ML17037B505: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17037B505
| number = ML17037B505
| issue date = 11/02/1977
| issue date = 11/02/1977
| title = Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle 5 September 1977
| title = Start-up Physics-Test Results-Cycle 5 September 1977
| author name = Dise D P
| author name = Dise D
| author affiliation = Niagara Mohawk Power Corp
| author affiliation = Niagara Mohawk Power Corp
| addressee name = Lear G
| addressee name = Lear G
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:DISTRIBUTION AFTER ISSU OF OPERATING~ICEiVSE U.S.NUCI EAR REGULATORY CQMM'IQN l.NRC FOai+195 (2-7S)NRC DISTRIBUTION FQR PART 50 DOCKET MATERIAL OOC T NUMBER FII E NUMBER TO: Mr.George Lear FROM: Niagara Mohawk Pwr>>Corp'yracuse,~kew York j.Donald P~Disc i OATS OF OOCUME N T 11/2/77 OATS RE CEI V E 0.11/4/77"-TTER)klRIQINAI QCQPY C}NOTORIZED T UNCLASSIF ISO~3-f-/7/fg.PROP INPUT FQRM ENCI.QSURE NUMBER OF COPIES RECEIVED"Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle 5 September 1977" pLANT NAIIE: Ni.ne Mile Point Unit No 1 RJL.11/7/77 (1-P), (29-P)SAFETY BRAVCH CHIEF: 7)FOR AC i ilON/INFORMATION INTERNAL 0 ISTRI BUTION I GE (2)OELD CHECK EISENHUT SHAO BUTLER GRITS~OLLINS J.O~LPDR: TIC O~EXTERNAL DIS I RIBUTION NTROI.NUMBER NSIC 16 CYS ACRS SENT CATE 0 Y~~->iO)12, v'I e", j't r*
{{#Wiki_filter:DISTRIBUTION AFTER ISSU         OF OPERATING ~ ICEiVSE NRC FOai+ 195                                      l. U.S. NUCI EAR REGULATORY CQMM               'IQN OOC    T NUMBER (2-7S)
y~tt'5 Yv'rg I~"X~(('(tLBS~It NIAGARA MOHAWK POWER CORPORATION NIAGARA'~MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE, N.Y.I3202 Cgpg November 2, 1977'<o~'-'irector of Nuclear Reactor Regulation Attn: Mx.George Lear, Chief Operating Reactors Branch g3 U.S.Nuclear Regulatory Commission Washington, D.C.20555 Re: Nine, Mile Point Unit 1 Docket No.50-220 DPR-63
FII E NUMBER NRC DISTRIBUTION FQR PART 50 DOCKET MATERIAL TO:                                           FROM:                                                     OATS OF OOCUME N T Niagara Mohawk Pwr>>                                                     11/2/77 Mr. George Lear                                                                    j.
                                                              ~kew York Corp'yracuse, OATS   RE CEI V E 0 Donald  P ~ Disc                                                    . 11/4/77 i
TTER               C}NOTORIZED T               PROP                      INPUT FQRM                      NUMBER OF COPIES RECEIVED
  )klRIQINAI                UNCLASSIF ISO QCQPY
                        ~     3-f-/7 /fg.                       ENCI.QSURE "Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle                       5 September   1977" pLANT NAIIE: Ni.ne       Mile Point Unit   No   1 RJL     .       11/7/77                           (1-P) ,       (29-P)
SAFETY                               FOR AC i ilON/INFORMATION BRAVCH CHIEF:        7)
INTERNAL 0 ISTRI BUTION I GE     (2)
OELD CHECK EISENHUT SHAO BUTLER GRITS
        ~   OLLINS J.         O~
EXTERNAL DIS I RIBUTION                                                       NTROI. NUMBER LPDR:            O      ~
TIC NSIC 16 CYS ACRS SENT CATE 0 Y                                                                                     ~~->iO)12,


==Dear Mr.Lear:==
v'I        e ", j r
Your letter of March 4, 1977 requested Niagara Mohawk to submit a summary report of the startup physics tests within 90 days following completion of the Cycle 5 startup test program.The enclosed information addresses your re'quest.Very truly yours, NIAGARA MOHAWK POWER CORPORATION Donald P.Disc Vice President-Engineering 773il0112 SWW/szd Enclosure NINE MILE POINT UNIT 1 Start-up Physics Test Resu1ts-Cyc1e 5 September 1977 Test Abstracts and Results The test abstracts, results, and comparisons of measured and predicted responses for the star tup physics tests are outlined below.1.0 Control rod drive scram tests (hot)2.0 Shut down margin tests.3.0 Instrumentation calibrations.
    't
4.0 Cold Critical comparison with actual measurements.
5.0 Power distribution calculation comparison above 505 power with actual measurements.
1.0 CONTROL ROD DRIVE SCRAM TESTS (hot)


1.1 Control Rod Drive Scram Test Abstract Following a major refueling outage, it is necessary to verify that the control rods fully insert upon receiving a scram signal within the time interval specified in the Technical Specifications.
('(tLBS~ It y~tt'5    Yv'rg I~ "X~(
The general procedure is to withdraw the control rods in the A sequence to the"black and white" pattern;then alternate between scram-insertion and withdrawal until all the previously withdrawn rods.have been scrammed arid the remaining rods withdrawn.
NIAGARA MOHAWK POWER CORPORATION NIAGARA    '~     MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE, N. Y. I3202 Cgpg November 2, 1977
At this point, the rod pattern will be in the B sequence"black and white";then alternate between scram-insertion and withdrawal until all rods have been scrammed, and the rod pattern is the A sequence"black and white" again.After analyzing the scram times, the control rods are withdrawn to the specified beginning of cy'cle pattern.The control rod time testing shall be considered acceptable if Technical Specification 3.1.1C is met.
                                                                    'o~
1.2 Control Rod.Drive Scram Test Results Table 1.1 contains the results of the control rod drive scram tests (hot).Results of the test are within the values specified by Technical Specification 3.1.1C.(see.Table 1.2).
                                                                              '-'irector of Nuclear Reactor Regulation Attn:  Mx. George    Lear, Chief Operating Reactors Branch g3 U. S. Nuclear Regulatory Commission Washington, D. C.       20555 Re:   Nine, Mile Point Unit          1 Docket No. 50-220 DPR-63
Tabl e.1.1 ROD SCRAhf TIhKS AFTER JULY 1977 OUTAGE RODS 02-19 02-23 02.27 02-31 02-35 06-15 06-19 06-23 06-27 06-31 06-35 06-39 10-11 10-15 10-19 10-23 10-27 10-31 10-35 10-39 10-43, 10-07 14-11 14-.15 14-19 14-23 14-27 14-31 14.35 14-39 14-43 14-47 18>>03 18-07 18-11 18-15 38-19 18-23 18-27 18-31 18-35 18-39 18-43 18-47 18-51 22-03 22-07 22-11 22>>'15 22-19 22.23 2?-27.32.33.33.33.34.34.34.34.34.33.33.34.35.35.32.32-.37.35.32.35.33;36.37.35.39.36.35.33.34.34.34.34.36.34.35.39.37.35.35.34.36 37.34.34.36.32.36.32.34.35.34.35 20~o.72.76.71.76.76.80.78.77.78.82.79.78..84.82.72.72.91.84.81.81.76.79.82.75.93.90.85.74'77.78.79.71.71.80.73.87.85.80.75.80.88.85.81.78.75.74.84'.75.75.83.72.78 50<o 1.54 1.73 1.60 1.66 1.63 1.80 1.69 1.69 1.70 1.'82~1.77 1.74 1.87 1.84 1.65 1.65 1.98 1.84 1.86 1.75 1.68 1.67 1.85 1.68 2.07, 2.00 1.88 1.66 1.75 1.71 1.78 1.59 1.54 1.73 1.61 1.91 1.84 1.78 1.71 1.74 1.95 1.88 1.77 1.72 1.68 1.62 1.86 1.68 1.76.1.94 1.65 1.69 90~o 2.66 2.94 2.74 2.80 2.68 3.06 2.78 2.86 2.85 3.07 2.99 3.07 3.20 3.11 2.82 2.87 3.31 3.25 3.19 2.95 2.85 2.78 3.14 3.00 3.40 3.39 3.23 2.94 2.99 2.93 3.03 2.74 2.90 2.88 2.95 3.23 3.07 3.01 3.25 2.93 3.28 3.22 3.02 2.96 3.00 2.79 3.11 2.89 3.19 3.44 3.08 2.85, y Tab1e 1.1 (Continued)
RODS 22-31 22-.35 22-39 22-43 22-47 22-51 26-03 26-07 26-11 26-15 26-19 26-23 26-27 26-31 26-35 26-39 26-43 26-47 26-51 30-03 30-07 30-11 30-15 30-19 30-23 30-27 30-31 30-35'30-39 30-43 30-47 30-51 34-03 34-07 34-11 34-15 34-19 34-23 34-27 34-31 34-35 34-39 34-43 34-47 34-51 38-07 38-11 38-15 38-19 38-23 38-27 38-31.35.37~33~33.33.35.31.34.33.36,.39.34.36.33.36.33.34.35,.31 ,35.35..34'.37.38.34.37 37..36.36.35.30.35.31.31.32..36.35.36.37.39.36.37.31.32.32.31.36.35.34.36.36.30 20~a.82.82.77.77.74.81.76.79.74.83.88.80.84'71.87.79.82.86'79'8]:80.82.83.87.77.91.89.86.74.80.72.79.73.71.74.87.83.81.88.93.76.80.74.75.75.78.80.76.81.86:80.77 50~o 1.80 1.78 1.68 1.72 1.55 1.80 1.69 1.72 1.67 1.81 1.88 1.84 1.89 1.69 1.80 ,.1.73 1.88 1.81 1.82 1.75 1.76 1.85 1.82 1.82 1.68 2.08 1.93 2.00 1.68 1.76 1.65 1.73 1.58 1.54 1.65 1.98 1.90 1.78 1.99 1.91 1.68 1.70 1.69 1.62 1.61 1.72 1.74 1.73 1.78 2.03 1.75 1.76 90~3.07 2.99 2.82 2.96 2.59 3.04 2.86 2.90 2.87 3.07 3.18 3.27 3.22 2.93 3.06 2.94 3.18 3.08 3.08 2.92 2.99 3.16 3.07 3.08 2.88 3.48 3.21 3.34 3.09 2.98 2.85 2.91 2.66 2.58 2.80'.40 3.27 3.05 3.48 3.19 3.04 2.85 2.87 2.77 2.74 2.90 2.94 3.20 3.06 3.43 2.99 3.00 Table l.1 (Continued)
RODS 5 o~20~o SO~o 90~o 38-35 38-39 38-43 38-47 42-11 42-15 42-19 42-23 42-27 42-31 42-35 42-39 42-43 46-15 46-19 46-23 46-27 46-31 46-35 46-39 50-19 50-23 50-27 50-31 50-35 Average.36.3'3'35.30.31.36.37.$5.37.33.36.36.30.29.35.32.36.35.36-.28.32.34.31.35.33.345.81.78.75.72.77.82.86.78.86.72.85.81.76.72.78.79.83.84;80.69.76.77.74.80.77.814 1.75 1.69 1.63 1.54 1.72 1.77 2.07 1.69'.90 1.58 1.83 1.74 1.68 1.60 1.67 1.75 1.81 1.87 1.70 1.51 1.64 3.61 1.63 1.75 1.63 1.78 2.96 2.89 2.76 2.60 2.93 2.99 3.65 2.85'.23 2.79 3.04 2.94 2.84 2.72 2.79 3.01 3.03 3.06 2.88 2.60 2.75 2.70 2.78 2.92 2.78 3.08 Table 1.2 Avera e Scram Insertion Time Com arisons'A Inserted From Fully Withdrawn Average Scram Insertion Times (SEC)After July 1977 Tech Spec Outa e Limit 20 50 90 0.345 0.814 1.78 3.08 0.375 0.90 2.00 5.00 2.0 SHUTDOllN MARGIN TEST 2.1 Shutdown Mar in''Test Abstract The purpose of this test is to demonstrate that the reactor can be made subcritical with a shutdown margin of 0.25&#xc3;k at any time in the subsequent cycle with the strongest operable control rod fully withdrawn.
With the core at its most reactive condition, cold and xenon-free the analytically strongest control rod is fully withdrawn from the core.A second control rod is then withdrawn to a position which results in an amount of reactivity at least equal to the required maroin.The shutdown margin test shall be considered acceptable if the reactor has remained subcritical throughout the test.
2.2 Shutdown Mar in Test Results Figure 2.1 summarizes the results of the Shutdown Margin Test.Control rod 18-27, shown analytically to be the strongest, was fully withdrawn from the core.Control rod 14-31 was then withdrawn to position 08 which analytically resulted in an insertion of approximately
.8%delta K.As shown on Figure 2.1 the reactor remained subcritical throughout the test.Results of the test are within the criteria specified in the Technical Specification.
FIGURE 2.1 REACTIVITY MARGIN-CORE LOADING Procedure:
1.All Rods In SRM'1 12 13 14 Readings 43 35 29 17 2.Rod CR1 18-27 selected 3.Rod CR1 18-27 position 48 4.Reactor Subcritical SRM'1 12 13 14 Readings 44 50 30 20 5.Rod CR2 14-31 Selected 6.Rod CR2 to position 08.7.Reactor Subcritical SRM 11 12 13 14 Readings 45 58 32 19


==3.0 Instrumentation==
==Dear Mr. Lear:==
Ca1ibration Test T.\3.1 Instrumentation Gal ibr ation Test Abstract The purpose of this test is to calibrate the Local Power Range Monitoring (LPRM)System.The LPRM System is a spatial array of in-core fission chambers used to monitor the in-core neutron flux.In the process computer formulation, each chamber signal is calibrated to produce a meter reading which is proportional to the neutron flux in the water gap at the axial elevation of the chamber.The calibration procedure consists of data taking, calculations and amplifier adjustments.
A set of LPRM readings and Transverse In-Core Probe (TIP)traces are recorded.The process computer is used to determine the correct readings'hat the LPRM's should have read based on the TIP traces.The individual amplifier input calibration currents required to produce a selected standard meter reading on each LPRM meter are recorded.These input currents are divided by the ratio of the calculated-to-observed LPRM readings (Gain Adjustment Factors-GAF).
These new input calibration currents are then applied and the amplifier gains adjusted to produce the selected standard meter readings, thereby calibrating the LPRM's.


===3.2 Instrumentation===
Your  letter of  March 4, 1977 requested            Niagara Mohawk  to submit  a summary      report of the startup physics tests within 90 days following completion of the Cycle 5 startup test program. The enclosed information addresses your re'quest.
Calibration Test Results Figure 3.1 contains the LPRN Instrument Calibration Results for an instrumentation calibration performed at a power level of 985 of rated.
Very      truly yours, NIAGARA MOHAWK POWER CORPORATION Donald P. Disc Vice President-Engineering 773il0112 SWW/szd Enclosure
FIGURE 3.1 LPRN INSTRUMENTATION CALIBRATION RESULTS LPRH PROBE AS FOUND'NPUT'CURRENT G;A.F.REqUIRED INPUT CURRENT''''''105%'''8-41C 36-33C 36-49C 44-41C 28-41A 36-33A 36-49A 44-41A 36-41C 28-49C 44-33C 28-33C 36-41A 28-49A 44-33A 28-33A 36-17C 44-25C 28-09C 28-25C 36-17A 44-25A 28-09A 28-25A 28-17C 36-09C 36-25C~44-17C 28-17A 36-09A 36-25A 44-17A 12-33D 20-41D 12-33B 20-41B 12-41D 04-33D 20-49D 20-33D 12-41B 04-33B 512 880 855 851 720 842 994 943 1100 10 10 515 970-874 N o 807 783 970 815 630 903 970 473 752 890 949 1060 656 970 927 750 536 823 930 894 983 307 1120 1483 1240 1160 1060 857 D e t e c.87 1.05 1.00.99 1.78 l.05 1.01.99 1.08 1.06 1.11 1.08 1.11 tor 1.05.68 1.04 1.06.96 1:09 1.09 1.0,8 1.05 1.10 1.06.97 1.00 1.01 1.09 1.03 l.11 l.00 1.03 1.00 l.00 l.17.35 l.05.96 1.18 1.03 1.05 588 838 Same 859-395 801 984 952 1018 952 463 898 787 I npUt 768 1151 932 768 656 828 890 438 716 809 895 1092 Same 960 850 728 482 Same 902 Same Same 262 1160 1412 1292 983 1029 816 FIGURE 3.1 (Continued)
 
LPRM INSTRUMENTATION CALIBRATION RESULTS LPRM PROBE AS FOUND INPUT'CURRENT G.A.F.REQUIRED INPUT CURRENT 105K 20-49.B 20-33B 12-17D 20-09D 04-25D 20-25D 12-17B 20-09B 04-25B 20-25B 04-17D 12-09D 12-25D 20-17D 04-17B 12-09B 12-25B 20-17B 12-.33A 20-41A'12-33C 20-41C 12-41A 04-33A 20-49A 20-33A 12-41C 04-33C 20-49C 20-33C-12-17A 20-09A 04-25A 20-25A 12-17C 20-09C 04-25C 20-25C 04-17A 12-09A 12-25A 859 887 1410 1200 1290 1123 1031 791 1000 1018 1110 1052 1020 941 1010 930 980 685 N o 870 676 820 840 944 743 738 1150 1095 580 830 910 733 N o 555 1000 823 1030 970 753 1061 413 Detec Detec 1.00 1.01 1.09 1.08 1.03 1.13 1.05 1.02 1.05 1.08.95.99 1.02 1.04 l.13 1.04.95.99 tor 1.03 l.Ol 1.02 0.00 1.06 1.02 1.09 1.01 0.00 1.03 1.20 1.04 l.18 tor 1.06 1.05 1.12 1.08 1.07.96.99 1.05 Sarge 878 1293 1111 1252 993 981 775 952 942 1168 1063 1000 905 971 894 1031 691 Input 844 669 803 712 890 728 677 1138 755 563 691 875 621 523 952 734 953 906 784 1071 393 Input FIGURE 3.1.(Continued)
NINE MILE POINT UNIT 1 Start-up Physics Test Resu1ts - Cyc1e 5 September 1977
LPRM INSTRUMENTATION CALIBRATION RESULTS LPRM PROBE 20-17A 04-17C 12-09C 12-25C 20-17C 28-41B 36-33B 36-49B 44-41B 28-41D 36-33D 36-49D 44-41D 36-41B 28-49B 44-33B 28-33B 36-41D 28-49D 44-33D 28-33D 36-17B 44-25B 28-09B 28-25B 36-17D 44-25D 28-09D 28-25D 28-17B 36-09B 36-25B 44-17B 28-17D 36-09D 36-25D 44-17D AS FOUND INPUT CURRENT 694 990 970 725 900 760 870 926 800 557 1050 1000 1108 1090 904 1010 1230 1300 1460 1420 1250 1008 740 741 970 1300 710 1540 1256 1042 800 680 275 1100 1143 995 1120 G.AD F.1.01.97 1.02 1.11 1.02 1.01 1.03 1.04" 1.01 1.05 1.06 1.03.98 1.07 1.01 1.05 1.80 1.09 1.02 1.30 1.09 1.09 1.03 1.00 1.07 1.09 1.04 1.22 l.11 1.10 1.04 1.02 0.00 1.06 1.03 I.13.99 REQUIRED INPUT CURRENT 105K 687 1020 950 653 882 752 844 890 792 530 990 970 1130 1019 895 962 683 1193 1431 1092 1147 925 718 Same 906 1193 683 1262 1131 947 769 666 238 1037 1109 880 1131 Ho Detector Input-No signal is received from the LPRM.This could be caused by faulty connections or failed detectors.
 
4.0 Cold Critical Comparison
Test Abstracts and Results The  test abstracts, results,  and comparisons  of measured and predicted responses  for the star tup physics tests  are outlined below.
'Il~e 4.1 Cold Critical Com arison Test Abstract The cold critical control rod pattern was analytically derived as shown on Figure 4.1.Control rod withdrawals to target control rod inventory were compared to the analytically derived pattern.
1.0  Control rod drive scram tests (hot) 2.0  Shut down margin  tests.
4.2 Cold Critical Com arison Test Results Figure 4.2 contains the actual cold critical control rod pattern.The difference between the observed and predicted control rod inventories is less than one percent in reactivity.
3.0  Instrumentation calibrations.
COI:RITICAL CONTROL ROD PATTERNX=POSITION 48 51 47 43 39 35 31 27 23 19 15 11 7 3 X X X X X X 2 6 10 14 18 22 26 30 34 38 42 46 50 FIGURE 4.1 51 47 43 39 35 31 27-23 19 15 ll 7 3 2 6 1014 18222630 34384246 50 FIGURE 4.2 5.0 Power Distribution Comparison 6.1 Power Distribution Co arison Test Abstract The power distribution in the core is monitored by the process computer.Off line predictive Models are used to develop a power distribution corresponding to specific plant operating conditions.
4.0  Cold  Critical comparison with actual measurements.
5.2 Power Distribution Com arison Test Results The power distribution comparison test was performed under the core operating conditions shown on Figure 5.1.Comparisons of the actual to predicted core axial power distribution is shown on Figure 5.2.Comparisons of the actual to predicted core average radial power distribution is shown on Figure 5.3.  
5.0  Power  distribution calculation  comparison above 505 power  with actual measurements.
'6 Date Core Power Level Core Flow Rate Pressure Subcooling August 31, 1977 1830 MMt (98.9%)66.4 Nlb/hr.(98.4/)1035 PSIA 22.9 Btu/Lb.CONTROL ROO PATTERN NOTCHES WITHORAWN BLANK~48~FULL OUT'1 47 43 39 35 31 27 22 34 14 38 22 14 22 14 34, 38 14 34 34 22 23 22 19 15 11 7 3 14 38 14 34 14 14 34 22 2 6 1014 18 22 26 30 34 384246 50 Figure 5;1 NINE NILE POINT UNIT 1 OPERATING CONDITIONS FOR BEGINNING OF CYCLE 5 COf<PARISONS 1.6 Predicted Actual 1.4 1.2 1.0 0.8 0.6 0.4 0.2 BOTT H AXIAL NODE TOP FIGURE 5.2.Core Average Axial Power Distribution Comparisons for Nine Mile Point Unit 1, August 31, 1977
 
~>1 1 IE 1 die~~Figure 5.3 CORE AVERAGE RADIAL POWER DISTRIBUTION
1.0 CONTROL ROD DRIVE SCRAM TESTS (hot)
~Rin'Actual'Predicted Center Edge 1 2 3 5 6 7 1.012 0.927 1.123 1.082 1.104 1.043 0.824 1.002 0.922 1.084 1.072 1.127 1.056 0.816 RECEIVEO DOCUHEHT PRGCESSI!IG UNIT}}
 
1.1 Control    Rod  Drive Scram Test Abstract Following    a  major refueling outage,  it is  necessary  to verify that the control rods    fully insert  upon receiving  a scram  signal within the time interval specified in the Technical Specifications.
The general    procedure is to withdraw the control rods in the      A sequence to the "black    and  white" pattern; then alternate between scram-insertion and withdrawal      until all the previously withdrawn    rods .have been scrammed arid the remaining rods withdrawn.      At this point, the rod pattern      will be in the  B  sequence  "black and white"; then alternate between scram-insertion and  withdrawal    until all  rods have been scrammed, and the rod pattern is the  A sequence    "black and white" again. After analyzing the    scram times, the control rods are withdrawn to the specified beginning of cy'cle pattern.
The  control rod time testing shall    be considered    acceptable  if Technical Specification 3.1.1C is met.
 
1.2 Control  Rod .Drive Scram Test Results Table 1. 1  contains the results of the control rod drive scram tests (hot). Results of the  test are within the values specified  by Technical Specification 3. 1.1C. (see .Table 1.2).
 
Tabl e .1.1 ROD SCRAhf TIhKS AFTER JULY 1977    OUTAGE RODS                        20~o              50<o  90~o 02-19    .32                .72                1.54  2.66 02-23    .33                .76                1.73  2.94 02.27    .33                .71                1.60  2.74 02-31    .33                .76              1.66  2.80 02-35    .34                .76              1.63  2.68 06-15    .34                .80              1.80  3.06 06-19    .34                .78              1.69  2.78 06-23    .34                .77              1.69  2.86 06-27    .34                .78                1.70  2.85 06-31    .33                .82                1.'82  3.07 06-35    .33                .79            ~  1.77  2.99 06-39    .34                .78                1.74  3.07 10-11    .35            ..84                  1.87  3.20 10-15    .35                .82                1.84  3.11 10-19    .32                .72                1.65  2.82 10-23    .32-              .72                1.65  2.87 10-27    .37                .91                1.98  3. 31 10-31    .35                .84                1.84  3.25 10-35    .32                .81                1.86  3.19 10-39    .35                .81                1.75  2.95 10-43,  .33                .76                1.68  2.85 10-07  ;36                .79                1.67  2.78 14-11  .37                .82                1.85  3.14 14-.15  .35                .75                1.68  3.00 14-19  .39                .93                2.07, 3.40 14-23  .36                .90                2.00  3.39 14-27  .35                .85                1.88  3.23 14-31  .33                .74                1.66  2.94 14.35  .34            '77                    1.75  2.99 14-39  .34                .78                1.71  2.93 14-43  .34                .79                1.78  3.03 14-47  .34                .71                1.59  2.74 18>>03  .36                .71                1.54  2.90 18-07  .34                .80                1.73  2.88 18-11    .35                .73                1.61  2.95 18-15    .39                .87                1.91  3.23 38-19    .37                .85                1.84  3.07 18-23  .35                .80                1.78  3.01 18-27  .35                .75                1.71  3.25 18-31  .34                .80                1.74  2.93 18-35  .36                .88                1.95  3.28 18-39      37              .85                1.88  3.22 18-43  .34                .81                1.77  3.02 18-47  .34                .78                1.72  2.96 18-51  .36                .75                1.68  3.00 22-03  .32                .74                1.62  2. 79 22-07  .36                .84                1.86  3.11 22-11  .32              '.75                  1.68  2.89 22>>'15  .34                .75                1.76  3.19 22-19  .35                .83            . 1.94  3.44
: 22. 23  .34                .72                1.65  3.08 2? -27  .35                .78                1.69  2.85,
 
y      Tab1e 1.1 (Continued)
RODS                        20~a          50~o  90~
22-31    .35                .82            1.80 3.07 22-.35    .37                .82            1.78 2.99 22-39    ~ 33              .77            1.68 2.82 22-43    ~ 33              .77            1.72 2.96 22-47    .33                .74            1.55 2.59 22-51    .35                .81            1.80 3.04 26-03    .31                .76            1.69 2.86 26-07    .34                .79            1.72 2.90 26-11    .33                .74            1.67 2.87 26-15    .36,              .83            1.81 3.07 26-19    .39                .88            1.88 3.18 26-23    .34                .80            1.84 3.27 26-27    .36                .84            1.89 3.22 26-31    .33                        '71 1.69 2.93 26-35    .36                .87            1.80 3.06 26-39    .33                .79          ,.1.73 2.94 26-43    .34                .82            1.88 3.18 26-47    .35,              .86            1.81 3.08 26-51    .31
                                  '79 1.82 3.08 30-03    ,35              '8]            1.75 2.92 30-07    .35  .            :80            1.76 2.99 30-11    .34                .82            1.85 3. 16 30-15  '.37                .83            1.82 3.07 30-19    .38                .87            1.82 3.08 30-23    .34                .77            1.68 2.88 30-27    .37                .91            2.08 3.48 30-31      37  .          .89            1.93 3.21 30-35    .36               .86            2.00 3.34
'30-39    .36               .74            1.68 3.09 30-43    .35                .80            1.76 2.98 30-47    .30                .72            1.65 2.85 30-51    .35                .79            1.73 2.91 34-03    .31                .73            1.58 2.66 34-07    .31                .71            1.54 2.58 34-11    .32                .74            1.65 2. 80'.40 34-15  ..36                 .87            1.98 34-19    .35                .83            1.90 3.27 34-23    .36               .81            1.78 3.05 34-27    .37                .88            1.99 3.48 34-31    .39                .93            1.91 3. 19 34-35    .36                .76            1.68 3.04 34-39    .37                .80            1.70 2.85 34-43    .31                .74            1.69 2.87 34-47    .32                .75            1.62 2.77 34-51    .32                .75            1.61 2.74 38-07    .31                .78            1.72 2.90 38-11    .36                .80           1.74 2.94 38-15    .35                .76          1.73  3.20 38-19    .34                .81            1.78 3.06 38-23    .36                .86          2.03  3.43 38-27    .36                :80            1.75 2.99 38-31    .30                .77            1.76 3.00
 
Table l. 1 (Continued)
RODS    5 o~              20~o      SO~o      90~o 38-35    .36                .81      1. 75      2.96 38-39    . 3'3              .78      1.69      2.89 38-43          '35
                          .75        1.63      2.76 38-47    .30              .72        1.54      2.60 42-11  .31                .77        1.72      2.93 42-15  .36                .82        1.77      2.99 42-19  .37                .86        2.07      3.65 42-23   .$ 5              .78        1.69      2. 85'.23 42-27  .37                .86              '.90 42-31  .33                .72        1.58      2.79 42-35   .36                .85        1.83      3.04 42-39  .36                .81        1.74      2.94 42-43  .30                .76        1.68      2.84 46-15  .29                .72        1.60      2.72 46-19  .35                .78        1.67      2.79 46-23  .32                .79        1.75      3.01 46-27  .36                .83        1.81      3.03 46-31   .35                .84        1.87      3.06 46-35  .36-              ;80        1.70      2.88 46-39  .28                .69        1.51      2.60 50-19  .32                .76        1.64      2.75 50-23  .34               .77        3.61      2.70 50-27  .31                .74        1.63      2.78 50-31  .35                .80        1.75      2.92 50-35  .33                .77        1.63      2.78 Average
        .345              .814      1.78      3.08
 
Table 1.2 Avera e Scram  Insertion  Time Com  arisons
'A Inserted              Average Scram  Insertion  Times (SEC)
From  Fully              After July  1977        Tech Spec Withdrawn                    Outa e                  Limit 0.345                    0.375 20                      0.814                    0.90 50                      1.78                      2.00 90                      3. 08                    5.00
 
2.0 SHUTDOllN MARGIN TEST
: 2. 1 Shutdown Mar  in''Test Abstract The purpose  of this test is to demonstrate that the reactor    can be made subcritical with  a  shutdown margin  of 0.25&#xc3;  k at any time  in the subsequent cycle with the strongest operable control rod      fully withdrawn.
With the core  at its most reactive condition, cold  and xenon-free the analytically strongest control rod is fully withdrawn from the core.        A second  control rod is then withdrawn to    a position which results in  an amount  of reactivity at least equal to the required maroin.
The shutdown margin    test shall be considered acceptable  if the reactor has remained  subcritical throughout the test.
 
2.2 Shutdown Mar in Test Results Figure 2.1 summarizes the results of the    Shutdown Margin Test. Control rod 18-27, shown  analytically to be the strongest,  was  fully withdrawn  from the core. Control rod 14-31 was then withdrawn to position 08 which analytically resulted in  an insertion of approximately  .8% delta  K. As shown on  Figure 2. 1 the reactor remained subcritical throughout the test.      Results of the test are within the criteria specified in the Technical Specification.
 
FIGURE 2.1 REACTIVITY MARGIN  - CORE LOADING Procedure:
: 1. All  Rods  In SRM Readings
                    '143 12 35 13 29 14 17
: 2. Rod CR1 18-27    selected
: 3. Rod CR1 18-27    position  48
: 4. Reactor Subcritical SRM Readings
                  '1 44 12 50 13 30 14 20
: 5. Rod CR2 14-31    Selected
: 6. Rod CR2    to position 08.
: 7. Reactor    Subcritical SRM        11    12    13  14 Readings    45    58    32  19
 
3.0 Instrumentation Ca1ibration Test T.
\
3.1 Instrumentation Gal ibr ation Test Abstract The purpose  of this test is to calibrate the Local        Power  Range Monitoring  (LPRM) System.
The LPRM System  is  a  spatial array of in-core fission      chambers  used  to monitor the in-core neutron    flux. In the    process computer formulation, each chamber  signal is calibrated to produce    a  meter reading which      is proportional to the neutron flux in the water        gap  at the axial elevation of the chamber.
The calibration procedure consists of data taking, calculations            and amplifier adjustments.      A set of LPRM  readings and Transverse      In-Core Probe (TIP) traces are recorded.      The process  computer    is  used  to determine the correct readings'hat the      LPRM's should have read based on        the TIP traces.
The  individual amplifier input calibration currents required to produce            a selected standard meter reading    on each LPRM meter      are recorded. These input currents are divided by the ratio of the calculated-to-observed              LPRM readings (Gain Adjustment Factors-GAF).      These new    input calibration currents are then applied    and the amplifier gains adjusted to produce the selected standard meter readings, thereby calibrating the LPRM's.
3.2 Instrumentation Calibration Test Results Figure 3.1 contains the LPRN Instrument Calibration Results for  an instrumentation calibration performed at  a power level of 985  of rated.
FIGURE 3.1 LPRN INSTRUMENTATION CALIBRATION RESULTS REqUIRED LPRH        AS FOUND                                        INPUT CURRENT PROBE    'NPUT'CURRENT        G;A.F.      ''''''105%'''8-41C 512                .87                              588 36-33C          880              1.05                                838 36-49C          855              1. 00                            Same 44-41C          851                .99                              859-28-41A          720              1. 78                              395 36-33A          842              l. 05                              801 36-49A          994              1. 01                              984 44-41A          943                .99                              952 36-41C        1100              1. 08                            1018 28-49C        10 10              1. 06                              952 44-33C          515              1. 11                              463 28-33C          970-              1. 08                              898 36-41A          874              1. 11                              787 28-49A 44-33A N
807 o D  e t e c tor 1.05 I npUt 768 28-33A            783                .68                            1151 36-17C          970              1. 04                              932 44-25C          815              1. 06                              768 28-09C          630                .96                              656 28-25C          903              1:09                              828 36-17A          970              1. 09                              890 44-25A          473              1. 0,8                            438 28-09A          752              1. 05                              716 28-25A          890              1. 10                              809 28-17C          949              1. 06                              895 36-09C        1060                .97                            1092 36-25C          656              1. 00                            Same
~ 44-17C          970              1. 01                              960 28-17A          927              1. 09                              850 36-09A          750              1.03                                728 36-25A          536              l. 11                              482 44-17A          823              l. 00                            Same 12-33D          930              1.03                                902 20-41D          894              1. 00                            Same 12-33B          983              l. 00                            Same 20-41B          307              l. 17                              262 12-41D        1120                .35                            1160 04-33D        1483              l. 05                            1412 20-49D        1240                .96                            1292 20-33D        1160              1. 18                              983 12-41B        1060              1. 03                            1029 04-33B          857              1. 05                              816
 
FIGURE 3.1 (Continued)
LPRM INSTRUMENTATION CALIBRATION RESULTS REQUIRED LPRM              AS FOUND                    INPUT CURRENT PROBE        INPUT'CURRENT      G.A.F.              105K 20-49.B          859              1.00          Sarge 20-33B          887              1.01              878 12-17D          1410              1. 09            1293 20-09D          1200              1. 08            1111 04-25D          1290              1. 03            1252 20-25D          1123              1. 13            993 12-17B          1031              1.05              981 20-09B            791              1.02              775 04-25B          1000              1. 05            952 20-25B          1018              1.08              942 04-17D          1110                  .95          1168 12-09D        1052                  .99          1063 12-25D        1020              1.02            1000 20-17D            941              1.04              905 04-17B          1010              l. 13            971 12-09B          930              1.04              894 12-25B          980                .95          1031 20-17B            685                .99            691 12-.33A 20-41A N
870 o  Detec    tor03 Input 844 1.
'12-33C            676              l. Ol            669 20-41C            820              1. 02            803 12-41A            840              0.00              712 04-33A            944              1.06              890 20-49A            743              1. 02            728 20-33A            738              1.09              677 12-41C          1150              1.01            1138 04-33C          1095              0.00              755 20-49C            580              1.03              563 20-33C            830              1.20              691 17A            910              1.04              875 20-09A            733              l. 18            621 04-25A 20-25A N
555 o  Detec    tor 1.06 Input 523 12-17C          1000              1. 05            952 20-09C          823              1. 12            734 04-25C          1030              1.08            953 20-25C          970              1. 07            906 04-17A            753                .96            784 12-09A          1061                .99          1071 12-25A          413              1.05              393
 
FIGURE 3. 1. (Continued)
LPRM INSTRUMENTATION CALIBRATION RESULTS REQUIRED LPRM              AS FOUND                      INPUT CURRENT PROBE          INPUT CURRENT        G.AD F.          105K 20-17A            694                1.01            687 04-17C            990                  .97          1020 12-09C            970                1. 02            950 12-25C              725                1. 11            653 20-17C            900                1. 02            882 28-41B            760                1. 01            752 36-33B            870                1. 03            844 36-49B            926                1.04            890 44-41B            800                1.01            792 28-41D            557                1. 05            530 36-33D            1050                1.06            990 36-49D            1000                1. 03            970 44-41D            1108                  .98          1130 36-41B            1090                1. 07          1019 28-49B            904                1. 01            895 44-33B            1010                1. 05            962 28-33B            1230                1. 80            683 36-41D            1300                1.09          1193 28-49D            1460                1.02          1431 44-33D            1420                1. 30          1092 28-33D            1250                1.09          1147 36-17B            1008                1. 09            925 44-25B              740                1. 03            718 28-09B              741                1. 00          Same 28-25B              970                1.07            906 36-17D            1300                1. 09          1193 44-25D              710                1.04            683 28-09D            1540                1. 22          1262 28-25D            1256                l. 11          1131 28-17B            1042                1. 10            947 36-09B              800                1.04            769 36-25B              680                1. 02            666 44-17B              275                0.00            238 28-17D            1100                1.06          1037 36-09D            1143                1.03          1109 36-25D              995                I. 13          880 44-17D            1120                  .99          1131 Ho  Detector Input-  No  signal is received from the    LPRM. This could be caused  by  faulty connections or failed detectors.
 
4.0 Cold Critical  Comparison Il ~
e 4.1 Cold Critical  Com arison Test Abstract The cold  critical control  rod pattern was analytically derived as shown on Figure 4. 1. Control rod withdrawals to target control rod inventory were compared  to the analytically derived pattern.
4.2 Cold  Critical Com arison Test Results Figure 4.2 contains the actual cold    critical control rod pattern.
The difference between the observed    and  predicted control rod inventories is less than  one percent  in reactivity.
COI:RITICAL    CONTROL ROD PATTERN X = POSITION 48 51 47 43                X      X 39 35 31 27                X    X 23 19 15 11                X    X 7
3 2 6 10 14 18 22 26 30 34 38 42 46 50 FIGURE  4.1 51 47 43 39 35 31 27
-23 19 15 ll 7
3 2 6 1014 18222630 34384246          50 FIGURE  4.2
 
5.0 Power Distribution Comparison 6.1 Power Distribution  Co  arison Test Abstract The power distribution in the core is monitored  by the process  computer.
Off line predictive  Models are used  to develop a power distribution corresponding to specific plant operating conditions.
5.2 Power Distribution  Com arison Test Results The power  distribution  comparison  test was performed under the core operating conditions shown  on  Figure 5. 1. Comparisons  of the actual to predicted core axial power distribution is    shown on  Figure 5.2. Comparisons of the actual to predicted core    average radial power    distribution is shown on Figure 5.3.
'6 Date                                              August 31, 1977 Core Power Level                                  1830 MMt (98.9%)
Core Flow Rate                                    66.4 Nlb/hr. (98.4/)
Pressure                                          1035 PSIA Subcooling                                        22.9 Btu/Lb.
CONTROL ROO PATTERN NOTCHES WITHORAWN BLANK ~ 48 ~ FULL OUT'1 47                    22      22 43                38                    38 39                    14        14 35          34            34  ,                34 31      22    14                            14    22 27                                              34 23    22      14                          14    22 19                        34                    34 15                    14      14 11                38 7
3 2  6  1014  18 22 26 30 34            384246    50 Figure 5;1    NINE NILE POINT UNIT 1 OPERATING CONDITIONS FOR BEGINNING OF CYCLE 5 COf<PARISONS
 
1.6                                                                          Predicted Actual 1.4 1.2 1.0 0.8 0.6 0.4 0.2 BOTT H                                AXIAL NODE                                  TOP FIGURE 5.2. Core Average Axial Power Distribution Comparisons for Nine Mile Point Unit 1, August 31, 1977
 
                            ~ >1 1 IE  1  die ~~
Figure 5.3 CORE AVERAGE RADIAL POWER DISTRIBUTION
                  ~Rin              'Actual    'Predicted Center                1                1. 012      1.002 2                0.927        0.922 3                1.123      1. 084 1.082      1.072 5                1.104      1.127 6                1.043      1.056 Edge                  7                0. 824      0. 816
 
RECEIVEO DOCUHEHT PRGCESSI!IG UNIT}}

Latest revision as of 21:13, 4 February 2020

Start-up Physics-Test Results-Cycle 5 September 1977
ML17037B505
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 11/02/1977
From: Dise D
Niagara Mohawk Power Corp
To: Lear G
Office of Nuclear Reactor Regulation
References
Download: ML17037B505 (34)


Text

DISTRIBUTION AFTER ISSU OF OPERATING ~ ICEiVSE NRC FOai+ 195 l. U.S. NUCI EAR REGULATORY CQMM 'IQN OOC T NUMBER (2-7S)

FII E NUMBER NRC DISTRIBUTION FQR PART 50 DOCKET MATERIAL TO: FROM: OATS OF OOCUME N T Niagara Mohawk Pwr>> 11/2/77 Mr. George Lear j.

~kew York Corp'yracuse, OATS RE CEI V E 0 Donald P ~ Disc . 11/4/77 i

TTER C}NOTORIZED T PROP INPUT FQRM NUMBER OF COPIES RECEIVED

)klRIQINAI UNCLASSIF ISO QCQPY

~ 3-f-/7 /fg. ENCI.QSURE "Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle 5 September 1977" pLANT NAIIE: Ni.ne Mile Point Unit No 1 RJL . 11/7/77 (1-P) , (29-P)

SAFETY FOR AC i ilON/INFORMATION BRAVCH CHIEF: 7)

INTERNAL 0 ISTRI BUTION I GE (2)

OELD CHECK EISENHUT SHAO BUTLER GRITS

~ OLLINS J. O~

EXTERNAL DIS I RIBUTION NTROI. NUMBER LPDR: O ~

TIC NSIC 16 CYS ACRS SENT CATE 0 Y ~~->iO)12,

v'I e ", j r

't

('(tLBS~ It y~tt'5 Yv'rg I~ "X~(

NIAGARA MOHAWK POWER CORPORATION NIAGARA '~ MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE, N. Y. I3202 Cgpg November 2, 1977

'< o~

'-'irector of Nuclear Reactor Regulation Attn: Mx. George Lear, Chief Operating Reactors Branch g3 U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Re: Nine, Mile Point Unit 1 Docket No. 50-220 DPR-63

Dear Mr. Lear:

Your letter of March 4, 1977 requested Niagara Mohawk to submit a summary report of the startup physics tests within 90 days following completion of the Cycle 5 startup test program. The enclosed information addresses your re'quest.

Very truly yours, NIAGARA MOHAWK POWER CORPORATION Donald P. Disc Vice President-Engineering 773il0112 SWW/szd Enclosure

NINE MILE POINT UNIT 1 Start-up Physics Test Resu1ts - Cyc1e 5 September 1977

Test Abstracts and Results The test abstracts, results, and comparisons of measured and predicted responses for the star tup physics tests are outlined below.

1.0 Control rod drive scram tests (hot) 2.0 Shut down margin tests.

3.0 Instrumentation calibrations.

4.0 Cold Critical comparison with actual measurements.

5.0 Power distribution calculation comparison above 505 power with actual measurements.

1.0 CONTROL ROD DRIVE SCRAM TESTS (hot)

1.1 Control Rod Drive Scram Test Abstract Following a major refueling outage, it is necessary to verify that the control rods fully insert upon receiving a scram signal within the time interval specified in the Technical Specifications.

The general procedure is to withdraw the control rods in the A sequence to the "black and white" pattern; then alternate between scram-insertion and withdrawal until all the previously withdrawn rods .have been scrammed arid the remaining rods withdrawn. At this point, the rod pattern will be in the B sequence "black and white"; then alternate between scram-insertion and withdrawal until all rods have been scrammed, and the rod pattern is the A sequence "black and white" again. After analyzing the scram times, the control rods are withdrawn to the specified beginning of cy'cle pattern.

The control rod time testing shall be considered acceptable if Technical Specification 3.1.1C is met.

1.2 Control Rod .Drive Scram Test Results Table 1. 1 contains the results of the control rod drive scram tests (hot). Results of the test are within the values specified by Technical Specification 3. 1.1C. (see .Table 1.2).

Tabl e .1.1 ROD SCRAhf TIhKS AFTER JULY 1977 OUTAGE RODS 20~o 50<o 90~o 02-19 .32 .72 1.54 2.66 02-23 .33 .76 1.73 2.94 02.27 .33 .71 1.60 2.74 02-31 .33 .76 1.66 2.80 02-35 .34 .76 1.63 2.68 06-15 .34 .80 1.80 3.06 06-19 .34 .78 1.69 2.78 06-23 .34 .77 1.69 2.86 06-27 .34 .78 1.70 2.85 06-31 .33 .82 1.'82 3.07 06-35 .33 .79 ~ 1.77 2.99 06-39 .34 .78 1.74 3.07 10-11 .35 ..84 1.87 3.20 10-15 .35 .82 1.84 3.11 10-19 .32 .72 1.65 2.82 10-23 .32- .72 1.65 2.87 10-27 .37 .91 1.98 3. 31 10-31 .35 .84 1.84 3.25 10-35 .32 .81 1.86 3.19 10-39 .35 .81 1.75 2.95 10-43, .33 .76 1.68 2.85 10-07 ;36 .79 1.67 2.78 14-11 .37 .82 1.85 3.14 14-.15 .35 .75 1.68 3.00 14-19 .39 .93 2.07, 3.40 14-23 .36 .90 2.00 3.39 14-27 .35 .85 1.88 3.23 14-31 .33 .74 1.66 2.94 14.35 .34 '77 1.75 2.99 14-39 .34 .78 1.71 2.93 14-43 .34 .79 1.78 3.03 14-47 .34 .71 1.59 2.74 18>>03 .36 .71 1.54 2.90 18-07 .34 .80 1.73 2.88 18-11 .35 .73 1.61 2.95 18-15 .39 .87 1.91 3.23 38-19 .37 .85 1.84 3.07 18-23 .35 .80 1.78 3.01 18-27 .35 .75 1.71 3.25 18-31 .34 .80 1.74 2.93 18-35 .36 .88 1.95 3.28 18-39 37 .85 1.88 3.22 18-43 .34 .81 1.77 3.02 18-47 .34 .78 1.72 2.96 18-51 .36 .75 1.68 3.00 22-03 .32 .74 1.62 2. 79 22-07 .36 .84 1.86 3.11 22-11 .32 '.75 1.68 2.89 22>>'15 .34 .75 1.76 3.19 22-19 .35 .83 . 1.94 3.44

22. 23 .34 .72 1.65 3.08 2? -27 .35 .78 1.69 2.85,

y Tab1e 1.1 (Continued)

RODS 20~a 50~o 90~

22-31 .35 .82 1.80 3.07 22-.35 .37 .82 1.78 2.99 22-39 ~ 33 .77 1.68 2.82 22-43 ~ 33 .77 1.72 2.96 22-47 .33 .74 1.55 2.59 22-51 .35 .81 1.80 3.04 26-03 .31 .76 1.69 2.86 26-07 .34 .79 1.72 2.90 26-11 .33 .74 1.67 2.87 26-15 .36, .83 1.81 3.07 26-19 .39 .88 1.88 3.18 26-23 .34 .80 1.84 3.27 26-27 .36 .84 1.89 3.22 26-31 .33 '71 1.69 2.93 26-35 .36 .87 1.80 3.06 26-39 .33 .79 ,.1.73 2.94 26-43 .34 .82 1.88 3.18 26-47 .35, .86 1.81 3.08 26-51 .31

'79 1.82 3.08 30-03 ,35 '8] 1.75 2.92 30-07 .35 . :80 1.76 2.99 30-11 .34 .82 1.85 3. 16 30-15 '.37 .83 1.82 3.07 30-19 .38 .87 1.82 3.08 30-23 .34 .77 1.68 2.88 30-27 .37 .91 2.08 3.48 30-31 37 . .89 1.93 3.21 30-35 .36 .86 2.00 3.34

'30-39 .36 .74 1.68 3.09 30-43 .35 .80 1.76 2.98 30-47 .30 .72 1.65 2.85 30-51 .35 .79 1.73 2.91 34-03 .31 .73 1.58 2.66 34-07 .31 .71 1.54 2.58 34-11 .32 .74 1.65 2. 80'.40 34-15 ..36 .87 1.98 34-19 .35 .83 1.90 3.27 34-23 .36 .81 1.78 3.05 34-27 .37 .88 1.99 3.48 34-31 .39 .93 1.91 3. 19 34-35 .36 .76 1.68 3.04 34-39 .37 .80 1.70 2.85 34-43 .31 .74 1.69 2.87 34-47 .32 .75 1.62 2.77 34-51 .32 .75 1.61 2.74 38-07 .31 .78 1.72 2.90 38-11 .36 .80 1.74 2.94 38-15 .35 .76 1.73 3.20 38-19 .34 .81 1.78 3.06 38-23 .36 .86 2.03 3.43 38-27 .36 :80 1.75 2.99 38-31 .30 .77 1.76 3.00

Table l. 1 (Continued)

RODS 5 o~ 20~o SO~o 90~o 38-35 .36 .81 1. 75 2.96 38-39 . 3'3 .78 1.69 2.89 38-43 '35

.75 1.63 2.76 38-47 .30 .72 1.54 2.60 42-11 .31 .77 1.72 2.93 42-15 .36 .82 1.77 2.99 42-19 .37 .86 2.07 3.65 42-23 .$ 5 .78 1.69 2. 85'.23 42-27 .37 .86 '.90 42-31 .33 .72 1.58 2.79 42-35 .36 .85 1.83 3.04 42-39 .36 .81 1.74 2.94 42-43 .30 .76 1.68 2.84 46-15 .29 .72 1.60 2.72 46-19 .35 .78 1.67 2.79 46-23 .32 .79 1.75 3.01 46-27 .36 .83 1.81 3.03 46-31 .35 .84 1.87 3.06 46-35 .36- ;80 1.70 2.88 46-39 .28 .69 1.51 2.60 50-19 .32 .76 1.64 2.75 50-23 .34 .77 3.61 2.70 50-27 .31 .74 1.63 2.78 50-31 .35 .80 1.75 2.92 50-35 .33 .77 1.63 2.78 Average

.345 .814 1.78 3.08

Table 1.2 Avera e Scram Insertion Time Com arisons

'A Inserted Average Scram Insertion Times (SEC)

From Fully After July 1977 Tech Spec Withdrawn Outa e Limit 0.345 0.375 20 0.814 0.90 50 1.78 2.00 90 3. 08 5.00

2.0 SHUTDOllN MARGIN TEST

2. 1 Shutdown Mar inTest Abstract The purpose of this test is to demonstrate that the reactor can be made subcritical with a shutdown margin of 0.25Ã k at any time in the subsequent cycle with the strongest operable control rod fully withdrawn.

With the core at its most reactive condition, cold and xenon-free the analytically strongest control rod is fully withdrawn from the core. A second control rod is then withdrawn to a position which results in an amount of reactivity at least equal to the required maroin.

The shutdown margin test shall be considered acceptable if the reactor has remained subcritical throughout the test.

2.2 Shutdown Mar in Test Results Figure 2.1 summarizes the results of the Shutdown Margin Test. Control rod 18-27, shown analytically to be the strongest, was fully withdrawn from the core. Control rod 14-31 was then withdrawn to position 08 which analytically resulted in an insertion of approximately .8% delta K. As shown on Figure 2. 1 the reactor remained subcritical throughout the test. Results of the test are within the criteria specified in the Technical Specification.

FIGURE 2.1 REACTIVITY MARGIN - CORE LOADING Procedure:

1. All Rods In SRM Readings

'143 12 35 13 29 14 17

2. Rod CR1 18-27 selected
3. Rod CR1 18-27 position 48
4. Reactor Subcritical SRM Readings

'1 44 12 50 13 30 14 20

5. Rod CR2 14-31 Selected
6. Rod CR2 to position 08.
7. Reactor Subcritical SRM 11 12 13 14 Readings 45 58 32 19

3.0 Instrumentation Ca1ibration Test T.

\

3.1 Instrumentation Gal ibr ation Test Abstract The purpose of this test is to calibrate the Local Power Range Monitoring (LPRM) System.

The LPRM System is a spatial array of in-core fission chambers used to monitor the in-core neutron flux. In the process computer formulation, each chamber signal is calibrated to produce a meter reading which is proportional to the neutron flux in the water gap at the axial elevation of the chamber.

The calibration procedure consists of data taking, calculations and amplifier adjustments. A set of LPRM readings and Transverse In-Core Probe (TIP) traces are recorded. The process computer is used to determine the correct readings'hat the LPRM's should have read based on the TIP traces.

The individual amplifier input calibration currents required to produce a selected standard meter reading on each LPRM meter are recorded. These input currents are divided by the ratio of the calculated-to-observed LPRM readings (Gain Adjustment Factors-GAF). These new input calibration currents are then applied and the amplifier gains adjusted to produce the selected standard meter readings, thereby calibrating the LPRM's.

3.2 Instrumentation Calibration Test Results Figure 3.1 contains the LPRN Instrument Calibration Results for an instrumentation calibration performed at a power level of 985 of rated.

FIGURE 3.1 LPRN INSTRUMENTATION CALIBRATION RESULTS REqUIRED LPRH AS FOUND INPUT CURRENT PROBE 'NPUT'CURRENT G;A.F. '105%8-41C 512 .87 588 36-33C 880 1.05 838 36-49C 855 1. 00 Same 44-41C 851 .99 859-28-41A 720 1. 78 395 36-33A 842 l. 05 801 36-49A 994 1. 01 984 44-41A 943 .99 952 36-41C 1100 1. 08 1018 28-49C 10 10 1. 06 952 44-33C 515 1. 11 463 28-33C 970- 1. 08 898 36-41A 874 1. 11 787 28-49A 44-33A N

807 o D e t e c tor 1.05 I npUt 768 28-33A 783 .68 1151 36-17C 970 1. 04 932 44-25C 815 1. 06 768 28-09C 630 .96 656 28-25C 903 1:09 828 36-17A 970 1. 09 890 44-25A 473 1. 0,8 438 28-09A 752 1. 05 716 28-25A 890 1. 10 809 28-17C 949 1. 06 895 36-09C 1060 .97 1092 36-25C 656 1. 00 Same

~ 44-17C 970 1. 01 960 28-17A 927 1. 09 850 36-09A 750 1.03 728 36-25A 536 l. 11 482 44-17A 823 l. 00 Same 12-33D 930 1.03 902 20-41D 894 1. 00 Same 12-33B 983 l. 00 Same 20-41B 307 l. 17 262 12-41D 1120 .35 1160 04-33D 1483 l. 05 1412 20-49D 1240 .96 1292 20-33D 1160 1. 18 983 12-41B 1060 1. 03 1029 04-33B 857 1. 05 816

FIGURE 3.1 (Continued)

LPRM INSTRUMENTATION CALIBRATION RESULTS REQUIRED LPRM AS FOUND INPUT CURRENT PROBE INPUT'CURRENT G.A.F. 105K 20-49.B 859 1.00 Sarge 20-33B 887 1.01 878 12-17D 1410 1. 09 1293 20-09D 1200 1. 08 1111 04-25D 1290 1. 03 1252 20-25D 1123 1. 13 993 12-17B 1031 1.05 981 20-09B 791 1.02 775 04-25B 1000 1. 05 952 20-25B 1018 1.08 942 04-17D 1110 .95 1168 12-09D 1052 .99 1063 12-25D 1020 1.02 1000 20-17D 941 1.04 905 04-17B 1010 l. 13 971 12-09B 930 1.04 894 12-25B 980 .95 1031 20-17B 685 .99 691 12-.33A 20-41A N

870 o Detec tor03 Input 844 1.

'12-33C 676 l. Ol 669 20-41C 820 1. 02 803 12-41A 840 0.00 712 04-33A 944 1.06 890 20-49A 743 1. 02 728 20-33A 738 1.09 677 12-41C 1150 1.01 1138 04-33C 1095 0.00 755 20-49C 580 1.03 563 20-33C 830 1.20 691 17A 910 1.04 875 20-09A 733 l. 18 621 04-25A 20-25A N

555 o Detec tor 1.06 Input 523 12-17C 1000 1. 05 952 20-09C 823 1. 12 734 04-25C 1030 1.08 953 20-25C 970 1. 07 906 04-17A 753 .96 784 12-09A 1061 .99 1071 12-25A 413 1.05 393

FIGURE 3. 1. (Continued)

LPRM INSTRUMENTATION CALIBRATION RESULTS REQUIRED LPRM AS FOUND INPUT CURRENT PROBE INPUT CURRENT G.AD F. 105K 20-17A 694 1.01 687 04-17C 990 .97 1020 12-09C 970 1. 02 950 12-25C 725 1. 11 653 20-17C 900 1. 02 882 28-41B 760 1. 01 752 36-33B 870 1. 03 844 36-49B 926 1.04 890 44-41B 800 1.01 792 28-41D 557 1. 05 530 36-33D 1050 1.06 990 36-49D 1000 1. 03 970 44-41D 1108 .98 1130 36-41B 1090 1. 07 1019 28-49B 904 1. 01 895 44-33B 1010 1. 05 962 28-33B 1230 1. 80 683 36-41D 1300 1.09 1193 28-49D 1460 1.02 1431 44-33D 1420 1. 30 1092 28-33D 1250 1.09 1147 36-17B 1008 1. 09 925 44-25B 740 1. 03 718 28-09B 741 1. 00 Same 28-25B 970 1.07 906 36-17D 1300 1. 09 1193 44-25D 710 1.04 683 28-09D 1540 1. 22 1262 28-25D 1256 l. 11 1131 28-17B 1042 1. 10 947 36-09B 800 1.04 769 36-25B 680 1. 02 666 44-17B 275 0.00 238 28-17D 1100 1.06 1037 36-09D 1143 1.03 1109 36-25D 995 I. 13 880 44-17D 1120 .99 1131 Ho Detector Input- No signal is received from the LPRM. This could be caused by faulty connections or failed detectors.

4.0 Cold Critical Comparison Il ~

e 4.1 Cold Critical Com arison Test Abstract The cold critical control rod pattern was analytically derived as shown on Figure 4. 1. Control rod withdrawals to target control rod inventory were compared to the analytically derived pattern.

4.2 Cold Critical Com arison Test Results Figure 4.2 contains the actual cold critical control rod pattern.

The difference between the observed and predicted control rod inventories is less than one percent in reactivity.

COI:RITICAL CONTROL ROD PATTERN X = POSITION 48 51 47 43 X X 39 35 31 27 X X 23 19 15 11 X X 7

3 2 6 10 14 18 22 26 30 34 38 42 46 50 FIGURE 4.1 51 47 43 39 35 31 27

-23 19 15 ll 7

3 2 6 1014 18222630 34384246 50 FIGURE 4.2

5.0 Power Distribution Comparison 6.1 Power Distribution Co arison Test Abstract The power distribution in the core is monitored by the process computer.

Off line predictive Models are used to develop a power distribution corresponding to specific plant operating conditions.

5.2 Power Distribution Com arison Test Results The power distribution comparison test was performed under the core operating conditions shown on Figure 5. 1. Comparisons of the actual to predicted core axial power distribution is shown on Figure 5.2. Comparisons of the actual to predicted core average radial power distribution is shown on Figure 5.3.

'6 Date August 31, 1977 Core Power Level 1830 MMt (98.9%)

Core Flow Rate 66.4 Nlb/hr. (98.4/)

Pressure 1035 PSIA Subcooling 22.9 Btu/Lb.

CONTROL ROO PATTERN NOTCHES WITHORAWN BLANK ~ 48 ~ FULL OUT'1 47 22 22 43 38 38 39 14 14 35 34 34 , 34 31 22 14 14 22 27 34 23 22 14 14 22 19 34 34 15 14 14 11 38 7

3 2 6 1014 18 22 26 30 34 384246 50 Figure 5;1 NINE NILE POINT UNIT 1 OPERATING CONDITIONS FOR BEGINNING OF CYCLE 5 COf<PARISONS

1.6 Predicted Actual 1.4 1.2 1.0 0.8 0.6 0.4 0.2 BOTT H AXIAL NODE TOP FIGURE 5.2. Core Average Axial Power Distribution Comparisons for Nine Mile Point Unit 1, August 31, 1977

~ >1 1 IE 1 die ~~

Figure 5.3 CORE AVERAGE RADIAL POWER DISTRIBUTION

~Rin 'Actual 'Predicted Center 1 1. 012 1.002 2 0.927 0.922 3 1.123 1. 084 1.082 1.072 5 1.104 1.127 6 1.043 1.056 Edge 7 0. 824 0. 816

RECEIVEO DOCUHEHT PRGCESSI!IG UNIT