ML17221A364: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 08/25/1987
| issue date = 08/25/1987
| title = Forwards Revised Large Break LOCA ECCS Performance Results for Limiting Break Size for Facility Justifying Increased Steam Generator Tube Plugging Limit of Up to 1,430 Tubes
| title = Forwards Revised Large Break LOCA ECCS Performance Results for Limiting Break Size for Facility Justifying Increased Steam Generator Tube Plugging Limit of Up to 1,430 Tubes
| author name = WOODY C O
| author name = Woody C
| author affiliation = FLORIDA POWER & LIGHT CO.
| author affiliation = FLORIDA POWER & LIGHT CO.
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:REQfj.ATINFORMATIONDISTRIIOSTEM(RIDS)ACCESSIQNNBR:8708310039DOC.DATE.:87/08/25NOTARIZED:NOFACIL:59-389St.LuciePlantiUnit2iFloridaPower5LightCo.AUTH.NAMEAUTHORAFFILIATIONWQODYiC.O.FloridaPowerZrLightCo.RECIP.NAME.RECIPIENTAFFILIATIONDocument'ontrolBranch(DocumentControlDesk)
{{#Wiki_filter:REQfj.AT    INFORMATION DISTR I    IO      STEM (R IDS)
ACCESSIQN NBR: 8708310039          DOC. DATE.: 87/08/25  NOTARIZED: NO          DOCKET 0 FACIL: 59-389 St. Lucie        Planti Unit 2i Florida Power 5 Light      Co. 05000389 AUTH. NAME              AUTHOR  AFFILIATION WQODYi C. O.           Florida Power Zr Light Co.
REC I P. NAME.         RECIPIENT AFFILIATION Document'ontrol Branch (Document Control Desk)


==SUBJECT:==
==SUBJECT:==
ForwardsrevisedlargebrealLOCAEGCSperformanceresultsforlimitingbreaksizeforfacilitywhichgustifiesincresedsteamgeneratortubeplugginglimitofupto1430Tubes.DISTRIBUTIONCODE:A001DCQPIESRECEIVED:LTRENCL'IZE:TITLE:QRSubmittal:GeneralDistributionNOTES:DOCKET005000389RECIPIENTIDCODE/NAMEPD2-2LATOURIQNYiECOPIESRECIPIENTLTTRENCLIDCODE/NAME0PD2-2PD1COPIESLTTRENCL5INTERNAL:ARM/DAF/LFMB~NRR/DEBT/CEBNRR/DEBT/RSBNRR/PMAS/ILRB01EXTERNAL:EQSQBRUSKE,8NRCPDR01111111111h!RR/DEST/ADSNRR/DEBT/MTBh!RR/DOEA/TSBQQC/HDS2RES/DE/EIBLPDRNSIC11111110111111TOTALNUMBEROFCOPIESREQUIRED:LT1R21ENCL18
Forwards revised large breal LOCA EGCS performance results for limiting break size for facility which gustifies incresed steam generator tube plugging limit of up to 1430 TITLE:    QR Tubes.
-4I'I4"1Jttftf'4<<'<<.4<<4Il]EK')J'r4))"I>IJ'IJi1tl44''l'LTCJ/'<<,fl"4t'4I4)~/~IJ"JP"7,4,g,4LfJ41~1jf1),IIII)~l4tt),'I)+I<<'44IIi'4/lyg't"j"<<44K'1JJrt.*wg",4<<)t,)t)t/4IJ/.LI"4<<)/III<<4eelyI~1t4'IKJ,l<<g''"41"4III),$4I'/444~
DISTRIBUTION CODE: A001D          CQP  IES RECEIVED: LTR Submittal: General Distribution ENCL    'I  ZE:
P.X14000,JUNOBEACH,FL334080420>y9l/6,AUGUSTJ251987L-87-327U.S.NuclearRegulatoryCommissionAttn:DocumentControlDeskWashington,D.C.20555Gentlemen:Re:St.LucieUnitNo.2"DocketNo.50-389LareBreak'LOCAAnalisisFloridaPower&-LightCompany(FPL)hasreanalyzedtheSt.LucieUnit2LargeBreakLOCAAnalysis.ThenewLOCAAnalysissupersedestheanalysisofrecordsubmittedbyFPLletterL-86-37,datedJanuary3,l986,whichsupportedasteamgeneratortubeplugginglimitofl250averagelengthtubespersteamgenerator.TheattachedrevisedLargeBreakLOCAAnalysisjustifiesanincreasedsteamgeneratortubeplugginglimitofuptol430tubes.Thisre-analysiswasperformedusingtheNRC-approvedJunel985versionoftheCombustionEngineering(CE)LargeBreakLOCAevaluationmodel.Otherplantparameterchangeswereincorporatedinthisanalysisinanefforttoboundfuturecyclesandpossibleplantchanges.Theresultsoftheanalysisdemonstrateapeakcladtemperature(PCT)of2I07F,apeaklocalcladoxidationpercentageof7.62%andapeakcorewideoxidationpercentageoflessthan0.70%.TheseresultsdemonstratecompliancewithIOCFR50.46acceptancecriteriaof2200oF,l7%andI%,respectively.There-analysispredictsIFhigherPCTthanthePCTpredictedinthecurrentReferenceAnalysis.AlthoughthischangeinPCTdoesnotrequiresubmittaloftherevisedanalysistotheNRC,itisbeingsubmittedtojustifyanincreasedsteamgeneratortubeplugginglimitandtocalltothestaff'sattentiontheuseoftheJunel985versionoftheCELargeBreakLOCAevaluationmodelforSt.LucieUnit2.Verytrulyyours,C.O.WooGroupViresidentNuclearEnergyCOW/EJW/gcAttachmentcc:Dr.J.NelsonGrace,RegionalAdministrator,RegionII,USNRCSeniorResidentInspector,USNRC,St.LuciePlant8708$t0039BQP00+8970826pDRADO~pDRPEJWI/02I/IanFPLGroupcompany I,Id-~~~444~4v~Ilf~I'Ithl4~4NMA~4II!<<A~"~dt'~l444VIVII~"I4I'"IIt'ld4At!'LL'VV4I4IdlthI,NI,!~I!~14~'4i'II44~'~l4'=414I~*<<4I'14ItId~',If.~4ILV~h)44<<~~I4LA!'v4\ItlI!I4N,IUd~44('dI'4'.4LL'I(I'4I!4NU~/N41~Iht.dv,-IAC4-VUt!~I44'.MV!4I>>,<<A'"';4IhAl~~I,I!I.4t,",..41!f,I4IIL,'lt.4,4:.l"..VVC4UI''~letdtII4=<<NII4d44I!.V!3I~41V1I14'~NLAUlAV!44I'~t'Md!c4".!L<1~I!'4!!Vt',d1hl~~~I LargeBreakLOCAECCSPerformanceResultsfortheLimitingBreakSizeforSt.Lucie2 Large8reakLOCAECCSPerformanceIntroductionandSummarAnECCSperformanceanalysiswasperformedforSt.LucieUnit2todemonstratecompliancewithlOCFR50.46whichpresentstheNRCAcceptanceCriteriaforEmergencyCoreCoolingSystemsforlightwater-cooledreactors(Reference1).TheanalysisevaluatesvariousplantchangesutilizingtherecentlyapprovedC-EJune1985version(Reference2)ofthelargebreakloss-of-coolant(LOCA)evaluationmodel.ThismodeldiffersfromtheevaluationmodelappliedinlicensingSt.Lucie2CycIe3(Reference3).TherevisedlargebreakLOCAevaluationmodelapprovedbyNRCincludes,changesto:(1)thecladdingdeformation/rupturemodelsbasedonNUREG-0630,(2)thesteamcoolingmodelsappliedatandabovetherupturelocationforrefloodratesbelowoneinchpersecond.(3)COMPERC-IIallowingsafetyinjectionpumpdeliverybeforethesafetyinjectiontankshaveemptied,(4)CEFLASH-4Anumericalmethods,(5)thestagnationpropertiesusedintheMoodybreakflowmodel,(6)thenodalizationschemeusedinCEFLASH-4A,and(7)theaxialpowershapeusedintheanalyses.Ofthesechanges,items(1)and(2)introducebeneficialeffectsonthecalculatedresultsatandabovethecladrupturelocation.Items(3)through(6)haveanegligibleorsmallbeneficialimpact.Theaxialpowershapehasanadverseimpactonresults;however,theCycle3analysisalreadyincorporatedthenewshape.ThecurrentanalysiscomplieswiththeconditionsforNRCapprovaloftherevisedmodel.Theseconditionsrequirethatapplicationofthemodelinclude:abreakspectrumstudyutilizingtheadverseaxialpowershapetodeter~incthe limitingbreaksize;adeterminationofwhethernosinglefailureisworsethanassumingtheworstsinglefailure;andassurancethattherevisedsteamcoolingheattransferisnotallowedtoexceedheattransferpredictionsbasedontheFLECHTcorrelation.Abreakspectrumanalysiswasperformedtodeterminethelimitinglargebreak.Inaddition,theanalysisassumed1430pluggedtubespersteamgenerator,fuelparameterswhichboundcurrentandexpectedconditions,augmentationpenaltyofunity,aninitialsafetyinjectiontank(SIT)gaspressureof200psig,reducedRCSvesselandcorebypassflow,andanend-of-cycletemperaturecoastdown.Theanalysisjustifiesanallowablepeaklinearheatgenerationrate(PLHGR)of13.0kw/ft.'ThisPLHGRisequaltotheexistinglimitforSt.LucieUnit2.Themethodofanalysisanddetailedresultswhichsupportthisvaluearepresentedherein.MethodofAnalsisThemethodofanalysisisbaseduponC-E'sJune1985largebreakLOCAECCSevaluationmodelwhichisdescribedinReferences4through10andwasapprovedbytheNRCinReference2.TheReferenceCycle,St.Lucie2Cycle3analysis(Reference3)utilizedthepreviouslyapprovedlargebreakLOCAevaluationmodel.Exceptforthemodelandvariousplantparametersdiffer-encesdescribedabove,themethodofanalysisisidenticaltotheReferenceCyclelargebreakLOCAECCSperformanceanalysis.Blowdownhydraulics,refill/refloodhydraulicsandhotrodtemperaturecalculationswereperformedwithfuelparameterswhichboundthecurrentfuelcycleandexpectedconditionsforfuturecyclesatareactorpowerlevelof2754Mwt.Theblowdownhydraulicscalculations'ereperformedwiththeCEFLASH-4Acode(Reference7)whiletherefill/refloodhydraulicscalculationswereperformedwiththeCOMPERC-IIcode(Reference8).ThehotrodcladtemperatureandcladoxidationcalculationswereperformedwiththeSTRIKIN-II  
NOTES:
~~
RECIPIENT          COPIES            RECIPIENT          COP  IES ID CODE/NAME        LTTR ENCL        ID CODE/NAME      LTTR ENCL PD2-2 LA                      0    PD2-2 PD                      5 TOURIQNYi E            1 INTERNAL: ARM/DAF/LFMB                       0    h!RR/DEST/ADS          1      1
andPARCHcodes(Reference11and12,respectively).Fuelperformancecalcu-lationswereperformedusingtheFATES-3AversionoftheC-E'sNRCapprovedfuelperformancecode(Reference13and14)withthegrainsizerestrictionasrequiredbytheNRC(Reference15).MostoftheECCSanalysisinputparametersarethesameasthoseoftheReferenceCycle(Reference3).1nparticularthelimitingaxialshapeusedisthesameasthatusedintheReferenceCycleandisconsistentwiththeselectionproceduredocumentedinReference9andapprovedbytheNRCinReference2.AsummaryofthesignificantinputparametersandinitialconditionsforthepresentandthereferenceanalysisareshowninTablel.ThemajordifferencesandtheirimpactonthePeakCladTemperature(PCT)arediscussedbelow.ThisanalysisaccountsforsteamgeneratorU-tubepluggingofupto1430averagelengthtubespergeneratorcomparedto1250fortheReferenceCycle(Reference3).Inaddition,thisanalysisusedaninitialsafetyinjectiontankpressureof200psigandanaugmentationpenaltyofunitycomparedtovaluesof570psigand1.01,respectively,fortheReferenceCycle.BasedonReference16afavorableincreaseintheinitialcontainmentwalltemperatureof90F(comparedtoavalueof60FfortheReferenceCycle)wasused.Abreakspectrumanalysiswasperformedincorporatingtheabove.Toboundfuturefuelcycles,thelimitingbreakdeterminedfromthebreakspectrumanalysiswasreanalyzedwithalimitingsetofradiationenclosuredata.Anassessmentwasmadeoftheimpactofreducingthecorebypassflowsuchthatvesselflowcanbereduced(from363,000gpmto359,700gpm)whilemaintainingthesamecoreflow.Anevaluationofatemperature.coastdownto520Fattheendofthecyclewasalsoperformed.
            ~
Steamgeneratortubepluggingincreasestheresistancetoflowpassingthroughtheprima'rysideofthesteamgenerator,therebyinhibitingsteamventingfromthecoreoutletplenumtothebreak.Thisreducestherefill/refloodratesandincreasesthepeakcladdingtemperature.Thisanalysisassumes1430pluggedtubespergenerator;however,italsoconservativelyboundspluggingfewerthan1430tubesineitherorbothsteamgenerators,sincethiswouldreducetheflowresistanceandreducethepeakcladtemperature.ThereductionintheaugmentationpenaltyresultsinanincreasehotassemblyaveragechannelPLHGR.Thehotassemblyaveragechannelinfluencestheradiationheattransferbetweenthehotrodofthehotandtheaveragerodofthehotassembly.HigherpoweroftheaveragethehotassemblyresultsinreducedheattransferfromthehotrodtosurroundingrodsresultinginahigherPCT.ofthePLHGRassemblyrodofitsReducingtheSITinitialgaspressureresuItsinaslightincreaseintherefilltime.Increasedrefilltimemeansalongerperiodofadiabaticheatup.ThisconsequentlyresultsinahigherPCT.IncreasingtheinitialcontainmentwalItemperatureresultsinanincreaseinrefloodflowintothecore.Thishelpstolowerthepeakcladtemperature.Reducingthevesselflowratebylessthan1%withaco~respondingdecreaseincorebypassflowhasaminimalimpactonthePCT.StudiesperformedforotherC-Eplantshaveshownthat~educingthevesselandcoreflowratesby16%increasesPCTbylessthan10F.Thisslightsensitivitywouldbefurtherreducedifthecoreflowremainsthesame.
NRR/DEBT/CEB            1    1    NRR/DEBT/MTB          1      1 NRR/DEBT/RSB            1    1    h!RR/DOEA/TSB          1      1 NRR/PMAS/ ILRB          1    1    QQC/HDS2              1      0 01            1    RES/DE/EIB            1      1 EXTERNAL: EQSQ BRUSKE, 8              1          LPDR                  1      1 NRC PDR                1    1    NSIC                  1      1 TOTAL NUMBER OF COPIES REQUIRED: LT1R            21  ENCL    18
Temperaturecoastdown-.atEOCdoesnotadverselyaffectPCT.ExplicitphysicscalculationsforEOCcoastdownconditionsconfirmedthattheReferenceCyclecoreparameters(e.gesaxialandradialpowerdistributfons,andPLHGR)conservativelyboundEOCcoastdownconditions.TheonlyadverseimpactofEOCcoastdownistheeffectwhichthereducedcoolanttemperaturehasontheblowdownhydraulics.However,previousstudieshaveshownthistobeasmalleffect,andonewhichisoffsetbythesignificantlylowerfuelstoredenergyatEOCburnuprelativetothelimitingburnupusedinthecurrentanalysiz.ResultsTable2providestheresultsofthebreakspectrum.Double-EndedSlotatPumpDischarge(DES/PD)b~eakswerejudgedtobenon-limitingbasedonfuelaveragetemperaturesatTAD(TimeofAnnulusDownflow)whichdefinestheendofblowdownportionofthetransient.Asexpected,thebreakspectrumanalysisdeterminedthe0.6DEG/PDbreaktobethelimitingbreak.ThepreviouslyapprovedevaluationmodeldemonstratedaweaksensitivitytoPCTduetotheva~iousbreaksizes.ThisisalsotruefortheJune1985evaluationmodelasshowninTable2.However,thenewleakflowmodelincorporatedintheJune1985evaluationmodelintroducesashiftfnthelimitingbreaksizeduetothesmallchangeintheleakflowcharacteristics.ThisisconsistentwithotherC-EplantswhichutilizedtheJune1985evaluationmodel.Table3presentstheresultsofthelimitingbreakreanalyzedwithaconservativesetofradiationenclosuredata.Table4presentsalistofthesignificantparametersdisplayedgraphicallyforthebreak.Theresultsoftheevaluationconfirmthat13.0kw/ftisanacceptablevalueforthePLHGRinthepresentanalysis.ThepeakcladtemperatureandmaximumlocalandcorewidecladoxidationvaluesasshowninTable3,arewellbelowthe10CFR50.46acceptancelimitsof2200F,17%and1%respectively.
 
The0.6OEG/PDproducedthehighestcladtemperatureof2107Fandapeaklocaloxidationof7.62%comparedtotheacceptancecriteriaof2200Fand17%0respectively.The0.6OEG/PDalsoresultedinthehighestcorewideoxidationoflessthan0.7%whichiswellbelowthe1%acceptancecriteria.Areviewofthetheeffectsofinitialoperatingconditionsontheseresultswasperformed.ItwasdeterminedthatovertherangesofoperatingconditionsallowedbytheTechnicalSpecification,aPLHGRof13.0kw/ftisanacceptablelimit.ConclusionsTheresultsoftheECCSperformanceevaluationforthepresentanalysisforSt.LucieUnit2demonstratedapeakcladtemperatureof2107F,apeaklocalcladoxidationpercentageof7.62%,andapeakcorewideoxidationpercentageoflessthan0.7%comparedtotheacceptancecriteriaof2200F,17%and1%~espectively.Therefore,operationofSt.LucieUnit2atacorepowerlevelof2754Neth(102%of2700Nwth)andaPLHGRof13.0kw/ftisinconformancewith10CFR50.46.
I'I                                '
Table1St.Lucie-Unit2SinificantParametersandInitialConditionsForBreakSectrumStud(1)ParametersReference~CclePresent~AnalaiaCorePowerat102%ofNominal(MMt)CoreAverageLinearHeatRateat102%ofNominal(kw/ft)~PeakLinearHeatGenerationRate(PLHGR)HotAssembly,HotChannel(kw/ft)PLHGRHotAssembly,AverageChannel(kw/ft)CoreInletTemperature(OF)CoreOutletTemperature('F)VesselFlow(10ibm/hr)CoreFlow((10ibm/hr)GapconductanceatPLHGR'Btu/hr-ft'-'F)(2)FuelCenterlineTemperatureatPLHGR(F)FuelAverageTemperatureatPLHGR(4F)HotRodGasPressure(psia)HotRodBurnup(NMO/MTU)NumberofTubesPluggedperSteamGeneratorAugmentationFactorSafetyInjectionTank(SIT)gaspressure(psig)InitialContainmentTemperature(F)27544.9013.011.45552603.8136.1131.11416322820781118103812501.015706027544.9013.011.57552603.8136.1131.11460329621021118103814301.0020090Hotrodradiationenclosure,andcoreandvesselflowratesweienotchangedforthebreakspectrumstudy.Theirimpactissubsequentlyevaluatedbasedonthelimitingbreaksizedeterminedbythisstudy.STRIKIN-IIvaluesathotrodburnupwhichyieldshighestpeakcladtemperature.
I l]EK 4
Table2St.Lucie-Unit2BreakSpectrum-ResultsBreakSizeTAO()Time,SecondsFuelAverageTemperatureatTAOFPeakCladTemperatureOF0.8OEG/PO0.8OEG/PO0.4OEG/PO0.8OES/PO0.6OES/PO0.4OES/PO20.022.627.618.020.225.4107711231074991992984206120652034(b)(b)(b)(a)Timeofannulusdownflow-endofblowdown.(b)Slotbreakswerejudgedtobenon-limitingbasedontheirsignificantlylowerfuelave~agetemperatureatTAO.andbecausetherefloodheattransferapplicabletotheslotbreaksisnoworsethan'heconservativeheattransferappliedtotheguillotinebreaks.Oouble-EndedGuillotineatPumpOischarge.Oouble-EndedSlotatPumpOischarge.
                                                                                                                            .4<<
Table3St.Lucie-Unit2tnitialConditionsandResultsforLimitinBreakSize0.6OEG/POReference~CnlePtesent~AnalsisInitialConditionsPeakLinearHeatGenerationRate(kw/ft)RadiationEnclosurex-factorPeakLinearHeatGenerationRate(PLHGR)HotAssembly,AverageChannel(kw/ft)13.02.1911.4513.02.0011.80ResultsPeakCladTemperature('F)TimeofPeakCladTemperature(Seconds)TimeofCladRupture(Seconds)PeakLocalCladOxidation(%)TotalCore-WideCladOxidation(%)210625955.8516.12~0.70210726644.747.62+0.70'Lowerx-factorindicatesflatterpowerdistributioninthevicinityofthehotrod.
                                                                                                                                                              -4
TableaSt.LucieUnit2VariablesPlottedasaFunctionotTimefortheLimitinLareBreakl/ariaaieFiaureNumberCorePowerPressureinCenterHotAssemblyNodeLeakFlowHotAssemblyFlow(belowhotspot)HotAssemblyFlow{abovehotspot)HotAssemblygualityContainmentPressureMassAddedtoCoreDuringRefloodPeakClaaTemperatureHotSpotGapConductancePeakLocalCladOxidationTemperatureofFuelCenterline,FuelAverage,CladandCoolantatHottestNodeHotSpotHeatTransferCoefficientHotRodinternalGasPressure1234567891011121314
                                                            )J'r4)     )"           I
                                                                                                        >IJ
                                                                                                'I      Ji 1        tl 4
4 "1  Jttftf'4  << '                                                   /     '<<,fl"                           4''l'LTCJ 4 I 4)   ~                                fJ      41      ~1                                      jf 4
t'                    /~       IJ L            1),    I                                                                I <<'4 "J
P "7,   4, g, 4 I    I I) ~
l 4    tt),'I   )+
4 I Ii'4
              /                                                                                                                             rt.*wg  ", 4 l y g't "j"   <<44          K'1        JJ eely
                                                                                                              ) t,)
t)t/4
                                                                                                        /.L              I" 4 IJ <<)/
I
                                <<4        I    ~
I    I 1
t  4
                                                  'I KJ, l           <<g     '               '" 41" 4                          III ),     $4  / I' 4
44 ~
 
P. X 14000, JUNO BEACH, FL 33408 0420
                                                                                        >y9l/6, AUGUSTJ 2 5 1987 L-87-327 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D. C. 20555 Gentlemen:
Re: St. Lucie Unit No. 2     "
Docket No. 50-389 Lar e Break'LOCA Anal isis Florida Power &-Light Company (FPL) has reanalyzed the St. Lucie Unit 2 Large Break LOCA Analysis. The new LOCA Analysis supersedes the analysis of record submitted by FPL letter L-86-37, dated January 3, l986, which supported a steam generator tube plugging limit of l250 average length tubes per steam generator.
The attached revised Large Break LOCA Analysis justifies an increased steam generator tube plugging limit of up to l430 tubes.
This re-analysis was performed using the NRC-approved June l985 version of the Combustion Engineering (CE) Large Break LOCA evaluation model. Other plant parameter changes were incorporated in this analysis in an effort to bound future cycles and possible plant changes. The results of the analysis demonstrate a peak clad temperature (PCT) of 2I07 F, a peak local clad oxidation percentage of 7.62% and a peak core wide oxidation percentage of less than 0.70%. These results demonstrate compliance with I OCFR50.46 acceptance criteria of 2200oF, l7% and I%, respectively.
The re-analysis predicts I F higher PCT than the PCT predicted in the current Reference Analysis. Although this change in PCT does not require submittal of the revised analysis to the NRC, it is being submitted to justify an increased steam generator tube plugging limit and to call to the staff's attention the use of the June l 985 version of the CE Large Break LOCA evaluation model for St. Lucie Unit 2.
Very truly yours, C. O. Woo Group Vi        resident Nuclear Energy COW/E JW/gc Attachment cc:     Dr. J. Nelson Grace, Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 70826 8708$ t 0039~ BQP00+89 pDR    ADO      pDR E JW I /02 I /I        P an FPL Group company
 
4 I,     I      d- ~ ~ ~                                                                                       v        ~
Ilf 44                        4 ~                                     ~ I   'I hl t
4          ~
4                  NM      A ~
                                                                                        '~l 4                                                                                                                                          I 4  II!                               44              VIVII                                                                              4    I d        lth              I,
                              <<               ~           "           I                                                                                                                                                        N  I,!    ~
A                          4 I '"    It I
I! ~
1
                                                                                        'ld  4                                                                                                                                                ~
                                                                                                                                                                                                                                                  '        4 i'     I
            ~"     ~                  d  t                                    At!'                     LL     'V    V 4
4 I'                                                                                                                                            \                                          I 1  4 I                                                                                                                                                              tl It                                                                                                                                                                        I!
                                                            ',I 4
I        d        ~
4    1    4 f.
I ~
V IL
                                                                                                        ~
                                                                                                                            ~     4 I              4      N,            IU    d    ~
I 4
4  ('d 4 ~       '                 <<4
* h       )44     <<
                                                                                                                                ~
4 LA            !'v 4 4          '.4                LL'
                                                ~    l 4'=                                                      ~ I                                                          I     (I'4 I!         4          NU ~ /N 1
AC
                                                                                                                                                                                            ~ I  ht.dv,4        -         I C                                                                                      1 Al
                                                                                    ~
                                                                                            ~                  4    U                                    I                                                    I    14'          ~      NLAUlAV              !          4  4 I'
I!                                                   '' ~
I,                                        let    dt    II    4    =      <<                                                      ~t I                                                                                                                                                              'Md I                                          I>>, <<A'"';                               .4 t,",.
N II
                                                                                                                                                                                                                !c
                                                                                                'l 4 -VU  t!        ~                                                                                      4  d          4 4                            V                                                                      4
                                                                      .4 4 4'.MV          !    4 4
Ih                    I      4 1!
IIL,    f, t
I!
                                                                        . 4,4:.l".. VV                                          .V!3          I    ~     41                                                                                      ".! L<     1 ~ I!'4!!
Vt',
d 1
                                                                                                                                                                                                                                                                      ~ ~
hl
~ I
 
Large Break LOCA ECCS Performance Results for the Limiting Break Size for St. Lucie 2
 
Large 8reak  LOCA ECCS Performance Introduction  and Summar An ECCS  performance analysis was performed for St. Lucie Unit 2 to demonstrate compliance with 10CFR50.46 which presents the NRC Acceptance Criteria for Emergency Core Cooling Systems for light water-cooled reactors (Reference 1). The analysis evaluates various plant changes utilizing the recently approved C-E June 1985 version (Reference 2) of the large break loss-of-coolant (LOCA) evaluation model. This model differs from the evaluation model applied in licensing St. Lucie 2 CycIe 3 (Reference 3).
The  revised large break    LOCA evaluation model approved by NRC includes, changes to:
(1) the cladding deformation/rupture models based on NUREG-0630, (2) the steam cooling models applied at and above the rupture location for reflood rates below one inch per second.
(3) COMPERC-II allowing safety injection pump delivery before the safety injection tanks  have emptied, (4)   CEFLASH-4A  numerical methods, (5)   the stagnation properties used in the Moody break flow model, (6)   the nodalization scheme used in CEFLASH-4A, and (7)   the axial power shape used in the analyses.
Of these changes,   items (1) and (2) introduce beneficial effects on the calculated results at and above the clad rupture location. Items (3) through (6) have a negligible or small beneficial impact. The axial power shape has an adverse impact on results; however, the Cycle 3 analysis already incorporated the new shape.
The  current analysis complies with the conditions for NRC approval of the revised model. These conditions require that application of the model include:
a break spectrum study utilizing the adverse axial power shape to deter~inc the
 
limiting break size;   a determination of whether no single failure is worse than assuming the worst single failure; and assurance that the revised steam cooling heat transfer is not allowed to exceed heat transfer predictions based on the FLECHT  correlation.
A break spectrum analysis was performed to determine the limiting large break. In addition, the analysis assumed 1430 plugged tubes per steam generator, fuel parameters which bound current and expected conditions, augmentation penalty of unity, an initial safety injection tank (SIT) gas pressure of 200 psig, reduced RCS vessel and core bypass flow, and an end-of-cycle temperature coast down. The analysis justifies an allowable peak linear heat generation rate (PLHGR) of 13.0 kw/ft. 'This PLHGR is equal to the existing limit for St. Lucie Unit 2. The method of analysis and detailed results which support this value are presented herein.
Method  of Anal  sis The method  of analysis is based upon C-E's June 1985 large break LOCA ECCS evaluation model which is described in References 4 through 10 and was approved by the NRC in Reference 2. The Reference Cycle, St. Lucie 2 Cycle 3 analysis (Reference 3) utilized the previously approved large break LOCA evaluation model. Except for the model and various plant parameters differ-ences described above, the method of analysis is identical to the Reference Cycle large break LOCA ECCS performance analysis.
Blowdown  hydraulics, refill/reflood hydraulics and hot rod temperature calculations were performed with fuel parameters which bound the current fuel cycle and expected conditions for future cycles at a reactor power level of 2754 Mwt. The blowdown hydraulics calculations'ere performed with the CEFLASH-4A code (Reference 7) while the refill/reflood hydraulics calculations were performed with the COMPERC-II code (Reference 8). The hot rod clad temperature and clad oxidation calculations were performed with the STRIKIN-II
 
~ ~
and PARCH codes  (Reference 11 and 12, respectively). Fuel performance calcu-lations were performed using the FATES-3A version of the C-E's NRC approved fuel performance code (Reference 13 and 14) with the grain size restriction as required by the NRC (Reference 15).
Most of the  ECCS  analysis input parameters are the  same as those of the Reference Cycle (Reference    3). 1n  particular the limiting axial shape used is the  same as that  used  in the Reference Cycle and is consistent with the selection procedure documented in Reference 9 and approved by the NRC in Reference 2. A summary of the significant input parameters and initial conditions for the present and the reference analysis are shown in Table l.
The major differences and their impact on the Peak Clad Temperature (PCT) are discussed below.
This analysis accounts for steam generator U-tube plugging of up to 1430 average length tubes per generator compared to 1250 for the Reference Cycle (Reference 3). In addition, this analysis used an initial safety injection tank pressure of 200 psig and an augmentation penalty of unity compared to values of 570 psig and 1.01, respectively, for the Reference Cycle. Based on Reference 16 a favorable increase in the initial containment wall temperature of 90 F (compared to a value of 60 F for the Reference Cycle) was used. A break spectrum analysis was performed incorporating the above.
To bound future fuel cycles, the limiting break determined from the break spectrum analysis was reanalyzed with a limiting set of radiation enclosure data. An assessment was made of the impact of reducing the core bypass flow such that vessel flow can be reduced (from 363,000 gpm to 359,700 gpm) while maintaining the same core flow. An evaluation of a temper ature. coastdown to 520 F at the end of the cycle was also performed.
 
Steam generator    tube plugging increases the resistance to flow passing through the prima'ry side of the steam generator, thereby inhibiting steam venting from the core outlet plenum to the break. This reduces the refill/reflood rates and increases the peak cladding temperature. This analysis assumes 1430 plugged tubes per generator; however,   it  also conservatively bounds plugging fewer than 1430 tubes in either or both steam generators, since this would reduce the flow resistance and reduce the peak clad temperature.
The  reduction in the augmentation penalty results in an increase of the hot assembly average channel PLHGR. The hot assembly average channel PLHGR influences the radiation heat transfer between the hot rod of the hot assembly and the average rod of the hot assembly.     Higher power of the average rod of the hot assembly results in reduced heat transfer from the hot rod to its surrounding rods resulting in a higher PCT.
Reducing the SIT  initial gas pressure  resuIts in  a  slight increase in the refill time. Increased refill time means a longer period of adiabatic heat up.
This consequently results in a higher PCT.
Increasing the initial containment walI temperature results in an increase in reflood flow into the core. This helps to lower the peak clad temperature.
Reducing the vessel  flowrate  by less than 1% with  a  co~responding decrease in core bypass flow has a minimal impact on the PCT. Studies performed for other C-E plants have shown that ~educing the vessel and core flowrates by 16%
increases PCT by less than 10 F. This slight sensitivity would be further reduced  if the core flow remains the same.
 
Temperature coastdown-.at EOC does not adversely affect PCT. Explicit physics calculations for EOC coastdown conditions confirmed that the Reference Cycle core parameters (e. ges axial and radial power distributfons, and PLHGR) conservatively bound EOC coastdown conditions. The only adverse impact of EOC coastdown is the effect which the reduced coolant temperature has on the blowdown hydraulics. However, previous studies have shown this to be a small effect, and one which is offset by the significantly lower fuel stored energy at EOC burnup relative to the limiting burnup used in the current analysiz.
Results Table 2 provides the results of the break spectrum. Double-Ended Slot at Pump Discharge (DES/PD) b~eaks were judged to be non-limiting based on fuel average temperatures at TAD (Time of Annulus Downflow) which defines the end of blowdown portion of the transient. As expected, the break spectrum analysis determined the 0.6 DEG/PD break to be the limiting break. The previously approved evaluation model demonstrated a weak sensitivity to PCT due to the va~ious break sizes. This is also true for the June 1985 evaluation model as shown in Table 2. However, the new leak flow model incorporated in the June 1985 evaluation model introduces a shift fn the limiting break size due to the small change in the leak flow characteristics. This is consistent with other C-E plants which utilized the June 1985 evaluation model.
Table 3 presents the results of the limiting break reanalyzed with a conservative set of radiation enclosure data. Table 4 presents a list of the significant parameters displayed graphically for the break.
The results of the evaluation confirm that 13.0 kw/ft is an acceptable value for the PLHGR in the present analysis. The peak clad temperature and maximum local and core wide clad oxidation values as shown in Table 3, are well below the 10CFR50.46 acceptance limits of 2200 F, 17% and 1% respectively.
 
The 0.6 OEG/PD produced the highest clad temperature of 2107 F and a peak 0
local oxidation of 7.62% compared to the acceptance criteria of 2200 F and 17%
respectively. The 0.6 OEG/PD also resulted in the highest core wide oxidation of less than 0.7% which is well below the 1% acceptance criteria.
A review of the the effects of initial operating conditions on these results was performed. It was determined that over the ranges of operating conditions allowed by the Technical Specification, a PLHGR of 13.0 kw/ft is  an acceptable limit.
Conclusions The results of the ECCS performance evaluation for the present analysis for St. Lucie Unit 2 demonstrated a peak clad temperature of 2107 F, a peak local clad oxidation percentage of 7.62%, and a peak core wide oxidation percentage of less than 0.7% compared to the acceptance criteria of 2200 F, 17% and 1% ~espectively. Therefore, operation of St. Lucie Unit 2 at a core power level of 2754 Neth (102% of 2700 Nwth) and a PLHGR of 13.0 kw/ft is in conformance with 10CFR50.46.
 
Table 1 St. Lucie - Unit 2 Si  nificant  Parameters    and Initial Conditions For Break      S ectrum Stud    (1)
Reference        Present Parameters                                                    ~Ccl e            ~Anal  aia Core Power  at  102% of  Nominal (MMt)                         2754              2754 Core Average Linear Heat Rate        at                        4.90              4.90 102%   of Nominal  (kw/ft) ~
Peak  Linear Heat Generation Rate        (PLHGR)               13.0              13.0 Hot Assembly, Hot Channel (kw/ft)
PLHGR Hot Assembly, Average Channel          (kw/ft)         11.45            11.57 Core Inlet Temperature (OF)                                       552              552 Core Outlet Temperature ('F)                                   603.8            603.8 Vessel Flow      (10 ibm/hr)                                   136.1            136.1 Core Flow( (10 ibm/hr)                                         131.1            131.1 Gap  conductance  at  PLHGR  'Btu/hr-ft'-'F)
(2)                               1416              1460 Fuel Centerline Temperature        at  PLHGR      ( F)         3228              3296 Fuel Average Temperature      at  PLHGR        (4F)             2078              2102 Hot Rod Gas Pressure      (psia)                                 1118              1118 Hot Rod Burnup (NMO/MTU)                                         1038              1038 Number of Tubes Plugged per Steam                                1250              1430 Generator Augmentation Factor                                              1.01              1.00 Safety Injection Tank (SIT) gas pressure (psig)                   570              200 Initial  Containment Temperature        ( F)                     60                90 Hot rod  radiation enclosure,       and core and vessel flowrates weie not changed  for the  break spectrum study. Their impact is subsequently evaluated based on the limiting break size determined by this study.
STRIKIN-II values at hot rod burnup which yields highest peak clad temperature.
 
Table  2 St. Lucie - Unit    2 Break Spectrum    - Results Fuel Average    Peak Clad TAO( )   Time,         Temperature at  Temperature OF Break Size                Seconds                TAO    F 0.8 OEG/PO                20.0                    1077            2061 0.8 OEG/PO                22. 6                  1123            2065 0.4 OEG/PO                  27. 6                  1074            2034 0.8 OES/PO                  18.0                    991          (b) 0.6 OES/PO                  20.2                    992          (b) 0.4 OES/PO                  25.4                    984            (b)
(a) Time  of annulus downflow - end of blowdown.
(b) Slot breaks were judged to be non-limiting based on their significantly lower fuel ave~age temperature at TAO. and because the r eflood heat transfer applicable to the slot breaks is no worse than'he conservative heat transfer applied to the guillotine breaks.
Oouble-Ended  Guillotine at    Pump  Oischarge.
Oouble-Ended  Slot at  Pump  Oischarge.
 
Table  3 St. Lucie - Unit 2 tnitial  Conditions and Results for Limitin Break Size 0.6 OEG/PO Reference            Pt esent
                                                ~Cnl e              ~Anal  sis Initial  Conditions Peak  Linear Heat Generation                        13.0                  13.0 Rate  (kw/ft)
Radiation Enclosure                                  2.19                  2.00 x-factor Peak Linear Heat Generation Rate    (PLHGR)         11.45                11.80 Hot Assembly, Average Channel    (kw/ft)
Results Peak Clad Temper ature ('F)                           2106                  2107 Time of  Peak                                          259                  266 Clad Temperature (Seconds)
Time of Clad Rupture (Seconds)                       55.85                44.74 Peak Local                                          16.12                  7.62 Clad Oxidation (%)
Total Core-Wide                                    ~ 0.70              + 0.70 Clad Oxidation (%)
Lower x-factor indicates flatter    power  distribution in the vicinity of the hot rod.
 
Table a St. Lucie Unit 2 Variables Plotted as a Function ot Time for the Limitin    Lar e Break l/ariaaie                                          Fiaure Number Cor e Power                                                          1 Pressure  in Center Hot Assembly  Node                            2 Leak Flow                                                          3 Hot Assembly Flow (below hot spot)                                 4 Hot Assembly Flow {above hot spot)                                 5 Hot Assembly guality                                                6 Containment Pressure                                                7 Mass Added  to Core During Reflood                                8 Peak Claa Temperature                                              9 Hot Spot Gap Conductance                                          10 Peak Local Clad Oxidation                                          11 Temperature of Fuel Centerline,                                   12 Fuel Average, Clad and Coolant at Hottest    Node Hot Spot Heat Transfer Coefficient                                13 Hot Rod internal Gas Pressure                                      14


==Reference:==
==Reference:==
l.AcceptanceCrfterfaforEmergencyCoreCoolingSystemsforLightMaterCooledNuclearPowerReactors,FederalRegister,Vol.39,No.3,January4,1974.2.Letter,D.N.Crutchfield(NRC)toA.E.Scherer(C-E),"SafetyEval-uationofCombustionEngineerfngECCSLargeBreakEvaluationModelandAcceptanceforReferencfngofRelatedLicensingTopicalReports",July31,1986.3.LetterC.O.Woody(FPL)toF.J.Miraglia(NRC),"St.LucieUnitNo.2DocketNo.50-389CELargeBreakLOCAAnalysis",January3,1986,L-86-37.4.Letter,A.E.Scherer(C-E)toJ.R.Miller(NRC),'LD-81-095,Enclosure1-P,"C-EECCSEva1uatfonNodelFlowSlockageAnalysis".(Proprietary),December15,1981.5.Letter,A.E.Scherer(C-E)toC.0.Thomas(NRC),LO-86-027,"Responses-toquestionsonC-E'sRevfsedEvaluationModelforLargeBreakLOCAAnalysis",(Proprietary),June17,1986.6.Letter,A.E.Scherer(C-E)toC.0.Thomas(NRC),L0-85-032,"RevisiontoC-EModelforLargeBreakLOCAAnalysis",July3,1985.7.CENPO-133,Supplement5-P,"CEFLASH-4A.AFORTRAN77OfgftalComputerProgramforReactorSlowdownAnalysis",June1985.8.CENPD134,Supplement2-P,"CONPERC-ll,AProgramforEmergencyReffll-RefloodoftheCore",June1985.9.CENPO-132-P.Supplement3-P,"CalculativeNethodsfortheC-ELargeBreakLOCAEvaluationModelfortheAnalysisofC-EandMDesignedNSSS",June1985.
: l. Acceptance Crfterfa for Emergency Core Cooling Systems for Light Mater Cooled Nuclear Power Reactors, Federal Register, Vol. 39, No. 3, January 4, 1974.
1O.Letter,A.E.Scherer(C-E)toC.O.Thomas(NRC),L0-85-050,Enclosure,"SupplementalMaterialforInclusioninCENPO-132.Supplement3-P",(Proprietary),November5,1985.11.CENP0-135,Supplement2-P,"STRIKIN-II,ACylindricalGeometryFuelRodHeatTransferProgram(Modifications)",February1975.CENP0-135-P,Supplement4-P,"STRIKIN-II.ACylindricalGeometryFuelRodHeatTransferProgram",August1976.CENP0-135-P,Supplement5-P,"STRIKIN-II,ACylindricalGeometryFuelRodHeatTransferProgram",April1977.12.CENP0-138-P,andSupplement1-P."PARCH,AFORTRANIVOigitalProgramtoEvaluatePoolBoiling,AxialRodandCoolantHeatup",February1975.CENPO-138Supplement2-P,"PARCH-AFORTRAN-IVQigitalProgramtoEvaluatePoolBoiling,AxialRodandCoolantHeatup",January1977.13.CENP0-139-P-A,"C-EFuelEvaluationModelTopicalReport",July1974.14.CEN-161(B)-P,"ImprovementstoFuelEvaluationModelTopicalReport",July1981.15.LetterfromR.A.Clark(NRC)toA.E.Lundvall,Jr.(BGSE),datedMarch31,1983.16.Letter,J.L.Perryman(FPSL)toE.L.Trapp(C-E),FRN-86-404,"St.Lucie2LargeBreakLOCAReevaluation",November10,1986.3183-43-4-87 FIgura1ST.LUCIEUNIT2O.BxDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGCOREPOSER120011000080QQ6000I~O400020GO000qaaaaaaaaaaC4aaaaP)aaaaaaaiQTlNKINSEC Figllf82ST.LUCIEUNIT20.8xOOUBLEENDEDGUILLOTINEBREAKINPUMPOISCHARGELEGPRESSUREINCENTERHOTASSEMBLYNOOE240002000016GO0g1200.G8GGG4GG.GCDCDCDCDCDCDCQCDCDCDCDODCDCDCUCDCDCDCDTIl1ElNSEC Figure3~ST.LUCIEUNIT2O.BxDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGLEAKFLONiZGOQO.-PUMPSIDE---REACTORVESSELSIDE1000008GQQO.CQGOGGO.4GOGG2GOGOC)C)CDOCDCQC)CDC)CDC)CQC)OOCVCDC)CDTIf1EI'!4SEC FIgUre4ST.LUCIEUNIT20.8xOOUBLEENOEDGUILLOTINEBREAKINPUMPOISCHARGELEGHOTASSEMBLYFLOW,BELOWHOTSPOT3000020000iO.GGGCOKlGGG-IGGGGCD-20GGG-30GGOCDCDCDC)CD(0C)CDCDCUC)CDC)CaCDCDCDCUCDCICDCD
: 2. Letter, D. N. Crutchfield (NRC) to A. E. Scherer (C-E), "Safety Eval-uation of Combustion Engineerfng ECCS Large Break Evaluation Model and Acceptance for Referencfng    of Related Licensing Topical Reports",
,~~F1gUfB5ST.LUCIEUNIT20.8xDOUBLEENDEDGUILLOTINE8REAKINPUMPDISCHARGELEGHOTASSEMBLYFLOW,ABOVEHOTSPOT300002000010GGGCClGGG-LGGGGC)-20.0GG-3GGGGCDCDCDCDCDCD(DCDCDCDQ3CDCDCDC4CDCDCDCDTiiIKtNSEC Figure8ST.LUClfUNIT2O.BxDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGHOTASSEMBLYOUAUTYNODE13,BELOWHOTTESTREGIONNQGE14,ATHOTTESTREGIONNOOE1$,ABOVEHOTTESTREGIONj0000GGGGGGGGIIiljlllIi///////'//jIItI/"i4GGG//2GOGGGGGCDCDCDCDC)<QCDC)OJC)CQCDCDCDi+TiiIKIi4SEC lguffST.LUClEUNIT20,8xDOUBLEENDEDGUILLOTlNEBREAK1NPUMPDtSCHARGELEGCONTAINMENTPRESSUREGGGGG""GGQG
July 31, 1986.
~'I-O-00~Rgura8ST.LUCIEUNIT20.8xDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGMASADDEDTOCOREDURINGREFLOOD.SGGOG.2SGGGTX&#xc3;E(SEC)IGTLOCDPATEl,GGGGGOjSGGG~I=GGGGC.CC-10.C1CC-KS.CKSC-E'00.18707XO/SEC1."301Zr/SECC.E'306ID/SECZSGGGC) 2200rtgurevST.LUCIEUNIT2O.BxDOU8LEENDEDGUILLOTINE8REAKINPUMPDISCHARGELEGPEAKCLADTEMPERATURE200018001600-14001~12001000SOO100200300TItiE.SE:CONOS400GOO60070C 18000Rgure)0ST.LUCIEUNIT20.8xDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGHOTSPOTGAPCONDUCTANCE1600140012001000I80060Go4QG2001002QG300TlNE.SECQNQS400SGG6007GC Ftgurs11ST.LUCIEUNIT2O.BxDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGPEAKLOCALCLADOXIDATION100200300TIME.SECONQS400SOO6GO700 2700Figure12ST.LUCIEUNIT2O.BxDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGCLADTEMPERATURE,CENTERUNEFUELTEMPERATURE,AVERAGEFUELTEMPERATUREANDCOOLANTTEMPERATUREFORHOTTESTNODE2100CENTERLINEFUEL1800CLADAVERAGEFUEL-1500~1200900COOLANT10020030040050060070C 180160Figure$3ST.LUCIEUNIT20.5xDOUBLEENDEDGUILLOTINEBREAKINPUMPDISCHARGELEGHOTSPOTHEATTRANSFERCOEFRCIENT140120100SQC'6040100200300TLUTE.SECONDS400SGQ6GQ7GQ Figure14ST.LUCIEUNIT20.6xDOUBLEENDEDGUILLOTlNEBREAKINPUMPDISCHARGELEGHOTRODINTERNALGASPRESSURE120C.t1~11184psiainital1CCO80Ctureat4.73SsecCOO4COZCC2CEOTQi~,SEC S'b.98$QPIppoAUGERS>>@~do0hillpv,~cno.}}
: 3. Letter  C.O. Woody (FPL)   to F.J. Miraglia (NRC), "St. Lucie Unit No. 2 Docket No. 50-389    CE Large Break LOCA Analysis", January 3, 1986, L-86-37.
: 4. Letter, A. E. Scherer (C-E) to J. R. Miller (NRC), 'LD-81-095, Enclosure 1-P, "C-E ECCS Eva1uatfon Nodel Flow Slockage Analysis". (Proprietary),
December  15, 1981.
: 5. Letter, A. E. Scherer (C-E) to C. 0. Thomas (NRC), LO-86-027, "Responses
    - to questions on C-E's Revfsed Evaluation Model for Large Break LOCA Analysis", (Proprietary), June 17, 1986.
: 6. Letter, A. E. Scherer (C-E) to C. 0. Thomas (NRC), L0-85-032, "
Revision to C-E Model for Large Break LOCA Analysis", July 3, 1985.
: 7. CENPO-133, Supplement 5-P, "CEFLASH-4A. A FORTRAN77  Ofgftal Computer Program for Reactor Slowdown    Analysis", June 1985.
: 8. CENPD  134, Supplement 2-P, "CONPERC-ll,   A Program  for Emergency Reffll-Reflood of the Core", June 1985.
: 9. CENPO-132-P. Supplement 3-P, "Calculative Nethods for the C-E Large Break LOCA  Evaluation Model  for the Analysis of C-E and M Designed NSSS", June 1985.
 
1O. Letter, A. E. Scherer   (C-E) to C. O. Thomas (NRC), L0-85-050, Enclosure, "Supplemental Material    for Inclusion in    CENPO-132. Supplement 3-P",
(Proprietary), November 5, 1985.
: 11. CENP0-135, Supplement 2-P, "STRIKIN-II, A      Cylindrical  Geometry Fuel Rod Heat Transfer Program    (Modifications)", February    1975.
CENP0-135-P, Supplement 4-P, "STRIKIN-II. A      Cylindrical  Geometry Fuel Rod Heat Transfer Program", August 1976.
CENP0-135-P, Supplement 5-P, "STRIKIN-II,     A Cylindrical  Geometry Fuel Rod Heat Transfer Program", April 1977.
: 12. CENP0-138-P, and Supplement    1-P. "PARCH, A FORTRAN IV    Oigital  Program to Evaluate Pool Boiling, Axial      Rod and  Coolant Heatup", February 1975.
CENPO-138 Supplement    2-P, "PARCH - A FORTRAN-IV Qigital  Program to Evaluate Pool Boiling, Axial      Rod and  Coolant Heatup", January 1977.
: 13. CENP0-139-P-A, "C-E Fuel Evaluation Model Topical Report",         July 1974.
: 14. CEN-161(B)-P, "Improvements to Fuel Evaluation Model Topical Report",
July 1981.
: 15. Letter from  R. A. Clark   (NRC) to A. E. Lundvall, Jr. (BGSE), dated March 31, 1983.
: 16. Letter, J. L. Perryman (FPSL)     to E. L. Trapp (C-E), FRN-86-404, "St.
Lucie  2 Large Break  LOCA  Reevaluation", November 10, 1986.
3183-4 3-4-87
 
FIgura 1 ST. LUCIE UNIT 2 O.B x DOUBLE  ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG CORE POSER 1 2001 1 0000 80QQ 6000 I~
O 4000 20GO 000q                          aa aa          aaa                        aaa      aaa        aaa a                        aa            a        a C4          P)                   iQ T lNK IN SEC
 
Figllf8 2 ST. LUCIE UNIT 2 0.8 x OOUBLE ENDED GUILLOTINE BREAK IN PUMP OISCHARGE LEG PRESSURE IN CENTER HOT ASSEMBLY NOOE 2400 0 2000 0 16GO  0 g 1200.G 8GG  G 4GG.G CD                                CD CD          CD                        CD      CD          CD CD          CD          CD            CD        CD        CD CD          CD OD                  CD CQ                                CU T I l1E    l N SEC
 
Figure 3
                                ~ ST. LUCIE UNIT 2 O.B x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG LEAK FLON PUMP SIDE REACTOR VESSEL SIDE iZGOQO.
100000 8GQQO.
CQ GOGGO.
4GOGG 2GOGO C)                       C)       CD C)         CD          CD          CD          O        C)
O          C)           C)           O        CD C)         CD CQ CQ                                    CV T I f1E    I'!4  SEC
 
FIgUre 4 ST. LUCIE UNIT 2 0.8 x OOUBLE ENOED GUILLOTINE BREAK IN PUMP OISCHARGE LEG HOT ASSEMBLY FLOW, BELOW HOT SPOT 30 000 20 000 iO.GGG CO Kl GGG
  -IG  GGG CD
  -20  GGG
  -30  GGO                        C)          C)       CD        CD CD          CD          CD        CD        CI CD          C)         CD          C)       CD        CD CD          CD CU          Ca                  CD (0                                CU
 
, ~ ~
F1gUfB 5 ST. LUCIE UNIT 2 0.8 x DOUBLE ENDED GUILLOTINE 8REAK IN PUMP DISCHARGE LEG HOT ASSEMBLY FLOW, ABOVE HOT SPOT 30 000 20 000 10 GGG CCl GGG
          -LG  GGG C)
          -20.0GG
          -3G  GGG                                      CD        CD        CD CD          CD                      CD        CD        CD CD          CD                      CD        CD        CD CD          CD Q3                  CD (D                                C4 T iiIK  t N SEC
 
Figure 8 ST. LUClf UNIT 2 O.B x DOUBLE  ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG HOT ASSEMBLY OUAUTY NODE 13, BELOW HOTTEST REGION NQGE 14, AT HOTTEST REGION NOOE 1$ , ABOVE HOTTEST REGION j 0000                                                      I II                    /
                                                /
il                  /           t
                                              /           I GGGG jl              /
                                            /       /" i
                                                  /'
ll Ii      /
                                    /       j I
GGGG
                                      /
                                  /
4GGG 2GOG GGGG                          CD                C)         CD CD          CD                                          CD CD                        C)                           CD CD          C)
OJ                CQ
                  <Q                                          i+
T  ii IK    I i4 SEC
 
lguff ST. LUClE UNIT 2 0,8 x DOUBLE ENDED GUILLOTlNE BREAK  1N PUMP DtSCHARGE LEG CONTAINMENT PRESSURE GG  GGG
""G GQG
 
~ 'I
                -O       -0                          0 ~
Rgura 8 ST. LUCIE UNIT 2 0.8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG MAS  ADDED TO CORE DURING REFLOOD
        .SGGOG.
2SGGG TX&#xc3;E (SEC)   IGTLOCD PATE C.CC-10.C    1 8707 XO/SEC 1C C-KS.C    1."301 Zr/SEC KS C-E'00. C.E'306 ID/SEC l,GGGGG O
I jSGGG ~
          =GGGG ZSGGG C)
 
rtgure v ST. LUCIE UNIT 2 O.B x DOU8LE ENDED GUILLOTINE 8REAK IN PUMP DISCHARGE LEG PEAK CLAD TEMPERATURE 2200 2000 1800 1600
  - 1400 1
~ 1200 1000 SOO 100        200          300          400        GOO      600 70C TItiE. SE:CONOS
 
0                Rgure )0 ST. LUCIE UNIT 2 0.8 x DOUBLE ENDED GUILLOTINE BREAK  IN PUMP DISCHARGE LEG HOT SPOT GAP CONDUCTANCE 1800 1600 1400 1200 1000 I
800 60G o
4QG 200 100        2QG        300          400        SGG        600 7GC T lNE. SECQNQS
 
Ftgurs 11 ST. LUCIE UNIT 2 O.B x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG PEAK LOCAL CLAD OXIDATION 100        200        300          400      SOO        6GO 700 TIME. SECONQS
 
Figure 12 2700                        ST. LUCIE UNIT 2 O.B x DOUBLE ENDED GUILLOTINE BREAK  IN PUMP DISCHARGE LEG CLAD TEMPERATURE, CENTERUNE FUEL TEMPERATURE, AVERAGE FUEL TEMPERATURE AND COOLANT TEMPERATURE FOR HOTTEST NODE CENTERLINE FUEL 2100 CLAD AVERAGE FUEL 1800
- 1500
~ 1200 900 COOLANT 100        200        300          400        500        600    70C
 
180                            Figure $3 ST. LUCIE UNIT 2 0.5 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG HOT SPOT HEAT TRANSFER COEFRCIENT 160 140 120 100 SQ C'
60 40 100        200        300            400      SGQ        6GQ 7GQ TLUTE. SECONDS
 
Figure 14 ST. LUCIE UNIT 2 0.6 x DOUBLE ENDED GUILLOTlNE BREAK IN PUMP DISCHARGE LEG HOT ROD INTERNAL GAS PRESSURE 120C
              .t al1 init      ~ 1118 4  psia 1CCO 80C ture at 4  .73S sec COO 4CO ZCC 2C                      EO TQi~,   SEC
 
S AUGERS        . 9 8$ QPI ppo 0 hillpv,  >>@~ do
            ~
c        no.
  'b}}

Latest revision as of 14:30, 4 February 2020

Forwards Revised Large Break LOCA ECCS Performance Results for Limiting Break Size for Facility Justifying Increased Steam Generator Tube Plugging Limit of Up to 1,430 Tubes
ML17221A364
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/25/1987
From: Woody C
FLORIDA POWER & LIGHT CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
L-87-327, NUDOCS 8708310039
Download: ML17221A364 (33)


Text

REQfj.AT INFORMATION DISTR I IO STEM (R IDS)

ACCESSIQN NBR: 8708310039 DOC. DATE.: 87/08/25 NOTARIZED: NO DOCKET 0 FACIL: 59-389 St. Lucie Planti Unit 2i Florida Power 5 Light Co. 05000389 AUTH. NAME AUTHOR AFFILIATION WQODYi C. O. Florida Power Zr Light Co.

REC I P. NAME. RECIPIENT AFFILIATION Document'ontrol Branch (Document Control Desk)

SUBJECT:

Forwards revised large breal LOCA EGCS performance results for limiting break size for facility which gustifies incresed steam generator tube plugging limit of up to 1430 TITLE: QR Tubes.

DISTRIBUTION CODE: A001D CQP IES RECEIVED: LTR Submittal: General Distribution ENCL 'I ZE:

NOTES:

RECIPIENT COPIES RECIPIENT COP IES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD2-2 LA 0 PD2-2 PD 5 TOURIQNYi E 1 INTERNAL: ARM/DAF/LFMB 0 h!RR/DEST/ADS 1 1

~

NRR/DEBT/CEB 1 1 NRR/DEBT/MTB 1 1 NRR/DEBT/RSB 1 1 h!RR/DOEA/TSB 1 1 NRR/PMAS/ ILRB 1 1 QQC/HDS2 1 0 01 1 RES/DE/EIB 1 1 EXTERNAL: EQSQ BRUSKE, 8 1 LPDR 1 1 NRC PDR 1 1 NSIC 1 1 TOTAL NUMBER OF COPIES REQUIRED: LT1R 21 ENCL 18

I'I '

I l]EK 4

.4<<

-4

)J'r4) )" I

>IJ

'I Ji 1 tl 4

4 "1 Jttftf'4 << ' / '<<,fl" 4l'LTCJ 4 I 4) ~ fJ 41 ~1 jf 4

t' /~ IJ L 1), I I <<'4 "J

P "7, 4, g, 4 I I I) ~

l 4 tt),'I )+

4 I Ii'4

/ rt.*wg ", 4 l y g't "j" <<44 K'1 JJ eely

) t,)

t)t/4

/.L I" 4 IJ <<)/

I

<<4 I ~

I I 1

t 4

'I KJ, l <<g ' '" 41" 4 III ), $4 / I' 4

44 ~

P. X 14000, JUNO BEACH, FL 33408 0420

>y9l/6, AUGUSTJ 2 5 1987 L-87-327 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D. C. 20555 Gentlemen:

Re: St. Lucie Unit No. 2 "

Docket No. 50-389 Lar e Break'LOCA Anal isis Florida Power &-Light Company (FPL) has reanalyzed the St. Lucie Unit 2 Large Break LOCA Analysis. The new LOCA Analysis supersedes the analysis of record submitted by FPL letter L-86-37, dated January 3, l986, which supported a steam generator tube plugging limit of l250 average length tubes per steam generator.

The attached revised Large Break LOCA Analysis justifies an increased steam generator tube plugging limit of up to l430 tubes.

This re-analysis was performed using the NRC-approved June l985 version of the Combustion Engineering (CE) Large Break LOCA evaluation model. Other plant parameter changes were incorporated in this analysis in an effort to bound future cycles and possible plant changes. The results of the analysis demonstrate a peak clad temperature (PCT) of 2I07 F, a peak local clad oxidation percentage of 7.62% and a peak core wide oxidation percentage of less than 0.70%. These results demonstrate compliance with I OCFR50.46 acceptance criteria of 2200oF, l7% and I%, respectively.

The re-analysis predicts I F higher PCT than the PCT predicted in the current Reference Analysis. Although this change in PCT does not require submittal of the revised analysis to the NRC, it is being submitted to justify an increased steam generator tube plugging limit and to call to the staff's attention the use of the June l 985 version of the CE Large Break LOCA evaluation model for St. Lucie Unit 2.

Very truly yours, C. O. Woo Group Vi resident Nuclear Energy COW/E JW/gc Attachment cc: Dr. J. Nelson Grace, Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, St. Lucie Plant 70826 8708$ t 0039~ BQP00+89 pDR ADO pDR E JW I /02 I /I P an FPL Group company

4 I, I d- ~ ~ ~ v ~

Ilf 44 4 ~ ~ I 'I hl t

4 ~

4 NM A ~

'~l 4 I 4 II! 44 VIVII 4 I d lth I,

<< ~ " I N I,! ~

A 4 I '" It I

I! ~

1

'ld 4 ~

' 4 i' I

~" ~ d t At!' LL 'V V 4

4 I' \ I 1 4 I tl It I!

',I 4

I d ~

4 1 4 f.

I ~

V IL

~

~ 4 I 4 N, IU d ~

I 4

4 ('d 4 ~ ' <<4

  • h )44 <<

~

4 LA  !'v 4 4 '.4 LL'

~ l 4'= ~ I I (I'4 I! 4 NU ~ /N 1

AC

~ I ht.dv,4 - I C 1 Al

~

~ 4 U I I 14' ~ NLAUlAV  ! 4 4 I'

I! ~

I, let dt II 4 = << ~t I 'Md I I>>, <<A'"'; .4 t,",.

N II

!c

'l 4 -VU t! ~ 4 d 4 4 V 4

.4 4 4'.MV  ! 4 4

Ih I 4 1!

IIL, f, t

I!

. 4,4:.l".. VV .V!3 I ~ 41 ".! L< 1 ~ I!'4!!

Vt',

d 1

~ ~

hl

~ I

Large Break LOCA ECCS Performance Results for the Limiting Break Size for St. Lucie 2

Large 8reak LOCA ECCS Performance Introduction and Summar An ECCS performance analysis was performed for St. Lucie Unit 2 to demonstrate compliance with 10CFR50.46 which presents the NRC Acceptance Criteria for Emergency Core Cooling Systems for light water-cooled reactors (Reference 1). The analysis evaluates various plant changes utilizing the recently approved C-E June 1985 version (Reference 2) of the large break loss-of-coolant (LOCA) evaluation model. This model differs from the evaluation model applied in licensing St. Lucie 2 CycIe 3 (Reference 3).

The revised large break LOCA evaluation model approved by NRC includes, changes to:

(1) the cladding deformation/rupture models based on NUREG-0630, (2) the steam cooling models applied at and above the rupture location for reflood rates below one inch per second.

(3) COMPERC-II allowing safety injection pump delivery before the safety injection tanks have emptied, (4) CEFLASH-4A numerical methods, (5) the stagnation properties used in the Moody break flow model, (6) the nodalization scheme used in CEFLASH-4A, and (7) the axial power shape used in the analyses.

Of these changes, items (1) and (2) introduce beneficial effects on the calculated results at and above the clad rupture location. Items (3) through (6) have a negligible or small beneficial impact. The axial power shape has an adverse impact on results; however, the Cycle 3 analysis already incorporated the new shape.

The current analysis complies with the conditions for NRC approval of the revised model. These conditions require that application of the model include:

a break spectrum study utilizing the adverse axial power shape to deter~inc the

limiting break size; a determination of whether no single failure is worse than assuming the worst single failure; and assurance that the revised steam cooling heat transfer is not allowed to exceed heat transfer predictions based on the FLECHT correlation.

A break spectrum analysis was performed to determine the limiting large break. In addition, the analysis assumed 1430 plugged tubes per steam generator, fuel parameters which bound current and expected conditions, augmentation penalty of unity, an initial safety injection tank (SIT) gas pressure of 200 psig, reduced RCS vessel and core bypass flow, and an end-of-cycle temperature coast down. The analysis justifies an allowable peak linear heat generation rate (PLHGR) of 13.0 kw/ft. 'This PLHGR is equal to the existing limit for St. Lucie Unit 2. The method of analysis and detailed results which support this value are presented herein.

Method of Anal sis The method of analysis is based upon C-E's June 1985 large break LOCA ECCS evaluation model which is described in References 4 through 10 and was approved by the NRC in Reference 2. The Reference Cycle, St. Lucie 2 Cycle 3 analysis (Reference 3) utilized the previously approved large break LOCA evaluation model. Except for the model and various plant parameters differ-ences described above, the method of analysis is identical to the Reference Cycle large break LOCA ECCS performance analysis.

Blowdown hydraulics, refill/reflood hydraulics and hot rod temperature calculations were performed with fuel parameters which bound the current fuel cycle and expected conditions for future cycles at a reactor power level of 2754 Mwt. The blowdown hydraulics calculations'ere performed with the CEFLASH-4A code (Reference 7) while the refill/reflood hydraulics calculations were performed with the COMPERC-II code (Reference 8). The hot rod clad temperature and clad oxidation calculations were performed with the STRIKIN-II

~ ~

and PARCH codes (Reference 11 and 12, respectively). Fuel performance calcu-lations were performed using the FATES-3A version of the C-E's NRC approved fuel performance code (Reference 13 and 14) with the grain size restriction as required by the NRC (Reference 15).

Most of the ECCS analysis input parameters are the same as those of the Reference Cycle (Reference 3). 1n particular the limiting axial shape used is the same as that used in the Reference Cycle and is consistent with the selection procedure documented in Reference 9 and approved by the NRC in Reference 2. A summary of the significant input parameters and initial conditions for the present and the reference analysis are shown in Table l.

The major differences and their impact on the Peak Clad Temperature (PCT) are discussed below.

This analysis accounts for steam generator U-tube plugging of up to 1430 average length tubes per generator compared to 1250 for the Reference Cycle (Reference 3). In addition, this analysis used an initial safety injection tank pressure of 200 psig and an augmentation penalty of unity compared to values of 570 psig and 1.01, respectively, for the Reference Cycle. Based on Reference 16 a favorable increase in the initial containment wall temperature of 90 F (compared to a value of 60 F for the Reference Cycle) was used. A break spectrum analysis was performed incorporating the above.

To bound future fuel cycles, the limiting break determined from the break spectrum analysis was reanalyzed with a limiting set of radiation enclosure data. An assessment was made of the impact of reducing the core bypass flow such that vessel flow can be reduced (from 363,000 gpm to 359,700 gpm) while maintaining the same core flow. An evaluation of a temper ature. coastdown to 520 F at the end of the cycle was also performed.

Steam generator tube plugging increases the resistance to flow passing through the prima'ry side of the steam generator, thereby inhibiting steam venting from the core outlet plenum to the break. This reduces the refill/reflood rates and increases the peak cladding temperature. This analysis assumes 1430 plugged tubes per generator; however, it also conservatively bounds plugging fewer than 1430 tubes in either or both steam generators, since this would reduce the flow resistance and reduce the peak clad temperature.

The reduction in the augmentation penalty results in an increase of the hot assembly average channel PLHGR. The hot assembly average channel PLHGR influences the radiation heat transfer between the hot rod of the hot assembly and the average rod of the hot assembly. Higher power of the average rod of the hot assembly results in reduced heat transfer from the hot rod to its surrounding rods resulting in a higher PCT.

Reducing the SIT initial gas pressure resuIts in a slight increase in the refill time. Increased refill time means a longer period of adiabatic heat up.

This consequently results in a higher PCT.

Increasing the initial containment walI temperature results in an increase in reflood flow into the core. This helps to lower the peak clad temperature.

Reducing the vessel flowrate by less than 1% with a co~responding decrease in core bypass flow has a minimal impact on the PCT. Studies performed for other C-E plants have shown that ~educing the vessel and core flowrates by 16%

increases PCT by less than 10 F. This slight sensitivity would be further reduced if the core flow remains the same.

Temperature coastdown-.at EOC does not adversely affect PCT. Explicit physics calculations for EOC coastdown conditions confirmed that the Reference Cycle core parameters (e. ges axial and radial power distributfons, and PLHGR) conservatively bound EOC coastdown conditions. The only adverse impact of EOC coastdown is the effect which the reduced coolant temperature has on the blowdown hydraulics. However, previous studies have shown this to be a small effect, and one which is offset by the significantly lower fuel stored energy at EOC burnup relative to the limiting burnup used in the current analysiz.

Results Table 2 provides the results of the break spectrum. Double-Ended Slot at Pump Discharge (DES/PD) b~eaks were judged to be non-limiting based on fuel average temperatures at TAD (Time of Annulus Downflow) which defines the end of blowdown portion of the transient. As expected, the break spectrum analysis determined the 0.6 DEG/PD break to be the limiting break. The previously approved evaluation model demonstrated a weak sensitivity to PCT due to the va~ious break sizes. This is also true for the June 1985 evaluation model as shown in Table 2. However, the new leak flow model incorporated in the June 1985 evaluation model introduces a shift fn the limiting break size due to the small change in the leak flow characteristics. This is consistent with other C-E plants which utilized the June 1985 evaluation model.

Table 3 presents the results of the limiting break reanalyzed with a conservative set of radiation enclosure data. Table 4 presents a list of the significant parameters displayed graphically for the break.

The results of the evaluation confirm that 13.0 kw/ft is an acceptable value for the PLHGR in the present analysis. The peak clad temperature and maximum local and core wide clad oxidation values as shown in Table 3, are well below the 10CFR50.46 acceptance limits of 2200 F, 17% and 1% respectively.

The 0.6 OEG/PD produced the highest clad temperature of 2107 F and a peak 0

local oxidation of 7.62% compared to the acceptance criteria of 2200 F and 17%

respectively. The 0.6 OEG/PD also resulted in the highest core wide oxidation of less than 0.7% which is well below the 1% acceptance criteria.

A review of the the effects of initial operating conditions on these results was performed. It was determined that over the ranges of operating conditions allowed by the Technical Specification, a PLHGR of 13.0 kw/ft is an acceptable limit.

Conclusions The results of the ECCS performance evaluation for the present analysis for St. Lucie Unit 2 demonstrated a peak clad temperature of 2107 F, a peak local clad oxidation percentage of 7.62%, and a peak core wide oxidation percentage of less than 0.7% compared to the acceptance criteria of 2200 F, 17% and 1% ~espectively. Therefore, operation of St. Lucie Unit 2 at a core power level of 2754 Neth (102% of 2700 Nwth) and a PLHGR of 13.0 kw/ft is in conformance with 10CFR50.46.

Table 1 St. Lucie - Unit 2 Si nificant Parameters and Initial Conditions For Break S ectrum Stud (1)

Reference Present Parameters ~Ccl e ~Anal aia Core Power at 102% of Nominal (MMt) 2754 2754 Core Average Linear Heat Rate at 4.90 4.90 102% of Nominal (kw/ft) ~

Peak Linear Heat Generation Rate (PLHGR) 13.0 13.0 Hot Assembly, Hot Channel (kw/ft)

PLHGR Hot Assembly, Average Channel (kw/ft) 11.45 11.57 Core Inlet Temperature (OF) 552 552 Core Outlet Temperature ('F) 603.8 603.8 Vessel Flow (10 ibm/hr) 136.1 136.1 Core Flow( (10 ibm/hr) 131.1 131.1 Gap conductance at PLHGR 'Btu/hr-ft'-'F)

(2) 1416 1460 Fuel Centerline Temperature at PLHGR ( F) 3228 3296 Fuel Average Temperature at PLHGR (4F) 2078 2102 Hot Rod Gas Pressure (psia) 1118 1118 Hot Rod Burnup (NMO/MTU) 1038 1038 Number of Tubes Plugged per Steam 1250 1430 Generator Augmentation Factor 1.01 1.00 Safety Injection Tank (SIT) gas pressure (psig) 570 200 Initial Containment Temperature ( F) 60 90 Hot rod radiation enclosure, and core and vessel flowrates weie not changed for the break spectrum study. Their impact is subsequently evaluated based on the limiting break size determined by this study.

STRIKIN-II values at hot rod burnup which yields highest peak clad temperature.

Table 2 St. Lucie - Unit 2 Break Spectrum - Results Fuel Average Peak Clad TAO( ) Time, Temperature at Temperature OF Break Size Seconds TAO F 0.8 OEG/PO 20.0 1077 2061 0.8 OEG/PO 22. 6 1123 2065 0.4 OEG/PO 27. 6 1074 2034 0.8 OES/PO 18.0 991 (b) 0.6 OES/PO 20.2 992 (b) 0.4 OES/PO 25.4 984 (b)

(a) Time of annulus downflow - end of blowdown.

(b) Slot breaks were judged to be non-limiting based on their significantly lower fuel ave~age temperature at TAO. and because the r eflood heat transfer applicable to the slot breaks is no worse than'he conservative heat transfer applied to the guillotine breaks.

Oouble-Ended Guillotine at Pump Oischarge.

Oouble-Ended Slot at Pump Oischarge.

Table 3 St. Lucie - Unit 2 tnitial Conditions and Results for Limitin Break Size 0.6 OEG/PO Reference Pt esent

~Cnl e ~Anal sis Initial Conditions Peak Linear Heat Generation 13.0 13.0 Rate (kw/ft)

Radiation Enclosure 2.19 2.00 x-factor Peak Linear Heat Generation Rate (PLHGR) 11.45 11.80 Hot Assembly, Average Channel (kw/ft)

Results Peak Clad Temper ature ('F) 2106 2107 Time of Peak 259 266 Clad Temperature (Seconds)

Time of Clad Rupture (Seconds) 55.85 44.74 Peak Local 16.12 7.62 Clad Oxidation (%)

Total Core-Wide ~ 0.70 + 0.70 Clad Oxidation (%)

Lower x-factor indicates flatter power distribution in the vicinity of the hot rod.

Table a St. Lucie Unit 2 Variables Plotted as a Function ot Time for the Limitin Lar e Break l/ariaaie Fiaure Number Cor e Power 1 Pressure in Center Hot Assembly Node 2 Leak Flow 3 Hot Assembly Flow (below hot spot) 4 Hot Assembly Flow {above hot spot) 5 Hot Assembly guality 6 Containment Pressure 7 Mass Added to Core During Reflood 8 Peak Claa Temperature 9 Hot Spot Gap Conductance 10 Peak Local Clad Oxidation 11 Temperature of Fuel Centerline, 12 Fuel Average, Clad and Coolant at Hottest Node Hot Spot Heat Transfer Coefficient 13 Hot Rod internal Gas Pressure 14

Reference:

l. Acceptance Crfterfa for Emergency Core Cooling Systems for Light Mater Cooled Nuclear Power Reactors, Federal Register, Vol. 39, No. 3, January 4, 1974.
2. Letter, D. N. Crutchfield (NRC) to A. E. Scherer (C-E), "Safety Eval-uation of Combustion Engineerfng ECCS Large Break Evaluation Model and Acceptance for Referencfng of Related Licensing Topical Reports",

July 31, 1986.

3. Letter C.O. Woody (FPL) to F.J. Miraglia (NRC), "St. Lucie Unit No. 2 Docket No. 50-389 CE Large Break LOCA Analysis", January 3, 1986, L-86-37.
4. Letter, A. E. Scherer (C-E) to J. R. Miller (NRC), 'LD-81-095, Enclosure 1-P, "C-E ECCS Eva1uatfon Nodel Flow Slockage Analysis". (Proprietary),

December 15, 1981.

5. Letter, A. E. Scherer (C-E) to C. 0. Thomas (NRC), LO-86-027, "Responses

- to questions on C-E's Revfsed Evaluation Model for Large Break LOCA Analysis", (Proprietary), June 17, 1986.

6. Letter, A. E. Scherer (C-E) to C. 0. Thomas (NRC), L0-85-032, "

Revision to C-E Model for Large Break LOCA Analysis", July 3, 1985.

7. CENPO-133, Supplement 5-P, "CEFLASH-4A. A FORTRAN77 Ofgftal Computer Program for Reactor Slowdown Analysis", June 1985.
8. CENPD 134, Supplement 2-P, "CONPERC-ll, A Program for Emergency Reffll-Reflood of the Core", June 1985.
9. CENPO-132-P. Supplement 3-P, "Calculative Nethods for the C-E Large Break LOCA Evaluation Model for the Analysis of C-E and M Designed NSSS", June 1985.

1O. Letter, A. E. Scherer (C-E) to C. O. Thomas (NRC), L0-85-050, Enclosure, "Supplemental Material for Inclusion in CENPO-132. Supplement 3-P",

(Proprietary), November 5, 1985.

11. CENP0-135, Supplement 2-P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program (Modifications)", February 1975.

CENP0-135-P, Supplement 4-P, "STRIKIN-II. A Cylindrical Geometry Fuel Rod Heat Transfer Program", August 1976.

CENP0-135-P, Supplement 5-P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program", April 1977.

12. CENP0-138-P, and Supplement 1-P. "PARCH, A FORTRAN IV Oigital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup", February 1975.

CENPO-138 Supplement 2-P, "PARCH - A FORTRAN-IV Qigital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup", January 1977.

13. CENP0-139-P-A, "C-E Fuel Evaluation Model Topical Report", July 1974.
14. CEN-161(B)-P, "Improvements to Fuel Evaluation Model Topical Report",

July 1981.

15. Letter from R. A. Clark (NRC) to A. E. Lundvall, Jr. (BGSE), dated March 31, 1983.
16. Letter, J. L. Perryman (FPSL) to E. L. Trapp (C-E), FRN-86-404, "St.

Lucie 2 Large Break LOCA Reevaluation", November 10, 1986.

3183-4 3-4-87

FIgura 1 ST. LUCIE UNIT 2 O.B x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG CORE POSER 1 2001 1 0000 80QQ 6000 I~

O 4000 20GO 000q aa aa aaa aaa aaa aaa a aa a a C4 P) iQ T lNK IN SEC

Figllf8 2 ST. LUCIE UNIT 2 0.8 x OOUBLE ENDED GUILLOTINE BREAK IN PUMP OISCHARGE LEG PRESSURE IN CENTER HOT ASSEMBLY NOOE 2400 0 2000 0 16GO 0 g 1200.G 8GG G 4GG.G CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD OD CD CQ CU T I l1E l N SEC

Figure 3

~ ST. LUCIE UNIT 2 O.B x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG LEAK FLON PUMP SIDE REACTOR VESSEL SIDE iZGOQO.

100000 8GQQO.

CQ GOGGO.

4GOGG 2GOGO C) C) CD C) CD CD CD O C)

O C) C) O CD C) CD CQ CQ CV T I f1E I'!4 SEC

FIgUre 4 ST. LUCIE UNIT 2 0.8 x OOUBLE ENOED GUILLOTINE BREAK IN PUMP OISCHARGE LEG HOT ASSEMBLY FLOW, BELOW HOT SPOT 30 000 20 000 iO.GGG CO Kl GGG

-IG GGG CD

-20 GGG

-30 GGO C) C) CD CD CD CD CD CD CI CD C) CD C) CD CD CD CD CU Ca CD (0 CU

, ~ ~

F1gUfB 5 ST. LUCIE UNIT 2 0.8 x DOUBLE ENDED GUILLOTINE 8REAK IN PUMP DISCHARGE LEG HOT ASSEMBLY FLOW, ABOVE HOT SPOT 30 000 20 000 10 GGG CCl GGG

-LG GGG C)

-20.0GG

-3G GGG CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD Q3 CD (D C4 T iiIK t N SEC

Figure 8 ST. LUClf UNIT 2 O.B x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG HOT ASSEMBLY OUAUTY NODE 13, BELOW HOTTEST REGION NQGE 14, AT HOTTEST REGION NOOE 1$ , ABOVE HOTTEST REGION j 0000 I II /

/

il / t

/ I GGGG jl /

/ /" i

/'

ll Ii /

/ j I

GGGG

/

/

4GGG 2GOG GGGG CD C) CD CD CD CD CD C) CD CD C)

OJ CQ

>@~ do

~

c no.

'b