflawlocation,thepressurestressandthermalstressaddand,therefore,thecombinationforagivenheatupraterepresentsthemaxi-mumstressatthe3/4Tlocation.Themaximumoverallstressbetweenthe1/4Tand3/4Tlocationthendeterminesthemaximumallowablereac-torpressureatthegivencoolanttemperature.Theheatuppressure-temperaturecurvesarethusgeneratedbycalculatingthemaximumsteadystatepressurebasedonapossibleflawatthe1/4Tlocationfrommax(K1Rrjro+(1/4ro03/4r;)2MmroZ-rj(1/4ro+3/4rj)2(12)whereMmisdeterminedfromthecurvesinFigure1andK1RisobtainedfromEquation(3)usingthecoolanttemperatureandRTNDTatthe1/4Tlocation.HerewemaynotethatMmmustbeiteratedforsinceitisafunctionofthefinalstressratiotoyieldstrength(0./ay).Atthe3/4Tlocation,themaximumpressureisdeterminedfromEquation(ll)asP(3/4T)-KZR-KurjroZ+(1/4rj+3/41o)2MroZr.Z(1/4ri+3/4ro)2(13)whereK1RisobtainedfromEquation(2)usingthematerialtemperatureandRTNDTatthe3/4TlocationandKltisdeterminedfromtheanalysisprocedureoutlinedinSectionD.MmisdeterminedfromFigure1,B-9 Theminimumofthesemaximumallowablepressuresatthegivencoolanttemperaturedeterminesthemaximumoperationpressure.Eachheatuprateofinterestmustbeanalyzedonanindivid-ualbasis.Thecooldownanalysisproceedsinasimilarfashionasthatdescribedforheatupwiththefollowingexceptions:WenotefromFigure3bthatduringcooldownthe1/4Tlocationalwayscontrolsthemaximumstresssincethethermalgradientproducestensilestressesatthe1/4Tlocation.ThusthesteadystatepressureisthesameasthatgiveninEquation(12).Foreachcoo)downrate,themaximumpressureisevalu-atedatthe1/4Tlocationfrommax(riro~+(3/4ri01/4ro)2Mr-r~(3/4ri+1/4r)(14)whereKIRisobtainedfromEquation(3)usingthematerialtemperatureandRTNDTat'the1/4Tlocation.KItisdeterminedfromthethermalanalysisdescribedinSectionD.Itisofinteresttonotethatduringcooldownthematerialtemperaturewilllagthecoolanttemperatureand,therefore,thesteadystatepressure,whichisevaluatedatthecoolanttemperature,willini-tiallyyieldthelowermaximumallowablepressure.Whenthethermalgradientsincrease,thestressesdolikewise,and,finally,thetransientanalysisgovernsthemaximumallowablepressure.Henceapoint-by-point comparisonmustbemadebetweenthemaximumallowablepressurespro-ducedbysteadystateanalysesandtransientthermalanalysistodeterminetheminimumofthemaximumallowablepressures.3.Core0erationAtalltimesthatthereactorcoreiscritical,thetemperaturemustbehigherthanthatrequiredforinservicehydrostatictesting,andinaddition,thepressure-temperaturerelationshipshallprovideatleasta40'Fmarginoverthatrequiredforheatupandcooldownoperations.Thusthepressure-temperaturelimitcurvesforcoreoperationmaybeconstructeddirectlyfromtheinserviceleakand.hydrostatictestandheatupanalysisresults.D.ThermalStressAnalsisTheequivalentlinearstressduetothermalgradientsisobtainedfromadetailedthermalanalysisofthevessel.,Thetemperaturedistribu-tioninthevesselwallisgovernedbythepartialdifferentialequationPcT<-K[(1/r)T+T.1=o(15)subjecttoinitialconditionT(r,0)=Tandboundaryconditions-KTr(ri,t)=hLTc(t)-T(rit)I(17) andTr(roit)=0(18)whereTc=To+Rt.(19)pisthematerialdensity,cthematerialspecificheat,Ktheheatconduc-tivityofthematerial,htheheattransfercoefficientbetweenthewatercoolantandvesselmaterial,Rtheheatingrate,Totheinitialcoolanttemperature,T(r,t)thetemperaturedistributioninthevessel,rthespatialcoordinate,andtthetemporalcoordinate.Afinitedifferencesolutionprocedureisemployedtosolvefortheradialtemperaturedistributionatvarioustimestepsalongtheheatuporcooldowncycle.ThefinitedifferenceequationsforNradialpoints,atdistance6rapart,acrossthevesselare:for1<n<NhtKT=Ll-2(2-)JTQtK~gr+(g)ZL(1+-)Tn+1.+Tn-1J(2o)(21)B-12 andforn=Nt+()tN[pc(()r)ZJNpr())r)2N-1(22)Forstabilityinthefinitedifferenceoperation,wemustchoosehtforagivenhrsuchthatboth2(2+-)c1()tKZrpc(kr)2r1(23)andhtK(Ih,r~(1+)+C1pc(hr)rlpc(hr)(24)aresatisfied.Theseconditionsassureusthatheatwillnotflowinthedirectionofincreasingtemperature,which,ofcourse,wouldviolatethesecondlawofthermodynamics.Sincealargevariationincoolanttemperatureisconsidered,thedependenceof(K/pc),K,andhontemperatureisincludedintheanalysisbytreatingtheseasconstantsonlyduringevery5'Fincrementincoolanttemperatureandthenupdatingtheirvaluesforthenext5'Fincrement.Thedependenceof(E/pc)calledthethermaldiffusivityandE,thethermalconductivity,canbedeterminedfromtheASMEBoilerandPressureVes-selCode,SectionIII,AppendixI-StressTables.Alinearregressionanalysisofthetabularvaluesresultedinthefollowingexpressions:K(T)=38.211-0.01673~T(BTU/HR-FT-'F)(25)B-13 andk(T)"-(K/pc)=0.6942-0.000432~T(FT/HR)(26)whereTisindegreesFahrenheit.Theheattransfercoefficientiscalculatedbasedonforcedcon-vectionunderturbulentflowconditions.Thevariablesinvolvedarethemeanvelocityofthefluidcoolant,theequivalent(hydraulic)diameterofthecoolantchannel,andthedensity,heatcapacity,viscosity,andthermalconductivityofthecoolant.Forwatercoolant,allowanceforthevariationsinphysicalpropertieswithtemperaturemaybemadebywriting~h(T)=170(1+10~T-10~T)v/D(27)wherevisinft/sec,Dininches,thetemperatureisin'F,andhisinBtu/hr-ft-'F.Thevaluesfortheheat-transfercoefficientgivenbythisrelationshipareingoodagreementwiththoseobtainedfromtheDittus-Boelterequationfortemperaturesupto600'F.Themeanvelocityofthecoolant,v,isgenerallygivenintermsoftheeffectivecoolantflowrateQ(Lbm/hr)andeffectiveflowareaA(ft).Giventherelationshipp(T)=62.93-0.48x102<'-T-0.46x104"T2(28)forthedensityofwaterasafunctionoftemperature,themeanvelocityofthecoolantisobtainedfromv=O/(3600>p(T)~A)(29)Glasstone,S.,PrincilesofNuclearReactorEngineerin,D.VanNostrandCo.,Inc.,NewJersey,pp.667-668,1960.
Thethermalstressdistributioniscalculatedfromr2+ri2CroaT(r,t)=t[3jT(r,t)rdr-T(r,t)+3(33)jT(r,t)rdrj(30)ri01whereaisthecoefficientofthermalexpansion(in/in'F),EisYoung'smodulus,andvisPoisson'sratio.ThisexpressioncanbeobtainedfromTheorofElasticitbyTimoshenkoandGoodier,pp.408-409,whenim-posingazeroradialstressconditionatthecylinderinnerandouterradius.Poisson'sratioistakentobeconstantatavalueof0.3whilenandEareevaluatedasafunctionoftheaveragetemperatureacrossthevesselT=~(3jT(r)rdrri(31)Thedependenceofthecoefficientofthermalexpansionontemperatureistakentobea(T)=5.76x10-6+4.4x10-94T(32)andthedependenceofYoung'smodulusontemperatureistakentobeE(T)=27.9142+2.5782x10~"T-6.5723x1064T(33)asobtainedfromregressionanalysisoftabularvaluesgiveninSectionIII,AppendixIoftheASMEBoilerandPressureVesselCode.TheresultingstressdistributiongivenbyEquation(30)isnotlinear;however,anequivalentlinearstressdistributionisdeterminedfromtheresultingmoment.ThemomentproducedbythenonlinearB-15 r~~stressdistributionisgivenbyroM(t)=bfaT(r,t)rdr(34)wherebis*unitdepthofthevessel.Herewenotethatthemomentisafunctionoftime,i.e.,coolanttemperatureviaTc=To+Rt.Foralin-earstressdistributionwehavethatPMc~max=I(35')where0axisthemaximumouterfiberstress,cthedistancefromtheneutralaxis,takentobe(ro-ri)/2,andIthesectionareamomentofinertiawhichisgivenbybhb(ro-r;)31212(36)CombiningtheseexpressionsresultsintheequivalentlinearstressduetothermalgradientsrorrttaxrbtTJ't'T(r')r~(r.-r)J1i(37)ThethermalstressintensityfactorKItisthendefinedasKIt=Mb0bt(38)whereMbisdeterminedfromthecurvesgiveninFigure1whereinMb=2/3Mm.Itisofinteresttonotethatasignchangeoccursinthestresscalculationsduringacooldownanalysissincethethermalgradients producecompressivestressesatthevesselouterradius.ThissignchangemustthenbereflectedintheKltcalculationforthecooldownanalysis.NormalizedtemperatureandthermalstressdistributionsduringatypicalreactorheatuparegiveninFigure4.Theradialtemperatureisshownnormalizedwithrespecttotheaveragetemperature,Tavg,by(T-Tavg)max(39)Thethermalstressandequivalentlinearizedstress,ascalculatedbyEquations(30)and(37),arenormalizedwithrespecttothemaximumthermalstress.Herewenotethattheactualthermalstressatthe3/4Tlocationisconsiderablylessthanthemaximumequivalentlinearstresswhichyieldsadditionalsafetymarginsduringtheheatupcycle.Similartemperatureandthermalstressdistributionsaredevelopedduringcool-down.ThetrendsarenearlyidenticalasthoseshowninFigure4whentheinnerandoutervessellocationsarereversedwiththeI/4Tlocationbecomingthecriticalpoint.E.ExamleCalculationsThefollowingexampleisbasedonareactorvesselwiththefollow-ingcharacteristics:InnerRadiusOuterRadiusOperatingPressure82.00in.(r)9000in.(r)2250psig(Po)
OUTERWALL1.00.80.60.40.2//////-1.01.0-1.0INNERWALL1.0Normalizedtemperaturedistribution(4T/h,Tma)Normalizedstressdistribution(o/omax)Figure4.TypicalNormalizedTemperatureandStressDistributionDuringHeatup InitialTemperatureFinalTemperatureEffectiveCoolantFlowRate70'F(To)550'F100x10Lbm/hr(Q)EffectiveFlowArea20.00ft2(A)EffectiveHydraulicDiameter=10.00in.(D)RTNDT(1/4T)RTNDT(3/4T)200OF140'FInthethermalstressanalysis21radialpointswereusedinthefinitedifferencescheme.Goingfrom70'Ftothefinaltemperatureof550'F,approximately12,000time(temperatureviaT=To+Rt)stepswererequiredinthethermalanalysisforthe100'F/hrheatuprate.TheresultsofthecomputationareshowninFigures5through9.Figure5givesthereferencestressintensityfactor,KIR,asafunctionoftemperatureindexedtoRTNDT(1/4T).Forthesteadystateanalysis,KIRisconverteddirectlytoallowablepressureviaEquation12.Duringtheheatupandcooldownthermalanalysesthematerialtem-peratureatthe1/4Tand3/4TandthermalstressintensityfactorsKztarerequiredtocomputeallowablepressureviaEquations(13)and(14).Thematerialtemperaturesversuscoolanttemperatureduringthe100'F/hrheatupandcooldownanalysesaregiveninFigure6.Thesetemperaturesallowcomputationofthecorrespondingreferencestressintensityfactors,KIR(3/4T)andKIR(1/4T).Figure7givesthecorrespondingthermalstressintensityfactoratthe3/4Tand1/4Tlocationsasafunctionofcoolanttemperature.
200160RTNDT(1i4T)-200F~-120hCItVo804050150200250TEMPERATURE(F)300350400Figure5.ReferenceStressIntensityFactorasaFunctionofTemperatureIndexedtoRTNDT(1/4T) 400-100'F/HRHEATUPi3/4TLocationi--100'F/HRCOOLDOWN(1/4TLocation)30020010050100150200250COOLANTTEMPERATURE('F)300350Figure6.VesselTemperatureat1/4Tand3/4TLocationsasaFunctionofCoolantTemperature 106cuhC-100'F/HRHEATUP(3/4TLocationi--100'F/HRCOOLDOWN(1/4Location)5010Q150200250COOLANTTEMPERATURE('F)3QQ350Figure7.ThermalStressIntensityFactorat3/4Tand1/4TLocationsasaFunctionofCoolantTemperature Figures8and9demonstratetheconstructionoftheallowablecom-positepressureandtemperaturecurvesforthe100'F/hrheatupandcool-downrates.Thecompositecurvesrepresentthelowerboundofthethermalandsteadystatecurveswiththeadditionofmarginsof+10'Fand-60psigforpossibleinstrumentationerror.Figure8alsoshowstheleaktestlimit,correctedforinstrumenterror,asobtainedfromEquation(9).Thelimitpointsareattheoperatingpressure2250psigandat2475psigwhichcor-respondsto1.1timestheoperatingpressure.ThecriticalitylimitisalsoshowninFigure8andisconstructedbyprovidingfora40'Fmarginoverthatrequiredforheatupandcooldownandbyrequiringthattheminimumtemperaturebegreaterthanthatrequiredbytheleaktestlimit.B-23 2400LEAKTESTLIIIIIIT2000COMPOSITECURVE-100'F/HRHEATUP(Marginsof+10Fand-60psigforinstrumenterror)1600I1200STEADYSTATECRITICALITYLIMIT800HEATUP40050100150200250INDICATEDTEMPERATURE(F)300350400Figure8.Pressure-TemperatureCurvesfor100F/HrHeatup 240020001600COMPOSITECURVE-100F/HRCOOLDOWN(Marginsof+10Fand-60psigforinstrumenterror)CXIPJ1200CDCh800COOLDOWNSTEADYSTATE40050100150200250INDICATEDTEMPERATURE('F)300350Figure9.Pressure-TemperatureCurvesfor100'F/HrCooldown


ADDENDUMTOFINALREPORTON"REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.1,ANALYSISOFCAPSULET"PlateB4406-3HeldHeld,30ft-1bCTem.'(deT)~(lan.)(Ttana.)MetalMttCorrelationMonitorIrradiatedUnirradiated.AT6556090~.-10'020-90-10070801201054560MonitorIdentificationFe-TopFe-TopMid.Fe-Mid.Fe-Bot.Mid.Fe-Bot.Cu*-TopMid.Cu-Mid.Cu-Bot.Mid.Ni-TopMid.Ni-Mid.Ni-Bot.Mid.Co-TopCo(Cd)-TopCo--Bot.Co(Cd)-Bot.U-238NP-237Height~(m)18.215.317.216.616.464.962.970.922.925.524.59.38.79.57.712.0(a)20.0(a)(a)AsreportedinWCAP-8047.
==SUMMARY==
iADDENDUMNO.2TOFINALREPORTON"REACTORVESSELMATERIALSURVEILLANCEPROGRAMFORDONALDC.COOKUNITNO.1,ANALYSISOFCAPSULET"AdditionalTensileTestDataSpecimenNo.FractureLoadsi64,70063,250~FractureStress188,600177,000UniformElongation<>%%u45.002.45W987,600757800250,000193,7004.562.87(a)Usingmethodofchangeincross-sectionalareaofunneckedportionofspecimenperASTME184-62.}}
OF RESULTS AND CONCLUSIONS BACKGROUND III. DESCRIPTION OF MATERIAL SURVEILLANCE PROGRAM IV. TESTING OF SPECIMENS FROM CAPSULE T                      13 V. ANALYSIS OF RESULTS                                      35 VI. HEATUP,AND COOLDOWN  LIMIT CURVES FOR NORMAL OPERATION OF DONALD C. COOK  UNIT NO. 1 VII. REFERENCES                                                47 j
APPENDIX A .TENSILE  TEST RECORDS                              A-1 APPENDIX B  PROCEDURE FOR THE GENERATION OF ALLOWABLE          B-1 PRESSURE-TEMPERATURE LIMIT CURVES FOR NUCLEAR POWER PLANT REACTOR VESSELS
 
I
  ~
~  lb LIST  OF TABLES Table                                                    ~Pa  e Donald C. Cook Unit No. 1 Reactor Vessel Sur-veillance Materials Summary  of Reactor Operations                        16 Donald C. Cook Unit No. 1 Summary of Neutron Dosimetry Results                  17 Donald C. Cook Unit No. 1 Capsule T IV  Fast Neutron Spectrum and Iron    Activation          19 Cross Sections for Capsule T Charpy V-Notch Impact Data                            21 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Intermediate Shell Plate B4406-3 (Longitudinal Direction)
VI  Charpy V-Notch Impact Data                            22 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Intermediate Shell Plate B4406-3 (Transverse Direction)
VII  Charpy V-Notch Impact Data                            23 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Core Region Weld Metal VIII  Charpy V-Notch Impact Data                            24 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Core Region Weld Heat-Affected Zone Metal IX  Charpy V-Notch Impact Data                            25 A533 Grade B Class 1  Correlation Monitor Material Notch Toughness Properties of Capsule T Specimens    31 Donald C. Cook Unit No. 1 XI  Tensile Properties of Surveillance Materials          32 Capsule T XII  Projected Values of  RTNDT for  Donald C. Cook      40 Unit  No. 1 for Up to  12 EFPY  of Operation
 
I
                                                          ~
                                                            ~
LZST OF TABLES (CONT'D.)
Table                                              ~Pa  e ZIZZ  Projected Values of RTNDT for Donald C. Cook  41 Unit No. 1 for Up to 32 EFPY of Operation XZV  Proposed Reactor Vessel Surveillance Capsule  42 Schedule Donald C. Cook Unit No. 1
 
LIST  OF FIGURES
~Ft  ure                                                          ~Pa  e Arrangement of Surveillance Capsules    in the Pressure Vessel 2    Vessel Material Surveillance Specimens 3    Arrangement of  Specimens  and Dosimeters  in          12 Capsule T 4  , Charpy V-Notch Properties    of Plate  B4406-3          26 (Long.)
Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties    of Plate B4406-3            27 (Trans.)
Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties    of Core Region Meld        28 Metal Donald C. Cook Unit No. 1  Surveillance Program Charpy V-Notch Properties    of  Core Region HAZ        29 Material Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties    of Correlation Monitor      30 Material Donald C. Cook Unit No. 1 Surveillance Program Dependence of Cv Shelf Energy on Neutron Fluence,        37 Donald C. Cook Unit No. 1 10    Effect of Neutron Fluence    on RTNDT Shift,  Donald  38 C. Cook Unit No. 1 Donald C. Cook Unit No. 1 Reactor Coolant Heatup        45 Limitations Applicable for Periods    Up  to 12 Effective Full  Power Years 12    Donald C. Cook Unit No. 1 Reactor Coolant Cooldown      46 Limitations Applicable for Periods    Up  to 12 Effective Full Power Years
 
  ~ ~
C
 
I. 
 
==SUMMARY==
OF RESULTS AND CONCLUSIONS The  analysis of the  first material    surveillance capsule    removed from the Donald C. Cook Unit No. 1 reactor pressure vessel led to the following conclusions:
(1)    Based on a  calculated neutron spectral distribution, Capsule          T received  a  fast fluence of 1.80 x    101  neutrons/cm2  > 1 MeV.
(2)    The  surveillance specimens of the core beltline materials ex-perienced    shifts in transition temperature of      75'  to  130 F as a  result of the above exposure.
(3)    The weld metal and heat    affected zone  (HAZ)  materials exhibited the largest    shift in  RTNDT. However, because    the intermediate shell plate material has    a high  initial  (unirradiated)  RTNDT,  it will control    the heatup and cooldown    limitations at least until the next surveillance- capsule is removed.
(4)    The  estimated maximum neutron fluence of 6.92 x 1017 neutrons/
cm  > 1 MeV  received by the vessel wall accrued in 1.27        full power  years.
Therefore, the projected      maximum  neutron fluence after 32 effective        full power years    (EFPY)  is 1.74 x  1019 neutrons/cm    > 1 MeV. This estimate  is based on a lead    factor of 2.6  between Capsule T and the    point of  maximum pressure vessel    flux.
(5)    Based on Regulatory Guide 1.99      trend curves, the projected maxi-mum  shift in ductile-brittle transition temperature of the Donald C. Cook Unit 1 vessel core beltline plates at the 1/4T and 3/4T positions after 12 EFPY  of operation are    110 F and 50 F,  respectively. These values were used as the bases    for  computing heatup and cooldown      limit curves for  up  to 12 EFPY  of operation.
 
(6)    The maximum  shifts in the transition temperature of the Donald C. Cook  unit  1  vessel core beltline plates at the 1/4T and 3/4T positions after  32 EFPY  of operation are pro)ected to  be 180 F and 83 F,  respectively.
(7)    Since the weld metal and  HAZ  beltline materials are  more sensi-tive to radiation embrittlement than the intermediate shell plate material, the operating limf.tations may come under control of the weld metal and HAZ material late in the 32 EFPY. design life of the plant.
(8)  The Donald C. Cook    Unit No.'  vessel plates, weld metal and  HAZ material located in the core beltline region are projected to retain      suffi-cient toughness to    meet the  current requirements of  10CFR50 Appendix  G throughout the design    life of  the unit.
 
II. BACKGROUND The  allowable loadings on nuclear pressure vessels are determined by applying the rules in Appendix      G,  "Fracture Toughness Requirements," of 10CFR50.(1)*    In the case of pressure-retaining        components  made  of  ferritic materials, the allowable loadings        depend on the reference      stress intensity factor (KIR) curve indexed to the reference          nil ductility temperature (RTNDT) presented in Appendix      G,  "Protection Against Non-ductile Failure,"
of Section  III of the  ASME Code.( )      Further, the materials in the beltline region of the reactor vessel must be monitored for radiation-induced changes in  RTNDT  per the requirements of Appendix H, "Reactor Vessel Material Surveil-lance Program Requirements," of 10CFR50.
The RTNDT  is defined in  paragraph NB-2331 of Section        III of  the ASME Code as  the highest of the following temperatures:
(1)    Drop-weight  Nil Ductility Temperature        (DW-NDT)  per ASTM E  208; (2)    60 deg F below  the 50    ft-lb Charpy  V-notch (Cv) temperature; (3)    60 deg F below  the  35  mil  C  temperature.
The RTNDT must be    established for      all  materials, including weld metal      and heat affected zone    (HAZ)  material  as  well  as base  plates  and  forgings, which  com-prise the reactor coolant pressure boundary.
It is  well established that      ferritic materials    undergo an increase    in strength and hardness    and a decrease    in ductility and    toughness when exposed to neutron fluences in excess of        1017 neutrons per cm2 (E > 1 MeV).( )        Also, it has  been  established that tramp elements, particularly copper and
* Superscript numbers refer to references at the            end  of the text.
 
phosphorous,  affect the radiation embrittlement        response  of  ferritic mate-rials.(    )  The  relationship  between increase    in RT~T    and copper content is not defined completely.      For example, Regulatory Guide 1.99,        originally issued  in July  1975, proposed an adjustment to RT~T          proportional to the square root of the neutron fluence.        westinghouse    Electric Corporation, in their  comments on the 1975 issue      of Regulatory Guide 1.99( ), believed that the proposed relationship overestimates the shift at fluences greater than 1.9 x 1019 and underestimates      the  shift at fluences less than 1.9 x 10 On  the other hand, Combustion    Engineering, in their comments on the 1975 is-sue  of Regulatory Guide 1.99      ,  suggested  that the proposed relationship is overly conservative at fluences below        1019 neutrons per cm      (E > 1 MeV) .
There  is also disagreement concerning the prediction of          Cv upper  shelf re-sponse to exposure to neutron      irradiation.(      )  After reviewing the      comments and  evaluating additional surveillance program data, the          NRC  issued a revision to Regulatory Guide 1.99 which raised the upper          limit of  the transition tem-perature adjustment curve.      In this report, estimates of shifts in        RTNDT  are based on Revision 1    of Regulatory Guide 1.99      ),  issued in  April 1977.
In general, the only    ferritic pressure    boundary materials      in a  nuclear plant which are expected to receive      a  fluence sufficient to affect      RTNDT  are those materials which are located      in the core beltline region of the reactor pressure vessel. Therefore, material surveillance programs include specimens machined from the    plate or forging material    and weldments which are        located region. of high neutron    flux density.                  (10) describes in such  a                                              ASTM E 185                    the current  recommended    practice for monitoring    and  evaluating the radiation-in-duced changes    occurring in the mechanical properties of pressure vessel belt-line materials.
 
Westinghouse has provided such a surveillance program          for the  Donald C., Cook  Unit No. 1  nuclear power plant;    The encapsulated    Cv specimens  are located near the O.D. surface of the thermal shield at          a point where the fast neutron flux density is about three times that at the adjacent vessel wall surface.      Therefore, the increases      (shifts) in transition temperatures of the materials in the pressure vessel are generally less than the corre-sponding    shifts  observed  in the surveillance  specimens. However, because of azimuthal variations in neutr'on flux density, capsule fluences            may lead or lag the    maximum    vessel fluence in a corresponding exposure period.        For example, Capsule T (removed during the 1977          refuelling outage)    was exposed to a neutron fluence approximately 2.6 times that at the            maximum exposure point  on  the vessel I.D., while Capsule      X  (scheduled  for removal at a  later date)  is being  exposed  to  a neutron  flux about  60%  of that at the point of maximum    vessel exposure.      The capsules. also contain several dosimeter mate-rials for experimentally determining        the average neutron    flux density at each capsule    location during the exposure period.
The Donald C. Cook      Unit No. 1 material surveillance capsules also in-clude tensile specimens as recommended by          ASTM E  185. At the present time, irradiated tensile properties are        used  primarily to indicate that the mate-rials tested continue      to meet the requirements of the appropriate material specification.      In addition, the degree of radiation hardening indicated by the tensile yield strength        is used to judge the    credibility of  the  surveil-lance data.(7)
Wedge  opening loading    (WOL) fracture mechanics specimens,      machined from plate material    and weld  metal, are also contained in the capsules.        Current technology    limits  the testing of these specimens at temperatures well below
 
                                                                                      ~ ~
the minimum service temperature to obtain    valid fracture    mechanics data per ASTM E 399~  ~, "Standard Method  of Test for Plane-Strain Fracture      Toughness of Metallic Materials." However, recent work reported by        Mager and  Mitt~1  ~
may  lead to methods for evaluating high-toughness materials with small frac-ture mechanics specimens. Currently, the  NRC  suggests  storing these specimens until  an acceptable  testing procedure  has been  defined.
This report describes the results obtained from testing the contents of Capsule T. These data are analyzed  to estimate the radiation-induced changes  in the mechanical properties of the pressure vessel at the time of the 1977  refuelling  outage as well  as predicting the    changes  expected to occur at selected times in the future operation of the Donald C. Cook Unit No. 1 power  plant.
 
III. DESCRIPTION OF MATERIAL SURVEILLANCE PROGRAM The Donald C. Cook    Unit  No. 1  material surveillance program is described in detail in  WCAP  8047(13), dated March 1973.        Eight materials surveillance capsules were placed in the reactor vessel between the thermal shield and the vessel wall  prior to startup, see Figure 1. The vertical center of each cap-sule is opposite the vertical center of the core. The neutron flux density at the Capsule T location leads the maximum flux density on the'vessel I.D.
by a  factor of 2.6.(        The capsules  each contain Charpy V-notch,      tensile and  WOL specimens machined from the SA533 Gr        B  plate, weld metal    and heat affected zone    (HAZ) materials located at the core beltline plus Charpy V-notch specimens machined from a reference heat of steel            utilized in  a num-ber of Westinghouse surveillance programs.
The  chemistries and heat treatments of the vessel surveillance mate-rials  are summarized in Table    I. All test    specimens were machined from the test materials at the quarter-thickness        (1/4 T) location after performing a simulated postweld stress-relieving treatment.          Weld and HAZ specimens    were machined from a    stress-relieved weldment which joined sections of the inter-mediate  shell course. HAZ  specimens were obtained from the        plate B4406-3 side of the weldment.      The  longitudinal  base metal    C  specimens were oriented with their long axis parallel to the primary rolling direction            and with V-notches perpendicular to the major plate surfaces.            The transverse base metal  C  specimens were oriented    with their long axis perpendicular to the primary  rolling direction    and with V-notches perpendicular to the major plate surfaces. Tensile specimens were machined with the longitudinal axis parallel to the plate rolling direction.          The  WOL  specimens were machined
 
X (220')
270' (184')                                                Y (320')
180'a                                                      S Z  (356 )
(4')
V (176')
T (40) 0 90 u (140')              Reactor Vessel Thermal Shield Core Barrel FIGURE  1 ~  ARRANGEMENT OF SURVEILLANCE CAPSULES RT THE PRESSURE VESSEL
 
~ ~
TABLE  I D0NALD C. C0OK  UNn No. 1 REACT0R VESSEL SURVEn.LANCE MATERZALS<>>)
Heat Treatment      Histor Shell Plate Material:
Heated to 1600 F    for 4 hours, water quenched.
Tempered at 1225 F for 4 hours, air cooled.
Stress relieved at 1150 F for 40 .hours, furnace cooled.
Weldment:
Stress relieved at 1150      F. for  40  hours, furnace cooled.
Correlation Monitor:
1675 F, 4 hours,    air cooled.
1650 F, 4 hours, water quenched.
1225 F, 4  hours, furnace cooled 1150 F, 40 hours, furnace cooled to 600 F.
Chemical    Com    osition (Percent)
Material          C      Mn        P        S    Si    Ni    Mo  Cu Plate B4406-3          0.24    1.40    0.009    0.015  0.25  0.49  0.46 0.14 Weld Metal            0.26    1.33    0.023    0.014  0.18  0.74  0.44 0.27 Correlation Monitor 0.22      1.48    0.012    0.018  0.25  0.68  0.52 0.14
 
with the simulated crack perpendicular to both the primary rolling direction and  to the major plate surfaces.        All mechanical. test      specimens,  see Figure 2, were taken at      least  one  plate thickness from the          quenched    edges of the plate material.
Capsule T contained 44 Charpy V-notch specimens                (10  longitudinal  and 10  transverse from the plate material, plus            8  each from weld metal, HAZ and the reference steel plate);        4  tensile    specimens    (2  plate  and 2 weld metal);
and 4    WOL specimens    (2  plate  and 2 weld    metal).      The specimen numbering    sys-tem and  location within Capsule      T  is  shown  in Figure 3.
Capsule T also was reported to contain the following dosimeters                  for de-termining the neutron flux density:
Target Element                    Form              Quantity Iron                          Bare  wire                      5 Copper                        Bare  wire                      3 Nickel                        Bare  wire                      3 Cobalt (in aluminum            Bare  wire                      2 Cobalt (in aluminum)          Cd  shielded wire              .2 Uranium-238                    Cd  shielded oxide              1 Neptunium-237                Cd  shielded oxide              1 Two eutectic alloy thermal monitors          had been    inserted in holes in the steel spacers in Capsule T.          One  (located at the bottom)          was 2.5% Ag and 97.5% Pb    with  a  melting point of    579 F. The  other (located at the top of the capsule) was 1.75% Ag, 0.75%          Sn and 97.5% Pb      having a melting point of 590 F.
10
 
46a 44'OII R
                                                              .009 90~
                        .3I                l.063              .3 5
                        .3 I4              l.053              .393
: 2. I25 2.I05 (a) Charpy V-notch Impact Specimen I.005        Gage length
                                        .995
                          . 256              .255  256
                          .246                .245                            .395 I6 493
                                          .250    R
                                                                            .I98 I.250'.26 l.495              .I9 I. 80 4.250 4.2 I 0                            630                .790
                                                                                  .786
                                                                          .395
                                                                    .375
                                                                              'ECTION    A- A D
                                                                    .37 (b) Tens ile Spec imen l.45 l.4P
            .375  D.
I.I30
            .380                    I.I20                            I.005                                                      .765
                                                                        ~ 995
                                              .745
              .439 499    .437                                      I.005
                                                          .995
        .04'73
        .0463 D                                              .SOI
                .0667                                                .499
                .0662
                .0667 (c ) Wedge Opening Loading Specimen FIGURE 2. VESSEL MATERIALSURVEILLANCE SPECIMENS
 
fC,COI CO.CCS                CLttfC tttL                                ~ ISLICIII CLtt ffI Itl                                          CLI ff  IIL ILICI                                                                                                fC>COI CO CIS II I III
    ~          IIL OOL        llISILC        Cllltt      Clutt                      Clllt1          CIOItl      Clllt1        CllltT    CClltl    CllltT  CILItt    Cllltt    Cltltt W.LI        I IO I~ 'll  I-jl I SI
                                                                ~                  IL4 ~ I4      I.l~ I SI    1 SI  ~ SI  4 SI  ~ SI ill ILO    I~  II I ~ I I II  I ILL LI  II ~ ~  'll I I4 ISS  lit    SISS SS                    Y-SS  I.ll I.lt    ~ St    W  IL ~ SS  ~ .Sl I  SS I.ll I.IS  1- ~ I~ I.IL I-~ I  I LS -II  LI.I ~ .II
~          TOP ItICLLC~    ~IIIIIICIOC BOTTOM tllllILLOI I (IIIII'ITOIIIL IIICIIII)
                                                      ~                ~                I    OILS OCII.IIIICLI~ IOIC II tllIC ~ 'LIOI.S (LIILSI(III~ IIICII4I)                IIL~ IC ILL ISILL COIIILLIIOISaallla FIGURE 3. ARRANGEMENT OF SPECIMENS AND DOSIMETERS                                                      IN CAPSULE T
 
~ ~
IV. TESTING OF SPECIMENS FROM CAPSULE T The capsule shipment,    capsule opening, specimen testing and reporting of results were carried out in accordance with the Project Plan for Donald C. Cook  Unit  No. 1 Reactor Vessel    Irradiation Surveillance    Program. The SwRI  Nuclear Projects Operating Procedures called out in this plan include:
(1)    XI-MS-1, "Determination of Specific      Activity of  Neutron Radiation Detector Specimen."
(2)    XI-MS-3, "Conducting Tension Tests on      Metallic Materials."
(3)    XI-MS-4, "Charpy Impact Tests on Metallic Materials."
(4)   XIII-MS-1, "Opening Radiation Surveillance Capsules        and Handling and Storing Specimens."
(5)    XI-MS-5, "Conducting Wedge-Opening-Loading Tests on Metallic Materials."
i          (6)   XI-MS-6, "Determination of Specific      Activity of  Neutron Radiation Fission Monitor Detector Specimens."
Copies  of the  above documents are on    file at  SwRI.
Southwest Research    Institute utilized    a procedure which had been    pre-pared  for the  1977  refuelling  outage  for the  removal of Capsule T from the reactor vessel  and the shipment  of the capsule to the      SwRI laboratories.
SwRI  contracted with    Todd Shipyards Nuclear    Division to supply appropriate cutting tools  and a  licensed shipping cask.      Todd  personnel severed the cap-sule from  its extension tube, sectioned the extension tube into three-foot lengths, supervised the loading of the capsule        and  extension tube materials into the shipping cask,    and transported the cask to    San  Antonio.
13
 
                                                                                              ~
                                                                                            ~
                                                                                                ~ ~
The capsule    shell  had been  fabricated by making two long        seam  welds to join two half-shells together.         The  long seam welds were milled        off on a  Bridgeport vertical milling machine set        up  in  one hot  cell. Before mill-ing  off  the long seam weld beads,      transverse    saw  cuts were  made  to remove the two capsule ends.      After the long    seam  welds had been milled away, the top  half of the capsule shell      was removed.      The specimens  and spacer blocks were  carefully  removed and placed    in  an indexed    receptacle  so that capsule location  was  identifiable. After      the disassembly had. been completed, the specimens  were  carefully  checked  for identification      and  location,    as  listed in  WCAP  8047.(>>)
Each specimen was inspected      for identification    number, which was checked against    the master  list  in  WCAP  8047. No  discrepancies were found.
The  thermal monitors and dosimeter cfires were removed from the holes in the spacers. The  thermal monitors, contained in quartz        vials,  were examined, and no evidence    of melting  was observed,    thus indicating that the maximum temperature during exposure of Capsule        T  did not exceed    579 F.
The  specific activities of the dosimeters          were determined at SwRI with  an NDC  2200  multichannel analyzer and      an NaI(Th) 3    x 3  scintillation crystal. The  calibration of the    equipment was accomplished        with appropri-ate standards and an interlaboratory cross check with two independent count-
'ing laboratories on        Co-, 54Hn- and  ~  Co-containing dosimeter wires.          All activities  were corrected to the time-of-removal (TOR)          at reactor shutdown.
Infinitely dilute    saturated activities (A8AT) were calculated for each of the dosimeters because      ASAT is directly related to the product of the
 
      ~
~ ~
energy-dependent    microscopic activation cross section and the neutron              flux density. The  relationship  between  ATOR and ASAT      is given by:
ATOR (1-e -XTm m) (e
                                                                -Xtm)
E ASAT      m~1 where:        m      =  operating period; decay constant    for the activation product,        day 1; Tm        equivalent operating days at          3250 MwTh  for operat-ing period m; tm    =  decay time  after operating period        m,  days.
The Donald C. Cook    Unit  No. 1  operating history        up  to the  1977 refuelling out-age  is presented in Table    II. The  specific activity at time of removal          (TOR) and the  specific saturated activity calculated for            each dosimeter are    pre-sented  in Table  III.
The  primary result desired from the dosimeter analysis is the                total fast neutron fluence      (> 1 MeV) which the      surveillance specimens received.
The average    flux density at full power is given          by:
SAT m                                                (2)
NOD where:                  energy-dependent      neutron    flux density,  n/cm -sec; ASAT      saturated  activity,    dps/mg    target element; spectrum-averaged      activation cross section,        cm ;
NO      number  of target    atoms per mg.
The total neutron fluence is then        equal to the product of the average neutron flux density  and the  equivalent reactor operating time at          full power.
 
TABLE  II
 
==SUMMARY==
OF REACTOR OPERATIONS DONALD C. COOK UNIT NO. 1 Power  Equiualent    Decay Time Operating        Dates        Operating    Shutdown    Generation Operating Days After Period Period    Start    ~DS S    ~DS  s      ~DS    S                      T )
2/2/75      2/14/75    13                          2,194      0. 68        678 2/15/75    2/16/75 2/17/75    2/17/75                                  228      0. 07        675 2/18/75    2/20/75 2/21/75    3/18/75    26                        29,604      9.11          646 3/19/75    4/3/75                    16 4/4/75      6/24/75    82                      200,616      61. l3        548 6/25/75    6/26/75 6/27/75    7/3/75                                15,432      4. 75        539 7/4/75      7/22/75                  19 7/23/75    10/ll/75  81                        201,506      62.00          439 10/12/75    10/14/75 10/15/75    10/31/75  17                        40,163    12.35          419 ll/1/75    11/14/75                  14 11/15/75    1/1/76    48                        116,552    35.86          357 1/2/76      1/4/76 1/5/76      4/12/76                              256,178    78.82          255 4/13/76    5/9/76                    27 10      5/10/76    7/1/76    53                        143,868    44.27          175 7/2/76      7/5/76 7/6/76      9/10/76    67                        205,682    63.29          104 9/11/76    9/18/76 12      9/19/76    11/20/76  63                        196,520    60.47            33 11/21/76    11/21/76 11/22/76    12/23/76  32                        92 754    28.54            0 Total, Cycle  1  1,501,297    461.94
 
~
  ~
TABLE  III
 
==SUMMARY==
OF NEUTRON DOSIMETRY RESULTS DONALD C. COOK UNIT NO. 1--CAPSULE T Monitor            Activation-            ATOR        ASAT Identification          Reaction            (d s/m      d s/m Fe-   Top            54Fe(n,p)54Mn          193 x  103 3.34 x  103 Fe Top Mid.                               1.69 x  103 2.94  x 103 Fe-   Mid.                                  1.69 x 103  2.93  x 103 Fe Bot. Mid.                               1.69 x 103  2.93  x 103 Fe Bot.                                   1.80 x 103  3.11  x 103.
Average  1.76 x 103  3.05 x 103 Cu Top Mid.        63Cu(n,a)60Co          5.14  x 101 3.43  x 102 Cu Mid.
ll              5.27  x 101 3.52  x 102 tf                    x    4.03  x 102 Cu Bot. Mid.                             6.04    101 Ni Top Mid.        58Ni(n,p)58Co          3.83  x 104 4.46  x 104 If                          4.38  x 104 Ni Mid.                                   3.77  x 104 II              3.95  x 104 4.59  x 104 Ni Bot. Mid.
Co - Top              Co(n,p)    Co        4.87  x 106 3.25  x 107 II                    x    1.22  x 107 Co(Cd)  Top                                1.83    106 If              5.03  x 106 3.36  x 107 Co  Bot.
Co (Cd) Bo t.            II              1.64  x 106 1.09  x 107 U-238                238U(n, f) 137C        1.20  x 103    N/A Np-237              237Np(n, f)137Cs      4.53  x 103    N/A 17
 
The  neutron  flux density    was  calculated from the      4Fe(n,p) 4Mn  reac-tion  because  it has    a  high energy threshold and the energy response is well known. The energy spectrum      for  Capsule T was calculated with the      DOT  3.5 two-dimensional discrete ordinates transport code with            a 22-group  neutron cross section    library,    a  Pl expansion of the scattering matrix and an        S8 order of angular quadrature.        The  normalized spectrum    for  Capsule T and the group-organized cross sections for the 54Fe(n,p)54Mn reaction derived from the ENDF/B-ZV      library      are given in Table IV.      The  value of o Fe is given by:
10 MeV aF (E)g(E)dE o    (> 1 Mev)  - 1'1                                          (3) 10
                                                  $ (E)dE
: l. 00 where:        VF Fe
(> 1 MeV)      the calculated spectrum-averaged cross section for flux > 1 MeV, cm2 determined for the 54Fe(n,p)54Mn reaction.
The  resulting value obtained for fast          (> 1 MeV) neutron    flux density at  the Capsule T location was 4.50 x 101          neutrons/cm -sec. Since Donald C. Cook Unit  No. 1 operated      for  an equivalent 461.94    full power  days up to the 1977 refuelling outage, the total neutron fluence for            Capsule T  is equal to 1.80 x 1018 neutrons/cm    2 (E > 1 MeV)    based on the    calculated spectrum at the cap-sule location.
Assuming a fission-spectrum energy          distribution at the capsule location, the cross-section    for the 4Fe(n,p)      4Mn  reaction  (E > 1 MeV) would be 98.26 mb. (4)    The  resulting flux and fluence values would          be 4.95 x 10    neu-trons/cm2-sec and 1.97 x 1018 neutrons/cm2,            respectively.
18
 
TABLE    IV FAST NEUTRON SPECTRUM AND IRON ACTIVATION CROSS SECTIONS FOR CAPSULE T 54Fe(n,p)54Mn Energy Range                Normalized            Cross Section (MeV)                Neutron Flux              (barns)
: 8. 18  10. 0                0.0098                  0.581 6.36  8.18                  0.0254                  9.577 4.96    6.36                0.0482                  0.491 4.06    4.96                  0.0471                  0.354 3.01  4.06                    0.0855                  0.205 2.35  - 3.01                  0.1400                  0.099 1.83    2.35                  0. 1752                0.023 1 11  1.83
  ~                            0.4689                  0.0014 VF    0.108 barns Fe 19
 
The  irradiated  Charpy V-notch specimens were tested on a          SATEC    impact machine. The  test temperatures were selected to develop the ductile-brittle transition  and upper  shelf regions. The  unirradiated Charpy V-notch impact data reported by Westinghouse(13)        and  the data obtained by      SwRI on    the spec-imens contained    in Capsule T are presented        in Tables  V  through IX. The Charpy V-notch    transition curves for the three plate materials            and the    cor-relation monitor material are presented in Figures 4 through S. The radia-,
tion-induced shift in transition temperatures for the vessel plates are in-dicated at 50 ft<<lb and 35 mil lateral expansion. A summary of the shifts in  RTNDT and Cv    upper shelf energies    for  each  material are presented in Table X.
Tensile tests were carried out in the          SwRI hot cells using    a  Dillon 10,000-1b capacity    tester equipped with      a  strain  gage extensometer,      load cell  and autographic    recording equipment.        One each  plate  and weld metal tensile  specimens was tested    at room temperature      (RT) and  at  550 F. The results, along with tensile data reported by Westinghouse on the unirradi-ated materials(1 ), are presented in Table XI. The load-strain records are included in Appendix A.
Testing of the    WOL  specimens was deferred      at the request of American Electric  Power Service Corporation.        The specimens    are in storage at the SwRI  radiation laboratory.
The Charpy    V-notch results indicate that the        HAZ  is  more  sensitive to radiation embrittlement than the as-rolled          and heat-created    plate  and about equal to that of the weld metal.        This  is surprising    because  the copper con-tent of  HAZ  is reported to be'uch lower than that of the            weld metal.( 3) 20
 
TABLE V CHARPY V-NOTCH IMPACT DATA THE DONALD C. COOK UNIT NO. 1 REACTOR PRESSURE  VESSEL INTERMEDIATE SHELL PLATE B4406-3 (LONGITUDINAL DIRECTION)
Test          Impact                Lateral Spec.        Temp.        Energy    Shear      Expansion Condition        No.          ( p)        (ft-1b)      (x)      ~Mls Baseline          (a)          -40            10                    13
                              -40
                              -40 ll 11.5 10 11 10          24.5        9          24 10          33        11          29 10          31.5      13          28 40          57        23          49 40          42        25          40 40          65        29          54 76          82        45          67 76          70        37          60 76          78        37          61 110          93.5      52          72 110          100        59          77 110          88        52          72 160          110        95          84 160          131.5    100          95 160          115.5      95          83 210          120      100          89 210          144      100          98 210          125      100          95 300          131.5    100          90 300          126      100          92 300          132      100          93 Capsule T        A-44            10          10.5        1          10 A-45            40          29          5          24 A-49            82          38        20          31 A-50          110          46.5      35          38 A-41          135          62.5      25          53 A-47          160          84        55          58 A-42          185          99        95          80 A-48          210          105        95          83 A-43          250          110      100          89 A-46          300          105.5    100          89 (a) Not reported.
21
 
TABLE VI CHARPY V-NOTCH IMPACT DATA THE DONALD C. COOK UNIT NO. 1 REACTOR PRESSURE VESSEL INTERMEDIATE SHELL PLATE B4406-3 (TRANSVERSE DIRECTION)
Test          Impact              Lateral Spec.        Tempt          Energy    Shear    Expansion Condition        Na.        ~P)          ~ft-1b)    ~7.)    ~milt Baseline          (a)          -40            11                12
                              -40            11.5              15
                              -40            14                15 10            28        14      28 10            23        9      22 10            30        9      26 40            40        18      36 40            41        23      35 40            37        18      34 76            83        27      56 76            43        27      44 76            50        32      46 76            50        27      44 110            84        48      71 110            54        37      51 110            68        41      57 160            97        90      80 160            77        90      71 210            90      100      75 210            95      100      79 210            97      100      79 300          100      100      83 300            94      100      75 300          101      100      85 Capsule T        AT-44          1O            6        5        8 AT-45          40            25        5      23 AT-49          82            35        20      30 AT-50          110            37        30      35 AT-41          135            49.5      25      44 AT-47          160            57        40      47 AT-42          185            73.5    100      63 AT-48          210            87      100      73 AT-43          250            87      100      71 AT-46          300            89      lOO      83 (a) Not reported.
22
 
TABLE  VII CHARPY V-NOTCH IMPACT DATA THE DONALD C. COOK UNIT NO. 1 REACTOR PRESSURE  VESSEL CORE REGION WELD METAL Test        Impact                Lateral Spec.        Temps        Energy    Shear      Expansion Condition          No.          ('p)        ~ft-1b1      (X)      ~m11s Baseline          (a)        -140
                              -140 ll 21 10 19
                              -140            19                    18
                              -100            23.5      18        22
                              -100            29        20        26
                              -100            20        11        18
                                -70            45.5      24        39
                                -70            51        42        47
                                -70            54        32        49
                                -40            63        47        52
                                -40            59        34        53
                                -40            69        47        60 10          83        73        69 10          84        71        72 10          92        75        75 76          114        99        88 76          107        100        87 76          107        100        88 210          110        100        90 210          112        100        87 210          111        100        93 Capsule T        W-33'-35
                                >>40            24. 5      5        19 10          50        20        41 W-34            75          75.5      70        67 W-39            82          44        20        34 W-40          110            85        95        69 W-37          160            75        100        66 W-38          210            98        100        66 W-36          300            68.5      100        66 (a) Not reported.
23
 
TABLE VIII CHARPY V-NOTCH IMPACT DATA THE DONALD    CD COOK UNIT NO. 1 REACTOR PRESSURE VESSEL CORE REGION MELD HEAT-AFFECTED ZONE METAL Test        Impact                Lateral Spec.        Tempo        Energy      Shear    Expansion Condition          No.          ~7)          (ft-lb)      ~(/      ~mals Baseline            (a)        -175            5.5
                                -175            7
                                -175            7
                                -140          16                    12
                                -140          22                    18
                                -100          30          13        25
                                -100          33          14        28
                                -100          45          20        40
                                -70          52          21        39
                                -70          47          25        35
                                -70          27          14        21
                                -70          30          20        24
                                -40          54          55        53
                                -40          71          50        50
                                -40          47          43        45 10          97          90        83 10          89          43        67 10          82          69        64 76        112          100        86 76      '40            100        84 76        131          100        82 210        129          100        85 210        104          100        94 210        105          100        87 Capsule T        H-33          -40          10            5        9 H-35            10          40.5        15        30 H-34            45          30.5        25        27 H-39            82          52.5        25        41 H-40            110          62.5        40        46 H-37            160          84          100        65 H-38            210        111.5        100        78 H-36            300          83          100        54 (a)  Not reported.
 
TABLE IX CHARPY V-NOTCH EPACT DATA A533 GRADE B CLASS 1 CORRELATION MONITOR MATERIAL Test          Impact              Lateral Spec.      Tempr        Energy    Shear  Expansion Condition          No.                    ~fe-1b)    ~X      ~mals)
Baseline          (a)        -50
                              -50
                              -50
                              -20            6.5        9        6
                              -20            9        13      10
                              -20            6        13        9 10            12        23      15 10            14.5      23      14 10            13.5      23      14 40            22        33      23 40            36        29      32 40            35        29      32 85            58.5      43      51 85            41.5      41      42 85            52        42      45 110            82.5      58      60 110            85.5      67      71 110            63.5      55      54 160          108.5      84      72 160            81        85      69 160          109        87      79 210          117        98      84 210          115        98      88 210          121        100      87 300          125        100      87 300          117.5      100      83 300          127        100      84 Capsule T        R-33          40          13.5        5      13 R-37          82          18.5      10      18 R-38        110            35        20      32 R-39        160            55.5      40      45 R-40        210            86.5      95      66 R-34        300          100        100      57 R-35        350          111        100      84 R-36        400            96.5      100      84 (a)  Not reported.
25
 
e
                                                                                                                                                                                                      ~ ~
160        ~
                    '    I  I                        t    I    ~
I    e I I    1  Qt      I    ~    I  ~      I  ~
                    ~  I  I  1  t            e        i    I    i t                                                      I  I      I t      I  I    ~  t      I  I  e  I I ~  I I    I        l    I      t      1  I                                                                                                  I
                                                                                                                          !      I  t    '        I I                I I    I  I  ~    e  t    I  1    I  ~
I                                                                                                i I                '          I I
I!                                                              I
                          ~                  ~                                                                                                      ~
                                                                                        +lg! ''
I i I                                                                            I                    I            f.                e I                                                        I 120 j I      ~  e                                  I          I I        e        ~      ~
f~
I  l  ~  i                              I    ~          I          e      I I                    I
                                                              ~  I                      I    i          t                        I
                                                  ~          I      I                        ~    I          ~  I                                I  1    e I      e  e I                                                                                I J I I
                                ~                                                        ~
I C    I        ~
I    I  I  I  i            ~  I    I t      I    I    !                    ~  I  I    I                        I  ~  "
e
                                                      ~  e          ~
I I  ~
00    80                      ~    I        .'      I I I      ~  I
                                    ~lt
                                                  ~t,I SI                                                    ~                                                                                                                                  e u
fz1 I    j: '
C  ~    I I t t
I I
I I I
I
                                                                                                    ~
I
                                                                                                                                          ~
I I      e      I e                      I I I t 1
                                                                                              ..L'L.l.e                    ~              '            'I J
  )
                                                  ~                                                                                                        1 e  I I
e T
                                        ~    I ~ I I I e I                ~        ~              '          I C3                        ~    I                  I 'I t        I I                I        I    '                            ~  ~  I    ~
I I I ~ I I I t    I,    I I    ! I I i i I I I  i,t e    t 1
e I
40        ~ e  I  ~  e  I    ~  I I I
I I I I
                                                                                                    ~        ~
                                                                                                                          ~
i I  ';
I I I I I
                                                                                                                                                ! I I I I I
                                                                                                                                                        '                          ~-Baseline
                    ~  ~  I  ~  e    I '          t I I
                                                                '1 I
1    t          e        I              I I
I
                                                                                                                                      ~
I I    I,      i I j
                                        ~
C
                                              ~    I I
I t e    I
                                                                                                          ',  1 e
                                                                                                                    ~
                                                                                                                                                                      '-Irradiated Capsule        T e
                                                              ~ ~    e                  !* I      <          e    I
                    ~    ~
I    C            I  "  ~                I    '        I    I    I 0
        -200                -100                                        0                                        100                                      200                      300        400 Temperature,                                      deg F 100                                                                                                        ~      I
                                                    ~        I      '
I    '
                                                                                                                                                                                          ~  ~
l    ~  I    ~                                                                                          I I          e I        e          e 75
                                                        ~
                                                                              ~  ~
I                  I I  I  ~
  ~ I C
0 e                              I    e 50
)C                                              1  e  I e            ~  I      I  I                                                                e t
1 I      i      I I                I        '          I                                                        i I I I I          I  I I    ~  I    I                        I    I    I                          I '
                                                                                                    ~j
                                                                                                                                                          ~
c7                                                                                ~
I                                            e;            i  I    I e
                                      ~    I I      ~
                                                        '          ~                      I          I    I I    I    I              e
                                                                                                                                                                                      .... I,.
                                                                                  ~      ~                                I  ~
                                                                                                                                  ~e                                                        e I  ! I                                          I 25                                                                                                                                                        ~Unirradiated Baseline ee
                                                                                                                                    ~,      ~
                                                                                                                                                                      ~  ~      e
                                                                                                                                                                                            \
e I    '. I    ~
                                                                                                                                                                      - Xrradiated Capsule T j
I  e  I    '          I    ~                  ~
                                                                                                                                                                ~
I    ~    . I    I I            ~  e e  I    ~
I        I I '                      I    ~                              I 1                                                e L
0
          -200              -100                                        0                                        100                                      200                        300        400 Temperature,                                    deg F FIGURE 4 ~              CHARPY V-NOTCH PROPERTIES OF PLATE B4406-3 (LONG-)
DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 26
 
~ c 160 a    ~      a e
                ~  I  ~  I  I  I 1,    !  a, 120                        I a    ja                                                                                7 I ~
a    a I I a
I  'I    a  'I a      1                                                                                                ~      I          a a
I          I      'I 7        ','I    ~
I I
I  9
                                                ~aa
                      ~                        ~
I~                                                                                                                        ~
I  C  1 1
I                                                                                          1 I
ae                  I      Ia                                                                                                                                            I ~
9 I
80                                                                                                                                    I  I  t I  a I
                                                                                                                                                              ~
                                                                                                                                                                  ~          I
                                                                                                                                                                                      't" I    I  I      I  I  I  I                                                                                              I      I  I  a ~  ! I
                                                                                                                                                                            ~
I
                                                                                                                                                                                    ~
I    I  . I                1 1
                                                                                                                                                                                        ~a I!
I~ '                  ~
I    I  i    I 40
                \  ';
                  ~
l e  I
                            ~      I I I
                                          ~
I:
I    ~
I
                                                                                                                                                    'I I I I
1
                                                                                                                                                            ~
I I            1 ~
                                                                                                                                                                                      ~  e 1
a a    I      I              I I
                                                                                        ~
I I I t
                                                                                                                    ~
I e  ~
a
                                                                                                                                                    ~
                                                                                                                                                      ~
I  a, ~      ~
1 I =~
                      ~                a
          -200                        -100                                0                        100                        200                              300                              400 Temperature,                  deg F 100                                          I  1  ~      1        I  I
* a 1
t        I
                                  ~  '          1    I    I '        ~                                  1,  I
                                                                                                                  '    I    ~  ~      a
* I  a    e I    .  '
                                                                                                                        '1 dMted&                                              1  ~  >>  ~
                                                                                                                                      .L f e
                                                                                                                                                                      ~ ~ ~
ad~Lat-dd'-Capj                                                                                                          'I" co    75                                                                I        I        I  I  I 1
Ot~'1J
                                                                                  ~
I ! I I              ~t 8                                                      I:    I I '
I  I I
a
                                                                                                                                        ~    . 6=- ~            . I 0                                                                                                      I    I  !      ~
P
    ~    50                                            e  e 1
I
                                                                      ~
                                                        ~  '    I I I  ~
                        ~at,          I I  I              I
                    ~t:Ja''ai I                I                                                                                                        I        I
                                                                                                                                            ~          e      ~
I    1  .  "      ~
                                ~    !        !J      I I  I I I I I I                                                                                    I I      I                  t  . I I                I  I I  I  I I I    I
                                                                                                        ~I a                                                                a 25                                                                                                        I I '
I I+    I      I a~I."'    a-H                                          I  i I  I  a  I I  ~
                                                                                                                                                                    .Il LJ                                                ~at I: '.~~
I I I '
I, I, i
                            '1        a                                    I    I          I      I    I a I  I        I    t i  I    ~
                                                                                                                          .~L j I    '    t  1 I                                                                    I                      T  I
                                                                                                                                                                  ;..L I  I
                                /  I  '. a J    f  )  I  f [  I
                                                                        ~
I  I J  I I  I        I I                                    9
          -200                          -100                            0                        100                        200                              300                              400 Temperature,                  deg F FIGURE            5.       CHARPY V-NOTCH PROPERTIES OF PLATE B4406-3 (TRANS.)
DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 27
 
160                                                            ~      ~                                      ~                      4 i  i
                                                                                                                                      !                                    I
                                                                                                                                    >      ~                            ~  ~  ~
I    I          I      i j l 120 4
I
                                ~
                                ~
                                ~;
I I  ~
I I I I I I I I
I I I .
                                                                    >  I I
I I 1
I
                                                                                    ~
                                                                                        ~
i
                                                                                        ~
I I
I
                                                                                                ~
f:
                                                                                                          -r+'!
I I
                                                                                                            ~
                                                                                                                ~
I I 1
I I 4  >
I
                                                                                                                                    ~
I 1
H.
I I
I I
I I
                                                                    >>      I    i    1    ~
                                                ~j
                                                                ~
I              I i          ).                                                              ~  >    I i '  I':
4      >
I  ~
t                          ~  ~
                                                    ~  I                    I I        I        ~        ~    I    >,        '
I    ~        1  I I
I I t i      '
I  >
I I
I        I  I  I
                                                                                                      <<I        '
f  '      ~
~~  80                              4      4 I  >  I
                                                                            ~
                                                                                        ~    >  I I
                                                                    ~  I              >        ~
                                        ~,C        I      I                I I        I    l                  4    I    >
i      ~  ~
I  ~
4
                                        ~              1                    t      I  I        >      j  ~    . I        I  ~
                    ~    ~                                          i i          I  -       >  I          i i i                I  i I                      t I  ~  ~
i C                          t  I  i t                                                                                              ~      I I I                              I t              I                                          I              I        I
                                                                                                                                    >>  I                I
                                        ~              >        ~      ~                                  ~    4                                        ~
40                                                              I
                                                                        ~
I I
I I  .
I I
I I i I I I      >        ~
i  I
                                                                                                                                            ~
                                                                                                                                            ~        U~diatad-'Baseline j
I I    I      j  i I                      I      I        I  I            I
                                                                                                                ',w j-.'-+-.-&@Bated- Capsule
                                                                                                            ~
T 1
I      .'        tI I  ~  ~
                                            ~          I                I  ~    I I  ~
0
      -200          -100                                    0                                  100                                      200              ,      300          400 Temperature,                              deg F 100                                                                                                                        '
I I                              I
                                        ~    .  '      1 4  I i    I:  I  I
                                                                                      >  I
                                                                                                              ~
4 t      '      C;    4    ~ I 1,'
                                      ~  1 4
I I    ~  >  I    ~                      >        ~
1            ~          >  ~                  I    I  I m    75 8                                                                              ~  ~  C A
j                                                                      ~  ~    I  ~  1 Q                                                                4    >  I    '    ~
I 4
                              ~    r X
50                                              ~  >
f
                                                            ~            ~                  f I
l.
4 I:
                                ~    '      i I    ~  ~
I  I  ~  I        I  ~
I  . i    .              I I
                                                                                                        ~  f I;
i I
t
                                                                                                                                      ! ~    '
I,I,''
4
                                                                                  ~                                                                    '
I I c5 j                                                                                          Coda .      ~    -    ~
I                    I I I,
1                                >                  1    ~
4 4  I              I            .      I                    I 25                                                                                                    ."'
                                              ~      ~
                                                                  ~
                                                                                                        ,                                      &--.UnMrediated Baseline I
              ''    I 4
                                  ~  I;      i I  I:    I I  I I
                                                                          ~
i '
I I I
t
                                                                                          '.  ~
I I
4
                                                                                                                          ~      I
                                                                                                                                            >  I  ~
I~adiated Capsule          T
      -200            -100                                  0                                    100                                    200                      300          400 Temperature,                                deg F FIGURE  6.        CHARPY V-NOTCH PROPERTIES OF CORE REGION WELD METAL DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 28
 
160    !      !      ~    ~
                                                                                                                                                          !  I  I  " !  ~
I                                                                          l                    !
I:
                      ~
I I  =    '    I                    ~
i  I                                                                                              I          '    !  I I I            I I          ~
I I i  I  I
                                              '! l    I  ~
120 I  ~
I  i    I  i                                                                                  +      ~  ~
l
                                                                                                                                                                            .I D                                                                                                                                    I                    I I                        ~    I  I                                                                                                              j  I  I                  !
W                                                                                                                                                                                t" ~
  ~!
                                                                                                                                    ~    ~    I    l  ~  I .            !
80 I                            I                                            "I  i!
I  I  I  '
                                                                                                                                              +:'
                          ~  ~                            ~
P
              !  !    I  I  ~      !
I      I  I CD
  )          I !
l
                        ~  I t      I I                                                                                            !    (  ~    l I I,
            !    ." I        !                                I    I I            ~ll 40  I I
I I
I
                  ~
I I!
I I
I I I I
I I  ~
                                                                                                                                                          ~      I
                                                                                                                                                                          't~ Base1ine.
L                    tf I I l '
I I I (iT
                                                                                ~
I
                                                                                    $  J l:  I  I
                                                                                                    ~
                                                                                                  ~l I
A~I~!                  ,
                                                                                                                                                  'Xrmdia5edl. Capsule I I
                                                                                                                                                                                ~
                                                                        ~i(              i
                                                                                '00 I'
(
0
        -200                      -100                              0                                                                200                            300          400 Temperature,                          deg F 100                                                                                                                                                  !
I  ~
                                                                                                              ~  '            .  '        l    I  '      I
                                                                                                                          ' J !
                                                                                                                          ~
I    i  .      I      I i          I  l  ~            I I I      I' J      ~        l I I I
I  I      I    !  I  ~
75                                                                1    I:    ~
I j
I I  I  I I      I  I            ~  I  '
                                                                                                                        .'        ~LA                I I  ~
I  ',
i I  I (                                            I                                                          I
  ~!
l ~
I  I      ~    I  ~
0 I  I, I I
I      l I
I I
4  ~
I t
I ! I j I
                                                                                          ~
I;
                                                                                              'I '
I
                                                                                                                  ~      l I
50                                                                                                        !  j j      !
w                              I
                                                                                                                      ~      I I f  ( I  ~
J
                      ~  !  !  I  I I    I  l  I I  I  I      I I        0 I  ~            ~
I  ~  1 j t~
l u      25                                        I  I I I '              i '
                                                                                                                                                ',  Unirradiathd Baseline I      I  !!                                                                            4 I      ~    -  ~                                    ,'-Irradiated( Capsu1e T l    I      ! I I      r    I
                                                                                                                                      '~
I  ~                                                I
            ~  !        (Q    (  I                                                                                                                  I o
I                                                                                                                    ~        ! '        !
            ~"          'I; I        I    I  .        l  I        I                                            I  I  t        I I      !
0
        -200                      -100                              0                                100                            200                                300        400 Temperature,                          deg F FIGURE 7.                  CHARPY V-NOTCH PROPERTIES OF CORE REGION HAZ MATERIAL DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 29
 
160                      I  ~      '.
I
                                                    ~
I, I
I f                          f    I    i          I            I I I ~                ~      ',    I    f I        '                ~
I l~
f      ~
f    ~
I                                    I      j            I I        I      ~                                          ~ I
                      ~  I I  !  f              I                            I        I                                    I              I              I
                                                                    ~                                                                ~    ~            ~            I        I                                  I j    ~
I I I            ~
                                                                                                                                                                                ~    I            I    ~    ~
I
                                                              ~,          I I            I          ~l I                ~            ~
                                                                                                                                                              '                I    !
120 rratHQtedj                                                iz1+~                              .
I            ~    ~    I r,          ~    ~      ~  ~
I      I                I                                                                                '
f I    ~
I I          .
I t!  I
                                                                                                                                                                                                                  ~
                                                                                                                                                                                                                                            " '0 "f
I I    I          ~      I                    ~    I I        ~    ~                                              I    ~  ~  I
                                                        ~
                                                                  ~
I      I I
                                                                              ~
I
                                                                                    ~
                                                                                        ~
                                                                                        ~      I I        ~
I;;                ~    i            ~
I
                                                                                                                                                              ~
1
                                                                                                                                                                    ~
I
                                                                                                                                                                          ~
I I        I    ~
I I
                                                                                                          !    I I      L!I        I    ~
I    I          j      I    !                          !    I I 80                                                          r          I                I                I
                                                                                                                      ~
                                                                                                                      ~                              I                      !
                                                                                                                                                                                                  ~
l    "    '
                                                                          ~
1
                                                                              ~    I I
                                                                                                                                                                    ~    ~
J        ~    ~
I    '          ~    ~
I C                                                                I I ~                        I                '                !                                                              '
                                                                                                                                                                                                                  ~      ~
I                I          I                  I I                      l      !
l;
                                                              ~                                      ~                                                                        I I                    I I                                                                                  '
o)
                                                                  !                    !                                                                  ~                        I            i    ~    t!          I  ~
I    i l 1 I              I      I    '                                                                        I                      f    ~    ~    I I I
ii
                                                ~    I !
                                                              ~
                                                                  ~
I I
I I
j I I I I f
                                                                                    ~
I    I I
                                                                                                          ~    I I I I f
I          I    I        I I          I I
I I
I I I
                                                                                                                                                                                                      ~
                                        ~      jt    I f              \          j          f                f I        !                                            I    l            I 40                                                    I    '
                                                                              ~
I
                                                                                                          ~
                                                                                                          ~          I
                                                                                                                                  ~
I I I                                      i 1
i I I
                                                                                                                                                                                                      ~
                                                                                                                                                                                                            ~    ~
I I I  ~                          ~;          ~          I I                                      I I I ~                                I              f I I I                      I I    j
                                                                                                    ~
I    ~
I                ~                  I    '
I  T        ~
I      ~          '            . I                                        I j    ! \                I  ~                                                                                1,        '            I t                                      !
0
        -200                  -100                                                        0                                                100                                                      200                        300            400 Temperature,                                                deg              F 100 j        .                      I
                  .2008~
i    ~
75
              ~ "-  ~ Zrred kited-'Gape ~~j                                                                  I    '
                                                                                                                          ~
I I  ~            ~    I
                                                                                                                                                                                ~j I
8 I
I !                                I 0                                                                                                                                                                                                                                  ~ !
i                                r                          i                                                      !                      ~
* e I    ~                                                I                                    ~    ~
r 50
            ~      ~
I        !                  tt,              I
                                                                                                        ~    ~
I    f I
                                                      ~
t!
I I I I 1    !    I I
I
                                                                                              ~
                                                                                                  '          ~
                                                                                                                    ~
                                                                                                                          ~    ~
                                                                                                                                                    !    ~      .          I
                    ~  ~  ~
I    '. I '              ~    l      I          I !        ! I              I            I    ~      ~    I j              ~          !
LI                                      I    i            I                I    I    j      ~    I !              '          I                        !                  1            !
I    ~      I        I I I            ~    I                                                                          I    ~    '          '          ~
                                                                      ~    I '              1    ~                      I                                            ~:        j i I I        ~                            !
o    25                                                        i      I    I          I                            ~    '                                                      1 I    !      I    !          ~
                                                                                                                                                                        ~    I    i      ~
I    1          ~          ~                        I            i    !        ~      1      I    ~
I                  r I
0
        -200                    -100                                                      0                                                100                                                      200                          300            400 Temperature                                                    de@ F FIGURE    8.        CHARPY V-NOTCH PROPERTIES OF CORRELATION MONITOR MATERIAL DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 30
 
TABLE X NOTCH TOUGHNESS PROPERTIES OF CAPSULE T SPECIMENS DONALD C. COOK UNIT NO. 1 Plate B4406-3  Weld  Weld Correlation
                                    ~(Lan  .) (Trans.) Metal  HAZ  Monitor 50 ft-lb C  Tem .  (de    F)
Irradiated                      150(a)    140      60    70      145 Unirradiated                    75(a)      65    -70  -60        75 AT                  75( )            130  130        70 35 mil  C  Tem .  (de    F)
Irradiated                      135 (b)    110      50    55      125 Unirradiated                    60(b)      40    -80  -75        60 AT                  75(b)            130  130        65 C  U  er Shelf Ener        ft-lb)
Unirradiated                    130        94    110  120      120 Irradiated                    108        84      80    93      102 hE,  ft-lbs          22        10      30    27        18 AE,                  16.9      10. 6  27.3  22.5      15 (a) Energy transition at 77 ft-lb.
(b) Lateral expansion transition at 54 mil.
31
 
TABLE  XI TENSII E PROPERTIES OP SURVEILLANCE MATERIALS CAPSULE T Test  0.2X Yield      Tensile  Total    Reduction Condition Specimen Ident.
Temp.
('P)  ~si Strength    Strength
                                              ~sf      ~I Elongation  in Area
(%)
Baseline  B4406-3      Room      68,650      90,650    27.7      70.4 (Long.)    Room      68,250      90,250    27.4      69.6 300      61,350      82,650    23.4      69.4 300      61,200      82,300    22.6      69.7 600      58,000      87,000    26.0      65.1 600      58,550      87,400    25.4      67.0 Capsule T    A-1      Room      72,700      99,800    24. 3    65.7 A-2      550      66,700      93,000    20. 2    64.3 Baseline  B4406-3      Room      68,700      90,300    26.6      65.8 (Trans.)    Room      67,600      89,450    25.6      65.0 300      61,000      82,800    23.0      65.0 300      60,900      81,900    23.3      64.6 600      58,300      86,000    24.8      58.8 600      55,900      86,600    24.7      58.6 Baseline  Veld Metal    Room      66,900      81,500    28.7      73.2 Room      67,350      82,250    25.0      65.3 300    '9,700        74,600    24.0      72.9 300      59,800      74,500    23.3      71.8 600      57,200      79,400    23.4      65.2 600      56,300      78,500    23.6      63.4 Capsule T    W-9      Room      86,100      103,400    23.6      65.0 M-10      550      75,800      95,300    19.3      60.8 32
 
~
  ~
The tensile properties of the weld metal appeared  to be the most af-fected by the radiation exposure in Capsule T as expected from .the reported copper contents.
33
 
' ~
V. ANALYSIS OF RESULTS The  analysis of data obtained from surveillance program specimens has the following goals:
(1)    Estimate the period of time over which the properties of the vessel  beltline materials will meet    the fracture toughness requirements of Appendix  G  of 10CFR50. This requires a projection of the measured reduction in  C  upper shelf energy to the vessel wall using knowledge of the energy and spatial distribution of the neutron flux and the      dependence    of  Cv upper shelf energy on the neutron fluence.
(2)    Develop heatup and cooldown curves to describe the operational limitations for selected periods of time. This requires          a  projection of the measured  shift in RTNDT to the vessel wall using    knowledge    of the  dependence of the  shift in RTNDT on the neutron fluence and      the energy and spatial    dis-tribution of the neutron flux.
The energy and  spatial distribution of the neutron flux for        Donald C.
Cook  Unit No. 1 was calculated for Capsule    T with the  DOT  3.5 discrete  ordi-nates transport code. The lead  factor for Capsule    T reported by Westinghouse is 2.6 for the vessel I.D. surface.(      )  This was supported by the SwRI      DOT  3.5 analysis. The DOT 3.5 analysis also predicted that the fast flux at the 1/4T and 3/4T  positions in the 8-5/8-in. pressure vessel wall would        be 49% and 7.8%,
respectively, of that at the vessel I.D.      These  figures are in    good agreement with fluence attenuation determinations of      46% and 10%  for  an  8-in. steel plate by the Naval Research Laboratory.(      )  However,  currently the    NRC  pre-fers to use more conservative figures of      60% and 15%,  respectively, for the attenuation of fast neutron flux at the 1/4T      and 3/4T  positions in    an  8-in.
 
vessel wall. (16)      This conservatism allows for the increased fraction of neutrons which might accrue in the 0.1 to 1.0            MeV    range  in  deep  penetra-tion situations.        For the 8-5/8-in. wall thickness of the D.C. Cook Unit No. 1    vessel, the attenuations      become 57% and 12.5%        for the 1/4T  and 3/4T positions, respectively.
A method  for estimating the reduction in        Cv upper    shelf energy    as a  function of neutron fluence is given in Regulatory Guide 1.99, Revision
  .(7))
1.(      The  results from Capsule      T  are compared to a portion of Figure          2  of Regulatory Guide'.99, Revision 1, in Figure 9.                The  embrittlement response of the weld metal, reported to contain            0.27% Cu(     ), is in  good agreement with the prediction of Regulatory Guide 1.99, Revision 1.                  However, the plate is less sensitive        and the HAZ    is  more  sensitive than predicted for the 0.14% copper content.        The  behavior of the      HAZ  specimens  may  reflect some    copper pickup    in the  HAZ  from the weld deposit or the placement of the notch unusually close to the fusion          line. Using the dashed curve drawn through the data point      for the  weld metal,    it is  predicted that the weld metal    Cv  shelf energy  will reach    50 ft-lbs at  a   fluence of about 2.1 x      10 (E > 1 MeV).      This corresponds      to approximately    38  effective  full power    years (EFPY)   of operation at the vessel I.D., in          excess  of the  32 EFPY  design  life of the plant.      The  plate  and HAZ  materials are projected to require even larger fluences to reach the      50  ft-lb shelf level.      These    projections    will be  reex-amined    after the next surveillance capsule          has been removed.
A  similar  approach can be taken to estimate the increase              in RTHDT as  a function of reactor power generation.            Figure  10 compares      the Donald'. Cook Unit    No. 1  surveillance data    on the    three surveillance materials to selected portions of Figure      1 of Regulatory Guide 1.99, Revision 1.            The  results
 
60        s I                Is sr            :lli I!!!                            s Isl        s '                                  I ~ Is l                                                                                                                                                  sl      I'I  s I                    s I  ~
I                                                  ss s
                                                                                                                  'l its jls              I)      s
                                                                                                                                                                    ~
                                                                                                                                                                      ~  I l I        I I  ~                                    sl
        '.] j.!                                                                      RR        .                            I!.I i                              :I ~:
list
                                                                                                                                                  ~i                ~  ~              I l
40
                                                                                                    .jj
                                                                                    .OI.'!                                                                                                s ss lit!          !!                                                I I                                        s I'        lt Igloo s!                                                                                          t:.s    I          ;}.
                  ~
I I
                          ~    ~
il, !'ii                                                                                      it ili                                                    j s
sl                                                                            I                  s,    s
:III          ~ ~
4l                                        I~
I ll fili                                jig! js fjl if))
rI
                                                                                                                                                                  \~
tjj
                                                                                                                                                                                      .l.!
I.
s                      ~
20                                                                                                 I                                                            Ill I,                                  ~ ls j
I-I' fl tel                                                                                                jjj ll I
W 10                                                                                              0 I      !III                                                                              . j!j. l! j
                    ~ ~
I I s
l!j i!i          I st I              jjjj ls s>>
I    i  ii I I
I!I jl! i,:.l
                    ~ ~
s  I            I
                                                                      " 'I lrss                                      sj!I                              s'j
                                                                                                                                                            ~
sl ll v)  6                                                                                                                                                                    s I                                                              I~s 0                 l I
                    ~
ss
                                                    ~
I ss js st I  ssl sill sss Is!'..'Ill I~      ls', ~            '-I:j l            I  t"  r hl!'ii!
0                                              ls)                        :  I>>                                              >>I I>>
I ls              I~
Qt                                                                                                                                                                .:m A                                                          s!Is            >>I,                                I ~ !'i                                      lil llj                                                                ,.)j,  t l          i.;                                                                !'! I  '.Ill                                                                                              s
:;l',I,",              :Isl I;I,'                                                                                ~
l ill s
i!l tlji sl s
s s
iL"
                                                                            ~s
                                                                                                          !jl    ;I
                                                                                                                                                        +II I j";l s
jl sSI    Is s                              ~ ~  ls      ss li                                                            I                      1                      l ill Illj      il!                .-I.s.i                      I'l It                                                  lsll I!
                                                                                                                                                ~ ~  s                  I
                                                                          .'jii                                                                                                            t.s"I','s"
: j. ~ ~ ~
I~                                                    >>s'.
l Ill                                                                                                      ~
                                                                                                                                                                                        '    I I                ~s-j
                                                                                                                                                                            @pe II              I'.,
                                                                          'is's'
                                                                                ~
2 x 1017                        4                6      8            1018                      2                  4                  6                8            1019                        2                            4 Neutron Fluence, n/cm                          (E > 1 MeV)
FIGURE            9.          DEPENDENCE OF Cv SHELF ENERGY ON NEUTRON FLUENCE, DONALD C. COOK                                                                                      UNIT NO. 1
 
600                                                                                                    'll                              i  ~ '
                    '.lji                                    !
I i.,                      ~
ll        '  l
                                                                                                                      ~
I
:.Il'                                                              irl:
                                                                )
K I C4!                  -I II, '11 T~).
I,I I'l 77'    ~ I 400                                                                                                            t.l                                              !ij! I!  1 I
                                                            . I..i .I j I
I I/I I I 1 lll II;!                                                          ~
II!                                                        I I I ~
            ~
            ~
I.:
I 1 I-
                            ,II!
                            'ill "I
I I':
                                                                                                    ;r                                  >>
I I I
I I
1
                                                                                                                                                            'l I
11 ~ ',
tj I
200 I
lait jl, iii
                                                                                                                                      . I
                                                                                                                                        ~
I 1l                                            I I
Il                                            j-I I                                            I.
                                                                                            )I 100                                                                                      Ij tjt 80 60 I
      ~ll      ~ I                    I      ~
I I
I          Iij                                        'II j,j
                                                                                                          '11
                                                                                                                    )1 I
                                                                                                                      ~ I              I  ~
I':I i.i'
                                                                                                          ~
I I                                                          tll
      ' ~
I I
l    )I        l I~
II I f.>>.                                                                                  j>>i i,  I I    j          ~~ I                .!I 40                                              I                                                                                    ~  'I                  )::; hii I
I!                  Igt
                                                                                        !!Ii                lF    ':i]j I)1 jl ilj      lf il;,'"
Ill                            t f
I ili:. II-': I
                                                                                                                                                                              ~
tlI I,1                        !I Ij                                            1 it
                                                                                              !,i l                il I
:,I jl                                            ,!,! j 20 2 x 1017              4          6            1018                                                          8      1019                2                        4 Neutron Fluence, n/cm          (E > 1 HeU)
FIGURE 1            EFFECT OF NEUTRON FLUENCE ON RTNDT SIIIFT>> DONALD C                                    COOk UNIT NO'
 
indicate that the    measured  shift in    RTNDT  of the weld metal is in agreement with that predicted by Regulatory Guide 1.99, Revision 1, but that the                mea-sured  shifts in    RTNDT  for the plate    and HAZ    materials are underpredicted by the guide.
The  predicted shifts in      RTNDT  for the    Donald C. Cook Unit No. 1 reac-tor pressure vessel obtained from Figure            10  are summarized in Tables XII and XIII. The values  predicted at the 1/4T and 3/4T after          12 EFPY  (Table XII) are used to develop heatup and cooldown            limit curves to    meet the  require-ments  of Appendix    G  to Section  III of    the  ASME  Code, as described  in Section VI of  this report. These  projections for      Cv  shelf energy reductions  and RTNDT  shifts,  and the  resulting heatup      and cooldown    limit curves,  are based on  extrapolations from      one data  point representing the most sensitive material.
After  a second  capsule has been removed and tested, one            will be  able to  inter-polate between two data points.
The Donald C. Cook    Unit  No. 1  reactor vessel surveillance program sched-ule proposed by Westinghouse~        ~  is  summarized    in Table XIV. It has been  or-ganized to  satisfy  Appendix  H of  10CFR50 as      closely  as possible. There are seven  additional capsules in the vessel,          all  of which contain base plate, weld metal and    HAZ  specimens. There    is  no reason    to consider changing the proposed capsule removal schedule at          this time.
39
 
TABLE  XII PROJECTED VALUES OF RTNDT FOR DONALD C. COOK UNIT NO. 1 FOR UP TO 12 EFPY OF OPERATION Calculated Fluence            RT    (de F)
Location              Material        (n/cd    E > 1 MeV)  Initial    Shift    12 EFPY(a )
Vessel I.D.
          ~ ~      Inter. Shell Plate      6.55 x 1018        45(b)      145        190 Weld  Metal                                  -52(b)      245        193 HAZ                                        -60(c)      245        185 Vessel 1/4T      Inter. Shell Plate        3. 73 x 1018        45(b)      110        155 Weld Metal                                    52(b)      185        133 WZ                                          -60(c)      185        125 Vessel 3/4T      Inter. Shell Plate                            45(b)      50        95 Weld Metal                                    52(b)      87        35 MZ                                          -60(c):      87        27 (a)  1 EFPY    1,186,250 M&t.
(b)  Reference 18.
(c)  References 13 and 18.
 
TABLE  XIII PROJECTED VALUES OF RTNDT FOR DONALD C. COOK UNIT NO. 1 FOR UP TO 32 EFPY OF OPERATION Calculated Fluence            R  DT (de  F)
Location            Material        (n/cm2    E > 1 MeV)  Initial    Shift    32 EFPY(a )
Inter. Shell Plate                            45(b)      240        285 Meld Metal                                    -52(b)      320        268 HAZ                                          -60(c)      320        260 Vessel 1/4T    Inter. Shell Plate        '1.0 x 1019        45(b)      180        225 lfeld Metal                                  -52(b)      285        233 HAZ                                          -60(c)      285        225 Vessel 3/4T    Inter. Shell Plate        2.2 x 1018          45(b)      83        128 Meld Metal                                    -52(b)      142        90 HAZ                                            60(c)      142        82 (a) 1 EFPY = 1,186,250 MMDt.
(b) Reference 18.
(c) References 13 and 18.
 
TABLE XIV PROPOSED REACTOR VESSEL SURVEILLANCE CAPSULE SCHEDULE DONALD C. COOK UNIT NO. 1 Capsule          Lead Identification      Factor                      Removal Time 2.6        Removed and  tested at end of  first core cycle 2.6        10 Years  (postirradiation test) 0.6      10 Years  (reinsert in  Capsule T  location) 0.6      10 Years  (reinsert in Capsule    X location) 2.6        20 Years  (postirradiation test) 0.6        20 Years (reinsert in Capsule    U location) 2.6        30 Years (postirradiation test) 0.6      30 Years  (reinsert in  Capsule  Y location)
 
~ ~
VI. HEATUP AND COOLDOMN LIMIT CURVES FOR NORMAL OPERATION OF DONALD C. COOK UNIT NO. 1 Donald C. Cook Unit No. 1      is a 3250 Mwt  pressurized water reactor oper-ated by American    Electric  Power Service Corporation.      The  unit has been  pro-vided with a reactor vessel material surveillance program as required by 10CFR50, Appendix H.
The first  surveillance capsule (Capsule      T) was removed    during the 1977 refuelling outage. This capsule was tested by Southwest Research          Institute, the results being described in the      earlier sections of this report.        In sum-mary, these  results indicate that:
(1)    The RTNDT  of the surveillance materials in Capsule        T  increased a maximum  of  130 F as a    result of exposure to    a  neutron fluence of 1.80 x 10  neutrons/cm2    (E > 1 MeV).
(2)    Based on a    ratio of 2.6  between the    fast neutron flux at the Capsule T  location  and the maximum    incident  on the vessel    wall, the vessel wall fluence at the I.D.      was 6.92 x 1017 neutrons/cm2      (E > 1 MeV)  at the time of removal of Capsule T.
(3)    The maximum    shift in  RTNDT  after  12  effective  full power  years (EFPY)  of operation    was  predicted to  be 185 F  at the 1/4T  and 87 F  at the 3/4T vessel wall locations, as controlled by the weld metal and            HAZ materials.
(4)    The  intermediate shell plate material, although less sensitive to radiation embrittlement than the weld        and HAZ    materials, is projected to control the limiting RTNDT for      a considerable    length of time because of    a much  higher  initial  (unirradiated)  RTNDT  of  45  F.(
43
 
                                                                                            ~ ~
The  Unit  No. 1 heatup and cooldown      limit curves for    12 EFPY have been computed on the basis    of (4)  above because    it is  anticipated that the    RTNDT of the primary pressure boundary materials        will be  highest for the plate ma-terial at least  through that time period (see Table          XII). The procedures employed by SwRI are described      in Appendix    B.
The  following pressure vessel constants were          employed as    input data in this analysis:
Vessel Inner Radius,    ri                  86.50  in.,  including cladding Vessel Outer Radius, ro                      95.34  in.
Operating Pressure,    Po                    2235  psig Initial Temperature,    To                  70 F Final Temperature, Tf                        550'F Effective Coolant Flow Rate,      Q      ~    135.6 x 10      ibm/hr Effective  Flow Area, A                      26.72  ft2 Effective Hydraulic Diameter,      D    ~    15.05  in.
Heatup curves were computed      for  a heatup  rate of    60 F/hr. Since lower rates tend to raise the curve in the central region (see Appendix B), these curves apply to  all  heating rates  up  to 60  F/hr. Cooldown curves were com-puted  for cooldown rates of 0    F/hr (steady state),      20  F/hr,  40 F/hr,  60  F/hr, and 100  F/hr. The 20  F/hr curve would apply to cooldown rates          up  to 20  F/hr; the 40 F/hr curve would apply to rates from 20          F  to 40 F/hr; the 60 F/hr curve would apply to rates from 40 F to 60        F/hr; the  100  F/hr curve would apply to rates from  60  F/hr to  100  F.hr.
The Unit  No. 1 heatup and cooldown curves        for  up  to 12 EFPY  are given in Figures  ll and  12.
44
 
2600 2400                                                  ~  I I
ltI~
        ~
I 2200        ~
2000 1800 1600 1400                                              I      ~
                                                        ~
1 u 1200 t]t..                                ~
lf ~
                                                                                                        'ff
                                                    . I if}
l,l 1000 1
                                                    ~  t    I 800                                                                                    ~ i    I~
t<< 1 ~
600
:1  ~
I .,f                                                            ~
f l
f 400                                                                                                                              H f)
:it}                                l                                                                          jt l
g ~
r'i y ~ ~ II  ~ I
                                                                                  ~
f1~ I "I''
I
                                                                                                  ~ ~
lf
                                                                                                            ~
1
                                                                                                                ~              'r L1 1,
                                                                                                                                    ~ I f.[
200
                          ~  ~
I~ ~
I:1                          f~ f                                r ~        it    i          ~
                                                                                                                                              ]
60                  100                150                  200                      250                300          350                  400 Indicated Temperature, deg              F FIGURE        ll. DONALD C. COOK        UNIT NO. 1 REACTOR COOLANT HEATUP              LIMITATIONS APPLICABLE FOR PERIODS UP TO 12 EFFECTIVE FULL POfKR YEARS
 
2600                                                                                                                                  ~
                                                                                                                                              ~
                                                                                                                                                                                                                                              ')elt
:.,; I)l)                    j!                                                                                                    I.                                                                                                si
                                                                                                                                                                                                                                                                                                                            ~ ~
ll 11  ~ ~
:!i j 1 g
:i>i
                      'l
                                                                          ~e I'.
I
                                                                                                                                                                    ~ g      ~                        s ~ 1                                                                                                        ~ ~
st';
I1          le)
Sel        i:I                                                                                                                                              ~ e  I
                                                        ".I                                                                                                                                                                                                                                                      rma
                ~                                                                                                                                                                                                                                                                                                        ~      ~
2400          e      ~ 1                            )'e                                                                ~
                                                                                                                                ~
1~1 itis ~ 1                                                                                                                                                                        I~  1
                                                                ~                                                      el>                                                                              s                                                                                                        ~
i
            ~ ~ ~ ~  I                  )  ~ s ~
I
                                                                                                                                            ,';)I                    !'.I!                            ; -1                                                                                      4
                                                                                                                                                                                                                                                                                                    "~ ~
                                                                                                                                                                                                                                                                                                    ~
                                                                                                                                                                                                                                                                                                                    ~ ~                      t' sell I'!1)                                                                                                                  !                              ~ ~ ~                                                                                                                                      ~
a ~
I                                                                  :I      )
l ilI'')1                                                  e I                                                                                            eisa                                                            s                  f 2200          1
                ~ ~      er              1 ~            ~ r                                                        sell
                                                                                                                    ~      e
                                                                                                                                                                    ; I) s I
Ill llI'I}
                                      ~
i l'l
                                ~
:li I.',:                                                                                                                      s
                ~ I                                                                                      1
                                                                                                                                                                                                      ' l
                                        'allI Il
                                                                                          ~
I                                                                ~
s g
I 1
1 i                        ".I-  'll:;                        !(      }I                  'll
                                                      ~
2000 :.:
                                                                                                                                                                                                                          . L'::.:                        1>
                                                                                                                                                                                                                                                              ~      ~
                                                                                                                                                                                                                                                                      ~ ~
                                                                                                                                                                                                                                                                                      .  'g t,1 l
[::II                  -i):
ls              ~ ~
                                                                                                                                                                                                              >! I I~
I~
                                                                                                                                                                                                                                                    )I                                      I
                                                      ~
ee)e                                                                                                                                                  !e!                                                                        ~ ~ .1
                                                                                                                                                                                                                  )
ii                              ~ -1
                                                                                                                                                                                                                                                                            ~ ~
                                                                                                                                                                                                                                                                                >l  ~        e i::I                                                                                                                                                  'sl: .-:'I.':.i
                                                                                                                                                                          ~ ~
s                                                                                                                                                          ~ I 1800                                    ~ ~
s e  i;.                                                    I  ~  *  ~
al I It                          )i}'        I'                                                                                                                                                                                            ~ ~
                                                                                                                                                                                            .)    1 e
                                                                                                                                                                                                                                                                                                                                          }L l 1-~                                                .>                                                                      s      ~
                                                                                                                                                                                                                                            ~ I
: I
                                                            .I                          I                                                                          '1 Sl
                                                                                                                                                                          )
e ~ ~
::II                                    I I~
                                                                                                                                                                                                                                                                                                                                          >I  li Aj 1600                                              ?
le
                                                                                                                                                                                                                                                              ~ e
                                                                                                                                                                                                'I                                                                                                                                            rf
                      'i
                                                                                                                                                                                              ~
I .".
                                  '- s  ~ ~
i' I g
                                                        !    ji                                                                                                        ~  1 1    ~
I                                              II)        I                                I I'                                            l  I' I.;I 1 ~
e-''
s 1'                      I'              I~
l I! I                                              '.1t                          11>
1>f
                                                                                                                                                                                                                                                                                              ~
e
                                                                                                                                                                                )I    I ll! )!Ij
                                                                                                                                                                          ~          ~
I                      l)!                        ;.:I                                                    ~
ii      ~
                                                                                                                                                              ~
                                                                                                                                                                      ~
i>le 1
                                                                                                                                                                                ~                        s ~                                                            I el  g
                                                                                                                                                                                                                                                                                                                                          }I P4 1400                                    ~        ~ '.
l :I!                f      e ~  ~.
I?                II  e
                  >I                s
                                                                                                                                              '.L                  .p                    )s    e tp
                                                                                                                                                                                                          ~ ~
: I'            ~
I
                                                                                                                                                                                                                                                                  ~
j:- j-'
                                                                                                                                                                                                                                                                                      ~
lj~
:,  Ii e ~
I,,
::Ill e s 4
~
Q                                ~ ll                      e e
                                                                                                                                            ~
                                                                                                                                                                                                    ;if                                          ll !I!I
                                                                                                                                                                                                                                                                          )          S1    ~ ~
I.:;.I                      ~
                  ;I,-:
                                                                                                                                                                                                                                                                                                                              ~
1200  :                                                        s
                                                                                        ~      1 Fig+        a
                                                                                                                                                                                                                                                            ~  '. ~                      1 j                              II f ~ ~ ~
Ai                                                                e
                                                                      >}s                    e                                I            c'l,!                              ~ 1
                                                                                                                                                                                  ~ ~        ~ ~            g
                                                                                                                                                                                                                                            ~ 1 s g ~ 1 t)                                                I 1
                                            .I                                                                    :I 1
1                                                                ~ ~
                                                                                                                                                                                                                                                                                      ) II
                                                                ~
                                                                                                                                                                                                                                            ')
                                        ~                  =-
                                                                                                                        .                                                                                                                                                             ~,J e''I
                                                                                    ~                                                                                                        ~ ~ ~                                                                                                  ~
                                                                                  )                                                                                                                                                                                                                ~
I        I      ~ ~
I              )1
                                                                                                                        ~
                                                                                                                          'I  ~                              ~
1 I
I I
                                                                                                                                                                                                                                            -!I'tI }?4
: s. A
                                                                                                                                                                  -"     e
{g
                                                                                                                                                                      ~
                                                                                                                                                    ..I:}i.~
                                              ~                                                                                                                                      ~
I'.              ~
A
: ~  1       ~ ~                                                                                                                                ~ ~                    )                                          >I 1000                                'e 1t1
                                                                                                                                            )le    ~
I) I:e)                                              l                  r                                          ~        e' I    }i          ii!l            e fje                                            Rl      I f:I'I:i!                ~
1            II tI
                                            .f I                                                                            ffjf r)')      1
                                                                                                                        \
                                                                                                                                                                                ,iii
                                                      ~
Is I'l
                                                                                                                              ~
I                                                                                                    ~ 1 ie)                                                                                            iI}}                                                    lel)                  ~  f ~I                                                              )t j I
j
                                                                                                                                                                                  ~
i li I  ls      I                                                e ~                                ~ el 800              e.l,              tl                                                                  ~ ~
s
                                    )I ij    ~ ~
                                                      ~
Is!                                              la f I                                                    }esj                                                I                                                                                    alj)                r
                      )IL) !-.1;
                      "! I            i. ~
                                              )~
tt e ~ 1 ~  >1 1)
                                                                                                                              ~
                                                                                                                                                                                )rjl                                      stj ::il eae rg l I: I!
                                            ~
                                            ~
I        ::ff                                          I~ ~
l)iife'I''l li I                ~    ~
                                ~
si                                                                                                                                                              II          ej                    s                                                                                                    I 600      t                                      !."Ie              1  ~
                                                                                                                                                                                !1 I
                                                                                                                                                                                                                                                            ~  1            ~  t's 1
e
                                                                                                                      ,.I I            i;f}                                                                                                                                                Ta i
I    ))
                                                                                                                          ~ >
I'Ill                                              'Ii, I sl IIj I:lj                                                      si),.
I~ I      ~ t                          )Jjl                                s                                                t                                                                                      al:
400                                                                                          1    ~                        ~  'I                                                                                    .I I;r                                e ~ e
                                                        'I I;.Ill lrll e                                                                                                          1      ~      ~  s I  ~
j
                                                                      ',I  ls
                                                                          .I g    I
                                                                                                    '.. I
                                                                                                                                        ~ 1 I:,I                                If!a                              ~ ~ ~
                                                                                                                                                                                                                              ~ 1      ~  I                                                      ~ ~ s i
e+I                      I I1 ~                            ,.aell)I                        'll;                                          e e                    1                          f
                      ~ ~
                        ~
1)
I, 1
                                          '1 a
                                                                                        ~ ~                          1 1
                                                                                                                              'i"
                                                                                                                                          ~                  ~    ~
                                                                                                                                                                                ~ ~ ~
                                                                                                                                                                                              'I                  ~ 1                                        :Itj I lj:sn :)I          e    ~
                                                                                                                                                                                                                                                                                          ) f 200
                        .1                e
                                                                  , ~
1 ~  ~    t
                                                                                                      ~ ~                              I I                  ~
l                    s      s                  I  ~
                                                                                                                                                                                                                                                                ~ as ~                I.::
60                                  100                                          150                                                200                                                    250                                             300                                        350                                    400 Indicated Temperature, deg                                                                      F FIGURE 12.                                  DONALD C. COOK UNIT NO. 1 REACTOR COOLANT COOLDOWN                                                                                                                        LIHITATIONS APPLICABLE FOR PERIODS UP TO 12 EFFECTIVE FULL POWER YEARS
 
VII. REFERENCES
: 1. Title  10, Code  of Federal Regulations, Part 50, "Licensing of Produc-tion  and  Utilization Facilities."
: 2. ASME  Boiler  and Pressure  Vessel Code, Section  III, "Nuclear                    Power  Plant Components," 1974  Edition.
: 3. ASTM E  208-69, "Standard Method    for Conducting Drop-Weight Test to De-termine  Nil-Ductility Transition    Temperature of Ferritic Steels," 1975 Annual Book of  ASTM  Standards.
Steele, L. E., and Serpan, C. Z., Jr., "Analysis of Reactor Vessel Radiation Effects Surveillance Programs," ASTM STP 481, December 1970.
: 5. Steele, L. E., "Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels," International Atomic Energy Agency, Technical Reports Series No. 163, 1975.
: 6. ASME  Boiler  and Pressure Vessel Code, Section    XI, "Rules for Inservice Inspection of Nuclear    Power Plant Components,"  1974  Edition.
: 7. Regulatory Guide 1.99, Revision 1, Office of Standards      Development, U.S. Nuclear Regulatory Commission, April 1977.
: 8. Comments  on Regulatory Guide 1.99, Westinghouse Electric from NRC Public Document Room, Washington, D.C.
Corporation,'btained
: 9. Position  on  Regulatory Guide 1.99, Combustion Engineering Power Sys-tems, Obtained from  NRC  Public  Document Room, Washington,                D.C.
: 10. ASTM E  185-73, "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels,"    1975 Annual Book of ASTM Standards.
: 11. ASTM E  399-74, "Standard Method of Test    for Plane-Strain Fracture Toughness  of Metallic Materials,"    1975 Annual Book  of ASTM                    Standards.
: 12. Witt, F. J., and Mager, T. R., "A Procedure for Determining Bounding Values of Fracture Toughness KIc at Any Temperature," ORNL-TM-3894, October 1972.
: 13. "American Electric Power Service Corporation Donald C. Cook Unit No. 1 Reactor Vessel Radiation Surveillance Program," WCAP-8047, March 1973.
: 14. ENDF/B-IV, Dosimetry Tape 412, Mat No. 6417 (26-Fe-54), July 1974.
: 15. Loss, F. J., Hawthorne, J. R., Serpan, C. Z., Jr., and Puzak, P. P.,
    "Analysis of Radiation-Induced Embrittlement Gradients on Fracture Characteristics of Thick-Walled Pressure Vessel Steels," NRL Report 7209, March 1, 1971.
47
: 16. Telecon, E. B. Norris to Ken Hogue (NRC Staff) January 19,  1977.
: 17. Hazleton, W. S., Anderson, S. L., and Yanichko, S. E., "Basis for Heatup and Cooldown Limit Curves," WCAP-7924, July 1972.
: 18. Donald C. Cook Unit No. 1 Technical Specifications,  as of November 30, 1977.
48
 
APP END IX A TENSILE TEST RECORDS
 
Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T-    .. l              Est. U. T.S.                      PS1 Spec. No.          -1                Initial G. L.                  r 41Z1 ~      Machine No.
Temperature        I4        'F      Initial Dia..              I    in.        Date            77 ts  J Strain Rate,      < 2    tzpi> Inisial Thickness                      in.        Initial Area Initial Width                    in.
Top Temperature                                              Maximum Load              40  lb Bottom Temperature                          'F                0. 2'%ffset      Load  88 9 D lb Final  Gage Length                p  4T    ine              0.02% Offset Load              lb Final Diameter                    /~~I      in.              Upper Yield Point Final Area                                  ine 2 r
Maximum Load Initial Area                            psi cjoy P 2 Init1al Area 2-      ~g        psi
: 0. 02% Offset Load 0  02/ Y    S Initial Area                              PS1 UPPer Y S    ..        Upper Yield Point I tial Area                                PS1 Final  G. L. - Initial            x 100=
Initial Area - Final Area            1  p          @~7 Initial Area Signature:
A-2
 
-0;0 rZi9ahJ A-3
 
Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T-          . Z                Est. U. T. S.                    psi Spec. No.                              Initial G. L.          .O        in.
Tem per afore        ~P'F              Initial Dia.      . g    C  'n.
Strain Rate        . C'~/Wrr/          Initial Thickness                in.        Initial Area      . +H /
Initial VTidth                    in.
I Tap Temperature                                'F              Maximum Load          S~ 7S        lb Bottom Temperature                                              0  2%%uo Offset Load 5      2.=.~~ lb Final        Gage Length                                        0.02%%utf  Offset Load              lb Final Diameter                  . l+J          ln  ~          Upper Yield Point                  lb Final Area                . o '72                  2 r
Initial Area
: 0. 2%    Offset Load Initial Area
                                  ~  02%%u'ff    et Load 0      02%%u  Y S Initial Area                                psl U      er Yield Point PPer          .-
I tlal Area Final    G. L. - Initial            x 100'= ~      ~'
        %%utl  Elongation                                                                      %%uo Initial Area - Final Area              100 Initial Area tt
 
    ~ ~
  )
          '0' a
0 g~<
A-5
 
Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T-                        Est. U. T. S.                  psi Spec. No.                          Initial G. L.            dd    in. Machine No.      )> / J~~
Temperature      >+      'F        Initial Dia.                          Date Initial T hie kne s s          in. Initial Are a '~8 7 Initial Width                  in.
Top Temperature                            oF          Maximum Load        5.> G    lb 0.2% Offset Load ~~n,~    > lb Final  Gage Length                        111 ~        0.02% Offset Load              lb
~ s Final Diamete"                            in.          Upper Yield Point              lb Final Area              sP/  74    +m.        2 Maximum Load 0.2'ls Offset Load Initial Area                g~ gg.
                        =        2/o  Offset Load 0 02$  Y  S Initial Area                        ps1 pp,            '        er Yield Point
                                  ~tel Area                            p81 u Fin  G. L. - Initial G. L.
        %  Elongation                Initial G, L.
R A Initial Area - Final Area
        %                      Initial Area Signature:
A-6
 
'A-7 1
                                                                                                            ~ ~
Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T-                        Est. U. T.S.              psi          Project No. 6<-a>>n    -of" /
Spec. No.                          Initial G. L.                          Machine No.
Temperature 5 ft <      'F        Initial Dia.                            Date Strain Rate                        Initial Thickness                      Initial Area  . OHg'7 Initial Width            1ne Top Temperature            5 ~l ~            'F    Maximum Load            + C~~'0  lb Bottom Tempe ratur e          o  84                  0. 2% Offset Load        ~?~. 5  ib 0.02% Offset Load                lb in. Upper Yield Point Final Area Maximum Load Initial Area 0.2%%uo  Offset Load Initial Area p 02      Y S
: 0. 02 %  0 ffs e t Lo a d                ps1
              %%u Initxal Area U      er Yield Point Initial Area ps'inal G. L. - Initial G L x lpp 0  E OIlgation 
                                        ~.+ l G L                        //  7' Initial Area - Final Area Initial Area Signature:
A-8                                    b,t,
 
A-9
~ 1 )1 APPENDIX  B PROCEDURE FOR THE GENERATION OF ALLOWABLE PRESSURE-TEMPERATURE LIMIT CURVES FOR NUCLEAR POWER PLANT REACTOR VESSELS
 
PROCEDURE FOR THE GENERATION OF ALLOWABLE PRESSURE- TEMPERATURE LIMIT CURVES FOR NUCLEAR.POWER PLANT REACTOR VESSELS A.      Introduction The following is a description of the basis for the generation of pressure-temperature    limit curves for inservice leak    and hydrostatic tests, heatup and cooldown operations, and core operation of reactor pressure vessels  ~  The safety margins employed in these procedures equal or exceed those recommended in the ASME Boiler and Pressure Vessel Code, Section III, Appendix G, "Protection Against Nonductile Failure. "
B.      Back round The basic parameter used to determine safe vessel operational conditions is the stress intensity factor,  KZ,  which is a  function of the stress state and flaw configuration. The KI corresponding to membrane tension is given by KI    'm'm where Mm is the membrane stress correction factor for the postulated flaw and  o.m the membrane stress. Likewise, KI corresponding to bend-ing is given by KIb  'b      0'b                                (2) where Mb is the bending stress correction factor and      o.b  is the bending stress. For vessel section thickness of    4 to 12 inches, the maximum B-2
 
postulated surface flaw, which is assumed to        be  normal to the direction of maximum stress,       has a depth of 0. 25 of the section thickness and a length of  l. 50  times the section thickness. Curves for Mm versus the square root of the vessel wall thickness for the postulated flaw are given in Figure  1 as taken  from the Pressure Vessel      Code (ref. Figure G-2114. 1).
These curves are a function of the stress ratio parameter          r/r, where    o.
(Py is the material yield strength which is, taken to be 50,000 psi.        The bending correction factor is defined as 2l3 Mm and is therefore determined from Figure  1  as well. The basis    for these curves  is given in ASME Boiler and Pressure Vessel Code, Section XI, "Rules for Inservice Inspection of Nu-clear Power Plant Components," Article A-3000.
The Code specifies the minimum KI that can cause failure as a func-tion of material temperature,      T, and its reference nil ductility temperature, RTNDT. This minimum KI is defined as the reference stress intensity fac-tor, KIR, and is given by KIR  =  26777. + 1223. exp    0. 014493(T - RT NDT + 160)                (3) where  all temperatures are in degrees Fahrenheit.          A plot of this expression.
is given in Figure 2 taken from the Code (ref. Figure G-2010. 1).
C.      Pressure-Tem      erature Relationshi  s
: 1.      Inservice Leak and H drostatic Test During performance of inservice leak and hydrostatic tests, the reference stress intensity factor, KIR, must always be greater than B-3
 
3.8 MEh<8RAHQ I(    m M    ~ra                            1.0 Im      m Mb x 0.7
                                <  2/3hlm,                              0.5 Mb                                          O. I 3.2 3.0 E
2.~i 2.2 2.0 1.6 1.2 1.0 1.0 1.2  I A  1.6 1,0  2.0  2.2 2.~i 2.6 2.8 3.0 3. 2 3A 3.6 3.8 4.0 FIGURE 1. STRESS CORRECTION FACTOR
 
I70 I'R  26 777)
V'IIERE l30                  'EFEAFHCE      STRESS  INTENSITY FACTOR I20                    TEhIPERATURE AT VIHICH I'IR IS PERhIITTED,'F II 0 RTHPT 'EFERFHCE HIL-DUCTILITY Lg tco                    TEMPERATURE SO 70 60 50 40 IO 0
  -240 -200      -IGO  -I20    -eO  -40    0    40    80  .I20 IGO  200 240 TEIAPERATUAE RELATIYE TO ATHP,(T-ATHPT), FAHREIIHEI      D GREES FIGURE 2. REFERENCE STRESS INTENSITY FACTOR B-5
: l. 5 times  the KZ caused. by pressure,          thus
: l. 5 Kl'p  KZR                                (4) or
                                      '5 Mm <m ~ K1R                                    (5)
For  a  cylinder with inner radius        ri and  outer radius ro, the stress  distribution    due to  internal pressure is given by With 1/4T flaws possible at both inner and outer radial locations, i. e.,
at rl/4 = ri 4 1/4(ro- ri) and      r3/<      r j+ 3/4(ro- ri),    the maximum stress will occur at  the inner flaw location, thus I
r j.2        r    + (1/4ro+
4      3/4ri) o.
max  =P  o ro2 - ri2            (1/4ro p 3/4r i)2 With the operation pressure known, i. e., Po, we deter-mine the minimum coolant temperature that                will satisfy Equation  (4) by e valuating KlR      =  '5Mm<max and determine the corresponding coolant temperature,                    T, from Equa-tion (3) for the given RT~~DT at the 1/4T location.              For this calculation, Equation (3) takes the form I-*I- 6 ..6 .I                [-666        '].
S-6
 
The inservice curves are generated        for an operating  pres-sure range of 96 Po to
                  ~            l. 14 Po, where Po is the design operating pres sur e.
: 2. Heatu    and C ooldown 0    e rations At all times during heatup      and cooldown operations,  the ref-erence stress intensity factor, K1R, must always            be greater than the sum of 2  times the Klp caused by pressure and the Klt caused by thermal gra-dients, thus
: 2. 0 Klp +  l. 0 Klt < KZR                              (10) or 2 0  Mm 0 max    K1R  - KZt where    o max is the maximum allowable stress due to internal pressure, and KZt is the equivalent      linear stress intensity factor produced by the thermal gradients.      To obtain the equivalent linear stress intensity fac-tor  due to  thermal gradients requires      a detailed thermal stress analysis.
The details of the required analysis are given in Section D.
During heatup the radial stress distributions due to internal pressure and thermal gradients are shown schematically in Figure 3a.
Assuming a possible flaw at the 1/4T location, we see from Figure 3a that the thermal stress tends to alleviate the pressure stress at this point in the vessel wall and, therefore, the steady state pressure stress would represent the maximum stress condition at the 1/4T location.              At
 
OUTER RAD IUS 3/4T Z/4T INNER RAD IUS Pressure stress distribution          Thermal stress distribution
( a )  Heatup OUTER RAD IUS 3/4T 1/4T INNER RADIUS Pressure stress distribution          Thermal stress distribution
(  b )  Cooldown Figure 3. Heatup and Cooldown Stress Distribution B-8
 
the  3/4T flaw location, the pressure stress and thermal stress add and, therefore, the combination for    a given heatup  rate represents the maxi-mum stress at the 3/4T location.      The maximum overall stress between the 1/4T and 3/4T location then determines the maximum allowable reac-tor pressure at the given coolant temperature.
The heatup pressure-temperature      curves are thus generated by  calculating the maximum steady state pressure based on          a  possible flaw at the 1/4T location from K1R max(                  rj                                          (12) ro  + (1 /4ro 0 3/4r;)
2Mm roZ - rj      (1/4ro+3/4rj)2 where Mm is determined from the curves in Figure            1 and K1R is obtained from Equation (3) using the coolant temperature and RTNDT at the 1/4T location. Here we may note that Mm must      be  iterated for since it is    a function of the final stress ratio to yield strength (0./ay).
At the 3/4T location, the maximum pressure is determined from Equation    (ll) as KZR -  Ku P    (3/4T)                                                      (13) rj      r oZ + (1/4r j + 3/41 o) 2M    roZ r.Z        (1/4ri+ 3/4ro)2 where K1R is obtained from Equation (2) using the material temperature and RTNDT at the 3/4T location and      Klt is determined from      the analysis procedure outlined in Section D. Mm is determined from Figure              1, B-9
 
The minimum of these maximum allowable pressures              at the given coolant temperature determines the maximum operation pressure. Each heatup rate of interest must be analyzed on an individ-ual bas is.
The cooldown analysis proceeds in a        similar fashion  as that described for heatup with the following exceptions:        We note    from Figure 3b that during cooldown the 1/4T location always controls the maximum stress since the thermal gradient produces tensile stresses at the 1/4T location. Thus the steady state pressure      is the same as  that given in Equation (12). For each coo)down rate, the maximum pressure is evalu-ated at the 1/4T location from max(                                                                (14) 2M ri      ro~ + (3/4ri 0 1/4r o) r    - r ~      (3/4ri+ 1/4r  )
where KIR is obtained from Equation (3) using the material temperature and RTNDT at'the 1/4T location.        KIt is determined from the thermal analysis described in Section D.
It is of interest to note that during cooldown the material temperature will lag the coolant temperature and, therefore, the steady state pressure,    which is evaluated at the coolant temperature,        will ini-tially yield  the lower maximum allowable pressure.          When the thermal gradients increase,    the stresses  do  likewise, and, finally, the transient analysis governs the maximum allowable pressure.              Hence a point-by-point
 
comparison must      be  made between the maximum allowable pressures          pro-duced by steady state analyses and transient thermal analysis to determine the minimum of the maximum allowable pressures.
: 3. Core 0 eration At all times that  the reactor core is    critical, the temperature must be higher than that required for inservice hydrostatic testing, and in addition, the pressure-temperature        relationship shall provide at least  a 40'F margin over that required for heatup and cooldown operations.            Thus the pressure-temperature      limit curves for core operation      may be constructed directly from the inservice leak      and. hydrostatic test and heatup analysis results.
D.      Thermal Stress Anal sis The equivalent linear stress due to thermal gradients is obtained from  a  detailed thermal analysis of the vessel.,      The temperature distribu-tion in the vessel wall is governed by the partial differential equation PcT< - K[(1/r) T      + T  .1 = o                          (15) subject to  initial condition T(r,0)  =  T and boundary conditions
                      -KTr(ri, t) = hLTc(t) - T(ri t)
I (17)
 
and Tr(roit) =  0                              (18) whe re Tc    = To+ Rt.                            (19) p is the material density, c the material specific heat, K the heat conduc-tivity of the material,  h the heat  transfer coefficient between the water coolant and vessel material, R the heating rate, To the initial coolant temperature, T(r, t) the temperature distribution in the vessel, r the spatial coordinate, and t the temporal coordinate.
A finite difference solution procedure is employed to solve for the radial temperature distribution at various time steps along the heatup or cooldown cycle. The finite difference equations    for N radial points, at distance 6r apart, across the vessel are:
for  1<n<N T      =Ll-htK 2(2    )JT
                        +
QtK (g )Z L
                                    ~
(1+ gr )Tn+1.+ Tn-1J                  (2o)
(21)
B-12
 
andfor n  = N t+()t N      [    pc(()r)Z J        N  pr())r)2    N-1                      (22)
For stability in the finite difference operation,        we must choose ht for a given hr such that both
()t K pc(kr)22(2+
Zr )c r1 1                                  (23) and
                      ~(1+
ht K pc(hr)
(Ih,r rl )+ pc(hr)
C 1                            (24) are satisfied. These conditions assure us that heat          will not flow in the direction of increasing temperature, which, of course, would violate the second law of thermodynamics.
Since a large variation in coolant temperature is considered,              the dependence  of (K/pc), K, and h on temperature is included in the analysis by treating these as constants only during every            5'F increment in coolant temperature and then updating their values for the next 5'F increment.
The dependence    of (E/pc) called the thermal diffusivity and E, the thermal conductivity, can  be determined from the ASME Boiler and Pressure Ves-sel Code, Section III, Appendix      I-    Stress Tables. A linear regression analysis of the tabular values resulted in the following expressions:
K(T) = 38. 211 -  0. 01673 ~    T (BTU/HR-FT-'F)                      (25)
B-13
 
and k(T) "-(K/pc)    = 0. 6942 - 0. 000432 ~ T      (FT /HR)                (26) where T is in degrees Fahrenheit.
The heat transfer coefficient is calculated based on forced con-vection under turbulent flow conditions.          The variables involved are the mean velocity of the fluid coolant, the equivalent (hydraulic) diameter of the coolant channel, and the density, heat capacity, viscosity, and thermal conductivity of the coolant.      For water coolant, allowance for the variations in physical properties with temperature may be made by writing~
h(T) =  170(1+10      ~T - 10      ~T  ) v    /D                    (27) where v is in ft/sec, D in inches, the temperature is in            'F, and h is in Btu/hr-ft - 'F. The values for the heat-transfer coefficient given by this relationship are in good agreement with those obtained from the Dittus-Boelter equation for temperatures up to 600'F.              The mean velocity of the coolant, v, is generally given in terms of the effective coolant flow rate Q (Lbm/hr) and effective flow area A (ft      ). Given the relationship p(T) =  62. 93 - 0. 48 x 10 2    <'-
T - 0. 46 x 10 4 " T2            (28) for the density of water    as a function of temperature,        the mean velocity of the coolant is obtained  from v =  O/(3600  > p  (T)  ~ A)                            (29)
Glasstone, S., Princi les of Nuclear Reactor Engineerin, D. Van Nostrand Co., Inc., New Jersey, pp. 667-668, 1960.
 
The thermal stress distribution is calculated from r2+ ri2      ro aT(r,t) =
t    [ jri T(r,t)rdr-T(r,t)+
3                            3 (
0 3
1 3)jC T(r,t)rdrj  (30) where a is the coefficient of thermal expansion (in/in 'F), E is Young's modulus, and v is Poisson's ratio.        This expression can be obtained from Theor    of Elasticit by Timoshenko and Goodier, pp. 408-409, when im-posing a zero radial stress condition at the cylinder inner and outer radius.
Poisson's ratio is taken to    be  constant at a value of 0. 3  while n and E are evaluated as a function of the average temperature across the vessel T      =
                                    ~(3        jri T(r)rdr                          (31)
The dependence    of the coefficient of thermal expansion on temperature is taken to be a(T) = 5.76 x 10-6+ 4.4 x 10-9      4  T                  (32) and the dependence      of Young's modulus on temperature is taken to be E(T)  =  27.9142 + 2.5782 x 10      ~" T - 6.5723 x 10    6 4 T      (33) as obtained  from regression analysis of tabular values given in Section III, Appendix  I of the  ASME Boiler and Pressure Vessel Code.
The resulting stress distribution given by Equation (30) is not linear; however, an equivalent linear stress distribution is determined from the resulting moment.        The moment produced by the nonlinear B-15
 
r~ ~
stress distribution is given by ro M(t) =  b f    a T (r, t) rdr                          (34) where    b is
* unit depth of the vessel.        Here we note that the moment is a function of time, i. e., coolant temperature via Tc              = To +  Rt. For a lin-ear stress distribution we have that P
                                                =
Mc
                                        ~max          I                                  (35')
where  0  ax is the maximum outer fiber stress,              c the distance from the neutral axis, taken to      be (ro - ri)/2, and I the section area moment of inertia which is given by bh      b(ro - r;)3 12            12                                (36)
Combining these expressions results in the equivalent linear stress due to thermal gradients ro rrttax    rbt    (r.-r      ) TJJ 't'T (r') r~                  (37) 1i The thermal stress intensity factor KIt is then defined as KIt = Mb 0 bt                                    (38) where Mb is determined from the curves given in Figure                  1 wherein Mb  = 2/3 Mm. It is  of interest to note that a sign change occurs in the stress calculations during      a cooldown analysis since the thermal gradients
 
produce compressive stresses    at the vessel outer radius.      This sign change must then be reflected in the  Klt calculation for the cooldown analys is.
Normalized temperature and thermal stress distributions during a typical reactor heatup are given in Figure 4. The radial temperature is shown normalized with respect to the average temperature,        Tavg, by (T - Tavg)max                                  (39)
The thermal stress and equivalent linearized stress,      as calculated by Equations (30) and (37), are normalized with respect to the maximum thermal stress. Here we note that the actual thermal stress at the 3/4T location is considerably less than the maximum equivalent linear stress which yields additional safety margins during the heatup cycle.          Similar temperature and thermal stress distributions are developed during cool-down. The trends are nearly identical as those shown in Figure 4 when the inner and outer vessel locations are reversed with the      I/4T location becoming the    critical point.
E.        Exam le Calculations The following example is based on a reactor vessel with the      follow-ing characteristics:
Inner Radius                          82. 00 in.    (r  )
Outer Radius                          90 00  in.    (r  )
Operating Pressure                    2250 psig    (Po)
 
OUTER WALL 1.0
                                                        / /
0.8 0.6                //
0.4
                                              /
                                                /
0.2
-1.0                    1.0      -1.0                    1.0 INNER WALL Norma lized temperature              Normalized stress distribution ( 4T/h,Tma)            distribution ( o/ omax  )
Figure 4. Typical Normalized Temperature and Stress Distribution During Heatup
 
Initial Temperature                    70'F                    (To)
Final Temperature                      550'F Effective Coolant Flow Rate            100  x  10  Lbm/hr      (Q)
Effective Flow Area                    20. 00 ft2              (A)
Effective Hydraulic Diameter    =    10. 00 in.              (D)
RTNDT (1/4T)                            200OF RTNDT (3/4T)                            140'F In the thermal stress analysis  21  radial points were used in    the finite difference scheme. Going from 70'F to the final temperature of 550'F, approximately 12, 000 time (temperature via T        = To + Rt) steps were required in the thermal analysis for the 100'F/hr heatup rate.          The results of the computation are shown in Figures      5 through 9.
Figure  5 gives the reference stress intensity factor, KIR, as a function of temperature indexed to RTNDT (1/4T). For the steady state analysis, KIR is converted directly to allowable pressure via Equation 12.
During the heatup and cooldown thermal analyses the material tem-perature at the 1/4T and 3/4T and thermal stress intensity factors Kzt are required to compute allowable pressure via Equations (13) and (14). The material temperatures versus coolant temperature during the 100'F/hr heatup and cooldown analyses are given in Figure 6.        These temperatures allow computation of the corresponding reference stress intensity factors, KIR (3/4T) and KIR (1/4T). Figure      7 gives the corresponding thermal stress intensity factor at the 3/4T and 1/4T locations as      a function of coolant tempe rature.
 
200 RTNDT(1i4T) - 200 160                                  F
    ~  120 80 hC I
otV 40 50                        150          200            250          300          350          400 TEMPERATURE    ( F )
Figure 5. Reference Stress Intensity Factor as a Function of Temperature Indexed to RTNDT(1/4T )
 
400 100'F/HR HEATUP i 3/4T Location i 100'F /HR COOLDOWN      1/4T Location
(                )
300 200 100 50          100          150            200            250        300          350 COOLANT TEMPERATURE        ('F  )
Figure 6. Vessel Temperature at 1/4T and 3/4T Locations as a Function of Coolant Temperature
 
10 cu hC 6
100'F/HR HEATUP (3/4T Location 100'F/HR COOLDOWN ( 1/4 Location i
                                                                                        )
50        10Q          150            200          250            3QQ          350 COOLANT TEMPERATURE      ('F )
Figure 7. Thermal Stress Intensity Factor at 3/4T and 1/4T Locations as a  Function of Coolant Temperature
 
Figures  8  and 9 demonstrate the construction of the allowable com-posite pressure and temperature curves for the 100'F/hr heatup and cool-down rates. The composite curves represent the lower bound of the thermal and steady state curves with the addition of margins of +10'F and -60 psig for possible instrumentation error. Figure      8 also shows the leak test  limit, corrected for instrument error, as obtained from Equation (9). The limit points are at the operating pressure 2250 psig and at 2475 psig which cor-responds to 1. 1 times the operating pressure. The criticality limit is also shown in Figure    8  and is constructed by providing for a 40'F margin over that required for heatup and cooldown and by requiring that the minimum temperature be greater than that required by the leak test limit.
B -23
 
LEAK TEST LIIIIIIT 2400 2000  COMPOS ITE CURVE    100'F/HR    HEATUP
( Margins of +10 F and -60 psig for instrument error )
1600 I                                    STEADY STATE CR I TI CALITY 1200 LIMIT 800      HEATUP 400 50    100          150            200          250          300        350          400 INDICATED TEMPERATURE      ( F )
Figure 8. Pressure- Temperature Curves for 100 F/Hr Heatup
 
2400 2000 COMPOSITE CURVE -100 F/HR COOLDOWN
( Margins of +10 F and
                      -60 psig for instrument error )
1600 CXI PJ 1200 CD COO LDOWN Ch 800  STEADY STATE 400 50    100            150          200          250        300      350 INDICATED TEMPERATURE    ('F  )
Figure 9. Pressure-Temperature    Curves for 100'F/Hr Cooldown
 
ADDENDUM TO    FINAL REPORT ON "REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR DONALD C. COOK UNIT NO. 1, ANALYSIS OF CAPSULE T" Plate B4406-3          Held  Held Correlation
,30 ft-1b  C  Tem . '(de  T)    ~(lan  .) (Ttana.)        Metal  Mtt  Monitor Irradiated                    65        90  ~.      -10  '0      105 Unirradiated.                    5        20          -90  -100      45 AT                60        70            80  120      60 Monitor                Height Identification              ~(m )
Fe  Top                      18.2 Fe  Top Mid.                  15.3 Fe  Mid.                      17.2 Fe  Bot. Mid.                16.6 Fe  Bot.                      16.4 Cu  *- Top Mid.                64.9 Cu  -  Mid.                    62.9 Cu  Bot. Mid.              70.9 Ni  -  Top  Mid.                22.9 Ni  Mid.                      25.5 Ni  Bot. Mid.                24.5 Co  Top                        9.3 Co(Cd)  Top                    8.7 Co-- Bot.                        9.5 Co(Cd)  Bot.                    7.7 U-238                          12.0(a)
NP-237                          20.0(a)
(a) As reported in WCAP-8047.
 
i                        ADDENDUM NO. 2 TO    FINAL REPORT ON "REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR DONALD C. COOK UNIT NO. 1, ANALYSIS OF CAPSULE T" Additional Tensile Test Data Specimen      Fracture Load      ~
Fracture Stress      Uniform Elongation< >
No.                si                                          %%u4 64,700                188,600                5.00 63,250                177,000                2.45 W9            87,600                250,000                4.56 757800                193,700                  2.87 (a) Using method of change in cross-sectional      area of unnecked portion of specimen per ASTM E 184-62.}}

Latest revision as of 02:12, 24 February 2020

Reactor Vessel Matl Surveillance Program for Facility, Analysis of Capsule T.
ML17326A522
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/08/1977
From: Norris E
SOUTHWEST RESEARCH INSTITUTE
To:
Shared Package
ML17326A519 List:
References
02-4770, 2-4770, NUDOCS 8002270331
Download: ML17326A522 (93)


Text

$

, ~

~

SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284 REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR DONALD C. COOK UNIT NO. 1 ANALYSIS OF CAPSULE T by E. B. Norris FINAL REPORT SwRI Project 02-4770 to American Electric Power Service Corporation 2 Broadway New York, New York 10004 J

December 8, 1977 Approved:

'4 $ }%$ $ . $

~ h $ i \ 'l ~ h 'I ~ P$ ~ i S. Lindholm, Director A',"}:=:"}lCP,Ii EL:.O'IHiC PG"'/ II SEl'}VLCC"- CORi.

Department of Materials Sciences

~c DATE 80 f'2 2V0 53 ( i

TABLE OF CONTENTS

~Pa e r

LIST OF TABLES iii LIST OF FIGURES

SUMMARY

OF RESULTS AND CONCLUSIONS BACKGROUND III. DESCRIPTION OF MATERIAL SURVEILLANCE PROGRAM IV. TESTING OF SPECIMENS FROM CAPSULE T 13 V. ANALYSIS OF RESULTS 35 VI. HEATUP,AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION OF DONALD C. COOK UNIT NO. 1 VII. REFERENCES 47 j

APPENDIX A .TENSILE TEST RECORDS A-1 APPENDIX B PROCEDURE FOR THE GENERATION OF ALLOWABLE B-1 PRESSURE-TEMPERATURE LIMIT CURVES FOR NUCLEAR POWER PLANT REACTOR VESSELS

I

~

~ lb LIST OF TABLES Table ~Pa e Donald C. Cook Unit No. 1 Reactor Vessel Sur-veillance Materials Summary of Reactor Operations 16 Donald C. Cook Unit No. 1 Summary of Neutron Dosimetry Results 17 Donald C. Cook Unit No. 1 Capsule T IV Fast Neutron Spectrum and Iron Activation 19 Cross Sections for Capsule T Charpy V-Notch Impact Data 21 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Intermediate Shell Plate B4406-3 (Longitudinal Direction)

VI Charpy V-Notch Impact Data 22 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Intermediate Shell Plate B4406-3 (Transverse Direction)

VII Charpy V-Notch Impact Data 23 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Core Region Weld Metal VIII Charpy V-Notch Impact Data 24 The Donald C. Cook Unit No. 1 Reactor Pressure Vessel Core Region Weld Heat-Affected Zone Metal IX Charpy V-Notch Impact Data 25 A533 Grade B Class 1 Correlation Monitor Material Notch Toughness Properties of Capsule T Specimens 31 Donald C. Cook Unit No. 1 XI Tensile Properties of Surveillance Materials 32 Capsule T XII Projected Values of RTNDT for Donald C. Cook 40 Unit No. 1 for Up to 12 EFPY of Operation

I

~

~

LZST OF TABLES (CONT'D.)

Table ~Pa e ZIZZ Projected Values of RTNDT for Donald C. Cook 41 Unit No. 1 for Up to 32 EFPY of Operation XZV Proposed Reactor Vessel Surveillance Capsule 42 Schedule Donald C. Cook Unit No. 1

LIST OF FIGURES

~Ft ure ~Pa e Arrangement of Surveillance Capsules in the Pressure Vessel 2 Vessel Material Surveillance Specimens 3 Arrangement of Specimens and Dosimeters in 12 Capsule T 4 , Charpy V-Notch Properties of Plate B4406-3 26 (Long.)

Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties of Plate B4406-3 27 (Trans.)

Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties of Core Region Meld 28 Metal Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties of Core Region HAZ 29 Material Donald C. Cook Unit No. 1 Surveillance Program Charpy V-Notch Properties of Correlation Monitor 30 Material Donald C. Cook Unit No. 1 Surveillance Program Dependence of Cv Shelf Energy on Neutron Fluence, 37 Donald C. Cook Unit No. 1 10 Effect of Neutron Fluence on RTNDT Shift, Donald 38 C. Cook Unit No. 1 Donald C. Cook Unit No. 1 Reactor Coolant Heatup 45 Limitations Applicable for Periods Up to 12 Effective Full Power Years 12 Donald C. Cook Unit No. 1 Reactor Coolant Cooldown 46 Limitations Applicable for Periods Up to 12 Effective Full Power Years

~ ~

C

I.

SUMMARY

OF RESULTS AND CONCLUSIONS The analysis of the first material surveillance capsule removed from the Donald C. Cook Unit No. 1 reactor pressure vessel led to the following conclusions:

(1) Based on a calculated neutron spectral distribution, Capsule T received a fast fluence of 1.80 x 101 neutrons/cm2 > 1 MeV.

(2) The surveillance specimens of the core beltline materials ex-perienced shifts in transition temperature of 75' to 130 F as a result of the above exposure.

(3) The weld metal and heat affected zone (HAZ) materials exhibited the largest shift in RTNDT. However, because the intermediate shell plate material has a high initial (unirradiated) RTNDT, it will control the heatup and cooldown limitations at least until the next surveillance- capsule is removed.

(4) The estimated maximum neutron fluence of 6.92 x 1017 neutrons/

cm > 1 MeV received by the vessel wall accrued in 1.27 full power years.

Therefore, the projected maximum neutron fluence after 32 effective full power years (EFPY) is 1.74 x 1019 neutrons/cm > 1 MeV. This estimate is based on a lead factor of 2.6 between Capsule T and the point of maximum pressure vessel flux.

(5) Based on Regulatory Guide 1.99 trend curves, the projected maxi-mum shift in ductile-brittle transition temperature of the Donald C. Cook Unit 1 vessel core beltline plates at the 1/4T and 3/4T positions after 12 EFPY of operation are 110 F and 50 F, respectively. These values were used as the bases for computing heatup and cooldown limit curves for up to 12 EFPY of operation.

(6) The maximum shifts in the transition temperature of the Donald C. Cook unit 1 vessel core beltline plates at the 1/4T and 3/4T positions after 32 EFPY of operation are pro)ected to be 180 F and 83 F, respectively.

(7) Since the weld metal and HAZ beltline materials are more sensi-tive to radiation embrittlement than the intermediate shell plate material, the operating limf.tations may come under control of the weld metal and HAZ material late in the 32 EFPY. design life of the plant.

(8) The Donald C. Cook Unit No.' vessel plates, weld metal and HAZ material located in the core beltline region are projected to retain suffi-cient toughness to meet the current requirements of 10CFR50 Appendix G throughout the design life of the unit.

II. BACKGROUND The allowable loadings on nuclear pressure vessels are determined by applying the rules in Appendix G, "Fracture Toughness Requirements," of 10CFR50.(1)* In the case of pressure-retaining components made of ferritic materials, the allowable loadings depend on the reference stress intensity factor (KIR) curve indexed to the reference nil ductility temperature (RTNDT) presented in Appendix G, "Protection Against Non-ductile Failure,"

of Section III of the ASME Code.( ) Further, the materials in the beltline region of the reactor vessel must be monitored for radiation-induced changes in RTNDT per the requirements of Appendix H, "Reactor Vessel Material Surveil-lance Program Requirements," of 10CFR50.

The RTNDT is defined in paragraph NB-2331 of Section III of the ASME Code as the highest of the following temperatures:

(1) Drop-weight Nil Ductility Temperature (DW-NDT) per ASTM E 208; (2) 60 deg F below the 50 ft-lb Charpy V-notch (Cv) temperature; (3) 60 deg F below the 35 mil C temperature.

The RTNDT must be established for all materials, including weld metal and heat affected zone (HAZ) material as well as base plates and forgings, which com-prise the reactor coolant pressure boundary.

It is well established that ferritic materials undergo an increase in strength and hardness and a decrease in ductility and toughness when exposed to neutron fluences in excess of 1017 neutrons per cm2 (E > 1 MeV).( ) Also, it has been established that tramp elements, particularly copper and

  • Superscript numbers refer to references at the end of the text.

phosphorous, affect the radiation embrittlement response of ferritic mate-rials.( ) The relationship between increase in RT~T and copper content is not defined completely. For example, Regulatory Guide 1.99, originally issued in July 1975, proposed an adjustment to RT~T proportional to the square root of the neutron fluence. westinghouse Electric Corporation, in their comments on the 1975 issue of Regulatory Guide 1.99( ), believed that the proposed relationship overestimates the shift at fluences greater than 1.9 x 1019 and underestimates the shift at fluences less than 1.9 x 10 On the other hand, Combustion Engineering, in their comments on the 1975 is-sue of Regulatory Guide 1.99 , suggested that the proposed relationship is overly conservative at fluences below 1019 neutrons per cm (E > 1 MeV) .

There is also disagreement concerning the prediction of Cv upper shelf re-sponse to exposure to neutron irradiation.( ) After reviewing the comments and evaluating additional surveillance program data, the NRC issued a revision to Regulatory Guide 1.99 which raised the upper limit of the transition tem-perature adjustment curve. In this report, estimates of shifts in RTNDT are based on Revision 1 of Regulatory Guide 1.99 ), issued in April 1977.

In general, the only ferritic pressure boundary materials in a nuclear plant which are expected to receive a fluence sufficient to affect RTNDT are those materials which are located in the core beltline region of the reactor pressure vessel. Therefore, material surveillance programs include specimens machined from the plate or forging material and weldments which are located region. of high neutron flux density. (10) describes in such a ASTM E 185 the current recommended practice for monitoring and evaluating the radiation-in-duced changes occurring in the mechanical properties of pressure vessel belt-line materials.

Westinghouse has provided such a surveillance program for the Donald C., Cook Unit No. 1 nuclear power plant; The encapsulated Cv specimens are located near the O.D. surface of the thermal shield at a point where the fast neutron flux density is about three times that at the adjacent vessel wall surface. Therefore, the increases (shifts) in transition temperatures of the materials in the pressure vessel are generally less than the corre-sponding shifts observed in the surveillance specimens. However, because of azimuthal variations in neutr'on flux density, capsule fluences may lead or lag the maximum vessel fluence in a corresponding exposure period. For example, Capsule T (removed during the 1977 refuelling outage) was exposed to a neutron fluence approximately 2.6 times that at the maximum exposure point on the vessel I.D., while Capsule X (scheduled for removal at a later date) is being exposed to a neutron flux about 60% of that at the point of maximum vessel exposure. The capsules. also contain several dosimeter mate-rials for experimentally determining the average neutron flux density at each capsule location during the exposure period.

The Donald C. Cook Unit No. 1 material surveillance capsules also in-clude tensile specimens as recommended by ASTM E 185. At the present time, irradiated tensile properties are used primarily to indicate that the mate-rials tested continue to meet the requirements of the appropriate material specification. In addition, the degree of radiation hardening indicated by the tensile yield strength is used to judge the credibility of the surveil-lance data.(7)

Wedge opening loading (WOL) fracture mechanics specimens, machined from plate material and weld metal, are also contained in the capsules. Current technology limits the testing of these specimens at temperatures well below

~ ~

the minimum service temperature to obtain valid fracture mechanics data per ASTM E 399~ ~, "Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials." However, recent work reported by Mager and Mitt~1 ~

may lead to methods for evaluating high-toughness materials with small frac-ture mechanics specimens. Currently, the NRC suggests storing these specimens until an acceptable testing procedure has been defined.

This report describes the results obtained from testing the contents of Capsule T. These data are analyzed to estimate the radiation-induced changes in the mechanical properties of the pressure vessel at the time of the 1977 refuelling outage as well as predicting the changes expected to occur at selected times in the future operation of the Donald C. Cook Unit No. 1 power plant.

III. DESCRIPTION OF MATERIAL SURVEILLANCE PROGRAM The Donald C. Cook Unit No. 1 material surveillance program is described in detail in WCAP 8047(13), dated March 1973. Eight materials surveillance capsules were placed in the reactor vessel between the thermal shield and the vessel wall prior to startup, see Figure 1. The vertical center of each cap-sule is opposite the vertical center of the core. The neutron flux density at the Capsule T location leads the maximum flux density on the'vessel I.D.

by a factor of 2.6.( The capsules each contain Charpy V-notch, tensile and WOL specimens machined from the SA533 Gr B plate, weld metal and heat affected zone (HAZ) materials located at the core beltline plus Charpy V-notch specimens machined from a reference heat of steel utilized in a num-ber of Westinghouse surveillance programs.

The chemistries and heat treatments of the vessel surveillance mate-rials are summarized in Table I. All test specimens were machined from the test materials at the quarter-thickness (1/4 T) location after performing a simulated postweld stress-relieving treatment. Weld and HAZ specimens were machined from a stress-relieved weldment which joined sections of the inter-mediate shell course. HAZ specimens were obtained from the plate B4406-3 side of the weldment. The longitudinal base metal C specimens were oriented with their long axis parallel to the primary rolling direction and with V-notches perpendicular to the major plate surfaces. The transverse base metal C specimens were oriented with their long axis perpendicular to the primary rolling direction and with V-notches perpendicular to the major plate surfaces. Tensile specimens were machined with the longitudinal axis parallel to the plate rolling direction. The WOL specimens were machined

X (220')

270' (184') Y (320')

180'a S Z (356 )

(4')

V (176')

T (40) 0 90 u (140') Reactor Vessel Thermal Shield Core Barrel FIGURE 1 ~ ARRANGEMENT OF SURVEILLANCE CAPSULES RT THE PRESSURE VESSEL

~ ~

TABLE I D0NALD C. C0OK UNn No. 1 REACT0R VESSEL SURVEn.LANCE MATERZALS<>>)

Heat Treatment Histor Shell Plate Material:

Heated to 1600 F for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, water quenched.

Tempered at 1225 F for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, air cooled.

Stress relieved at 1150 F for 40 .hours, furnace cooled.

Weldment:

Stress relieved at 1150 F. for 40 hours, furnace cooled.

Correlation Monitor:

1675 F, 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, air cooled.

1650 F, 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, water quenched.

1225 F, 4 hours, furnace cooled 1150 F, 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br />, furnace cooled to 600 F.

Chemical Com osition (Percent)

Material C Mn P S Si Ni Mo Cu Plate B4406-3 0.24 1.40 0.009 0.015 0.25 0.49 0.46 0.14 Weld Metal 0.26 1.33 0.023 0.014 0.18 0.74 0.44 0.27 Correlation Monitor 0.22 1.48 0.012 0.018 0.25 0.68 0.52 0.14

with the simulated crack perpendicular to both the primary rolling direction and to the major plate surfaces. All mechanical. test specimens, see Figure 2, were taken at least one plate thickness from the quenched edges of the plate material.

Capsule T contained 44 Charpy V-notch specimens (10 longitudinal and 10 transverse from the plate material, plus 8 each from weld metal, HAZ and the reference steel plate); 4 tensile specimens (2 plate and 2 weld metal);

and 4 WOL specimens (2 plate and 2 weld metal). The specimen numbering sys-tem and location within Capsule T is shown in Figure 3.

Capsule T also was reported to contain the following dosimeters for de-termining the neutron flux density:

Target Element Form Quantity Iron Bare wire 5 Copper Bare wire 3 Nickel Bare wire 3 Cobalt (in aluminum Bare wire 2 Cobalt (in aluminum) Cd shielded wire .2 Uranium-238 Cd shielded oxide 1 Neptunium-237 Cd shielded oxide 1 Two eutectic alloy thermal monitors had been inserted in holes in the steel spacers in Capsule T. One (located at the bottom) was 2.5% Ag and 97.5% Pb with a melting point of 579 F. The other (located at the top of the capsule) was 1.75% Ag, 0.75% Sn and 97.5% Pb having a melting point of 590 F.

10

46a 44'OII R

.009 90~

.3I l.063 .3 5

.3 I4 l.053 .393

2. I25 2.I05 (a) Charpy V-notch Impact Specimen I.005 Gage length

.995

. 256 .255 256

.246 .245 .395 I6 493

.250 R

.I98 I.250'.26 l.495 .I9 I. 80 4.250 4.2 I 0 630 .790

.786

.395

.375

'ECTION A- A D

.37 (b) Tens ile Spec imen l.45 l.4P

.375 D.

I.I30

.380 I.I20 I.005 .765

~ 995

.745

.439 499 .437 I.005

.995

.04'73

.0463 D .SOI

.0667 .499

.0662

.0667 (c ) Wedge Opening Loading Specimen FIGURE 2. VESSEL MATERIALSURVEILLANCE SPECIMENS

fC,COI CO.CCS CLttfC tttL ~ ISLICIII CLtt ffI Itl CLI ff IIL ILICI fC>COI CO CIS II I III

~ IIL OOL llISILC Cllltt Clutt Clllt1 CIOItl Clllt1 CllltT CClltl CllltT CILItt Cllltt Cltltt W.LI I IO I~ 'll I-jl I SI

~ IL4 ~ I4 I.l~ I SI 1 SI ~ SI 4 SI ~ SI ill ILO I~ II I ~ I I II I ILL LI II ~ ~ 'll I I4 ISS lit SISS SS Y-SS I.ll I.lt ~ St W IL ~ SS ~ .Sl I SS I.ll I.IS 1- ~ I~ I.IL I-~ I I LS -II LI.I ~ .II

~ TOP ItICLLC~ ~IIIIIICIOC BOTTOM tllllILLOI I (IIIII'ITOIIIL IIICIIII)

~ ~ I OILS OCII.IIIICLI~ IOIC II tllIC ~ 'LIOI.S (LIILSI(III~ IIICII4I) IIL~ IC ILL ISILL COIIILLIIOISaallla FIGURE 3. ARRANGEMENT OF SPECIMENS AND DOSIMETERS IN CAPSULE T

~ ~

IV. TESTING OF SPECIMENS FROM CAPSULE T The capsule shipment, capsule opening, specimen testing and reporting of results were carried out in accordance with the Project Plan for Donald C. Cook Unit No. 1 Reactor Vessel Irradiation Surveillance Program. The SwRI Nuclear Projects Operating Procedures called out in this plan include:

(1) XI-MS-1, "Determination of Specific Activity of Neutron Radiation Detector Specimen."

(2) XI-MS-3, "Conducting Tension Tests on Metallic Materials."

(3) XI-MS-4, "Charpy Impact Tests on Metallic Materials."

(4) XIII-MS-1, "Opening Radiation Surveillance Capsules and Handling and Storing Specimens."

(5) XI-MS-5, "Conducting Wedge-Opening-Loading Tests on Metallic Materials."

i (6) XI-MS-6, "Determination of Specific Activity of Neutron Radiation Fission Monitor Detector Specimens."

Copies of the above documents are on file at SwRI.

Southwest Research Institute utilized a procedure which had been pre-pared for the 1977 refuelling outage for the removal of Capsule T from the reactor vessel and the shipment of the capsule to the SwRI laboratories.

SwRI contracted with Todd Shipyards Nuclear Division to supply appropriate cutting tools and a licensed shipping cask. Todd personnel severed the cap-sule from its extension tube, sectioned the extension tube into three-foot lengths, supervised the loading of the capsule and extension tube materials into the shipping cask, and transported the cask to San Antonio.

13

~

~

~ ~

The capsule shell had been fabricated by making two long seam welds to join two half-shells together. The long seam welds were milled off on a Bridgeport vertical milling machine set up in one hot cell. Before mill-ing off the long seam weld beads, transverse saw cuts were made to remove the two capsule ends. After the long seam welds had been milled away, the top half of the capsule shell was removed. The specimens and spacer blocks were carefully removed and placed in an indexed receptacle so that capsule location was identifiable. After the disassembly had. been completed, the specimens were carefully checked for identification and location, as listed in WCAP 8047.(>>)

Each specimen was inspected for identification number, which was checked against the master list in WCAP 8047. No discrepancies were found.

The thermal monitors and dosimeter cfires were removed from the holes in the spacers. The thermal monitors, contained in quartz vials, were examined, and no evidence of melting was observed, thus indicating that the maximum temperature during exposure of Capsule T did not exceed 579 F.

The specific activities of the dosimeters were determined at SwRI with an NDC 2200 multichannel analyzer and an NaI(Th) 3 x 3 scintillation crystal. The calibration of the equipment was accomplished with appropri-ate standards and an interlaboratory cross check with two independent count-

'ing laboratories on Co-, 54Hn- and ~ Co-containing dosimeter wires. All activities were corrected to the time-of-removal (TOR) at reactor shutdown.

Infinitely dilute saturated activities (A8AT) were calculated for each of the dosimeters because ASAT is directly related to the product of the

~

~ ~

energy-dependent microscopic activation cross section and the neutron flux density. The relationship between ATOR and ASAT is given by:

ATOR (1-e -XTm m) (e

-Xtm)

E ASAT m~1 where: m = operating period; decay constant for the activation product, day 1; Tm equivalent operating days at 3250 MwTh for operat-ing period m; tm = decay time after operating period m, days.

The Donald C. Cook Unit No. 1 operating history up to the 1977 refuelling out-age is presented in Table II. The specific activity at time of removal (TOR) and the specific saturated activity calculated for each dosimeter are pre-sented in Table III.

The primary result desired from the dosimeter analysis is the total fast neutron fluence (> 1 MeV) which the surveillance specimens received.

The average flux density at full power is given by:

SAT m (2)

NOD where: energy-dependent neutron flux density, n/cm -sec; ASAT saturated activity, dps/mg target element; spectrum-averaged activation cross section, cm ;

NO number of target atoms per mg.

The total neutron fluence is then equal to the product of the average neutron flux density and the equivalent reactor operating time at full power.

TABLE II

SUMMARY

OF REACTOR OPERATIONS DONALD C. COOK UNIT NO. 1 Power Equiualent Decay Time Operating Dates Operating Shutdown Generation Operating Days After Period Period Start ~DS S ~DS s ~DS S T )

2/2/75 2/14/75 13 2,194 0. 68 678 2/15/75 2/16/75 2/17/75 2/17/75 228 0. 07 675 2/18/75 2/20/75 2/21/75 3/18/75 26 29,604 9.11 646 3/19/75 4/3/75 16 4/4/75 6/24/75 82 200,616 61. l3 548 6/25/75 6/26/75 6/27/75 7/3/75 15,432 4. 75 539 7/4/75 7/22/75 19 7/23/75 10/ll/75 81 201,506 62.00 439 10/12/75 10/14/75 10/15/75 10/31/75 17 40,163 12.35 419 ll/1/75 11/14/75 14 11/15/75 1/1/76 48 116,552 35.86 357 1/2/76 1/4/76 1/5/76 4/12/76 256,178 78.82 255 4/13/76 5/9/76 27 10 5/10/76 7/1/76 53 143,868 44.27 175 7/2/76 7/5/76 7/6/76 9/10/76 67 205,682 63.29 104 9/11/76 9/18/76 12 9/19/76 11/20/76 63 196,520 60.47 33 11/21/76 11/21/76 11/22/76 12/23/76 32 92 754 28.54 0 Total, Cycle 1 1,501,297 461.94

~

~

TABLE III

SUMMARY

OF NEUTRON DOSIMETRY RESULTS DONALD C. COOK UNIT NO. 1--CAPSULE T Monitor Activation- ATOR ASAT Identification Reaction (d s/m d s/m Fe- Top 54Fe(n,p)54Mn 193 x 103 3.34 x 103 Fe Top Mid. 1.69 x 103 2.94 x 103 Fe- Mid. 1.69 x 103 2.93 x 103 Fe Bot. Mid. 1.69 x 103 2.93 x 103 Fe Bot. 1.80 x 103 3.11 x 103.

Average 1.76 x 103 3.05 x 103 Cu Top Mid. 63Cu(n,a)60Co 5.14 x 101 3.43 x 102 Cu Mid.

ll 5.27 x 101 3.52 x 102 tf x 4.03 x 102 Cu Bot. Mid. 6.04 101 Ni Top Mid. 58Ni(n,p)58Co 3.83 x 104 4.46 x 104 If 4.38 x 104 Ni Mid. 3.77 x 104 II 3.95 x 104 4.59 x 104 Ni Bot. Mid.

Co - Top Co(n,p) Co 4.87 x 106 3.25 x 107 II x 1.22 x 107 Co(Cd) Top 1.83 106 If 5.03 x 106 3.36 x 107 Co Bot.

Co (Cd) Bo t. II 1.64 x 106 1.09 x 107 U-238 238U(n, f) 137C 1.20 x 103 N/A Np-237 237Np(n, f)137Cs 4.53 x 103 N/A 17

The neutron flux density was calculated from the 4Fe(n,p) 4Mn reac-tion because it has a high energy threshold and the energy response is well known. The energy spectrum for Capsule T was calculated with the DOT 3.5 two-dimensional discrete ordinates transport code with a 22-group neutron cross section library, a Pl expansion of the scattering matrix and an S8 order of angular quadrature. The normalized spectrum for Capsule T and the group-organized cross sections for the 54Fe(n,p)54Mn reaction derived from the ENDF/B-ZV library are given in Table IV. The value of o Fe is given by:

10 MeV aF (E)g(E)dE o (> 1 Mev) - 1'1 (3) 10

$ (E)dE

l. 00 where: VF Fe

(> 1 MeV) the calculated spectrum-averaged cross section for flux > 1 MeV, cm2 determined for the 54Fe(n,p)54Mn reaction.

The resulting value obtained for fast (> 1 MeV) neutron flux density at the Capsule T location was 4.50 x 101 neutrons/cm -sec. Since Donald C. Cook Unit No. 1 operated for an equivalent 461.94 full power days up to the 1977 refuelling outage, the total neutron fluence for Capsule T is equal to 1.80 x 1018 neutrons/cm 2 (E > 1 MeV) based on the calculated spectrum at the cap-sule location.

Assuming a fission-spectrum energy distribution at the capsule location, the cross-section for the 4Fe(n,p) 4Mn reaction (E > 1 MeV) would be 98.26 mb. (4) The resulting flux and fluence values would be 4.95 x 10 neu-trons/cm2-sec and 1.97 x 1018 neutrons/cm2, respectively.

18

TABLE IV FAST NEUTRON SPECTRUM AND IRON ACTIVATION CROSS SECTIONS FOR CAPSULE T 54Fe(n,p)54Mn Energy Range Normalized Cross Section (MeV) Neutron Flux (barns)

8. 18 10. 0 0.0098 0.581 6.36 8.18 0.0254 9.577 4.96 6.36 0.0482 0.491 4.06 4.96 0.0471 0.354 3.01 4.06 0.0855 0.205 2.35 - 3.01 0.1400 0.099 1.83 2.35 0. 1752 0.023 1 11 1.83

~ 0.4689 0.0014 VF 0.108 barns Fe 19

The irradiated Charpy V-notch specimens were tested on a SATEC impact machine. The test temperatures were selected to develop the ductile-brittle transition and upper shelf regions. The unirradiated Charpy V-notch impact data reported by Westinghouse(13) and the data obtained by SwRI on the spec-imens contained in Capsule T are presented in Tables V through IX. The Charpy V-notch transition curves for the three plate materials and the cor-relation monitor material are presented in Figures 4 through S. The radia-,

tion-induced shift in transition temperatures for the vessel plates are in-dicated at 50 ft<<lb and 35 mil lateral expansion. A summary of the shifts in RTNDT and Cv upper shelf energies for each material are presented in Table X.

Tensile tests were carried out in the SwRI hot cells using a Dillon 10,000-1b capacity tester equipped with a strain gage extensometer, load cell and autographic recording equipment. One each plate and weld metal tensile specimens was tested at room temperature (RT) and at 550 F. The results, along with tensile data reported by Westinghouse on the unirradi-ated materials(1 ), are presented in Table XI. The load-strain records are included in Appendix A.

Testing of the WOL specimens was deferred at the request of American Electric Power Service Corporation. The specimens are in storage at the SwRI radiation laboratory.

The Charpy V-notch results indicate that the HAZ is more sensitive to radiation embrittlement than the as-rolled and heat-created plate and about equal to that of the weld metal. This is surprising because the copper con-tent of HAZ is reported to be'uch lower than that of the weld metal.( 3) 20

TABLE V CHARPY V-NOTCH IMPACT DATA THE DONALD C. COOK UNIT NO. 1 REACTOR PRESSURE VESSEL INTERMEDIATE SHELL PLATE B4406-3 (LONGITUDINAL DIRECTION)

Test Impact Lateral Spec. Temp. Energy Shear Expansion Condition No. ( p) (ft-1b) (x) ~Mls Baseline (a) -40 10 13

-40

-40 ll 11.5 10 11 10 24.5 9 24 10 33 11 29 10 31.5 13 28 40 57 23 49 40 42 25 40 40 65 29 54 76 82 45 67 76 70 37 60 76 78 37 61 110 93.5 52 72 110 100 59 77 110 88 52 72 160 110 95 84 160 131.5 100 95 160 115.5 95 83 210 120 100 89 210 144 100 98 210 125 100 95 300 131.5 100 90 300 126 100 92 300 132 100 93 Capsule T A-44 10 10.5 1 10 A-45 40 29 5 24 A-49 82 38 20 31 A-50 110 46.5 35 38 A-41 135 62.5 25 53 A-47 160 84 55 58 A-42 185 99 95 80 A-48 210 105 95 83 A-43 250 110 100 89 A-46 300 105.5 100 89 (a) Not reported.

21

TABLE VI CHARPY V-NOTCH IMPACT DATA THE DONALD C. COOK UNIT NO. 1 REACTOR PRESSURE VESSEL INTERMEDIATE SHELL PLATE B4406-3 (TRANSVERSE DIRECTION)

Test Impact Lateral Spec. Tempt Energy Shear Expansion Condition Na. ~P) ~ft-1b) ~7.) ~milt Baseline (a) -40 11 12

-40 11.5 15

-40 14 15 10 28 14 28 10 23 9 22 10 30 9 26 40 40 18 36 40 41 23 35 40 37 18 34 76 83 27 56 76 43 27 44 76 50 32 46 76 50 27 44 110 84 48 71 110 54 37 51 110 68 41 57 160 97 90 80 160 77 90 71 210 90 100 75 210 95 100 79 210 97 100 79 300 100 100 83 300 94 100 75 300 101 100 85 Capsule T AT-44 1O 6 5 8 AT-45 40 25 5 23 AT-49 82 35 20 30 AT-50 110 37 30 35 AT-41 135 49.5 25 44 AT-47 160 57 40 47 AT-42 185 73.5 100 63 AT-48 210 87 100 73 AT-43 250 87 100 71 AT-46 300 89 lOO 83 (a) Not reported.

22

TABLE VII CHARPY V-NOTCH IMPACT DATA THE DONALD C. COOK UNIT NO. 1 REACTOR PRESSURE VESSEL CORE REGION WELD METAL Test Impact Lateral Spec. Temps Energy Shear Expansion Condition No. ('p) ~ft-1b1 (X) ~m11s Baseline (a) -140

-140 ll 21 10 19

-140 19 18

-100 23.5 18 22

-100 29 20 26

-100 20 11 18

-70 45.5 24 39

-70 51 42 47

-70 54 32 49

-40 63 47 52

-40 59 34 53

-40 69 47 60 10 83 73 69 10 84 71 72 10 92 75 75 76 114 99 88 76 107 100 87 76 107 100 88 210 110 100 90 210 112 100 87 210 111 100 93 Capsule T W-33'-35

>>40 24. 5 5 19 10 50 20 41 W-34 75 75.5 70 67 W-39 82 44 20 34 W-40 110 85 95 69 W-37 160 75 100 66 W-38 210 98 100 66 W-36 300 68.5 100 66 (a) Not reported.

23

TABLE VIII CHARPY V-NOTCH IMPACT DATA THE DONALD CD COOK UNIT NO. 1 REACTOR PRESSURE VESSEL CORE REGION MELD HEAT-AFFECTED ZONE METAL Test Impact Lateral Spec. Tempo Energy Shear Expansion Condition No. ~7) (ft-lb) ~(/ ~mals Baseline (a) -175 5.5

-175 7

-175 7

-140 16 12

-140 22 18

-100 30 13 25

-100 33 14 28

-100 45 20 40

-70 52 21 39

-70 47 25 35

-70 27 14 21

-70 30 20 24

-40 54 55 53

-40 71 50 50

-40 47 43 45 10 97 90 83 10 89 43 67 10 82 69 64 76 112 100 86 76 '40 100 84 76 131 100 82 210 129 100 85 210 104 100 94 210 105 100 87 Capsule T H-33 -40 10 5 9 H-35 10 40.5 15 30 H-34 45 30.5 25 27 H-39 82 52.5 25 41 H-40 110 62.5 40 46 H-37 160 84 100 65 H-38 210 111.5 100 78 H-36 300 83 100 54 (a) Not reported.

TABLE IX CHARPY V-NOTCH EPACT DATA A533 GRADE B CLASS 1 CORRELATION MONITOR MATERIAL Test Impact Lateral Spec. Tempr Energy Shear Expansion Condition No. ~fe-1b) ~X ~mals)

Baseline (a) -50

-50

-50

-20 6.5 9 6

-20 9 13 10

-20 6 13 9 10 12 23 15 10 14.5 23 14 10 13.5 23 14 40 22 33 23 40 36 29 32 40 35 29 32 85 58.5 43 51 85 41.5 41 42 85 52 42 45 110 82.5 58 60 110 85.5 67 71 110 63.5 55 54 160 108.5 84 72 160 81 85 69 160 109 87 79 210 117 98 84 210 115 98 88 210 121 100 87 300 125 100 87 300 117.5 100 83 300 127 100 84 Capsule T R-33 40 13.5 5 13 R-37 82 18.5 10 18 R-38 110 35 20 32 R-39 160 55.5 40 45 R-40 210 86.5 95 66 R-34 300 100 100 57 R-35 350 111 100 84 R-36 400 96.5 100 84 (a) Not reported.

25

e

~ ~

160 ~

' I I t I ~

I e I I 1 Qt I ~ I ~ I ~

~ I I 1 t e i I i t I I I t I I ~ t I I e I I ~ I I I l I t 1 I I

! I t ' I I I I I I ~ e t I 1 I ~

I i I ' I I

I! I

~ ~ ~

+lg!

I i I I I f. e I I 120 j I ~ e I I I e ~ ~

f~

I l ~ i I ~ I e I I I

~ I I i t I

~ I I ~ I ~ I I 1 e I e e I I J I I

~ ~

I C I ~

I I I I i ~ I I t I I  ! ~ I I I I ~ "

e

~ e ~

I I ~

00 80 ~ I .' I I I ~ I

~lt

~t,I SI ~ e u

fz1 I j: '

C ~ I I t t

I I

I I I

I

~

I

~

I I e I e I I I t 1

..L'L.l.e ~ ' 'I J

)

~ 1 e I I

e T

~ I ~ I I I e I ~ ~ ' I C3 ~ I I 'I t I I I I ' ~ ~ I ~

I I I ~ I I I t I, I I  ! I I i i I I I i,t e t 1

e I

40 ~ e I ~ e I ~ I I I

I I I I

~ ~

~

i I ';

I I I I I

! I I I I I

' ~-Baseline

~ ~ I ~ e I ' t I I

'1 I

1 t e I I I

I

~

I I I, i I j

~

C

~ I I

I t e I

', 1 e

~

'-Irradiated Capsule T e

~ ~ e  !* I < e I

~ ~

I C I " ~ I ' I I I 0

-200 -100 0 100 200 300 400 Temperature, deg F 100 ~ I

~ I '

I '

~ ~

l ~ I ~ I I e I e e 75

~

~ ~

I I I I ~

~ I C

0 e I e 50

)C 1 e I e ~ I I I e t

1 I i I I I ' I i I I I I I I I ~ I I I I I I '

~j

~

c7 ~

I e; i I I e

~ I I ~

' ~ I I I I I I e

.... I,.

~ ~ I ~

~e e I  ! I I 25 ~Unirradiated Baseline ee

~, ~

~ ~ e

\

e I '. I ~

- Xrradiated Capsule T j

I e I ' I ~ ~

~

I ~ . I I I ~ e e I ~

I I I ' I ~ I 1 e L

0

-200 -100 0 100 200 300 400 Temperature, deg F FIGURE 4 ~ CHARPY V-NOTCH PROPERTIES OF PLATE B4406-3 (LONG-)

DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 26

~ c 160 a ~ a e

~ I ~ I I I 1,  ! a, 120 I a ja 7 I ~

a a I I a

I 'I a 'I a 1 ~ I a a

I I 'I 7 ','I ~

I I

I 9

~aa

~ ~

I~ ~

I C 1 1

I 1 I

ae I Ia I ~

9 I

80 I I t I a I

~

~ I

't" I I I I I I I I I I a ~  ! I

~

I

~

I I . I 1 1

~a I!

I~ ' ~

I I i I 40

\ ';

~

l e I

~ I I I

~

I:

I ~

I

'I I I I

1

~

I I 1 ~

~ e 1

a a I I I I

~

I I I t

~

I e ~

a

~

~

I a, ~ ~

1 I =~

~ a

-200 -100 0 100 200 300 400 Temperature, deg F 100 I 1 ~ 1 I I

  • a 1

t I

~ ' 1 I I ' ~ 1, I

' I ~ ~ a

  • I a e I . '

'1 dMted& 1 ~ >> ~

.L f e

~ ~ ~

ad~Lat-dd'-Capj 'I" co 75 I I I I I 1

Ot~'1J

~

I ! I I ~t 8 I: I I '

I I I

a

~ . 6=- ~ . I 0 I I  ! ~

P

~ 50 e e 1

I

~

~ ' I I I ~

~at, I I I I

~t:Jaai I I I I

~ e ~

I 1 . " ~

~  ! !J I I I I I I I I I I I t . I I I I I I I I I I

~I a a 25 I I '

I I+ I I a~I."' a-H I i I I a I I ~

.Il LJ ~at I: '.~~

I I I '

I, I, i

'1 a I I I I I a I I I t i I ~

.~L j I ' t 1 I I T I

..L I I

/ I '. a J f ) I f [ I

~

I I J I I I I I 9

-200 -100 0 100 200 300 400 Temperature, deg F FIGURE 5. CHARPY V-NOTCH PROPERTIES OF PLATE B4406-3 (TRANS.)

DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 27

160 ~ ~ ~ 4 i i

! I

> ~ ~ ~ ~

I I I i j l 120 4

I

~

~

~;

I I ~

I I I I I I I I

I I I .

> I I

I I 1

I

~

~

i

~

I I

I

~

f:

-r+'!

I I

~

~

I I 1

I I 4 >

I

~

I 1

H.

I I

I I

I I

>> I i 1 ~

~j

~

I I i ). ~ > I i ' I':

4 >

I ~

t ~ ~

~ I I I I ~ ~ I >, '

I ~ 1 I I

I I t i '

I >

I I

I I I I

< I

~

~ > I I

~ I > ~

~,C I I I I I l 4 I >

i ~ ~

I ~

4

~ 1 t I I > j ~ . I I ~

~ ~ i i I - > I i i i I i I t I ~ ~

i C t I i t ~ I I I I t I I I I

>> I I

~ > ~ ~ ~ 4 ~

40 I

~

I I

I I .

I I

I I i I I I > ~

i I

~

~ U~diatad-'Baseline j

I I I j i I I I I I I

',w j-.'-+-.-&@Bated- Capsule

~

T 1

I .' tI I ~ ~

~ I I ~ I I ~

0

-200 -100 0 100 200 , 300 400 Temperature, deg F 100 '

I I I

~ . ' 1 4 I i I: I I

> I

~

4 t ' C; 4 ~ I 1,'

~ 1 4

I I ~ > I ~ > ~

1 ~ > ~ I I I m 75 8 ~ ~ C A

j ~ ~ I ~ 1 Q 4 > I ' ~

I 4

~ r X

50 ~ >

f

~ ~ f I

l.

4 I:

~ ' i I ~ ~

I I ~ I I ~

I . i . I I

~ f I;

i I

t

! ~ '

I,I,

4

~ '

I I c5 j Coda . ~ - ~

I I I I,

1 > 1 ~

4 4 I I . I I 25 ."'

~ ~

~

, &--.UnMrediated Baseline I

I 4

~ I; i I I: I I I I

~

i '

I I I

t

'. ~

I I

4

~ I

> I ~

I~adiated Capsule T

-200 -100 0 100 200 300 400 Temperature, deg F FIGURE 6. CHARPY V-NOTCH PROPERTIES OF CORE REGION WELD METAL DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 28

160  !  ! ~ ~

! I I " ! ~

I l  !

I:

~

I I = ' I ~

i I I '  ! I I I I I ~

I I i I I

'! l I ~

120 I ~

I i I i + ~ ~

l

.I D I I I ~ I I j I I  !

W t" ~

~!

~ ~ I l ~ I .  !

80 I I "I i!

I I I '

+:'

~ ~ ~

P

!  ! I I ~  !

I I I CD

) I !

l

~ I t I I  ! ( ~ l I I,

! ." I  ! I I I ~ll 40 I I

I I

I

~

I I!

I I

I I I I

I I ~

~ I

't~ Base1ine.

L tf I I l '

I I I (iT

~

I

$ J l: I I

~

~l I

A~I~! ,

'Xrmdia5edl. Capsule I I

~

~i( i

'00 I'

(

0

-200 -100 0 200 300 400 Temperature, deg F 100  !

I ~

~ ' . ' l I ' I

' J !

~

I i . I I i I l ~ I I I I' J ~ l I I I

I I I  ! I ~

75 1 I: ~

I j

I I I I I I I ~ I '

.' ~LA I I ~

I ',

i I I ( I I

~!

l ~

I I ~ I ~

0 I I, I I

I l I

I I

4 ~

I t

I ! I j I

~

I;

'I '

I

~ l I

50  ! j j  !

w I

~ I I f ( I ~

J

~  !  ! I I I I l I I I I I I 0 I ~ ~

I ~ 1 j t~

l u 25 I I I I ' i '

', Unirradiathd Baseline I I  !! 4 I ~ - ~ ,'-Irradiated( Capsu1e T l I  ! I I r I

'~

I ~ I

~  ! (Q ( I I o

I ~  ! '  !

~" 'I; I I I . l I I I I t I I  !

0

-200 -100 0 100 200 300 400 Temperature, deg F FIGURE 7. CHARPY V-NOTCH PROPERTIES OF CORE REGION HAZ MATERIAL DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 29

160 I ~ '.

I

~

I, I

I f f I i I I I I ~ ~ ', I f I ' ~

I l~

f ~

f ~

I I j I I I ~ ~ I

~ I I  ! f I I I I I I

~ ~ ~ ~ I I I j ~

I I I ~

~ I I ~ ~

I

~, I I I ~l I ~ ~

' I  !

120 rratHQtedj iz1+~ .

I ~ ~ I r, ~ ~ ~ ~

I I I '

f I ~

I I .

I t! I

~

" '0 "f

I I I ~ I ~ I I ~ ~ I ~ ~ I

~

~

I I I

~

I

~

~

~ I I ~

I;; ~ i ~

I

~

1

~

I

~

I I I ~

I I

! I I L!I I ~

I I j I  !  ! I I 80 r I I I

~

~ I  !

~

l " '

~

1

~ I I

~ ~

J ~ ~

I ' ~ ~

I C I I ~ I '  ! '

~ ~

I I I I I l  !

l;

~ ~ I I I I '

o)

!  ! ~ I i ~ t! I ~

I i l 1 I I I ' I f ~ ~ I I I

ii

~ I !

~

~

I I

I I

j I I I I f

~

I I I

~ I I I I f

I I I I I I I

I I

I I I

~

~ jt I f \ j f f I  ! I l I 40 I '

~

I

~

~ I

~

I I I i 1

i I I

~

~ ~

I I I ~ ~; ~ I I I I I ~ I f I I I I I j

~

I ~

I ~ I '

I T ~

I ~ ' . I I j  ! \ I ~ 1, ' I t  !

0

-200 -100 0 100 200 300 400 Temperature, deg F 100 j . I

.2008~

i ~

75

~ "- ~ Zrred kited-'Gape ~~j I '

~

I I ~ ~ I

~j I

8 I

I ! I 0 ~ !

i r i  ! ~

  • e I ~ I ~ ~

r 50

~ ~

I  ! tt, I

~ ~

I f I

~

t!

I I I I 1  ! I I

I

~

' ~

~

~ ~

! ~ . I

~ ~ ~

I '. I ' ~ l I I !  ! I I I ~ ~ I j ~  !

LI I i I I I j ~ I ! ' I  ! 1  !

I ~ I I I I ~ I I ~ ' ' ~

~ I ' 1 ~ I ~: j i I I ~  !

o 25 i I I I ~ ' 1 I  ! I  ! ~

~ I i ~

I 1 ~ ~ I i  ! ~ 1 I ~

I r I

0

-200 -100 0 100 200 300 400 Temperature de@ F FIGURE 8. CHARPY V-NOTCH PROPERTIES OF CORRELATION MONITOR MATERIAL DONALD C. COOK UNIT NO. 1 SURVEILLANCE PROGRAM 30

TABLE X NOTCH TOUGHNESS PROPERTIES OF CAPSULE T SPECIMENS DONALD C. COOK UNIT NO. 1 Plate B4406-3 Weld Weld Correlation

~(Lan .) (Trans.) Metal HAZ Monitor 50 ft-lb C Tem . (de F)

Irradiated 150(a) 140 60 70 145 Unirradiated 75(a) 65 -70 -60 75 AT 75( ) 130 130 70 35 mil C Tem . (de F)

Irradiated 135 (b) 110 50 55 125 Unirradiated 60(b) 40 -80 -75 60 AT 75(b) 130 130 65 C U er Shelf Ener ft-lb)

Unirradiated 130 94 110 120 120 Irradiated 108 84 80 93 102 hE, ft-lbs 22 10 30 27 18 AE, 16.9 10. 6 27.3 22.5 15 (a) Energy transition at 77 ft-lb.

(b) Lateral expansion transition at 54 mil.

31

TABLE XI TENSII E PROPERTIES OP SURVEILLANCE MATERIALS CAPSULE T Test 0.2X Yield Tensile Total Reduction Condition Specimen Ident.

Temp.

('P) ~si Strength Strength

~sf ~I Elongation in Area

(%)

Baseline B4406-3 Room 68,650 90,650 27.7 70.4 (Long.) Room 68,250 90,250 27.4 69.6 300 61,350 82,650 23.4 69.4 300 61,200 82,300 22.6 69.7 600 58,000 87,000 26.0 65.1 600 58,550 87,400 25.4 67.0 Capsule T A-1 Room 72,700 99,800 24. 3 65.7 A-2 550 66,700 93,000 20. 2 64.3 Baseline B4406-3 Room 68,700 90,300 26.6 65.8 (Trans.) Room 67,600 89,450 25.6 65.0 300 61,000 82,800 23.0 65.0 300 60,900 81,900 23.3 64.6 600 58,300 86,000 24.8 58.8 600 55,900 86,600 24.7 58.6 Baseline Veld Metal Room 66,900 81,500 28.7 73.2 Room 67,350 82,250 25.0 65.3 300 '9,700 74,600 24.0 72.9 300 59,800 74,500 23.3 71.8 600 57,200 79,400 23.4 65.2 600 56,300 78,500 23.6 63.4 Capsule T W-9 Room 86,100 103,400 23.6 65.0 M-10 550 75,800 95,300 19.3 60.8 32

~

~

The tensile properties of the weld metal appeared to be the most af-fected by the radiation exposure in Capsule T as expected from .the reported copper contents.

33

' ~

V. ANALYSIS OF RESULTS The analysis of data obtained from surveillance program specimens has the following goals:

(1) Estimate the period of time over which the properties of the vessel beltline materials will meet the fracture toughness requirements of Appendix G of 10CFR50. This requires a projection of the measured reduction in C upper shelf energy to the vessel wall using knowledge of the energy and spatial distribution of the neutron flux and the dependence of Cv upper shelf energy on the neutron fluence.

(2) Develop heatup and cooldown curves to describe the operational limitations for selected periods of time. This requires a projection of the measured shift in RTNDT to the vessel wall using knowledge of the dependence of the shift in RTNDT on the neutron fluence and the energy and spatial dis-tribution of the neutron flux.

The energy and spatial distribution of the neutron flux for Donald C.

Cook Unit No. 1 was calculated for Capsule T with the DOT 3.5 discrete ordi-nates transport code. The lead factor for Capsule T reported by Westinghouse is 2.6 for the vessel I.D. surface.( ) This was supported by the SwRI DOT 3.5 analysis. The DOT 3.5 analysis also predicted that the fast flux at the 1/4T and 3/4T positions in the 8-5/8-in. pressure vessel wall would be 49% and 7.8%,

respectively, of that at the vessel I.D. These figures are in good agreement with fluence attenuation determinations of 46% and 10% for an 8-in. steel plate by the Naval Research Laboratory.( ) However, currently the NRC pre-fers to use more conservative figures of 60% and 15%, respectively, for the attenuation of fast neutron flux at the 1/4T and 3/4T positions in an 8-in.

vessel wall. (16) This conservatism allows for the increased fraction of neutrons which might accrue in the 0.1 to 1.0 MeV range in deep penetra-tion situations. For the 8-5/8-in. wall thickness of the D.C. Cook Unit No. 1 vessel, the attenuations become 57% and 12.5% for the 1/4T and 3/4T positions, respectively.

A method for estimating the reduction in Cv upper shelf energy as a function of neutron fluence is given in Regulatory Guide 1.99, Revision

.(7))

1.( The results from Capsule T are compared to a portion of Figure 2 of Regulatory Guide'.99, Revision 1, in Figure 9. The embrittlement response of the weld metal, reported to contain 0.27% Cu( ), is in good agreement with the prediction of Regulatory Guide 1.99, Revision 1. However, the plate is less sensitive and the HAZ is more sensitive than predicted for the 0.14% copper content. The behavior of the HAZ specimens may reflect some copper pickup in the HAZ from the weld deposit or the placement of the notch unusually close to the fusion line. Using the dashed curve drawn through the data point for the weld metal, it is predicted that the weld metal Cv shelf energy will reach 50 ft-lbs at a fluence of about 2.1 x 10 (E > 1 MeV). This corresponds to approximately 38 effective full power years (EFPY) of operation at the vessel I.D., in excess of the 32 EFPY design life of the plant. The plate and HAZ materials are projected to require even larger fluences to reach the 50 ft-lb shelf level. These projections will be reex-amined after the next surveillance capsule has been removed.

A similar approach can be taken to estimate the increase in RTHDT as a function of reactor power generation. Figure 10 compares the Donald'. Cook Unit No. 1 surveillance data on the three surveillance materials to selected portions of Figure 1 of Regulatory Guide 1.99, Revision 1. The results

60 s I Is sr :lli I!!! s Isl s ' I ~ Is l sl I'I s I s I ~

I ss s

'l its jls I) s

~

~ I l I I I ~ sl

'.] j.! RR . I!.I i :I ~:

list

~i ~ ~ I l

40

.jj

.OI.'! s ss lit!  !! I I s I' lt Igloo s! t:.s I  ;}.

~

I I

~ ~

il, !'ii it ili j s

sl I s, s

III ~ ~

4l I~

I ll fili jig! js fjl if))

rI

\~

tjj

.l.!

I.

s ~

e 20 I Ill I, ~ ls j

I-I' fl tel jjj ll I

W 10 0 I !III . j!j. l! j

~ ~

I I s

l!j i!i I st I jjjj ls s>>

I i ii I I

I!I jl! i,:.l

~ ~

s I I

" 'I lrss sj!I s'j

~

sl ll v) 6 s I I~s 0 l I

~

ss

~

I ss js st I ssl sill sss Is!'..'Ill I~ ls', ~ '-I:j l I t" r hl!'ii!

0 ls)  : I>> >>I I>>

I ls I~

Qt .:m A s!Is >>I, I ~ !'i lil llj ,.)j, t l i.;  !'! I '.Ill s

l',I,",
Isl I;I,' ~

l ill s

i!l tlji sl s

s s

iL"

~s

!jl ;I

+II I j";l s

jl sSI Is s ~ ~ ls ss li I 1 l ill Illj il! .-I.s.i I'l It lsll I!

~ ~ s I

.'jii t.s"I','s"

j. ~ ~ ~

I~ >>s'.

l Ill ~

' I I ~s-j

@pe II I'.,

'is's'

~

2 x 1017 4 6 8 1018 2 4 6 8 1019 2 4 Neutron Fluence, n/cm (E > 1 MeV)

FIGURE 9. DEPENDENCE OF Cv SHELF ENERGY ON NEUTRON FLUENCE, DONALD C. COOK UNIT NO. 1

600 'll i ~ '

'.lji  !

I i., ~

ll ' l

~

I

.Il' irl:

)

K I C4! -I II, '11 T~).

I,I I'l 77' ~ I 400 t.l !ij! I! 1 I

. I..i .I j I

I I/I I I 1 lll II;! ~

II! I I I ~

~

~

I.:

I 1 I-

,II!

'ill "I

I I':

r >>

I I I

I I

1

'l I

11 ~ ',

tj I

200 I

lait jl, iii

. I

~

I 1l I I

Il j-I I I.

)I 100 Ij tjt 80 60 I

~ll ~ I I ~

I I

I Iij 'II j,j

'11

)1 I

~ I I ~

I':I i.i'

~

I I tll

' ~

I I

l )I l I~

II I f.>>. j>>i i, I I j ~~ I .!I 40 I ~ 'I )::; hii I

I! Igt

!!Ii lF ':i]j I)1 jl ilj lf il;,'"

Ill t f

I ili:. II-': I

~

tlI I,1 !I Ij 1 it

!,i l il I

,I jl ,!,! j 20 2 x 1017 4 6 1018 8 1019 2 4 Neutron Fluence, n/cm (E > 1 HeU)

FIGURE 1 EFFECT OF NEUTRON FLUENCE ON RTNDT SIIIFT>> DONALD C COOk UNIT NO'

indicate that the measured shift in RTNDT of the weld metal is in agreement with that predicted by Regulatory Guide 1.99, Revision 1, but that the mea-sured shifts in RTNDT for the plate and HAZ materials are underpredicted by the guide.

The predicted shifts in RTNDT for the Donald C. Cook Unit No. 1 reac-tor pressure vessel obtained from Figure 10 are summarized in Tables XII and XIII. The values predicted at the 1/4T and 3/4T after 12 EFPY (Table XII) are used to develop heatup and cooldown limit curves to meet the require-ments of Appendix G to Section III of the ASME Code, as described in Section VI of this report. These projections for Cv shelf energy reductions and RTNDT shifts, and the resulting heatup and cooldown limit curves, are based on extrapolations from one data point representing the most sensitive material.

After a second capsule has been removed and tested, one will be able to inter-polate between two data points.

The Donald C. Cook Unit No. 1 reactor vessel surveillance program sched-ule proposed by Westinghouse~ ~ is summarized in Table XIV. It has been or-ganized to satisfy Appendix H of 10CFR50 as closely as possible. There are seven additional capsules in the vessel, all of which contain base plate, weld metal and HAZ specimens. There is no reason to consider changing the proposed capsule removal schedule at this time.

39

TABLE XII PROJECTED VALUES OF RTNDT FOR DONALD C. COOK UNIT NO. 1 FOR UP TO 12 EFPY OF OPERATION Calculated Fluence RT (de F)

Location Material (n/cd E > 1 MeV) Initial Shift 12 EFPY(a )

Vessel I.D.

~ ~ Inter. Shell Plate 6.55 x 1018 45(b) 145 190 Weld Metal -52(b) 245 193 HAZ -60(c) 245 185 Vessel 1/4T Inter. Shell Plate 3. 73 x 1018 45(b) 110 155 Weld Metal 52(b) 185 133 WZ -60(c) 185 125 Vessel 3/4T Inter. Shell Plate 45(b) 50 95 Weld Metal 52(b) 87 35 MZ -60(c): 87 27 (a) 1 EFPY 1,186,250 M&t.

(b) Reference 18.

(c) References 13 and 18.

TABLE XIII PROJECTED VALUES OF RTNDT FOR DONALD C. COOK UNIT NO. 1 FOR UP TO 32 EFPY OF OPERATION Calculated Fluence R DT (de F)

Location Material (n/cm2 E > 1 MeV) Initial Shift 32 EFPY(a )

Inter. Shell Plate 45(b) 240 285 Meld Metal -52(b) 320 268 HAZ -60(c) 320 260 Vessel 1/4T Inter. Shell Plate '1.0 x 1019 45(b) 180 225 lfeld Metal -52(b) 285 233 HAZ -60(c) 285 225 Vessel 3/4T Inter. Shell Plate 2.2 x 1018 45(b) 83 128 Meld Metal -52(b) 142 90 HAZ 60(c) 142 82 (a) 1 EFPY = 1,186,250 MMDt.

(b) Reference 18.

(c) References 13 and 18.

TABLE XIV PROPOSED REACTOR VESSEL SURVEILLANCE CAPSULE SCHEDULE DONALD C. COOK UNIT NO. 1 Capsule Lead Identification Factor Removal Time 2.6 Removed and tested at end of first core cycle 2.6 10 Years (postirradiation test) 0.6 10 Years (reinsert in Capsule T location) 0.6 10 Years (reinsert in Capsule X location) 2.6 20 Years (postirradiation test) 0.6 20 Years (reinsert in Capsule U location) 2.6 30 Years (postirradiation test) 0.6 30 Years (reinsert in Capsule Y location)

~ ~

VI. HEATUP AND COOLDOMN LIMIT CURVES FOR NORMAL OPERATION OF DONALD C. COOK UNIT NO. 1 Donald C. Cook Unit No. 1 is a 3250 Mwt pressurized water reactor oper-ated by American Electric Power Service Corporation. The unit has been pro-vided with a reactor vessel material surveillance program as required by 10CFR50, Appendix H.

The first surveillance capsule (Capsule T) was removed during the 1977 refuelling outage. This capsule was tested by Southwest Research Institute, the results being described in the earlier sections of this report. In sum-mary, these results indicate that:

(1) The RTNDT of the surveillance materials in Capsule T increased a maximum of 130 F as a result of exposure to a neutron fluence of 1.80 x 10 neutrons/cm2 (E > 1 MeV).

(2) Based on a ratio of 2.6 between the fast neutron flux at the Capsule T location and the maximum incident on the vessel wall, the vessel wall fluence at the I.D. was 6.92 x 1017 neutrons/cm2 (E > 1 MeV) at the time of removal of Capsule T.

(3) The maximum shift in RTNDT after 12 effective full power years (EFPY) of operation was predicted to be 185 F at the 1/4T and 87 F at the 3/4T vessel wall locations, as controlled by the weld metal and HAZ materials.

(4) The intermediate shell plate material, although less sensitive to radiation embrittlement than the weld and HAZ materials, is projected to control the limiting RTNDT for a considerable length of time because of a much higher initial (unirradiated) RTNDT of 45 F.(

43

~ ~

The Unit No. 1 heatup and cooldown limit curves for 12 EFPY have been computed on the basis of (4) above because it is anticipated that the RTNDT of the primary pressure boundary materials will be highest for the plate ma-terial at least through that time period (see Table XII). The procedures employed by SwRI are described in Appendix B.

The following pressure vessel constants were employed as input data in this analysis:

Vessel Inner Radius, ri 86.50 in., including cladding Vessel Outer Radius, ro 95.34 in.

Operating Pressure, Po 2235 psig Initial Temperature, To 70 F Final Temperature, Tf 550'F Effective Coolant Flow Rate, Q ~ 135.6 x 10 ibm/hr Effective Flow Area, A 26.72 ft2 Effective Hydraulic Diameter, D ~ 15.05 in.

Heatup curves were computed for a heatup rate of 60 F/hr. Since lower rates tend to raise the curve in the central region (see Appendix B), these curves apply to all heating rates up to 60 F/hr. Cooldown curves were com-puted for cooldown rates of 0 F/hr (steady state), 20 F/hr, 40 F/hr, 60 F/hr, and 100 F/hr. The 20 F/hr curve would apply to cooldown rates up to 20 F/hr; the 40 F/hr curve would apply to rates from 20 F to 40 F/hr; the 60 F/hr curve would apply to rates from 40 F to 60 F/hr; the 100 F/hr curve would apply to rates from 60 F/hr to 100 F.hr.

The Unit No. 1 heatup and cooldown curves for up to 12 EFPY are given in Figures ll and 12.

44

2600 2400 ~ I I

ltI~

~

I 2200 ~

2000 1800 1600 1400 I ~

~

1 u 1200 t]t.. ~

lf ~

'ff

. I if}

l,l 1000 1

~ t I 800 ~ i I~

t<< 1 ~

600

1 ~

I .,f ~

f l

f 400 H f)

it} l jt l

g ~

r'i y ~ ~ II ~ I

~

f1~ I "I

I

~ ~

lf

~

1

~ 'r L1 1,

~ I f.[

200

~ ~

I~ ~

I:1 f~ f r ~ it i ~

]

60 100 150 200 250 300 350 400 Indicated Temperature, deg F FIGURE ll. DONALD C. COOK UNIT NO. 1 REACTOR COOLANT HEATUP LIMITATIONS APPLICABLE FOR PERIODS UP TO 12 EFFECTIVE FULL POfKR YEARS

2600 ~

~

')elt

.,; I)l) j! I. si

~ ~

ll 11 ~ ~

!i j 1 g
i>i

'l

~e I'.

I

~ g ~ s ~ 1 ~ ~

st';

I1 le)

Sel i:I ~ e I

".I rma

~ ~ ~

2400 e ~ 1 )'e ~

~

1~1 itis ~ 1 I~ 1

~ el> s ~

i

~ ~ ~ ~ I ) ~ s ~

I

,';)I  !'.I!  ; -1 4

"~ ~

~

~ ~ t' sell I'!1)  ! ~ ~ ~ ~

a ~

I :I )

l ilI)1 e I eisa s f 2200 1

~ ~ er 1 ~ ~ r sell

~ e

I) s I

Ill llI'I}

~

i l'l

~

li I.',: s

~ I 1

' l

'allI Il

~

I ~

s g

I 1

1 i ".I- 'll:;  !( }I 'll

~

2000 :.:

. L'::.: 1>

~ ~

~ ~

. 'g t,1 l

[::II -i):

ls ~ ~

>! I I~

I~

)I I

~

ee)e !e! ~ ~ .1

)

ii ~ -1

~ ~

>l ~ e i::I 'sl: .-:'I.':.i

~ ~

s ~ I 1800 ~ ~

s e i;. I ~ * ~

al I It )i}' I' ~ ~

.) 1 e

}L l 1-~ .> s ~

~ I

I

.I I '1 Sl

)

e ~ ~

II I I~

>I li Aj 1600  ?

le

~ e

'I rf

'i

~

I .".

'- s ~ ~

i' I g

! ji ~ 1 1 ~

I II) I I I' l I' I.;I 1 ~

e-

s 1' I' I~

l I! I '.1t 11>

1>f

~

e

)I I ll! )!Ij

~ ~

I l)!  ;.:I ~

ii ~

~

~

i>le 1

~ s ~ I el g

}I P4 1400 ~ ~ '.

l :I! f e ~ ~.

I? II e

>I s

'.L .p )s e tp

~ ~

I' ~

I

~

j:- j-'

~

lj~

, Ii e ~

I,,

Ill e s 4

~

Q ~ ll e e

~

if ll !I!I

) S1 ~ ~

I.:;.I ~

I,-

~

1200  : s

~ 1 Fig+ a

~ '. ~ 1 j II f ~ ~ ~

Ai e

>}s e I c'l,! ~ 1

~ ~ ~ ~ g

~ 1 s g ~ 1 t) I 1

.I :I 1

1 ~ ~

) II

~

')

~ =-

. ~,J eI

~ ~ ~ ~ ~

) ~

I I ~ ~

I )1

~

'I ~ ~

1 I

I I

-!I'tI }?4

s. A

-" e

{g

~

..I:}i.~

~ ~

I'. ~

A

~ 1 ~ ~ ~ ~ ) >I 1000 'e 1t1

)le ~

I) I:e) l r ~ e' I }i ii!l e fje Rl I f:I'I:i! ~

1 II tI

.f I ffjf r)') 1

\

,iii

~

Is I'l

~

I ~ 1 ie) iI lel) ~ f ~I )t j I j

                                                                                                                                                                                  ~

i li I ls I e ~ ~ el 800 e.l, tl ~ ~ s

                                    )I ij     ~ ~
                                                     ~

Is! la f I }esj I alj) r

                      )IL) !-.1;
                      "! I             i.  ~
                                              )~

tt e ~ 1 ~ >1 1)

                                                                                                                              ~
                                                                                                                                                                               )rjl                                      stj ::il eae rg l I: I!
                                           ~
                                           ~

I  ::ff I~ ~ l)iife'Il li I ~ ~

                               ~

si II ej s I 600 t  !."Ie 1 ~

                                                                                                                                                                               !1 I
                                                                                                                                                                                                                                                            ~  1            ~   t's 1

e

                                                                                                                      ,.I I            i;f}                                                                                                                                                 Ta i

I ))

                                                                                                                          ~ >

I'Ill 'Ii, I sl IIj I:lj si),. I~ I ~ t )Jjl s t al: 400 1 ~ ~ 'I .I I;r e ~ e

                                                       'I I;.Ill lrll e                                                                                                          1       ~      ~  s I  ~

j

                                                                     ',I  ls
                                                                          .I g     I
                                                                                                    '.. I
                                                                                                                                       ~ 1 I:,I                                If!a                              ~ ~ ~
                                                                                                                                                                                                                             ~ 1      ~  I                                                      ~ ~ s i

e+I I I1 ~ ,.aell)I 'll; e e 1 f

                      ~ ~
                        ~

1) I, 1

                                          '1 a
                                                                                        ~ ~                           1 1
                                                                                                                             'i"
                                                                                                                                         ~                  ~     ~
                                                                                                                                                                               ~ ~ ~
                                                                                                                                                                                             'I                  ~ 1                                        :Itj I lj:sn :)I          e    ~
                                                                                                                                                                                                                                                                                         ) f 200
                        .1                 e
                                                                  ,  ~

1 ~ ~ t

                                                                                                      ~ ~                              I I                  ~

l s s I ~

                                                                                                                                                                                                                                                                ~ as ~                I.::

60 100 150 200 250 300 350 400 Indicated Temperature, deg F FIGURE 12. DONALD C. COOK UNIT NO. 1 REACTOR COOLANT COOLDOWN LIHITATIONS APPLICABLE FOR PERIODS UP TO 12 EFFECTIVE FULL POWER YEARS

VII. REFERENCES

1. Title 10, Code of Federal Regulations, Part 50, "Licensing of Produc-tion and Utilization Facilities."
2. ASME Boiler and Pressure Vessel Code, Section III, "Nuclear Power Plant Components," 1974 Edition.
3. ASTM E 208-69, "Standard Method for Conducting Drop-Weight Test to De-termine Nil-Ductility Transition Temperature of Ferritic Steels," 1975 Annual Book of ASTM Standards.

Steele, L. E., and Serpan, C. Z., Jr., "Analysis of Reactor Vessel Radiation Effects Surveillance Programs," ASTM STP 481, December 1970.

5. Steele, L. E., "Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels," International Atomic Energy Agency, Technical Reports Series No. 163, 1975.
6. ASME Boiler and Pressure Vessel Code, Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," 1974 Edition.
7. Regulatory Guide 1.99, Revision 1, Office of Standards Development, U.S. Nuclear Regulatory Commission, April 1977.
8. Comments on Regulatory Guide 1.99, Westinghouse Electric from NRC Public Document Room, Washington, D.C.

Corporation,'btained

9. Position on Regulatory Guide 1.99, Combustion Engineering Power Sys-tems, Obtained from NRC Public Document Room, Washington, D.C.
10. ASTM E 185-73, "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels," 1975 Annual Book of ASTM Standards.
11. ASTM E 399-74, "Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials," 1975 Annual Book of ASTM Standards.
12. Witt, F. J., and Mager, T. R., "A Procedure for Determining Bounding Values of Fracture Toughness KIc at Any Temperature," ORNL-TM-3894, October 1972.
13. "American Electric Power Service Corporation Donald C. Cook Unit No. 1 Reactor Vessel Radiation Surveillance Program," WCAP-8047, March 1973.
14. ENDF/B-IV, Dosimetry Tape 412, Mat No. 6417 (26-Fe-54), July 1974.
15. Loss, F. J., Hawthorne, J. R., Serpan, C. Z., Jr., and Puzak, P. P.,
   "Analysis of Radiation-Induced Embrittlement Gradients on Fracture Characteristics of Thick-Walled Pressure Vessel Steels," NRL Report 7209, March 1, 1971.

47

16. Telecon, E. B. Norris to Ken Hogue (NRC Staff) January 19, 1977.
17. Hazleton, W. S., Anderson, S. L., and Yanichko, S. E., "Basis for Heatup and Cooldown Limit Curves," WCAP-7924, July 1972.
18. Donald C. Cook Unit No. 1 Technical Specifications, as of November 30, 1977.

48

APP END IX A TENSILE TEST RECORDS

Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T- .. l Est. U. T.S. PS1 Spec. No. -1 Initial G. L. r 41Z1 ~ Machine No. Temperature I4 'F Initial Dia.. I in. Date 77 ts J Strain Rate, < 2 tzpi> Inisial Thickness in. Initial Area Initial Width in. Top Temperature Maximum Load 40 lb Bottom Temperature 'F 0. 2'%ffset Load 88 9 D lb Final Gage Length p 4T ine 0.02% Offset Load lb Final Diameter /~~I in. Upper Yield Point Final Area ine 2 r Maximum Load Initial Area psi cjoy P 2 Init1al Area 2- ~g psi

0. 02% Offset Load 0 02/ Y S Initial Area PS1 UPPer Y S .. Upper Yield Point I tial Area PS1 Final G. L. - Initial x 100=

Initial Area - Final Area 1 p @~7 Initial Area Signature: A-2

-0;0 rZi9ahJ A-3

Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T- . Z Est. U. T. S. psi Spec. No. Initial G. L. .O in. Tem per afore ~P'F Initial Dia. . g C 'n. Strain Rate . C'~/Wrr/ Initial Thickness in. Initial Area . +H / Initial VTidth in. I Tap Temperature 'F Maximum Load S~ 7S lb Bottom Temperature 0 2%%uo Offset Load 5 2.=.~~ lb Final Gage Length 0.02%%utf Offset Load lb Final Diameter . l+J ln ~ Upper Yield Point lb Final Area . o '72 2 r Initial Area

0. 2% Offset Load Initial Area
                                 ~  02%%u'ff    et Load 0      02%%u  Y S Initial Area                                psl U      er Yield Point PPer          .-

I tlal Area Final G. L. - Initial x 100'= ~ ~'

       %%utl  Elongation                                                                       %%uo Initial Area - Final Area               100 Initial Area tt
    ~ ~
 )
          '0' a

0 g~< A-5

Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T- Est. U. T. S. psi Spec. No. Initial G. L. dd in. Machine No. )> / J~~ Temperature >+ 'F Initial Dia. Date Initial T hie kne s s in. Initial Are a '~8 7 Initial Width in. Top Temperature oF Maximum Load 5.> G lb 0.2% Offset Load ~~n,~ > lb Final Gage Length 111 ~ 0.02% Offset Load lb ~ s Final Diamete" in. Upper Yield Point lb Final Area sP/ 74 +m. 2 Maximum Load 0.2'ls Offset Load Initial Area g~ gg.

                       =         2/o  Offset Load 0 02$   Y  S Initial Area                         ps1 pp,            '        er Yield Point
                                 ~tel Area                            p81 u Fin   G. L. - Initial G. L.
        %   Elongation                 Initial G, L.

R A Initial Area - Final Area

        %                       Initial Area Signature:

A-6

'A-7 1

                                                                                                            ~ ~

Southwest Research Institute Department of Materials Sciences TENSILE TEST DATA SHEET Test No. T- Est. U. T.S. psi Project No. 6<-a>>n -of" / Spec. No. Initial G. L. Machine No. Temperature 5 ft < 'F Initial Dia. Date Strain Rate Initial Thickness Initial Area . OHg'7 Initial Width 1ne Top Temperature 5 ~l ~ 'F Maximum Load + C~~'0 lb Bottom Tempe ratur e o 84 0. 2% Offset Load ~?~. 5 ib 0.02% Offset Load lb in. Upper Yield Point Final Area Maximum Load Initial Area 0.2%%uo Offset Load Initial Area p 02 Y S

0. 02 % 0 ffs e t Lo a d ps1
             %%u Initxal Area U      er Yield Point Initial Area ps'inal G. L. - Initial G L x lpp 0  E OIlgation   
                                        ~.+ l G L                        //  7' Initial Area - Final Area Initial Area Signature:

A-8 b,t,

A-9 ~ 1 )1 APPENDIX B PROCEDURE FOR THE GENERATION OF ALLOWABLE PRESSURE-TEMPERATURE LIMIT CURVES FOR NUCLEAR POWER PLANT REACTOR VESSELS

PROCEDURE FOR THE GENERATION OF ALLOWABLE PRESSURE- TEMPERATURE LIMIT CURVES FOR NUCLEAR.POWER PLANT REACTOR VESSELS A. Introduction The following is a description of the basis for the generation of pressure-temperature limit curves for inservice leak and hydrostatic tests, heatup and cooldown operations, and core operation of reactor pressure vessels ~ The safety margins employed in these procedures equal or exceed those recommended in the ASME Boiler and Pressure Vessel Code, Section III, Appendix G, "Protection Against Nonductile Failure. " B. Back round The basic parameter used to determine safe vessel operational conditions is the stress intensity factor, KZ, which is a function of the stress state and flaw configuration. The KI corresponding to membrane tension is given by KI 'm'm where Mm is the membrane stress correction factor for the postulated flaw and o.m the membrane stress. Likewise, KI corresponding to bend-ing is given by KIb 'b 0'b (2) where Mb is the bending stress correction factor and o.b is the bending stress. For vessel section thickness of 4 to 12 inches, the maximum B-2

postulated surface flaw, which is assumed to be normal to the direction of maximum stress, has a depth of 0. 25 of the section thickness and a length of l. 50 times the section thickness. Curves for Mm versus the square root of the vessel wall thickness for the postulated flaw are given in Figure 1 as taken from the Pressure Vessel Code (ref. Figure G-2114. 1). These curves are a function of the stress ratio parameter r/r, where o. (Py is the material yield strength which is, taken to be 50,000 psi. The bending correction factor is defined as 2l3 Mm and is therefore determined from Figure 1 as well. The basis for these curves is given in ASME Boiler and Pressure Vessel Code, Section XI, "Rules for Inservice Inspection of Nu-clear Power Plant Components," Article A-3000. The Code specifies the minimum KI that can cause failure as a func-tion of material temperature, T, and its reference nil ductility temperature, RTNDT. This minimum KI is defined as the reference stress intensity fac-tor, KIR, and is given by KIR = 26777. + 1223. exp 0. 014493(T - RT NDT + 160) (3) where all temperatures are in degrees Fahrenheit. A plot of this expression. is given in Figure 2 taken from the Code (ref. Figure G-2010. 1). C. Pressure-Tem erature Relationshi s

1. Inservice Leak and H drostatic Test During performance of inservice leak and hydrostatic tests, the reference stress intensity factor, KIR, must always be greater than B-3

3.8 MEh<8RAHQ I( m M ~ra 1.0 Im m Mb x 0.7

                               <  2/3hlm,                               0.5 Mb                                           O. I 3.2 3.0 E

2.~i 2.2 2.0 1.6 1.2 1.0 1.0 1.2 I A 1.6 1,0 2.0 2.2 2.~i 2.6 2.8 3.0 3. 2 3A 3.6 3.8 4.0 FIGURE 1. STRESS CORRECTION FACTOR

I70 I'R 26 777) V'IIERE l30 'EFEAFHCE STRESS INTENSITY FACTOR I20 TEhIPERATURE AT VIHICH I'IR IS PERhIITTED,'F II 0 RTHPT 'EFERFHCE HIL-DUCTILITY Lg tco TEMPERATURE SO 70 60 50 40 IO 0

  -240 -200      -IGO   -I20    -eO   -40     0    40     80   .I20 IGO   200 240 TEIAPERATUAE RELATIYE TO ATHP,(T-ATHPT), FAHREIIHEI       D GREES FIGURE 2. REFERENCE STRESS INTENSITY FACTOR B-5
l. 5 times the KZ caused. by pressure, thus
l. 5 Kl'p KZR (4) or
                                     '5 Mm <m ~ K1R                                    (5)

For a cylinder with inner radius ri and outer radius ro, the stress distribution due to internal pressure is given by With 1/4T flaws possible at both inner and outer radial locations, i. e., at rl/4 = ri 4 1/4(ro- ri) and r3/< r j+ 3/4(ro- ri), the maximum stress will occur at the inner flaw location, thus I r j.2 r + (1/4ro+ 4 3/4ri) o. max =P o ro2 - ri2 (1/4ro p 3/4r i)2 With the operation pressure known, i. e., Po, we deter-mine the minimum coolant temperature that will satisfy Equation (4) by e valuating KlR = '5Mm<max and determine the corresponding coolant temperature, T, from Equa-tion (3) for the given RT~~DT at the 1/4T location. For this calculation, Equation (3) takes the form I-*I- 6 ..6 .I [-666 ']. S-6

The inservice curves are generated for an operating pres-sure range of 96 Po to

                 ~            l. 14 Po, where Po is the design operating pres sur e.
2. Heatu and C ooldown 0 e rations At all times during heatup and cooldown operations, the ref-erence stress intensity factor, K1R, must always be greater than the sum of 2 times the Klp caused by pressure and the Klt caused by thermal gra-dients, thus
2. 0 Klp + l. 0 Klt < KZR (10) or 2 0 Mm 0 max K1R - KZt where o max is the maximum allowable stress due to internal pressure, and KZt is the equivalent linear stress intensity factor produced by the thermal gradients. To obtain the equivalent linear stress intensity fac-tor due to thermal gradients requires a detailed thermal stress analysis.

The details of the required analysis are given in Section D. During heatup the radial stress distributions due to internal pressure and thermal gradients are shown schematically in Figure 3a. Assuming a possible flaw at the 1/4T location, we see from Figure 3a that the thermal stress tends to alleviate the pressure stress at this point in the vessel wall and, therefore, the steady state pressure stress would represent the maximum stress condition at the 1/4T location. At

OUTER RAD IUS 3/4T Z/4T INNER RAD IUS Pressure stress distribution Thermal stress distribution ( a ) Heatup OUTER RAD IUS 3/4T 1/4T INNER RADIUS Pressure stress distribution Thermal stress distribution ( b ) Cooldown Figure 3. Heatup and Cooldown Stress Distribution B-8

the 3/4T flaw location, the pressure stress and thermal stress add and, therefore, the combination for a given heatup rate represents the maxi-mum stress at the 3/4T location. The maximum overall stress between the 1/4T and 3/4T location then determines the maximum allowable reac-tor pressure at the given coolant temperature. The heatup pressure-temperature curves are thus generated by calculating the maximum steady state pressure based on a possible flaw at the 1/4T location from K1R max( rj (12) ro + (1 /4ro 0 3/4r;) 2Mm roZ - rj (1/4ro+3/4rj)2 where Mm is determined from the curves in Figure 1 and K1R is obtained from Equation (3) using the coolant temperature and RTNDT at the 1/4T location. Here we may note that Mm must be iterated for since it is a function of the final stress ratio to yield strength (0./ay). At the 3/4T location, the maximum pressure is determined from Equation (ll) as KZR - Ku P (3/4T) (13) rj r oZ + (1/4r j + 3/41 o) 2M roZ r.Z (1/4ri+ 3/4ro)2 where K1R is obtained from Equation (2) using the material temperature and RTNDT at the 3/4T location and Klt is determined from the analysis procedure outlined in Section D. Mm is determined from Figure 1, B-9

The minimum of these maximum allowable pressures at the given coolant temperature determines the maximum operation pressure. Each heatup rate of interest must be analyzed on an individ-ual bas is. The cooldown analysis proceeds in a similar fashion as that described for heatup with the following exceptions: We note from Figure 3b that during cooldown the 1/4T location always controls the maximum stress since the thermal gradient produces tensile stresses at the 1/4T location. Thus the steady state pressure is the same as that given in Equation (12). For each coo)down rate, the maximum pressure is evalu-ated at the 1/4T location from max( (14) 2M ri ro~ + (3/4ri 0 1/4r o) r - r ~ (3/4ri+ 1/4r ) where KIR is obtained from Equation (3) using the material temperature and RTNDT at'the 1/4T location. KIt is determined from the thermal analysis described in Section D. It is of interest to note that during cooldown the material temperature will lag the coolant temperature and, therefore, the steady state pressure, which is evaluated at the coolant temperature, will ini-tially yield the lower maximum allowable pressure. When the thermal gradients increase, the stresses do likewise, and, finally, the transient analysis governs the maximum allowable pressure. Hence a point-by-point

comparison must be made between the maximum allowable pressures pro-duced by steady state analyses and transient thermal analysis to determine the minimum of the maximum allowable pressures.

3. Core 0 eration At all times that the reactor core is critical, the temperature must be higher than that required for inservice hydrostatic testing, and in addition, the pressure-temperature relationship shall provide at least a 40'F margin over that required for heatup and cooldown operations. Thus the pressure-temperature limit curves for core operation may be constructed directly from the inservice leak and. hydrostatic test and heatup analysis results.

D. Thermal Stress Anal sis The equivalent linear stress due to thermal gradients is obtained from a detailed thermal analysis of the vessel., The temperature distribu-tion in the vessel wall is governed by the partial differential equation PcT< - K[(1/r) T + T .1 = o (15) subject to initial condition T(r,0) = T and boundary conditions

                     -KTr(ri, t) = hLTc(t) - T(ri t)

I (17)

and Tr(roit) = 0 (18) whe re Tc = To+ Rt. (19) p is the material density, c the material specific heat, K the heat conduc-tivity of the material, h the heat transfer coefficient between the water coolant and vessel material, R the heating rate, To the initial coolant temperature, T(r, t) the temperature distribution in the vessel, r the spatial coordinate, and t the temporal coordinate. A finite difference solution procedure is employed to solve for the radial temperature distribution at various time steps along the heatup or cooldown cycle. The finite difference equations for N radial points, at distance 6r apart, across the vessel are: for 1<n<N T =Ll-htK 2(2 )JT

                       +

QtK (g )Z L

                                   ~

(1+ gr )Tn+1.+ Tn-1J (2o) (21) B-12

andfor n = N t+()t N [ pc(()r)Z J N pr())r)2 N-1 (22) For stability in the finite difference operation, we must choose ht for a given hr such that both ()t K pc(kr)22(2+ Zr )c r1 1 (23) and

                      ~(1+

ht K pc(hr) (Ih,r rl )+ pc(hr) C 1 (24) are satisfied. These conditions assure us that heat will not flow in the direction of increasing temperature, which, of course, would violate the second law of thermodynamics. Since a large variation in coolant temperature is considered, the dependence of (K/pc), K, and h on temperature is included in the analysis by treating these as constants only during every 5'F increment in coolant temperature and then updating their values for the next 5'F increment. The dependence of (E/pc) called the thermal diffusivity and E, the thermal conductivity, can be determined from the ASME Boiler and Pressure Ves-sel Code, Section III, Appendix I- Stress Tables. A linear regression analysis of the tabular values resulted in the following expressions: K(T) = 38. 211 - 0. 01673 ~ T (BTU/HR-FT-'F) (25) B-13

and k(T) "-(K/pc) = 0. 6942 - 0. 000432 ~ T (FT /HR) (26) where T is in degrees Fahrenheit. The heat transfer coefficient is calculated based on forced con-vection under turbulent flow conditions. The variables involved are the mean velocity of the fluid coolant, the equivalent (hydraulic) diameter of the coolant channel, and the density, heat capacity, viscosity, and thermal conductivity of the coolant. For water coolant, allowance for the variations in physical properties with temperature may be made by writing~ h(T) = 170(1+10 ~T - 10 ~T ) v /D (27) where v is in ft/sec, D in inches, the temperature is in 'F, and h is in Btu/hr-ft - 'F. The values for the heat-transfer coefficient given by this relationship are in good agreement with those obtained from the Dittus-Boelter equation for temperatures up to 600'F. The mean velocity of the coolant, v, is generally given in terms of the effective coolant flow rate Q (Lbm/hr) and effective flow area A (ft ). Given the relationship p(T) = 62. 93 - 0. 48 x 10 2 <'- T - 0. 46 x 10 4 " T2 (28) for the density of water as a function of temperature, the mean velocity of the coolant is obtained from v = O/(3600 > p (T) ~ A) (29) Glasstone, S., Princi les of Nuclear Reactor Engineerin, D. Van Nostrand Co., Inc., New Jersey, pp. 667-668, 1960.

The thermal stress distribution is calculated from r2+ ri2 ro aT(r,t) = t [ jri T(r,t)rdr-T(r,t)+ 3 3 ( 0 3 1 3)jC T(r,t)rdrj (30) where a is the coefficient of thermal expansion (in/in 'F), E is Young's modulus, and v is Poisson's ratio. This expression can be obtained from Theor of Elasticit by Timoshenko and Goodier, pp. 408-409, when im-posing a zero radial stress condition at the cylinder inner and outer radius. Poisson's ratio is taken to be constant at a value of 0. 3 while n and E are evaluated as a function of the average temperature across the vessel T =

                                    ~(3        jri T(r)rdr                          (31)

The dependence of the coefficient of thermal expansion on temperature is taken to be a(T) = 5.76 x 10-6+ 4.4 x 10-9 4 T (32) and the dependence of Young's modulus on temperature is taken to be E(T) = 27.9142 + 2.5782 x 10 ~" T - 6.5723 x 10 6 4 T (33) as obtained from regression analysis of tabular values given in Section III, Appendix I of the ASME Boiler and Pressure Vessel Code. The resulting stress distribution given by Equation (30) is not linear; however, an equivalent linear stress distribution is determined from the resulting moment. The moment produced by the nonlinear B-15

r~ ~ stress distribution is given by ro M(t) = b f a T (r, t) rdr (34) where b is

  • unit depth of the vessel. Here we note that the moment is a function of time, i. e., coolant temperature via Tc = To + Rt. For a lin-ear stress distribution we have that P
                                                =

Mc

                                       ~max           I                                  (35')

where 0 ax is the maximum outer fiber stress, c the distance from the neutral axis, taken to be (ro - ri)/2, and I the section area moment of inertia which is given by bh b(ro - r;)3 12 12 (36) Combining these expressions results in the equivalent linear stress due to thermal gradients ro rrttax rbt (r.-r ) TJJ 't'T (r') r~ (37) 1i The thermal stress intensity factor KIt is then defined as KIt = Mb 0 bt (38) where Mb is determined from the curves given in Figure 1 wherein Mb = 2/3 Mm. It is of interest to note that a sign change occurs in the stress calculations during a cooldown analysis since the thermal gradients

produce compressive stresses at the vessel outer radius. This sign change must then be reflected in the Klt calculation for the cooldown analys is. Normalized temperature and thermal stress distributions during a typical reactor heatup are given in Figure 4. The radial temperature is shown normalized with respect to the average temperature, Tavg, by (T - Tavg)max (39) The thermal stress and equivalent linearized stress, as calculated by Equations (30) and (37), are normalized with respect to the maximum thermal stress. Here we note that the actual thermal stress at the 3/4T location is considerably less than the maximum equivalent linear stress which yields additional safety margins during the heatup cycle. Similar temperature and thermal stress distributions are developed during cool-down. The trends are nearly identical as those shown in Figure 4 when the inner and outer vessel locations are reversed with the I/4T location becoming the critical point. E. Exam le Calculations The following example is based on a reactor vessel with the follow-ing characteristics: Inner Radius 82. 00 in. (r ) Outer Radius 90 00 in. (r ) Operating Pressure 2250 psig (Po)

OUTER WALL 1.0

                                                       / /

0.8 0.6 // 0.4

                                             /
                                               /

0.2 -1.0 1.0 -1.0 1.0 INNER WALL Norma lized temperature Normalized stress distribution ( 4T/h,Tma) distribution ( o/ omax ) Figure 4. Typical Normalized Temperature and Stress Distribution During Heatup

Initial Temperature 70'F (To) Final Temperature 550'F Effective Coolant Flow Rate 100 x 10 Lbm/hr (Q) Effective Flow Area 20. 00 ft2 (A) Effective Hydraulic Diameter = 10. 00 in. (D) RTNDT (1/4T) 200OF RTNDT (3/4T) 140'F In the thermal stress analysis 21 radial points were used in the finite difference scheme. Going from 70'F to the final temperature of 550'F, approximately 12, 000 time (temperature via T = To + Rt) steps were required in the thermal analysis for the 100'F/hr heatup rate. The results of the computation are shown in Figures 5 through 9. Figure 5 gives the reference stress intensity factor, KIR, as a function of temperature indexed to RTNDT (1/4T). For the steady state analysis, KIR is converted directly to allowable pressure via Equation 12. During the heatup and cooldown thermal analyses the material tem-perature at the 1/4T and 3/4T and thermal stress intensity factors Kzt are required to compute allowable pressure via Equations (13) and (14). The material temperatures versus coolant temperature during the 100'F/hr heatup and cooldown analyses are given in Figure 6. These temperatures allow computation of the corresponding reference stress intensity factors, KIR (3/4T) and KIR (1/4T). Figure 7 gives the corresponding thermal stress intensity factor at the 3/4T and 1/4T locations as a function of coolant tempe rature.

200 RTNDT(1i4T) - 200 160 F

   ~  120 80 hC I

otV 40 50 150 200 250 300 350 400 TEMPERATURE ( F ) Figure 5. Reference Stress Intensity Factor as a Function of Temperature Indexed to RTNDT(1/4T )

400 100'F/HR HEATUP i 3/4T Location i 100'F /HR COOLDOWN 1/4T Location ( ) 300 200 100 50 100 150 200 250 300 350 COOLANT TEMPERATURE ('F ) Figure 6. Vessel Temperature at 1/4T and 3/4T Locations as a Function of Coolant Temperature

10 cu hC 6 100'F/HR HEATUP (3/4T Location 100'F/HR COOLDOWN ( 1/4 Location i

                                                                                        )

50 10Q 150 200 250 3QQ 350 COOLANT TEMPERATURE ('F ) Figure 7. Thermal Stress Intensity Factor at 3/4T and 1/4T Locations as a Function of Coolant Temperature

Figures 8 and 9 demonstrate the construction of the allowable com-posite pressure and temperature curves for the 100'F/hr heatup and cool-down rates. The composite curves represent the lower bound of the thermal and steady state curves with the addition of margins of +10'F and -60 psig for possible instrumentation error. Figure 8 also shows the leak test limit, corrected for instrument error, as obtained from Equation (9). The limit points are at the operating pressure 2250 psig and at 2475 psig which cor-responds to 1. 1 times the operating pressure. The criticality limit is also shown in Figure 8 and is constructed by providing for a 40'F margin over that required for heatup and cooldown and by requiring that the minimum temperature be greater than that required by the leak test limit. B -23

LEAK TEST LIIIIIIT 2400 2000 COMPOS ITE CURVE 100'F/HR HEATUP ( Margins of +10 F and -60 psig for instrument error ) 1600 I STEADY STATE CR I TI CALITY 1200 LIMIT 800 HEATUP 400 50 100 150 200 250 300 350 400 INDICATED TEMPERATURE ( F ) Figure 8. Pressure- Temperature Curves for 100 F/Hr Heatup

2400 2000 COMPOSITE CURVE -100 F/HR COOLDOWN ( Margins of +10 F and

                     -60 psig for instrument error )

1600 CXI PJ 1200 CD COO LDOWN Ch 800 STEADY STATE 400 50 100 150 200 250 300 350 INDICATED TEMPERATURE ('F ) Figure 9. Pressure-Temperature Curves for 100'F/Hr Cooldown

ADDENDUM TO FINAL REPORT ON "REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR DONALD C. COOK UNIT NO. 1, ANALYSIS OF CAPSULE T" Plate B4406-3 Held Held Correlation ,30 ft-1b C Tem . '(de T) ~(lan .) (Ttana.) Metal Mtt Monitor Irradiated 65 90 ~. -10 '0 105 Unirradiated. 5 20 -90 -100 45 AT 60 70 80 120 60 Monitor Height Identification ~(m ) Fe Top 18.2 Fe Top Mid. 15.3 Fe Mid. 17.2 Fe Bot. Mid. 16.6 Fe Bot. 16.4 Cu *- Top Mid. 64.9 Cu - Mid. 62.9 Cu Bot. Mid. 70.9 Ni - Top Mid. 22.9 Ni Mid. 25.5 Ni Bot. Mid. 24.5 Co Top 9.3 Co(Cd) Top 8.7 Co-- Bot. 9.5 Co(Cd) Bot. 7.7 U-238 12.0(a) NP-237 20.0(a) (a) As reported in WCAP-8047.

i ADDENDUM NO. 2 TO FINAL REPORT ON "REACTOR VESSEL MATERIAL SURVEILLANCE PROGRAM FOR DONALD C. COOK UNIT NO. 1, ANALYSIS OF CAPSULE T" Additional Tensile Test Data Specimen Fracture Load ~ Fracture Stress Uniform Elongation< > No. si  %%u4 64,700 188,600 5.00 63,250 177,000 2.45 W9 87,600 250,000 4.56 757800 193,700 2.87 (a) Using method of change in cross-sectional area of unnecked portion of specimen per ASTM E 184-62.}}