ML20083F063: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 14: Line 14:
| document type = TECHNICAL SPECIFICATIONS, TECHNICAL SPECIFICATIONS & TEST REPORTS
| document type = TECHNICAL SPECIFICATIONS, TECHNICAL SPECIFICATIONS & TEST REPORTS
| page count = 75
| page count = 75
| project = TAC:52634
| stage = Other
}}
}}



Latest revision as of 05:36, 26 September 2022

Proposed Tech Specs Revising Limiting Condition for Operation 4.1.9 Re Core Region Temp Rise
ML20083F063
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 12/15/1983
From:
PUBLIC SERVICE CO. OF COLORADO
To:
Shared Package
ML20083F062 List:
References
TAC-52634, NUDOCS 8312300125
Download: ML20083F063 (75)


Text

-- , . - - - - -

9 . ,

s s @

ATTACHMENT I PROPOSED AMENDMENT TO LCO 4.1.9 8312300125 831215 PDR ADOCK 05000267 P PDR

~

}

  • Fort St. Vrain 01 )

Technical Specifications '

. . Amendment Basis for Specification LCO 4.1.8 Page 4.1-14 An unexpected and/or unexplained change in the observed core reactivity could be indicative of the existence of potential safety problems or of operational problems. Any reactivity anomaly greater than 0.01 AK would be unexpected, and its occurrence would be thoroughly investigated and evaluated. The value of 0.01 Ak is considered to be a safe limit since a shutdown margin of at least 0.01 Ak with the highest worth rod pair fully withdrawn is always maintained (see LCO 4.1.2).

Specification LC0 4.1.9 - Core Region Temperature Rise, Limitina Condition for Operation l Whenever core inlet orifice valves are set for equal region l flows, the total circulator flow rate shall be above the minimums l given in Figure 4.1.9-1 (at the appropriate helium density and l power level). Whenever the core inlet orifice valves are set at any positions other than for equal region flows, the measured helium coolant temperature rise through any core region shall not l exceed the limits given in Figure 4.1.9-2 (at the appropriate helium density and power level).

If the measured helium coolant temperature rise exceeds the l allowable limits or the minimum total circulator flow rate is not available, immediate corrective action shall be taken. If this corrective action is not successful within fifteen (15) minutes, an immediate orderly shutdown shall be initiated.

l When the reactor is already shutdown and it is necessary to l terminate the helium flow for short time periods, the amount of l thermal energy from fission product decay must be sufficien'tly l low to prevent the average core temperature from exceeding 760'F l during the period of no flow.

- , Fort St. Vrain 01 Technical Specifications Amendment Page 4.1-15 Basis for Specification LCO 4.1.9 l The intent of this specification is to assure that there is an j adequate helium coolant flow rate through all core coolant channels, l particularly for low power and flow conditions. This is accomplished l by specifying either a minimum total circulator flow rate, or a

[ maximum core region coolant temperature rise for varicus thermal l pows levels (including power from decay heat).

Very low helium coolant flow rates may result in laminar flow conditions with resultant high friction factors and low heat transfer film coefficients and potential for possible local helium flow stagnation, which could result in excessive fuel temperatures.

l The minimum total circulator flow and maximum core region helium l temperature rise limits have been developed bassd upon a number of l conservative assumptions. The maximum column to region average power l peaking factor was assumed to be 1.61 which is consistent with LC0 4.1.3.

l The analysis for full density conditions assumed the maximum permissible l primary coolant inventory of 107.5% specified in LC0 4.4.1. The analysis l was performed for each power level at a core inlet temperature of 100*F, l and then in increments of 50 F up to 750*F. The most restrictive of l these calculations at each power level were utilized to form the limits.

l Model uncertainties and measurement errors were factored into the l analysis.

l Even with the reactor shutdown, some helium coolant flow must Le l provided to remove the heat from fission product decay. The flow must l be sufficient to prevent the helium inlet temperature from exceeding l 760*F to prevent damage to the reactor internals. ff the flow is l terminated for short periods and the average core temperature does not l exceed 760*F, the helium inlet temperature will be acceptable when the l flow is resumed.

Figure 4.1.9-1 .

25

~

Y ""3..

,g. -;.G

~=50 20 '

.$'1S' f -"jh

/ ..

3 o _

,/ ff-I U-

/ ,. 9 y~-f'.

15 i u j

,,.* gf

./. Y

~

M /

H U

I t

.* -,. ' *fY. , 8' t- [ , ' I ..'

-;.',f 107.5% HELIUM DENSITY Z .' ' <

to 10 - -

7 86  % HELIUM DENSITY o ,, , .. ,g y

- -.- - 60 X HELIUM DENSITY

_ .. . . i s, -

,),,/

h",' -

40 M HELIUM DENSITY

5 .

_ jf// PRI SYSTEM PRESS < 15 PSI A

. .f

'/< ALL REGIONS IN Ifl

! PRI SYSTEM PRESS < 15 PSI A ONE REGION REMOVED .o E *q _r, q

O- - , , , , . . . . , , . . , , , , ,

, , . . g g g. g 0 5 10 15 20 25 .*Bmn*

3. v>

PERCENT THERMAL POWER 7AU E v, ?

5 Helium =

0.373 [ Reactor Press (psial / ICirc Inlet Temp (=F + 460111

{ ".

Density 6.86213 3.

0

.sa. g vi

Fi ure 4.1.9-2 .

800

~

~

,s ,. ...-

u.700

,/

.-/,/,

o w -

A 600 .-' ' -*

_ _ ,- 7 .

,.s ,/ .

-' ~'

w 500 ,

, s,, *

/ . -

w -

m - ,- ...

x .'

.s-/ /,, ', -

/ / ..

l

@ 4gg _ f ,../ ,/ , ' ' . . . ' '

a -

t ..'

F f ,/_

s ,' ,,/. '.-

m ' '

W 300

/ '/*. ..... 107.SM HELIUM DENSITY

_ s 9- _ .. / , , , ,' . .

'./ ./ '/ '

W - < - ',.- _...- 80  % HELIUM DENSITY l 200 -

,./ ' / ./~

E - -

= 68 N HELIUM DENSITY D _  : / .' ,'

E t l I e' I .' ;

M  ; - . . - . . . 49 M HELIUM DENSITY X 100= y e

<r _

j I i -

I _  :

I .

j !* - PRI SYSTEM PRESS (15 PSIA s

I . I e l m>sm

<j 0 .

, . . . . ogao n,

m3 3" et 1q 0 5 10 15 20 25 w y S. m i . .o n c+

PERCENT THERMAL POWER T E *. *<

"u ms

0. 373 (Reactor press -(psial / ICirc Inlet Temp (*F + 4 Eel l i '

M Helium Density

=

} *.

e.se213 t n

2 ft e

sd. o 3

+ U1

4 4

0 0 s

ATTACHMENT 2 GA DOCUMENT NO. 907212 LCO 4.1.9 ANALYSIS i

r _ _ _ , , _ _ _ _ _

AM(RE9.11/BO)

. . CALCULATION REVIEW REPORT TITLE: APPROVAL LEVEL 2 LC04.1.9 REANALYSIS QAL LEVEL I DISCIPLINE SYSTEM 00 C. TYPE PROJECT DOCUMENT NO. ISSU E NOJLT R.

M 18 CFL 1900 907212 A INDEPENDENT REVIEWER:

NAME Paul Synolon ORGANIZATION 647 REVIEWER SELECTION APPROVAL: BR MGR b2 DATE Nov d er 22, 1983 REVIEW METHOD: YES NO ERROR DETECTED I None ARITHMETIC CHECK X None LOGIC CHECK I

ALTERNATE METHOD USED SPOT CHECK PERFORMED I COMPUTER PROGRAM USED I None 6P Equation Derived X REMARKS: (ATTACH LIST OF DOCUMENTS USED IN REVIEW)

The AP equation in 907212/A used for the imminar instability analysis was derived from fundamental principles, and was found to be correct. A check was made to be sure that it was correctly implemented into the LAMSTAB code. The hand calcula-tions of APPENDIX A were all checked, and the equations for uncertainty in the code were found to be consistent with APPENDIX A. An overall logic check of the code was also made 1

l 1

CALCULATIONS FOUND TO 8E VALID AND CONCLUSIONS TO BE CORRECT: -

.o INDEPENDENT REVIEWER

"' - DATE O 11 E3 jQ SIGNATURE Page 63

/

^-

GA Technologies Inc.

o.0,4es inav. icuen ISSUE

SUMMARY

TITLE O R&D 2 APPROVAL LEVEL LCO 4.1.9 Reanalysis ODV&S -

S DESIGN -

DISCIPLINE SYSTEM 00C. TYPE PROJECT 100CUMENT NO. ISSUE NOJLTR.

18 CFL 907212 A M 1900 l QUALITY ASSURANCE LEVEL SAFETY CLASSIFICATION SEISMIC CATEGORY ELECTRICAL CLASSIFICAYl0N I FSV I FSV II NA APPROVAL ISSUE PR EP^ DESCRim0N/

ISSUE DATE FUNDING APPLICABLE 8Y WBS NO.

ENGINEERING QA PROJECT PROJECT ,

O thCZb s bA NOV 3 3 g R.Kapernic't g, /) ) jf, 4 , g

  • t.Asmussen Fat.

sa g D.Pettycor i Initial Release 1.* Jones 2970210004 we l

l i

CONTINUE ON 7,A FORM 14851 NEXTINDENTURED DOCUMENTS Text:l'+ 63 = 63 g ,

N4565 Runs:64+516 = 453 31T pages l

1 1

- - ~ ~ ~ -

REV SH _

REV SH 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 l 48 49 50 51 52 53 54 55 56 _ _

REV

^ ~

SH 1 2 3 4 5 6 7 8 9 10 11' 12 13 14 15 16 17 18 19 20 21 22 23 ' 24 ' 25 ' 26 27 28 PAGE 1 0F'516

. . - ~ . . . . - . . - - - _ _ . . . - - . . .. -- .. ..:...-... . ..- .-

a t.

GA TECBNOLOGIES I N C.

TITLE: LCO 4.1.9 REANALYSIS e

, DOCUMENT NO. 907212 ISSUE NO./LTR.- ^

TABLE OF CONTENTS Page

SUMMARY

. . . . . . . . . . . . . . . . . . . . . . . . . 3 INTRODUCTION ...................... 3

, REC 0tetENDED NEW FIGURES . . . . . . . . . . . . . . . . . 4 DATA INPUT'AND ANALYSIS . . . . . . . . . . . . . . . . . 6 REFERENCES ......................13 TABLES . . . . . . . . . . . . . . . . . . . . . . . . 14 l

r .

i FIGURES . . . . . . . . . . . . . . . . . . . . . .,. . 17 APPENDIX A ......................35 APPENDIX 3 ......................49 APPENDIX C ......................53 INDEPENDENT REVIEW . .................63 COMPUTER OUTPUT ,

SECTION A ,LAMSTAB ANALYSES . . . . . . . . . . . . 64 l

, SECTION B - POKE ANALYSIS . . . . . . . . . . . . . 472 l

em 5

9 e e me o Page 2

F , J . ._ _ ____ . _ . _ _ . _ . _ _ - - - - .-----.i-- --

l t.

r a

GA fECHNOLOGIES I N C.

i TITLE: LCO 4.1.9 REANALYSIS ,

, DOCUMENT NO. 907212 ISSUE NO./LTR. A SUDMARY The reactor operating limit to prevent laminar flow instability in the reactor core, LCO 4.1.9 of the Technical Specifications, was reviewed. Non-conservative errors and omissions in the development of the original limit were found, and as a result new operating limits have been defined. The new limits are more restrictive than the current operating limits, and will necessitate incorporation of the modification to the limit recommended in References 1 and 2 for reactor startup. This modification permits the opening of 2-10 orifices from the uniform flow positions, provided the reduction in flow in the other regions is offset,by an increase in total core flow.

A remaining concern in the laminar flow instability limit, which has been adversely affected by the new, more restrictive curves, is the violation in this limit following a reactor scram or rapid reduction to low power operation.

It is believed the only way to prevent this violation is to increase the time for successful corrective action from 15 minutes to about 2-3 hours. This would provide the reactor operator with sufficient time to stabilize the plant from the transient, and then later to adjust the orifices back to the uniform flow positions. Justification to increase the time for successful corrective action would require additional analysis.

INTRODUCTION The onset of laminar flow instability occurs when the change in pressure drop with arts flow rate becomes negative. The potential for laminar flow instability in a }ffGR reactor .:ss studied by Boyack (Reference 3). Based on his work, a limit of FSV reactor operation was developed which related the permisaible region temperature rise to reactor power (Reference 4). Subse-quently, additional analysis was performed to define the operating limit in terms of minimum reactor flow vs. reactor power (see Reference 5). This limit was easier to meet, which was necessary for operation up to about 55 power.

However, for this limit the region orifices needed to be adjusted for near equal flow per coolant channel.

After considerable reactor cperating experience, a modification to the operating limit was propcaed (Refs.1 and 2), which would permit the opening of a few oriff ces beyond their uniform flow positions. The objectives of this modification were to permit reactor startup and operation with a few orifices inoperable (provided the region temperature mismatch limits of LCO 4.1.7 could be met) and to facilitate the change from equal flow orifice positions to equal exit gas temperature orifice positions. The latter objective was in anticipa-tion of the additional flow which would otherwise be required during startup in later cycles, when the core power distribution would be more skewed.

Page 3

I - --- . . . . . . . - - ..-.-.-:-..~.--, . .. .  ? ^

GA TECHNOLOGIES I N C.

TITLE: LCO 4.1.9 REANALYSIS ,

, DOCUMENT No. 907212 ISSUE NO./LTR.~ A l

Note that this proposed modification did not change or challenge the basis for the original limit. The new curves ensured that the minimum coolant channel flow woeld not be less than that required to meet the original limit.

Recently, the bases and various assumptions in the development of the laminar flow instability limit were reviewed and several non-conservative errors and omissions were found. As a result, a reanalysis was performed and new operating limits defined. This report documents the new analysis.

RECOMMENDED NEW FIGURES Proposed new' limits for LCO 4.1.9 are shown in Figures 1 and 2. The changes that have been made are enumerated below:

1. The effect of different density gases in the upper and lower reflec-tors has been accounted for. It was thought that this ters had been included in the original analysis (see equation 3 of Reference 4). ,

. However, based on a recent review of the original analysis, it appears that this term had been omitted (Reference 6). Note also that the gravity term in this equation is slightly in error (Refer-ence 7). The correct term is given in the next section.

2. The maximum column to region average power peaking factor (TILT) was

. increased from 1.44 (used in the original analysis) to 1.61, to be consistent with

  • the limit given in LCO 4.1.3 of the Fort St. Vrain Technical Specifications.

3 The number of coolant holes in the core was increased from 23,550 to 24,133 The calculation for the number of coolant holes is given in i Appendix A.

. 4. The analysis was performed at the maximum permissible primary coolant inventory of 107 55 specified in LCO 4.4.1 of the Technical Specifi-cations. The original analyses had been performed at nominal coolant inventory.

5. The Reynolds number, used to calculate the friction factor in the pressure drop equation, was evaluated locally in the coolant channel.

Thus, onset of laminar flow instability may be predicted even though flow entering the coolant channel is turbulent. For the original analysis, the friction factor for the entire channel had been calcu-lated using the Reynolds number at channel inlet (see Reference 7).

6. The analysis was performed over a core inlet temperature range from 100'F to 750*F. At each power level, a calculation was performed at a core inlet temperature of 100'F, and then in increments of 50*F up

~

Page 4

=

w -g. . . . ~ - . - -

__,n_ _ _ _ _ _.7 ___ _ _

' ~

GA TECHNOLOGIES I N C.

TITLE: LC0 4.1 9 REANALYSIS ,

~

, . DOCUMENT NO. 907212 ISSUE NO./LTR. A I

  • l l

to 750*F. The most restrictive calculation at each power level was useii to form the limit. It is belived the core inlet temperature was fixed at 100'F for the original analysis.

7. In the original analysis, a ratio of 1.2 had been assumed between the flow in an average channel and that in the critical channel. In this analysis this ratio was determined for every core operating condition considered, by first calculating pressure drop in the average channel (where the flow is known), and then calculating flow rate in the critical channel with this pressure drop.

Note that for the LCO 4.1.9-1 (Figure 1) limit, the relationship between the flow rates in the two channels is a function of the core orifice settings. With more open core orifices, the ratio between the average and peak power channel flows increases. For Figure 1, an orifice setting of 20% open for a 7-column region was used. The reason for this is given in item 8 below.

Figures 3 and'4 show the flow defect factors that were calculated for the limits given in Figures 1 and 2. The factors shown in these figures are not always the largest calculated at a given power level.

They are the factors which come from the core inlet temperature for which the most restrictive limit was derived.

8. The models which relate local coolant temperature rise and flow to total core power and flow (for Figure 1), or to total core power and region temperature rise (for Figure 2) are developed in Appendix A.

These are based on the reactor flow diagram shown in, Figure 5.

Values for the flow rater and heats in the various flow paths that were used are given in Table 1. The new values were taken from Reference 8 and are generally higher than those used in the original analysis.

l As discussed in Reference 8, the core bypass flow fraction is a function of the degree to which the core is orificed. Also, as noted in 7 above, the flow detect factors are a function of the degree of core orificing. For more open orifice positions, the core bypass flow fraction decreases but the flow defect factor increases. To understand the relationship of these twc factors on the laminar-instability limit, an analysis was performed for a range of orifice positions forn 85 to 20% open and for a core inlet temperature of 100*F. The results of this analysis are shown in Figure 6. As can be seen, the most limiting case is with an orifice position of 20%

open. Based on this analysis, the LCO 4.1.9-1 limit was developed for the 20% open orifice position case, and the limit is valid for orifice settings from 85 to 20% open.

Page 5

,,._,,-.m.-

-; , _ _ _ _ _ . . _ _ _ _ _ _ . _ T_

F

. ~. . . _ . . . _ __ _ ... . _. . __ . . _

GA TECNNOLOGIES I N C.

TITLE: LCO 4.1.9 REANALYSIS .

, , DOCUMENT NO. 907212 ISSUE NO./LTR. A The core bypass flow fractions for this evaluation are given in Table

2. These were obtained by performing a POKE analysis to determine core pressure drop for each assumed orifice position and then using the expression for bypass flow as a function of pressure drop from Reference 8 to determine bypass flow. Note that since bypass flow fraction is also input to POKE, this' analysis had to be performed iteratively. Also, the analysis was performed at 1005 power and flow, but subsequent analysis at several low power and flow condi-tions showed the calculated bypass flow fraction is not sensitive to

_ the assumed core power and flow.

The core bypass flow traction for the 20% open orifice position case was also used in the analysis for the LCO 4.1.9-2 limit. This case was used because, due to the limited range of flow control of the orifices, closing the orifices beyond 20% open leads to core flow resistances where the low power (critical) region is necessarily overcooled.

9. Relationships were developed to account for uncertainty in these models anc measurement errors, which were factored into the analysis.

These relationships are also developed in Appendix A. Estimates for uncertainty in the various parameters are given in Table 1. The uncertainty estimates are believed to be conservative, given the considerabla operating experience at Fort St. Vrain. In the previous Figure 1 limit (core flow vs. core power) the miniaua core flow had been increased by 255 as a factor of conservatism. This factor is l larger than that obtained from the uncertainty analysis, by -105 to l 155. In the previous Figure 2 limit no factor of conservatism had

! been used.

DATA INPUT AND ANALYSIS The complete expression for the coolant channel pressure drop that was used is as follows:

s*

ON O

~

Page 6

___m,,._,,__. __, _

GA TECHNOLOGIES INC.

1 l

TITLE: LCO 4.1.9 REANALYSIS .

, , DOCIAmmT NO. 907212 ISSUE NO./LTR. A ,

~

m* N#URbR LR LR t+

AP = Kin + Kout i + 2(T-1) + +

es c PA" d - d abT+2 abg+2 4fTbCT T T- ~l kI b T L CL L -1 5 d (t T-1)(abT*2} * " (T 'II("D +2)

L - L _,

T

~

P h*bc

  • LR c . .

where E, g = inlet loss coefficient Kout - exit loss coefficient ---

L = length of the upper reflector UR L = portion of the active core length where flow is turbulent CT L

CL = Portion of the active core length where flow is laminar L

C = length of the active core (= Lg+LCL Lg = length of the lower reflector d = coolant channel diameter m = coolant channel flow g, = Newton constant g = gravitational acceleration p = coolant density at channel inlet

= ccolant channel area A -

4 t =T exit inlet .

T T =Ttru/Tinlet (an expression for T is given below) tran

  • L exit tran e ee e Page 7 .

,.svg 7 p . 771~P .h ', 1 [

', GA TECHNOLOGIES INC.

TITLE: LCO 4.1.9 REANALYSIS DOCUMENT No. 907212 ISSUE NO./LTR. A f = friction factor in the upper reflector UR Fg = friction factor in the lower reflector f

T = friction factor at the active core entrance (if turbulent) fg = friction factor at the point in the active core where the flow becomes laminar n = constant in the expression for coolant viscosity (see below) b = constant in the friction factor expression for laminar flow (see below) b = natant in the friction factor expression for turbulent flow T

(see below)

This is essentially the same equation as given in Reference 4 (equation 3). The differences are,that the friction factor contribution in the active core has been integrated separately over the turbulent and laminar regimes and the gravity term has been corrected.

This equation was programmed into a code called LAMSTAB'RJK. Appendix C contains a listing of the code and a sample input. The analysis in LAMSTAB*RJK proceeds as follows:

I l

l Page 8

=~" ': .~ l ^ -__ _ _ _l'.  :  : L.: ~~ET T ' - - l ~ ,  ?- - E-

~" ' ~ -

. _ _ 1 . . -

', GA TECHUOLOGIES  ? E C.

TITLE: LCO 4.1.9 REANALYSIS DOCITnam1 NO. 907212 ISSUE NO./LTR. A J

1. For LCO 4.1.9-1 the circulator flow rate must be greater than a specified minimum value, which is a function of the core inlet temperature and the core power fraction. For a given core inlet temperature, calculations are performed for a range of core power fractions from zero to where the minimum core flow is such that a core power to flow ratio of 1.05 is obtainad. Calculations are repeated for the specified range of core inlet temperatures. The LCO 4.1.9-1 limit of circulator flow rate vs. core power fraction is formed by taking the caximum flow rate required at each core power fraction over the range of core inlet temperatures.
2. For each, combination of core inlet temperature are core power frac-tion, the limiting circulator flow fraction is obtained iteratively.

Initially, a low value of circulator flow is taken and the core pressure drop is calculated. This calculation is repeated with increasing values of circulatow flow, until the condition producing dap/dm = 0 is found.

3 The Ap in the expression above is the coolant channel Ap. To obtain this value, the total core pressure drop is first calculated, using an average power channel in the core (since the flow rate in this channel is known). Once the total core pressure drop is known, the pressure drop equation can be solved iteratively for the high power channel to determine the high power channel flow. The coolant channel Ap for this channel is then determined by subtracting the pressure drop through the orifice.

4. The flow rate and temperature rise in the average or high power channel are related to the circulator flow and reactor power as given in Appendix A. Once flow rate and temperature rise in the channel are known, the pressure drop equation is solved in a relatively straight-forward manner. To determine the friction factor, the point of

, relaminarization may be calculated as follows:

NRE(tran) = udy where NRE(tran) = the transition Reynolds number p = coolant viscosity l_ "N o Ttran T

  • lant temperature at transition tran

. Pqe 9 l

mv~: m- , ..

3_, _ xc y _ .a _' 2 3.;- g_n __

t

'. GA TECHNOL0GIES I N C.

TITLE: LCO 4.1.9 REANALYSIS DOCUMENT No. 907212 ISSUE NO./t.TR. A 9,,m = coefficients in the coolant viscosity expression From the Reynolds number equation the transition temperature may be calculated:

g 1/m

,dp,NRE(tran) w _

DependiEig on the channel temperature rise, flow may be wholly laminar, wholly turbulent or partially turbulent and laminar. If the flow is partially turbuleat and laminar, the portion of the active core that is turbulent is calculated from

~ ~

tran inlet b b CT " c T -T inlet,

_ exit then LCL " bC ~b CT

5. A similar analysis is performed to obtain the LCO 4.1.9-2 limit, where the maximum region temperature rise is a function of core inlet temperature and core power fraction. For this analysis, initially a high value of region temperature rise is taken and then calculations are repeated with decreasing region temperature rises until the condition producing dAp/dm = 0 is found. The critical channel for this limit is the highest power channel in the lowest power region (because the orifices are adjusted per the region power to produce equal region exit temperatures, and laminar flow instability is more sensitive to flow than to power). For this limit, the channel pressure drop is calculated using an average power channel in the region, and then flow in the high power channel in the region is obtained by solving the pressure drop equation iteratively with this pressure drop.

The data input that were used in the analysis are:

l L

UR

" "0*8 1"*

l Page 10 7 ,g - ,,,-,w,-~g --. -

-,m y -- y y&q 7_ g , _ _ _ _

_ _ f,

l

', GA TECHNOLOGIES INC. l TITLE: LCO 4.1.9 REANALYSIS DOCUMENT NO. 907212 ISSUE NO./LTR. A L

C - 187 3 in.

Lg = 46.8 in, d = 0.625 in.

K = 0.5 K, g = 0.5 Korif = 36.12 (7-column region, 20% open) f f N -b o RE Laminar Turbulent where f, 16 0.0195 b 1 0.0985 N =

RE udu U =U g where y,= 0.00069 lba/hr-ft -

a = 0.674 ,

NRE(tran) = 2300 p = 0.229 lba/ft" (107.5% of nominal)

, RPF = region power density peaking factor TILT = intra-region maximum column power tilt Fig.1 Limit Fig. 2 Limit where RPF 3.0 0.4 TILT 1.61 1.61 As mentioned above the analysis considered a range of inlet temperatures from 100*F to 750'F. Calculations were made at 50'F increments within this range. The core power fraction was incremented by 0.002 (0.25) of full core power. The analyses was continued until a core power 'to flow ratio of 1.05 was reached. In the iteration process to find the minimum core pressure drop, the Page 11 ,


,..,-m--.-,.- .n. .wr, :- ,v,. .. . . - . .-

. -.n - - . . . , a- - - - - - - - ,n - , , - - , , . ., . , , - - ,- + - , - - . - - - - - , - , . - - - --

4

. GA TECHNOLOGIES I D C.

TITLE: LCO 4.1.9 REANALYSIS DOCUhrm1 NO. 907212 ISSUE NO./LTR. A circulator flow was incremented by 0.0001 (0.01%) of 1005 circulator flow (for the Figure 1 limit) and the region temperature rise was incremented by 1'F (for the Figure 2 limit).

Figures 6 through 8 show the channel pressure drop vs. flow curves for a few power fractions. The core inlet temperature for these~ curves was 100*F.

Figures 6 and 7 were generated for the Figure 1 limit of circulator flow vs.

reactor power. The step increase in core pressure drop that is seen in the coolant channel flow range of 10-15 lba/hr is caused by the transition from laminar to turbulent flow in the lower reflector, which causes a step increase in the friction factor. A similar step increase occurs when the flow in the upper reflector becomes turbulent. This step is very small (-0.02 psf),

because the flow in the upper reflector becomes turbulent at a lower flow rate, and is not evident in these figures. The effect of these steps was disregarded when looking for a minlaus core pressure drop.

Figure 8wa$sgeneratedfortheFigure2limitofregiontemperaturerise vs. core power. These curves " sweep back" to zero flow because of the effect of' temperature measurement error. As core flow is increased, region tempera-ture rise- become smaller. Eventually the temperature rise becomes equal to the potential measurement error.

The curves in Figures 1 which permit the orifices on some regions to be more open than the others were generated using methods described in References 1 and 2 (some of the factors were available from these references and taken directly). These factors are given in Table 3 An orifice setting of 85 open for 7-column regions was assumed in developing'the Figure 1 curves where some orifices are more open than the uniform flow positions. The Figure 1 curves ,

are then valid for uniform orifice settings of 8 - 20% open.

Less restrictive curves may be used in cases where the primary coolant helium inventory is less than nominal. Figures 10-15 show the Figure 1 and Figure 2 limits for inventories of 805, 60% and 40% of nominal. These were obtained by running the LAMSTAB#RJK code at the specified core inlet helium densities.

Limits have also been generated for refueling and are shown in Figures 16-18. Primary system pressure was taken to be less than or equal to 15 pai.

For refueling, two circulator flow vs. core power curves have been generated.

The second curve provides a limit when the reflector and fuel elements from one region have been removed. For this condition, a flow factor was derived, wherein the total flow required is increased by a factor sufficient to offset the additional flow through the cavity created during refueling. The derviation of this flow factor is given in Appendix B.

Page 12 yeayn gy-~w~~u - 7 3_7333=337377 7_ _ _ _ - ._L

~~~

a'

. GA TECHNOL0GIES I N C.

TITLE: LCO 4.1.9 REANALISIS DOCUMENT NO. 907212 ISSUE NO./LTR. A.

REFERENCES

1. Memo: R. J. Kapernick to Distribution, "LCO 4.1.9 Modificatica,"

CDA:068:RJK:80, April 4, 1980.

2. R. J. Kapernick, " Analysis for LCO 4.1.9 Modification," Document No.

906060, June 19, 1981.

3 Memo: B. E. Boyack to G. Malek, "The Laminar-Instability Problem in Gas Cooled Reactors," EAM:330:69, December 3, 1969

4. Memo: A. S. ,Shenoy/A. Martin to Distribution, " Region of Laminar Flow Instability'in FSV Core," FP:054:AS:72, February 29, 1972.
5. Memo R. L. Otwell To D. W. McEachern, "PSC Reactor Flow Requirements During Low Power Operation," CPB:039:RLO:74, June 7, 1974.
6. Memo: A. Shenoy to D. Alberstein, " Tracing of FSV Tech Spec LCO 4.1.9 Related Material," SP&PD:AS2161:83, November 17, 1983
7. Memo P. Synolon to D. Alberstein, " Independent Review of Laminar Instability Analysis Supporting FSV LCO 4.1.9," SD&PD:PS:159:83, October 4, 1983
8. R. D. Elliott and J. F. Petersen, "An Evaluation of Possible Methods for Achieving Single-Loop Operation at Fort St. Vrain," Document No. 906377, l

March 25, 1982.

1 1

m 6

l Page 13 l

ww g.ypmpim~ 3: ~m s r- ,33 ' 3_ ~ m m " ~ 3 [ [ [';'~_ 7 '""'~f' [ ^"; ;L____~ _- [ ~~

j

', GA TECHNOL0GIES I N C.

TITLE: LCO 4.1.9 REANALYSIS DOCUMENT NO. 907212 ISSUE NO./LTR. A TABLE 1 Parameter Nominal Value Uncertainty Reactor leakage flow fraction (fLEAK) 0.07 0.03 Core bypass flow fraction (fby) 0.125 0.05 Core bypass power fraction (ky)' O.05 Not used Control rod flow fraction (fCR 0.025 0.01

~

Control rod power fraction (kR O'.01 0.005 Core inlet temperature (Tg) Variable ~ 10*F Region exit temperature (T "#'" * '

OUT l

i l

l l

l Page 14

, ,vy. - _- - ;y g -v , 3 -- - n;; ; 3 _-_  ; _

__ _ __ ~_ 3_ _ 3 _ _ _ _ , _ _ _ ___

7,_ _

GA TECNDOLOGIES INC.

TITLE: LGO 4.1.9 REANALA515 DOCUMENT NO. 907212 ISSUE WO./LTR. A TABLE 2 Orifice Position Gore Bypass (5 open) Flcw Fraction 85 0.185 135 0.150 205 0.125 e

S 66 O Page 15

... . . -..- myn . . __, -

. . GA TECHNOLOGIES I N C.

TITLE: LCO 4.1.9 REANALYSIS

~

DOCUMENT No. 907212 ISSUE No./LTR. A TABLE 3 l

Orifice Position Number of Required Circulator (5 open) Orifices Opened Flow Increase 85 2 1.092 85 5 1.279 85 10 1.458 4

9 66 e Page 16

j V t l i I 6

FIGURE 1. LCO 4.1.9-1  !

0.4 '

ontrIcc str73ns:

i

- E00A4. POSITIONS a ,me mn C ~

' . ',. -ss iBR stH I

R 0.3 . ..- ,-

Io none m n

C -

p-

, F

, / ,.,-  :,

,. ~

L , .

i 0 -

~~

,/ s ,/ /

,/

1 g 0.2 ,....- - -

  • p

/

F s/

.* /

, /,f '

~

, R -

A - ,- / /

C s ',/

s

s' ,

3 .

. / //

+

10.1 0 -

.W:; , ,  :

H -

i ec  !

9.0 i i i i i i i i i ii e i i i i i i i iiii O O.00 0.05 0 40 0.15 0.20 0.25 0.30 4  :

l O,

.i , ,

CORE POWER FRACTION .

t

) IG7.Sii M LIUR SENSITV N '

q s GIIIFICE POSITIONS OF S4-304 OPEN -

3 i

i i a <

j . -

1

i i i  ; . ,

  • i

. t

-t FIGURE 2. LCO 4.1.9-2 .

i i

M 8ee '

A -

! X

! R E '

G 688 /

I

! O '

', N _

. T E

n 4ee P

[ .

i R -

l I S '

E 2ee

/

/

D - ,

E .

G D F e- , , , , ,,,, , , , , iiii iiii ,,,,

o e.ee e.e5 e.10- e.is e.ae e.as e.ae r$.

  • e 4 CORE POWER FRACTION l

f4 se7.ss muim uman N I h

1 (

s l

~ ~

~

i , i r

l

.'4 t i

. . ;[

s i > ,

, FIGURE 3. RATIO 5FHIGHPOWERANDCORE.AUGCHAMMELFLOUS 2.0- , ,

i 4

i t.

j 1.8 .

- }

l F [ '

j f o 1.6 ,

f:

u l R ,

l A

! T 1.4 l I .

j 0  ;

l 1.2-i.e iiii iiii iiii . ii ii,i , i , --r-i e.ee e.es e,te . e.15 e.ae e.2s e.ae $

! i CORE P0uER FRACTION -3

~~

m.se sauun seem l'O >

[3 ie N 44 I

i .

W ,l l.

w- - - - --____._ __ -- -__

i l 4 l

. .,u

,' I, .  :

i

, , .- t 1

i

).  ;

.I

. FIGURE 4. RATIO OF HIGH POWER AND AUG REGION CHANNEL FLOWS 2.0 '

) ~

i -

1.8 k p

o 1.6

! U i

~

j R i A >

T 1.4 I

) 0 _

, m i

f l

1.2 A - -

s s-i j .!'4 l to o

1.0- i i i i iiii i i i e i i i i i i i i iiii i*

! 9.00 0.05 0.10 0.15 0.20 0.25 0.30 9 ,

i g i i CORE. POWER FRACTION N i {

M

107.51 ELIlm 300SITY i

i h l'

' \

I I

e i ,

a

. __ ._ . m.s. _._.._.,.._m..,.

'. o u m v. ., CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC. N O.

PAGE OF

(_ _

PREPARED BY DATE REF. DOCUMENTS: -

CHECKED BY DATE h h 7 9i *] f[

3 b60/ZE $ ' Y & h/MAAM 4 .

5 ,,

6 , ,y g ,% , ,{

7 das/db [

9 @me(g h Seps 11

?% 5% E%

12 13 ,, ,

14 15 ,, 3, k) 18 fqg 17 q

~

18 .

+M is .

g 2e 21 p crahsee 22 a 23 IM 24 ,

26 27 28 29 30 31

. Mg-34 35 , __

gj 3s

. . - - - - - - . , , , . , ~..-.,-.,mm,-,,-w.,----,--m----,,-.-.----.-,,----...w,.,,,., , y r,--- -,n_,.,-g ,g,,7,(s, -- ,,,,,w_n-.,,-,,,. ,-4 .,4--. - - - .

. i

~

{ .

s FIGURE.6. LCO 4.1.9-1 (EFFECT OF ORIFICE SETTINGG) .

c 0.25 aunee mmes  !

C _

l I _ 204 OPEN i R ~

i C

0.20 / 134 OPEN l l U - 7 7 ________

L -

f ,5,/ 84 OPEN

!' A ,g /

T '/ .

0

/

i R 0.15 -

f,' .

j i

s #- l i F </ - -

i L

/ ,'/ / < , -

l 0 -

I i U 0.10 f -

I

/,

i

! F

- 4',-  :

l

! R - #

l A -

C 0.05 I I

T -

I _

0 "O .

'N -

O i

) 0.00 , ,,, , , , , ,,,, ,,,, , , , ,

d  !

i v.)

1 -

0.00 0.05 0.10 0.15 0.20 0.25 .. .

i i . CORE POWER FRACTION N i 107.515 DEI,ttm geeBITV h 00AE IIEET TDF = 100 F h N

H .

i .

e

. i

~

I *

.. i

(

, fees 7. &Ananz. AP d. fTao ACO U9-/ h i

1 t

] .

i is ,

g pouca react:on i I i i j -

!g t

e.e4 l ik i

,/ e.es is ,

P _

\\

i, g /

l , ,

e.e6 i

!g 's i

\

\ /

/ /

/

6_

i g f ,

S s

g l U

\ \ ,

l , '/

,' /

4 R i N

E \ \ f '/ ,

/

j 4-i N / ,'/ i N#

R D

'N-

- /

)

0 - N, ,'

.I

P ._,__,.. '

\ l

~

2- <

A I

, 9 i i i i to i i i i i i i i i i i i i

-)

! 0 5 10 15 20 I

-1 i

i CHANNEL FLOW ro

.}O7.5 N A&lMMr ldA3WT

, taa n re - w w i' iN  %. t i (4 h 1

e l

I;I .~ .l;'I , i e

.. ;1;i, \ i>

. ?o M j; e nN%.

n ' .

c. 7 _ e .

a r e. ..fe. . se. s

=

e .e

. e ~e

~

. ~ ~ -

. 0 2

/ #

9 "

/

4 / /

O (/,

Z A

yy

!'/ o' ^

yg

/' / ;,*.

s a '

u me M "

.

  • U Jva r

a O

L F nr i

v o

e . .

eL h

e sE y

n NM f*

5

,

  • A I' *

- ~ ~~ **. u H C

6 x ,'~

  • x ~~~,e.-

8 ~ , '

\ ,.

.,\ -

5 x' \'

in y  % I g

f.

\

\g ,s,\ .

I

\)i ,i', '

.t 1.:.' .

l

.ini i.*' i  :

.:.:.: i.: .

- . _ . - _ . - *- _- e ' -

0 s e $ e 2 i 1 PRESSURE Dgnp

.l1 .

c-

' , ,F , ' ,

,t,.  ! \i IL l1l ; $

I

,f1tI l l' iii O O N 3,' # k n

o n _ . . *

. ~

s~s c 4  ;- sf e .

a -

~

e r e. - e. . e. e, ' e, 'f ~. ~s

. n e e * ~e e e ,

w -

- ~ ~O o

r - ~ ~ ' ' ~ '

0 5

, 1

- / ,

2 -.

j -

9 .

/;

v,

~

5

/. - -

4 - r ,

2 1

e .,

,pF.

A -

y ,

. 'l ,' /p , ,'

1 j,

, 5.e 0 v

. ... 0

- /,

)

r.

I -- -

,1

, W 1a s

Ke ' O

./ ,

L s .-

's,'A F Mw-n ..'.

. - L rr w c U ,75. NE

c. . ~ _

h

" N ka t _.

e p

~-

,~ ,

A H

%r

_- ~- . ..

C 5 7 e-r Ca ~ '-

0 0a Jc

~

~ . ' , '% *~. - '

,5 9

%s-

,' ~ % % w'

%' .s' j _

a -

' \ s% .\ -

Fm

_ 5

. .- \ ,2

- 0 '

9 0 1 a- 3

~

4 5

6

, 1 PRggSyRE DgOP NM

,, ,i  ;, ii:! ,-

t! l l:lll ll. i!!.  !:'  ! j) !llliIi;!:!

i ,

I ,

1 .

I

{

} l

' ~

. . FIGURE 10. LCO 4.1.9 1 i

0.4 OnIFICE SETTINGS 1 . -

EQUAL POSITIONS j

l -

i C '... TerET,6r I

y --

- ss R oetN l R 0.3 ,..-

~

.,_, . _g g .

C -

i

_ .~ , ',i

.F ,'

1 i

( -

/ I'

    • ' /

l 0

W 02

' ,, ' ' /.-

~

y  :

1 1 F R -

.~ ,/

....- ,- y'y v

/s. /

A -

C _ ...- , , ,'/

~

T - - /

I 0.1

. ,' '/ ' '^

l 0 -

s l

N _ .V:</

i

! o [

0*0 I I I I I I I I I I I I I I I I I I I I I I I I a t k '

0.00 0.05 0.15 b')

l l . 0.1,0 0.20 0.25 0.30  :..

1 CORE POWER FRACTION '

N

)

Ret BELIUM BENsITY  % I g

entrset pos:TIons or as-ass erEn i

. i l

l e 1

l ' *

~

i i  :

. l t

. FIGURE 11. LCO 4.1.9.-2 - '

M 888 i -

A X '

G 60e I

O N _

T E

M 400 f ,

P R -

I  !

200 .

D - i E l G '.

F e , , ,

,g,,,, , , , , ,,,, ,,,, ,,,,

f  !

. e.ee e.es e.ie e.is e.ae e.as e.ae _a  !

l CORE POWER FRACTION r .3 i ses maun seeny "'

co l, x  ;

I e j .N

! -+a .

l e t

< . .  ?

! i 8

) i .

i

, . t-l L

) i l -

FIGURE 12. LCO 4.1.9-1 l 1

4 0*4 ORIFIM KTTING$ .

,l

- EQUAL POSITIONS i

Teiiiii:TeET i C - ... '. --------

f

! I *. ' 5 MORE OPEH l-R 0.3 l .. ,,,.- .,_, _g _g.

C -

's'

V ~ * .. - ',- '/ .

L . <

0 -

,,- l 1

ya2v o m* .

e' /

i, .- - -

- ** s' 4

F ,

. ~' , / -

I R -

..- ',//

i A

C - .-

' '/// s-

T *

./*

/

i I 0.i 0 -

. s'/,'r f ,j l

H _

v liV ,

eD j 0.0 , ,,, , , , , ,,,, ,,,, , , , , 3 , , , o  ;

j  ; 9.00 0.05 0.$0 0.15 0.20 0.25 0.30 4  !'

I i CORE POWER FRACTION N -

. A l '

! Ett HELIUM BENSITY (Q ,

'i l ORIFIM POSITIONS OF St-att OPEN g

+

. 4 I b

. u  ;

i tn i ,,

i )

l s t l

f-r l

l

, FIGURE 13. LCO 4.1.9-2 .

l n 800 i i' A '

i x /

i - .

R

E .
G 600 e I

O

H -

1

! T

E j i

n 400

P -

1 i R -

i I 1 S i c j

! ~- 200 i D - '

j E , .

i G

~

4 I

F 0 i i , , ,,ii ii,, ,,ii iii,

,iii o

. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 .a l l CORE POWER FRACTION N

>s j ees MLIUM BEMSI M g 1 -

N. t l 5 i.

iN l  !'

} e ,

i i _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

, l .

l g

s *s I e

j j . .

.i  :

3 ,

FIGURE 14. LCO 4.1.9-1 l 0.4 ' ORIrIcc SEtvINGS {'

\ i j - EQUAL POSITIONS 1 8 H0ilE OPEN i C ~

'. ~-

I I ~.

~5 E #in~

j R 0.3 ,.. .,,- gg g.

C -

.... .. ~, ', .

F s L

- ....- ,s

/] /

j he;.a- -

. ,. f i ,- / s-F ,.. /

i

. R A

/</

/,j-,.

,r ' ' /

i C ,-

i T

s' i',,** l I e.1 . ' , 'A i

i 0 -

l's/' '

} N _  :,9 l 1 /e i.

o l, o ,

e.e i i i i i i i i iiii iiii i i e i iiii 4  !

l l e.ee e.05 .e.ie e.15 e.ae e.25 0.30 [3 j CORE POWER FRACTION . g I 404 NELItM DENSITV  %*

}

  • 9 ORIrICE POSITIONS OF S4-304 OPEN h {!

1 i 1

f l

d W '

[

l O I, 4

I

. , . . T'

. . i

~

~

. i FIGURE 15. LCO 4.1.9-2 .

i

'n 800-l. , i-A  !

X

~

R

/

E G 600 j ,

I -

0 N _

T E

M 400-P R -

I

~

S E 200

[ l D $

E G i

~4 0

F i,,, ,,,, ,,,, ,,,, ,,,, ,,,,

3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 .a  ;

i CORE POWER FRACTION to i i

. H  :

.j 404 NEUUR SDOS m pp [

. t h .

I

ir j

'> i i

FIGURE ($. LCO 4.1.9-1 (REFUELING, ALL REGIONS IN) j i

i 0.20 , 0 Irles scurinoS ,

4

. EQUAL POSIrIONS

,I l a MORc OPEN i

C _ ________

j .

s noet OPEn I

j R 0.15 ,,- g g -

i C -

l F

~~.. ... - i L ,-

0 -

i U 0.10- -

~. -

' '~~

I y -

- ,s' /~ -

! R -

' ' , ' , i A *. ~ -

i i

,C - .* .///,'-

1 I 0.05 '

1 0 - ,- /'

..pp

i N -  !

i i

.. ,. /, .

t 1

0.00 ,,,, , , , , , , , , , , , , , , , ,

W  !

O i i , 0.00 0.01 0.02 0.03 0.04 0.05 4 r l , CORE POWER FRACTION ra

,-t PRIfWtv SYSTER PREstisK < 15 PSI GRIFICE POSITISMS OF S4-885 OPEN fO f

%, I h I

. w ,

M .

i

  • I I.

4

,j<-

i FIGURE l7 . LCO 4.1.9-1 (REFUELING, ONE REGION REMOUED)  ;

i e.4 .

Onfrace stTrinos. I

- EQUAL POSITIONS a n0Rc OPEN  ;\

j C _ ________

5 M OPEN I

R e.3 .. .. , - -----------.

se noRc Oern C -

1 1 F y -

'y

,..***;.'Q

~

s  ;

-. ' y i e.2 .. -

, - - f  ;

p -

l i

g -

. / '

?l r h -

/

/

i i

C - / /

< ,/

' /

T .

I e.1

, ..< ,',3 y

, o -

\\

N ~ .4/

, 'sf i

e/ f u .

1

  • p i e.e i , ,,, , , , , ,,,, ,,,, , , , ,

, t!

e.ee e.e1 e.ea e.ea e.e4 e.es .a  :

I 1

4 6 CORE POWER FRhCTION  : .o

. ,.a ,-

, c reannav sysfan enessunc < is ps:  ;

. en wice positzens er :=-ass eran e0 l

g ,

s .

W ,

i

___~p

  • n

! _s l

't t

i 1  ;

i <

)

i i

FIGURE 18. LCO 4.1.9-2 (REFUELING) n 500 l f .

' A ,

X l R -

E 400 -

l G -

4 I

, 0 -

N - -

2 300

, T - .

I E _ l'

! M _

l P _ .

I R

200 I

I -

. 't i S -

E -

1 .  !

! 100 . i 1 D -

E ~

1 G  !

F 0 , , , , , , , , , , , , , , i , , , , . o i 1 0.00 0.01 ' O.02 0.03 0.04 0.05 O f 1 i COR POWER FRACTION 4  !

i

' @ t i minney symn messune < is n .a  !

l4

. e.0

. 'N

! h s.u ,

4 -

l

= = . , _ . . . = . - .=.:.......=-===..-==--- --

...:= __ = - -.

,' o ,,, m y. . ,, CALCULATION SHEET CALCULATIONS FOR EQUIP. N O. PROJ. CALC.NO. PAGE OF PREPARED BY DATE REF. DOCUMENTS: -

~

CHECKED BY DATE 907212 /A 1

3 Amioix A 4

6J for 100 41.9-/ de tek/usiq W avb>/

S doud #iu aderedde f6v s zeeded. &>~ 64 N j G16 5.*

ne - Em + 1% + 1xce + Ewa 13 WCkAk/Du e" LEAg m V  % sc bi 16

. ESN zwzyz~

fce 4 . E %

zeszw 23 Y YY $.1MCC, ; ,

Ema = m e ,a N-lim 10-4)(/-de)

=

, & aaafe &> 4. a W dad & :

u a re ct __ _

m A. -

b33 hlos Hoc. is de sam 4-of'caA/ chouds i A aw '--

35' p, e. w-- - - - - - - . p y=7g- , . _ , . - - - ,-..--m 4 7._-.-_q,,,,,.9-, ,.-,em.m_9 ,,._m y ..-. - - - - _ , - , -m._,. -w- -,e-.

. ,,,, m y. . ,, CALCULATION SHEET CALCULATIONS FOR ,

l EQUIP. N O. PROJ. CALC.NO. PAGE OF C*

(_ PREPARED BY DATE REF. DOCUMENTS.

~

1 CHECKED BY DATE 90 7 212 /A 1

l 7h AjL pw c4>u! &> ts MkNb b cmfue tzW M b,:

n = %/6 9

xAen Cs o /k> deKw/ Adre 10 Salad A+- @f%. :

At7 as/ .9/57 13 g, m G-Aa a}(J-4)(/-4)

Oll

  • 5 17 18 E~wbss/9 5 kacad Q av % :

21 12 pSMr7/2 M I %e vwe. umwry y h vaannereAl 4G OP fk&AnarmA. I%nAAn6rst . sme IM '>na I

24

%ec m. -

.or >nuee, .05 lt.are t-k 07 .63 .0322 4 lsy i- g ..liZS ,ps- .oSRl4 i

I M /

'OO2b

~

/- 'o 0[ *0/ ,

7Q' fo st(S of M & q Y I on5ae A :

\

Q ,'

35 m 4 j.. ~

as b -

. 'T~ .

l L. _ - - . _ _ _ - . . . _ _ . _ _ _ .._ _ ______ __ _ _ . ___ _ _ _ _ _ . _ _ . _ _ . _ _ _ _ . _ _ _ , _ _ _ _ _ _ _ , _

-. - . .-- __:.. :. _ _ _ = ......a- - . . . .. . _ = .. ... = = = = _ ..==----

, o ,,, ,,y, ,,, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC. N O. PAGE OF

( ,' PREPARED BY DATE REF. DOCUMENTS: -

~

CHECKED BY DATE 9 0 7 212 /A 1

2

w+se w a esa we, m a apta' d Ay ^%c, Me k of MA ciadde b:

7 9

w Cap) 3.91/s'/4s/Ar 10

a 6-bw w w n)+a m +mnM&)*

' = ,14/33 14 l

, 15 18 (389ifYl 03)0.Myl. car)__ Q jjg 74g 27 24/33 -$ (

1s .

19 Abk XJ anJN' fe asaedisp e74 Aos ben,.sWoc/ A-  ;

'* 8, dd

, 48//e Ir 'ly .*/ /4 &&rfe /AdecAsur/sj

sw A> A s, r, s /w w. .a anme x skaW' We sf $#10 4 M
: /, 4 nacs A yM daf yes,;c *ecasal ifu a .efjk/ ond y .

so l

~ ~

Td tasauf $r hadtder, M (WowG Afetvi is ad:

.. .g 33 .. ._

a -- ,- i

/-

,,  % = ^ fu.a g /fmec (/ 0.DBfl} - - -

y . . .- .

y-w--- c.yy--ve-wmy--mm-- - - -

l_ _

, o ,,, , o y, ,,,, CALCULATION SHEET CALCULATIONS FOR EQUIP. N O. PROJ. CALC. N O. PAGE OF PREPARED BY DATE REF. 00 CUMENTS: -

~

CHECKED BY DATE O7212/fA 1

~

2

[2] [fl k bnv b $kl h), b Y/7

w + m iewsamax

& poeAy A - z o o a t, H 9

  • Fam. o e=W ch.wm/ heaf b4,as:

11 2Q s --

13 14 hb

)

en zu zw us, tAs 6%e a He AW ca*pw-21 hY d e k n a h rbv hh 23 faae 24 25 lb 2e N" 2%+Ey 27 W Ny Y Y h $&

zu-ck (inXi-w)

,22 Afe m pw k o caw oben/a:

as .2 9<.a.

3g as Ncc.

t -------r- -

e,e- ,w---- -

c. . . ; .%,

. " o m m ,y, ,,,

CALCULATION SHEET CALCULATIONS FOR EQUIP. N O. PROJ. CALC. N O. PAGE OF PREPARED BY DATE REF. DOCUMENTS: -

907212h

~

CHECKED BY DATE 1

Ale y pol &is m'de/ 4 J4 me.Jian-denet 4,:

g- p RPF rur

  • Wac PF A y W p** M& /tuki4 Adw-ru.r a Asho if nuPm ala,~ fo ya wxye)her MMb 13 sobsb/udiy 2/ .solnq Ae p

% (1-%)(t-s.elw rur O, is a f" " Ne ,

17 ffetg, /$ g faank hh& SWa , [h /f alca/N & a,onse<y sde M LWaw<.

c,5b E %

n ,

r%4 ar=.

23

/- gf j_

( 24 26

  1. 4ar e F%= h i., - r ,

n

/m hfo /tk diyy /;p 5 zm mw 6-/mE/-4) r.l32 U **

, subsHuby ad sdf & Guae. :

as esina-ra,)ma (t-fuuX/-A) ..

39 .

Qcass=

= &n

." , , . y . ,, .

CALCULATION SHEET CALCULATIONS FOR EQUI.". N O. PROJ. CA LC. N O. PAGE OF

(, PREPARED SY DATE PEF. DOCUMENTS: -

~

CHECKED BY DATE 9 0 7 '212 /A 1

4 opd5*-15)*w., ft rk)f/- Ar](/-9a) eff ritr s Nec.

6 Sd/W h b d/2c, /p[ J 62/ r41d h g dA8 N man &- n fn (i):

u

(%-rn.)w rur gli-w) 12 va - /- Q 13 l Edua& 7 Me awdas@ a dra :

D 18 17

  • N GC I bhMt VautE. UMM lAMEarn*TY
  1. Aetnesw d emm4,een m, aw w Aumersa su as.

18 -

n - / oj rm raa,- rw Ca) &W Co-)

I 21 /

77u  % - r. @) /0*F b) n t

. g i- p

.oi .oss . ooso s 2s ,,

b ,_ ,,2y , , , ,,3 l

%) rk.y /% />se dp on Ae Ma4es, ubA fn&d l , A enfu/pem Anjo, af.e .sn/aat/ or 4 , sop-22 uut aA%L i h) k 5 $ NYW/P f05 h&f:^b4 /.S SOY

,, 9 9,yh ig+. de omda4 u, & sonaje g /k~SMikus %

rww-+t------.ww-,,g -y-g- y -p.p---y,-------g,y- ,y 9%,,,-y ,.y- ,wq .,--.,-----.g.-y.._m.-v-. .,,w _,,,..,wm,,g---.

.:- = . - - - . = - - - :.~

.;=-~=--- :r=: - - = = : :- ----- =---- . . - - -

o ,,, ,,y, ,,, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC. N O. PAGE OF

(.) PREFARED BY DATE REF. DOCUMENTS: -

~

CHECKED BY DATE h (* 7 p l *")

/}

1 3

e so r / 6 8.t=2 4

l 7Ehy & Drs /As e,cehmAn 9m a orke of:

dme , ,,3, gv , iues h Aru @ -r,)H 10

~

11 SVW4 Weg. Wk a /$ Afse,,

h 6Wlnl53"W

'l 4 % 44snas se, i'm -rw & o p & M trxac, u'; .u 4 % -* e a ,# ,em. a

'l' a sym 95 Au:

. F'*

  • 7*
  • 4 ow 2,

er u O-%xi-Q) foru = Bus

  • b e6m%.)

~~

=l no,,*j. m ~

,l s o-a-  % > mswd

, n 6et-) - r.n is' & h-

=

N3b d ScY h Afte,

~~ On ~ ~~~

" " GwCm%XMsJ0-%.)2+~ rnr W nc  %

u ey s u o w yt s p g y M a) n . __

g.

x .


wre-------w ,-~-g- , . - - -

.. . ...-...=_.=-;.._====.===---- =:- --

o ,,, m y. . ,, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC.NO. PAGE OF y PREPARED BY DATE REF. DOCUMENTS: -

9 0 7 212,' A CHECKED BY DATE f

2 s 6pa)(s.endYi orYt .wynee) 5  %.

< ,g , G.zezXs.vr oft .myi .rz9n .oz.r) naeu.

5 iders histo' Is ajase- awesis. Nde-(Mo k ism /he) ad .1178 e o.

  • A.4 awsk fuAv (Gms u

nu- & Md cAmas/ MP).

,z Mc~e=73C./8janrurPkeu 14

( .

  • MfC [ M de aw: sah4 M q & c % - m . w .m/ 9 L

o'Ma' . ,

,,5, g4 , /49.97 c.5%w.f.m6)*b-Anna =* d

$h"Ar

^'u~ -

PJwsf6s)'

zz 2'

sea ra,sfu=Wr.wj'6.nJY/./r)* 2I

    • A '.y' 2s s ' (ai.7J'ts.m W.)'fi .os-)*

28 _ . _ _ _

nr l. 3/ Y *' & N

'-~ ~

~ ~ ~ ' ~ ' ' '

. _ _ . - -E-30

&*^ A h /4MCekarnhC, O h/f }*ff$ /3 h.'

~

Y

/ .

sm = .ixsusqllf.nn&U6.idWmr(,**')')I n .

t

. -. - y y.

38

, , . , _ - , , . _ _ . . , , - _ _ _ _ . , , , . , , p,p_,,,,,,,,_,%_. y.,.,7p ,

g9.,,, _y. _ _ , , , _ _ . . , _,,,._.,%,m,,,, ., ,,,,,,_,,,,_-97

, . _ .. . . . . . . . . . . . _ . ._;_... _ ._ _._._ . . _ _ . - _ _ . . . _ _ _ . . _ _ . _ _ _ . . _ _ . . . _ _ ~ . . _ _

CALCULATION SHEET

, o,,,,,y,,,,,,

CALCULATIONS FOR EQUIP. NO. PR OJ. CALC. N O. PAGE OF PREPARED BY DATE REF. DOCUMENTS: -

CHECKED BY DATE hh72} ,

. I 2 i

6) nr Ido <u.9-z de deAmshp Jehan 6/mi dana /

, /Ah A/ M96 hoper.kre nst h/ Cireddn- k) is Mc/

7 9

% s av/.s/dwel hed La%e:

10 ,k 11 , p 45.c, 12 47 expr.aw> 6e p aos dad9 od >>: 6):

s pv.:'8 1 y , 40 % - m)nue.d 4 10-4,JG-s )a v n w 17 18 kAl k NY /1W. ps bfMD $ YY 55 A'lY h /4 y me mid bye.be me 4:

nfr<-r-)m-r(l.'k a e

=

n 8 a s s u n y y s,.e wy 28 cimeh ta /4 s. .

25 M sh M4 : _

g, .,,.

2 s, s -na ku. CrKi-r,1(i-a) n=

. ,x . . . _ _ _ _ _ _ . .

25 43 1 as

~

_ - . - - - - . - . . ~ - . . . - - - - - - - - . ~ ~ ~ - - - - - - - . - - - - - - - - - - - - - ~ " ~ - - - - - -

o ,,, ,,y..,,,, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC. N O. PAGE OF

/ PREPARED BY DATE REF. DOCUMENTS: .

CHECKED BY DATE QQy  ? I 1

~

2

$$ M $6 N f5 MC,c.

5 6 d omne., 1 A4P6M V88.4 M*88 M 847t MWAr* **W fAl4A67502 g me,,,o w of Aem bert/L Ik Ananane t N w ai_

7

/

8

>va m -

.or .or 9

11

& .i' s .or 03 ,0 m s i

'2 , , , ,,y ,,37,y

, fm ,_,,,,

/ce iul ,ozc . oi ,oioz.s a

U" Q- 7; . ,, -

9. W -

's ' _ go.., -

1s 7-% 73m - Ta~v

.7,- W. -% ,yp- -

21  %-r,Jrm-rd 22

s

~ 75% 4 # his A flez tu,codninbes 9m a im'uz of:

&mg t.9t ti + (Fm-tr.J* +(m-r~.)* + (4-sKr.-r-) $

3 # 83 2sw Ixf5 -r-)

,  % s anknov u /Ls y. The & inhehe 9ah

^ O' ;"

i.r /4 6 M f oAd & f #</d d b Grfd eye ej fe q A % sie s Aa spa es. uw n 9m4,-

x.~ rc ,. A- 9 4 y s s a en arw e ,: % - --

...--l..

1

'.' o ,,,,,,y. . ,, CALCULATION SHEET l CALCULATIONS FO R l

EQUIP. NO. PROJ. CALC. N O. PAGE OF C PREPARED BY DATE REF. DOCUMENTS: -

CHECKED BY DATE 90 7 212 /A 1

2 .

dM ,(g gje-h 2st.ss ,L w (1k m]' s 6

Edudry Me synskik Ar m h- N MastM Ode, (%,-rm)

, W %eassepd by Aaec: i

%- >nac, c, (%-r )(Ik ][t-A]

l W%)

e . a.,

, ," ecacciar.).

b/16 17 SidGbhb WY h h tta a , p o s ) ( m )(i- k ) w p_

22 Ne cp pg (r,-y-) p 23

'" x , f$///.1f'I.413JD' t~ *O l~ *0'2 f)$ fmg, 26 (241g3)()ZHa) & Cr m -re) 27 m = 99775 N

- = 6. (r ,- g p

_. 1

?d Ab Y /+9sh/Ye5, lh $$$W N 5 .'

'" ~

@e,g,= 88793 l- gjgE+. N'O-

._ _n .-

5 f rm- G .) '

Cr m -ra)*J ) -- -

a d.

- ~

GA 268 (REV. 4/82)

CALCULATIONS FOR EQUIP. N O. PROJ. CALC. N O. PAGE OF PREPARED BY DATE REF. DOCUMENTS: -

CHECKED BY DATE hh7$k /

1

9) rs as b & de>db hat))o%e/

WW% x m kan awu A ~

onW parae das k no en .z.

8 10

&n. a 6d.m/ dm e/ kaf W.wc:

Il g, b 12 hd4.

13 h 4/

k0

  • C"' & n s x .u ,e a w J J s ~ /b ma s a se oto sf & we to p4y c%/ fu

. ~

  • v~

21

$NC h & /J **

24

  • #Asa N4.<,,

25 O 7 /

4hes 43 a IKe a har of%r6)jokc m de tajk

,8

% h % .*/.sv ey dr. n 3i

% O-/=)

32 b /'df .

U=

34 35 , _ ,,

a


,,y---, -- y yn. .--

- . - . . . _ , . - . _- . .- - - . - . . - - - . - - - . - - . - - - . - - = _ . = = -

o u m .v. 2, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC.NO. PAGE OF 1 PP,iPARED BY DATE REF. DOCUMENTS: -

~

CHECKED BY DATE gQQQ 6} [/

1

~

2 z  ? f" 5 -

E

, abre p is 4.y me tam dmetpov _

9 -

A/tds b to

/~ %

11 m n m ,>

, , 15

( ,1 16 3 .

11 bbCk U YUP!y bra, 2o /-y,f 1 21 4 7a:.* AIiser 772 r Fn l- 4, )

22

~

h tC A7m" a 24 pSS 2s S/my b Aru.:

Ar.-

a (osusf '~ll,) A ntr A%

A ru ,* .9502 h 71a* Arns4

-.e-.21- -

32

.n.

. ( ) 33 34 35 , __

m . 4'7

--yy,------,,---*-,r

=.- _ _ _ _ . . _ _ . _ . _ ._ . _ _____ - . _ _ . _ . _

o. . v. . ,, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC. N O. PAGE OF G PREPARED BY DATE REF. 00CUMENTS: -

CHECKED BY DATE h h 7 9,] 2 [ A 1

4 8.b h [an, M% WM //MrMM 5

Ym a rwasra es nemense Namse v ka~.

6

/

7 VAddr Tm -7m*

~

SOY ~

9 /

10 4~*

I 11

/~ Q *0l s00$ aQ5D[

14 L t- s s oas- .o1 ,siozs

, 15 _.

l

' ' 7 =~ b ry He RWs of A$se AFws;

'* * 'E 1s dA7& = 6.si ig% srg a 20 21 5 P'^' ,A /JfI b6J, $& N l M /3 APIc.

.9z2 s rur Ar,[-(we R)E sra 26 27 28 29 30 31

,,,, 32 b 33 34 35 3g M8

~ ~ ~: : : - - _ - _, .-_ - .. - _ . - - - _ _ - - _ - _ _ - _ - _ _ _ _ .. . _ - . _ - - - . _ . - _ . - _ .

L

..... .. .. n... ~ ...,.- -

. .m = - - - . - - -. . ..:- :- n -. -- :.m - = .

. .. .. - _ = - ;_. = .. = = .. .;

o ,,, ,,y, ,,, CALCULATION SHEET CALCULATIOP ; FOR EQUIP. NO. PROJ. CALC. N O. PAGE OF I PREPARED BY DATE REF. DOCUMENTS: .

CHECKED BY DATE hhY$[*[ [A 1

~

2 4

k/Mid/2 S 5

h kYhY lA OMt? QA A a w</, sr'un /c & O>esy e/ A n .52 & s<Aab, le 11 cd6 A% sdk bceard to 04kt A necese/ A%

  1. d Sb f S?<3C) f St$

, s de m os au &aa.s Afue /4 icyk.faz A.

17

/$1 $ & M9d y ItArA:tas/35: /

15 3 ., St>r* NT f Sl g 19 f Ny A 3/ gy kdce: My is /4 &S: ofam4/ A4s A s S ddme. Myrn ~

or - (+io2 + s2H (vo ryg,f = nc.ez - '

'. He t.s Afe smAs.- dcM.s' / die? hr K 7/4rw f

  • Nr = Duin +a) +(i* 6 er}{%r? -sn.n s,. is a ns a se mw qu4 % asuf
m s aa ss saap ca 3" ara,,./ Af a s Wm iep a se>wve snu if maaa l Ke bye.s/ /Au Aase) e

_ . _ . = .._._

o ,,,, ,y, ,,, CALCULATION SHEET CALCULATIONS FO R EQUIP. NO. PROJ. CALC. NO. PAGE OF PREPARED BY DATE REF. DOCUMENTS: .

~

CHECKED BY DATE 9 0 7 ?! 2.'A 1

k KT Y/C/Y $/D4fl k /.S h FACT coernew 19A #e te e,prf pak . /4 //w peM MayL

& u a,yd M a % sdmM, &

.l '

A

\ \l

~

av'Nu

p# Af///////) /

u i.

2.

mxxmv %u 17 j ai 9 a,, yrs au 22 Kk AC h/A*] $6$ fe.KT $$t'A

4 a / ~ s u m aa, u n ,i

, & M . opp.J JWe.wy k seUnd.sGly .tv a a>u % fk & 4 h 4 , a / A a y .msuk k A A A . Ace m x4 &/Ae m w%pmm a -

C# s arus-n ae.a A " Ai " pyg,n y wg = ap,gg

  • 0 M

~ '

u

s .._
3.  %

. -. ,..,_.._.-,..m__ ;_ _ --._;;--._.._,-_.~..

_ . _m...:._ ____ 7 .___..=___.;.__.._..-__,,,

o ,,, m . ,,,, CALCULATION SHEET CALCULATIONS FOR EQU P. NO. PROJ. CALC. N O. PAGE OF PREFARED BY DATE SEF. DOCUMENTS: -

CHECKED BY DATE 1

.$5M YY EK _f h R S* A y sssaajya4GA.s & a/qavta&:

49t/nwdsn /ns Ec = 0. 9/ '

7 fapurse Ars Ee - 6.60 10 12

/4n- ' Xq, r 4 tre = Ad/

A:n Ag = 248.62 Y 14 1

O "5 Sac Aeis virkdly w Q nh of A 6ud y Q

, fe syzew &y afar &@ L a: .I 2e  % g#

Z 21  %/ Ace

. 50/"y $v % v:

2'

.,,,,. Es f4N L N 26 $p 27 2a

- k

= 36 m (z t u.z) , , , , (i m r % )* ik f

m. - - -

~

OY '

w% f n Ho cdda%9 al cor sW s A>/f+' ,

b%e is M en. pau dy m psK - --

st

.y. -,

, . - - - . - - - - - . - , - - , , - - - ,-,,,.-,,-...-w, - -

- , _ . - - , ,.,,.---,,,,,,..-,.,-.,,-,.y_..-..------,---,,.-.--,---e. _ , , .

u _._ - . . . - . . . . .

= - - -. . .. .. . .;_.

.. -.. . - . . . = .

_ .3 . - - .

,, _ , ,,, CALCULATION SHEET CALCULATIONS FOR EQUIP. NO. PROJ. CALC. N O. PAGE OF

PREPARED BY DATE REF. 00CUMElf  ; 'h' { ' f CHECKED BY DATE 1

2 rs & aiwas we M. my Ms/ dwJ As se s.o u p u 9 aee& M.depeau A p aab A d*e *M s4y md p 6dd& J A ske for-10 ew. & ,% A colmmw s a/Wab) L:

^

u 12 k,. (n.Xxr) 13 s,-

("k

i-str) r.= ese.oz n U1s i.

17 R T *' $$$. 0$ #et,.

18 19 21 h &n N a yff, M'ds.

22 --

- - - - - - - - - = - - - - - - - - - - -

23 24 25 26 27 a

29 30

_ 31 3

G =2 34 3s .

52 -

36


*---we-e, - - -

r,w., y-w y w -cy my - -y e---e.

..... ~ . - - . . _ ~ . - . _ _ _ _ _ _ _ . _ - _ . _ .. . _ _ . . - . -

' ' O 7 f 'y p / A Asasomx 6 e un ECOPY LAMSTAE*RJK.,TP's.

L4sru +/m & bsra .

~

2

  • R T , S._ _. P U N Z ANMM fudtgr- ._ ..

EADD . CODE

_ EASG,AX RJK+F2.

~

EUST 12. . R J K

  • F 2.

SyGT,c . , _ _ _ . _

36.12.

0.5 0.5 187.32 _D.625 46.E 0 625 46.8

. . _ . _0.229

. .0.625 2300.0 10C.0 50.0 14

.?.C 1.61 2 ._ 04 1.61

? L

- 1.5 1 092 1.229 1.458 i 0.ON 210.._Q 2J_. 0 1.0 0.t.2.50 0.0CD1

. . _ _ _ . .0.1 0.01 1

2 .. EPMD,ERE.

. en- +- . e eue e m 666.

D e M

+-ep m essee.

I

_6 m -e e= e em.

G Nh 9

O e . -m e m m eo m om O

N eleism

_ . . - ~ . - . . . - - . . - . . . . . . _ - _. .

.s q.04._tofA 9 m 3

  • C C THE _ . . CONSTANTS. . _IN _ _ THIS CODE WHICH RELATE CHANhEL. _ . . _ _FLOW _ . . . _AND

'* C TEMPE R AI.u.RE RISE TO C ORE POW E R FRACTION AND CIRC FLOW 1

  • C FRACTION'(LCO 4.1.9-1), OR TO CORE POWER FRACTION AND REGION
    • C TEMPERATURE RISE (LCO 4.1.9-2) ARE DERIVED Ih mLCO A.1.9
  • - C REANALYSISa, R. J. KAPERNICK, DOCUMENT NO. 907212, 11/E3.
  • C-------------------- -----------------------------------------

Io PARAMETER NT 1500

  • DIMENSION P E R AC CNT) , D ELTR (NT) ,W F R (NT) , F LC C NT) ,D ELT C (NT) ,

"* . RPFC2), TILT (2),WFRAC(NT),DTFIN(NT),WF"AX(NT),

  • . A 0 ( 2 )_, B O C._2ME Y I h ( N T ) , R F Y E X ( N T ) , D P C N T ) ,

.* .- F LOF A C (10) , TINM IN (NT) , DE F EC T (NT) , NITE R (NT) ,

'* . D EF R E F (NT) , DE F R (NT)

.* R E AL P, LUR , LLR , L C ,LUR F ,LLR F , LCF , LC ~F 1, LC F 2, K IN ,K0UT ,KOR I F

~* DATA APU/0.00069/~ P/C.674/ PI/3.1416/

R/IS6.3/ C P /1. 242 / A 0 ( 1') /16. /

'* . P C C1 ) /1.0 / A0 (2 ) /0.01 c 5 / B 0 ( 2) /0.09 8 5 /

ZEST /0.0/

.READCS,10) .K0RIF, KIN,K007 READC5,10) DC,LC, Duo,LUR,DLR,LLR

    • READ (5,15) DEN,TRAN, TIN 1,DTEMP,NTEMP
  • READC5,1C) RPF(1), TILT (1)

?* R E A D ( 5,10 ) SPF(2), TILT (2) -

.* ~ ~ E5ADCS2 d NCUR

    • READ (5,10) ( FLO F A C C I) ,1=1,h C U R)

- ~ ~~

~R E'A D ( f ,"10 )--# I N f,'T S T A R'T 70 Tl'EiT,~ lit I N C , W S T A R T , 0 W I N~C

    • READC5,10) FINC1, FINC 2

~

i* R EA D ( 5,~2 0T sPitTTN'R E'F U L

  • 10 FORr.AT(6F12.5)

- ~

  • ~ 15 f0W l'TC4F12.3,I6)
    • 20 FOR*AT(1216) a~; 2;;;;a L----~;----
7. - C'2---
~~J !---~;;; m - ---------- ;Z T--
    • C ~ SET CORE POWER FRACTIONS FOR WHICH CALCS. PAY BE PERFORMED
  • C AND CONVERT UNITS

'.* C-------------------------------------------------------------

  • P F R A C (f) = PI N C

?* Do 100 I=2,NT

  • P F R'A'C (I ) iPTRTCT!rf )TPTN C
  • 100 CONTINUE
  • DCF=DC71Z.
    • LCF=LC/12.

~ -

.** DURF= DUP /12.0

.'* ~ - -

LURF=LUR/12.C - ~ ~ -..- r.

.* ~~ ~DLRF=DLR/12.0 -

~* LLRF=LLP/12.0 _

fe AREA =PI*DCF**2./4 0 i . + . c-------------------..-----------------------------------...... ... ..

~

C START OF LCO 4.1.9-2 CALCUALTION

.C INITIALIZE REGION TEMP RISE LIMIT TO A HIGH VALUE S4

. - . _ _ _. _ _ _ . _ _ _ . _ _ _._-__._m-..___ . . _ . . - . _ _ _ _ - . . ,. - . .

t. _ _

't G R 7 9.191/ #

51* 00 110 I=1,NT 52* DTMINCI)=1000 0 __

?* 11C CONTINUE .

.io NMAX=0 55* TIN = TIN 1_-

'b* C----- -----------------------------~~-------------------------

'7* C LOOP OVER CORE INLET TEMPERATURES

.~~* C--------------------------------------------------------------

  • 00 120 ITEMS =1,NTEMP
0* T_I N p = TI N + 4 6 0.

tio PRES = DEN =R*TINR/144.0 i?* D ELT R (1) =TST A RT

~

030 NUM*1

.Lo c___.____.....___._-_-___......__._..__....__.____.___._..._...

150 C LOOP OVER CORE POWER FRACTION UNTIL POWER / FLOW =1.05 6* C--------------------------------------------------------------

.'* DO 130 I=1,NT

.E* NITERCI)=0

=0 -NCHK =0

'* 0 DJ.F E_C T C I ) = C . 0_

1* C--------------------------------------------------------------

~2*-v_._.Cc__...

_ I TE.P A T;E. 0.N . R_E G I O N T E M P RISE T0. FIND CRITICAL PRESSURE DROP

~40__ __140,NITERCI)=NITERCI)+1 i* C---------------------------------------'-------------------

~i* -C C ALCULATE REGION- PR ES SURE CPOP FR0" THE AVERAGE POWER CHANNEL 7+ C----------~~------------------------------------ -------------

~S*' ~

DTC=1.0154*DELTP(I) E 1.0154=0 0502/0.9358 ~'

~

'* . ~ ~~ ~*( 1.0-S o R T ( 1. 31'i-li 2 6 0 0.0'/ D EL T A C I ) *

  • 2.) )

IO*' FLOW =P8 775.C* P F R A C(I) *RP F (2) / DELTR(I)

.1* . * (17'0-56ITT6. 91 E-3 +2 5 65. 8 9 / D ELT R ( I) * = 2 . ))

12*~~ I F C FLCW .GT.O.C. AND.DT C.GT .O.0) Go To 150 1!* D Ei.T R (I ) =(f!O' '

??* DELTR(I+1)=TSTART 150 NUM=NUM+1

.t* ____GO TO 13C

'o 150 VWIN= (F LOW / AR E A) **2./ (2 0*32 2*D EN* 3c00.0** 2. )

-** ~~

TEXR=DTC+TINR

~ ~~ ~

,i do X"U=A*U*TINP**M

-Je^ ~

'RYIN=4.0* Flow /(PI*DCF*xPU)

~

1* X"UT4~MU*TiiR***

-?* RYEx=4.0*FL0k/(PI*DCF*XMU)

'!* LIN=1 34* LEX =1 75* IF(RYIN.GT'YPifd LIN=2.

fo I F (R Y EX .GT.TP AN) ~- lex =2 -

!?* T U R = 4 .7 EAT (~L'I N )'* R Y f M * * (-e 0 ( L I N )V(EOR F'/ D U R F )

    • IF(LIN.NE. LEX) GO TO 160 1gu O~UsTEXR/TINR 23* TC=4.0*A0(LIN)*RYIN**C-e0(LIN))*(LCF/DCF) ~

~~

l .to . 'T( T O'*~*'(V* 8 C ( EIN ) f27(D -T.~ 0)R(T AuT 70 1 )'*TMii!io FL'i NT+'2.'OT T-~

l .2* GO TO 17C

-!* fEC CONTYNDE-~

40 TTRAN=((4.0* FLOW)/(AMU *TRAN*PI*DCF))**(1.0/M)

_?* -

L C FV(TTR A N -T I h R ) / ( T E X R -T IN R )

  • L C F i
f* LCF2=LCF-LCF1 ~

~~~~

~7*

TAU =TTRAN/TYWR

,_ ._,.,,,_,.__._,_,,__y, _ . . , , , _ , , , , . _ - , , , , . . , _,

LA"B 907 '212 / A

'!E* TC1=4.0*A0(LIN)*RYIN**(-90(LIN))*CLCF1/DCF)

~C* . __ *(TAU **(**E0(LIN)+2.0) -1. C) / ( C T A U -1._0] * (M *B 0 ( LI N)_+ 2 0 ) )

  • ?* TAU =TEXR/TTRAN .
  • 1* TC2 = (TTR AN/TINR)
  • 4.0* AC(LEX) *TR A N** (-P0(LEX)) *(LC F 2/DC F) . ____ ___ .

~

2* . * (T A U** (**BC (LEX )+ 2 0) -1 0)/(CTAU-1.0)*(M*B0(LEX)+2.0))

  • ?*

TC=TC1+TC2

  • 1* 170 TAU =TEXR/TINK

'f* _ ._ __ T L R = T AU + 4. 0

  • A C C L E X ) *R Y.E.X,* * (-B C ( L E X ) ) * (L L R F / D L R F )
  • $*_ T R E S T=2.C + (T AU-1,0) +K IN+K OUT
  • T AU 7e TGRAV= DEN *CLURF+LLRF/ TAU +LCF*ALOGCTAU)/(TAU-1.0))
  • i' DP(I) =VHIN* (TUR+T C+TLR+TR EST )-TGR AV
  • ~* c--.------.........--....--..............-- .....--...........
!* C CALCULATE FLOW RATE IN THE CRITICAL CHANNEL
1* C-------------------------------- -----------------------------
2* ~~~~ f2=1.0 I?*. .. . F I N C = FI_N C 1 Le 220 DPCRSV=1.CE*

~!* 2?C FLO(I)sFLOW/F2

50 ' DELTC CI) =DTC* TILT (2)*C.9358* F2
  • o , . _ V H I N = ( F.L..C.( I ) / A R E A ) *
  • 2 . /_ ( 2 . 0
  • 3 2 2
  • D E N * ! 6 0 0 0 *
  • 2. )

~;*

- TEXR=DELTCCI)+TINR,, __

    • X*U=APU* TIN 8**M_ , , , . . _ , _ , , _ .

t :Te RIYINCI)=4.0*FLOCI)/(FI*DCF*XMU)

      • XPU=AFU* TEX **** _ _ _

!?* REYEXCI)=4.0*FLO(I)/(PI*DCF*XPU) .

-__ _ . . _. . L I

{* . . _ - _ . . . . _ . . . _ _ _ _ _ _ ..

,  ?!* ~~ IF(REYINCI).GT.TRAN) LIN=2 ~

fo~ IF(R EYEX (I)' .GT.TR AN)'LEXE2 -

17* TUR=4 0*A0(LIN)*REYINCI)**(-E0(LIN))*(LURF/DURF)

IEe IF(LIN.NE. LEX) GO TC 200 20* T AU=T EX R /TINR

-7* Tt =4. 0* A CIL I N )

  • R E YI N ( I) * * (-B 0 (L IiUF(ECTTD C F)

- ** . * ( T A u * * ( P.* B 0 ( L I N) + 2. 0 ) -1.03 / C CT AU-1.0) * (M *s0(LIN) +2.0))

-2* -G0'T'0 210

-?* 200 CONTINUE Lo TTRAN=((4.0*FLO(I))/(AMU *TAAN*PI*DCF))**(1.0/M)

-5* LCF1=(TTRAN-TINR)/(TEXR.TINR)*LCF

~ '

-40 " LC F 2 = CC F'-L CY T

'e

. T AU=TTR AN/TINR I

-?* TC1=4.0*A0(LIN)*REYIN(I)**(756(LIN))*(LCF1/DCF)

.:* . *(TAU **C"*POCLIN)+2.0) -1 0) / ( CT AU-1.0)

  • CM*B0 ( LIM) + 2. 0))

!!* T Au= TEX R /TTR AN I"* TC2=(TTR AN/TINR) *4.0* A0(LEX) *TR Ah**(-e0 (LEX)) *(LCF2/DC F) -~ -~

l *2+ . * ( TA U * * ("TBC ( L E X F2.0 ) -1. 0i/ GHGIG0') * (M

  • a 0 ( L E X )T270 ) )

53* -

TC=TC1+TC2 I4* ~21'0 T A u =T EX'R /T'IMR

!5* TLR =T AU

  • 4.0* A0(LEX) *R EY EX (1) * *(-BOC LE X))* (LLR F/DLR F)

~

I6* TREST =2.G*(TAU-f.0)+ KIN +KouT* TAU

!?* TGRAV= DEN *(LURF+LLRF/ TAU +LCF*ALOGCTAU)/CTAU-1.0))

5;o c---....... ..........--...............'...

DPCRIT=VHIN*(TU7+TC+TLR+ TREST)-TG AV

~ ~

~' '~~

  • C CHECK ON FLOW RATE'CONVER'GENCE~~ '~~

c......---.................---........--..........----.....

~

12* I F ("D P CR I T.L T. D P fI) ) GC TO 240

-3* IFCDPCRIT.GT.DPCRSV) G0.To 250

  • ----- - ~ ~~~~~0PCRSV=DPCRIT' gweww,r--y w-- - r--,.--.,,.w:--e- yyy-y--,-.g

r LA*B y 701.0 /

-Yo F2=F2+FINC

fo . GC To 23C......_.. .

'o 240 IFCFINC.LT.FINC1) GO TO 260

  • 10- F2=F2-FINC ~ - ~ ~ ~ - -

-io FINC=FINC2

~!o Go To 22C _

      • C------------------------------------------------------------ -

'I* - ~ ~

C CHECK ~ON CRITICAL CORE PRESSURE DROP CONVFRGENCE ~ ~'

Io C ~GO TO NCHK=?~TO'3E"S6RE"T0' SKIP ~~ STEP' INCREASES IN PRESSURE

~40 .C DROP DUE TO TRANSITION TO TURBULENT FLOW IN THE UPPER AND

~50 C LOWER REFLECTORS

' to C-------------------------------------------------------------

'70 ~260 IF(NITER (I).EC.1) GO TO 250

' *ta ,_ Ir( Dr (I) .0E.Dr3 AV. At:D . [_a g gil) cg. rtos AV) NCHy-NCHK*1

'0 I F (N C HK . EG.3 ) GO TO 180

o 250 FLOSAV=FLO(I)

'. ' o DPSAV=DP(I)

10 ._ _

DELTRCI)=DELTRCI)-DTINC

!* GO TO 14C

o C---- ----------~~---------------------------------------------

fo C IF CONVERGES ON FIRCT OPPORTUNITY, MAY NOT HAVE STARTED it* ..__..C o c......s____..__.__........__......_____-.ME.._,._..__...._

..._THE I T.._E. _e..A T. I.O .I_ N. N. _. T. H. .E . U.N.S T. A B. L. E_ _ R. .E. G..I

'To 1?C IF(CNITERCI)-NCHK).GT.1) G O T O 2 7 0 - = _yme.us _ =

  • D ELTR (I) =DELTR C I) +3.0
  • DTI NC + 0TN EW '

i - **

1 NITER (I)=C_

    • NCHK=C
  • 2e ~~~

GO TO 140 To 270" DEFECT (I)= FLOW /FLO T)~'

  • o D ELT R (I + 1) =D E LTR (I) +D TNEW

~

50 C fS L = DE L T R C I) /7 f0.0
go C-------------------------------------------------------------

~ ~

'o'

~ C" 6EC'K~ IT P OW E ii/ Ff 0sT1.0'5-

3o c__...__._____...c..____.._______________........ .____. __...

i :00

~~

IF(CTSL.LT.1.05) Go T o '28'O

!* D ELTR CI) =710.0*1.C5
  • 10

. IYEM=I

o C-------------------------------------------------------------- ~ ~
To C' PER PSC REQUEST, TAKE LIMIT CUT TO ~'T A ~ CEXST 15%~P0EER .
o C--------------------------------------------------------------

~ ~

~

  • !*"-"' ' 2 90 I F ( P F R A"C ( I T E M )'~.'G E . 6.~1499 9 ) GO To 300

.50 ITEM = ITER +1 _.

'o NUM=NUM+1

?o DELTR CIT EP)=710.0*1.0 5

~

'. 7 0 GO'To 29~0~

  • o 2!0 NUM=NUM+1
  • t o' 130 CONTINUE
  • 20 30C CONTINUE ~
  • !* MXITEF.=M AX0(ITEM, EXIT EM)
  • Lo . . .. I F.( N.P._R_T ._.E C . 0_ )_.G. .o 70 3.20

. __ . = __

1 l '50 C PRINT RESULTS FOR EACH CORE INLET TEMPERATURE e c....__ .. ...............__....__...... . .

  • !* WRITE (5,25) TIN, PRES,TRAN TYN = 'TY3.1/' PRES = ' , F CIT' REYTR = ' ,F5.0/7)

--~ ~

  • TS FDR'M'AT(1W17'

.* I1=1 '

~~~

010 17=Pf40TSciWOM)

..,,,-, .'.. , ,,n...- ~ ~ ~. . .- .- - -- - - - - ~ ~ - . - - - - - - - -

~~__ . ; ;;; . .._ :_ ~ _ ---

../

  • n n v o c cs 9 ,

, LAMg

.r U e h i s af /j 22o 310 WRIT E(6,3C) (PFRAC(I),DELTR(I),FLOCI),DELTCCI),REYINCI),

23e __ . R E Y E X ( I) , D E F E C T ( !hD D C I) ,N I T E R (I. ) ,.I = I1, I 2 ) . _ . _

. 40 70 FOR*AT(' PFRAC DELTR FLOW DELTC REYIN REYEX DEFECT' .

'. 5 o .- __,.",. D P_ N IT E R "/_( F 7. 3_, F 3.1, F 2._3; F8a2 F S . 0, F_8 . 3 ,

260 . F9.3,I6)) '

70 11 =I1 +5 0

'. !

  • IF(11.GT.NUM) GO TO 320
So 12 = M I N0 ( 12 + 5.C.,.N U_M ) _

200- WRITE (6,35)

10 35_ FORMAT (1H1)

?20 GO TO 31'c I30- 320 CONTINUE 340 NMAX= MAX 0(N=AX,NUM)

I$o c..........--...--.---..-- .. ..........---..........--........

76o C UPDATE TEMP RISE LIMIT IF RESU TS L FROM NEW CALCULATION 370 C (CORE INLET TEMPERATURE) ARE MORE RE

eo C - - ------- - -- - - - - ------ ---- -- -- --- - -- --- - S T R I ---- C T I V--------------

E

  • 00 330__INUM=1,NUM 00 I F (C E LT R (INUM) .GT .DTM IN C INUM) ) GO TO 330

-10 DTMIN(INU')=DELTR(INUP) 20 TINMIN(INUM)= TIN

.?* 33C CONTINU_E, ,_ _ __,

.40 120 TTN= TIN + DTEMP

.c* C--------------------------------------------------------------

~

.t* C bRITE RESULTS ON FILE FOR PLOTTING

.e c..--~~.----....-.---.......--....--...........----.....

.?e NPAN1=NMAX+1

,9* WRITE (12,&O) NP LX1, ZE RO,( PF R AC C LP),LP=1,N" AX)

' ! ?o- W8ITE(12,45) NMAX1,ZEF0,(DTMINCLP),LP=1,NMAX)

~1* 40 FORFAT(I6/(6F7.4))

  • 120 45 FORPAT(16/(6F7 1))

??* C-----------------------------------,------------------------- ~

I&o' C PRINT FINAL LIMIT FOR LC0 4.f.9J2 iso C-------------------------------------------------------------

360 11=1

'70 22= PIN 0(50,4UM)

~~

~

.' !

  • 3 4U EFITEl6730I (P F R A C (LP ),0TPIN CL P) , TI NM IN( LP) ,LP=I1,12)
00 .-- 5 0. F O R M A.T ( 1.H.1, ' PFRAC DTMIN

. -- .. T I N" / ( F 7..3 , F 9.1, F S .C ) )

10 IFCI1.GT.NUM) GO TO 350

~-~

.2e s ~ I2=~~MIN 0 Ci2i507tiiTMY~

,!* GO TO 340 240_ 3TO CONTINUE

so C-------------------------------------------------------------

~ ~

. $ 0- C S'TATT~TF~LC"0 C C971 C A L C tfAi.T10N

70 C INITIALIZE CIRC FLOW FRACTION TO ZERO

.oo C-------------------------------------------------------------

90 00 360 !=1,NT _--

'Op . WFMAX(I)=C.0

'1e 360 CONTINU'E

~

'20 .

NM A WO

  • ! * '* TIN = TIN 1 A o ; , ~, c--........- .............---- -......_.._.... --.....--- .

'f*- C LOOP OVER CORE INLET TEMPERATURES I.

t o_ g..-.........---....--..--.....--....---.....---......-

* DO 370 ITEMD=1,NTEMP

~ ~

___ _. {

'?* T ItfR = TI N4460. -

- S*B

. . -- r 1

LA"B p{ e q OdsJay 21~,f A

'* PRES = DEN *R*TINR/144 0 -

i'* WFR A C (1 ) =WST ART

    • NUP.21 , 1 ,
    • C----------------------------------------------------~--------

~ ~

?* C LOOPUVEii"C0RE P6EER~ VRATTio'N"IIETYL ~P CW E R / Fi.0 E=~1. 05 ^

o -

c.--....---...--........--- ......--... --.....--....--.......

f* 06'330 Is1,*!T .

t* NITiR CI) =0

'e NCHK2C

!* DEFECT (I)=0.0

  • C--------------------------------------------------------------

~!* C ITECATE ON CIRC FLOW FRACTION TO FIND CPITICAL PRESSURE DROP

. ie C------------------------------------------------------- ------

!?* 390 NITERfI)=NITERCI)+1

- :o c.........-------..................-..... .---- .....-------

'* ____..C_. C. A,L C U L A T E C O R E PRESSURE DROP FROM THE AVEPAGE POWER CHANNNEL

?* C-------------------------------------------------------------

t* F LOW =114.74*W FR AC CI) * (1 0-0.0831)

- '* DTC=7t5.62*PFRACCI)/WFPAC(I) a 785.62=735.18/0.9358 i* . * ( 1.0-SQ R T(1. 31 E-4 +2.2 2 E-4 * (W FR AC (I) /P F R A C C I) ) **2. ))

~

. :* I F ( D T C. G T .1 0 ) G6'Y6~400

    • WFR AC CI) =1.0 .
    • WFR AC CI+1)=WSTART 2* AUM=NUM+1
  • Go TO 3PC -
  • 4 C0, VMI N= (F LCW/ A R E A) * *2./ (2.0 *32 2* D ENe 3600.0*
  • 2. ) __ _

- ~* TEXR=DTC+TINR .

f* XFu=APU*TINR**M .

    • RYIN=4.0* FLOW /(PI*DCF*X=U)
!* ~~~

XPU=A=U+TEXR**M

    • RYEX=4.0* FLOW /(PI*DCF*X=U)

?* LIh=1 g . ._ _ . -

, '2* IF(RYIN.GT.TRAN) LIN=2 ~

'?* I F ( R Y EX .'G T'.T R i N ) LEX =2

~

TUR =4.0

  • A0(LIN) *R YIN *(-e0(LIN)) * (LUR 5/ DUP F) l  !* I F ( LI N. N E .L EF ) GO TO 410
  • to TAU =TEXR/TINR

'o T C = 4. 0* A C (L'IN) *Tf!N ** (290 (LI N )) * (L'CT/ D &Tl so . *(TAU **(F*B0(LIN)+2.0) -1.C) / ( CT AU-1 0) * (M*e0(LIN)+2 0))

  • G0 TO 420 410 CONTINUE -

1* fT R 5 N = ( ( 4 0* F LO W) / ( A M U* T R AN *P l*D4E)-) ** ( 1. 0 / M) 7-

.2* LCF1=(TTRAN-TINR)/(TEXR-TINR)*LCF

-~

!  ?*' LC F 2's LC F ;LC f1 l*.10 TAU =TTRAN/TINR - ~

!  !*~ T C 1 =4 .~0 '* A 0 ~( t'. I N )

  • R Y I N * * (Te 0 (I. I N )WC CC ff/ YCTI l;to . *(TAU **(**B0fLIN)+2.0) -1.0) / ((T AU-1.0) * (M *B 0 ( LIN ) + 2. 0))

.'e l T A u = fTX !f7ffit A N i II* TC2=(TTRAN/TINR)*4.O*ACCLEX)*TRAN**(-B0(LEX))*(LCF2/DCF)

' ~ -~

, ".* . * ( T A d * * ( M

  • B OTLYX')T2'. 0 )71. 0T/ ( (T AD -1 ' 017(p.
  • e 0 ~( L E X ) + 2 . C D

"'o TC=TC1+TC2 ~

l?**

~ ~

~420 TAU =TE'XR/TIVR

,.2* TLR= TAU *4.O*A0(LEX)*RYEX**(-9C(LEY))*(LLRF/DLRF)

~

!*?* T R'ETT alTC * ( T A U-1. 0) + n 6R I F +K I N +K0 U T

  • T A U l
  • ie -

TGRAV= DEN *(LURF+LLRF/ TAU +LCF*ALOG(TAU)/(TAU-1.0))

.3*~~~~'"~~ C P (Il4 H IN* (TUR +T C+T'LR +TR EST )~-TGR AV~

59

' C'

( d

,s# [' ,

, _. . _.B .

4 0 7 919 / A

'- ~~~

, LAPB If* C-------------------------------------------------------------

}7*:*

C C

CALCULATE FLOW _R A.T.E _ I N T H E C P I T I C.A L,, C H A N N E L

~T* ..Fi=1*0.__

FINC=FINC1

    • 51C DPCRSV=1. CEC 2*'~~ S CO 'F L'0 ('IT= F L OW / F 1 -

_ D ELT C (I ) = D T C

  • R P F (1. ).* T ILT (1)
  • 0.93 5.B
  • F1 _ . _ .

V HI N= (F L O (I) / A R E A ) =

  • 2./ ( 2.0
  • 3 2.2
  • DE N* 36 00.0** 2. )

30 T E X R = D E.L T C ( I .)_+_T I N R

-f*.

X'U= AMU *TINR**M

- '* REVINCI)=4.O*FLO(I)/(DI*DCF*XMU)

.?* XMU=A*U*TEXR**M

  • R EY E X (I ) = 4.0
  • FLO (I) / ( PI
  • D C F
  • XPU)

!* LIN=1

?* LEX =1

'?* IF(REVINCI).GT.TRAN) LIN=2

?* I F ( R E YE X ( I ) . G T ._T R A_N ) LEX =2 1* TUR =4 0

  • A0(LIN) *R EVIN (1) * *(-B0(LIN)) * (LUR F / DUR F)

.!FCLIN.NE. LEX),,,G O ,T_0,,j 5 0 to tau =TEXR/TINR

'o T C=4.C. A C CLIN' = RE VIN ( I) * * (-P C (LIN)) * (LC F/ D C F)

' ~~ ~ ' ~ '. " e ( T A'U * * ( *

  • e 0 ( L I N ) i2'. 0 )'T1~. 0)' / ( t Tid-1. 0 )
  • YMT5 0TLI N ) + 2 0 ) )

~ - -

i* -

  • GO TO 460

~* 450 CONTINUE

~

'o "~~" ' ~

TTF AN=( C 4 0* FLO CI)) /( AMU

  • TR A N*PI*DC F))**(1.0/ M)

.!* LCF1=(TTRAN-TINR)/(TEhR-TihR)ilCT~

?*~' ~

LCF2=LCF-LCF1

  • TAU =TTRAN/TINN"

~~

18 f* TC1=4.O*A0(LIN)*REYIk(I)**(-e0(LIN))*(LCF1/DCF) to . * ( TA OUT*

  • 0 f(~L Diff270 ) -1.0T/ITT Au-1 0 ) * (M *8 0 ( LIN) +2. 0))

'o TAU =TEXR/TTWAN

~ ~'

,yO' ~ - - -~

T C 2 = ( TT R'A 4 l'I'A R )T4. C

  • A 0TCEWfR A N * * (-e 0 C L E X T) * ( L C VT/ D ff')

.o:

. *(TAU **(**B0(LEX)+2.0) -1.0) / ( CT AU-1.0) * (M*B0 (LE X)+2. 0))

  • !* ~~ TfuTC'1+TC2

'** 460 T Au=TEXR/TINR

'I* ~T ~T

'L RY ~i6~*~4. C

  • k O ( L E X )
  • R E Y E X (I ) * * (-B O C L E X ) ) * ( L LR F / D L R F )

'?* T R E ST =2. 0 * (T A U-1. 0) +K OR I F +K I N +K0UT

  • T A U
      • . T G R A V =D E N * ( LUR F +LLR F / T AU'+ CC F
  • AL'0G (T'AU ) /lTTU-1.0 f)

'i* DPT 0T =V HIN * (TUR +T C+TL R +TR EST)-TGR AV

~

.f o~ ~ ~ ~ DPC RITE D FT0f'-VHIN MOR'II'

'o C.-- ..._____._____.___......... .......____.....___. ....____.

, 'I* C CHECI ON FLOW RiT E CO NVERGEN CE i

-;* C----------------------------------------------------------

?*~-~ ~ I F ( D P TO T .L T . D P'( I )T G O TO 49'O 9* IF(DPTOT.GT.DPCRSV) GO TO 470 I *~ ~ -~~DPC'PSV'=DPTOT~

. !* F1=F1+FINC ~

GTT0 TOO 190 490 IF(FINC.LT.FINC1) GO TO 480 t* ~ F 1~= F 1 -F I N C~

~* FINC=FINC2

?* 'G 0 T 05'1 C-

.g

_~ e ,.... .

?* C CWE'CK 0N CTITYt'ALi C6fif PRTSTOF("TilWTMVYRGENC E

    • C GO TO NCHK=3 TO SE SUPE TO SKIP STEP INCREASES IN PRESSURE

~

~

-I* C" ~ DROP ~ DUE 70 TR ANS'ITION TC~TUReUCENT FLOW"IN THE UPPER' KND

[d>

% W *

,g, .l e.

r 907212 / A LAOS

~I0 C LOWER REFLECTORS

  • C-------------- -----------------------------------------------
!* 4 'O I F(N ITE R (I) .EC.1) GO TC 470 -

' ~

fo IF( D P CR I T.GE.DPS AV. AN D.FLO(I) .GE.FLOS *V) MCHK=NCHK+1

~ ~

7e I r' ( N C' WK'. E C . 7 ) GO T0'430 To 47C FLCSAV=FLOCI)

20 DPSAV=DOCPIT -
?o WFRACCI)=WF8ACCI)+DWINC

.To GO TO 39C

?* C-------------------------------------------------------------
30 C. IF C O P:V ER GES ON FIRST OPPORTUNITY, 'AY NOT HAVE STARTED

!&o C THE ITERATION IN THE UNSTABLE REGIME

!!* C--------------------------------------------------------------

t* , _ _ 4 3C IF ( CNIT E R (I)-NCut) . cT .1) Go To !20

!7o WFRAC(I)=WFRACCI)-3.C*DWINC-kSTART/2.0

20 I F (W F R A C CI) .LE.O.0) h FR AC (I)=DWINC
~o NITERCI)=0
o NCHKs0

. *10 .G0 TO 390

  • 20 5 2 C D E F E C T. ( I. ).= F LO W/.F.L O. ( .I)-

Io DPT0T=APAX1(0.0,DPTOT)

'*.___... . _ - .._ X P R =4 C B . C
  • S Q R T ( D EN
  • D P TO T ) / F L O W . . . .
  • !o X"R = APA X i (1.0, X*R )
  • $o IF(NREFUL.NF.0) D E F P E F (I) =( 4 9.517 5 + XM o ) /5 0. 5175
    • o W FR A C (I +1)=WFR A C C I)-5.C*DWINC
  • ?e CTSL=PFR AC(!) /.W FR AC CI)
  • o P FP A X =P F R AC (FXITEP)-1.0E-5

--o C------------------------------------------------------------- '

51'o ' " ~ C CHECK IF POWER /FL0n > 1.05 I20 C__ TAKE LIM IT 0_UT TO AT LEAST THAT R E.C U I P_E D FCR LC0 4.1.9-2

!!o . C----------------------------------------- .

Ito IF(CTSL.GT.1 05. AND.P FR AC CI) .GT.PFF AA) GO TO 530

!!o NUM=NUM+1 Ito 380 CONTINUE '

17o 5?O CONTINUE

!?o IF(NPPT.EQ.C) GO TO 55C

~

.:o C'~'-------------------------

3:e C PRINT RESULTS FOR EACH CORE INLET TEMPERATURE ~ " ~ ~ ~

!10 C--------------------------------------------------------------

320 WRITEC6,25) TIN, PRES,TRAN

? ! *- ~ ~~~ 1 1E1~

Ito 12=MINOC50,NUM) 35o 540 hRITE($7I$) (PFRACC1),WFRAC(I),FLOCI),DELTC(I),REYINCI),

~60 . R E YE X C I) ,D E F ECT (I) , D P ( I) ,N ITFR (1) , DE F R E F C I) , I=I1,I 2) 270 5$' FORPA1(" PFRAC WFRAC FLOW DELTC R Ef!N ' REYEX--DEFECT~-~'

I** . ,' DP ~ NITER DEFREF"/(F7.3,2F8.4,F8 1.2F8.0,F8 3, ~

! 3"o . F f . 3i ! 6','F 9'. 3) )-

l aCo I1=I1+50

' fio IF(I1.GT.NU') GO TO 550

-20 12=MINO CI2+5 0,NUM)

~ -

-Io W R1T E (iG3 5')-

1

  • GO TO 54C -

50 550 CONTINUE

.to NPAX=PAXC(N"AX,NUM) 70 C--------------------------------------------------------------

L'o C UFDATE CIRC FLOW FF AC TION LIMIT IF RESULTS FR OM NEW CALCULATION a io' C~~ (CORE" INLET T EMPE' RAT'RE) U A'RE"MORE 4ESTRICTIVE bl

- . . - - - --..-.--,,.-..,r.-- --..-.---.a.---.----. .

- nm. ,~e.n,.- - ,;.yy m ,-.y.,- y.--~ w

_ . _ _ _ . ~ - , . . _ . . . - - - . - - - - - .-

. . _. _/ .-

907919/A - -

LA,,

30* C--------------------------------------------------------------

IT*. . _ _ _ . . _ DO 56.0 IhuM=1,NUM -

[* I F (W F P A C (INUM) . LT .'W FK AX ( INUF ) ) GO TO 560 .

,  !* WFPAX(INUP)=WFDACCINUF)

~4* TINMINCINUM)= TIN

! !,* D E F P ( INp F ) = t' E F R E F ('I NU P)

"t* 56C CONTINUE -

7* .___

37C TIN = TIN +DTE*P

  • ~ C---------- ---------------------------------------------------

70* _C_ W P II E_ R E S U L T_$_0 N__ F_.I L E._ F_0 R F L,0 TT I N G

, ; *- C------------ '-------------------------------------------------

1* NwAyi=NmAx+1

-?* W R'l T E (12 ,4 0 ) Nw a X1, Z E RO , ( P F R A C (LP) , LP =1,NP A X)

?* 0 0_5_7 P_ I.C U_R = 1, N C u p

, L* DO 58C LP=1,NPAX

-?* W FR _( LD) s FLO F A C (! C_UF )

  • W FP A X (LP) to hFF.MAY=PFRACCLP)/1.C5 7e W FR (LP) = AP AY1 (W FRM Ar,W FR (LP))

i* SPC Cct.TIFUE

- * * ~ WRITE (12,40) NPAX1 ZERO,(WFR(LP),LP=1,N'AY)

~- -

7, - - ~570 CONTIFUE"

~10 IF(NREFUL.EC.C) G0fTO 600

'Io DU 610 ICUR=1,NCUR

'?* 00 620 LP=1,NFAX

'i* W F R (LP) = F LO F AC C ICUR)* WFM AX(LP)* D E FR (I)

~!* ~ ~ ~ ~ ~~~ WFRPAY=PFDAC(LP)/1.C5~ - ~

te W F'F ( L p) = A" A Y1 (W F AFA X', W F # C LP ) )

'* 620 CONTINUE ~ ~

e ,--~ ~ ~ ~W R I T E (12 5 Ci) NMAX1,ZERO,(WFR(LP),LP=1,NPAN)

~I* 61.C_C.O.NT,1,Np,E

( ....  :* 600 CONTINUE c---------_--_----------------------------------------------

?* C PRINT FINAL LIMIT FOR LCO 4.1 9-1

'30 '

C--------------------------------------------------------------

~

-'* 00 590 LF=1,NMAX f* hFPPAy=PFRAC(LP)/1.05 f* k FS AT(~LM= A- A x1 ( W FR F A x ,W F x A x ( L.) )

'70 SCO.. CONTINUE

  • 12=pINOC50,NUM) ~ ~
:o ~6 70 W st I T E C6,6CTC P FI'4 C ( LP ) , WW F A X (T PTTTI NM is~(EPT, LP= I1,12)

(-t*

-20 6C FORMAT (1H1," PFRAC Ii=11+50 LFFAX TIN"/(F7.3,F9.4,F8 03)

?!* IF(11.GT.NU=) GO 70 640 ~- ~ ~~

10 12= FIR 0(I2+50TNUIQ

!* GO TO 63C

-~ - ~

$* 6l~C C0NTINUE

'78 END

\ ._

l i

l - '

l . .". .. , . , . .

1

\ .- . . . . . . .. . .....

. mumm e e 62

._ c_ __ _ _ __ _ _ _ _ _ _ _ _ _ _ __ ,

--,-n.,n =. - - ~ ~ ~ - - - ~m - - - '

,4 m-n w

._m u O

9 0

ATTACHMENT 3 SIGNIFICANT HAZARDS CONSIDERATIONS ANALYSIS

e SIGNIFICANT HAZARDS CONSIDERATIONS ANALYSIS Since the proposed amendment to LCO 4.1.9 serves to define new operating limits which correct for non-conservative errors and omissions in the development of the orignial limits, operation of the facility in accordance with the proposed amendment will not (1) involve an increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously evaluated, or (3) involve a reduction in a margin of safety. It is therefore concluded that the proposed amendment involves no significant hazards considerations.

1

"" Fort St. Vrain #1

  • Technical Sp:cifications n Amendment Basis for Specification LC0 4.1.8 Page 4.1-14 An unexpected and/or unexplained change in the observed core reactivity could be indicative of the existence of potential safety problems or of operational problems. Any reactivity anomaly greater than 0.01 AK would be unexpected, and its occurrence would be thoroughly investigated and evaluated. The value of 0.01 ak is considered to be a safe limit sir.ce a shutdown margin of at least 0.01 Ak with the highest worth rod pair fully withdrawn is always maintained (see LC0 4.1.2).

Specification LC0 4.1.9 - Core Region Temperature Rise, limitina Condition for Operation l Whenever core inlet orifice valves are set for equal region l flows, the total circulator flow rate shall be above the minimums l given in Figure 4.1.9-1 (at the appropriate helium density and l power level). Whenever the core inlet orifice valves are set at any positions other than for equal region flows, the measured helium coolant temperature rise through any core region shall not l exceed the limits given in Figure 4.1.9-2 (at the appropriate helium density and power . level).

If the measured helium coolant temperature rise exceeds the l allowable limits or the minimum total circulator flow rate is not available, insnediate corrective action shall be taken. If this corrective action is not successful within fifteen (15) minutes, an immediate orderly shutdown shall be initiated.

l When the reactor is aircady shutdown and it is necessary to t

l terminate the helium flow for short time periods, the amount of l thermal energy from fission product decay must be sufficiently l low to prevent the average core temperature from exceeding 760*F l during the period of no flow.

. .. Fort St. Vrain #1 3

Technical Specifications Amendment Page 4.1-15 Basis for Specification LC0 4.1.9 l The intent of this specification is to assure that there is an l adequate helium coolant flow rate through all core coolant channels, l particularly for low power and flow conditions. This is accomplished l by specifying either a minimum total circulator flow rate, or a l maximum core region coolant temperature rise for various thermal l power levels (including power from decay heat).

Very low helium ccolant flow rates may result in laminar flow conditions with resultant high friction factors and low heat transfer

. film coefficients and potential for possible local helium flow stagnation, which could result in excessive fuel temperatures.

l The minimum total circulator flow and maximum core region helium l temperature rise limits have been developed based upon a number of l conservative assumptions. The maximum column to region average power l peaking factor was assumed to be 1.61 which is consistent with LC0 4.1.3.

l The analysis for full density conditions assumed the maximum permissible

^

l primary coolant inventory of 107.5% specified in LC0 4.4.1. The analysis l was performed for each power level at a core inlet temperature of 100 F, l and then in increments of 50 F up to 750'F. The most restrictive of l these calculations at each power level were utilized to form the limits.

l Model uncertainties and measurement errors were factored into the l analysis.

l Even with the mactor shutdown, some helium coolant flow must be l provided to remove the heat from fission product decay. The flow must l

l l be sufficient to prevent the helium inlet temperatum from exceeding l 760 F to prevent damage to the reactor internals. If the flow is l terminated for short periods and the average core temperature does not l exceed 760*F, the helium inlet temperature will be acceptable when the l flow is resumed.

t

r p .

i -

s 1 . . .

1 iigure 4.I.9-1 .

.t 25

~

~

.,.g f p_

gg i ...::GE

. . / '

,;:)b 3 / diO.

o .

J / d-

't5 u

'y'$9

m s

_ ./

/ ,g8' O

~

107.Sr. HELIUM DENSITY t--

Z w 10

~

s' . ' k'f '/ M. S o ,- . . . ',g .- ... .. 80  % HELIUM DENSITY x -

y - , ,-~,'..

,.,,,i,-

, ,',/.-',f' t _. .- 60 N HELIUM DENSITY

,*. r. .

s

, ~ , ,'<j ---. 40 M HELIUM DENSITY

' ; ^

4 5

' _ j' f '/ ----. PRI SYSTEM PRESS < 15 PSI A

. /c ALL REGIONS IN

-$//"

/ PRI SYSTEM PRESS < 15 PSI A I l - '

ONE REGION ret 10VED g ao $ mo y .n 3

. . . . . . . . . . .,,.. ,,,... gggg 0 5 10 15 20 25 .a&Em (D O r+

PERCE'NT THERMAL POWER 7 ?+ S ~

M v, 4 0.373 (Reactor Press (ps i al / ICirc Inlet Temp (aF > 4Eill) ]

. M Helium = {*

-^

Density 0.86213 7.

2 C.

a. g v.

I

. r

  • 9 L%

Figure 4.1.9-2 800

^

_,s u 700 ,... ,,' ,-

e - ' / ,- ...,..

w p ggg

.s ,,, . , , .-

' . . . ,s,-

', . . < ' ',s ', ...-

w 500 m -

.s

,',./

H -

../ ,

.- .a*

x 4gg

/ /

,s..' <-

w '

x -

,/s'.s., ..,. ., -

i

/ ,i..

x W

3gg - ,- / -

S'

,/

s'/ ./,..'./

..... 107.SM HELIUM DENSITY W

t 7gg

'./ ) ', / ,..- '.. -

-.- - 80  % HELIUM DENSITY E -

,' /, . ' .- _ _ . 68 N HELIUt1 DENSITY k -

M xq 10 0-

~

i j f[i,;

I ,.

i

- . . - - . 40 M HELIUM DENSITY i

_ j I I  : PRI SYSTEM PRESS (15 PSIA l

, I .i . .

. I o .' v > _< n

@_ , f, I, ,e , , , , , , , , , , , ,

, , , , .Os

.a 8 n ,

fD O (D 3 "Y ct 0 5 10 15 20 25 .,&".m

  • o O ct PERCENT THERMAL POWER T'

"+ "'. -

u m, M Helium = 0.373 [ Reactor press (ps i al / ICirc Intet Temp ( F + 46811 R o3 E 4DS e itj 8.

6.86213 2 O

On C+

'ad. O 3

un

_ _ _ _ _ _ _ _ _ _ _ _ _