ML20202E952

From kanterella
Jump to navigation Jump to search

Proposed Tech Specs,Incorporating Min Helium Flow & Max Core Region Temp Rise Surveillance Requirements
ML20202E952
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 07/09/1986
From:
PUBLIC SERVICE CO. OF COLORADO
To:
Shared Package
ML20202E930 List:
References
TAC-52634, NUDOCS 8607150051
Download: ML20202E952 (18)


Text

_ _ _ _ _ _ _ _ _.

e Proposed Changes l

8607150051 860709 PDR ADOCK 05000267 P

ppR

Fort St. Vrain #1 Technical Specifications Amendment Page 2-9 l

2.23 Calculated Bulk Core Temperature l

The calculated bulk core tempera ture shall be the l

calculated average temperature of the core, including l

graphite and fuel, but not the reflector, assuming a loss l

of all forced circulation of primary coolant flow.

I 2.24 Core Average Inlet Temperature

)

l The core average inlet temperature shall be the arithmetic l

average of the operating circulator inlet temperatures, I

adjusted for circulator power input, steam generator l

regenerative heat loads, and PCRV liner cooling system l

l heat losses.

l 1

J t

l I

I i

Fort St. Vrain #1 Technical Specifications i

Amendment Page 4.1-14 i

Basis for Specification LCO 4.1.8 An unexpected and/or unexplained change in the observed j

core reactivity could be indicative of the existence of potential safety problems or of operational problems. Any reactivity anomaly greater than 0.01 Ak would be I

unexpected, and its occurrence would be thoroughly investigated and evaluated.

The value of 0.01 ak is considered to be a safe limit since a shutdown margin of at least 0.01 Ak with the highest worth rod pair fully 1

withdrawn is always maintained (see LCO 4.1.2).

i l

1 1

Fort St. Vrain #1 Technical Sptcifications AmsndmInt #

Page 4.1-15 a

LCO 4.1.9 CORE INLET ORIFICE VALVES / MINIMUM HELIUM FLOW and MAXIMUM CORE REGION TEMPERATURE RISE LIMITING CONDITION FOR OPERATION The total helium circulator flow or the helium coolant temperature rise for all core regions shall be maintained within the limits given in Table 4.1.9-1.

APPLICABILITY: Whenever the reactor is operated at POWER *, in LOW POWER OPERATION, or with the REACTOR SHUT 00WN ** #

ACTION:

a.

In POWER or LOW POWER, with any of the above limits exceeded, either:

1.

Correct the out-of-limit condition within 15 minutes, or 2.

Be in at least REACTOR SHUTDOWN within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> with the I

1 inlet orifice valves adjusted for equal region coolant flows within the following 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> and, if the applicable limits are still exceeded, initiate PCRV depressurization within the following 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />.

b.

In REACTOR SHUTDOWN with the inlet orifice valves adjusted for equal region flows, with any of the above limits exceeded, either:

1 1.

Correct the out-of-limit condition within 15 minutes, or 2.

Initiate PCRV depressurization within the time limits of Figure 4.2.18-1 of LCO 4.2.18.

i Up to the power levels for which limits are shown in Figures 4.1.9-1,

-3, and -5.

With the calculated bulk core temperature greater than 760 degrees F.

i j

i POWER includes operation greater than 2% RATED THERMAL POWER per Definition 2.10, LOW POWER OPERATION is per Definition 2.5, REACTOR SHUTDOWN is per Definition 2.14.

s

Fort St. Vrain #1 Technical Specificatiens Amendment #

Page 4.1-16 c.

In REACTOR SHUTDOWN with the inlet orifice valves adjusted at any other position, with any of the above limits exceeded, either:

1.

Adjust the inlet orifice valves to equal region coolant flows and be within the above limits within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, or 2.

Initiate PCRV depressurization within the time limits of Figure 4.2.18-1 of LCO 4.2.18.

=

ASSOCIATED SURVEILLANCE REQUIREMENT: SR 5.1.8 h

b $

i e

n.

~

Fort St. Vrain #1 Technical Specifications Acendment #

6 Pagn 4.1-17 Table 4.1.9-1 Region Orifice l Reactor Pressure l Limiting Loncition Position l Helium Density I

for Operation All regions set l Greater than 50 Ihe total helium ctreulator for equal region l psia, with l flow shall be greater than coolant flow"**

l helium density" l or equal to the minimum EXCEPT l greater than l allowable value shown in Up to 10 regions l 60%, but less l Figures 4.1.9-1 or 4.1.9-2.

may have their l than, or equal l

orifices further l to,107.5%.

l open.

l l

--~l 1

As above.

l Greater than 50 l The total helium circulator I psia with helium l flow shall be greater l density

  • less l than, or equal to, the l than, or equal l minimum allowable value shown l to, 60%.

l in Figures 4.1.9-3 or 4.1.9-4 I

I All regions set l Less than or l The helium coolant temperature for equal region l equal to 50 psia.l rise ** through any core region 1

coolant flow.***l l shall not exceed 600 degrees l

l F.

Orifice valves l Greater than l l'heheffumcoolanttemperature at any position l 50 psia.

l rise ** through any core region (Adjusted for l

l shall not exceed the limit nominal equal l

l shown in Figure 4.1.9-5.

region outlet l

l temperature).

l l

l 1

Orifice valves l Less than or l The nelium coolant temperature at any position l equal to 50 psia.l rise ** through any core region (Adjusted for l

l shall not exceed 350 degrees nominal equal l

l F.

region outlet l

[

temperature).

l l

1 I

Percent helium density equals:

l i

175.12 x Reactor Pressure (psia)

(Circulator inlet temperature (cegrees F) plus 460)

Helium coolant temperature rise equals INDIVICUAL REFUELING REGION OUTLET TEMPERATURE minus CCRE AVERAGE INLET TEMPERATURE.

      • Equal region coolant flow with 7 column region orifice valves set between 8P. and 20P. open (or the corresponding position for 5 column regions).

e'

Fort St. Vrain 01 Technical Specifications Amendment 0 Page 4.1-18 ORIFICE VALVES ADJUSTED FOR EQUAL REGION COOLANT FL

>60% TO 1107.5% HEllUM DENSITY

>50 PSIA REACTOR PRESSURE 35 35

....~,.

...p-,.-...~,..........

4-e

... -.-......~ :~,: : : 4..-..-. ~. : : F..;....

4.

.....:~:~:_:

.-.e:

., r

+: - :: *: :: ::- :: : ': -': :- : ': ':-':* ': ':- ': +: :'. ':~I, h. :.:"

30-1

.a..

-.~...

  • ' - * - - * * - - 30 g

. p,. g.

p

.g.=p 9.ap t p g get p e-e[at=*t=9__.

...p

, e#. ".g.

p...

. p g t + t 9mte.4'-

' : : : : 2*

g

. p p.4 p..p.up e: : e: : p: p: )

: : : !)g : : : : : :
tea t

t

^ ^ : : :

-a

  • 6 * =.t**
f. 1,'

8d-3

. :. i G8 6.*.9*

e pak..p t.~9***6*Da* : ^

taal.a.t

. ^

W. !.. # :.

..-e- - 25 i

J pal

  • O 8-p..g.

(...p p p p.tw.p p

( :
: # : : : ij.fu..

r

.p p i p: :.f...

. 9 p..,...p p=:

.g

:._ #.. #g#. : :

p p..,

q,

p

.4...p

, p p: p: : : :

  • e op eu.p4...:
: : M, ; : ij p p p,

a,C M :. :

u p:

p; CE ga p..p.

p..:..:

e:. :

.g-- :

- p f,f:. : : : : : :

p p 4y ag y

.: :.:p.gp#:

=

.. e V. "f.

v

- :t T

g t t.,..

.p p.2. s-6***$

. t g.

p p..

5 T.

  • t ***6.**l*t ***

e

. p,,. e.=

..p..p..e.

4*..l.ed.:"/..y' :;

p...p..p.p., pea.t e e,: p:

.ne.pg a

u p,...

nn IE p.*p 6a. pep *.p.*

7 '

p p p p=6 6

6.**6*

9 te=.6

$ p p.

..:p..:. '..: :,. :

jg.

p..p

.p p

p..p p p em: e: : =:,: :

p p.

.p..p.

e p p

,a.

my

. p p..

.p..p.g p p p p..p..:

p: p:...g: e: t p,: p:.g: q: q:.

. p..pp 3..

..p

... 4....:...j:.. : /.

A p

.p......p

,_......:p..:...:..: :. p: :.: : : : :.:..:

o

.!.j.

^

p p

p..,.

.9

..e...g...g

.p..p :p..:p..p p p p..:p..p.

p...p pas e: e: p: p:

p.p..

...y

>w.t.g...p..p p..,=:...g:

g:.p:wp..p..p eme wga.ta.p p gu.:g-p:..

p yat p

$...a,.

p..p..e

.p...: pop.e...p. pus...:

...: :...:..:pue...p=p e
...p: : p:

p p p p o

p y=

..p p.. - 10 p...p p

.p p..g...p..:p..:pm:p...g:...:

p..pu p..p

~

E

.)m,.

p....

.p

.p

.p... u.:p..g...p..p..e...:..:e...:..:t p

p

ORIHCE SETTINGS p...p t 6 6.. 9

=.p.*9. D ee.9... pap..p......p:.. :

t.

.p i.i. *...i.i...i.i...i i.i...i i.i...i...i...i...i 8% (EOUR FLOW <# 20% OPEN 5-. :pe :~ ~*-hn- ~p ~*-* :* :

p..p*-.>..*

1 MORE CPEN

=5

..p...p.g... p.. p..p..:p..:p.. p.. p.. p.. p.. p..:p.. :p.. :

p."

2..M.0R.E..O.PE._N _._ _

..p... p

.... p... p......p..p..g...p..p..pa,.. 6........pn e...e p...6... p. p *..p *.t.** 4... p...p. l *.*p**pa..p.* h *.H.* p...-

3.4 o,r 5 MORE,OPEN D

.. p., p.. p..,... p.. p.. p.. p.. p.. :...:....:... :

p....

6 10 M.O.R.E OPEN

...p..p......,

0

\\

A 0

5 10 15

?0 25 30 CALCULATED CORE THERMAL POWER

( %, HEAT BALANCE)

'i l

FIGURE 4.1.9-1 MINIMUM ALLOWABLE PRIMARY COOL s---

m-

Fort St. Vrain 01 Technical Specifications Amendment #

Page 4.1-19 ORlFICE YALVES ADJUSTED FOR EQUAL REGION COOLANT FLOW

>60% T0 s107.5% HEllUM DENSITY

>50 PSIA REACTOR PRESSURE

~ 1h

.. -,.~,.-,,.

.,,.,...,.,...,.,.,......, :. : :,: : :.:, : : : :.,:,:.,:......I.

p..,.,

, r.

.,.g,,.,....

g.i 4 J. 4-i-yad-hai*hahaha*Pa*i*"y-i**,..

"!*"h**E". e..

-je j-ja.f. m{$

u.

u

  • f" _#._

e

. 4

&. 4 4.:

4. 4. 4-s-.

..,;,.a.

t M

i i ; ;;;

6 4 4**4***8.*4.*4*** 8**4**.6 4

8-4*4..

  • p-L6 I' 4.*4**-
.:.:.:.:..: : : : :....:. p.:,p*r ; ; ; :!

4**4 g

e 14 3

. p p

,...p p..p p..,...

1.,0 O

3-e=

: : : : : M
: L4 g p p...

,.-,-t-t-,-,.yeAe ~:

a r-w

1. g.... s J,-. -,-,-

-t-,-t g :..t-t.at-,

t - -

ee

. -w84.

:. 1.nspr : : : : :_ :

4 I" *?*

.*?

t

?" *!*t

  • # t >y*,-,"

...:..:. :.. : Dar"*T_.:.

  • * * " " " "N 4

s

: : : : : 1.e L P.

M+ : :

  • i i "D

"e'.~ r arar: :i g=:=.i i i i i i i &sei M i

  1. W"! +ii 4

~~

r-~no.

ta

r. -

f P":-

QE 4 4:.a g r

...a a.4 4 do e

.7 ;

i; ;J ; ;:

4. 4 4 4 4.gder!l..es* i u. 4 -.

s.

y g

4..

e==

p'..s...-

W

..p. e...b..y.,.4.sp. -...

g

.p-

- : : : i : i: : : : : :

. es.y.e.t**.

4

:.se.

-; e -

..: : :.: s: s: :

e-o s

1

..p

.p 9 p pu

..=,:.ap:

9 p..p...pu.p. : : : : :

g

M S-

,.u,-en r-s-.s- ::~::- :- ;:

-r~.- r-r -r-r-r- ~r r :=s:.,: s:- =h r

p, t :. p:..:..*. : ;....:.:...:

Q

_g.u.....----

!:.7.

.....op: : : :. :- :., :.: :

o

..........p:

>=

....p......

...p..p p..

6-

-.i.'..4 4 4 4 4 4.. 6*4 4 6-4 8

.E.F.

.F *t *t

.!

  • t.*~5 4
  • P F ' *!~!-

t.b.b 4 !.

  • b 4 **F *P.

F* P. *-P**

=6

s. 4 8444..5. 4. 4
4. 4.al 4 6 4 4 4.

p..b

).~6 w.b..b**p.. 6 b..b.. Hat *.* Da.6.*b..$

p...but **.9.*.6 *a6**.t

$ *6**.k temb H.

.E

.wp..t.nt.*be.co.p-p.*:6*.* babe *H be.6.. 6*..$...b b..

g-4

.w:p...:p.:...:p..:po:w.:

put-9...p...p...p
p. p.op: p:.. ORIFICE SETTINGS p

, g no ey

- ~

..J..........a:J.........................JJ...

81 ( E00AL FLOW < 20% OPEN

..............w.........u.....:...

1 MORE OPEN

...p:......*...*...............*..................*.......*......

g.

2

-..MOR.E.OPEN - -. -

-2 3.4 or 5 M0RE OPEN

4. 4. 4. 4....

=

=

~ ~ ~

. 4. 4. 4. 4. 4. 4. 4. 4. 4.

4... b..

6 10 M

-.O.R.E OPEN

..p. 9 ***6.. 6u.8. 4...p.

6...D. 4...p 8..

6.. 6. 4u.6*.4.*

0 0

0 1.0 2.0 3.0 4.0 5.0 6.0 CALCULATED CORE THERMAL POWER

( %, HEAT BALANCE) 1

' FIGURE 4.1.9-2 MINIMUM ALLOWA8LE PRIMARY COOLANT F LOW (EXPANDED RANGE) i

Fort St. Vrain 01 i

1 Technical Specifications Amendment 01 Page 4.1-20 ORIFICE VALVES ADJUSTED FOR EQUAL REGION COOLANT FLOW 160% HEllUM DENSITY

>50 PSIA REACTOR PRESSURE 35

- 35

.........~..-*.................-.m.m....

.r.........

....... g....- -.m:.: m:....:p...-..-.... :.: :.:..;..

p..p.

p..p..p..p p..e*a9.*.p*4m 4-* 6-p-t**.6*

pet..t.*.4*D"t*****:. : ap p p :

1 p

..............~.......-......

....:m:. :. : :..:..:

.-.:.-.:m.: :

p..

.g:. g:.=:
.:..:...:gm:
.ac: : t.t-t-tm.pote.4mteat=**

pag :gm:

t.............

g.

p p g p t t t g

p..g -* ~ -30 p p

,...pmp.

p..e...p ut

.t

.p

p. p...g= : : :a.: :...:.:

,-9*p :. :

e=%

p p p p e p g p p..p g..

t M

. p p,.

t.=p..p t-g...p=p.t pa.t

.g. pmp p :..):.y@e.-t*t' "*-*tmpmp: p:

p p.

pm e

. p p g.ap..g.upap emp t...p t p p.t p pmp t.at** ave p,:.

..p p..

.......p...: :..:..:.: p: p:.t mt n:

p: :....:..

=

5

. g

+: : : :'...::'.$

peto.t =g

.t tw.t. e

+ '- * ' * +: *: +: *: -*:,:,*.

a 25 -

  • +
    • u u.

25

.pntmputa.jp #T. -

+ e -e -

e

^ : : :

. p t.=t p

p.

CM g

. 4 p g...p.p..:

..g:
pat.a.g P g:.: p: :

M.*

. p..t a -

p p pa p

p e

wt t p.

9 F.;

t.

t.

..e...p...e...p..p.upu,...p :

p..:

p p

... :. 3.,,g : e e.t.Ma.[..e.

t t.=t.=

.p..,*.g.

p

...:..:...p:*.

9

..g..

4:.'

u 4 e

  • -e * : : *.-o *-[: i-t-i-r. - #* g*-"-**~'-*:
: : /

.=,

as 20-r i

-e-* - -20 my p..p..t...p..p..p..p g:..g:

.p..p 6 *

    • 0 =p**6 MI.
    • #* *9*0- 4***p**4**.!
: : : : : : : *: : : - : : v:

p*.6m 3-p.

p p..p

.g...p

.g..

.. p..g...,

4.p :p.p:../, *f..

g to.p 9mtmia.tmp..p p gn.

p..

p..p e...p..p..p.

..p... p.

M p..p...g 9w.p t

  • 6

.t te..g p..p.p p.

f : :

'8 opup. p.. p..g.. 4..p..e..

...g...p edt g

p..p..p..g.

so.g 4mt 6*.9...t t...p p.

. :..: :..:p..:

.p..,. 4...:p..:sd :.

jg.

p p p

.p..p p

p..p..p..p gw.p

  1. ...t t

go.p.qm:. p:.. -15

u-M p

op..p..p...

q...p.

...,w w

. pug...p p p

.p..p..pu.gw.g q.ut p

.t p p p g:.

..p..p..,$.:

..../.

...p p......p..p..p..p.. p..:p..p....

....p..p. : : p: :.,,:...

e C

: ** : e. : /

p p

p=

- : - :/...

w.p..p..p p..p-p,...: pup..p..p=p..p..eo.p.: e:-.p:.4...p p.

..p e

.p t

.po9mpmg.opopa.:m:m:p.q:

oq:mp:me:m:me:m:mp:.ap:-p: g:mg:m:o

.. p

.w,.

q t p p

p e

g

- :/ :

?. :* /

p...:* :* * :* :" :* :* :o * " o o -r ' ' * -* -' *- *: *:- *: *:

10 -

=10 o-3 p

p-t og...g p..p..p p...t...p...toqmp g

e 4

.p p p.g

.p :p..p..p..p..p.p..p:...p:

..g...p... e..q...p.. p..g...p. 6...p..t... t... l... p.. p.. p ORIFICE SETTINGS Ip

..p.. p.. p...... p..p..:.... p:.. p.. p..p.. r.. p.. p.. p.. p.. :

n:- :o : :* :" *: - :" :" : a: *: *: :* :*~:* *: ":"

8% <E0 VAL FLOW < 20% OPEN p

5-1 MORE OPEN

~5

..p...g...g... p..p...p.p...p..:... :...:...p:... t.a t m e nqu.g.

.p

.p

.t

.=

...i...imi...i...i...i.i...i...i...i...i... i... i...i...i... i... i.

2 MORE OPEN

.*6a.D**.6...D.*.l...D...p=.6... l..* S *. p.* 0 *.. l...D.w p. 6.. 6 -

3.4 or 5 MORE OPEN

  • = = =

=

..p..p.4... p.......... p..p.. p..;..;p..p;..,;....;... ;.,;..:

-6 10 M.O.R.E.OPEN p

........p

.p 0

0 0

5 10 15 20 25 30 CALCULATED CORE THERMAL POWER

(

Y.,

HEAT BALANCE)

FIGURE 4.1.9-3 MINIMUM ALLOWABLE PRIMARY COOLANT FLOW

Fort St. Vrain 01 Technical Specifications Amendment #

Page 4.1-21 ORIFICE VALVES ADJUSTED FOR EQUAL REGION COOLANT FLOW 160% HEllUM DENSITY

>50 PSIA REACTOR PRESSURE 14

i. p..i...i a...i.! i.i i..a i i. : i p..!. i.i i.-i 4 i a 4 ; t. 16 p..p....,~r~:m: :. :...:.,: : :-t-t-t~t~ta-2 !b:.: i.

i

...p p

p..p..p..p

,r

, t i

4.

4

...a :..a:..a: a..a: a:..a:..a: a:..a: a: a: a a:..a: a a..a:..a:.

g.

. i i i.i.i...i.,i...i. i.,i..i i...,i i.i. i i.i i.,i ',:- - e,i...,i,:. i,. i..

. i.. g4 4....

4 4 4

.:.: 4 - :.

M aa 4:::_:

..a 4.

.... a.4 a..a..a a a: a: a: a: a:..:

a a. - -

r.-.p....

_a a 3

g-

f,g :

..p

_........ 12 A: : : : : : :

a

..a a a..a a a a a [t a : : : : :

La.

!! ! ! i i

.'i i i i i i i i 1.,si"I i_i i i.J. I i i *

  • ~t~t~t*~t~t**P~[i i a..a P"

w t** t**tm.

~

.. * *f O

. =I.. 3..=4. 4.

6.-4.

4..

4. " g.

. "t

  • p.,

. 4..w3 e

4.

4...

1,, :c:,,,. * - : '

p

s n#
4. asr' 10 - * :* *: - : *

.g md #:

6 g, i.,gi 2

r.

N

.,mp,p p f*":"*:*P"P** y*.P**P**p*

    • p**p:

"s

-10 t

--. i,#': #.n: : : : :

34 Cy**

u t P

:*: : : : -.l44

^

      • Pe*P**P**f **-

r: : -: : : : : :

- : t..

. 4..a

.......4..

~

.s

_.p p.,.mWt!..

.mp-u

-s8p...

.. p.,

, _.g p

t***P*

h

g.. :a[..: :p y

p p p ;

g-- _,

j :...e...p..past.

'...p.

e e

.p p..p : # 6

6. 4.*.I +: t 4 b..b..

a..a p # [.

e p

e$

.'.... 4 awa a. : :....a: :: a: :: :: :: :: : : : :

_g Lad

..a.

3

g.. g p..r

..r.. p........;.

g...p r....P"P****"t ***P*** ***t"..

. : : //.

4. 4

.p. 4.. 4.. 4u4

p. 6.*.6 4

4=p**p.4*

4.. 4***.

8 4 4 4 6 4 4.

9

.34 3

,--t***P**

p.c p,.y

.b..: a..a.:.a:o...:ma :... a.:m:

.ob.a..a a:wa:..a:.a:.a:.a :

g.

=

b Q

g

-g t.at-ta u~t-t.*-t =t***t~t-t*t~t*=t-t-t~ t*-t **..

ta*t*t*at-t~t~t t~t=,.

=

4.4.4 4.4 4..4..8 6.4. 8.4..8.4.4 4.4-4 6.4 4..4 8 4 4 4 4.

4

.. a..a....

....J a........=* a a.............J. L.................:..a: a: a: a: a:..a. ::o

~

,z,,,

4

: : + -

p....

...e...........

p s...e....

p p

p p..p p.. p.. p.. p.. p.

p g

.4...!..a...........i..a.i........................

. m4 ORIFICE SETTINGS

..p..,...........,...,..,...;...r.,;u.,..............

r r.4w.p.=6...p.4....p..l. *p.4***p.4..*.

8% (E00AL FLOW # 20% OPEN

.....................................S**4.....

.l.. 8. 4. **

2 1 MORE OPEN

-2

......,...,.:....,......r...p..,.........

2..MOR.E..O.P.EN.

..,...,.p..,....,

.t p

4.. 4........

.4.. 4.. 4.. 4...... 4.. 4.. 4..... 4.. 4.....

3.4 o.r. 5 MORE.OPEN

.s

.s

.....{................:.....................i..

6 10 M g OPEN C

i- 0 0

1.0 2.0 3.0 4.0 5.0 6.0 CALCULATED CORE THERMAL POWER

( %, HEAT BALANCE)

FIGURE 4.1.9-4 MINIMUM ALLOWABLE PRIMARY COOLANT FL (EXPANDED RANGE)

n 7e m.*.%,*.

e,-

ot

-p

_.nn34 n.

mo.n. i.v.n.

.osG A

R.oa2.=* ~-

3

,o

..me p.

ga oD m Om <>,<me > CO4 mO.- oy n

zo3 r mOCyr omgoz oC4-fm4 ;;; 3omE,_ g mO W ~Oq n.6 zmcC2 Om7w t<

0

.(

l V(fO *oe~> g>o,oy ym$c' m o

D oE

)

F

  • D

~

.~

.~

pCOo

(

  • i. :T.4. :;.
  • ....+.i. t:T.* *4. :

..g.,i.77 :***4~ ~ ~.

4.

4

......*T.

+:

S

.~

3. ***

. p :***:..

7 t..

N

  • ~

.~

O

t4. :.
4. :;..+.*Tt:Tt*4. :;. 4, :* ~
4. :

.....* N.

    • ...~.

4.*T t ;*

7t I

G h.

  • +:

E N.

ti.T.4. :;..+.i.
  • T.^T4. :;.4t**...i.T.i.T4.:

R

. tg j.:t:.

j:

~...

L eE' f 4.:9. 4.:;..+. i.*:T.t.4. :;. 4.t :1:,. 4.g

... g.*.,... *.....

L

+*

  • * =

A 4

+: E

=

A.**

R 2t4. :T..::+

.T T4.:

l.:,%. d.

O

. q,,t.

F 4:

  • * *....:y s..-
  • ~..

E i4. :T.4. :T.94.:** :*T^Tg.

..i,.

4 S

t:T.*.4.t;.s.I.:s,.a.:,,,..

. m'4..

4:

I R

l.,
  • T.
4. :..+. t.

e

..,.1

. L.:f.

3 E

R 8o' :t4. :T..:,...+.t.

  • T.t.4...g1.,v5.

< t.g7 p...

U T

5 W A

.4.4.:75

  • i. :

4.:

.+.4.:t:T.T4. :

R 4

. *.. 1.I. t. 4

L E

5 P

M

t.4.: : 4. : ;..+. i.t:T.t.>
  • 4 4..
+ ;;

Dt, E

.....*t.

7

.*. 9*... t.: 4. 4. :

T

  • s
1. :.:4. :

T

..+.*Tt:T.D.4. *.i... 4. :. #.a

,t.,.p.:** *4..}$. :. 4.:

~

N

  • M.t A

woo' :,.4. :.:4. :;. 4. 4.:t:

  • N**

=

L

4. :7+g.:+:

,t.

O

.~.

, >.Oo,

4. ::

g

7+:

O

1. :

C

..+.4.wt:

.*.4

.+8.
,
4. :,. 4. 4.:+. :.;4..g.,t.

.}::td.*

.. *~

7>.:

M

"..4.:c.4.:.:,.

U

  • T 1.:.}.:;.+ 5:

4.:. 4. 1.:+:; 4. g.* 4,,...

  • I
44. : t:.. A.:4:.... g+:

L w.*

T.t. 4. :r..+ : :,.

E

,.1. :.:4. :. ).. :t

. =

~

H

4. 1. : + :

5.p. ** S:. 5,::y:..i.S:7>:

uoo' :,....,,

N

4. :.:4. s:...t:T.,.. 4. :.+: :,...

O

4. :,. 4. 1.:>. :

I e uroo G

o 3 a mj.mnw E

,.. i. :

. wN,.

4.:** :*T.,.. 4. :;..p: :,.4. :,. 4. 4.:>:

R wa 3e:aa

..w M

. A.

44.:t:T.,.

I. :.

U

. 4. :..+ : :,4. :,..+.a.:>:

,o o5ma.

ywa 0 oA2 M

m X

. i. :. -

..4 4. :,. :.;..

4. :.. +: :,......

rooEma.,4aywz3o'A,g I

l l

4. :,. 4. 4.:+. :

,I g p it

=l

( I AM o

.o m

rO

,O em a

OFo gm wo am n3rnc,. >4mo nomm 1Tm:o3>c uQ2m.

, d= mm>,_ W>t>2gm-

.meoc A

  • 6,m c3x ~Ccg 3,. ror3Gtm mmo o2 Im: e1 nOOe>g +m mo.>tcmm "U*Mm

)*

- ro 1

Fort St. Vrain #1 Technical Sptcifications Amindment #

Page 4.1-23 BASIS FOR SPECIFICATION LCO 4.1.9 The minimum heli,um circulator flow or the maximum core region helium coolant temperature rise as a function of calculated reactor THERMAL POWER (including power from decay heat) have been specified to prevent very low helium coolant flow rates through any coolant channel.

Very low helium coolant flow rates may result in laminar flow conditions with resultant high friction factors and low heat transfer film coefficients and potential for possible local helium flow stagnation or reverse flow, which could result in excessive fuel temperatures.

This specification addresses minimum flow requirements for all coolant channels. Since low coolant flows exist 'at lower reactor powers, its applicability is limited tc less than approximately 25% RATED THERMAL POWER.

Specific power level end points for given conditions are as shown on the Figures.

Since THERMAL POWER is continuously generated by decay heat even after the reactor is shutdown, the flow requirements are

's also applicable in the REACTOR SHUTDOWN mode.

This specification is not applicable during SHUTDOWN when the CALCULATED BULK CORE TEMPERATURE is less than 760 degrees F.

If the active core would remain below this temperature, which corresponds to the design maximum core inlet temperature, then the design core inlet temperature could not be exceeded and there is no possibility of damage to fuel or PCRV internal components regardless of the amount, or even total absence, of primary coolant helium flow.

The applicability of this Specification is also limited to the range of power level indicated in Figures 4.1.9-1, 4.1.9-3, and 4.1.9-5.

Above the power levels for which limits are shown in these Figures, the Reactor Core Safety Limit, Specification 3.1, governs.

In addition to this Specification, fuel integrity is ensured for power levels from 0 to 100*4 by limiting the INDIVIDUAL REFUELING REGION OUTLET TEMPERATURES to values given in Specification 4.1.7.

The core flow fraction limits shown in Figures 4.1.9-1, 4.1.9-2, 4.1.9-3, and 4.1.9-4 are based on, and thus valid for, equal region coolant flow orifice settings within the range of 8% to 20*4 open for seven column regions and the corresponding settings for five column regions, i.e.;

within the range of 4.4*4 to 13.4*4 open for five column regions.

Equal region outlet temperature orificing is precluded below about 3*.

power by Figure 4.1.9-5 because uncertainties in instrumentation exceed the allowable temperature rise.

Fort St. Vrain #1 Technical Specifications Amsndmint #

Page 4.1-24 The CALCULATED BULK CORE TEMPERATURE is the predicted, time dependent, average temperature of the core, including graphite and fuel, but not the reflector, that occurs following a shutdown of all forced circulation of primary coolant flow.

The calculation uses several conservative assumptions including: 1) that the core heatup rate remains constant during the heatup at the initial value which is calculated based on the decay heat from most restrictive recent power history or at an empirically determined value, 2) that the composite specific heat, volume, and density of the core remain constant during the heatup at the initial values, and 3) that all decay heat generated after the assumed loss of forced circulation is retained in the active core with no heat transfer to the reflector, PCRV internals, or primary coolant.

The limits have been developed based upon a number of conservative assumptions. For the limits in Figures 4.1.9-1, 4.1.9-2 and 4.1.9-5, it was assumed that the primary system was pressurized to 107.5 percent of design helium density.

At lower densities higher region temperature rises and lower primary coolant flow are acceptable. Since startup operations can proceed with lower helium densities, after the reactor has been pressurized to greater than 100 psia, which corresponds to i

about 30 percent helium inventory at 200 degrees F, flow requirements were calculated for 60*.

helium density and are given in Figures 4.1.9-3 and 4.1.9-4.

Percent helium density equals:

175.12 x Reactor Pressure (psia)

(Circulator inlet temperature (degrees F) plus 460)

The core inlet helium temperature used in the analysis covers the range of 100-400 degrees F between 0 and 5*4 RATED THERMAL POWER and 100-700 degrees F above 5*. RATED THERMAL POWER.

i These are reasonable assumptions for low power operation.

The analysis is based on operation of two circulators between 0 and 5% RATED THERMAL POWER and four circulators above 5% RATED THERMAL POWER. This is consistent with plant operation.

In the analysis to determine the limits, the effects of heat j

conduction between columns in a region, or between regions, were conservatively neglected.

Envelope values of RPF/ Intra Region Peaking (3.0/1.25 and 1.6/1.61) were used to anticipate j

worst case conditions considering all future fuel cycles.

Consistently conservative nominal values and uncertainties were used for bypass flows and measured parameters throughout the analysis.

For the condition with orifice valves at any position, the allowable region delta T is based upon a region peaking factor equal to 0.4.

For regions with higher power densities, higher region delta T's are acceptable.

Fort St. Vrain #1 Technical Specifications Amendment #

Page 4.1-25 The circulator flow determination is normally based on the

. empirical relationship between flow and circulator inlet nozzle delti P,

local temperature, and local pressure. The uncertainties assotiated with control room indication of these parameters were accounted for in the analysis. Other flow l

determination methods are acceptable provided the associated t

uncertainties are accounted for and the calculated circulator flow is adjusted accordingly.

Besides the minimum flow requirement curves with the orifices set for equal region flows in Figures 4.1.9-1, 4.1.9-2, 4.1.9-3, and 4.1.9-4, flow requirements are provided with up to 10 orifice valves positioned further open. These curves assist in the transition between equal region flaws and equal region outlet gas temperatures. By monitoring the total circulator flow when the orifices are adjusted for equal region coolant flows, minimum flow through each region at the appropriate power can be ensured. When the orifice valves are adjusted to different positions, minimum coolant flows can be ensured for each region by monitoring the helium coolant temperature rise in that region. Maximum temperature rise requirement curves are presented for the case where the inlet orifice valves are adjusted to any position as well as the cases where no seven column orifice valve is closed to less than 8% or less than 6%

open (or the corresponding position for five column regions).

For depressurized operations, helium coolant temperature rise limits are also specified to prevent very low helium coolant flow rates through any coolant channel. These limits have been established based upon a 50 psia reactor pressure.

To ensure that flow stagnation in a fuel column or region does not persist, an ACTION time of only 15 minutes is allowed to correct the out of limit condition.

The requirement to be in REACTOR SHUTDOWN within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> with the orifices set for equal flows in an additional 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> is realistic because it takes approximately 4 - 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> to set the orifice valves from equal temperatures to equal region flows.

This is considered acceptable since there is sufficient primary coolant flow from the circulators which are driven by steam generated from residual heat in the system following REACTOR SHUTDOWN.

If, af ter this action, there is still inadequate flow, depressurizing the PCRV further reduces the tendency toward stagnation and reverse flow.

9

Fort St. Vrain #1 Technical Specifications Amendmant #

Page 4.1-26 4

SPECIFICATION SR 5.1.8 - MINIMUM HELIUM FLOW / MAXIMUM CORE REGION TEMPERATURE RISE SURVEILLANCE REQUIREMENT The total helium circulator flow or the helium coolant temperature rise through each core region shall be determined to be within the limits of LC0 4.1.9 at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

BASIS for SPECIFICATION SR 5.1.8 Surveillance of the helium circulator flow or helium coolant temperature rise once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> ensures that the requirements of LCO 4.1.9 are met.

In addition, plant procedures require that the flow rate, core outlet temperatures, and power level be monitored continuously whenever the power level is being changed or orifice valves are being adjusted. In performance of the surveillance, the total reactor helium coolant flow is determined by calculation consistent with the method used to determine the required flow for the analysis.

ASSOCIATED LCO: LCO 4.1.9

_ =

Significant Hazards Considerations

i 4

SIGNIFICANT HAZARDS CONSIDERATIONS This Technical Specification specifies minimum allowable total flow and maximum allowable region temperature rise to assure that j

flow stagnation or reversal does not occur and thus, that excessive fuel temperature is prevented.

These limits are necessary between 0%

and approximately 25% power because the core power-to-flow ratio limits of Safety Limit 3.1 and the region outlet temperature mismatch limits of Specification LC0 4.1.7 do not, by themselves, preclude the adverse flow conditions. At higher power levels, the power-to-flow and region outlet temperature limits are sufficient to preclude excessive fuel temperatures and fuel failure.

The proposed Specification corrects errors in the original

analysis, includes allowances for explicit uncertainties associated with thermal power and total circulator flow (instrument errors) measurements, and makes the assumptions consistent with operation.

In addition, minimum coolant flow curves were added for 1 to 10 orifice valves more open than the equal flow position, and maximum region temperature rise limit curves were added when no orifice valve is less than 6% and 8%

open, to facilitate the transition from equal flow positions to equal region outlet temperature positions. Minimum coolant flow curves were also added for reduced helium density conditions since the lower densities result in smaller helium buoyancy effects.

The proposed flow and temperature limits are significantly more restrictive than the corresponding limits in the existing Technical Specification.

The new curves that have been added to permit operation when up to 10 orifice valves are further open than the equal flow position, have the same degree of conservatism that is included in the equal flow position curves.

In determining the total circulator flow requirements, it was assumed that any orifice valve further open was full open and the total circulator flow requirements were increased so that the minimum flow in any coolant channel would not be less than that required when all orifice valves are set for equal flow. The same philosophy was applied when generating the new curves to limit the maximum region temperature rise when the orifice valves are set at any position but no orifice valves are less than either 6% or 8% open.

The applicability of the proposed specification has been limited when the reactor is in.the SHUTOOWN mode to that condition when the CALCULATED BULK CORE TEMPERATURE is greater than 760 degrees F.

This excludes the case when the amount of thermal energy from fission product decay is sufficiently low to prevent the average core temperature from exceeding 760 degrees F even if there is no helium coolant flow.

The detailed description and justification for this is provided in Attachment 4 to P-86169, dated Feoruary 28, 1986.

The expected gas coolant temperatures at full power are 760 degrees F (core inlet and upper plenum) and 1460 degrees F (core outlet and steam generator inlet).

The upper plenum internal components, including the control rod drive and orifice

e

. o assembly and thermal barrier, have been designed to be consistent with this temperature environment.

Consequently, limiting the CALCULATED BULK CORE TEMPERATURE during a primary coolant flow termination to 760 degrees F would conservatively ensure that both the core and PCRV internals would be protected when the primary coolant flow is resumed.

This is consistent with the conclusion reached by ORNL in their independent review (FIN No. A9351).

1)

FSAR accident analyses have been reviewed to determine the effect, if any, of this change on these analyses.

Since the proposed changes increase the minimum flow requirements and decrease the allowable region temperature rise, they preclude flow stagnation or reversal, and there is no adverse impact on any accident previously analyzed in the FSAR.

2)

The proposed Technical Specification change does not involve any modification of plant systems, equipment, or structures.

The only changes to plant operating procedures are to ensur'e compliance with the revised limits.

Thus, these changes would not create a new or different type of accident than any previously evaluated.

3)

A review of the margins of safety associated with this Technical Specification confirms that the margins of safety are not reduced by this change.

In fact, the new limits represent a significant increase in the minimum flow required and a significant decrease in the allowed temperature rise.

Both these changes provide additional assurance that excessive fuel temperatures are prevented.

Based on the above evaluation, it is concluded that operation of J

Fort St. Vrain in accordance with the proposed changes will not (1) involve a significant increase in the probability or consequences of an accident previously evaluated, (2) create the possibility of a new or different kind of accident from any accident previously evaluated, or (3) involve a significant reduction in any margin of safety.

Therefore, this change will not create an undue risk to the health and safety of the public nor does it involve any significant hazards consideration.

4

-.