ML18041A125: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(11 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:H~
t 180-DAY REPORT IN  RESPONSE  TO  IE BULIETIN 80-11 I          FOR DRESDEN NUCIEAR POWER STATION UNITS 2 AND  3 COMMONWEALTH EDISON COMPANY DOCKET NUMBERS      50-237 AND 50-249 PREPARED BY: Bechtel Power Corporation Report Date: September    14, 1984 Revision 4
 
  ~"
I
 
TABLE OF CONTENTS Pacae
 
==1.0  INTRODUCTION==
 
2.0  SCOPE
 
==3.0  DESCRIPTION==
OF MASONRY WALLS 3.1  LOCATION 3.2  FUNCTION 3.3  WALL CONFIGURATION 3.4  CONSTRUCTION MATERIALS 3.5  CONSTRUCTION PRACTICES 3.6  RECONCILIATION WITH 180-DAY REPORT, REVISION  3 4.0  REEVALUATION OF MASONRY WALLS 4.1  POSTULATED LOADS 4.2  ALLOWABLE STRESSES                              6 4.3  JUSTIFICATION OF THE REEVAIUATION CRITERIA      6 4.4  SEQUENCE OF ANALYSIS                            7 4.5  METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA      7 4.6  ASSUMPTIONS AND ANALYSIS CONSTRAINTS            8 4.7  MASONRY WALL TESTING PROGRAM                    10 S.o  RESULTS OF MASONRY WALL EVALUATION              10 5.1 
 
==SUMMARY==
 
==6.0  REFERENCES==
 
APPENDIXES Masonry Wall Plans Additional Justification of the Reevaluation Criteria TABLES Masonry Walls -Function and Physical Properties Allowable Stresses  in Concrete Masonry Walls Applied Loads and Evaluation Results 0050c
 
==1.0    INTRODUCTION==
 
This 180-day report is being issued in response to NRC IE Bulletin 80-11, dated May 8, 1980 (Reference 6.2). This report has been prepared by Bechtel Power Corporation, Ann Arbor, Michigan. for Commonwealth Edison Company's Dresden Nuclear Power Station, Units 2 and 3. Revision 4 of this report incorporates the status change of two masonry walls which Sere previously identified in Revision 3 as meeting the acceptance criteria.
2.0  SCOPE The 180-day  report furnishes information requested in Item 2b of NRC  IE  Bulletin 80-11. It deals solely with masonry walls identified in this report as safety-related. Any masonry wall is considered safety-related when it is in proximity to or has attachments from safety-related piping or equipment such that wall failure could damage a safety-related system.
The analyses are based on as-built conditions identified during site surveys of June and July 1980 and July 1981.
 
==3.0  DESCRIPTION==
OF MASONRY WALLS 3.1  LOCATION The  figures in Appendix A show the location of  all safety-related masonry walls.
3.2  FUNCTION The  function of each masonry wall is identified in Table  1 according to one of the following categories.
3.2.1      Fire Wall These walls were constructed to prevent the spread of fire from one side of the wall to the other according to the appropriate fire rating associated with the wall's thickness.
3.2.2      Partition Wall The partition walls are interior dividing walls whose sole purpose is to separate a portion of a room from the remainder.
3.2.3      Shieldin Wall The masonry shielding walls. typically made of solid units which are required to restrict radiation exposures.
0050c
 
3.2.4    Blockout A  blockout, made of masonry, seals an opening in a larger concrete wall. These openings are left in the concrete walls to provide for equipment installation or pipe penetrations before the opening is sealed with the masonry.
3.2.5    Exterior Wall Exterior walls have at least a part of one face exposed to the outside, or are a part of the boundary of the Units 2 and 3 reactor turbine building complex. Only exterior walls are subject to wind or tornado loads.
3.3  WALL CONFIGURATION Wall dimensions and boundary conditions for each wall are indicated in Table l. Each boundary is categorized as either a fixed support capable of providing both moment and shear resistance, a simple support resisting only shear forces, or a free edge through which no forces can be transferred.
3.4  CONSTRUCTION MATERIAIS 3.4.1    Hollow Masonr The hollow masonry units, which are identified on the design drawings, were specified as three-core blocks conforming to ASTM C 90. Grade N-I, Lightweight Aggregate. Masonry walls.
which are not shown on the design drawings, were assumed to consist of hollow units of the same type specified above. This assumption and the material properties of the hollow block were verified by plant-specific tests (see Section 4.7). Site surveys have found that the hollow masonry walls consist of both two-core and three-core units.
3.4.2    Solid Masonr Two types of solid blocks (normal weight and magnetite) were used in the solid masonry construction. Plant-specific tests determined the material properties of both types of block (see Section 4.7).
3.4.3    Mortar The  mortar used in the const, ruction of the hollow masonry walls was  specified as ASTM C 270, Type N, with a 28-day compressive strength of 750 psi. Tests on the mortar used in the solid masonry found that  it  was, as a minimum. comparable to that specified for hollow masonry (see Section 4.7).
0050c
 
0 3.4.4    Reinforcin Steel According to the design drawings and specifications, the masonry walls are reinforced in the bed joint of every other course.
This joint reinforcement consists of heavy-duty, continuous, rectangular, ladder type steel reinforcement, whose minimum yield strength is 65 ksi. Deformed bar steel, where shown on the drawings, has a minimum yield strength of 40 ksi.
3.4.5    Anchors Masonry anchors have been used in certain locations to tie the masonry wall to an adjacent structural element. These anchors consist of two types: corrugated metal ties (dovetail anchors) which are used for connections to concrete walls or columns and 3/16-inch diameter adjustable bar ties welded to the supporting structural steel.
3.5  CONSTRUCTION PRACTICES The masonry walls at the station were constructed in accordance with the applicable job and standard specifications for masonry work and have a high quality of masonry workmanship.
Conformance to applicable ASTM specifications was required for concrete blocks, mortar, reinforcing ties, and anchors. Storage and protection of blocks and walls, as well as cold weather protection, were specified. The mortar joints of solid masonry walls were required to be constructed with full mortar coverage on all vertical and horizontal faces. The vertical joints were to be shoved tight. A full mortar bedding was specified for webs and face shells of the hollow masonry walls. Face shells were required to be fully buttered and pressed into place to ensure full, well-compacted horizontal and vertical mortar joints.
3.6  RECONCILIATION WITH 180-DAY REPORT, REVISION  3 This latest revision of the 180-day report incorporates the following information:
3.6.1    The inclusion of walls 37 and 103 to the list of walls which do not meet the acceptance criteria. These walls were previously identified as meeting the acceptance criteria.
With the incorporation of the above, a total of 64 masonry walls now meet the acceptance criteria. This represents a decrease of two walls over the total shown in Revision 3 of this report.
0050c
 
4.0  REEVALUATION OF MASONRY WALLS 4.1  POSTULATED LOADS The loads which were considered      in the evaluation of each  wall are  identified in Table    3.
4.1.1    Dead Load    D This load includes the dead weight of the wall and all permanently attached equipment, piping, conduit, and cable trays. The construction sequences have allowed the permanent dead load deflection to occur prior to the erection of the masonry walls. Therefore, the dead loads from the floor above are not transferred to the masonry walls.
This load includes    applicable live loads which can be transferred to the    masonry  wall through the floor framing. The live loads are not    considered in those load combinations when they would relieve  wall stresses.
4.1.3    Attachment Loads    Ro and Ra The attachment  loads are localized loads which are a result of the reactions from the supports of piping, cable trays, conduits, HVAC ducts. and other systems. The reactions are determined for the normal operating or shutdown condition (Ro) and for the accident condition (Ra) which results from the thermal conditions generated by the postulated pipe break and includes Ro.
Exterior walls are subject to a uniform pressure load corresponding to the design wind speed. The design wind        speed for Dresden Units 2 and 3 is 110 miles per hour.
4.1.5    Tornado Load    Wt Exterior walls are subject to velocity pressures, differential pressures, and tornado missiles of the design tornado identified in the plant FSAR.
The maximum tornado wind speed is 300 miles per hour. The maximum differential pressure is 170 psf.
0050c
 
The  following missiles 1    are generated by the design tornado:
a.~  A telephone pole 35 '-0" long. with a butt diameter of 13 inches, a unit weight of 50 pcf, and total weight of 1,200 pounds, and having    a velocity of 150 miles per hour
: b. A 1-ton mass with a velocity of 100 miles per hour and a contact area of 25 square feet A probabilistic risk assessment      for tornado missiles impacting walls  D2-529-43C-74    and  D2-517-316-105  was performed by others.
The results of this analysis show the probability of a tornado missile striking either of these two walls to be approximately 10-7 per year. Therefore, the evaluation includes only the effects of wind pres'sure and depressurization.
The original design considered the buildings housing safety-related piping, conduit, cable trays, and equipment as sealed; therefore, tornado loadings do not affect interior walls.
4.1.6      0 eratin Basis Earth uake Eo This load represents the seismic load generated by the operating basis earthquake (OBE). The design ground accelerations are as follows:
: a. Horizontal 0.1      g
: b. Vertical = 0.067    g 4.1.7      Safe Shutdown Earth uake      Es This load represents the seismic load generated by the safe shutdown earthquake (SSE). The design ground accelerations are twice those shown for the OBE.
4.1.8      Thermal Loads    To and Ta Thermal loads account for the effects of thermal gradients under normal operating (To) and accident (T ) conditions. The operating loads represent the most critical steady-state condition. while the accident condition is a short-term thermal transient resulting from the postulated pipe leak, including To 0050c
 
4.1.9      Hi h-Ener    Pi  e  Break The  high-energy piping systems outside of the primary the containment were investigated and their proximity to safety-related masonry walls was established. It was          found that walls.
only a break in    the  RWCS  would  impact the masonry However, a break in this system is precluded by means of leak detection and administrative action. Room temperature monitors are capable of responding to small RWCS leaks by providing indication and alarm to the control room. At this time, the operators shall take the appropriate action to isolate the RWCS, thereby preventing a full pipe rupture.
The analysis of the masonry walls in proximity to the RWCS addresses the effects of the postulated pipe leak by considering the thermal transient discussed in Subsection 4.1.8 and differential pressure (Pa). This load is represented by an equivalent static pressure across a wall.
4.2    ALLOWABLE STRESSES The  allowable masonry stresses, excluding collar joint stresses, under normal load combinations are in accordance with those given by the Building Code Requirements for Concrete Masonry Structures (ACI 531-79)(Reference 6.1). Allowable stresses for extreme environmental and abnormal load combinations are increased by a factor of 1.67 over the above ACI code allowable stresses.
For the mortar collar joints, the allowable shear and tension stresses are 10 psi for normal load combinations and 14 psi for extreme environmental and abnormal load combinations.
Allowable stresses applicable to the different types of masonry are given in Table 2.
4.3    JUSTIFICATION  OF THE REEVALUATION    CRITERIA .
Except as noted, allowable stresses of masonry units and mortar are based on the code values as published in ACI 531-79. These values are considered reasonable and conservative.          References to tests and  other codes are provided in the commentary to ACI 531-79. It is noted that the allowable      stresses are used for the evaluation of existing masonry walls and not for the design of new walls.
Because  building codes do not address abnormal and extreme environmental conditions, a factor of 1.67 was used to provide allowable stresses under these loading combinations. Based on available margins of safety, this factor is considered to be reasonable.
0050c
 
Published data on tension and shear strength of collar joints are almost nonexistent. The ultimate collar joint stresses were therefore determined by plant-specific in situ tests. The allowable stress, as given in Section 4.2, was obtained by applying a safety margin of three to the minimum test result (see Section 4.7).
Additional justification of the reevaluation criteria is provided in Appendix B.
4.4  SEQUENCE OF ANALYSIS Each  wall is initially analyzed considering only dead and seismic loads or dead and tornado loads, whichever appears most critical. For all walls which are found to be acceptable, the following applicable loadings are considered: live load, attachment loads, pipe leak loa'ds, and interstory drift.
4.5  METHOD OF ANALYSIS AND ACCEPTANCE  CRITERIA 4.5.1    Stress Anal sis Based on the walls'oundary conditions, each wall is idealized as either a cantilever;,one-way strip, or two-way plate which is supported along at least two adjacent edges. The wall is then considered acceptable  if all wall stresses under'll load combinations are less than or equal to the established allowable stresses.
4.5.2    Stabilit and Slidin Anal sis Cantilever walls which do not meet the acceptance criteria for allowable stresses are analyzed with regard to overturning stability and sliding movement. A factor of safety against overturning is determined for both OBE and SSE loads. The minimum acceptable factors of safety are 2.0 for OBE and 1.5 for SSE conditions. Before the wall is considered acceptable, the total wall movement, including rocking and sliding, must not adversely affect any safety-related items.
4.5.3    Anal sis of Archin Effects Masonry walls with mortared joints at, both the top and bottom boundaries that do not meet, the acceptance criteria for allowable stresses are investigated for arching effects. The wall s capability of resisting horizontal loads, after ultimate tension stresses are exceeded, is developed when the wall jams at the top and bottom against the supporting structural members. The center of the wall cracks due to tension stresses, and a three-hinged arch is formed to resist the loads through compression stresses only.
0050c
 
Design seismic loads generated by the safe shutdown earthquake are based on the peak acceleration of the applicable response criteria  and a damping  factor of 10% of critical.
The  stiffnesses of the supporting structural elements are accounted for in the analysis. Also, the deflection at the center hinge must be less than or equal to one third of the wall thickness. If an arching wall meets the above requirementj    it is considered acceptable when the compression stress develo'ped in the arch is less than or equal to the allowable flexural compression stress shown in Table 2.
4.5.4      Interstor Drift Under Seismic Loads The effects of interstory drift are considered by determining the in-plane shear strain in the wall due to the relative displacement between the top and bottom of the wall. The allowable in-plane strains are 0.0001 for unconfined walls and 0.001 for confined walls. An unconfined wall is defined as a wall supported only on two adjacent sides. A confined wall is supported on any three sides or at the top and bottom of the wall (References 6.5, 6.6. and 6.7).
These acceptance criteria are considered to be justified because none of the masonry walls carry a significant part of the buildings'tory shear or moment. Also, test data indicate that the gross shear strain of walls is a more reliable indicator for predicting the onset of cracking than loads or stresses.
The out-of-plane relative displacement creates a bending moment in the wall only in the case where the top and bottom boundaries are supported. and at least one represents a fixed condition.
None of the masonry walls at the Dresden station are effectively fixed at either the top or the bottom boundary; therefore, the out-of-plane interstory drift is not considered.
4.6  ASSUMPTIONS AND ANALYSIS CONSTRAINTS The  following assumptions and constraints were employed in the reevaluation of the masonry walls.
4.6.1      Nonsafety-related walls, anchor bolts. and embedments were not within the scope of the reevaluation.
4.6.2      All loads and load combinations outlined in the plant PSAR are considered in the reevaluation.
0050c
 
4.6.3    The  seismic loads on masonry walls are dependent on the damping  characteristics of the material, which are expressed in percentage of critical damping as follows (References 6.3 and 6.4):
: a. Uncracked Masonry Wall, Out-of-Plane Acceleration
: 1)    OBE:  2%
: 2)    SSE:  2'4
: b. Vital Piping    Systems. Horizontal  and Vertical Accelerations
: 1)    OBE:  0.5%
: 2)    SSE:  2't The  plant FSAR specifies damping of 0.5'4 under OBE conditions for vital piping systems. For the purpose of this evaluation, vital piping are defined as all safety-related piping.
: c. Other Attached Systems, Horizontal and Vertical Accelerations
: 1)    OBE:  1'4
: 2)    SSE'W This category includes nonsafety-related      piping and safety-related and nonsafety-related      conduit, cable trays, and HVAC ductwork.
4.6.4    A  masonry wall is considered an isotropic, elastic material. Its natural frequency is calculated using standard plate formulas. For a wall with an opening, the calculated frequency is reduced by 9% if the size of the opening equals or is greater than 15% of the wall area. The reduction is proportionally less for a smaller opening. For multiple openings, the largest
        'one is considered.      To account for variation in stiffness and mass of the wall, the above frequency is varied by + 10% and the maximum response is used in the analysis.
4 ~ 6.5  In accordance with the plant FSAR, the effects of the seismic loads of one horizontal and the vertical direction are added arithmetically.
4.6.6    Dead  loads from the floor above are not considered being transferred to the masonry walls. A part of the live load from these floors is transferred to the walls; however, wall stresses.
it  is not considered  if it will relieve 0050c
: 4. 6.7      Shear and  tensile stresses are not transferred across the continuous vertical mortar joints of walls laid in stack bond or the vertical mortar joints of a wall boundary adjacent to a concrete structural member.
4.6.8      Standard, prefabricated sections of the horizontal joint reinforcing steel are provided      at all corners of masonry walls. However,  their  contribution    to th4 strength capacity    of this  intersection  is  not considered.
4.7    MASONRY WAIL TESTING PROGRAM A  sampling and testing program was performed at the station.
This program provided the material properties necessary to determine the allowable stresses applicable for the masonry wall evaluations. The testing was also considered to            fulfill  the special inspection requirements of Reference 6.1; thus allowing the use of inspected allowable stresses.          The findings of the program are as follows.
4.7.1      The  hollow masonry block has an average compressive strength of 2,100 psi on the net area.
4 ~ 7.2    The  solid  masonry block has an average      compressive strength  of 3,400 psi.                              r 4.7.3      The  mortar used in both the hollow and solid masonry construction is. as a minimum, comparable      to ASTM C  270, Type N.
4.7.4      The average unit weight      of the hollow masonry is 110 pcf and the average      unit weight for the solid masonry is 132 pcf.
4.7,5        In situ tests were performed on two walls to determine the strength of the mortared collar joint. The resulting failure stresses were 37.6 and 32.7 psi.
4.7.6      One wall (D2-534-33G-21) was found to consist of magnetite aggregate. Tests indicate the block of this wall to have a compressive strength of 6,000 psi and a unit weight of 235 pcf. The mortar was found to be comparable to ASTM C 270, Type M.
5.0    RESUITS OF MASONRY WALL EVALUATION Table    3 lists  the results of the masonry wall reevaluation.          The criteria used to justify      the  wall's  acceptance  or  mode  in which it  does not meet the criteria are identified.
10 0050c
 
5.~ 1 
 
==SUMMARY==
 
'he    following summarizes the results of the reevaluation of 96
              ~
safety-related masonry walls:
5.1.1      Total number of walls meeting the acceptance criteria:
64 5.1.2      Total  number  of walls which  do not meet the acceptance criteria:  32
 
==6.0    REFERENCES==
 
6.1    Building Code Requirements for Concrete Masonry Structures, ACI 531-79, American Concrete Institute, Detroit, Michigan, 1979 6.2    USNRC  IE Bulletin 80-11, dated  May 8. 1980
'.3      Final Safety Analysis Report Power Station Units 2 and 3 (FSAR)  for the Dresden Nuclear 6.4    Damping Values for Seismic Design of Nuclear Powez Plants, U.S. Nuclear Regulatory Commission Regulatory Guide 1.61, October 1973 6.5    Becica, I.J. and H.G. Harris, Evaluation of Techniques in the Direct Modeling of Concrete Masonry Structures, Dzexel University Structural Models Laboratory Report M77-1.
June 1977 6.6    Fishburn. C.C., Effect of Mortar Properties on Strength of Masonry, National Bureau of Standards Monograph 36 U.S.
Government Printing Office, November 1961 6.7    Mayes, R.L.; Clough, R.W.; et al. Cyclic Loading Tests      of Masonry Piers, 3 Volumes, EERC 76/8, 78/28. 79/12 Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, California 6 '    60-Day Report in response to IE Bulletin 80-11 for Dresden Nuclear Power Station Units 2 and 3, Commonwealth Edison Company. Docket Numbers 50-237 and 50-249 dated July 3, 1980 0050c
 
TABLE 1 MASONRY WALLS - FUNCTION AND PHYSICAL PROPERTIES Shown on Thick-                                Sine      Boundary  Design Wall      Function ness            W thea  Bond  (hei ht x width)  Su    rt Drawin s        Remarks D2"570-40M-1  Partition  12"  Hollow          Running 14'-9"x22'-0"                Yes D2-570-39M-2  Shielding  12"  Hollow          Running 16'-3"x21'-7"                Yes D2-570-43K-3  Shielding  12"  Solid            Running 7e-1"x8'-8"*                Yes D2-570-42J-4  Shielding  18"  Solid            Running  '-1"xl8'-0                Yes D3-570-45K-7  Shielding  12"  Solid            Running  '-0"x9'-6"                  Yes D -5 0- 5K-8  Shielding  18"  Solid            Running  '-1"x17'-1"                Yes D2-570-38M-11  Shielding  12"  Hollow          Running  6'-3"x21'-7"                Yes D2-561- 4D-12  Partition  6"  Hollow          Running  '-5"x22'-ll"              Yes D  1- D-1    Partition        Hollow          Running    -5"x23'-ll"              Yes D3-545-44D-14  Partition  12"  Hollow          Running  '-9"x9'-7"                Yes D2-570-43K-15  Blockout  24"  Hollow*          Running  '-6"x2'-0"                No
                                                                                                        *-Assumed D3-570- 5K-16  Blockout  24"  Hollow          Running  '-4"xl'-ll"                No
                                                                                                        *-Assumed BOUNDARY SUPPORTS L
Free edge Simple support Fixed support
                                                                                            %hoot 1 nf  7
 
TABLE 1 MhSONRY MhLLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick-                                  Sice        Boundary      Design Mall    Function  ness              W thea  Bond  (hei ht x width)  Su        rt Drawi s  Reaarks 2-534-33E-20 Partition 12"      ollow            unning  26'-10"x9"-1"                  Yes 2-534-33G-21 Blockout  18"    Solid            tack    9'-9"xl6 -4"                    Yes 2-534-33H-22 Blockout    8 ll ollow            unning  14'-6"x6'-8"                    Yes 2-545-38H-23 Firewall  12"      ollow            unning  24'-0"x8'-6"                    Yes 2-545-39J-24 Shielding 24"      olid            unning  12'-3"x14'-2                    Yes 2-545-39J-25 Shielding 24"      olid            unning  8~-1"x6'-7"                    Yes
                                                                              )( x x)c 2-S45-41H-26 Shielding 16"      olid            tack    8'-0"x170-2"                    Yes 2-545-44J-31 Shielding 1 80t    olid            unning  8'-0"x6'-0"                    Yes 2-545-43L-32 Shielding 48 tt olid            unning  10'-10"xll'-4"                  Yes 2-545-43M-33 Shielding 56"      olid      8    unning  10'-0"x4'-8" Q          Yes 3-545-44J-34 Shielding 18"      olid            unning  8'-1"x6'-0"                    Yes 3-545-45L-38 Shielding 48tl    olid            unning  10'-8"xll'-6"                  Yes 3-545-48N-40 Firewall  12"      ollow            unning  12'-8"xl4'-10"                  Yes 2-545-40N-41 Firewall  12"    lollow            unning  12'-8"xl4'-10"                  Yes
 
E:
ThBLE 1 MhSONRY MhLLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick-                                  Site      Boundary  Design Mall      Function ness              M thes    Bond  (hei ht x width) Su    rt Drawin s      Remarks D3-545-49H-42  Shielding 24"    Solid            Running 13'-5"x12"-0"              Yes D3-545-50H-44  Partition 12"    Hollow          Running  24'-6"x8'-8"              Yes D2-549-32F-45  Firewall    8 It Hollow            unning  9'-0"xlO'-4"              Yes D -    F-    F rewa            Ho  ow          Running  1    x                  Yes Firewall    8'    Hollow          Running  10  -6 x21 -8              Yes D2-549-32F-48  Firewall      tt Hollow          Running  10'-6"x9'-8"              Yes D2-549-32G-49  Firewall    8 tt Hollow            unning  10'-6"x20'-9"            Yes D2-549-32G-50  Firewall    8I  ~
Hollow            unning  10'-6"xl7'-2"            Yes D2-549-31G-51  Firewall    8I  ~
Hollow            unning  10'-6"x21'-5"            Yes D2-549-32G-52  Firewall    8 II Hollow            unning  8'-ll"x17'-3"            Yes D2-549-33G-53  Blockout    8I  ~
Hollow            unning  12'-0"x6'-0"              Yes D2-549-33H-54  Blockout    8 tt Hollow            unning  12'-0"x14'-8"            Yes D2"534-33G-55  Blockout  20"    Hollow            unning  14'-6"x4'-8"              Yes D2-534-33G-56  Blockout    8tt  Hollow            unning  14'-6 "x6'-9"              Yes D2-545-39J-66  Shielding  24"    Solid            Running  8'-1"x4'-3"                Yes D      M-    B  oc out        Hollow            unning  3'-6"x7'-5"                No    Type of block  and number of w thea assumed D3-5 5-47M-68  Blockout  24"    Hollow            unning  3'"x7'-5"          xxxK    No    Type of block and  number of wythes assumed xx xx
 
ThBLE 1 MhSONRY MhLLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick-                                  Sise      Boundary    Design Mall    Function  ness            M thea  Bond  (hei ht x width  Su      rt Drawi s  Reasrks D2-534-43H-70 Partition  12"    Hollow          Running 3'-5"x26'~0"                    Yes D3-53  5D-71 Partition  12"    Hollow          Running  13  -5'x9 -6"                  Yes D3-534-44D-72 Partition  12"    Hollow          Running  13'-5"xl4'-7"      XK)EC    "Yes D3-534-44D-73 Partition ] 2I  ~
Hollow          Running  13'-5"x9'-7"                  Yes D2-529-43C-74 Partition  12"    Hollow          Running  11'-4"x39'-4"                  Yes D2-545-41J-76 Shielding  24M    Solid            Running  8'-1"x4'-0"                    Yes D3-545-46H-77 Shielding  24"    Solid            Running  8'-2"x4'-1"                    Yes D2-517-33E-80 Partition  12    Hollow          Running  15'-ll"x9'-3"                  Yes D2-503-35E-81  Shielding  36"    Solid            Running  29'-ll"x31'-10"              Yes D2-517-31F-82 Firewall    12"    Hollow          Running  16'-0"x23'-0"                Yes D2-517-32F-83 Firewall    12"    Hollow          Running  16'-0"x39'-0"                Yes D2-517-32G-84  Firewall  ] 2I ~
Hollow          Running  16'-0"x23'-0"                Yes D2-517-33H-85  Shielding        Hollow          Running  13'-0"x20'-8"                Yes JC)l K)C D2-517-33H-86  Firewall  12"    Hollow          Running  14'-3"x18'-0"                Yes D2-517-38H-87  Firewall  12"    Hollow          Running  27'-7"x8'-8"                  Yes D2-517-39H-88  Blockout  24"    Solid            Running  7'-0"x14'-5"                  Yes 02-517-39K-89  Shielding  24"    Solid            Running  8'-2"x9'-10"                  Yes
 
TABLE 1 MhSONRY ILLS -  FUNCTION hND PHYSIChL PROPERTIES Shown on Thick-                                  Sise      Boundary    Design Mall      Function  ness            W thea  Bond  (hei ht x width)  Su    rt  Drawi s D2-517-426-90  Blockout  12"    Hollow          Running  8'-6"x17'"6"                  Yes D3-517-49H-92  Partition  12"    Hollow          Running  27'-5"x8'-8"                  Yes D -517"'i9J-93 Shielding  2      Solid            Running  8  -2 x -10                  Yes D2-517-34E-94  Partition  12"    Hollow          Running  31'-0"x29'-0"            kX  Yes X
D2-Sll-33G-95  Partition  12"    Hollow          Running  15'-ll"xS'-9"                Yes XIXW D2-517-43H-96  Shielding  18"    Solid            Running  9'-8"x8'-0"                  Yes D3-517-45H-97  Shielding  18"    Solid            Running  9'-8"x8'-0"                  Yes D3-517-46N-98  Firewall  12"    Hollow          Running  7'-'"xll'-5                  Yes D3-517-46N-99  Firewall  12"    Hollow          Running  7'-0"xll'-5"                Yes D3-517-46N-100 Firewall  12"    Hollow          Running  7'-0"xl6'-8"                Yes D2-517-38H-101 Partition  12"    Hollow          Running  27'-0"x10'-6"                Yes C.:P D3-517-50H-102 Partition  12"    Hollow          Running  30'-0"x10'-5"                Yes D3-507-44C-103 Shielding  12"    Solid            Running  10'-1"    '-3"              Yes D3-S17-46G-104 Partition    8 tl Hollow          Running  12'-6"xl7'-6"                No XXX D        G-1 Blockout          Hollow          Running  7  -ll"x6'-4"                No D -    E-    Partition        Hollow          Running  15  -11 x3 -1"                Yes
 
TABLE 1 MhSONRY WALLS  - FUNCTION AND PHYSICAL PROPERTIES Shown on Thick-                                        Sise      Boundary    Design Mall      Function  neea            e  W thea    Bond  (hei ht x width)    Su      rt Drawi s        Remarks D3-517-45D-107 Blockout  12        Hollow      1    Running 14'-10"x14'-7"                    Yes
                                '2" Cy D2-517-44D-108 Shielding            Hollow            Running  7'-5"x6'-0"                      Yes    elis filled with  sand D2-517-44E-109 Partition  12"      Hollow            Running  9'-10"xl3'-2."                  Yes D2-517-43E-110 Partition  12"      Hollow            Running  9'-10"x9'-6"    .              Yes D2-517-39H-ill Blockout  24"      Hollow*    4*    Running  6'-5"x2'-5"                      No    *-Assumed D2"528-35H-112 Firewall  ]        Hollow            Running  5'-1"xl3'-3"                    Yes 2'2" D2-528-34H-113 Firewall            Hollow      1    Running  7'-8"x6'-10"                    Yes D3-528-54H-114 Firewall  12"      Hollow      1    Running  8'-1"x14'-0"                    Yes D3-528-54H-11S Firewall  12"      Hollow            Running  8'-1"x8'-6"                    Yes D2-517-43H-116 Blockout  12"      Hollow      1    Running  9'-4"x2S'-ll"                  Yes D3-517-49H-117 Shielding  24"      Hollow*    2*    Running    '-4"x2'-4"                    No
* Assumed D2-S07-45C-118 Shielding    8 to Solid      1    Stack    6'-3"x2'-3"                    Yes D2-517-5A-120  Exterior  12 lt Hollow      1    Running  20 I-2 "x14 '-ll"              Yes D2-517-3A-121  Exterior  12"      Hollow      1    Running  20'-2"x14'-ll"                  Yes
: y. K)C pC
 
TABLE 1 HhSONRY MALLS - FUNCTION AND PHYSICAL PROPERTIES Shown on Thick-                                    Siee        Boundary  Design Mall      Function  ness            M thee  Bond  (hei ht x width        Su  rt  Dravi  e      Remarks D3-476-45H-122 Blockout  36 It Hollow          Running  4'-5"x9'-4"                      No      Type of block and number of wythes assumed D -    H-    B oc out        Hollow          Running  4  -8'9                        No      Type of block and number of wythes assumed D2-558-43K-35  Shielding  30"  Solid            Runnin  5t 2tt x 13t 3II                Yes D2-558-43K>>36  Shielding  36"  Solid      6    Running  8'-5" x 12t-0"                  Yes 12"                            5I 4tf x 3f                              ase not mortared b2-558-42K-37  Shielding        Solid      2    Running                  41I            Yes D3-558-45K-39  Shielding  36It  Solid      6    Running  8 ~
5 Il  x 12 I Otl          No
 
0 TABLE 2 ALLOWABLE STRESSES  IN CONCRETE  MASONRY WALLS T  e 1  Wall                e 2 Wall Loadin    Condition      Loadin  Condition Abnormal                Abnormal and Extreme              and Extreme T  e  of Stress    si                                        Normal    Environmental  Normal  Environmental Flexural compression,      Fm                                340          560        390        650 Transverse and punching shear, Vm                                35          59          38          63 Shear in mortar collar joint. Vmc~                              10          14          10          14 Direct or                  Normal to bed jo ints. Fth            14          23 flexural      Hollow  Parallel to bed joints, Fthp            27          46 tension                    Normal to bed jo ints. Ftsn                                    27          46 Solid  Parallel to bed joints, Ftsp                                      40          68 Mortar collar joints, Ftc                        10          14          10          14 Axial compression allowable (Fa) is dependent upon the height          and  thickness of the wall Fa = 0.225 fm [1  ( h )3]
40t T  e 1  Wall                                      e 2  Wall Hollow-unit wall                                Solid-unit wall fm  1..020  psi                              fm  = 1,190 psi mo      750  psi                              mo =    750  psi
: 1. For walls  laid in stack bond, shear and tensile stresses shall not be transferred across the continuous  vertical joints.
: 2. Material properties and the shear capacity of mortared collar joints have been veriTied by field tests.
0191C
 
APPLIED LOADS AND EVALUATION RESULTS A  plied Loads                        Evaluation Results Normal              Abnormal        Meets Acceptance      Does Not Meet Wall  D L W E 0
R 0
DrW E R T s  a  a P
a Y
Criteria      Acce tance  Criteria Remarks P
D2-570-40M-1                                                            Exceeds  overturning criteria D2-570-39M-2                                                            Exceeds  overturning criteria D2-570-43K-3                                        Meets over-turning criteria D2-570-42J-4                                          eets over-turning criteria D3-570-45K-7                                          eets over-turning criteria D3-570-45K-8                                          eets over-urning criteria D2-570-38M-11                                                          Exceeds  overturning criteria D2-561-44D-12                                                          Exceeds  overturning riteria
 
TMI APPLIED LOADS AND EVALUATION RESULTS A plied Loads                        Evaluation Results Normal            Abnormal        Meets Acceptance        Does Not Meet D L    E  R Dr W E R T      P  Y Wall              0 0        s a a    a  p      Criteria      Acce tance Criteria  Remarks D3-561-45D-13                                                          Exceeds overturning criteria D3-545-44D-14                                      Meets allowable stresses D2-570-43K-15                                      Meets allowable stresses D3-570-45K-16                                      Meets  allowable stresses D2-534-33E-20 D2-534-33G-21 il                            Meets allowable Exceeds allowable tension J~      I Jl                  stresses D2-534-33H-22                                                          Exceeds  overturning Jl                                  criteria D2-545-388-23                                      Meets  allowable stresses J4      J  Jl
 
                                                              ~TABL APPLIED LOADS AND EVALUATION RESULTS
                        . Applied Loads                            Evaluation Results Normal            Abnormal          Meets Acceptance        Does Not Meet D L W E      R  Dr W E  R  T  P  Y Criteria      Acce tance  Criteria Wall            0    0        s  a  a  a  P                                            Remarks D2-545-39J-24                                          Meets  allowable stresses D2-545-39J-25                                          Meets  allowable iJ                stresses 02-545-41H-26                                            eets over-turning criteria D2-545-44J-31                                                                Exceeds allowable strain. for J~/                                                    interstory  drift D2-545-43L-32                                          Meets allowable stresses J    J< VJJ D2-545-43M-33                                          Meets allowable stresses JV            dJ4 D3-545-44J-34 D3-545-45L-38 dJ            ill                                    Exceeds allowable strain for interstory  drift eets allowable stresses
                    ./ 4          Mls
 
, ~
                                                          ~TABL APPLIED LOADS AND EVALUATION RESULTS Applied Loads                          Evaluation Results Normal            Abnormal        Meets Acceptance        Does Not Meet Wall    D L W E      R  DrW  E  R  T  P  Y Criteria        Acce tance Criteria 0    0        s  a  a  a p                                          Remarks D3-545-48N-40                                                            Exceeds allowable stresses JJ D2-545-40N-41                                                            Exceeds allowable stresses D3-545-49H-42                                        Meets allowable stresses D3-545-50H-44                                        Meets allowable stresses Jd D2-549-32F-45                                        Meets  allowable stresses JJ D2-549-31F-46 D2-549-32F-47 4  v'i                  Meets allowable stresses Meets allowable stresses D2-549-32F-48                                        Meets  allowable stresses JJ
 
APPLIED LOADS AND EVALUATION RESULTS A  plied Loads                          Evaluation Results Normal              Abnormal          Meets Acceptance      Does Not Meet D L W E      R  DrW  E  R  T  P  Y Criteria      Acceptance  Criteria Remarks Wall              0    0        8  a  a  a  P D2-549-32G-49                                          Meets allowable stresses D2-549-32G-50                                          Meets  allowable stresses D2-549-31G-51                                          Meets  allowable stresses D2-549-32G-52 D2-549-33G-53 il                          Meets allowable stresses Exceeds allowable tension D2-549-33H-54                                                              Exceeds allowable tension D2-534-33G-55                                          Meets allowable stresses D2-534-33G-56                                            eets allowable stresses
 
                                                          ~TAB APPLIED LOADS AND EVALUATION RESULTS A  plied Loads                          Evaluation Results Normal              Abnormal        Meets Acceptance        Does Not Meet L W E      R  Dr Wt E S R Ta  P  Y Criteria        Acce tance  Criteria Remarks Wall            0    0            a      a  P D2-545-39J-66                                        Meets allowable stresses D3-,545-47M-67 4
v'eets                    stresses allowable D3-545-47M-68                                        Meets allowable stresses D2-534-43H-70                                        Meets allowable stresses D3-534-45D-71                                        Meets allowable stresses J 4 D3-534-.44D-72                                      Meets allowable stresses D3-534-44D-73                                          eets allowable stresses D2-529-43C-74                                                              Exceeds allowable tension Jl
 
TABL APPLIED LOADS AND EV    UATION RESULTS A  plied Loads                        Evaluation Results Normal              Abnormal        Meets Acceptance      Does Not Meet D L    E    R  Dr Wt E  R  T  P  Y Criteria      Acceptance  Criteria Wall            0    0            a  a  a p                                          Remarks D2-545-41J-76                                                            Exceeds allowable strain for interstory  drift D3-545-46H-77                                                            Exceeds allowable strain for interstory  drift D2-517-33E-80                                                            Exceeds allowable tension 4 J D2-503-3SE-81                                                            Exceeds arching criteria D2-517-31F-82                                                            Exceeds allowable tension D2-517-32F-83                                                            Exceeds  overturning criteria 92-517-32G"84                                                            Exceeds allowable tension J J D2-517-33H-85                                                            Exceeds allowable tension
 
                                                            ~TABL APPLIED LOADS AND EVALUATION RESULTS Applied Loads                            Evaluation Results Normal            Abnormal          Meets Acceptance        Does Not Meet D L    E    R  Dr W E  R  T  p  Y Criteria        Acceptance  Criteria Remarks Wall              0    0        s  a  a  a p D2-517-33H-86                                                              Exceeds allowable stresses 4 J D2-517-38H-87                                        Meets allowable 4    Jd      Jl                stresses D2-517-39H-88                                        Meets  allowable stresses 4d        J D2-517-39K-89                                        Meets allowable stresses llew D2-517-42G-90 il                  eets over-turning criteria D3-517-49H-92                                          eets allowable stresses JJ D3-517-49J-93                                          eets allowable
                      ~ii                              tresses D2-517-34E-94                                                              Exceeds  overturning criteria Jv
 
APPLIED LOADS AND EVALUATION RESULTS A  plied Loads                      Evaluation Results Normal              Abnormal      Meets Acceptance      Does Not Meet D L W E      R  Dr W E R T P      Y Criteria                  Criteria Wall              0    0        s  a  a  a p                      Acceptance          Remarks D2-517-33G-95                                                          Exceeds allowable iJ                                tension D2-517-43H-96                                                          Exceeds  overturning criteria D3-517-45H-97                                        Meets  over-turning criteria n3-517-46N-98                                        Meets allowable stresses D3-517-46N-99                                        Meets allowable stresses JJ D3-517-46N-100 D2-517-38H-101 li            Meets allowable Exceeds allowable tension stresses D3-517-50H-102                                      Meets allowable lJ                                    stresses
 
APPLIED LOADS AND EVALUATION RESULTS A plied  Loads                          Evaluation Results Normal              Abnormal          Meets Acceptance        Does Not Meet Wall    D L W E 0
R 0
Dr W      R a
T a
P a
Y p      Criteria        Acce tance Criteria Remarks Exceeds overturning D3-507-44C-103 criteria D3-517-46G-104                                          Meets arching criteria iv D2-517-31G-105                                          Meets arching criteria D2-517-33E-106                                          Meets allowable stresses D3-517-45D-107                                          Meets allowable stresses D2-517-44D-108                                          Meets  over-turning criteria D2-517-44E-109                                          Meets  allowable stresses Jd D2-517-43E-110                                            eets allowable stresses
 
TABLE APPLIED LOADS AND EVALUATION RESULTS Applied Loads                        Evaluation Results Normal            Abnormal        Meets Acceptance        Does Not Meet D L W E      R  Dr M E  R  T  p  Y Criteria      Acceptance Criteria  Remarks Mall              0    0        s  a  a    p D2-517-39H-ill                                        eets allowable stresses D2-528-35H-112                                        Meets allowable stresses J
D2-528-33H-113                                        Meets allowable JJ JJJ                    stresses D3-528-54H-114                                        eets allowable tresses JJ D3-528-54H-115                                        eets allowable tresses D2-517-43H-116                                        eets allowable tresses D3-517-49H-117                                        Meets allowable stresses D2-507-45C-118                                                            Exceeds  overturning criteria
 
                                                            ~TAB APPLIED LOADS AND EVALUATION RESULTS A  plied Loads                        Evaluation Results Normal            Abnormal        Meets Acceptance      Does Not Meet D L W      R  DrW E R T      P  Y Criteria      Acceptance    Criteria Wall                0        s  a  a  a  P                                                        Remarks D2-517-5A-120                                                          Exceeds allowable stresses J  J            JJ D2-517-3A-121                                                          Exceeds allowable stresses lJ iJ D3-476-45H-122                                      Meets allowable stresses D3-476-43H-123                                      Meets allowable stresses eets allowable stresses D2-558-43K-36                                        eets allowable stresses
. D2-558-42K-37                                                          Exceeds    allowable stresses    in support bracke  t.
D2-558-45K-3 9                                      eets allowable                            LEGEND tresses                                  Dr  Interstory drift
 
CW        Nr    elr ~        ~ Ne                                                ~  4 4
I N 4
                                                                                                                          ~
f "1  'I LE.        E HO                                                                                                        44 ~ CN~ I 0
OAF E.'iV AE.LATEO                                                                                                                          I HASONR f QAU-S-                                                      '.'e
                                                                                                  , IP                                                            ~ 4th
                                                                                                                                                                                  'I ~
0                                                        '!
NN  Nl
                                                                                                                                                                                      ~
                                                                                                                                ~    N
                                                                                                                      ~ N 4 Ce  4 NNNC IMO W4
                                                                                                                                                                ~ Ve 4>>
                                                  ~ ee 144                                                                                                  N>>NNCA hhht
                                                                  ~ 11141 h                                                ACNENCNQ
                                                                                                      ~
                                                                                                        ~
                                                                                                              ~h hi&5 hl!444 4>>N
                                                                        ~                                                                              tech NN CCIN>>N I
Nht                                                                                                                      ~ 4 NNC NCC NO 44                                                                                                                            \
I
                                            'p
                                                                                                                                                ~
I L~              ~ \                                                          I
                ~                                                                                          N                                                                          ~ 4>> NCC ~ INN CNN NN U1444 NN4444 NN 44 NCCCCC NN'll                                                                                                                            ~ 4                                      l1 A reseq          e+a r 0 0 1NICC ~  I                                                                                                                                          8 as@.wc~r        FLoo CNN INC W CCN>><<N
                                  ~I  \ C~CIANCCCCe>>h NN CN4 et MN NC INNC CNC ~
                                                                                >>4 NN Iet tt
                                                                                                                          ~~  'Iel                    /                    ~ ~
w DRE$ l%H NOCLEAt. POI4CC. 5TA.OL I                    444 I N NN
                                                                                ~ h Net V                                                                                      mis        acuate. wAs  RGpao~>
MXltM5AtllT~TtD RW J% INONIC CNI  INI
                                                                                                                                                      ~1 4 ~    N VQOH          9    4L DNA'HlH&-~
                                                        ~  ~ CNNVC ICCVN NNCN 4444        l~-
I4
 
P
  ~ ~ .~
I4
                ~F
            ~ ~
I~ ~
                    ~ ~
4
 
I      ~                                          I                                                I                            I Q      Q        I      Qg    as        al        NA          W        'r        q        i. Oft        is>    ~40            fyy        Q,                                                      4 t<<                                                                                                      ~ >>            N
                          ~
                                                                                                                  '0 SAFETY%                                          :4 I I~
IN ~
I      Vt I
G'.
g        ~ ~
I N
I J
~LE EN 0                                                                      '(                                                                                                                                                                          \
I        ~.~ ~  ~                                      N    V~
I
                  "                              CAELA'TE.CI                    I I                                                                                                                                                                    ~  = ~
HASOhl AV HAI.L'5 0                                                                                                                                                  c  ss 7'~:
ss0 4\ ~                                                              W
                                                                                                                                                                ~
1>>
el                                                                                                                                                                        >>4 tt I                                                                                                                                                                I
                                                                                                                                                                                                                                            ~et~    .
                    .'I    'Vso I
I 0"
                                  .          l
                                                                                                                                                                                                                                            ~t      N 0
CIC V p)                                                                                                                              <<  ~
E
                                                                                                                                                                                                    ~  I IN
                                                                                                            ~ .,                                                                          ~ T        I N.,tNO let
                                                                                                                                                                                                    %VIIV I
osv    NO  v    y          /gfvag      I  !
                                                                                                                                                                                                  'I
                        ,I I ~
I
                                    ~>>
4        l I
4
                                                                                                    'I>>
IE
                                                                                                                                                                    ~OOOV                            I            I V ~
                  ~ N
                                              ~
it                                                                            I'4
    ~ OOSVN I                                                      V
                                                                                                                              )I                  ~ 444 I-                ~I ~
                                                                                                                    ~
P                i II~~                                    I~
                                                                                                                                                                                                        ~ 4 IO ~
                                                                                                                                                                                                                    ~ NN I
                                                                                                                          \                                                                          ~V      ~ NN I>>O
                                                                                                                                                                                                                        ~N NN        tooevso  oo~
N    ~ N eo                                              ~  ~                                                                                    ~
C2 NNtl VsetNII N>>IVNNNI        ~
                                                            ~ SN
                                                                                                                          >>9
                                                  'C'
                                                                                                                    -J-Q                                                              .p                              HASOI4W IalALI.S e, El.911 I  V.
                                                                                                                                                                                                        ~      . ~
NO  INN    >>tt
                                                                                      ~ttO N ONIOI                          V                            NV 4~ 4 el ~                                  OiKSDQL HUCLEAR FOHER QA
                                                                            >>V    ~a                                                                                                                                  IIII5 FIGURE.          WAS REPRODUCED N-+
        ~
                                                                          ~
V FRON          sssIT I  DRA'l4IHC0 NUCSIAE    Sall tt EIIAIIO                                                                                                                I I  sssvs oss ssecws oN sees      asst>>to I                          4 I
it-Z0I-Sl
                                                                                                                                                                                                                        ~ ~
APPEHDIX A E
P~E.koF        S.
 
I I
C II                                                    tiff I~                                                                              ~    ~                                                                        ~ r I  ~                  <<I      +IIhe>
I          I            ke LE CiE.ND                                                                                                                            t                                                          If I
SAFE.'t'f RE,u rE D                                                                                                      o or>>  Oee I
w << I/ ~
HA5CIH RM i I A LLS                                                                                                                <<II\I 4~
                                                                                                                                                                          ~ I I                                                      <<
                                                                                                                                                                  ~
0                                                                                  It>I+
                                                                                                                                                  ~
OI ~ <<rt lt          Il ~
rr o>O<<
                                                                                                    ~
                                                                                        ~                                                              ~
                                                                                                                                                                  ~
                                                                                                      ~e
                                                                                                            <<et 4 I er    Ie<<>
                                                                                                                                                                              >>>~  ~'tjt
                                                                                                    ~
eoo    O
                                                                                                                  ~
                                                                                                                  ~ ~
tlt
                                                                                                                                ~
                                                                                                                                            ~ O d55'=..
                                                                                            ~
I'+i
  <o (7                                                                                                                                                                  j I
IS                                                                                                                                                                                                                <<e<<r<<ee
                                                                    .- EK          fire    <<I
                                                                                    ~ I
                                                ~ le                      V    ~ I I IO
                                                                                                ~  rrl ter                  b:
7'              ~
I~          j I
                                                                                                          ~4 t<<t                                                                                                      fl    I      I I ~~~!
                                                                                                                          <<o  AI    ~
I    trm
'l f                                                                                                        ~
el IO  ~
c..3 t
                                                                                                                                                ~ >>
                                                                                                                                                                                                            <<H W ee
                ~O
                  ~
                    <<el I      ~
O                                                                                                                                                                        <<4 <<<< I 0 L' : r l~g>>
                                                                                                                                                                                              ., ~
                                                                                                                                                                                                                                  ~el<<ot>>lltlehlle tetr<<Iro<<e,
                                                                  ~
OK>>t IIIrre>> er
                                                                        ~ g<<tf4I<<<<
Lo                                                                                          7.                                                              WPO  O  4W P~>>                        Of,                                                                                                                                                                                HVCLlM OAfIIT OIIOIIO 7>>fe>> o>> I>II col>>etc
              ~  <<A L                mras ool or T-'pauli I; t;                                                                                                                I I
                                                                                                                                                                                                            <<4 IIH'e
                                                                                                                                                          ~
                                                                                                                                                                                            'I. I  I a
e'I C
5l                      ~ e>>ee>>
                                                                          ~
                                                                          ~o l elite
                                                                              ~  ~
ooor>eo 4<<4
                                                                                                        >>xoL
                                                                                                        ~O
                                                                                                              ~  +O~
O rr<<e ele                >>
I
                                                                                                                                                                  ~
                                                                                                                                                                  ~
                                                                                                                                                                  ~
                                                                                                                                                                      'rer ~ eH le jf el eM~            I>>e I        ~
44 II
                                                                                                                                                                                                                      >>I NASOHRf HALLS C OfK5ItEH NJCLEAR PONE+ STAANT Tl4I4 RCIURE EL.545'-4 HA5 REPRODUCEP I le e<<
                                                                                                                                                                      ~ 4%4                                                  FROH      5 gL ORAI4IHQ              8-3
                                  ~rf LI ~o
 
Z is        6~i    Css      ri      ')i        6)I    Q        +4 .
                                                                                                      )0 ~,
la~i I ~
fbi I~ 4'a Qls
                                                                                                                                              ~
Qo
                                                                                                                                                      ) ~ '4 fig)
                                                                                                                                                                      )asi A)
                                                                                                                                                                                )~ ~
Al
                                                                                                                                                                                            )  ~ '
N
                                                                                                                                                                                                                ~ 'ai)0
                                                                                                                                                                                                                            'A'  ~ '
I)II "Qi)
Ili  ~          J iDI      Q)
IOJ I JLO 6ga Il i)")
                                                                                                                                                                                                                                                                                                          ~L
                                                                                                                                                                                                                                                                                                            <ii Ia
                                                                                                                                                                                                                                                                                                                            ~i so.
I
                                                                                  ~ <<4 at a                                                                                                                                                              14  lal<< 'I>> tala LEGEND                                                                  IIO ~
                                                                                                                                                                ~ 11
                                                                                                                                                                ~ I SAFET f RE.~>Ee I SM I HASO& Fl, 0 hl ALl                        OD
                                                                                                                                                                                            ~
Ma aviv'<<ecvs I Il II>>I%              I I<<00) )04 100<<<<
                                                                                                                                                                                            ~ Olla      ISO                                                                                          I II<<I  HOLMt        <<M
                                                                                                                                                                                                      ~
tlf l)00144)
                                                                                                                                          ~ 00>>M IV<<
Ill )0>> alt                                                          I ~La, I                                          )0)oos<<I
                                                                                                                                                                                                            ~ av  a,<<0    ~
                                                                                                                                                                                                                          ~\t                                                                        I c            !                                                                                                II  'taI<<0<<I<<I ~
I ~HM
                                                                                                  ~  ))S>))~                                                  QIMMO M                                                  LMA 11                            '
                                                                                            ~ MtvI                                                                                                                                            I                              <<M 0 104 LV>><<
                                                                                                                                                                                                                                                                            ~ OH  I.SV)
I (cC                                                                                                                                                                                                                      >>014<<                    \4 Jt I      ~
m! ~~a IW                                    >>v)
                                          ~ I ~
M Ot I>>
                                                                                                                                              ~    ~
                                                                                                                                                  ~L  0<<a
                                                                                                                                                                                                                                                                            <<01 <<014
                                                                                                                                                                                                                                                                            ~ M~ avl
                                                                      'ILLM                OLAAOI~                        It<<                                                                                                                                              M        I I                                                              'AA)AA)LlRJ                    <<M            ~
                                                                    <<40<<M<<at
                                                                                                                                                                                                                                              ~
7 4'
              ~
Dw'o'a 0
                                                                                                                                                                                                                                                                                          ~  0 0 i 4                                                                                                          >>                qa 000<<OO I ~'
      '0 IUI Tit  1                                  Rg.                                ~      MA I Y
I ~. 000'
                                                                                                                                                                                                                                                                                                                        <<0>>i
                                                                                                                                                                                                                                                                                                        ~
  ~ 0-I                                                                                ) o)Ll). W'                                                                ~
                                                                                                                                                                                                                                                        ~    >>
4 I
                'C                                                                                                                                                                                                  I >>'
0 I      0 ~ ~ ~'                                              ~il%P,'li%R                                  I 4
H
                                                                                                      '::-              'iLIEIhI                                                                              1<<aol
                                                                                                                                                                                                                        ~ 0<<
II)04<<LIL>>
laaooav OL)a)oil
                                                                                                                                                                                                                                              ~ 00104 Oa>>0
                                                                                                                                                                                                                                                                                                                    ~ 01000
                                                                                                                                                                                                                                                                                                                          ~
l<<M 0 MM
                                                                                                                                                                                                                                            ~0  00, IH ~
I L~
f=
                                                                            .    'I                                /
                                                                                                                              'i  I I
ll  ~
I Mi'24    ~
I I        'T)'
4%44<<4
                                                                            ~ 0                          0    I
                                                                                                                    /~ 0
                                                                                                                                <<via MM IH
                                                                                                                            <<I<<I
                                                                                                                                      ~  a>>
                                                                                                                                          ~    ~
LI    M 0      '
L 4
                                                                                                                                                                                                                                                                                          ~ v>>>> ve 00<<toa 00tH oo 0
L                                                                                  ~0 l
IIQ(1)AA SA)l)T AIIAIIO III<<lLOI S>>400<< 4<< lvl 44 <<0<<4 l
mso~m                w~ 8a                        @10'-o
                                                                ~
0 M>> 01040<<
                                                              ~,        la>>a*                                                                                      4                      I                                                                        OAErAliEff Hua.EN PaHER ATA.U+TZ
                                                                ~ ~ 0\
                                                                                          \ MMM>> MM                                                                                              I II<<    tv ILOL
                                                                                                                                                                                                      ~ >>01 ~ I
                                                                                                                                                                                        .T                                        ~  .I                            'TlilS FlivlVRE. NAA RE,PRO>U FRoH              O'4(      l- DRAMINcg N 'R
                                                                                                                                                                                                                                                                      ~  MM .,0<<,              ~ ~      ~      0>> ~  ~  Iv  l  M IH
 
APPENDIX B ADDITIONAL JUSTIFICATION OF THE REEVALUATION CRITERIA 0052C
 
Appendix B, Page  ii of ii TABLE OF CONTENTS
                                                          ~Pa  e
 
==1.0    INTRODUCTION==
1 2.0    ABBREVIATIONS                                        1 3.0    ALLOWABLE STRESSES g
3.1    AXIAL COMPRESSION 3.2    FLEXURAL COMPRESSION 3.3    BEARING 3.4    SHEAR 3.5    TENSION 3.6    SHEAR AND TENSILE BOND STRENGTH OF MASONRY COI LAR JOINT 4.0    IN-PLANE EVALUATION CRITERIA
 
==4.1    INTRODUCTION==
 
4.2    TEST RESULTS 5.0    ALTERNATIVE EVALUATION CRITERIA
: 5. 1'.2 ARCHING ROCKING SLIDING REFERENCES TABLES
'B-1    Compressive Strength of  Axially Loaded Concrete  Masonry Walls B-2    Flexural Strength  Single Wythe Walls of Hollow Units, Uniform Load, Vertical Span B-3    Flexural Strength, Vertical Span Concrete Masonry Walls, From Tests at NCMA Laboratory Flexural Strength, Horizontal  Span, Nonreinforced Concrete Masonry Walls 0052C
 
Appendix B, Page 1 of 13
 
==1.0  INTRODUCTION==
 
The  following discussions and test results are intended to provide additional justification of the reevaluation criteria for the safety-related masonry walls. This information has been extracted from the references identified in Section 6.0. ~
2.0  ABBREVIATIONS Abbreviation                      Title ACI            American  Concrete Institute ASCE            American  Society of Civil Engineers ATC            Applied Technology Council EERC            Earthquake Engineering Research Center NBS            National Bureau of Standards NCMA          National Concrete Masonry Association 3.0  ALLOWABLE STRESSES 3.1  AXIAL COMPRESSION The  objective was to develop reasonable and safe engineering design  criteria for nonreinforced concrete masonry based on all existing data. A review in 1967 of the compilation of all available test data on compressive strength of concrete masonry walls did not, according to some, provide a suitable relationship between wall strength and slenderness ratio. From a more recent analysis,    it was noted in many of the 418 individual pieces of data that either the masonry units or mortar, or in some cases. both units and mortar. did not comply with the minimum strength requirements established for the materials permitted for use in "engineered concrete masonry" construction. Accordingly, it was decided to reexamine the data, discarding all tests which included materials that did not comply with the following minimum requirements:
Compressive  Strength Material                            si Solid units                    1.000 Hollow units                      600  (gross)
Mortar                            700 0052C
 
Appendix B, Page  2  of 13 Also eliminated from the new correlation- were walls with a slenderness ratio of less than 6; walls with an h/t ratio of less than 6 were considered to be in the category of "prisms".
For evaluation of slenderness reduction criteria, only axially loaded walls were used. The data that were available consisted of tests on 159 axially loaded walls with the h/t ratio renging between 6 and 18. With this as a starting point, the da@ were analyzed assuming that the parabolic slenderness reducti4h function [1  (h/40t)3] is valid.
The basic equation used to evaluate the test data was:
ftest S.F.
                      = Co  fm  fl -( 40th )3]
ftest              Co x S.F.                      (2)
                                ]
40t Co  x S.F.      ~ K                                      (3) where fm            =  Assumed masonry      strength, net area, based    on strength of units ftest        =  Net area compressive strength of panel S.F.          =  Safety Factor Co          ~ =  Strength reduction coefficient
                    =  Height of specimen, inches t            =  Thickness of specimen,      inches The net area used        in the above formulae is the net area of the masonry. and does        not distinguish between type of mortar bedding. In the evaluation, mortar strength was assumed to be constant and was not considered a significant influence on wall strength.
It was  determined that the objective of reasonable and safe criteria  would be met      if  90% of the K values were greater than the K value selected and gave a minimum safety factor of 3.
Accordingly, the K values were listed in ascending order and the value satisfying the above conditions was K 0.610 for the 159 tests as seen from Table B-2. Therefore, from Equation (3):
0052C
 
Appendix B, Page  3 of 13 Co  x S.F.  = K Co  x 3  =  0.610 Co    0 '10    0 '05 3
This value (0.205) agrees very closely with the coefficiqyt 0.20 which had been used for a number of years with reinforcecf masonry design.      An analysis of the safety factors present with the formula:
fm  = 0.205 fm [1    -( h-) ]
40t indicates the following:
A safety factor greater than 3 is available in 93% of the tests.
.greater than 4 in 51% of the tests, greater than 5 in 15't of the tests, and greater than 6 in 5% of the tests.
In ACI 531, the factor of 0.20 was increased to 0.225. The recommended value of 0..22 for unfactored loads has factors of safety comparable to those given above.
3.2  FLEXURAL COMPRESSION It  is assumed that masonry can develop 85% of its speci, fied compressive    strength at any section. The recommended procedure for calculating the flexural strength of a section is the working stress procedure, which assumes a triangular distribution of strain.
For normal loads, .an allowable stress of 0.33 fm has a factor of safety of 2.6 for the peak stress, which. only exists at the extreme fiber of the unit and has been used in practice for many years. The recommended value for factored loads also only exists at the extreme fiber and is the value recommended in the ATC-3-06 provisions.
3.3  BEARING These values for normal loads are taken    directly from the ACI 531-79 code.
3.4  SHEAR The most  extensive review on shear strength literature appears to have been done by Mayes, et al (Reference 6.1), and published in Earthquake Engineering Research Center Report EERC 75-15 which was performed for both brick and masonry block.
0052C
 
Appendix B, Page  4 of 13 This report attempts to summarize some of the findings that appear to be pertinent towards defining permissible shear stress values that can be used for reevaluation of the nonreinforced concrete masonry.
A number of tests have-been identified as being the primary basis for permissible shear stress values in both NCMA Specifications for the Design and Construction of Ioad-BR%ring Concrete Masonry (References 6.4 and 6.5) and the ACI Standard Building Code Requirements for Concrete Masonry Structures, ACI 531-79 (References 6.2 and 6.3).
Out-of-plane flexural shear is defined by the code (References 6.2 and 6.3) as equaling 1.1 ~m. The derivation of this value is analogous to the permissible shear value of concrete, disregarding any reinforcement, of 1.1 ~fc (Reference 6.30). Although this is somewhat different (there is no tension steel by which to determine the appropriate j distance), the actual value is a mute point because tension will be the critical value for determining out-of-plane acceptability of  a flexural  member.
Because  of the nature of the stresses, however, and the various concerns with regard to the correctness of interpretation of the effects on boundary conditions, as well as such conditions as actual mortar properties. absorptivity of the mortar, confinement or lack of  it  on the test specimen during test, and arrangement and effect of actual load,    it  does not seem warranted to increase these stresses beyond a factor of 1.67 under abnormal and extreme environmental loads.
3.5  TENSION 3.5.1      Normal to the Bed  Joint A summary  of the static monotonic tests performed to determine code allowable stress for tension normal to the bed joint was given in the NCMA specifications.
Stresses for tension in flexure are related to the type of mortar and the type of unit (hollow or solid). Research used to arrive at allowable stresses for tension in flexure in the vertical span (i.e.. tension perpendicular to the bed joints) consisted of 27 flexural tests of uniformly loaded single-wythe walls of hollow units. These monotonic tests were made in accordance  with ASTM E 72. Table B-2 summarizes  the test results.
From Table B-2, the average modulus of rupture for walls built with Types M and S mortar is 93 psi on net area. For Type N mortar, the value is 64 psi. Applying a safety factor of 4 to these values results in allowable stresses for hollow units as follows:
0052C
 
Appendix B, Page        5  of  13 Mortar      e                Allowable Tension in Flexure              si MSS                                      23 N                                      16 These values are consistent with those published in the 70                        ACI Committee 531 report, which have been only slightly altejjd                    in the ACI 531-79 code.
Based upon these    tests, the    minimum    factors of safety for          each mortar type are:
Factor of Safet 3.87 2.60'.81 N
To  establish allowable tensile stresses for walls of solid units, the 8-inch composite walls in Table B-3 were used. These walls. composed of 4-inch concrete brick and 4-inch hollow block, were greater than 75% solid, and thus, were evaluated as solid masonry construction. The modulus of rupture (gross area) for these walls averaged 157 psi, giving an allowable stress of 39 psi when a safety factor of 4 is applied.                  The composite wall tests in Table    B-3  used Type    S  mortar. To    establish  allowable stresses for  solid    units  with  Type  N  mortar,      the  mortar influence established previously for hollow units was used.
23    39  ; f  = 27  psi 16    f The minimum  factor of safety for these tests for                Type  S  mortar was 2.33.
Recent dynamic    tests have been performed at Berkeley and the values of tension obtained at cracking at the mid-height of the walls are as follows: 13 psi, 20 psi, 23 psi, and 27 psi.
The recommended values have a factor of safety of 2.8 with respect to the lower bound of the static tests for the unfactored loads and are towards the lower limit of the initiation of cracking for the dynamic tests. An increase of 1.67 appeared reasonable for factored loads based on the static tests.
0052C
 
Appendix B, Page  6 of  13 3.5.2      Tension Parallel to Bed Joints Values    for allowable tension in flexure for walls supported in the horizontal span are established by doubling the allowable stresses in the vertical span. While    it is recognized that flexural tensile strength of walls spanning horizontally is more a function of unit strength than mortar.
use double the vertical span values.
it is conservative to Table B-4 lists a Summary of all published tests and indicates an average safety factor of 5.3 for the 43 walls containing no joint reinforcement and 5.6 for the 15 walls containing joint reinforcement.
It is important to note that the factor of safety for those walls loaded at the quarter points (Reference 6.6) have an average factor of safety of 2.02 with a minimum value of 1.22, while those loaded at the center had an average factor of safety of 6.08 with a minimum value of 3.59. However, it should be noted that the values tested at the quarter points were also tested at 15 days.
The results associated with the early date of testing and the use of quarter-point loading are difficult to explain other than to state they are at variance with all other test results.
An increase in the allowable stresses by a factor of 1.67 is recommended for abnormal and extreme environmental loads.      The recommended values could be increased because of the larger factors of safety in the test results: however. the value of 1.67 was chosen to be compatible with the increase in other stresses for unreinforced masonry.
3.6    SHEAR AND TENSILE BOND STRENGTH OF MASONRY COLLAR  JOINT The  collar joint shear and tensile bond strength is a major factor in the behavior of multi-wythe masonry construction.
particularly with respect to weak axis bending. A widely stated position is that for composite construction, the'collar joint must be completely filled with mortar. .However, even if this joint is filled. there must be a transfer of shearing stress across this joint without significant slip in order for full composite interaction of the multiple wythes to be realized.
Because the cracking strength, moment of inertia, and ultimate flexural strength of the wall cross-section are significantly influenced by the interaction of multiple wythes, it, is crucial to establish the collar joint shear bond strength.
The  only applicable published data on the shear bond strength of collar joints is that determined    by Bechtel'n the Trojan Nuclear Power Plant (Reference 6.29). Therefore, to correlate the shear bond strength of mortared collar joints, plant-specific in situ tests were performed in August 1982. The results of these tests showed the ultimate failure stresses to be 37.6 and 32.7 psi. A factor of safety of three was used in 0052C
 
I' Appendix B, Page  7 of 13 determining the allowable stress for normal load combinations.
For.abnormal and extreme environmental combinations, the allowable stress is increased by a factor of 1.33.
There are conflicting data available on the relationship between the shear and tensile bond strengths. In most tests perrmed on mortar bed joints (couplet tests), the shear bond strength was  approximately twice the tensile bond strength. In a more recent method of evaluation by means of centrifugal force, the shear bond strength was found to be 60% of the tensile bond strength (Reference 6.16). The authors of the report consider the test procedure to be an'mprovement over present methods because joint precompression is essentially eliminated as a result of the testing procedure.
Because    of the conflict in the test data, the values for tensile bond strength be the itsame is recommended that as for shear bond.
Unless metal ties are used at closely spaced intervals (less than 16 inches on center),    it is recommended that their contribution to shear and tensile bond strength be neglected.
4.0    IN-PLANE EVALUATION CRITERIA
 
==4.1    INTRODUCTION==
 
Much  of the effort to define a permissible in-plane shear stress may be somewhat    academic in that the normal case foz unreinforced walls being used in nuclear plant structures, the nature of the shear, is one of being forced on the structural panel as a result of being confined by the building frame and not one of depending on the panel to transmit building shear forces. This forced drift or displacement results in shear stresses and strains, but because of the complex interaction between the panel and the confining structural elements, strain or displacement is a more meaningful index for qualifying the in-plane performance of the panel.
In-plane effects may be imposed on masonry walls by the relative displacement between floors during seismic events. However, the walls do not carry a significant part of the associated story shear, and their stiffness is extremely difficult to define. In addition, because the experimental evidence to date demonstrates that the apparent in-plane strength of masonry walls depends heavily upon the in-plane boundary conditions, load or stress on the walls is not a reasonable basis for evaluation criteria.
However, examination of the test data provided by the list of references of Section 4.2 indicates that the gross shear strain of walls is a reliable indicator for predicting the onset of significant cracking. A significant crack is considered here to 0052C
 
Appendix B, Page 8 of 13 be a  crack in the central portion of the wall extending at least 10%  of a wall's width or height. Cracking along the interface between a block wall and steel or concrete members does not limit the integrity of the wall.
: 4. 2  TEST RESUI TS Test results indicate that to predict the      initiation of significant cracking, masonry    walls  must  be divided into two categories:
4.2.1      Unconfined Walls: Not bounded by adjacent steel or concrete primary structure. Significant "confining" stresses cannot be expected.
4.2.2      Confined Walls: At a minimum, bounded top and bottom or bounded on three sides.
For unconfined concrete block masonry walls, the works of allowable shear strain of 0.0001.    't Fishburn (Reference 6.18) and Becica (Reference 6.17), yield an should be noted that Fishburn's test specimens were an average of 15 days old.
-For confined walls, the most reliable data appears to be that of Mayes et al (Reference 6.20).      In static and dynamic tests of masonry piers (confined top and bottom) varying block properties, mortar properties, reinforcement, vertical load. and grout conditions, significant cracking was initiated at strains exceeding approximately 0.001. It should be noted here that reinforcement can have no significant effect on the behavior prior to cracking. Similarly. the presence of cell grout should have no effect on stress or cracking in the mortar joints at a given strain. Both predictions are confirmed by the data in Reference 6.20. In addition, the data shows that the onset of cracking is not sensitive to the magnitude of initial applied vertical load.
Klingner and Bertero (Reference 6.19) performed a series of cyclic tests to failure and found excellent correspondence with a nonlinear analysis in which the behavior of an infilled frame prior to cracking is determined by an equivalent diagonal strut. While the equivalent strut technique has been used by many investigators to study the stiffness and load-carrying mechanisms of infilled frames, Klingner and Bertero found that the quasicompressive failure of the strut could be used to predict the onset of significant cracking.
5.0 ALTERNATIVE EVALUATION CRITERIA 5.1    ARCHING An  extensive test program performed by Gabrielson (Reference 6.21) on blast loading of masonry walls provides validation of the concept of arching action of masonry walls 0052C
 
4' Appendix B, Page  9 of 13 subjected to loads that exceed those that cause flexural cra"king of an unreinforced masonry wall. An analytical procedure was developed to predict with reasonable accuracy the ultimate capacity of the unreinforced walls tested.
5.2  ROCKING Freestanding block walls may rock or slide as rigid bodies during an earthquake.      Such rocking and sliding of walls in nuclear plants is limits.
permissible  as long as the  rocking it of is within certain wall increases to tolerance              Only  when                  a a  critical  value  does the  wall  become  unstable  and overturn.
A  freestanding wall starts to rock about an edge when the supporting floor moves horizontally with an acceleration greater than (t/h)g, where t = thickness of wall, h          height of wall, and g    acceleration due to gravity. If the coefficient of friction between the wall and floor is less than (t/h), the wall will not rock, but will slide instead.
The  rocking behavior of cantilever structures has been studied and  reported in References 6.23, 6.24, and 6.25. In References 6.24 and 6.25, a nonlinear differential equation for the rocking motion is formulated and solved numerically for different support excitations. Some test results on the rocking of block specimens are reported in Reference 6.24. The method used to predict the rocking of block walls is similar to the one in References 6.22 and 6.23 for cantilever structures.          Application of the method to seismic rocking of structures has been justified in Reference 6.26 based on the numerical results using ANSYS  program.
A  rocking wall switches from one edge to another and a considerable amount of energy is dissipated whenever the wall impacts the floor. Thus, the seismic rocking behavior of a wall is nonlinear and the frequency of rocking varies as a function of the maximum rocking angle in a cycle (Reference 6.23).
5.3  SLIDING Sliding is the horizontal movement of a wall as a rigid body with respect to the supporting floor. In general, a wall will either rock or slide during an earthquake. It appears that a rocking wall will not slide and vice versa. Sliding resistance and sliding displacement of a wall depend on the coefficient of friction between the two contact surfaces. Based on the discussion in Reference 6.31, the following are reasonable friction values for concrete depending on the surface roughnesses:
0052C
 
Appendix B, Page 10 of 13 0.33 -between smooth surfaces
          =  0.67 -between smooth and rough surfaces
          =  1.0 -between rough surfaces Seismic sliding of cantilever structures is studied in Reference 6.28 by nonlinear seismic analyses using ANSYS program. This study substantiates the simple energy balance method given in References 6.22 and 6.27 to predict sliding.
A  wall begins to have sliding oscillations whenever the horizontal seismic floor acceleration in g-units exceeds the friction coefficient..
0052C
 
Appendix B, Page 11 of  13 REFERENCES Mayes .and Clough, "Literature Survey  Compressive, Tensile, Bond, and Shear Strength of Masonry," Earthquake Engineering Research Center, University of California, 1975 6.2  ACI Standard,  "Building Code Requirements    for Concrete Masonry Structures"  (ACI 531-79) 6.3  Commentary on  "Building Code Requirements    for Concrete Masonry Structures"  (ACI 531-79) 6.4  "Specification for the Design and Construction of Load-Bearing Concrete Masonry," NCMA, 1979 6.5  Research Data and Discussion Relating to "Specification      for the Design and Construction of Ioad-Bearing Concrete Masonry,"  NCMA, 1970 6.6  Fishburn, "Effect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Monograph 36, NBS, 1961 6.7  Copeland, R.E. and Saxer, E.L.. "Tests of Structural Bond of Masonry Mortars to Concrete Block," Proceedings, American Concrete Institute, Volume 61, Number November 1964 ll, 6.8  Richart, Frank E.,  Moorman, Robert    B.B., and Woodworth, Paul M., "Strength and Stability of Concrete Masonry Walls," Bulletin 251, Engineering Experiment Station, University of  Illinois, 1 1932 6.9  Hedstrom, R.O., "Load Tests of Patterned Concrete Masonry Walls." Proceedings,  American Concrete Institute, Volume 57, p 1265, 1961 6.10 Menzel, Carl A., "Tests of the Fire Resistance and Strength of Walls of Concrete Masonry Units," Portland Cement Association, 1934 6.11 Nylander, H., "Investigation of the Strength of Concrete Block Walls," Swedish Cement Association, Technical Communications and Reports of Investigations, 1944, Number  6 (October)
: 6. 12 Copeland,  R.E. and Timms, A.G..    "Effect of Mortar Strength and Strength of Unit  on the Strength of Concrete Masonry Walls." Proceedings,  American Concrete    Institute.
Volume 28, p 551, 1932 0052C
 
I
  ~
    ~ ~
Appendix B, Page 12  of 13 Beyer, A.H. and Krefeld, W.J., "Comparative Tests of Clay, Sand-Lime, and Concrete Brick Masonry,~~ Columbia University, Department of Civil Engineering, April 1923
: 6. 14 Livingston. A.R., Mangotich, E., and Dikkers, R., "Flexural Strength of Hollow Unit Concrete Masonry Walls in the Horizontal Span," Technical Report 62, NCMA, 1958 6.15 Cox, F.W. and Ennenga, J.L., "Transverse Strength of Concrete Block Walls," Proceedings, ACI, Volume 54, p 951.
1958 6.16 Hatzinkolas, M., Longworth,    J., and Wararuk,  J.,
              "Evaluation of Tensile Bond and Shear Bond of Masonry by Means of Centrifugal Force," Alberta Masonry Institute, Edmonton. Alberta
: 6. 17 Becica, I.J. and Harris, H.G., "Evaluation of Techniques in the Direct Modeling of Concrete Masonry Structures," Drexel University Structural Models Laboratory Report M77-1, June 1977 6.18 Fishburn, C.C., "Effect of Mortar Properties on Strength of Masonry," National 'Bureau of Standards Monograph 36, U.S. Government Printing Office, November 1961 6.19 Klingner. R.E. and Bertero, V.V., "Earthquake Resistance of Infilled Frames," Journal of the Structural Division, ASCE.
June 1978 6.20 Mayes, R.L., Clough, R.W., et al, "Cyclic Loading Tests of Masonry Piers," 3 volumes, EERC 76/8, 78/28. 79/12, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, California 6.21 Gabrielson, G., Wilton, C.. and Kaplan. K., "Response of Arching Walls and Debris from Interior Walls Caused by Blast Loading," URS Report 2030-23,. URS Research Company, 1975 6.22 Topical Report, "Seismic Analyses of Structures and Equipment for Nuclear Power Plants," BC-TOP-4, Revision 4, Bechtel Power Corporation. 1980 6.23 Housner, G.W., "The Behavior of Inverted Pendulum Structures During Earthquakes," Bulletin of the Seismological Society of America, Volume 53, Number 2, February 1963 6.24 Aslam, M., et    al, "Earthquake  Rocking Response of Rigid Bodies,"  ASCE,  Journal of the Structural Division, ST2, February 1980 0052C
 
Appendix B, Page  .13 of 13 6.25 Yim, C-S., et  al, "Rocking Response of Rigi'd Blocks to
                              ~
  ~              ~      ~
Earthquakes," Report UCB/EERC-80/02. University of
                  ~
California, Berkeley. January 1980
                          ~
6.26 "Seismic Loading Criteria for Base Mat Design," Bechtel Power Corporation. San Francisco, Internal Report, Revision 2, November 1976 6.27 Newmark, N.M., "Effects of Earthquakes on Dams and Embankments," Geotechnique, Volume XV. Number 2, pp 139-159, June 1965 6.28 Kausel, E.A., et al, "Seismically Induced Sliding of Massive Structures," ASCE, Journal of the Geotechnical Engineering Division, GT12, December 1979 6.29 Report on Tests of Shear Strength of Collar Joint Mortar in Double Wythe Masonry Walls, Trojan Nuclear Power Plant, Portland General Electric Company, April 14, 1980 6.30 ACI Standard, "Building Code Requirements  for Structural Plain Concrete" (ACI 322-72) 6.31 PCI Design Handbook, "Precast Prestressed Concrete,"
Prestressed Concrete Institute, Second Edition, 1978 0052C
 
Sheet 1    of TABLE B-1 COMPRESSIVE STRENGTH OF AXIALLYLOADED CONQRETE MASONRY WALLS Concrete Masonr    Units          Mortar                    Walls Strength,                                Strength, Percent psi, net            Str.,                psi, net ef. Solid      area    f!t!, psi  psi Bedding h/t ftest        f'                    S.F.
.8    63      1160        980  1180    Full    6.0    750    978 .798            3.83 63      1160        980  1180    Full    6.0    685    978 .701            3.49 63      1160        980  1160    FS      6.0    670    978 .686            3.42 63      1160        980    900    FS      6.0    555    978 .568            2.83 63      1200      1000    1230    Full    6.0    860    995 .863            4.30 63      1200      1000      730    Full    6.0    625    995 .627            3.12 63      1200      1000      960    FS      6.0    580    995    .582          2.89 63      1200      1000      780    FS      6.0    650    995 .652            3.25 63      1320      1060      880    Full    6.0  1110    1055 1.050          '.25 63      1320      1060      810    Full    6.0    970  1055 .918 63      1320      1060      810    FS      6.0    780  1055 .738            3.69 63      1160        980  1080    Full j  6.0    800    978    .818          4.C8 63      1160        980  1080    Full    6.0    670    978          '686 3.42 63      1810      1275    1270    Full jI 6 '      940  1270 .739            3.67 63      1810      1275    1270    Full iG 0        940  1270 .739            3.67 63      1505      1150    1670    Full 6 0 I  ~      825  1145 .719            3.60 63      1505      1150    1670    Full :6.0
                                                .          820  1145 .715            3.57 63      1240      1020      980    Full 6.0        1010  1015    .993          4.95 63      1240      1020      980    Ful.l '.0 I
870  1015    .856          4.26 63      1720      1230      880    Full 6.0        1035  1225 .844            4.21 63      1720      1230      880    Full 6.0        940  1225 .766            3.81 63      1380      1090    1730    Full I 6 '      1000  1085 .920 1.013'.58      4.58 63      1380      l.090  1730    Full 6.0        1010  1065    .930          4. 63 63      1780      1262    1870    Full 6.0        1450  1257 1.152            5.75 63      1780      1262    1870    Full 6.0 I
1570  1257 1.248            6.22 43      3300      1790    1230    Full 6.0
                                                ',        1560  1782    .874          4.36 43      3300      1790    1230    Full '6.0
                                                ,        1730  1782 - .959          4,84 70      1645      1208    13.40    Full ! 6.0      1000  '200 .830            4.15 70      1645      1208    1140    Full 6.0 I        1229  1200                  5.C5 63        509      458  3140    Full    6.0    303    455  .664          3 ~ 40 63        509      458  1610    Full    6.0    295    ~55  .646          3,21 63        509      458  1060    Foll    6.0    295    455  .'646        3."1 63        840      756  3140    Full    6.0    53      753  .706          3.52 63        840      756  .'.610  Full    6.0    540    753    .716        3 58 63        840      756  1060    Foll    6.0    c05    753    .670        3.35 63        875      788  3140    Full    6.0    438    785  .558          2.79
 
Sheet  2 of  4 able B-1 (continued)
Concrete Masonr    Units          Mortar                      Walls Strength,                                  , Strength, ercent  psi, net            Str.,                    psi, net Ref. Solid      area    f~, psi psi Bedding                  ftest    fill C          p.p.
63          875      788    1610        Full    6.0      430    785 .547      2.74 63          875      788    1060        Full    6.0      500    785 .637      3.17 63        1080      940    3140        Full    6.0      605    936 .646      3.22 63        1080      940    1610        Pull    6.0      715    936 .763      3.81 63        1080      940    1060        Full    6.0      765    936 .817      4.07 63        1230      1015    3140        Pull    6.0    1160    1010 1.146      5.70 63        1230      1015    1610        Full    6.0    1000    1010 .988        4.92 63        1230      1015    1060        Full    6.0    1110    1010 1.097      5.46 63        1410      1105    3140        Pull    6.0    1140    1100 1.030      5.16 63        1410      1105    1610        Full    6.0      985  1100 .893        4.45 63        1410      1105    1060        Full    6.0    1030    1100 .935        4.66 63        1520      1157    3140        Full    6.0      660  1152 .572        2.85 63        1520      1157    1610        Full    6.0      740  1152 .642        3.20 63        1520      1157    4780        Full    6.0      830  rl52      .719 3.58 63        1860      1295    3140        Full    6.0    1476    1290    1.143 5.70 63        1860      1295    1610        Full    6.0    1539    1290    1.192 5.94 63        1860      1295    1060        Full    6.0    1365    1290    1.058 5.27 63        2510      1554    3140        Full    6.0    1698    1550    1.096 '5 47 63        2510      1554    1610        Full    6.0    1365    1550      .881 4.39 63        2510      1554    1060        Full    6.0    1325    1550      .856 4.27 63        3030      1710    3140        Full    6.0    2222    1705    1.304 6.50 63        3030      1710    1610        Full    6.0    2222    1/05    1.304 6.50 63        3030      1710    1060        Full    6.0    1984    1>05    1.164 5.80 63        3740      1923    3140        Full    6.0    1857    1918      .969 4.82 63        3740      1923    1610        Full    6.0    2523    1918    1.316 6.56 63        3740      1923    4780        Full    6.0    2317    1918    1.209 6.03 63        6640      2400    3140        Full    6.0    3587    2392    1.499 7.48 63        6640      2400    1610        Full    6.0    3856    2392    1.612 8.04 63        6640      2400    4780        Full    6.0    5031    2392    2.102 10.49 6.13  Q)0        1383      1257    2562        Full    7.0      1140  1254      .910  4.13 100        1388    "
1640    3017        Full    7.0    1358    1635      .830  4.57 100        1892      1853    2317        Full    7.0      1469  1846      .795  4.52 100        1923      1630    2153        Full    7.0      1394  1625      .858  4.29 100        2508    2390    2427'347 Full    7.0      1947  2380      .817  4.56 100        2529      2630                Full    7.0      2151  2620      .820  4. 68 100        2545      2130    2143        Full    7.0      1930  2120      .909  4.17 100        2610      2220    3195        Full    7.0      2078  2210      .939  4.71 100        2678      2030    2322        Pull    7.0    1832    2020      .905  3.99 100        4L74      2210    2792        Full    7.0      1810  2200      .821  4.10 100        4474      2540    2154        Full    7.0    2157    2530      .937  4.09 fm values from  this reference      were determined from prism tests in-stead of assumed values.          Test results multiplied by factor or. 1.2 I                  t
 
0 Sheet 3  of  4 able B-1 (continued)
Concrete  Masonr 'nite              Mortar                Walls Strength,                                Strength, ercent  psi, net                Str.,          psi, net Ref. Solid      area    fz, psi psi Bedding h/t ftest            f~ C.        S.P.
: 6. 10      62      2547      1556        1400  PS  9.0  1241    1540 .807    4.05 62      1886      1305'350 1400  FS  9.0  1153    1290 .894    4.50 62      1999                  1400  FS  9,0    967  1335 .724    3.63 62      1499      1150        1400  FS  9.0    685  1135 .603    3.02 62      1934      1325        1400  Full 9.0  1354    1310 1.033    5.19 62      2305      1473        1400  FS  9.0  1096    1455 .752    3.78
      ~
62      2136      1405        1400  FS  9.0  1128    1390 .812    4.07 62      1773      1260        1400  FS  9.0  1088    1245 .873    4.38 62      1298      1049        1400  FS  9.0    854  1037 .823    4.14 62      1241      1031        1400  FS  9.0    685  1010 .678    3.41 62      1612      1196        1400  FS  9.0    991  1180 .838    4.20 62      1805      1273        1400  FS  9.0  1088    1260 .864    4.33 62      1491      1146        1400  FS  9.0    854  1133 .754    3.78 62      1088        944      1400  FS  9.0    629    933 .673    3.38 62      1918      1318        1400  FS  9.0  1072    1302 .822    4.12 62      1169        985      1400  FS  9.0    605    975 .621    3.12 45      2655      1598        1400  FS  9.0    989  1578 . 626. 3.15 62      1088        944      1400  FS  9.0    564    933 .604    3.03 62      1290      1045      ,
1400  FS  9.0    701  1032 .678    3.41 62      1999      1350        1400  FS  9.0    1104  1335 .826    4.16 52      1862      1296    i 1400  Full 9.0    1378+  1280 1.075    5.44 62        967        870      1400  Full 9.0    758    860 .881    4.42 62      1967      1338        1400  Full 9.0  1241    1320 .938    4.72 6.10        57      2280      1463    '400 I
FS  9.3    1228  1450  .849  4.27 67      1917      1318    ~
1400  FS  9.3    836  1302  . 642  3.23 67      1380      1090        1400  FS  9.3    724  1078  .672  3 3/
                                                                                    ~
67      1902      1312        1400  PS  9.3    1223  1300  .943  4.74 67      1246      1023        1400  FS  9.3    739  1010  .731  3.67 57      2087    '386          1400  FS  9.3    1193  1370  .871  4.38 57      2087      '1386        830. FS  9.3    1298  1370  .948  4.76 57      2385      1505        1400  FS  9.3    719  1485  .484  2.44 57      2385      1505        1400  FS  9.3    789  1485  .530  2.67 57      2385      1505    ,  1400  FS  9.3    1105  1485  .743  3.74 57      2385      1505    I  1400        9.3    1140  1485  .766  3.85 I
6.8        39      1590      1187; 1130        Full 9.5    885  1170  .756  3.79 39      1590      118/    '010    ,Full 9.5    1000  1170  .853  4.28 39      1718      1238    i  1070  Full 9.5    949  1220  .777  3.89 39      1718      1238    i  840  Full 9.5    910  1220  .745  3.73
 
Sheet  4  of  4 Table B-1 (continue6)
Concrete Masonr    Units        Mortar                    Walls Strength,                                Strength, ercent'psi, net            Str.,                psi, net Ref. Solid    area    fm, psi psi Beddin      h/t ftest        f'              S.F.
6.8    63      1159        985  1180    Full    4.3    683        940  .726    3.62 63      1159        985  1440    Full    4.3    690        940  .734    3.66 63      1159        985  1440    Full    4.3    738        940  .784    3.91 63      1159        985  1060    FS    14.3    532        940    .565  2.82 63      1159        985    900    FS      4.3    563        940  .599    2.98 63      1159        985  1920    FS      4.3    563        940  .599    2.98 63      1206      1020    1230    Full 14.3      738        974  .758    3.80 63      1206      1020    730    Full 14.3      683        974  .702    3.51 63      1206      1020    1130    Full 14.3      746        974  .765    3.83 63      1206      1020    960    FS    14.3    571        974  .586    2.94 63      1206      1020    780    FS    14.3    603        974  .619    3.10 63      1206      1020    1250    FS    14.3    595        974  .610    3.05 63      1317      1080    880    Full l4.3      905      1030  .877    4.38 63    1317      .1080    750    Full 14.3      1063      1030 1.030    5.14 63      1317      1080    810    Full 14.3      929      1030 .90'692  4,49 63      1317      1080    1020    FS    14.3    714      1030          3.45 63      1317      1080    1020    FS    14.3    667      1030 .647      3.23 63      1159        985  1120    Full  14.3    579        940 .616    '.07 63      1159        985  1150    Full  14.3    635        940 .675      3.37 63      1159        985  1080    Full  14.3    635        940 .675      3*37 63      1810      1274    12.70  Pull  14.3    873      1218 .717      3.54 63      1810      1274    940    Pull  14.3    881      1218 .725      3.58 63      1810      1274    1120    Full  14.3    817      1218 .671      3.32 63      1508      1153    1380    Full  14.3    706      1100 .641      3.17 63      1508      1153    1380    Pull  14.3    746      1100 .677      3.34 63      1508              1670    Full  14.3    643      1100    .584    2.88 63      1238      1025    1920    Full  14.3    833        978  .851    4.24 63      1238      1025    980    Full  14.3    802        978  .819    4.09 63      1238      1025    1280    Pull  14. 3    817        978  .835    4.16 63 63 1714 1714 1230 1230 800 800 Pull Full 14.3 14.3 llll 1127 1172 1172
                                                                            .946
                                                                            .959 4.73 4.79 63    1714    '230      750    Full  14.3    1079      1172  .918    4.59 63      1381      1090    1730    Full  14.3    968      1040  .930    4. 64 63    1381      1090  , 2200    Full  14.3    960      1040  .923    4. 61 63      1774      1245    2100    Pull  14.3    1240      1190 1.043      5. 21 63      2253      1450            Pull  14 ..3  936      1385  .675    3.42 63      2253      1450  '270      Full  14.3    920      1385 .664      3.37 70      1643      1206    1180    Full  14.3    807      1150 .701      3.55 70      1643      1206    1300    Full  14.3    986      1150 .857      4.33 55      1273      1040    1220    Full  14.3    727        993 .732      3.66 55      1273      1040    1220    Pull  14.3    764        993 .770      3.84 6 'l    100      2900      1665
                                  ~
I I 1475    Pull I
                                                ,15.0    1250      1565    .801    3.93 6 '0      65 65 1746 1246 1250 1015
                                  '400
                                  .'400 Full Pull 1 18. 0 18.0 1108      1135 .975      4.87 785        925 .850      4.25 65      1562      1175    1400    Full '18.0    1208      1065 1.131    5.66
 
                  ~ ~ ~
      ~
        '  I
~ ~ ~      ~  ~
                      ~ ~
          ~ ~
                      ~ ~
                      ~ ~
          ~  I
                      ~ ~
          ~  I
                      ~ ~
                      ~ ~
                      ~ ~
                      ~ ~
                      ~ ~
                      ~ ~
 
y'g~URQ. STRENGZ~~ZRT            CAL SPAN CONCRETE MASOY!P 'WALLS FRO.i TESTS hT KC."4 LABORATORY Wa11 Modulus oc Rupture
                                                                                        &#xc3;ct Max.                    Rct                Mortar IST.'f            h'ominal        ~  Uniform                Section      Cross    Bedded
."for tar        Thickness            .Load                Mod  lus    hrcay    brea, Type*                fn.                psf                  in 3/ft        psi      psi Monouythe    Valls of Hollow Units M                  8                  85.15                    80.97    61.74        88.73 M                  8                  87.10                    80. 97    63.15        90.76 M                  8                  9}.. 00                  80. 97    65.97        94.82 M                  8                103.35                    80. 97    74..93    107.69 S                  8                  62.40                    80.97    45.24        69.47 S                  8                  72.15                    80.97    52.31        75.18 S
S 12 12
                                      .183.3 161.2              ''  164.64 164.64 57.aa 50.22 93.94 62.62 Composite  balls of  Concrete Brick          6  Hollo@ VlU S                  8                222.3                    103.82    161.16    180.67 S                  8                219.7                    103. 82    159.29    178.55 S                  8                187.2                      78.16    135.72    202.09 S                  8                228.8                    103.82    165.86    185.95 S                  8                216.4                      78.16    158.34    235.77 S                  8                223.6                      78.16    162.11    241.38 S                12                171.6                    139-63      53.46    103.55 S                12                150.8                    139.83      46.96        91.00 S                12                156.0                    139.83      48.60        94 14 S                12                213.2                    139.83      66.42    128.66 Cavity T!alls S                10                  98.8                ,  .50.36    156.62    165.55 S                10                156. 0                    50.36    250.44    261.38 S.              10                  88.4                    48.16    141.91    i>4 68 S                10                119.6 1'4.4 50.36 50.36 19'l 183.66 00.40 191.63 S                10 .
S                10                109. 2                    46.16    175.30    }91.32 12 (4>>4-4)            145.6                      S0.36    233.73 L
S
                                                                              '3 2C3.9't S            12 (4-4-4)                  6
                                                '45.
50.36    233        <<V q<<  ~ pV S            12 (6-2-4)            135.2                      77.80    127.3S    146.63 12(6-2-4)            119.6                              ll2.66    }29.70 S
L Mortar ape by propertion requirements
 
r 0
 
Sheet 1 of  2 TABLE B>>4 FLEXURAL STRENGTH, HORlZONTAL SPAN, HO .R.ZNFORCED CONCRETE MASONRY WALLS Modulus    S.F.
Mortar        Loadin      of Rupture Construction          Q    T    e      sf Net  Area'i Act./Allow      Ref.
Monowythe 8"          N    Uniform    127      132    ~ 4.13        .6.g Hollow, 3-Core                          136      141      4.41          6.g N                127      132      4.13          6.g 169      176      5.50          6.g N                173      180      5.63          6.g 0,                123      128      4.00          6.g 0                158      164      5.13          6.g Monowythe 8"          N                149      155      4.84          6.g Hollow, Joint        N                160      166      5.19          6.g Reinf. 9 16  in.c c,N                  193      201      6.28          6.g 0                150      156      4.88          6.g 0                186      193      6. 03        6.g Monowythe 8"          N                203      211      6.59          6.g Hollow Joint          N                196      204      6.38          6.g Reinf. 8 8 in.cc      0                202      210      6.56          6.g 0                195      203      6.34          6.g Monowythe 8"          N    1/4 pt      56      58      1.81          6.6 Hollow                N                  38      39      1.22          6.6 N                  61      63      1.97          6.6 N                  60      62      1.94          6.6 N                  69      71      2.22          6.6 N                  93      96      3.00          6.6 8" Monovythe                Center      199      217      4.72        6.1g Hollov, 2-Core                II 176      192      4.17        6.15 151      165      3.59        6.1g 4-2-4 Cavity        $f                111      210      4.57        6.15 Wall, Hollow          M.                135      255      5.54        6.1:
Units                M                  95      180      3.91        6.15 8" Monowythe          M                159      173      3.76        6.15 Hollov 2-Core        M                159      L73      3.76        6.1g Joint Re. e 8"oc      M                191      298      4.52        6.15 4-2-4 Cavity of      M                159    .300      6.52        6.1~
Hollov Units T'ed    M                  159      300      6.52        6.1g w/Joint Re. 3 8"oc                      159      300      6.52 I                                                      6.15
 
Sheet 2    of 2
~s  le B-4 (continued)
Modulus Mortar    Loadin        of Rupture      S F.
Construction    'ice  'pe        psf  .tet Area  si :Ac+/Allow >
4" Hollow            N    Center    138        365          11.41      ~i.a4 II                                          (j, 14 onowythe          N              157        415          12.97 N              $ 01      268          8.38      g 14 8" H>laow            M              268        202          4.39      6.14 oncwythe          M              314        237          5.15      6.14 M              314.      237          5.15      tl.a4 8" Hollow            N              277        210          6.56      tl.a4 nowythe          N              314        237          7.41      6.14 N              314        237          7.41      6.14 8" Hollow            0              259        195          6.09      6.14
.onowy the          0              277        210          6.56      6.14 0              277        210          6.56 6.14 8" Hollow            M              268        202          4.39      I6.14 onowythe          M              297        224          4.87      5.14 M              277        210          4.56      6.14 8" Hollow            N              277        210          6.56        ,14 onowythe          N ~            259        195          6.09      6,14 N              297        224          7.00      6.14 8" Hollow            0              360        271          8.45      6.14 onowythe          0              297        224          7.00      6.14 0              268        202          6.31      6.14 2" Hollow          N              352        142          4.44        ,14 onowythe          N              314        127          3.97        ,14 N              333        134          4.19      6.14
 
~ (' . jr}}

Latest revision as of 15:12, 3 February 2020

Rev 4 to, 180-Day Rept in Response to IE Bulletin 80-11 for Dresden Nuclear Power Station Units 2 & 3.
ML18041A125
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 09/14/1984
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML17199F597 List:
References
IEB-80-11, NUDOCS 8601160031
Download: ML18041A125 (122)


Text

H~

t 180-DAY REPORT IN RESPONSE TO IE BULIETIN 80-11 I FOR DRESDEN NUCIEAR POWER STATION UNITS 2 AND 3 COMMONWEALTH EDISON COMPANY DOCKET NUMBERS 50-237 AND 50-249 PREPARED BY: Bechtel Power Corporation Report Date: September 14, 1984 Revision 4

~"

I

TABLE OF CONTENTS Pacae

1.0 INTRODUCTION

2.0 SCOPE

3.0 DESCRIPTION

OF MASONRY WALLS 3.1 LOCATION 3.2 FUNCTION 3.3 WALL CONFIGURATION 3.4 CONSTRUCTION MATERIALS 3.5 CONSTRUCTION PRACTICES 3.6 RECONCILIATION WITH 180-DAY REPORT, REVISION 3 4.0 REEVALUATION OF MASONRY WALLS 4.1 POSTULATED LOADS 4.2 ALLOWABLE STRESSES 6 4.3 JUSTIFICATION OF THE REEVAIUATION CRITERIA 6 4.4 SEQUENCE OF ANALYSIS 7 4.5 METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA 7 4.6 ASSUMPTIONS AND ANALYSIS CONSTRAINTS 8 4.7 MASONRY WALL TESTING PROGRAM 10 S.o RESULTS OF MASONRY WALL EVALUATION 10 5.1

SUMMARY

6.0 REFERENCES

APPENDIXES Masonry Wall Plans Additional Justification of the Reevaluation Criteria TABLES Masonry Walls -Function and Physical Properties Allowable Stresses in Concrete Masonry Walls Applied Loads and Evaluation Results 0050c

1.0 INTRODUCTION

This 180-day report is being issued in response to NRC IE Bulletin 80-11, dated May 8, 1980 (Reference 6.2). This report has been prepared by Bechtel Power Corporation, Ann Arbor, Michigan. for Commonwealth Edison Company's Dresden Nuclear Power Station, Units 2 and 3. Revision 4 of this report incorporates the status change of two masonry walls which Sere previously identified in Revision 3 as meeting the acceptance criteria.

2.0 SCOPE The 180-day report furnishes information requested in Item 2b of NRC IE Bulletin 80-11. It deals solely with masonry walls identified in this report as safety-related. Any masonry wall is considered safety-related when it is in proximity to or has attachments from safety-related piping or equipment such that wall failure could damage a safety-related system.

The analyses are based on as-built conditions identified during site surveys of June and July 1980 and July 1981.

3.0 DESCRIPTION

OF MASONRY WALLS 3.1 LOCATION The figures in Appendix A show the location of all safety-related masonry walls.

3.2 FUNCTION The function of each masonry wall is identified in Table 1 according to one of the following categories.

3.2.1 Fire Wall These walls were constructed to prevent the spread of fire from one side of the wall to the other according to the appropriate fire rating associated with the wall's thickness.

3.2.2 Partition Wall The partition walls are interior dividing walls whose sole purpose is to separate a portion of a room from the remainder.

3.2.3 Shieldin Wall The masonry shielding walls. typically made of solid units which are required to restrict radiation exposures.

0050c

3.2.4 Blockout A blockout, made of masonry, seals an opening in a larger concrete wall. These openings are left in the concrete walls to provide for equipment installation or pipe penetrations before the opening is sealed with the masonry.

3.2.5 Exterior Wall Exterior walls have at least a part of one face exposed to the outside, or are a part of the boundary of the Units 2 and 3 reactor turbine building complex. Only exterior walls are subject to wind or tornado loads.

3.3 WALL CONFIGURATION Wall dimensions and boundary conditions for each wall are indicated in Table l. Each boundary is categorized as either a fixed support capable of providing both moment and shear resistance, a simple support resisting only shear forces, or a free edge through which no forces can be transferred.

3.4 CONSTRUCTION MATERIAIS 3.4.1 Hollow Masonr The hollow masonry units, which are identified on the design drawings, were specified as three-core blocks conforming to ASTM C 90. Grade N-I, Lightweight Aggregate. Masonry walls.

which are not shown on the design drawings, were assumed to consist of hollow units of the same type specified above. This assumption and the material properties of the hollow block were verified by plant-specific tests (see Section 4.7). Site surveys have found that the hollow masonry walls consist of both two-core and three-core units.

3.4.2 Solid Masonr Two types of solid blocks (normal weight and magnetite) were used in the solid masonry construction. Plant-specific tests determined the material properties of both types of block (see Section 4.7).

3.4.3 Mortar The mortar used in the const, ruction of the hollow masonry walls was specified as ASTM C 270, Type N, with a 28-day compressive strength of 750 psi. Tests on the mortar used in the solid masonry found that it was, as a minimum. comparable to that specified for hollow masonry (see Section 4.7).

0050c

0 3.4.4 Reinforcin Steel According to the design drawings and specifications, the masonry walls are reinforced in the bed joint of every other course.

This joint reinforcement consists of heavy-duty, continuous, rectangular, ladder type steel reinforcement, whose minimum yield strength is 65 ksi. Deformed bar steel, where shown on the drawings, has a minimum yield strength of 40 ksi.

3.4.5 Anchors Masonry anchors have been used in certain locations to tie the masonry wall to an adjacent structural element. These anchors consist of two types: corrugated metal ties (dovetail anchors) which are used for connections to concrete walls or columns and 3/16-inch diameter adjustable bar ties welded to the supporting structural steel.

3.5 CONSTRUCTION PRACTICES The masonry walls at the station were constructed in accordance with the applicable job and standard specifications for masonry work and have a high quality of masonry workmanship.

Conformance to applicable ASTM specifications was required for concrete blocks, mortar, reinforcing ties, and anchors. Storage and protection of blocks and walls, as well as cold weather protection, were specified. The mortar joints of solid masonry walls were required to be constructed with full mortar coverage on all vertical and horizontal faces. The vertical joints were to be shoved tight. A full mortar bedding was specified for webs and face shells of the hollow masonry walls. Face shells were required to be fully buttered and pressed into place to ensure full, well-compacted horizontal and vertical mortar joints.

3.6 RECONCILIATION WITH 180-DAY REPORT, REVISION 3 This latest revision of the 180-day report incorporates the following information:

3.6.1 The inclusion of walls 37 and 103 to the list of walls which do not meet the acceptance criteria. These walls were previously identified as meeting the acceptance criteria.

With the incorporation of the above, a total of 64 masonry walls now meet the acceptance criteria. This represents a decrease of two walls over the total shown in Revision 3 of this report.

0050c

4.0 REEVALUATION OF MASONRY WALLS 4.1 POSTULATED LOADS The loads which were considered in the evaluation of each wall are identified in Table 3.

4.1.1 Dead Load D This load includes the dead weight of the wall and all permanently attached equipment, piping, conduit, and cable trays. The construction sequences have allowed the permanent dead load deflection to occur prior to the erection of the masonry walls. Therefore, the dead loads from the floor above are not transferred to the masonry walls.

This load includes applicable live loads which can be transferred to the masonry wall through the floor framing. The live loads are not considered in those load combinations when they would relieve wall stresses.

4.1.3 Attachment Loads Ro and Ra The attachment loads are localized loads which are a result of the reactions from the supports of piping, cable trays, conduits, HVAC ducts. and other systems. The reactions are determined for the normal operating or shutdown condition (Ro) and for the accident condition (Ra) which results from the thermal conditions generated by the postulated pipe break and includes Ro.

Exterior walls are subject to a uniform pressure load corresponding to the design wind speed. The design wind speed for Dresden Units 2 and 3 is 110 miles per hour.

4.1.5 Tornado Load Wt Exterior walls are subject to velocity pressures, differential pressures, and tornado missiles of the design tornado identified in the plant FSAR.

The maximum tornado wind speed is 300 miles per hour. The maximum differential pressure is 170 psf.

0050c

The following missiles 1 are generated by the design tornado:

a.~ A telephone pole 35 '-0" long. with a butt diameter of 13 inches, a unit weight of 50 pcf, and total weight of 1,200 pounds, and having a velocity of 150 miles per hour

b. A 1-ton mass with a velocity of 100 miles per hour and a contact area of 25 square feet A probabilistic risk assessment for tornado missiles impacting walls D2-529-43C-74 and D2-517-316-105 was performed by others.

The results of this analysis show the probability of a tornado missile striking either of these two walls to be approximately 10-7 per year. Therefore, the evaluation includes only the effects of wind pres'sure and depressurization.

The original design considered the buildings housing safety-related piping, conduit, cable trays, and equipment as sealed; therefore, tornado loadings do not affect interior walls.

4.1.6 0 eratin Basis Earth uake Eo This load represents the seismic load generated by the operating basis earthquake (OBE). The design ground accelerations are as follows:

a. Horizontal 0.1 g
b. Vertical = 0.067 g 4.1.7 Safe Shutdown Earth uake Es This load represents the seismic load generated by the safe shutdown earthquake (SSE). The design ground accelerations are twice those shown for the OBE.

4.1.8 Thermal Loads To and Ta Thermal loads account for the effects of thermal gradients under normal operating (To) and accident (T ) conditions. The operating loads represent the most critical steady-state condition. while the accident condition is a short-term thermal transient resulting from the postulated pipe leak, including To 0050c

4.1.9 Hi h-Ener Pi e Break The high-energy piping systems outside of the primary the containment were investigated and their proximity to safety-related masonry walls was established. It was found that walls.

only a break in the RWCS would impact the masonry However, a break in this system is precluded by means of leak detection and administrative action. Room temperature monitors are capable of responding to small RWCS leaks by providing indication and alarm to the control room. At this time, the operators shall take the appropriate action to isolate the RWCS, thereby preventing a full pipe rupture.

The analysis of the masonry walls in proximity to the RWCS addresses the effects of the postulated pipe leak by considering the thermal transient discussed in Subsection 4.1.8 and differential pressure (Pa). This load is represented by an equivalent static pressure across a wall.

4.2 ALLOWABLE STRESSES The allowable masonry stresses, excluding collar joint stresses, under normal load combinations are in accordance with those given by the Building Code Requirements for Concrete Masonry Structures (ACI 531-79)(Reference 6.1). Allowable stresses for extreme environmental and abnormal load combinations are increased by a factor of 1.67 over the above ACI code allowable stresses.

For the mortar collar joints, the allowable shear and tension stresses are 10 psi for normal load combinations and 14 psi for extreme environmental and abnormal load combinations.

Allowable stresses applicable to the different types of masonry are given in Table 2.

4.3 JUSTIFICATION OF THE REEVALUATION CRITERIA .

Except as noted, allowable stresses of masonry units and mortar are based on the code values as published in ACI 531-79. These values are considered reasonable and conservative. References to tests and other codes are provided in the commentary to ACI 531-79. It is noted that the allowable stresses are used for the evaluation of existing masonry walls and not for the design of new walls.

Because building codes do not address abnormal and extreme environmental conditions, a factor of 1.67 was used to provide allowable stresses under these loading combinations. Based on available margins of safety, this factor is considered to be reasonable.

0050c

Published data on tension and shear strength of collar joints are almost nonexistent. The ultimate collar joint stresses were therefore determined by plant-specific in situ tests. The allowable stress, as given in Section 4.2, was obtained by applying a safety margin of three to the minimum test result (see Section 4.7).

Additional justification of the reevaluation criteria is provided in Appendix B.

4.4 SEQUENCE OF ANALYSIS Each wall is initially analyzed considering only dead and seismic loads or dead and tornado loads, whichever appears most critical. For all walls which are found to be acceptable, the following applicable loadings are considered: live load, attachment loads, pipe leak loa'ds, and interstory drift.

4.5 METHOD OF ANALYSIS AND ACCEPTANCE CRITERIA 4.5.1 Stress Anal sis Based on the walls'oundary conditions, each wall is idealized as either a cantilever;,one-way strip, or two-way plate which is supported along at least two adjacent edges. The wall is then considered acceptable if all wall stresses under'll load combinations are less than or equal to the established allowable stresses.

4.5.2 Stabilit and Slidin Anal sis Cantilever walls which do not meet the acceptance criteria for allowable stresses are analyzed with regard to overturning stability and sliding movement. A factor of safety against overturning is determined for both OBE and SSE loads. The minimum acceptable factors of safety are 2.0 for OBE and 1.5 for SSE conditions. Before the wall is considered acceptable, the total wall movement, including rocking and sliding, must not adversely affect any safety-related items.

4.5.3 Anal sis of Archin Effects Masonry walls with mortared joints at, both the top and bottom boundaries that do not meet, the acceptance criteria for allowable stresses are investigated for arching effects. The wall s capability of resisting horizontal loads, after ultimate tension stresses are exceeded, is developed when the wall jams at the top and bottom against the supporting structural members. The center of the wall cracks due to tension stresses, and a three-hinged arch is formed to resist the loads through compression stresses only.

0050c

Design seismic loads generated by the safe shutdown earthquake are based on the peak acceleration of the applicable response criteria and a damping factor of 10% of critical.

The stiffnesses of the supporting structural elements are accounted for in the analysis. Also, the deflection at the center hinge must be less than or equal to one third of the wall thickness. If an arching wall meets the above requirementj it is considered acceptable when the compression stress develo'ped in the arch is less than or equal to the allowable flexural compression stress shown in Table 2.

4.5.4 Interstor Drift Under Seismic Loads The effects of interstory drift are considered by determining the in-plane shear strain in the wall due to the relative displacement between the top and bottom of the wall. The allowable in-plane strains are 0.0001 for unconfined walls and 0.001 for confined walls. An unconfined wall is defined as a wall supported only on two adjacent sides. A confined wall is supported on any three sides or at the top and bottom of the wall (References 6.5, 6.6. and 6.7).

These acceptance criteria are considered to be justified because none of the masonry walls carry a significant part of the buildings'tory shear or moment. Also, test data indicate that the gross shear strain of walls is a more reliable indicator for predicting the onset of cracking than loads or stresses.

The out-of-plane relative displacement creates a bending moment in the wall only in the case where the top and bottom boundaries are supported. and at least one represents a fixed condition.

None of the masonry walls at the Dresden station are effectively fixed at either the top or the bottom boundary; therefore, the out-of-plane interstory drift is not considered.

4.6 ASSUMPTIONS AND ANALYSIS CONSTRAINTS The following assumptions and constraints were employed in the reevaluation of the masonry walls.

4.6.1 Nonsafety-related walls, anchor bolts. and embedments were not within the scope of the reevaluation.

4.6.2 All loads and load combinations outlined in the plant PSAR are considered in the reevaluation.

0050c

4.6.3 The seismic loads on masonry walls are dependent on the damping characteristics of the material, which are expressed in percentage of critical damping as follows (References 6.3 and 6.4):

a. Uncracked Masonry Wall, Out-of-Plane Acceleration
1) OBE: 2%
2) SSE: 2'4
b. Vital Piping Systems. Horizontal and Vertical Accelerations
1) OBE: 0.5%
2) SSE: 2't The plant FSAR specifies damping of 0.5'4 under OBE conditions for vital piping systems. For the purpose of this evaluation, vital piping are defined as all safety-related piping.
c. Other Attached Systems, Horizontal and Vertical Accelerations
1) OBE: 1'4
2) SSE'W This category includes nonsafety-related piping and safety-related and nonsafety-related conduit, cable trays, and HVAC ductwork.

4.6.4 A masonry wall is considered an isotropic, elastic material. Its natural frequency is calculated using standard plate formulas. For a wall with an opening, the calculated frequency is reduced by 9% if the size of the opening equals or is greater than 15% of the wall area. The reduction is proportionally less for a smaller opening. For multiple openings, the largest

'one is considered. To account for variation in stiffness and mass of the wall, the above frequency is varied by + 10% and the maximum response is used in the analysis.

4 ~ 6.5 In accordance with the plant FSAR, the effects of the seismic loads of one horizontal and the vertical direction are added arithmetically.

4.6.6 Dead loads from the floor above are not considered being transferred to the masonry walls. A part of the live load from these floors is transferred to the walls; however, wall stresses.

it is not considered if it will relieve 0050c

4. 6.7 Shear and tensile stresses are not transferred across the continuous vertical mortar joints of walls laid in stack bond or the vertical mortar joints of a wall boundary adjacent to a concrete structural member.

4.6.8 Standard, prefabricated sections of the horizontal joint reinforcing steel are provided at all corners of masonry walls. However, their contribution to th4 strength capacity of this intersection is not considered.

4.7 MASONRY WAIL TESTING PROGRAM A sampling and testing program was performed at the station.

This program provided the material properties necessary to determine the allowable stresses applicable for the masonry wall evaluations. The testing was also considered to fulfill the special inspection requirements of Reference 6.1; thus allowing the use of inspected allowable stresses. The findings of the program are as follows.

4.7.1 The hollow masonry block has an average compressive strength of 2,100 psi on the net area.

4 ~ 7.2 The solid masonry block has an average compressive strength of 3,400 psi. r 4.7.3 The mortar used in both the hollow and solid masonry construction is. as a minimum, comparable to ASTM C 270, Type N.

4.7.4 The average unit weight of the hollow masonry is 110 pcf and the average unit weight for the solid masonry is 132 pcf.

4.7,5 In situ tests were performed on two walls to determine the strength of the mortared collar joint. The resulting failure stresses were 37.6 and 32.7 psi.

4.7.6 One wall (D2-534-33G-21) was found to consist of magnetite aggregate. Tests indicate the block of this wall to have a compressive strength of 6,000 psi and a unit weight of 235 pcf. The mortar was found to be comparable to ASTM C 270, Type M.

5.0 RESUITS OF MASONRY WALL EVALUATION Table 3 lists the results of the masonry wall reevaluation. The criteria used to justify the wall's acceptance or mode in which it does not meet the criteria are identified.

10 0050c

5.~ 1

SUMMARY

'he following summarizes the results of the reevaluation of 96

~

safety-related masonry walls:

5.1.1 Total number of walls meeting the acceptance criteria:

64 5.1.2 Total number of walls which do not meet the acceptance criteria: 32

6.0 REFERENCES

6.1 Building Code Requirements for Concrete Masonry Structures, ACI 531-79, American Concrete Institute, Detroit, Michigan, 1979 6.2 USNRC IE Bulletin 80-11, dated May 8. 1980

'.3 Final Safety Analysis Report Power Station Units 2 and 3 (FSAR) for the Dresden Nuclear 6.4 Damping Values for Seismic Design of Nuclear Powez Plants, U.S. Nuclear Regulatory Commission Regulatory Guide 1.61, October 1973 6.5 Becica, I.J. and H.G. Harris, Evaluation of Techniques in the Direct Modeling of Concrete Masonry Structures, Dzexel University Structural Models Laboratory Report M77-1.

June 1977 6.6 Fishburn. C.C., Effect of Mortar Properties on Strength of Masonry, National Bureau of Standards Monograph 36 U.S.

Government Printing Office, November 1961 6.7 Mayes, R.L.; Clough, R.W.; et al. Cyclic Loading Tests of Masonry Piers, 3 Volumes, EERC 76/8, 78/28. 79/12 Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, California 6 ' 60-Day Report in response to IE Bulletin 80-11 for Dresden Nuclear Power Station Units 2 and 3, Commonwealth Edison Company. Docket Numbers 50-237 and 50-249 dated July 3, 1980 0050c

TABLE 1 MASONRY WALLS - FUNCTION AND PHYSICAL PROPERTIES Shown on Thick- Sine Boundary Design Wall Function ness W thea Bond (hei ht x width) Su rt Drawin s Remarks D2"570-40M-1 Partition 12" Hollow Running 14'-9"x22'-0" Yes D2-570-39M-2 Shielding 12" Hollow Running 16'-3"x21'-7" Yes D2-570-43K-3 Shielding 12" Solid Running 7e-1"x8'-8"* Yes D2-570-42J-4 Shielding 18" Solid Running '-1"xl8'-0 Yes D3-570-45K-7 Shielding 12" Solid Running '-0"x9'-6" Yes D -5 0- 5K-8 Shielding 18" Solid Running '-1"x17'-1" Yes D2-570-38M-11 Shielding 12" Hollow Running 6'-3"x21'-7" Yes D2-561- 4D-12 Partition 6" Hollow Running '-5"x22'-ll" Yes D 1- D-1 Partition Hollow Running -5"x23'-ll" Yes D3-545-44D-14 Partition 12" Hollow Running '-9"x9'-7" Yes D2-570-43K-15 Blockout 24" Hollow* Running '-6"x2'-0" No

  • -Assumed D3-570- 5K-16 Blockout 24" Hollow Running '-4"xl'-ll" No
  • -Assumed BOUNDARY SUPPORTS L

Free edge Simple support Fixed support

%hoot 1 nf 7

TABLE 1 MhSONRY MhLLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick- Sice Boundary Design Mall Function ness W thea Bond (hei ht x width) Su rt Drawi s Reaarks 2-534-33E-20 Partition 12" ollow unning 26'-10"x9"-1" Yes 2-534-33G-21 Blockout 18" Solid tack 9'-9"xl6 -4" Yes 2-534-33H-22 Blockout 8 ll ollow unning 14'-6"x6'-8" Yes 2-545-38H-23 Firewall 12" ollow unning 24'-0"x8'-6" Yes 2-545-39J-24 Shielding 24" olid unning 12'-3"x14'-2 Yes 2-545-39J-25 Shielding 24" olid unning 8~-1"x6'-7" Yes

)( x x)c 2-S45-41H-26 Shielding 16" olid tack 8'-0"x170-2" Yes 2-545-44J-31 Shielding 1 80t olid unning 8'-0"x6'-0" Yes 2-545-43L-32 Shielding 48 tt olid unning 10'-10"xll'-4" Yes 2-545-43M-33 Shielding 56" olid 8 unning 10'-0"x4'-8" Q Yes 3-545-44J-34 Shielding 18" olid unning 8'-1"x6'-0" Yes 3-545-45L-38 Shielding 48tl olid unning 10'-8"xll'-6" Yes 3-545-48N-40 Firewall 12" ollow unning 12'-8"xl4'-10" Yes 2-545-40N-41 Firewall 12" lollow unning 12'-8"xl4'-10" Yes

E:

ThBLE 1 MhSONRY MhLLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick- Site Boundary Design Mall Function ness M thes Bond (hei ht x width) Su rt Drawin s Remarks D3-545-49H-42 Shielding 24" Solid Running 13'-5"x12"-0" Yes D3-545-50H-44 Partition 12" Hollow Running 24'-6"x8'-8" Yes D2-549-32F-45 Firewall 8 It Hollow unning 9'-0"xlO'-4" Yes D - F- F rewa Ho ow Running 1 x Yes Firewall 8' Hollow Running 10 -6 x21 -8 Yes D2-549-32F-48 Firewall tt Hollow Running 10'-6"x9'-8" Yes D2-549-32G-49 Firewall 8 tt Hollow unning 10'-6"x20'-9" Yes D2-549-32G-50 Firewall 8I ~

Hollow unning 10'-6"xl7'-2" Yes D2-549-31G-51 Firewall 8I ~

Hollow unning 10'-6"x21'-5" Yes D2-549-32G-52 Firewall 8 II Hollow unning 8'-ll"x17'-3" Yes D2-549-33G-53 Blockout 8I ~

Hollow unning 12'-0"x6'-0" Yes D2-549-33H-54 Blockout 8 tt Hollow unning 12'-0"x14'-8" Yes D2"534-33G-55 Blockout 20" Hollow unning 14'-6"x4'-8" Yes D2-534-33G-56 Blockout 8tt Hollow unning 14'-6 "x6'-9" Yes D2-545-39J-66 Shielding 24" Solid Running 8'-1"x4'-3" Yes D M- B oc out Hollow unning 3'-6"x7'-5" No Type of block and number of w thea assumed D3-5 5-47M-68 Blockout 24" Hollow unning 3'"x7'-5" xxxK No Type of block and number of wythes assumed xx xx

ThBLE 1 MhSONRY MhLLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick- Sise Boundary Design Mall Function ness M thea Bond (hei ht x width Su rt Drawi s Reasrks D2-534-43H-70 Partition 12" Hollow Running 3'-5"x26'~0" Yes D3-53 5D-71 Partition 12" Hollow Running 13 -5'x9 -6" Yes D3-534-44D-72 Partition 12" Hollow Running 13'-5"xl4'-7" XK)EC "Yes D3-534-44D-73 Partition ] 2I ~

Hollow Running 13'-5"x9'-7" Yes D2-529-43C-74 Partition 12" Hollow Running 11'-4"x39'-4" Yes D2-545-41J-76 Shielding 24M Solid Running 8'-1"x4'-0" Yes D3-545-46H-77 Shielding 24" Solid Running 8'-2"x4'-1" Yes D2-517-33E-80 Partition 12 Hollow Running 15'-ll"x9'-3" Yes D2-503-35E-81 Shielding 36" Solid Running 29'-ll"x31'-10" Yes D2-517-31F-82 Firewall 12" Hollow Running 16'-0"x23'-0" Yes D2-517-32F-83 Firewall 12" Hollow Running 16'-0"x39'-0" Yes D2-517-32G-84 Firewall ] 2I ~

Hollow Running 16'-0"x23'-0" Yes D2-517-33H-85 Shielding Hollow Running 13'-0"x20'-8" Yes JC)l K)C D2-517-33H-86 Firewall 12" Hollow Running 14'-3"x18'-0" Yes D2-517-38H-87 Firewall 12" Hollow Running 27'-7"x8'-8" Yes D2-517-39H-88 Blockout 24" Solid Running 7'-0"x14'-5" Yes 02-517-39K-89 Shielding 24" Solid Running 8'-2"x9'-10" Yes

TABLE 1 MhSONRY ILLS - FUNCTION hND PHYSIChL PROPERTIES Shown on Thick- Sise Boundary Design Mall Function ness W thea Bond (hei ht x width) Su rt Drawi s D2-517-426-90 Blockout 12" Hollow Running 8'-6"x17'"6" Yes D3-517-49H-92 Partition 12" Hollow Running 27'-5"x8'-8" Yes D -517"'i9J-93 Shielding 2 Solid Running 8 -2 x -10 Yes D2-517-34E-94 Partition 12" Hollow Running 31'-0"x29'-0" kX Yes X

D2-Sll-33G-95 Partition 12" Hollow Running 15'-ll"xS'-9" Yes XIXW D2-517-43H-96 Shielding 18" Solid Running 9'-8"x8'-0" Yes D3-517-45H-97 Shielding 18" Solid Running 9'-8"x8'-0" Yes D3-517-46N-98 Firewall 12" Hollow Running 7'-'"xll'-5 Yes D3-517-46N-99 Firewall 12" Hollow Running 7'-0"xll'-5" Yes D3-517-46N-100 Firewall 12" Hollow Running 7'-0"xl6'-8" Yes D2-517-38H-101 Partition 12" Hollow Running 27'-0"x10'-6" Yes C.:P D3-517-50H-102 Partition 12" Hollow Running 30'-0"x10'-5" Yes D3-507-44C-103 Shielding 12" Solid Running 10'-1" '-3" Yes D3-S17-46G-104 Partition 8 tl Hollow Running 12'-6"xl7'-6" No XXX D G-1 Blockout Hollow Running 7 -ll"x6'-4" No D - E- Partition Hollow Running 15 -11 x3 -1" Yes

TABLE 1 MhSONRY WALLS - FUNCTION AND PHYSICAL PROPERTIES Shown on Thick- Sise Boundary Design Mall Function neea e W thea Bond (hei ht x width) Su rt Drawi s Remarks D3-517-45D-107 Blockout 12 Hollow 1 Running 14'-10"x14'-7" Yes

'2" Cy D2-517-44D-108 Shielding Hollow Running 7'-5"x6'-0" Yes elis filled with sand D2-517-44E-109 Partition 12" Hollow Running 9'-10"xl3'-2." Yes D2-517-43E-110 Partition 12" Hollow Running 9'-10"x9'-6" . Yes D2-517-39H-ill Blockout 24" Hollow* 4* Running 6'-5"x2'-5" No *-Assumed D2"528-35H-112 Firewall ] Hollow Running 5'-1"xl3'-3" Yes 2'2" D2-528-34H-113 Firewall Hollow 1 Running 7'-8"x6'-10" Yes D3-528-54H-114 Firewall 12" Hollow 1 Running 8'-1"x14'-0" Yes D3-528-54H-11S Firewall 12" Hollow Running 8'-1"x8'-6" Yes D2-517-43H-116 Blockout 12" Hollow 1 Running 9'-4"x2S'-ll" Yes D3-517-49H-117 Shielding 24" Hollow* 2* Running '-4"x2'-4" No

  • Assumed D2-S07-45C-118 Shielding 8 to Solid 1 Stack 6'-3"x2'-3" Yes D2-517-5A-120 Exterior 12 lt Hollow 1 Running 20 I-2 "x14 '-ll" Yes D2-517-3A-121 Exterior 12" Hollow 1 Running 20'-2"x14'-ll" Yes
y. K)C pC

TABLE 1 HhSONRY MALLS - FUNCTION AND PHYSICAL PROPERTIES Shown on Thick- Siee Boundary Design Mall Function ness M thee Bond (hei ht x width Su rt Dravi e Remarks D3-476-45H-122 Blockout 36 It Hollow Running 4'-5"x9'-4" No Type of block and number of wythes assumed D - H- B oc out Hollow Running 4 -8'9 No Type of block and number of wythes assumed D2-558-43K-35 Shielding 30" Solid Runnin 5t 2tt x 13t 3II Yes D2-558-43K>>36 Shielding 36" Solid 6 Running 8'-5" x 12t-0" Yes 12" 5I 4tf x 3f ase not mortared b2-558-42K-37 Shielding Solid 2 Running 41I Yes D3-558-45K-39 Shielding 36It Solid 6 Running 8 ~

5 Il x 12 I Otl No

0 TABLE 2 ALLOWABLE STRESSES IN CONCRETE MASONRY WALLS T e 1 Wall e 2 Wall Loadin Condition Loadin Condition Abnormal Abnormal and Extreme and Extreme T e of Stress si Normal Environmental Normal Environmental Flexural compression, Fm 340 560 390 650 Transverse and punching shear, Vm 35 59 38 63 Shear in mortar collar joint. Vmc~ 10 14 10 14 Direct or Normal to bed jo ints. Fth 14 23 flexural Hollow Parallel to bed joints, Fthp 27 46 tension Normal to bed jo ints. Ftsn 27 46 Solid Parallel to bed joints, Ftsp 40 68 Mortar collar joints, Ftc 10 14 10 14 Axial compression allowable (Fa) is dependent upon the height and thickness of the wall Fa = 0.225 fm [1 ( h )3]

40t T e 1 Wall e 2 Wall Hollow-unit wall Solid-unit wall fm 1..020 psi fm = 1,190 psi mo 750 psi mo = 750 psi

1. For walls laid in stack bond, shear and tensile stresses shall not be transferred across the continuous vertical joints.
2. Material properties and the shear capacity of mortared collar joints have been veriTied by field tests.

0191C

APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet Wall D L W E 0

R 0

DrW E R T s a a P

a Y

Criteria Acce tance Criteria Remarks P

D2-570-40M-1 Exceeds overturning criteria D2-570-39M-2 Exceeds overturning criteria D2-570-43K-3 Meets over-turning criteria D2-570-42J-4 eets over-turning criteria D3-570-45K-7 eets over-turning criteria D3-570-45K-8 eets over-urning criteria D2-570-38M-11 Exceeds overturning criteria D2-561-44D-12 Exceeds overturning riteria

TMI APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L E R Dr W E R T P Y Wall 0 0 s a a a p Criteria Acce tance Criteria Remarks D3-561-45D-13 Exceeds overturning criteria D3-545-44D-14 Meets allowable stresses D2-570-43K-15 Meets allowable stresses D3-570-45K-16 Meets allowable stresses D2-534-33E-20 D2-534-33G-21 il Meets allowable Exceeds allowable tension J~ I Jl stresses D2-534-33H-22 Exceeds overturning Jl criteria D2-545-388-23 Meets allowable stresses J4 J Jl

~TABL APPLIED LOADS AND EVALUATION RESULTS

. Applied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L W E R Dr W E R T P Y Criteria Acce tance Criteria Wall 0 0 s a a a P Remarks D2-545-39J-24 Meets allowable stresses D2-545-39J-25 Meets allowable iJ stresses 02-545-41H-26 eets over-turning criteria D2-545-44J-31 Exceeds allowable strain. for J~/ interstory drift D2-545-43L-32 Meets allowable stresses J J< VJJ D2-545-43M-33 Meets allowable stresses JV dJ4 D3-545-44J-34 D3-545-45L-38 dJ ill Exceeds allowable strain for interstory drift eets allowable stresses

./ 4 Mls

, ~

~TABL APPLIED LOADS AND EVALUATION RESULTS Applied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet Wall D L W E R DrW E R T P Y Criteria Acce tance Criteria 0 0 s a a a p Remarks D3-545-48N-40 Exceeds allowable stresses JJ D2-545-40N-41 Exceeds allowable stresses D3-545-49H-42 Meets allowable stresses D3-545-50H-44 Meets allowable stresses Jd D2-549-32F-45 Meets allowable stresses JJ D2-549-31F-46 D2-549-32F-47 4 v'i Meets allowable stresses Meets allowable stresses D2-549-32F-48 Meets allowable stresses JJ

APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L W E R DrW E R T P Y Criteria Acceptance Criteria Remarks Wall 0 0 8 a a a P D2-549-32G-49 Meets allowable stresses D2-549-32G-50 Meets allowable stresses D2-549-31G-51 Meets allowable stresses D2-549-32G-52 D2-549-33G-53 il Meets allowable stresses Exceeds allowable tension D2-549-33H-54 Exceeds allowable tension D2-534-33G-55 Meets allowable stresses D2-534-33G-56 eets allowable stresses

~TAB APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet L W E R Dr Wt E S R Ta P Y Criteria Acce tance Criteria Remarks Wall 0 0 a a P D2-545-39J-66 Meets allowable stresses D3-,545-47M-67 4

v'eets stresses allowable D3-545-47M-68 Meets allowable stresses D2-534-43H-70 Meets allowable stresses D3-534-45D-71 Meets allowable stresses J 4 D3-534-.44D-72 Meets allowable stresses D3-534-44D-73 eets allowable stresses D2-529-43C-74 Exceeds allowable tension Jl

TABL APPLIED LOADS AND EV UATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L E R Dr Wt E R T P Y Criteria Acceptance Criteria Wall 0 0 a a a p Remarks D2-545-41J-76 Exceeds allowable strain for interstory drift D3-545-46H-77 Exceeds allowable strain for interstory drift D2-517-33E-80 Exceeds allowable tension 4 J D2-503-3SE-81 Exceeds arching criteria D2-517-31F-82 Exceeds allowable tension D2-517-32F-83 Exceeds overturning criteria 92-517-32G"84 Exceeds allowable tension J J D2-517-33H-85 Exceeds allowable tension

~TABL APPLIED LOADS AND EVALUATION RESULTS Applied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L E R Dr W E R T p Y Criteria Acceptance Criteria Remarks Wall 0 0 s a a a p D2-517-33H-86 Exceeds allowable stresses 4 J D2-517-38H-87 Meets allowable 4 Jd Jl stresses D2-517-39H-88 Meets allowable stresses 4d J D2-517-39K-89 Meets allowable stresses llew D2-517-42G-90 il eets over-turning criteria D3-517-49H-92 eets allowable stresses JJ D3-517-49J-93 eets allowable

~ii tresses D2-517-34E-94 Exceeds overturning criteria Jv

APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L W E R Dr W E R T P Y Criteria Criteria Wall 0 0 s a a a p Acceptance Remarks D2-517-33G-95 Exceeds allowable iJ tension D2-517-43H-96 Exceeds overturning criteria D3-517-45H-97 Meets over-turning criteria n3-517-46N-98 Meets allowable stresses D3-517-46N-99 Meets allowable stresses JJ D3-517-46N-100 D2-517-38H-101 li Meets allowable Exceeds allowable tension stresses D3-517-50H-102 Meets allowable lJ stresses

APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet Wall D L W E 0

R 0

Dr W R a

T a

P a

Y p Criteria Acce tance Criteria Remarks Exceeds overturning D3-507-44C-103 criteria D3-517-46G-104 Meets arching criteria iv D2-517-31G-105 Meets arching criteria D2-517-33E-106 Meets allowable stresses D3-517-45D-107 Meets allowable stresses D2-517-44D-108 Meets over-turning criteria D2-517-44E-109 Meets allowable stresses Jd D2-517-43E-110 eets allowable stresses

TABLE APPLIED LOADS AND EVALUATION RESULTS Applied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L W E R Dr M E R T p Y Criteria Acceptance Criteria Remarks Mall 0 0 s a a p D2-517-39H-ill eets allowable stresses D2-528-35H-112 Meets allowable stresses J

D2-528-33H-113 Meets allowable JJ JJJ stresses D3-528-54H-114 eets allowable tresses JJ D3-528-54H-115 eets allowable tresses D2-517-43H-116 eets allowable tresses D3-517-49H-117 Meets allowable stresses D2-507-45C-118 Exceeds overturning criteria

~TAB APPLIED LOADS AND EVALUATION RESULTS A plied Loads Evaluation Results Normal Abnormal Meets Acceptance Does Not Meet D L W R DrW E R T P Y Criteria Acceptance Criteria Wall 0 s a a a P Remarks D2-517-5A-120 Exceeds allowable stresses J J JJ D2-517-3A-121 Exceeds allowable stresses lJ iJ D3-476-45H-122 Meets allowable stresses D3-476-43H-123 Meets allowable stresses eets allowable stresses D2-558-43K-36 eets allowable stresses

. D2-558-42K-37 Exceeds allowable stresses in support bracke t.

D2-558-45K-3 9 eets allowable LEGEND tresses Dr Interstory drift

CW Nr elr ~ ~ Ne ~ 4 4

I N 4

~

f "1 'I LE. E HO 44 ~ CN~ I 0

OAF E.'iV AE.LATEO I HASONR f QAU-S- '.'e

, IP ~ 4th

'I ~

0 '!

NN Nl

~

~ N

~ N 4 Ce 4 NNNC IMO W4

~ Ve 4>>

~ ee 144 N>>NNCA hhht

~ 11141 h ACNENCNQ

~

~

~h hi&5 hl!444 4>>N

~ tech NN CCIN>>N I

Nht ~ 4 NNC NCC NO 44 \

I

'p

~

I L~ ~ \ I

~ N ~ 4>> NCC ~ INN CNN NN U1444 NN4444 NN 44 NCCCCC NN'll ~ 4 l1 A reseq e+a r 0 0 1NICC ~ I 8 as@.wc~r FLoo CNN INC W CCN>><<N

~I \ C~CIANCCCCe>>h NN CN4 et MN NC INNC CNC ~

>>4 NN Iet tt

~~ 'Iel / ~ ~

w DRE$ l%H NOCLEAt. POI4CC. 5TA.OL I 444 I N NN

~ h Net V mis acuate. wAs RGpao~>

MXltM5AtllT~TtD RW J% INONIC CNI INI

~1 4 ~ N VQOH 9 4L DNA'HlH&-~

~ ~ CNNVC ICCVN NNCN 4444 l~-

I4

P

~ ~ .~

I4

~F

~ ~

I~ ~

~ ~

4

I ~ I I I Q Q I Qg as al NA W 'r q i. Oft is> ~40 fyy Q, 4 t<< ~ >> N

~

'0 SAFETY% :4 I I~

IN ~

I Vt I

G'.

g ~ ~

I N

I J

~LE EN 0 '( \

I ~.~ ~ ~ N V~

I

" CAELA'TE.CI I I ~ = ~

HASOhl AV HAI.L'5 0 c ss 7'~:

ss0 4\ ~ W

~

1>>

el >>4 tt I I

~et~ .

.'I 'Vso I

I 0"

. l

~t N 0

CIC V p) << ~

E

~ I IN

~ ., ~ T I N.,tNO let

%VIIV I

osv NO v y /gfvag I  !

'I

,I I ~

I

~>>

4 l I

4

'I>>

IE

~OOOV I I V ~

~ N

~

it I'4

~ OOSVN I V

)I ~ 444 I- ~I ~

~

P i II~~ I~

~ 4 IO ~

~ NN I

\ ~V ~ NN I>>O

~N NN tooevso oo~

N ~ N eo ~ ~ ~

C2 NNtl VsetNII N>>IVNNNI ~

~ SN

>>9

'C'

-J-Q .p HASOI4W IalALI.S e, El.911 I V.

~ . ~

NO INN >>tt

~ttO N ONIOI V NV 4~ 4 el ~ OiKSDQL HUCLEAR FOHER QA

>>V ~a IIII5 FIGURE. WAS REPRODUCED N-+

~

~

V FRON sssIT I DRA'l4IHC0 NUCSIAE Sall tt EIIAIIO I I sssvs oss ssecws oN sees asst>>to I 4 I

it-Z0I-Sl

~ ~

APPEHDIX A E

P~E.koF S.

I I

C II tiff I~ ~ ~ ~ r I ~ <

I I ke LE CiE.ND t If I

SAFE.'t'f RE,u rE D o or>> Oee I

w << I/ ~

HA5CIH RM i I A LLS <<II\I 4~

~ I I <<

~

0 It>I+

~

OI ~ <O<<

~

~ ~

~

~e

<<et 4 I er Ie<<>

>>>~ ~'tjt

~

eoo O

~

~ ~

tlt

~

~ O d55'=..

~

I'+i

<o (7 j I

IS <<e<<r<<ee

.- EK fire <<I

~ I

~ le V ~ I I IO

~ rrl ter b:

7' ~

I~ j I

~4 t<<t fl I I I ~~~!

<<o AI ~

I trm

'l f ~

el IO ~

c..3 t

~ >>

<<H W ee

~O

~

<<el I ~

O <<4 <<<< I 0 L' : r l~g>>

., ~

~el<<ot>>lltlehlle tetr<<Iro<<e,

~

OK>>t IIIrre>> er

~ g<<tf4I<<<<

Lo 7. WPO O 4W P~>> Of, HVCLlM OAfIIT OIIOIIO 7>>fe>> o>> I>II col>>etc

~ <<A L mras ool or T-'pauli I; t; I I

<<4 IIH'e

~

'I. I I a

e'I C

5l ~ e>>ee>>

~

~o l elite

~ ~

ooor>eo 4<<4

>>xoL

~O

~ +O~

O rr<<e ele >>

I

~

~

~

'rer ~ eH le jf el eM~ I>>e I ~

44 II

>>I NASOHRf HALLS C OfK5ItEH NJCLEAR PONE+ STAANT Tl4I4 RCIURE EL.545'-4 HA5 REPRODUCEP I le e<<

~ 4%4 FROH 5 gL ORAI4IHQ 8-3

~rf LI ~o

Z is 6~i Css ri ')i 6)I Q +4 .

)0 ~,

la~i I ~

fbi I~ 4'a Qls

~

Qo

) ~ '4 fig)

)asi A)

)~ ~

Al

) ~ '

N

~ 'ai)0

'A' ~ '

I)II "Qi)

Ili ~ J iDI Q)

IOJ I JLO 6ga Il i)")

~L

<ii Ia

~i so.

I

~ <<4 at a 14 lal<< 'I>> tala LEGEND IIO ~

~ 11

~ I SAFET f RE.~>Ee I SM I HASO& Fl, 0 hl ALl OD

~

Ma aviv'<<ecvs I Il II>>I% I I<<00) )04 100<<<<

~ Olla ISO I II<<I HOLMt <<M

~

tlf l)00144)

~ 00>>M IV<<

Ill )0>> alt I ~La, I )0)oos<<I

~ av a,<<0 ~

~\t I c  ! II 'taI<<0<<I<))~ QIMMO M LMA 11 '

~ MtvI I <<M 0 104 LV>><<

~ OH I.SV)

I (cC >>014<< \4 Jt I ~

m! ~~a IW >>v)

~ I ~

M Ot I>>

~ ~

~L 0<<a

<<01 <<014

~ M~ avl

'ILLM OLAAOI~ It<< M I I 'AA)AA)LlRJ <<M ~

<<40<<M<<at

~

7 4'

~

Dw'o'a 0

~ 0 0 i 4 >> qa 000<<OO I ~'

'0 IUI Tit 1 Rg. ~ MA I Y

I ~. 000'

<<0>>i

~

~ 0-I ) o)Ll). W' ~

~ >>

4 I

'C I >>'

0 I 0 ~ ~ ~' ~il%P,'li%R I 4

H

'::- 'iLIEIhI 1<<aol

~ 0<<

II)04<<LIL>>

laaooav OL)a)oil

~ 00104 Oa>>0

~ 01000

~

l<<M 0 MM

~0 00, IH ~

I L~

f=

. 'I /

'i I I

ll ~

I Mi'24 ~

I I 'T)'

4%44<<4

~ 0 0 I

/~ 0

<<via MM IH

<<I<>

~ ~

LI M 0 '

L 4

~ v>>>> ve 00<<toa 00tH oo 0

L ~0 l

IIQ(1)AA SA)l)T AIIAIIO III<<lLOI S>>400<< 4<< lvl 44 <<0<<4 l

mso~m w~ 8a @10'-o

~

0 M>> 01040<<

~, la>>a* 4 I OAErAliEff Hua.EN PaHER ATA.U+TZ

~ ~ 0\

\ MMM>> MM I II<< tv ILOL

~ >>01 ~ I

.T ~ .I 'TlilS FlivlVRE. NAA RE,PRO>U FRoH O'4( l- DRAMINcg N 'R

~ MM .,0<<, ~ ~ ~ 0>> ~ ~ Iv l M IH

APPENDIX B ADDITIONAL JUSTIFICATION OF THE REEVALUATION CRITERIA 0052C

Appendix B, Page ii of ii TABLE OF CONTENTS

~Pa e

1.0 INTRODUCTION

1 2.0 ABBREVIATIONS 1 3.0 ALLOWABLE STRESSES g

3.1 AXIAL COMPRESSION 3.2 FLEXURAL COMPRESSION 3.3 BEARING 3.4 SHEAR 3.5 TENSION 3.6 SHEAR AND TENSILE BOND STRENGTH OF MASONRY COI LAR JOINT 4.0 IN-PLANE EVALUATION CRITERIA

4.1 INTRODUCTION

4.2 TEST RESULTS 5.0 ALTERNATIVE EVALUATION CRITERIA

5. 1'.2 ARCHING ROCKING SLIDING REFERENCES TABLES

'B-1 Compressive Strength of Axially Loaded Concrete Masonry Walls B-2 Flexural Strength Single Wythe Walls of Hollow Units, Uniform Load, Vertical Span B-3 Flexural Strength, Vertical Span Concrete Masonry Walls, From Tests at NCMA Laboratory Flexural Strength, Horizontal Span, Nonreinforced Concrete Masonry Walls 0052C

Appendix B, Page 1 of 13

1.0 INTRODUCTION

The following discussions and test results are intended to provide additional justification of the reevaluation criteria for the safety-related masonry walls. This information has been extracted from the references identified in Section 6.0. ~

2.0 ABBREVIATIONS Abbreviation Title ACI American Concrete Institute ASCE American Society of Civil Engineers ATC Applied Technology Council EERC Earthquake Engineering Research Center NBS National Bureau of Standards NCMA National Concrete Masonry Association 3.0 ALLOWABLE STRESSES 3.1 AXIAL COMPRESSION The objective was to develop reasonable and safe engineering design criteria for nonreinforced concrete masonry based on all existing data. A review in 1967 of the compilation of all available test data on compressive strength of concrete masonry walls did not, according to some, provide a suitable relationship between wall strength and slenderness ratio. From a more recent analysis, it was noted in many of the 418 individual pieces of data that either the masonry units or mortar, or in some cases. both units and mortar. did not comply with the minimum strength requirements established for the materials permitted for use in "engineered concrete masonry" construction. Accordingly, it was decided to reexamine the data, discarding all tests which included materials that did not comply with the following minimum requirements:

Compressive Strength Material si Solid units 1.000 Hollow units 600 (gross)

Mortar 700 0052C

Appendix B, Page 2 of 13 Also eliminated from the new correlation- were walls with a slenderness ratio of less than 6; walls with an h/t ratio of less than 6 were considered to be in the category of "prisms".

For evaluation of slenderness reduction criteria, only axially loaded walls were used. The data that were available consisted of tests on 159 axially loaded walls with the h/t ratio renging between 6 and 18. With this as a starting point, the da@ were analyzed assuming that the parabolic slenderness reducti4h function [1 (h/40t)3] is valid.

The basic equation used to evaluate the test data was:

ftest S.F.

= Co fm fl -( 40th )3]

ftest Co x S.F. (2)

]

40t Co x S.F. ~ K (3) where fm = Assumed masonry strength, net area, based on strength of units ftest = Net area compressive strength of panel S.F. = Safety Factor Co ~ = Strength reduction coefficient

= Height of specimen, inches t = Thickness of specimen, inches The net area used in the above formulae is the net area of the masonry. and does not distinguish between type of mortar bedding. In the evaluation, mortar strength was assumed to be constant and was not considered a significant influence on wall strength.

It was determined that the objective of reasonable and safe criteria would be met if 90% of the K values were greater than the K value selected and gave a minimum safety factor of 3.

Accordingly, the K values were listed in ascending order and the value satisfying the above conditions was K 0.610 for the 159 tests as seen from Table B-2. Therefore, from Equation (3):

0052C

Appendix B, Page 3 of 13 Co x S.F. = K Co x 3 = 0.610 Co 0 '10 0 '05 3

This value (0.205) agrees very closely with the coefficiqyt 0.20 which had been used for a number of years with reinforcecf masonry design. An analysis of the safety factors present with the formula:

fm = 0.205 fm [1 -( h-) ]

40t indicates the following:

A safety factor greater than 3 is available in 93% of the tests.

.greater than 4 in 51% of the tests, greater than 5 in 15't of the tests, and greater than 6 in 5% of the tests.

In ACI 531, the factor of 0.20 was increased to 0.225. The recommended value of 0..22 for unfactored loads has factors of safety comparable to those given above.

3.2 FLEXURAL COMPRESSION It is assumed that masonry can develop 85% of its speci, fied compressive strength at any section. The recommended procedure for calculating the flexural strength of a section is the working stress procedure, which assumes a triangular distribution of strain.

For normal loads, .an allowable stress of 0.33 fm has a factor of safety of 2.6 for the peak stress, which. only exists at the extreme fiber of the unit and has been used in practice for many years. The recommended value for factored loads also only exists at the extreme fiber and is the value recommended in the ATC-3-06 provisions.

3.3 BEARING These values for normal loads are taken directly from the ACI 531-79 code.

3.4 SHEAR The most extensive review on shear strength literature appears to have been done by Mayes, et al (Reference 6.1), and published in Earthquake Engineering Research Center Report EERC 75-15 which was performed for both brick and masonry block.

0052C

Appendix B, Page 4 of 13 This report attempts to summarize some of the findings that appear to be pertinent towards defining permissible shear stress values that can be used for reevaluation of the nonreinforced concrete masonry.

A number of tests have-been identified as being the primary basis for permissible shear stress values in both NCMA Specifications for the Design and Construction of Ioad-BR%ring Concrete Masonry (References 6.4 and 6.5) and the ACI Standard Building Code Requirements for Concrete Masonry Structures, ACI 531-79 (References 6.2 and 6.3).

Out-of-plane flexural shear is defined by the code (References 6.2 and 6.3) as equaling 1.1 ~m. The derivation of this value is analogous to the permissible shear value of concrete, disregarding any reinforcement, of 1.1 ~fc (Reference 6.30). Although this is somewhat different (there is no tension steel by which to determine the appropriate j distance), the actual value is a mute point because tension will be the critical value for determining out-of-plane acceptability of a flexural member.

Because of the nature of the stresses, however, and the various concerns with regard to the correctness of interpretation of the effects on boundary conditions, as well as such conditions as actual mortar properties. absorptivity of the mortar, confinement or lack of it on the test specimen during test, and arrangement and effect of actual load, it does not seem warranted to increase these stresses beyond a factor of 1.67 under abnormal and extreme environmental loads.

3.5 TENSION 3.5.1 Normal to the Bed Joint A summary of the static monotonic tests performed to determine code allowable stress for tension normal to the bed joint was given in the NCMA specifications.

Stresses for tension in flexure are related to the type of mortar and the type of unit (hollow or solid). Research used to arrive at allowable stresses for tension in flexure in the vertical span (i.e.. tension perpendicular to the bed joints) consisted of 27 flexural tests of uniformly loaded single-wythe walls of hollow units. These monotonic tests were made in accordance with ASTM E 72. Table B-2 summarizes the test results.

From Table B-2, the average modulus of rupture for walls built with Types M and S mortar is 93 psi on net area. For Type N mortar, the value is 64 psi. Applying a safety factor of 4 to these values results in allowable stresses for hollow units as follows:

0052C

Appendix B, Page 5 of 13 Mortar e Allowable Tension in Flexure si MSS 23 N 16 These values are consistent with those published in the 70 ACI Committee 531 report, which have been only slightly altejjd in the ACI 531-79 code.

Based upon these tests, the minimum factors of safety for each mortar type are:

Factor of Safet 3.87 2.60'.81 N

To establish allowable tensile stresses for walls of solid units, the 8-inch composite walls in Table B-3 were used. These walls. composed of 4-inch concrete brick and 4-inch hollow block, were greater than 75% solid, and thus, were evaluated as solid masonry construction. The modulus of rupture (gross area) for these walls averaged 157 psi, giving an allowable stress of 39 psi when a safety factor of 4 is applied. The composite wall tests in Table B-3 used Type S mortar. To establish allowable stresses for solid units with Type N mortar, the mortar influence established previously for hollow units was used.

23 39  ; f = 27 psi 16 f The minimum factor of safety for these tests for Type S mortar was 2.33.

Recent dynamic tests have been performed at Berkeley and the values of tension obtained at cracking at the mid-height of the walls are as follows: 13 psi, 20 psi, 23 psi, and 27 psi.

The recommended values have a factor of safety of 2.8 with respect to the lower bound of the static tests for the unfactored loads and are towards the lower limit of the initiation of cracking for the dynamic tests. An increase of 1.67 appeared reasonable for factored loads based on the static tests.

0052C

Appendix B, Page 6 of 13 3.5.2 Tension Parallel to Bed Joints Values for allowable tension in flexure for walls supported in the horizontal span are established by doubling the allowable stresses in the vertical span. While it is recognized that flexural tensile strength of walls spanning horizontally is more a function of unit strength than mortar.

use double the vertical span values.

it is conservative to Table B-4 lists a Summary of all published tests and indicates an average safety factor of 5.3 for the 43 walls containing no joint reinforcement and 5.6 for the 15 walls containing joint reinforcement.

It is important to note that the factor of safety for those walls loaded at the quarter points (Reference 6.6) have an average factor of safety of 2.02 with a minimum value of 1.22, while those loaded at the center had an average factor of safety of 6.08 with a minimum value of 3.59. However, it should be noted that the values tested at the quarter points were also tested at 15 days.

The results associated with the early date of testing and the use of quarter-point loading are difficult to explain other than to state they are at variance with all other test results.

An increase in the allowable stresses by a factor of 1.67 is recommended for abnormal and extreme environmental loads. The recommended values could be increased because of the larger factors of safety in the test results: however. the value of 1.67 was chosen to be compatible with the increase in other stresses for unreinforced masonry.

3.6 SHEAR AND TENSILE BOND STRENGTH OF MASONRY COLLAR JOINT The collar joint shear and tensile bond strength is a major factor in the behavior of multi-wythe masonry construction.

particularly with respect to weak axis bending. A widely stated position is that for composite construction, the'collar joint must be completely filled with mortar. .However, even if this joint is filled. there must be a transfer of shearing stress across this joint without significant slip in order for full composite interaction of the multiple wythes to be realized.

Because the cracking strength, moment of inertia, and ultimate flexural strength of the wall cross-section are significantly influenced by the interaction of multiple wythes, it, is crucial to establish the collar joint shear bond strength.

The only applicable published data on the shear bond strength of collar joints is that determined by Bechtel'n the Trojan Nuclear Power Plant (Reference 6.29). Therefore, to correlate the shear bond strength of mortared collar joints, plant-specific in situ tests were performed in August 1982. The results of these tests showed the ultimate failure stresses to be 37.6 and 32.7 psi. A factor of safety of three was used in 0052C

I' Appendix B, Page 7 of 13 determining the allowable stress for normal load combinations.

For.abnormal and extreme environmental combinations, the allowable stress is increased by a factor of 1.33.

There are conflicting data available on the relationship between the shear and tensile bond strengths. In most tests perrmed on mortar bed joints (couplet tests), the shear bond strength was approximately twice the tensile bond strength. In a more recent method of evaluation by means of centrifugal force, the shear bond strength was found to be 60% of the tensile bond strength (Reference 6.16). The authors of the report consider the test procedure to be an'mprovement over present methods because joint precompression is essentially eliminated as a result of the testing procedure.

Because of the conflict in the test data, the values for tensile bond strength be the itsame is recommended that as for shear bond.

Unless metal ties are used at closely spaced intervals (less than 16 inches on center), it is recommended that their contribution to shear and tensile bond strength be neglected.

4.0 IN-PLANE EVALUATION CRITERIA

4.1 INTRODUCTION

Much of the effort to define a permissible in-plane shear stress may be somewhat academic in that the normal case foz unreinforced walls being used in nuclear plant structures, the nature of the shear, is one of being forced on the structural panel as a result of being confined by the building frame and not one of depending on the panel to transmit building shear forces. This forced drift or displacement results in shear stresses and strains, but because of the complex interaction between the panel and the confining structural elements, strain or displacement is a more meaningful index for qualifying the in-plane performance of the panel.

In-plane effects may be imposed on masonry walls by the relative displacement between floors during seismic events. However, the walls do not carry a significant part of the associated story shear, and their stiffness is extremely difficult to define. In addition, because the experimental evidence to date demonstrates that the apparent in-plane strength of masonry walls depends heavily upon the in-plane boundary conditions, load or stress on the walls is not a reasonable basis for evaluation criteria.

However, examination of the test data provided by the list of references of Section 4.2 indicates that the gross shear strain of walls is a reliable indicator for predicting the onset of significant cracking. A significant crack is considered here to 0052C

Appendix B, Page 8 of 13 be a crack in the central portion of the wall extending at least 10% of a wall's width or height. Cracking along the interface between a block wall and steel or concrete members does not limit the integrity of the wall.

4. 2 TEST RESUI TS Test results indicate that to predict the initiation of significant cracking, masonry walls must be divided into two categories:

4.2.1 Unconfined Walls: Not bounded by adjacent steel or concrete primary structure. Significant "confining" stresses cannot be expected.

4.2.2 Confined Walls: At a minimum, bounded top and bottom or bounded on three sides.

For unconfined concrete block masonry walls, the works of allowable shear strain of 0.0001. 't Fishburn (Reference 6.18) and Becica (Reference 6.17), yield an should be noted that Fishburn's test specimens were an average of 15 days old.

-For confined walls, the most reliable data appears to be that of Mayes et al (Reference 6.20). In static and dynamic tests of masonry piers (confined top and bottom) varying block properties, mortar properties, reinforcement, vertical load. and grout conditions, significant cracking was initiated at strains exceeding approximately 0.001. It should be noted here that reinforcement can have no significant effect on the behavior prior to cracking. Similarly. the presence of cell grout should have no effect on stress or cracking in the mortar joints at a given strain. Both predictions are confirmed by the data in Reference 6.20. In addition, the data shows that the onset of cracking is not sensitive to the magnitude of initial applied vertical load.

Klingner and Bertero (Reference 6.19) performed a series of cyclic tests to failure and found excellent correspondence with a nonlinear analysis in which the behavior of an infilled frame prior to cracking is determined by an equivalent diagonal strut. While the equivalent strut technique has been used by many investigators to study the stiffness and load-carrying mechanisms of infilled frames, Klingner and Bertero found that the quasicompressive failure of the strut could be used to predict the onset of significant cracking.

5.0 ALTERNATIVE EVALUATION CRITERIA 5.1 ARCHING An extensive test program performed by Gabrielson (Reference 6.21) on blast loading of masonry walls provides validation of the concept of arching action of masonry walls 0052C

4' Appendix B, Page 9 of 13 subjected to loads that exceed those that cause flexural cra"king of an unreinforced masonry wall. An analytical procedure was developed to predict with reasonable accuracy the ultimate capacity of the unreinforced walls tested.

5.2 ROCKING Freestanding block walls may rock or slide as rigid bodies during an earthquake. Such rocking and sliding of walls in nuclear plants is limits.

permissible as long as the rocking it of is within certain wall increases to tolerance Only when a a critical value does the wall become unstable and overturn.

A freestanding wall starts to rock about an edge when the supporting floor moves horizontally with an acceleration greater than (t/h)g, where t = thickness of wall, h height of wall, and g acceleration due to gravity. If the coefficient of friction between the wall and floor is less than (t/h), the wall will not rock, but will slide instead.

The rocking behavior of cantilever structures has been studied and reported in References 6.23, 6.24, and 6.25. In References 6.24 and 6.25, a nonlinear differential equation for the rocking motion is formulated and solved numerically for different support excitations. Some test results on the rocking of block specimens are reported in Reference 6.24. The method used to predict the rocking of block walls is similar to the one in References 6.22 and 6.23 for cantilever structures. Application of the method to seismic rocking of structures has been justified in Reference 6.26 based on the numerical results using ANSYS program.

A rocking wall switches from one edge to another and a considerable amount of energy is dissipated whenever the wall impacts the floor. Thus, the seismic rocking behavior of a wall is nonlinear and the frequency of rocking varies as a function of the maximum rocking angle in a cycle (Reference 6.23).

5.3 SLIDING Sliding is the horizontal movement of a wall as a rigid body with respect to the supporting floor. In general, a wall will either rock or slide during an earthquake. It appears that a rocking wall will not slide and vice versa. Sliding resistance and sliding displacement of a wall depend on the coefficient of friction between the two contact surfaces. Based on the discussion in Reference 6.31, the following are reasonable friction values for concrete depending on the surface roughnesses:

0052C

Appendix B, Page 10 of 13 0.33 -between smooth surfaces

= 0.67 -between smooth and rough surfaces

= 1.0 -between rough surfaces Seismic sliding of cantilever structures is studied in Reference 6.28 by nonlinear seismic analyses using ANSYS program. This study substantiates the simple energy balance method given in References 6.22 and 6.27 to predict sliding.

A wall begins to have sliding oscillations whenever the horizontal seismic floor acceleration in g-units exceeds the friction coefficient..

0052C

Appendix B, Page 11 of 13 REFERENCES Mayes .and Clough, "Literature Survey Compressive, Tensile, Bond, and Shear Strength of Masonry," Earthquake Engineering Research Center, University of California, 1975 6.2 ACI Standard, "Building Code Requirements for Concrete Masonry Structures" (ACI 531-79) 6.3 Commentary on "Building Code Requirements for Concrete Masonry Structures" (ACI 531-79) 6.4 "Specification for the Design and Construction of Load-Bearing Concrete Masonry," NCMA, 1979 6.5 Research Data and Discussion Relating to "Specification for the Design and Construction of Ioad-Bearing Concrete Masonry," NCMA, 1970 6.6 Fishburn, "Effect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls," Monograph 36, NBS, 1961 6.7 Copeland, R.E. and Saxer, E.L.. "Tests of Structural Bond of Masonry Mortars to Concrete Block," Proceedings, American Concrete Institute, Volume 61, Number November 1964 ll, 6.8 Richart, Frank E., Moorman, Robert B.B., and Woodworth, Paul M., "Strength and Stability of Concrete Masonry Walls," Bulletin 251, Engineering Experiment Station, University of Illinois, 1 1932 6.9 Hedstrom, R.O., "Load Tests of Patterned Concrete Masonry Walls." Proceedings, American Concrete Institute, Volume 57, p 1265, 1961 6.10 Menzel, Carl A., "Tests of the Fire Resistance and Strength of Walls of Concrete Masonry Units," Portland Cement Association, 1934 6.11 Nylander, H., "Investigation of the Strength of Concrete Block Walls," Swedish Cement Association, Technical Communications and Reports of Investigations, 1944, Number 6 (October)

6. 12 Copeland, R.E. and Timms, A.G.. "Effect of Mortar Strength and Strength of Unit on the Strength of Concrete Masonry Walls." Proceedings, American Concrete Institute.

Volume 28, p 551, 1932 0052C

I

~

~ ~

Appendix B, Page 12 of 13 Beyer, A.H. and Krefeld, W.J., "Comparative Tests of Clay, Sand-Lime, and Concrete Brick Masonry,~~ Columbia University, Department of Civil Engineering, April 1923

6. 14 Livingston. A.R., Mangotich, E., and Dikkers, R., "Flexural Strength of Hollow Unit Concrete Masonry Walls in the Horizontal Span," Technical Report 62, NCMA, 1958 6.15 Cox, F.W. and Ennenga, J.L., "Transverse Strength of Concrete Block Walls," Proceedings, ACI, Volume 54, p 951.

1958 6.16 Hatzinkolas, M., Longworth, J., and Wararuk, J.,

"Evaluation of Tensile Bond and Shear Bond of Masonry by Means of Centrifugal Force," Alberta Masonry Institute, Edmonton. Alberta

6. 17 Becica, I.J. and Harris, H.G., "Evaluation of Techniques in the Direct Modeling of Concrete Masonry Structures," Drexel University Structural Models Laboratory Report M77-1, June 1977 6.18 Fishburn, C.C., "Effect of Mortar Properties on Strength of Masonry," National 'Bureau of Standards Monograph 36, U.S. Government Printing Office, November 1961 6.19 Klingner. R.E. and Bertero, V.V., "Earthquake Resistance of Infilled Frames," Journal of the Structural Division, ASCE.

June 1978 6.20 Mayes, R.L., Clough, R.W., et al, "Cyclic Loading Tests of Masonry Piers," 3 volumes, EERC 76/8, 78/28. 79/12, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, California 6.21 Gabrielson, G., Wilton, C.. and Kaplan. K., "Response of Arching Walls and Debris from Interior Walls Caused by Blast Loading," URS Report 2030-23,. URS Research Company, 1975 6.22 Topical Report, "Seismic Analyses of Structures and Equipment for Nuclear Power Plants," BC-TOP-4, Revision 4, Bechtel Power Corporation. 1980 6.23 Housner, G.W., "The Behavior of Inverted Pendulum Structures During Earthquakes," Bulletin of the Seismological Society of America, Volume 53, Number 2, February 1963 6.24 Aslam, M., et al, "Earthquake Rocking Response of Rigid Bodies," ASCE, Journal of the Structural Division, ST2, February 1980 0052C

Appendix B, Page .13 of 13 6.25 Yim, C-S., et al, "Rocking Response of Rigi'd Blocks to

~

~ ~ ~

Earthquakes," Report UCB/EERC-80/02. University of

~

California, Berkeley. January 1980

~

6.26 "Seismic Loading Criteria for Base Mat Design," Bechtel Power Corporation. San Francisco, Internal Report, Revision 2, November 1976 6.27 Newmark, N.M., "Effects of Earthquakes on Dams and Embankments," Geotechnique, Volume XV. Number 2, pp 139-159, June 1965 6.28 Kausel, E.A., et al, "Seismically Induced Sliding of Massive Structures," ASCE, Journal of the Geotechnical Engineering Division, GT12, December 1979 6.29 Report on Tests of Shear Strength of Collar Joint Mortar in Double Wythe Masonry Walls, Trojan Nuclear Power Plant, Portland General Electric Company, April 14, 1980 6.30 ACI Standard, "Building Code Requirements for Structural Plain Concrete" (ACI 322-72) 6.31 PCI Design Handbook, "Precast Prestressed Concrete,"

Prestressed Concrete Institute, Second Edition, 1978 0052C

Sheet 1 of TABLE B-1 COMPRESSIVE STRENGTH OF AXIALLYLOADED CONQRETE MASONRY WALLS Concrete Masonr Units Mortar Walls Strength, Strength, Percent psi, net Str., psi, net ef. Solid area f!t!, psi psi Bedding h/t ftest f' S.F.

.8 63 1160 980 1180 Full 6.0 750 978 .798 3.83 63 1160 980 1180 Full 6.0 685 978 .701 3.49 63 1160 980 1160 FS 6.0 670 978 .686 3.42 63 1160 980 900 FS 6.0 555 978 .568 2.83 63 1200 1000 1230 Full 6.0 860 995 .863 4.30 63 1200 1000 730 Full 6.0 625 995 .627 3.12 63 1200 1000 960 FS 6.0 580 995 .582 2.89 63 1200 1000 780 FS 6.0 650 995 .652 3.25 63 1320 1060 880 Full 6.0 1110 1055 1.050 '.25 63 1320 1060 810 Full 6.0 970 1055 .918 63 1320 1060 810 FS 6.0 780 1055 .738 3.69 63 1160 980 1080 Full j 6.0 800 978 .818 4.C8 63 1160 980 1080 Full 6.0 670 978 '686 3.42 63 1810 1275 1270 Full jI 6 ' 940 1270 .739 3.67 63 1810 1275 1270 Full iG 0 940 1270 .739 3.67 63 1505 1150 1670 Full 6 0 I ~ 825 1145 .719 3.60 63 1505 1150 1670 Full :6.0

. 820 1145 .715 3.57 63 1240 1020 980 Full 6.0 1010 1015 .993 4.95 63 1240 1020 980 Ful.l '.0 I

870 1015 .856 4.26 63 1720 1230 880 Full 6.0 1035 1225 .844 4.21 63 1720 1230 880 Full 6.0 940 1225 .766 3.81 63 1380 1090 1730 Full I 6 ' 1000 1085 .920 1.013'.58 4.58 63 1380 l.090 1730 Full 6.0 1010 1065 .930 4. 63 63 1780 1262 1870 Full 6.0 1450 1257 1.152 5.75 63 1780 1262 1870 Full 6.0 I

1570 1257 1.248 6.22 43 3300 1790 1230 Full 6.0

', 1560 1782 .874 4.36 43 3300 1790 1230 Full '6.0

, 1730 1782 - .959 4,84 70 1645 1208 13.40 Full ! 6.0 1000 '200 .830 4.15 70 1645 1208 1140 Full 6.0 I 1229 1200 5.C5 63 509 458 3140 Full 6.0 303 455 .664 3 ~ 40 63 509 458 1610 Full 6.0 295 ~55 .646 3,21 63 509 458 1060 Foll 6.0 295 455 .'646 3."1 63 840 756 3140 Full 6.0 53 753 .706 3.52 63 840 756 .'.610 Full 6.0 540 753 .716 3 58 63 840 756 1060 Foll 6.0 c05 753 .670 3.35 63 875 788 3140 Full 6.0 438 785 .558 2.79

Sheet 2 of 4 able B-1 (continued)

Concrete Masonr Units Mortar Walls Strength, , Strength, ercent psi, net Str., psi, net Ref. Solid area f~, psi psi Bedding ftest fill C p.p.

63 875 788 1610 Full 6.0 430 785 .547 2.74 63 875 788 1060 Full 6.0 500 785 .637 3.17 63 1080 940 3140 Full 6.0 605 936 .646 3.22 63 1080 940 1610 Pull 6.0 715 936 .763 3.81 63 1080 940 1060 Full 6.0 765 936 .817 4.07 63 1230 1015 3140 Pull 6.0 1160 1010 1.146 5.70 63 1230 1015 1610 Full 6.0 1000 1010 .988 4.92 63 1230 1015 1060 Full 6.0 1110 1010 1.097 5.46 63 1410 1105 3140 Pull 6.0 1140 1100 1.030 5.16 63 1410 1105 1610 Full 6.0 985 1100 .893 4.45 63 1410 1105 1060 Full 6.0 1030 1100 .935 4.66 63 1520 1157 3140 Full 6.0 660 1152 .572 2.85 63 1520 1157 1610 Full 6.0 740 1152 .642 3.20 63 1520 1157 4780 Full 6.0 830 rl52 .719 3.58 63 1860 1295 3140 Full 6.0 1476 1290 1.143 5.70 63 1860 1295 1610 Full 6.0 1539 1290 1.192 5.94 63 1860 1295 1060 Full 6.0 1365 1290 1.058 5.27 63 2510 1554 3140 Full 6.0 1698 1550 1.096 '5 47 63 2510 1554 1610 Full 6.0 1365 1550 .881 4.39 63 2510 1554 1060 Full 6.0 1325 1550 .856 4.27 63 3030 1710 3140 Full 6.0 2222 1705 1.304 6.50 63 3030 1710 1610 Full 6.0 2222 1/05 1.304 6.50 63 3030 1710 1060 Full 6.0 1984 1>05 1.164 5.80 63 3740 1923 3140 Full 6.0 1857 1918 .969 4.82 63 3740 1923 1610 Full 6.0 2523 1918 1.316 6.56 63 3740 1923 4780 Full 6.0 2317 1918 1.209 6.03 63 6640 2400 3140 Full 6.0 3587 2392 1.499 7.48 63 6640 2400 1610 Full 6.0 3856 2392 1.612 8.04 63 6640 2400 4780 Full 6.0 5031 2392 2.102 10.49 6.13 Q)0 1383 1257 2562 Full 7.0 1140 1254 .910 4.13 100 1388 "

1640 3017 Full 7.0 1358 1635 .830 4.57 100 1892 1853 2317 Full 7.0 1469 1846 .795 4.52 100 1923 1630 2153 Full 7.0 1394 1625 .858 4.29 100 2508 2390 2427'347 Full 7.0 1947 2380 .817 4.56 100 2529 2630 Full 7.0 2151 2620 .820 4. 68 100 2545 2130 2143 Full 7.0 1930 2120 .909 4.17 100 2610 2220 3195 Full 7.0 2078 2210 .939 4.71 100 2678 2030 2322 Pull 7.0 1832 2020 .905 3.99 100 4L74 2210 2792 Full 7.0 1810 2200 .821 4.10 100 4474 2540 2154 Full 7.0 2157 2530 .937 4.09 fm values from this reference were determined from prism tests in-stead of assumed values. Test results multiplied by factor or. 1.2 I t

0 Sheet 3 of 4 able B-1 (continued)

Concrete Masonr 'nite Mortar Walls Strength, Strength, ercent psi, net Str., psi, net Ref. Solid area fz, psi psi Bedding h/t ftest f~ C. S.P.

6. 10 62 2547 1556 1400 PS 9.0 1241 1540 .807 4.05 62 1886 1305'350 1400 FS 9.0 1153 1290 .894 4.50 62 1999 1400 FS 9,0 967 1335 .724 3.63 62 1499 1150 1400 FS 9.0 685 1135 .603 3.02 62 1934 1325 1400 Full 9.0 1354 1310 1.033 5.19 62 2305 1473 1400 FS 9.0 1096 1455 .752 3.78

~

62 2136 1405 1400 FS 9.0 1128 1390 .812 4.07 62 1773 1260 1400 FS 9.0 1088 1245 .873 4.38 62 1298 1049 1400 FS 9.0 854 1037 .823 4.14 62 1241 1031 1400 FS 9.0 685 1010 .678 3.41 62 1612 1196 1400 FS 9.0 991 1180 .838 4.20 62 1805 1273 1400 FS 9.0 1088 1260 .864 4.33 62 1491 1146 1400 FS 9.0 854 1133 .754 3.78 62 1088 944 1400 FS 9.0 629 933 .673 3.38 62 1918 1318 1400 FS 9.0 1072 1302 .822 4.12 62 1169 985 1400 FS 9.0 605 975 .621 3.12 45 2655 1598 1400 FS 9.0 989 1578 . 626. 3.15 62 1088 944 1400 FS 9.0 564 933 .604 3.03 62 1290 1045 ,

1400 FS 9.0 701 1032 .678 3.41 62 1999 1350 1400 FS 9.0 1104 1335 .826 4.16 52 1862 1296 i 1400 Full 9.0 1378+ 1280 1.075 5.44 62 967 870 1400 Full 9.0 758 860 .881 4.42 62 1967 1338 1400 Full 9.0 1241 1320 .938 4.72 6.10 57 2280 1463 '400 I

FS 9.3 1228 1450 .849 4.27 67 1917 1318 ~

1400 FS 9.3 836 1302 . 642 3.23 67 1380 1090 1400 FS 9.3 724 1078 .672 3 3/

~

67 1902 1312 1400 PS 9.3 1223 1300 .943 4.74 67 1246 1023 1400 FS 9.3 739 1010 .731 3.67 57 2087 '386 1400 FS 9.3 1193 1370 .871 4.38 57 2087 '1386 830. FS 9.3 1298 1370 .948 4.76 57 2385 1505 1400 FS 9.3 719 1485 .484 2.44 57 2385 1505 1400 FS 9.3 789 1485 .530 2.67 57 2385 1505 , 1400 FS 9.3 1105 1485 .743 3.74 57 2385 1505 I 1400 9.3 1140 1485 .766 3.85 I

6.8 39 1590 1187; 1130 Full 9.5 885 1170 .756 3.79 39 1590 118/ '010 ,Full 9.5 1000 1170 .853 4.28 39 1718 1238 i 1070 Full 9.5 949 1220 .777 3.89 39 1718 1238 i 840 Full 9.5 910 1220 .745 3.73

Sheet 4 of 4 Table B-1 (continue6)

Concrete Masonr Units Mortar Walls Strength, Strength, ercent'psi, net Str., psi, net Ref. Solid area fm, psi psi Beddin h/t ftest f' S.F.

6.8 63 1159 985 1180 Full 4.3 683 940 .726 3.62 63 1159 985 1440 Full 4.3 690 940 .734 3.66 63 1159 985 1440 Full 4.3 738 940 .784 3.91 63 1159 985 1060 FS 14.3 532 940 .565 2.82 63 1159 985 900 FS 4.3 563 940 .599 2.98 63 1159 985 1920 FS 4.3 563 940 .599 2.98 63 1206 1020 1230 Full 14.3 738 974 .758 3.80 63 1206 1020 730 Full 14.3 683 974 .702 3.51 63 1206 1020 1130 Full 14.3 746 974 .765 3.83 63 1206 1020 960 FS 14.3 571 974 .586 2.94 63 1206 1020 780 FS 14.3 603 974 .619 3.10 63 1206 1020 1250 FS 14.3 595 974 .610 3.05 63 1317 1080 880 Full l4.3 905 1030 .877 4.38 63 1317 .1080 750 Full 14.3 1063 1030 1.030 5.14 63 1317 1080 810 Full 14.3 929 1030 .90'692 4,49 63 1317 1080 1020 FS 14.3 714 1030 3.45 63 1317 1080 1020 FS 14.3 667 1030 .647 3.23 63 1159 985 1120 Full 14.3 579 940 .616 '.07 63 1159 985 1150 Full 14.3 635 940 .675 3.37 63 1159 985 1080 Full 14.3 635 940 .675 3*37 63 1810 1274 12.70 Pull 14.3 873 1218 .717 3.54 63 1810 1274 940 Pull 14.3 881 1218 .725 3.58 63 1810 1274 1120 Full 14.3 817 1218 .671 3.32 63 1508 1153 1380 Full 14.3 706 1100 .641 3.17 63 1508 1153 1380 Pull 14.3 746 1100 .677 3.34 63 1508 1670 Full 14.3 643 1100 .584 2.88 63 1238 1025 1920 Full 14.3 833 978 .851 4.24 63 1238 1025 980 Full 14.3 802 978 .819 4.09 63 1238 1025 1280 Pull 14. 3 817 978 .835 4.16 63 63 1714 1714 1230 1230 800 800 Pull Full 14.3 14.3 llll 1127 1172 1172

.946

.959 4.73 4.79 63 1714 '230 750 Full 14.3 1079 1172 .918 4.59 63 1381 1090 1730 Full 14.3 968 1040 .930 4. 64 63 1381 1090 , 2200 Full 14.3 960 1040 .923 4. 61 63 1774 1245 2100 Pull 14.3 1240 1190 1.043 5. 21 63 2253 1450 Pull 14 ..3 936 1385 .675 3.42 63 2253 1450 '270 Full 14.3 920 1385 .664 3.37 70 1643 1206 1180 Full 14.3 807 1150 .701 3.55 70 1643 1206 1300 Full 14.3 986 1150 .857 4.33 55 1273 1040 1220 Full 14.3 727 993 .732 3.66 55 1273 1040 1220 Pull 14.3 764 993 .770 3.84 6 'l 100 2900 1665

~

I I 1475 Pull I

,15.0 1250 1565 .801 3.93 6 '0 65 65 1746 1246 1250 1015

'400

.'400 Full Pull 1 18. 0 18.0 1108 1135 .975 4.87 785 925 .850 4.25 65 1562 1175 1400 Full '18.0 1208 1065 1.131 5.66

~ ~ ~

~

' I

~ ~ ~ ~ ~

~ ~

~ ~

~ ~

~ ~

~ I

~ ~

~ I

~ ~

~ ~

~ ~

~ ~

~ ~

~ ~

y'g~URQ. STRENGZ~~ZRT CAL SPAN CONCRETE MASOY!P 'WALLS FRO.i TESTS hT KC."4 LABORATORY Wa11 Modulus oc Rupture

Ãct Max. Rct Mortar IST.'f h'ominal ~ Uniform Section Cross Bedded

."for tar Thickness .Load Mod lus hrcay brea, Type* fn. psf in 3/ft psi psi Monouythe Valls of Hollow Units M 8 85.15 80.97 61.74 88.73 M 8 87.10 80. 97 63.15 90.76 M 8 9}.. 00 80. 97 65.97 94.82 M 8 103.35 80. 97 74..93 107.69 S 8 62.40 80.97 45.24 69.47 S 8 72.15 80.97 52.31 75.18 S

S 12 12

.183.3 161.2 164.64 164.64 57.aa 50.22 93.94 62.62 Composite balls of Concrete Brick 6 Hollo@ VlU S 8 222.3 103.82 161.16 180.67 S 8 219.7 103. 82 159.29 178.55 S 8 187.2 78.16 135.72 202.09 S 8 228.8 103.82 165.86 185.95 S 8 216.4 78.16 158.34 235.77 S 8 223.6 78.16 162.11 241.38 S 12 171.6 139-63 53.46 103.55 S 12 150.8 139.83 46.96 91.00 S 12 156.0 139.83 48.60 94 14 S 12 213.2 139.83 66.42 128.66 Cavity T!alls S 10 98.8 , .50.36 156.62 165.55 S 10 156. 0 50.36 250.44 261.38 S. 10 88.4 48.16 141.91 i>4 68 S 10 119.6 1'4.4 50.36 50.36 19'l 183.66 00.40 191.63 S 10 .

S 10 109. 2 46.16 175.30 }91.32 12 (4>>4-4) 145.6 S0.36 233.73 L

S

'3 2C3.9't S 12 (4-4-4) 6

'45.

50.36 233 <<V q<< ~ pV S 12 (6-2-4) 135.2 77.80 127.3S 146.63 12(6-2-4) 119.6 ll2.66 }29.70 S

L Mortar ape by propertion requirements

r 0

Sheet 1 of 2 TABLE B>>4 FLEXURAL STRENGTH, HORlZONTAL SPAN, HO .R.ZNFORCED CONCRETE MASONRY WALLS Modulus S.F.

Mortar Loadin of Rupture Construction Q T e sf Net Area'i Act./Allow Ref.

Monowythe 8" N Uniform 127 132 ~ 4.13 .6.g Hollow, 3-Core 136 141 4.41 6.g N 127 132 4.13 6.g 169 176 5.50 6.g N 173 180 5.63 6.g 0, 123 128 4.00 6.g 0 158 164 5.13 6.g Monowythe 8" N 149 155 4.84 6.g Hollow, Joint N 160 166 5.19 6.g Reinf. 9 16 in.c c,N 193 201 6.28 6.g 0 150 156 4.88 6.g 0 186 193 6. 03 6.g Monowythe 8" N 203 211 6.59 6.g Hollow Joint N 196 204 6.38 6.g Reinf. 8 8 in.cc 0 202 210 6.56 6.g 0 195 203 6.34 6.g Monowythe 8" N 1/4 pt 56 58 1.81 6.6 Hollow N 38 39 1.22 6.6 N 61 63 1.97 6.6 N 60 62 1.94 6.6 N 69 71 2.22 6.6 N 93 96 3.00 6.6 8" Monovythe Center 199 217 4.72 6.1g Hollov, 2-Core II 176 192 4.17 6.15 151 165 3.59 6.1g 4-2-4 Cavity $f 111 210 4.57 6.15 Wall, Hollow M. 135 255 5.54 6.1:

Units M 95 180 3.91 6.15 8" Monowythe M 159 173 3.76 6.15 Hollov 2-Core M 159 L73 3.76 6.1g Joint Re. e 8"oc M 191 298 4.52 6.15 4-2-4 Cavity of M 159 .300 6.52 6.1~

Hollov Units T'ed M 159 300 6.52 6.1g w/Joint Re. 3 8"oc 159 300 6.52 I 6.15

Sheet 2 of 2

~s le B-4 (continued)

Modulus Mortar Loadin of Rupture S F.

Construction 'ice 'pe psf .tet Area si :Ac+/Allow >

4" Hollow N Center 138 365 11.41 ~i.a4 II (j, 14 onowythe N 157 415 12.97 N $ 01 268 8.38 g 14 8" H>laow M 268 202 4.39 6.14 oncwythe M 314 237 5.15 6.14 M 314. 237 5.15 tl.a4 8" Hollow N 277 210 6.56 tl.a4 nowythe N 314 237 7.41 6.14 N 314 237 7.41 6.14 8" Hollow 0 259 195 6.09 6.14

.onowy the 0 277 210 6.56 6.14 0 277 210 6.56 6.14 8" Hollow M 268 202 4.39 I6.14 onowythe M 297 224 4.87 5.14 M 277 210 4.56 6.14 8" Hollow N 277 210 6.56 ,14 onowythe N ~ 259 195 6.09 6,14 N 297 224 7.00 6.14 8" Hollow 0 360 271 8.45 6.14 onowythe 0 297 224 7.00 6.14 0 268 202 6.31 6.14 2" Hollow N 352 142 4.44 ,14 onowythe N 314 127 3.97 ,14 N 333 134 4.19 6.14

~ (' . jr