ML15320A015: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:Dominion Nuclear Connecticut, Inc.Rope Ferry Rd., Waterford, CT 06385Mailing Address: P.O. Box 128Waterford, CT 06385dom.comNOV ,U. S. Nuclear Regulatory CommissionAttention: Document Control DeskWashington, DC 20555Serial No.NSS&L/MLCDocket No.License No.15-520R050-336DPR-65DOMINION NUCLEAR CONNECTICUT. INC.MILLSTONE POWER STATION UNIT 2CORE OPERATING LIMITS REPORT. CYCLE 24In accordance with the Millstone Power Station Unit 2 (MPS2) Technical Specifications(TSs), Section 6.9.1 .8.d, Dominion Nuclear Connecticut, Inc., hereby submits, as anenclosure, the Cycle 24 Core Operating Limits Report (COLR).The MPS2 COLR has been revised to include the following:* Revision of page headers to reflect Cycle 24.The Cycle 24 COLR has been incorporated into the MPS2 Technical RequirementsManual.If you have any questions or require additional information, please contact Mr. Thomas G.Cleary at (860) 447-1791 Ext. 3232.Sincerely,D. B. BlakeneyDirector, Nuclear Station Safety and Licensing -Millstone
 
==Enclosure:==
Core Operating Limits Report, Cycle 24Commitments made in this letter: NoneTh&#xb6;-p Serial No. 15-520Docket No. 50-336MPS2 Cycle 24 COLRPage 2 of 2cc: U.S. Nuclear Regulatory CommissionRegion I2100 Renaissance Blvd. Suite 100King of Prussia, PA 19406-2713R. V. GuzmanSenior Project Manager -Millstone Power StationU.S. Nuclear Regulatory CommissionOne White Flint North, Mail Stop 08 C211555 Rockville PikeRockville, MD 20852-2738NRC Senior Resident InspectorMillstone Power Station Serial No. 15-520Docket No. 50-336ENCLOSURECORE OPERATING LIMITS REPORT, CYCLE 24DOMINION NUCLEAR CONNECTICUT, INC.MILLSTONE POWER STATION UNIT 2 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 241. CORE OPERATING LIMITS REPORTThis CORE OPERATING LIMITS REPORT for Millstone 2 has been prepared inaccordance with the requirements of Technical Specification 6.9.1.8 a through 6.9.1.8 d.The Technical Specifications affected by this report are listed below:Section2.12.22.32.42.52.6Specification3/4.1.1.13/4.1.1.43/4.1.3.63/4.2.13/4.2.33/4.2.6SHUTDOWN MARGIN -(SDM)Deleted (Ref. License Amendment 280)Moderator Temperature Coefficient (MTC)Regulating CEA Insertion LimitsLinear Heat RateTOTAL UNRODDED INTEGRATED RADIALPEAKING FACTOR --FrTDNB Margin2.7Terms appearing in capitalized type are DEFINED TERMS as defined in Section 1.0 ofthe Technical Specifications.2. OPERATING LIMITSThe cycle-specific parameter limits for the specifications listed in Section 1.0 arepresented in the following subsections. These limits have been developed using theNRC approved methodologies specified in Section 3.2.1 SHUTDOWN MARGIN -(5DM).(Specification 3/4.1.1.1)The SHUTDOWN MARGIN shall be  3.6% AK/K2.2 Deleted2.3 Moderator Temperature Coefficient (Specification 3/4.1.1.4)The moderator temperature coefficient shall be:a. Less positive than 0.7x1 0-4 AK/K/&deg;F whenever THERMAL POWER is <70% ofRATED THERMAL POWER,b. Less positive than 0.4x10-4 AK/K/&deg;F whenever THERMAL POWER is > 70%of RATED THERMAL POWER,c. Less negative than -3.2x10-4 AK/K/&deg;F at RATED THERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-1LBDCR 15-MP2-010October 6 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.4 Regulating CEA Insertion Limits (Technical Specification 3/4.1.3.6)The regulating CEA groups shall be limited to the withdrawal sequence and to theinsertion limits shown in Figure 2.4-1. CEA insertion between the Long TermSteady State Insertion Limits and the Transient Insertion Limits is restricted to:a. <4 hours per 24 hour interval,b. <5 Effective Full Power Days per 30 Effective Full Power Day interval, andc. < 14 Effective Full Power Days per 365 Effective Full Power Day interval.2.5 Linear Heat Rate (Technical Specification 3/4.2.1)The linear heat rate, including heat generated in the fuel, clad and moderator,shall not exceed:a. 15.1 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is  360,000 gpm.b. 15.0 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 360,000 gpm and >354,600 gpm.c. 14.9 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 354,600 gpm and __349,200 gpm.During operation with the linear heat rate being monitored .by the Excore DetectorMonitoring System, the AXIAL S.HAP. E INDEX shall remain within the limits ofFigure 2.5-1.During operation with the linear heat rate being monitored by the Incore DetectorMonitor System, the alarm setpoints shall be adjusted to less than or equal to thelimit when the following factors are appropriately included in the setting of thealarms:1. A measurement-calculational uncertainty factor of 1 .07,2. An engineering uncertainty factor of 1.03, and3. A THERMAL POWER measurement uncertainty factor of 1.02.MILLSTONE -UNIT 2 TRM 8.1-2 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.6 TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR -- FrT (TechnicalSpecification 314.2.3)The calculated value of FrT at RATED THERMAL POWER shall be:_< 1.690 whenever the reactor coolant flow rate is >_ 360,000 gpm._< 1 .664 whenever the reactor coolant flow rate is < 360,000 gpm and > 354,600gpm._< 1 .639 whenever the reactor coolant flow rate is < 354,600 gpm and > 349,200gpm.2.6.1 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis > 360,000 gpm, are shown in Figure 2.6-1.2.6.2 The Power Dependent FrT limits, whenever the reactor coolant flow rateis < 360,000 gpm and > 354,600 gpm, are shown in Figure 2.6-2.2.6.3 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis < 354,600 gpm and > 349,200 gpm, are shown in Figure 2.6-3.2.7 DNB Margin (Technical Specification 3/4.2.6)The DNB margin shall be preserved by maintaining the cold leg temperature,pressurizer pressure, reactor coolant flow rate, and AXIAL SHAPE INDEX withinthe following limits:Parameter LimitsFour Reactor Coolant Pumps Operationsa. Cold Leg Temperature <549&deg;Fb. Pressurizer Pressure > 2225 psia*c. Reactor Coolant Flow Rate > 360,000 gpm with Linear Heat Rate and FrT limits asspecified in Sections 2.5 and 2.6.or>_ 354,600 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.or> 349,200 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.d. AXIAL SHAPE INDEX Figure 2.7-1Limit not applicable during either the THERMAL POWER ramp increase in excess of 5% of RATEDTHERMAL POWER per minute or a THERMAL POWER step increase of greater than 10% of RATEDTHERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-3LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 243. ANALYTICAL METHODSThe analytical methods used to determine the core operating limits shall be thosepreviously reviewed and approved by the NRC, specifically those described in thefollowing documents:3.1 EMF-96-029(P)(A) Volumes 1 and 2, "Reactor Analysis System for PWRsVolume 1 -Methodology Description, Volume 2 -Benchmarking Results,"Siemens Power Corporation, January 1997.3.2 ANF-84-73 Revision 5 Appendix B(P)(A), "Advanced Nuclear Fuels Methodologyfor Pressurized Water Reactors: Analysis of Chapter 15 Events," AdvancedNuclear Fuels, July 1990.3.3 XN-NF-82-21(P)(A) Revision 1, "Application of Exxon Nuclear Company PWRThermal Margin Methodology to Mixed Core Configurations," Exxon NuclearCompany, September 1983.3.4 XN-75-32(P)(A) Supplements 1 through 4, "Computational Procedure forEvaluating Fuel Rod Bowing," Exxon Nuclear Company, October 1983.3.5 EMF-2328(P)(A), "PWR Small Break LOCA Evaluation Model S-RELAP5 Based,"Framatome ANP, March 2001.3.6 EMF-2087(P)(A), "SEM/PWR-98: ECCS Evaluation Model for PWR LBLOCAApplications," Siemens Power Corporation, June 1999.3.7 XN-NF-78-44(NP)(A), "A Generic Analysis of the Control Rod Ejection Transientfor Pressurized Water Reactors," Exxon Nuclear Company, October 1983.3.8 XN-NF-621(P)(A) Revision 1, "Exxon Nuclear DNB Correlation for PWR FuelDesigns," Exxon Nuclear Company, September 1983.3.9 XN-NF-82-06(P)(A) Revision 1 and Supplements 2, 4, and 5, "Qualification ofExxon Nuclear Fuel for Extended Burnup," Exxon Nuclear Company, October1986.3.10 ANF-88-133(P)(A) and Supplement 1, "Qualification of Advanced Nuclear FuelsPWR Design Methodology for Rod Burnups of 62 GWd/MTU," Advanced NuclearFuels Corporation, December 1991.MILLSTONE -UNIT 2 TRM 8.1-4 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 243.11 XN-NF-85-92(P)(A) "Exxon Nuclear Uranium DioxidelGadolinia IrradiationExamination and Thermal Conductivity Results," Exxon Nuclear Company,November 1986.3.12 ANF-89-151(P)(A), "ANF-RELAP Methodology for Pressurized Water Reactors:Analysis of Non-LOCA Chapter 15 Events," Advanced Nuclear Fuels Corporation,May 1992.3.13 EMF-1961(P)(A) Revision 0, "Statistical Setpoint/Transient Methodology forCombustion Engineering Type Reactors," Siemens Power Corporation, July 2000.3.14 EMF-2310(P)(A), Revision 1, "SRP Chapter 15 Non-LOCA Methodology forPressurized Water Reactors," Framatome ANP, May 2004.3.15 EMF-92-153(P)(A), Revision 1, "HTP: Departure from Nucleate BoilingCorrelation for High Thermal Performance Fuel," Siemens Power Corporation,January 2005.3.16 EMF-92-116(P)(A) Revision 0, "Generic Mechanical Design Criteria for PWR FuelDesigns," Siemens Power Corporation, February 1999.MILLSTONE -UNIT 2TRM 8.1-5LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.iCORE OPERATING LIMITS REPORT. CYCLE 24too, ~AN1( 7 ~. 135 Step~31 O0]o090o.80040I~0300.200.10000't183pyv~r bLL+I+ _ 1;i.I- "l- 0NIN INSETRTION LIMIT *I.I...+ :E............, ... ...... ..~..... 7 -- i .. .:... ., 1.0, .&#xa2; '?4-144 t08B..'41K.1L,1...=1 [.. L1..72 36 0 180 1'4 108 72 3880 144 103 72 38 0 '130 ....... 1i4.....CE oitb steps w,,'h dra,,10 1 0 i P[I 144 103 72 36 0.08 .7......i.......36 ........Note: Regulating CEAs that are > 176 steps withdrawn are considered fully withdrawnand are acceptable per this figure.Figure 2.4-1CEA Insertion Limit vs. THERMIAL POWER WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-6LBDCR 15-MP2-0l0October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 24120 7"......... -......... ."....U NACCEPTAB LE OPE RATIO"N --- ..... ' .. r.......I " ! ! REGION !!!i-0.08,100) iB D i 0.0Bl 100) IIO 8 i!RGO
* i" .a, ACCEPTABLE I I.. .........a.. .....; ... .O ERA ION. .....L. ._ .......I. .....I IoB 5 IS, B (-0.0&,1C00) I , I ,I--S 40 ........ .....-. ......;. ...(0*(0,00 101) '- .u 0 (+0.08, 100) ,LU 'j E (&#xf7;0.25, 65)120 ........ ....... Note: Point"0' isprovitedforsettingplentins~tr~irnr~relisn only. -;... ....,.......Ope n s notealloted a bore 1005% of rated power. ,,I I 1 I-0.4 -10.3 -0_2 -0_i 0 01_ 0.2 0_3 0.4-AXIAL SHAPE INDEX (AS]I)Figure 2.5-1AXIAL SHAPE INDEX vs.PERCENT OF ALLOWABLE POWER LEVELMILLSTONE -UNIT 2TRM 8.1-7LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100- (1.690, 160)1[1.78B ......UNACCEP:TABLE .,90- ...; ...........oU. 4 ..., .....,... .OPRAIO-a "
* a I &#xa3; "" O E A IN ". .... a ...' ~REGION '80.........................-..-.,. -- ...............................'-..... .".....1. .... ....a a a a I i I a a a a-70................- ... ... ... ... ... ..-U 7o- .a .ai a u i I n a a a a ia P R TO a.... a a a a a.....S5...... ...... ......OEATO .... ...... ... .. .. .....O I 3 n
* a a a a a a
* a aP240......................... ............................a..a..a...a-......n 30 ........ ..... .. .. ... .. ... .. .... .. .. .. .. .. .... ....... ..... ....iio l m a u a a a a--* a a a a a I a a ai
* a ai20..........a ....0 m
* I I I I p I1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR- FrTNote: The FrT limit should be reduced for reactor coolant flow.rates __ 349,200 gpm and < 360,000 gpm (see Section 2.6).Figure 2.6-1TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTORvs. Allowable RATED THERMAL POWERFor Reactor Coolant Flow Rates >360,000 gpmMILLSTONE -UNIT 2 TRM 8.1-8 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100 .( .84 , , , ___* 11.849,70)" UACETBL:I U I OPi Al1[1lN I SITOTALRLTRON EDITER DRAILPEKN'ACO-F5 .. ... ... .* ... ... F igure... 2.6..-2 ....L. .........., ..TTLU RODEDGINTERTDRDAPAIGFCOvsrAlwal RTD HRMLPOEOcobr ,201 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24REG.IONIOn ! s l I i C i C C IC I I I I C I I
* C .i CI0)l l I I I I I &#xa3;83 0,. .= l.... ..I........,.....= ..=........a.a..= .=........i...= ... =.=.I. ..-........= ..=............C C C C C I C n ., .I I I I I I I C I I I I IS.78.J.OI n I. CCi I C l I C I10 I I I I I C C I l I I IC.I.I I C C C C II C I C C C C0 II p I I I pTOTLURCCDIEGTE DA PEAIN mAT i- F m,, .October 6 , , 21 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIIMITS REPORT, CYCLE 241.20 -----or -.. ..". ...._ ....., T 'I-'. .I tI.. .SI I I1.00 "--4UNACCEPTABLE T (-.10,,1.0) -L7 "-"-q --- i UNCEPA... OPERATION "-- .. .. .- ....-- ;- ....O 4 .)--- i UN CCP T BERA N ...I REGION __ 7, T- PEATON 4--[%.J. r. J REGION4 / i .. Tl. ...... .[!......I... ..--Il ... ...In0.50-iII iREGION. i i i....- -i .. .... It + ....+/- .. .. ..4 ....F ... -F ,-:1: [.o i~ I i i ,I' T ' ' -" ...... .. ... '1i -- ..-0.5 0.5 -0.4 . -0.1 0 0.1 0.2 09 0.4 0.5 056AXIAL SHAPE INDEX (ASI).Figure 2.7-1AXIAL SHAPE INDEX Operating Limits WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-11LBDCR 15-MP2-01OOctober 6, 2015 Dominion Nuclear Connecticut, Inc.Rope Ferry Rd., Waterford, CT 06385Mailing Address: P.O. Box 128Waterford, CT 06385dom.comNOV ,U. S. Nuclear Regulatory CommissionAttention: Document Control DeskWashington, DC 20555Serial No.NSS&L/MLCDocket No.License No.15-520R050-336DPR-65DOMINION NUCLEAR CONNECTICUT. INC.MILLSTONE POWER STATION UNIT 2CORE OPERATING LIMITS REPORT. CYCLE 24In accordance with the Millstone Power Station Unit 2 (MPS2) Technical Specifications(TSs), Section 6.9.1 .8.d, Dominion Nuclear Connecticut, Inc., hereby submits, as anenclosure, the Cycle 24 Core Operating Limits Report (COLR).The MPS2 COLR has been revised to include the following:* Revision of page headers to reflect Cycle 24.The Cycle 24 COLR has been incorporated into the MPS2 Technical RequirementsManual.If you have any questions or require additional information, please contact Mr. Thomas G.Cleary at (860) 447-1791 Ext. 3232.Sincerely,D. B. BlakeneyDirector, Nuclear Station Safety and Licensing -Millstone
 
==Enclosure:==
Core Operating Limits Report, Cycle 24Commitments made in this letter: NoneTh&#xb6;-p Serial No. 15-520Docket No. 50-336MPS2 Cycle 24 COLRPage 2 of 2cc: U.S. Nuclear Regulatory CommissionRegion I2100 Renaissance Blvd. Suite 100King of Prussia, PA 19406-2713R. V. GuzmanSenior Project Manager -Millstone Power StationU.S. Nuclear Regulatory CommissionOne White Flint North, Mail Stop 08 C211555 Rockville PikeRockville, MD 20852-2738NRC Senior Resident InspectorMillstone Power Station Serial No. 15-520Docket No. 50-336ENCLOSURECORE OPERATING LIMITS REPORT, CYCLE 24DOMINION NUCLEAR CONNECTICUT, INC.MILLSTONE POWER STATION UNIT 2 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 241. CORE OPERATING LIMITS REPORTThis CORE OPERATING LIMITS REPORT for Millstone 2 has been prepared inaccordance with the requirements of Technical Specification 6.9.1.8 a through 6.9.1.8 d.The Technical Specifications affected by this report are listed below:Section2.12.22.32.42.52.6Specification3/4.1.1.13/4.1.1.43/4.1.3.63/4.2.13/4.2.33/4.2.6SHUTDOWN MARGIN -(SDM)Deleted (Ref. License Amendment 280)Moderator Temperature Coefficient (MTC)Regulating CEA Insertion LimitsLinear Heat RateTOTAL UNRODDED INTEGRATED RADIALPEAKING FACTOR --FrTDNB Margin2.7Terms appearing in capitalized type are DEFINED TERMS as defined in Section 1.0 ofthe Technical Specifications.2. OPERATING LIMITSThe cycle-specific parameter limits for the specifications listed in Section 1.0 arepresented in the following subsections. These limits have been developed using theNRC approved methodologies specified in Section 3.2.1 SHUTDOWN MARGIN -(5DM).(Specification 3/4.1.1.1)The SHUTDOWN MARGIN shall be  3.6% AK/K2.2 Deleted2.3 Moderator Temperature Coefficient (Specification 3/4.1.1.4)The moderator temperature coefficient shall be:a. Less positive than 0.7x1 0-4 AK/K/&deg;F whenever THERMAL POWER is <70% ofRATED THERMAL POWER,b. Less positive than 0.4x10-4 AK/K/&deg;F whenever THERMAL POWER is > 70%of RATED THERMAL POWER,c. Less negative than -3.2x10-4 AK/K/&deg;F at RATED THERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-1LBDCR 15-MP2-010October 6 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.4 Regulating CEA Insertion Limits (Technical Specification 3/4.1.3.6)The regulating CEA groups shall be limited to the withdrawal sequence and to theinsertion limits shown in Figure 2.4-1. CEA insertion between the Long TermSteady State Insertion Limits and the Transient Insertion Limits is restricted to:a. <4 hours per 24 hour interval,b. <5 Effective Full Power Days per 30 Effective Full Power Day interval, andc. < 14 Effective Full Power Days per 365 Effective Full Power Day interval.2.5 Linear Heat Rate (Technical Specification 3/4.2.1)The linear heat rate, including heat generated in the fuel, clad and moderator,shall not exceed:a. 15.1 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is  360,000 gpm.b. 15.0 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 360,000 gpm and >354,600 gpm.c. 14.9 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 354,600 gpm and __349,200 gpm.During operation with the linear heat rate being monitored .by the Excore DetectorMonitoring System, the AXIAL S.HAP. E INDEX shall remain within the limits ofFigure 2.5-1.During operation with the linear heat rate being monitored by the Incore DetectorMonitor System, the alarm setpoints shall be adjusted to less than or equal to thelimit when the following factors are appropriately included in the setting of thealarms:1. A measurement-calculational uncertainty factor of 1 .07,2. An engineering uncertainty factor of 1.03, and3. A THERMAL POWER measurement uncertainty factor of 1.02.MILLSTONE -UNIT 2 TRM 8.1-2 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.6 TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR -- FrT (TechnicalSpecification 314.2.3)The calculated value of FrT at RATED THERMAL POWER shall be:_< 1.690 whenever the reactor coolant flow rate is >_ 360,000 gpm._< 1 .664 whenever the reactor coolant flow rate is < 360,000 gpm and > 354,600gpm._< 1 .639 whenever the reactor coolant flow rate is < 354,600 gpm and > 349,200gpm.2.6.1 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis > 360,000 gpm, are shown in Figure 2.6-1.2.6.2 The Power Dependent FrT limits, whenever the reactor coolant flow rateis < 360,000 gpm and > 354,600 gpm, are shown in Figure 2.6-2.2.6.3 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis < 354,600 gpm and > 349,200 gpm, are shown in Figure 2.6-3.2.7 DNB Margin (Technical Specification 3/4.2.6)The DNB margin shall be preserved by maintaining the cold leg temperature,pressurizer pressure, reactor coolant flow rate, and AXIAL SHAPE INDEX withinthe following limits:Parameter LimitsFour Reactor Coolant Pumps Operationsa. Cold Leg Temperature <549&deg;Fb. Pressurizer Pressure > 2225 psia*c. Reactor Coolant Flow Rate > 360,000 gpm with Linear Heat Rate and FrT limits asspecified in Sections 2.5 and 2.6.or>_ 354,600 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.or> 349,200 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.d. AXIAL SHAPE INDEX Figure 2.7-1Limit not applicable during either the THERMAL POWER ramp increase in excess of 5% of RATEDTHERMAL POWER per minute or a THERMAL POWER step increase of greater than 10% of RATEDTHERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-3LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 243. ANALYTICAL METHODSThe analytical methods used to determine the core operating limits shall be thosepreviously reviewed and approved by the NRC, specifically those described in thefollowing documents:3.1 EMF-96-029(P)(A) Volumes 1 and 2, "Reactor Analysis System for PWRsVolume 1 -Methodology Description, Volume 2 -Benchmarking Results,"Siemens Power Corporation, January 1997.3.2 ANF-84-73 Revision 5 Appendix B(P)(A), "Advanced Nuclear Fuels Methodologyfor Pressurized Water Reactors: Analysis of Chapter 15 Events," AdvancedNuclear Fuels, July 1990.3.3 XN-NF-82-21(P)(A) Revision 1, "Application of Exxon Nuclear Company PWRThermal Margin Methodology to Mixed Core Configurations," Exxon NuclearCompany, September 1983.3.4 XN-75-32(P)(A) Supplements 1 through 4, "Computational Procedure forEvaluating Fuel Rod Bowing," Exxon Nuclear Company, October 1983.3.5 EMF-2328(P)(A), "PWR Small Break LOCA Evaluation Model S-RELAP5 Based,"Framatome ANP, March 2001.3.6 EMF-2087(P)(A), "SEM/PWR-98: ECCS Evaluation Model for PWR LBLOCAApplications," Siemens Power Corporation, June 1999.3.7 XN-NF-78-44(NP)(A), "A Generic Analysis of the Control Rod Ejection Transientfor Pressurized Water Reactors," Exxon Nuclear Company, October 1983.3.8 XN-NF-621(P)(A) Revision 1, "Exxon Nuclear DNB Correlation for PWR FuelDesigns," Exxon Nuclear Company, September 1983.3.9 XN-NF-82-06(P)(A) Revision 1 and Supplements 2, 4, and 5, "Qualification ofExxon Nuclear Fuel for Extended Burnup," Exxon Nuclear Company, October1986.3.10 ANF-88-133(P)(A) and Supplement 1, "Qualification of Advanced Nuclear FuelsPWR Design Methodology for Rod Burnups of 62 GWd/MTU," Advanced NuclearFuels Corporation, December 1991.MILLSTONE -UNIT 2 TRM 8.1-4 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 243.11 XN-NF-85-92(P)(A) "Exxon Nuclear Uranium DioxidelGadolinia IrradiationExamination and Thermal Conductivity Results," Exxon Nuclear Company,November 1986.3.12 ANF-89-151(P)(A), "ANF-RELAP Methodology for Pressurized Water Reactors:Analysis of Non-LOCA Chapter 15 Events," Advanced Nuclear Fuels Corporation,May 1992.3.13 EMF-1961(P)(A) Revision 0, "Statistical Setpoint/Transient Methodology forCombustion Engineering Type Reactors," Siemens Power Corporation, July 2000.3.14 EMF-2310(P)(A), Revision 1, "SRP Chapter 15 Non-LOCA Methodology forPressurized Water Reactors," Framatome ANP, May 2004.3.15 EMF-92-153(P)(A), Revision 1, "HTP: Departure from Nucleate BoilingCorrelation for High Thermal Performance Fuel," Siemens Power Corporation,January 2005.3.16 EMF-92-116(P)(A) Revision 0, "Generic Mechanical Design Criteria for PWR FuelDesigns," Siemens Power Corporation, February 1999.MILLSTONE -UNIT 2TRM 8.1-5LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.iCORE OPERATING LIMITS REPORT. CYCLE 24too, ~AN1( 7 ~. 135 Step~31 O0]o090o.80040I~0300.200.10000't183pyv~r bLL+I+ _ 1;i.I- "l- 0NIN INSETRTION LIMIT *I.I...+ :E............, ... ...... ..~..... 7 -- i .. .:... ., 1.0, .&#xa2; '?4-144 t08B..'41K.1L,1...=1 [.. L1..72 36 0 180 1'4 108 72 3880 144 103 72 38 0 '130 ....... 1i4.....CE oitb steps w,,'h dra,,10 1 0 i P[I 144 103 72 36 0.08 .7......i.......36 ........Note: Regulating CEAs that are > 176 steps withdrawn are considered fully withdrawnand are acceptable per this figure.Figure 2.4-1CEA Insertion Limit vs. THERMIAL POWER WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-6LBDCR 15-MP2-0l0October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 24120 7"......... -......... ."....U NACCEPTAB LE OPE RATIO"N --- ..... ' .. r.......I " ! ! REGION !!!i-0.08,100) iB D i 0.0Bl 100) IIO 8 i!RGO
* i" .a, ACCEPTABLE I I.. .........a.. .....; ... .O ERA ION. .....L. ._ .......I. .....I IoB 5 IS, B (-0.0&,1C00) I , I ,I--S 40 ........ .....-. ......;. ...(0*(0,00 101) '- .u 0 (+0.08, 100) ,LU 'j E (&#xf7;0.25, 65)120 ........ ....... Note: Point"0' isprovitedforsettingplentins~tr~irnr~relisn only. -;... ....,.......Ope n s notealloted a bore 1005% of rated power. ,,I I 1 I-0.4 -10.3 -0_2 -0_i 0 01_ 0.2 0_3 0.4-AXIAL SHAPE INDEX (AS]I)Figure 2.5-1AXIAL SHAPE INDEX vs.PERCENT OF ALLOWABLE POWER LEVELMILLSTONE -UNIT 2TRM 8.1-7LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100- (1.690, 160)1[1.78B ......UNACCEP:TABLE .,90- ...; ...........oU. 4 ..., .....,... .OPRAIO-a "
* a I &#xa3; "" O E A IN ". .... a ...' ~REGION '80.........................-..-.,. -- ...............................'-..... .".....1. .... ....a a a a I i I a a a a-70................- ... ... ... ... ... ..-U 7o- .a .ai a u i I n a a a a ia P R TO a.... a a a a a.....S5...... ...... ......OEATO .... ...... ... .. .. .....O I 3 n
* a a a a a a
* a aP240......................... ............................a..a..a...a-......n 30 ........ ..... .. .. ... .. ... .. .... .. .. .. .. .. .... ....... ..... ....iio l m a u a a a a--* a a a a a I a a ai
* a ai20..........a ....0 m
* I I I I p I1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR- FrTNote: The FrT limit should be reduced for reactor coolant flow.rates __ 349,200 gpm and < 360,000 gpm (see Section 2.6).Figure 2.6-1TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTORvs. Allowable RATED THERMAL POWERFor Reactor Coolant Flow Rates >360,000 gpmMILLSTONE -UNIT 2 TRM 8.1-8 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100 .( .84 , , , ___* 11.849,70)" UACETBL:I U I OPi Al1[1lN I SITOTALRLTRON EDITER DRAILPEKN'ACO-F5 .. ... ... .* ... ... F igure... 2.6..-2 ....L. .........., ..TTLU RODEDGINTERTDRDAPAIGFCOvsrAlwal RTD HRMLPOEOcobr ,201 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24REG.IONIOn ! s l I i C i C C IC I I I I C I I
* C .i CI0)l l I I I I I &#xa3;83 0,. .= l.... ..I........,.....= ..=........a.a..= .=........i...= ... =.=.I. ..-........= ..=............C C C C C I C n ., .I I I I I I I C I I I I IS.78.J.OI n I. CCi I C l I C I10 I I I I I C C I l I I IC.I.I I C C C C II C I C C C C0 II p I I I pTOTLURCCDIEGTE DA PEAIN mAT i- F m,, .October 6 , , 21 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIIMITS REPORT, CYCLE 241.20 -----or -.. ..". ...._ ....., T 'I-'. .I tI.. .SI I I1.00 "--4UNACCEPTABLE T (-.10,,1.0) -L7 "-"-q --- i UNCEPA... OPERATION "-- .. .. .- ....-- ;- ....O 4 .)--- i UN CCP T BERA N ...I REGION __ 7, T- PEATON 4--[%.J. r. J REGION4 / i .. Tl. ...... .[!......I... ..--Il ... ...In0.50-iII iREGION. i i i....- -i .. .... It + ....+/- .. .. ..4 ....F ... -F ,-:1: [.o i~ I i i ,I' T ' ' -" ...... .. ... '1i -- ..-0.5 0.5 -0.4 . -0.1 0 0.1 0.2 09 0.4 0.5 056AXIAL SHAPE INDEX (ASI).Figure 2.7-1AXIAL SHAPE INDEX Operating Limits WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-11LBDCR 15-MP2-01OOctober 6, 2015}}

Revision as of 18:32, 2 June 2018

Millstone, Unit 2 - Core Operating Limits Report, Cycle 24
ML15320A015
Person / Time
Site: Millstone Dominion icon.png
Issue date: 11/04/2015
From: Blakeney D B
Dominion Nuclear Connecticut
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
15-520
Download: ML15320A015 (14)


Text

Dominion Nuclear Connecticut, Inc.Rope Ferry Rd., Waterford, CT 06385Mailing Address: P.O. Box 128Waterford, CT 06385dom.comNOV ,U. S. Nuclear Regulatory CommissionAttention: Document Control DeskWashington, DC 20555Serial No.NSS&L/MLCDocket No.License No.15-520R050-336DPR-65DOMINION NUCLEAR CONNECTICUT. INC.MILLSTONE POWER STATION UNIT 2CORE OPERATING LIMITS REPORT. CYCLE 24In accordance with the Millstone Power Station Unit 2 (MPS2) Technical Specifications(TSs), Section 6.9.1 .8.d, Dominion Nuclear Connecticut, Inc., hereby submits, as anenclosure, the Cycle 24 Core Operating Limits Report (COLR).The MPS2 COLR has been revised to include the following:* Revision of page headers to reflect Cycle 24.The Cycle 24 COLR has been incorporated into the MPS2 Technical RequirementsManual.If you have any questions or require additional information, please contact Mr. Thomas G.Cleary at (860) 447-1791 Ext. 3232.Sincerely,D. B. BlakeneyDirector, Nuclear Station Safety and Licensing -Millstone

Enclosure:

Core Operating Limits Report, Cycle 24Commitments made in this letter: NoneTh¶-p Serial No. 15-520Docket No. 50-336MPS2 Cycle 24 COLRPage 2 of 2cc: U.S. Nuclear Regulatory CommissionRegion I2100 Renaissance Blvd. Suite 100King of Prussia, PA 19406-2713R. V. GuzmanSenior Project Manager -Millstone Power StationU.S. Nuclear Regulatory CommissionOne White Flint North, Mail Stop 08 C211555 Rockville PikeRockville, MD 20852-2738NRC Senior Resident InspectorMillstone Power Station Serial No. 15-520Docket No. 50-336ENCLOSURECORE OPERATING LIMITS REPORT, CYCLE 24DOMINION NUCLEAR CONNECTICUT, INC.MILLSTONE POWER STATION UNIT 2 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 241. CORE OPERATING LIMITS REPORTThis CORE OPERATING LIMITS REPORT for Millstone 2 has been prepared inaccordance with the requirements of Technical Specification 6.9.1.8 a through 6.9.1.8 d.The Technical Specifications affected by this report are listed below:Section2.12.22.32.42.52.6Specification3/4.1.1.13/4.1.1.43/4.1.3.63/4.2.13/4.2.33/4.2.6SHUTDOWN MARGIN -(SDM)Deleted (Ref. License Amendment 280)Moderator Temperature Coefficient (MTC)Regulating CEA Insertion LimitsLinear Heat RateTOTAL UNRODDED INTEGRATED RADIALPEAKING FACTOR --FrTDNB Margin2.7Terms appearing in capitalized type are DEFINED TERMS as defined in Section 1.0 ofthe Technical Specifications.2. OPERATING LIMITSThe cycle-specific parameter limits for the specifications listed in Section 1.0 arepresented in the following subsections. These limits have been developed using theNRC approved methodologies specified in Section 3.2.1 SHUTDOWN MARGIN -(5DM).(Specification 3/4.1.1.1)The SHUTDOWN MARGIN shall be 3.6% AK/K2.2 Deleted2.3 Moderator Temperature Coefficient (Specification 3/4.1.1.4)The moderator temperature coefficient shall be:a. Less positive than 0.7x1 0-4 AK/K/°F whenever THERMAL POWER is <70% ofRATED THERMAL POWER,b. Less positive than 0.4x10-4 AK/K/°F whenever THERMAL POWER is > 70%of RATED THERMAL POWER,c. Less negative than -3.2x10-4 AK/K/°F at RATED THERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-1LBDCR 15-MP2-010October 6 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.4 Regulating CEA Insertion Limits (Technical Specification 3/4.1.3.6)The regulating CEA groups shall be limited to the withdrawal sequence and to theinsertion limits shown in Figure 2.4-1. CEA insertion between the Long TermSteady State Insertion Limits and the Transient Insertion Limits is restricted to:a. <4 hours per 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> interval,b. <5 Effective Full Power Days per 30 Effective Full Power Day interval, andc. < 14 Effective Full Power Days per 365 Effective Full Power Day interval.2.5 Linear Heat Rate (Technical Specification 3/4.2.1)The linear heat rate, including heat generated in the fuel, clad and moderator,shall not exceed:a. 15.1 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is 360,000 gpm.b. 15.0 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 360,000 gpm and >354,600 gpm.c. 14.9 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 354,600 gpm and __349,200 gpm.During operation with the linear heat rate being monitored .by the Excore DetectorMonitoring System, the AXIAL S.HAP. E INDEX shall remain within the limits ofFigure 2.5-1.During operation with the linear heat rate being monitored by the Incore DetectorMonitor System, the alarm setpoints shall be adjusted to less than or equal to thelimit when the following factors are appropriately included in the setting of thealarms:1. A measurement-calculational uncertainty factor of 1 .07,2. An engineering uncertainty factor of 1.03, and3. A THERMAL POWER measurement uncertainty factor of 1.02.MILLSTONE -UNIT 2 TRM 8.1-2 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.6 TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR -- FrT (TechnicalSpecification 314.2.3)The calculated value of FrT at RATED THERMAL POWER shall be:_< 1.690 whenever the reactor coolant flow rate is >_ 360,000 gpm._< 1 .664 whenever the reactor coolant flow rate is < 360,000 gpm and > 354,600gpm._< 1 .639 whenever the reactor coolant flow rate is < 354,600 gpm and > 349,200gpm.2.6.1 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis > 360,000 gpm, are shown in Figure 2.6-1.2.6.2 The Power Dependent FrT limits, whenever the reactor coolant flow rateis < 360,000 gpm and > 354,600 gpm, are shown in Figure 2.6-2.2.6.3 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis < 354,600 gpm and > 349,200 gpm, are shown in Figure 2.6-3.2.7 DNB Margin (Technical Specification 3/4.2.6)The DNB margin shall be preserved by maintaining the cold leg temperature,pressurizer pressure, reactor coolant flow rate, and AXIAL SHAPE INDEX withinthe following limits:Parameter LimitsFour Reactor Coolant Pumps Operationsa. Cold Leg Temperature <549°Fb. Pressurizer Pressure > 2225 psia*c. Reactor Coolant Flow Rate > 360,000 gpm with Linear Heat Rate and FrT limits asspecified in Sections 2.5 and 2.6.or>_ 354,600 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.or> 349,200 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.d. AXIAL SHAPE INDEX Figure 2.7-1Limit not applicable during either the THERMAL POWER ramp increase in excess of 5% of RATEDTHERMAL POWER per minute or a THERMAL POWER step increase of greater than 10% of RATEDTHERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-3LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 243. ANALYTICAL METHODSThe analytical methods used to determine the core operating limits shall be thosepreviously reviewed and approved by the NRC, specifically those described in thefollowing documents:3.1 EMF-96-029(P)(A) Volumes 1 and 2, "Reactor Analysis System for PWRsVolume 1 -Methodology Description, Volume 2 -Benchmarking Results,"Siemens Power Corporation, January 1997.3.2 ANF-84-73 Revision 5 Appendix B(P)(A), "Advanced Nuclear Fuels Methodologyfor Pressurized Water Reactors: Analysis of Chapter 15 Events," AdvancedNuclear Fuels, July 1990.3.3 XN-NF-82-21(P)(A) Revision 1, "Application of Exxon Nuclear Company PWRThermal Margin Methodology to Mixed Core Configurations," Exxon NuclearCompany, September 1983.3.4 XN-75-32(P)(A) Supplements 1 through 4, "Computational Procedure forEvaluating Fuel Rod Bowing," Exxon Nuclear Company, October 1983.3.5 EMF-2328(P)(A), "PWR Small Break LOCA Evaluation Model S-RELAP5 Based,"Framatome ANP, March 2001.3.6 EMF-2087(P)(A), "SEM/PWR-98: ECCS Evaluation Model for PWR LBLOCAApplications," Siemens Power Corporation, June 1999.3.7 XN-NF-78-44(NP)(A), "A Generic Analysis of the Control Rod Ejection Transientfor Pressurized Water Reactors," Exxon Nuclear Company, October 1983.3.8 XN-NF-621(P)(A) Revision 1, "Exxon Nuclear DNB Correlation for PWR FuelDesigns," Exxon Nuclear Company, September 1983.3.9 XN-NF-82-06(P)(A) Revision 1 and Supplements 2, 4, and 5, "Qualification ofExxon Nuclear Fuel for Extended Burnup," Exxon Nuclear Company, October1986.3.10 ANF-88-133(P)(A) and Supplement 1, "Qualification of Advanced Nuclear FuelsPWR Design Methodology for Rod Burnups of 62 GWd/MTU," Advanced NuclearFuels Corporation, December 1991.MILLSTONE -UNIT 2 TRM 8.1-4 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 243.11 XN-NF-85-92(P)(A) "Exxon Nuclear Uranium DioxidelGadolinia IrradiationExamination and Thermal Conductivity Results," Exxon Nuclear Company,November 1986.3.12 ANF-89-151(P)(A), "ANF-RELAP Methodology for Pressurized Water Reactors:Analysis of Non-LOCA Chapter 15 Events," Advanced Nuclear Fuels Corporation,May 1992.3.13 EMF-1961(P)(A) Revision 0, "Statistical Setpoint/Transient Methodology forCombustion Engineering Type Reactors," Siemens Power Corporation, July 2000.3.14 EMF-2310(P)(A), Revision 1, "SRP Chapter 15 Non-LOCA Methodology forPressurized Water Reactors," Framatome ANP, May 2004.3.15 EMF-92-153(P)(A), Revision 1, "HTP: Departure from Nucleate BoilingCorrelation for High Thermal Performance Fuel," Siemens Power Corporation,January 2005.3.16 EMF-92-116(P)(A) Revision 0, "Generic Mechanical Design Criteria for PWR FuelDesigns," Siemens Power Corporation, February 1999.MILLSTONE -UNIT 2TRM 8.1-5LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.iCORE OPERATING LIMITS REPORT. CYCLE 24too, ~AN1( 7 ~. 135 Step~31 O0]o090o.80040I~0300.200.10000't183pyv~r bLL+I+ _ 1;i.I- "l- 0NIN INSETRTION LIMIT *I.I...+ :E............, ... ...... ..~..... 7 -- i .. .:... ., 1.0, .¢ '?4-144 t08B..'41K.1L,1...=1 [.. L1..72 36 0 180 1'4 108 72 3880 144 103 72 38 0 '130 ....... 1i4.....CE oitb steps w,,'h dra,,10 1 0 i P[I 144 103 72 36 0.08 .7......i.......36 ........Note: Regulating CEAs that are > 176 steps withdrawn are considered fully withdrawnand are acceptable per this figure.Figure 2.4-1CEA Insertion Limit vs. THERMIAL POWER WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-6LBDCR 15-MP2-0l0October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 24120 7"......... -......... ."....U NACCEPTAB LE OPE RATIO"N --- ..... ' .. r.......I " ! ! REGION !!!i-0.08,100) iB D i 0.0Bl 100) IIO 8 i!RGO

  • i" .a, ACCEPTABLE I I.. .........a.. .....; ... .O ERA ION. .....L. ._ .......I. .....I IoB 5 IS, B (-0.0&,1C00) I , I ,I--S 40 ........ .....-. ......;. ...(0*(0,00 101) '- .u 0 (+0.08, 100) ,LU 'j E (÷0.25, 65)120 ........ ....... Note: Point"0' isprovitedforsettingplentins~tr~irnr~relisn only. -;... ....,.......Ope n s notealloted a bore 1005% of rated power. ,,I I 1 I-0.4 -10.3 -0_2 -0_i 0 01_ 0.2 0_3 0.4-AXIAL SHAPE INDEX (AS]I)Figure 2.5-1AXIAL SHAPE INDEX vs.PERCENT OF ALLOWABLE POWER LEVELMILLSTONE -UNIT 2TRM 8.1-7LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100- (1.690, 160)1[1.78B ......UNACCEP:TABLE .,90- ...; ...........oU. 4 ..., .....,... .OPRAIO-a "
  • a I £ "" O E A IN ". .... a ...' ~REGION '80.........................-..-.,. -- ...............................'-..... .".....1. .... ....a a a a I i I a a a a-70................- ... ... ... ... ... ..-U 7o- .a .ai a u i I n a a a a ia P R TO a.... a a a a a.....S5...... ...... ......OEATO .... ...... ... .. .. .....O I 3 n
  • a a a a a a
  • a aP240......................... ............................a..a..a...a-......n 30 ........ ..... .. .. ... .. ... .. .... .. .. .. .. .. .... ....... ..... ....iio l m a u a a a a--* a a a a a I a a ai
  • a ai20..........a ....0 m
  • I I I I p I1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR- FrTNote: The FrT limit should be reduced for reactor coolant flow.rates __ 349,200 gpm and < 360,000 gpm (see Section 2.6).Figure 2.6-1TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTORvs. Allowable RATED THERMAL POWERFor Reactor Coolant Flow Rates >360,000 gpmMILLSTONE -UNIT 2 TRM 8.1-8 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100 .( .84 , , , ___* 11.849,70)" UACETBL:I U I OPi Al1[1lN I SITOTALRLTRON EDITER DRAILPEKN'ACO-F5 .. ... ... .* ... ... F igure... 2.6..-2 ....L. .........., ..TTLU RODEDGINTERTDRDAPAIGFCOvsrAlwal RTD HRMLPOEOcobr ,201 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24REG.IONIOn ! s l I i C i C C IC I I I I C I I
  • C .i CI0)l l I I I I I £83 0,. .= l.... ..I........,.....= ..=........a.a..= .=........i...= ... =.=.I. ..-........= ..=............C C C C C I C n ., .I I I I I I I C I I I I IS.78.J.OI n I. CCi I C l I C I10 I I I I I C C I l I I IC.I.I I C C C C II C I C C C C0 II p I I I pTOTLURCCDIEGTE DA PEAIN mAT i- F m,, .October 6 , , 21 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIIMITS REPORT, CYCLE 241.20 -----or -.. ..". ...._ ....., T 'I-'. .I tI.. .SI I I1.00 "--4UNACCEPTABLE T (-.10,,1.0) -L7 "-"-q --- i UNCEPA... OPERATION "-- .. .. .- ....-- ;- ....O 4 .)--- i UN CCP T BERA N ...I REGION __ 7, T- PEATON 4--[%.J. r. J REGION4 / i .. Tl. ...... .[!......I... ..--Il ... ...In0.50-iII iREGION. i i i....- -i .. .... It + ....+/- .. .. ..4 ....F ... -F ,-:1: [.o i~ I i i ,I' T ' ' -" ...... .. ... '1i -- ..-0.5 0.5 -0.4 . -0.1 0 0.1 0.2 09 0.4 0.5 056AXIAL SHAPE INDEX (ASI).Figure 2.7-1AXIAL SHAPE INDEX Operating Limits WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-11LBDCR 15-MP2-01OOctober 6, 2015 Dominion Nuclear Connecticut, Inc.Rope Ferry Rd., Waterford, CT 06385Mailing Address: P.O. Box 128Waterford, CT 06385dom.comNOV ,U. S. Nuclear Regulatory CommissionAttention: Document Control DeskWashington, DC 20555Serial No.NSS&L/MLCDocket No.License No.15-520R050-336DPR-65DOMINION NUCLEAR CONNECTICUT. INC.MILLSTONE POWER STATION UNIT 2CORE OPERATING LIMITS REPORT. CYCLE 24In accordance with the Millstone Power Station Unit 2 (MPS2) Technical Specifications(TSs), Section 6.9.1 .8.d, Dominion Nuclear Connecticut, Inc., hereby submits, as anenclosure, the Cycle 24 Core Operating Limits Report (COLR).The MPS2 COLR has been revised to include the following:* Revision of page headers to reflect Cycle 24.The Cycle 24 COLR has been incorporated into the MPS2 Technical RequirementsManual.If you have any questions or require additional information, please contact Mr. Thomas G.Cleary at (860) 447-1791 Ext. 3232.Sincerely,D. B. BlakeneyDirector, Nuclear Station Safety and Licensing -Millstone

Enclosure:

Core Operating Limits Report, Cycle 24Commitments made in this letter: NoneTh¶-p Serial No. 15-520Docket No. 50-336MPS2 Cycle 24 COLRPage 2 of 2cc: U.S. Nuclear Regulatory CommissionRegion I2100 Renaissance Blvd. Suite 100King of Prussia, PA 19406-2713R. V. GuzmanSenior Project Manager -Millstone Power StationU.S. Nuclear Regulatory CommissionOne White Flint North, Mail Stop 08 C211555 Rockville PikeRockville, MD 20852-2738NRC Senior Resident InspectorMillstone Power Station Serial No. 15-520Docket No. 50-336ENCLOSURECORE OPERATING LIMITS REPORT, CYCLE 24DOMINION NUCLEAR CONNECTICUT, INC.MILLSTONE POWER STATION UNIT 2 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 241. CORE OPERATING LIMITS REPORTThis CORE OPERATING LIMITS REPORT for Millstone 2 has been prepared inaccordance with the requirements of Technical Specification 6.9.1.8 a through 6.9.1.8 d.The Technical Specifications affected by this report are listed below:Section2.12.22.32.42.52.6Specification3/4.1.1.13/4.1.1.43/4.1.3.63/4.2.13/4.2.33/4.2.6SHUTDOWN MARGIN -(SDM)Deleted (Ref. License Amendment 280)Moderator Temperature Coefficient (MTC)Regulating CEA Insertion LimitsLinear Heat RateTOTAL UNRODDED INTEGRATED RADIALPEAKING FACTOR --FrTDNB Margin2.7Terms appearing in capitalized type are DEFINED TERMS as defined in Section 1.0 ofthe Technical Specifications.2. OPERATING LIMITSThe cycle-specific parameter limits for the specifications listed in Section 1.0 arepresented in the following subsections. These limits have been developed using theNRC approved methodologies specified in Section 3.2.1 SHUTDOWN MARGIN -(5DM).(Specification 3/4.1.1.1)The SHUTDOWN MARGIN shall be 3.6% AK/K2.2 Deleted2.3 Moderator Temperature Coefficient (Specification 3/4.1.1.4)The moderator temperature coefficient shall be:a. Less positive than 0.7x1 0-4 AK/K/°F whenever THERMAL POWER is <70% ofRATED THERMAL POWER,b. Less positive than 0.4x10-4 AK/K/°F whenever THERMAL POWER is > 70%of RATED THERMAL POWER,c. Less negative than -3.2x10-4 AK/K/°F at RATED THERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-1LBDCR 15-MP2-010October 6 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.4 Regulating CEA Insertion Limits (Technical Specification 3/4.1.3.6)The regulating CEA groups shall be limited to the withdrawal sequence and to theinsertion limits shown in Figure 2.4-1. CEA insertion between the Long TermSteady State Insertion Limits and the Transient Insertion Limits is restricted to:a. <4 hours per 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> interval,b. <5 Effective Full Power Days per 30 Effective Full Power Day interval, andc. < 14 Effective Full Power Days per 365 Effective Full Power Day interval.2.5 Linear Heat Rate (Technical Specification 3/4.2.1)The linear heat rate, including heat generated in the fuel, clad and moderator,shall not exceed:a. 15.1 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is 360,000 gpm.b. 15.0 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 360,000 gpm and >354,600 gpm.c. 14.9 kw/ft whenever the reactor coolant flow rate (determined per TechnicalSpecification 3/4.2.1) is < 354,600 gpm and __349,200 gpm.During operation with the linear heat rate being monitored .by the Excore DetectorMonitoring System, the AXIAL S.HAP. E INDEX shall remain within the limits ofFigure 2.5-1.During operation with the linear heat rate being monitored by the Incore DetectorMonitor System, the alarm setpoints shall be adjusted to less than or equal to thelimit when the following factors are appropriately included in the setting of thealarms:1. A measurement-calculational uncertainty factor of 1 .07,2. An engineering uncertainty factor of 1.03, and3. A THERMAL POWER measurement uncertainty factor of 1.02.MILLSTONE -UNIT 2 TRM 8.1-2 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 242.6 TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR -- FrT (TechnicalSpecification 314.2.3)The calculated value of FrT at RATED THERMAL POWER shall be:_< 1.690 whenever the reactor coolant flow rate is >_ 360,000 gpm._< 1 .664 whenever the reactor coolant flow rate is < 360,000 gpm and > 354,600gpm._< 1 .639 whenever the reactor coolant flow rate is < 354,600 gpm and > 349,200gpm.2.6.1 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis > 360,000 gpm, are shown in Figure 2.6-1.2.6.2 The Power Dependent FrT limits, whenever the reactor coolant flow rateis < 360,000 gpm and > 354,600 gpm, are shown in Figure 2.6-2.2.6.3 The Power Dependent FrTr limits, whenever the reactor coolant flow rateis < 354,600 gpm and > 349,200 gpm, are shown in Figure 2.6-3.2.7 DNB Margin (Technical Specification 3/4.2.6)The DNB margin shall be preserved by maintaining the cold leg temperature,pressurizer pressure, reactor coolant flow rate, and AXIAL SHAPE INDEX withinthe following limits:Parameter LimitsFour Reactor Coolant Pumps Operationsa. Cold Leg Temperature <549°Fb. Pressurizer Pressure > 2225 psia*c. Reactor Coolant Flow Rate > 360,000 gpm with Linear Heat Rate and FrT limits asspecified in Sections 2.5 and 2.6.or>_ 354,600 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.or> 349,200 gpm with Linear Heat Rate and FrT limitreductions as specified in Sections 2.5 and 2.6.d. AXIAL SHAPE INDEX Figure 2.7-1Limit not applicable during either the THERMAL POWER ramp increase in excess of 5% of RATEDTHERMAL POWER per minute or a THERMAL POWER step increase of greater than 10% of RATEDTHERMAL POWER.MILLSTONE -UNIT 2TRM 8.1-3LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 243. ANALYTICAL METHODSThe analytical methods used to determine the core operating limits shall be thosepreviously reviewed and approved by the NRC, specifically those described in thefollowing documents:3.1 EMF-96-029(P)(A) Volumes 1 and 2, "Reactor Analysis System for PWRsVolume 1 -Methodology Description, Volume 2 -Benchmarking Results,"Siemens Power Corporation, January 1997.3.2 ANF-84-73 Revision 5 Appendix B(P)(A), "Advanced Nuclear Fuels Methodologyfor Pressurized Water Reactors: Analysis of Chapter 15 Events," AdvancedNuclear Fuels, July 1990.3.3 XN-NF-82-21(P)(A) Revision 1, "Application of Exxon Nuclear Company PWRThermal Margin Methodology to Mixed Core Configurations," Exxon NuclearCompany, September 1983.3.4 XN-75-32(P)(A) Supplements 1 through 4, "Computational Procedure forEvaluating Fuel Rod Bowing," Exxon Nuclear Company, October 1983.3.5 EMF-2328(P)(A), "PWR Small Break LOCA Evaluation Model S-RELAP5 Based,"Framatome ANP, March 2001.3.6 EMF-2087(P)(A), "SEM/PWR-98: ECCS Evaluation Model for PWR LBLOCAApplications," Siemens Power Corporation, June 1999.3.7 XN-NF-78-44(NP)(A), "A Generic Analysis of the Control Rod Ejection Transientfor Pressurized Water Reactors," Exxon Nuclear Company, October 1983.3.8 XN-NF-621(P)(A) Revision 1, "Exxon Nuclear DNB Correlation for PWR FuelDesigns," Exxon Nuclear Company, September 1983.3.9 XN-NF-82-06(P)(A) Revision 1 and Supplements 2, 4, and 5, "Qualification ofExxon Nuclear Fuel for Extended Burnup," Exxon Nuclear Company, October1986.3.10 ANF-88-133(P)(A) and Supplement 1, "Qualification of Advanced Nuclear FuelsPWR Design Methodology for Rod Burnups of 62 GWd/MTU," Advanced NuclearFuels Corporation, December 1991.MILLSTONE -UNIT 2 TRM 8.1-4 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 243.11 XN-NF-85-92(P)(A) "Exxon Nuclear Uranium DioxidelGadolinia IrradiationExamination and Thermal Conductivity Results," Exxon Nuclear Company,November 1986.3.12 ANF-89-151(P)(A), "ANF-RELAP Methodology for Pressurized Water Reactors:Analysis of Non-LOCA Chapter 15 Events," Advanced Nuclear Fuels Corporation,May 1992.3.13 EMF-1961(P)(A) Revision 0, "Statistical Setpoint/Transient Methodology forCombustion Engineering Type Reactors," Siemens Power Corporation, July 2000.3.14 EMF-2310(P)(A), Revision 1, "SRP Chapter 15 Non-LOCA Methodology forPressurized Water Reactors," Framatome ANP, May 2004.3.15 EMF-92-153(P)(A), Revision 1, "HTP: Departure from Nucleate BoilingCorrelation for High Thermal Performance Fuel," Siemens Power Corporation,January 2005.3.16 EMF-92-116(P)(A) Revision 0, "Generic Mechanical Design Criteria for PWR FuelDesigns," Siemens Power Corporation, February 1999.MILLSTONE -UNIT 2TRM 8.1-5LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.iCORE OPERATING LIMITS REPORT. CYCLE 24too, ~AN1( 7 ~. 135 Step~31 O0]o090o.80040I~0300.200.10000't183pyv~r bLL+I+ _ 1;i.I- "l- 0NIN INSETRTION LIMIT *I.I...+ :E............, ... ...... ..~..... 7 -- i .. .:... ., 1.0, .¢ '?4-144 t08B..'41K.1L,1...=1 [.. L1..72 36 0 180 1'4 108 72 3880 144 103 72 38 0 '130 ....... 1i4.....CE oitb steps w,,'h dra,,10 1 0 i P[I 144 103 72 36 0.08 .7......i.......36 ........Note: Regulating CEAs that are > 176 steps withdrawn are considered fully withdrawnand are acceptable per this figure.Figure 2.4-1CEA Insertion Limit vs. THERMIAL POWER WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-6LBDCR 15-MP2-0l0October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT. CYCLE 24120 7"......... -......... ."....U NACCEPTAB LE OPE RATIO"N --- ..... ' .. r.......I " ! ! REGION !!!i-0.08,100) iB D i 0.0Bl 100) IIO 8 i!RGO

  • i" .a, ACCEPTABLE I I.. .........a.. .....; ... .O ERA ION. .....L. ._ .......I. .....I IoB 5 IS, B (-0.0&,1C00) I , I ,I--S 40 ........ .....-. ......;. ...(0*(0,00 101) '- .u 0 (+0.08, 100) ,LU 'j E (÷0.25, 65)120 ........ ....... Note: Point"0' isprovitedforsettingplentins~tr~irnr~relisn only. -;... ....,.......Ope n s notealloted a bore 1005% of rated power. ,,I I 1 I-0.4 -10.3 -0_2 -0_i 0 01_ 0.2 0_3 0.4-AXIAL SHAPE INDEX (AS]I)Figure 2.5-1AXIAL SHAPE INDEX vs.PERCENT OF ALLOWABLE POWER LEVELMILLSTONE -UNIT 2TRM 8.1-7LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100- (1.690, 160)1[1.78B ......UNACCEP:TABLE .,90- ...; ...........oU. 4 ..., .....,... .OPRAIO-a "
  • a I £ "" O E A IN ". .... a ...' ~REGION '80.........................-..-.,. -- ...............................'-..... .".....1. .... ....a a a a I i I a a a a-70................- ... ... ... ... ... ..-U 7o- .a .ai a u i I n a a a a ia P R TO a.... a a a a a.....S5...... ...... ......OEATO .... ...... ... .. .. .....O I 3 n
  • a a a a a a
  • a aP240......................... ............................a..a..a...a-......n 30 ........ ..... .. .. ... .. ... .. .... .. .. .. .. .. .... ....... ..... ....iio l m a u a a a a--* a a a a a I a a ai
  • a ai20..........a ....0 m
  • I I I I p I1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTOR- FrTNote: The FrT limit should be reduced for reactor coolant flow.rates __ 349,200 gpm and < 360,000 gpm (see Section 2.6).Figure 2.6-1TOTAL UNRODDED INTEGRATED RADIAL PEAKING FACTORvs. Allowable RATED THERMAL POWERFor Reactor Coolant Flow Rates >360,000 gpmMILLSTONE -UNIT 2 TRM 8.1-8 LBDCR 15-MP2-010October 6, 2015 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24100 .( .84 , , , ___* 11.849,70)" UACETBL:I U I OPi Al1[1lN I SITOTALRLTRON EDITER DRAILPEKN'ACO-F5 .. ... ... .* ... ... F igure... 2.6..-2 ....L. .........., ..TTLU RODEDGINTERTDRDAPAIGFCOvsrAlwal RTD HRMLPOEOcobr ,201 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIMITS REPORT, CYCLE 24REG.IONIOn ! s l I i C i C C IC I I I I C I I
  • C .i CI0)l l I I I I I £83 0,. .= l.... ..I........,.....= ..=........a.a..= .=........i...= ... =.=.I. ..-........= ..=............C C C C C I C n ., .I I I I I I I C I I I I IS.78.J.OI n I. CCi I C l I C I10 I I I I I C C I l I I IC.I.I I C C C C II C I C C C C0 II p I I I pTOTLURCCDIEGTE DA PEAIN mAT i- F m,, .October 6 , , 21 TECHNICAL REQUIREMENTS MANUALAPPENDIX 8.1CORE OPERATING LIIMITS REPORT, CYCLE 241.20 -----or -.. ..". ...._ ....., T 'I-'. .I tI.. .SI I I1.00 "--4UNACCEPTABLE T (-.10,,1.0) -L7 "-"-q --- i UNCEPA... OPERATION "-- .. .. .- ....-- ;- ....O 4 .)--- i UN CCP T BERA N ...I REGION __ 7, T- PEATON 4--[%.J. r. J REGION4 / i .. Tl. ...... .[!......I... ..--Il ... ...In0.50-iII iREGION. i i i....- -i .. .... It + ....+/- .. .. ..4 ....F ... -F ,-:1: [.o i~ I i i ,I' T ' ' -" ...... .. ... '1i -- ..-0.5 0.5 -0.4 . -0.1 0 0.1 0.2 09 0.4 0.5 056AXIAL SHAPE INDEX (ASI).Figure 2.7-1AXIAL SHAPE INDEX Operating Limits WithFour Reactor Coolant Pumps OperatingMILLSTONE -UNIT 2TRM 8.1-11LBDCR 15-MP2-01OOctober 6, 2015