ML19326C637: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 18: Line 18:
=Text=
=Text=
{{#Wiki_filter:-  --
{{#Wiki_filter:-  --
  ,
p-    ,~ ,. ,
p-    ,~ ,. ,
\J . ^ * -
\J . ^ * -
                      -
ARKANSAS POWER & LIGitT COMPANY
              .
   .                                  ARKANSAS NUCLEAR ONE STEAM ELECTRIC STATION UNIT ONE YCLE 3 STARTUP REPORT TO TIIE U.S. NUCLEAR REGULATORY COMMISSION LICE)JSE NUMBER DPR-51 DOCKET NUMBER 50-313 FOR TIIE PERIOD ENDING 7 MAY 1978 I
* ARKANSAS POWER & LIGitT COMPANY
e 8004240'Y M S
                . .
   .                                  ARKANSAS NUCLEAR ONE STEAM ELECTRIC STATION UNIT ONE YCLE 3 STARTUP REPORT TO TIIE
                                                                    -
                                        .
                          ,
U.S. NUCLEAR REGULATORY COMMISSION
                                                                          ,
LICE)JSE NUMBER DPR-51 DOCKET NUMBER 50-313 FOR TIIE PERIOD ENDING 7 MAY 1978
                        .
I e
8004240'Y M
                            .
S


"
s .
s .
                                                      -
            -
    .
                  .
t                              ,
t                              ,
                    *
TABLE OF CONTENTS PAGE
* TABLE OF CONTENTS
                                                                              .
PAGE


==1.0    INTRODUCTION==
==1.0    INTRODUCTION==
Line 61: Line 39:
==7.0    CONCLUSION==
==7.0    CONCLUSION==
12 l
12 l
                                        -
l                                                                              l l
l                                                                              l l
i M
i M
  $
1 1
1 1
                                                                                ,
                                   --                                          ;
                                   --                                          ;
I
I
                                                  .


                                                .
  .
,
(                                (            Page 1
(                                (            Page 1
                                          '
     =
     =


Line 94: Line 64:
tion time, initial position and trip insertion time for each CRDM(excluding Group 8).                                                l I
tion time, initial position and trip insertion time for each CRDM(excluding Group 8).                                                l I
l l
l l
                            '
                                                                                      !
I
I
                                            -
                                                                                       \
                                                                                       \


    .
      . .                                              .
,
  ,
k                                (          Page 2 2.3 Results and Evaluation An analysis of the' drop times indicates that rods 5-1, 5-2, 5-3, 5-6, 6-6, 7-4, and 7-5 were fastest at 1.133 + 0.017 seconds and rods 1-2, 1-4, 1-5, 1-6, 2-1, 2-6, 3-2, 3-5, 3-7, 3-11 and 3-12 were the slowest at 1.183 + 0.017 seconds.
k                                (          Page 2 2.3 Results and Evaluation An analysis of the' drop times indicates that rods 5-1, 5-2, 5-3, 5-6, 6-6, 7-4, and 7-5 were fastest at 1.133 + 0.017 seconds and rods 1-2, 1-4, 1-5, 1-6, 2-1, 2-6, 3-2, 3-5, 3-7, 3-11 and 3-12 were the slowest at 1.183 + 0.017 seconds.
               '2.4  Conclusions The rod drop times were well below the criteria stated in Section 4.7 of the Technical Specifications, which specifies a maximum rod drop time of 1.46 seconds at full flow conditions.
               '2.4  Conclusions The rod drop times were well below the criteria stated in Section 4.7 of the Technical Specifications, which specifies a maximum rod drop time of 1.46 seconds at full flow conditions.
Line 109: Line 72:
3.0.2      Test Method Criticality was achieved by control rod withdrawal and Boron dilution of the RCS after system conditions                          j had been established at 532 F and 2155 psig. During the approach      ,
3.0.2      Test Method Criticality was achieved by control rod withdrawal and Boron dilution of the RCS after system conditions                          j had been established at 532 F and 2155 psig. During the approach      ,
               ,          to criticality, a plot of inverse neutron count rate ratio versus Boron concentration was maintained by using NI-l and NI-2              '
               ,          to criticality, a plot of inverse neutron count rate ratio versus Boron concentration was maintained by using NI-l and NI-2              '
of_the nuclear instrumentation, and a plot of boron concentration versus time was also maintained. After achieving criticality, nuclear power was increased and the source and intermediate
of_the nuclear instrumentation, and a plot of boron concentration versus time was also maintained. After achieving criticality, nuclear power was increased and the source and intermediate range nuclear instrumentation overlap was verified to be in excess    I of one decade. During this same increase in_gower, the point of sensible heating was determined to be 9 X 10      amps, and the upper powerlgmit for Zero Power Physics testing was established at 5 X 10    amps.
                                                                                                ,
range nuclear instrumentation overlap was verified to be in excess    I of one decade. During this same increase in_gower, the point of
                                                                                                '
sensible heating was determined to be 9 X 10      amps, and the upper powerlgmit for Zero Power Physics testing was established at 5 X 10    amps.
                              -
i l
i l
l
l
                                  .
                                                  .


                                                      ,- -  .
          .
                                                                                 -Page 3
                                                                                 -Page 3
                                   ~
                                   ~
    .
Physics testing was then conducted which included the following
            *
* Physics testing was then conducted which included the following
         ,          . measurements, listed in chronological order:
         ,          . measurements, listed in chronological order:
A. The "all rods out" Critical Boron Concentration.
A. The "all rods out" Critical Boron Concentration.
Line 141: Line 93:
532 + 2*F. Equilibrium boron concentratiog was attained at 1822 ppm Boron with power stable at 10      amps, and control rod groups 1-6 and group 8 at 100% withdrawn I                                and group 7 at approximately 85% withdrawn.
532 + 2*F. Equilibrium boron concentratiog was attained at 1822 ppm Boron with power stable at 10      amps, and control rod groups 1-6 and group 8 at 100% withdrawn I                                and group 7 at approximately 85% withdrawn.
l l
l l
!
I i
I i
                                                                                              !
                             'l l
                             'l
       -                                                                                      j Q_ ,
                                -
l
       -                                                                                      j
                                  .
Q_ ,


    .
        .
                             ]'                                              (                  Pags 4-
                             ]'                                              (                  Pags 4-
                                                                          '
                 ' ''          The remaining reactivity held in the inserted portion of Group 7 was measured by withdrawal of Group 7 to its out limit and concurrent reactivity measurements. The, reactivity was converted to equivalent Boron concentration change using-the predicted Boron differential worth. The "all rods out" Boron concentra-tion is the sum of the measurad equilibrium Boron concentration and the equivalent Boron from the reactivity measurement.
          *
                 ' ''          The remaining reactivity held in the inserted portion of Group 7 was measured by withdrawal of Group 7 to its out limit and concurrent reactivity measurements. The, reactivity was converted to equivalent Boron concentration change using-the predicted Boron differential worth. The "all rods out" Boron concentra-tion is the sum of the measurad equilibrium Boron
                                  -
concentration and the equivalent Boron from the reactivity measurement.
The Critical-Boron Concentration at the regulating rods inserted condition was determined after the Control Rod Reactivity Worth Measurements had been made. The pre-dicted Critical Boron Concentration was determined by correcting the. predicted all rods out boron concentration for control rod insertion from the predicted rod worths.
The Critical-Boron Concentration at the regulating rods inserted condition was determined after the Control Rod Reactivity Worth Measurements had been made. The pre-dicted Critical Boron Concentration was determined by correcting the. predicted all rods out boron concentration for control rod insertion from the predicted rod worths.
This reactivity worth was then converted to an equivalent Boron concentration change. The Critical Boron Concentration is the sum of the measured Boron concentration and the equivalent Boron concentration change.
This reactivity worth was then converted to an equivalent Boron concentration change. The Critical Boron Concentration is the sum of the measured Boron concentration and the equivalent Boron concentration change.
1 3.1.3    Results and Evaluation
1 3.1.3    Results and Evaluation
       .                      The results of the predicted Critical Boron Concentration and measured Critical Boron Concentration for "all rods
       .                      The results of the predicted Critical Boron Concentration and measured Critical Boron Concentration for "all rods out" and " regulating rods inserted" conditions are listed in Table 3-1.* Both measured Critical Boron Concentrations were within +100 ppm boron of the predicted valuesi and therefore satisfy the acceptance criterion.
'
* out" and " regulating rods inserted" conditions are listed in Table 3-1.* Both measured Critical Boron Concentrations were within +100 ppm boron of the predicted valuesi and therefore satisfy the acceptance criterion.
: j.          3.2 DETERMINATION OF MODERATOR TEMPERATURE COEFFICIENT 3.2.1    Purpose The pu'rpose of this test was to determine the moderator temperature coefficient of reactivity at Hot Zero Power.
: j.          3.2 DETERMINATION OF MODERATOR TEMPERATURE COEFFICIENT 3.2.1    Purpose The pu'rpose of this test was to determine the moderator temperature coefficient of reactivity at Hot Zero Power.
The values measured are used to verify that the moderator temperature coefficient is within Technical Specification limits, that the moderator temperature coefficient is
The values measured are used to verify that the moderator temperature coefficient is within Technical Specification limits, that the moderator temperature coefficient is within specified limits of predicted values in the Physics i                            Test Manual and to provide verification of the data used in OP 1103.15, Reactivity Balance Calculation.
-
3.2.2    Test Method-The moderator temperature coefficient at Hot Zero Power was measured by using a Reactivity Calculator.
within specified limits of predicted values in the Physics i                            Test Manual and to provide verification of the data used in OP 1103.15, Reactivity Balance Calculation.
3.2.2    Test Method-
,
<
The moderator temperature coefficient at Hot Zero Power was measured by using a Reactivity Calculator.
                           . Thefirststepwastoachievesgeadystatecritical
                           . Thefirststepwastoachievesgeadystatecritical
.                              conditions at approximately 10                amps on the intermediate range detectors. The Reactivity Calculator method measures reactivity changes'as T              is varied in small increments (5-10*F). The'reactivily* change associated with the
.                              conditions at approximately 10                amps on the intermediate range detectors. The Reactivity Calculator method measures reactivity changes'as T              is varied in small increments (5-10*F). The'reactivily* change associated with the temperature change provides the data necessary to determine a moderator temperature coefficient.
'
temperature change provides the data necessary to determine a moderator temperature coefficient.
l t -
l t -
my
my
: y.        - - - - , - - -                    m-y
: y.        - - - - , - - -                    m-y


_
.                                                              [              Page 5 The moderator temperature coefficient of reactivity at hot conditions with regulating control rod assembly groups inserted was measured after the Control Rod Reactivity Worth Measurements were made utilizing the same method.
    .
      ,
.                                                              [              Page 5
          .
The moderator temperature coefficient of reactivity at hot conditions with regulating control rod assembly
  ,
groups inserted was measured after the Control Rod Reactivity Worth Measurements were made utilizing the same method.
3.2.3        Results and Evaluation The measured and predicted values of moderator temperature coefficient for the conditions of "all rods out" and regulating rods inserted are listed in Table 3-2. The measured values of moderator temperature cogfficient are within the acceptancecriteriaof+0.4XIg AK/K*F of the predicted values and less than + 0.5 X 10 aK/K/*F at Hot Zero Power conditions. Extrapolation of the moderator coefficient to 95% of full power indicated that the coefficient would be negative for all expected Boron. concentrations and allowable control rod configurations.
3.2.3        Results and Evaluation The measured and predicted values of moderator temperature coefficient for the conditions of "all rods out" and regulating rods inserted are listed in Table 3-2. The measured values of moderator temperature cogfficient are within the acceptancecriteriaof+0.4XIg AK/K*F of the predicted values and less than + 0.5 X 10 aK/K/*F at Hot Zero Power conditions. Extrapolation of the moderator coefficient to 95% of full power indicated that the coefficient would be negative for all expected Boron. concentrations and allowable control rod configurations.
See Table 3-3.
See Table 3-3.
Line 194: Line 118:
3.3.2      Test Meth i The initial by determined    Boron  concentration sampling. Then, of the RCS was first rod worths from the-fuel vendor,using    the predicted the amount  of    control Boron dilution required to bring the control rods from the "all rods out" conditions to the all regulating rods inserted its        configuration, maximum              Group 5 at 0% withdrawn and Group 5 at worth, was determined.
3.3.2      Test Meth i The initial by determined    Boron  concentration sampling. Then, of the RCS was first rod worths from the-fuel vendor,using    the predicted the amount  of    control Boron dilution required to bring the control rods from the "all rods out" conditions to the all regulating rods inserted its        configuration, maximum              Group 5 at 0% withdrawn and Group 5 at worth, was determined.
Deboration was initiated and9 the reactor. was maintained critical a,t, approximately 10 amps by insertion of Group 8 until it was approximately at its maximum worth, then by periodic insertion of groups 7, 6 and 5(without overlap), while making concurrent reactivity measurements, until deboration was complete.                  ,
Deboration was initiated and9 the reactor. was maintained critical a,t, approximately 10 amps by insertion of Group 8 until it was approximately at its maximum worth, then by periodic insertion of groups 7, 6 and 5(without overlap), while making concurrent reactivity measurements, until deboration was complete.                  ,
                      ,
Frequent sampling of the RCS and Make Up Tank during debora-            {
Frequent sampling of the RCS and Make Up Tank during debora-            {
tion was would        done be known. so that the Baron concentration versus time  U
tion was would        done be known. so that the Baron concentration versus time  U i
                                                                                                $
i
                        .
S
S
                                                                                             'd
                                                                                             'd


        -                  .                              . - -
_
_~
_~
    *    '
I                                        I                Page 6
I                                        I                Page 6
  .
_Then, using both reactivity measurements and recorded positions ,of the CRA groups versus Boron concentration, the reactivity worth versus CRA Group position was determined.
      -
_Then, using both reactivity measurements and recorded
* positions ,of the CRA groups versus Boron concentration, the reactivity worth versus CRA Group position was determined.
3.3.3        Results and Evaluation The predicted.and measured control rod group worths are
3.3.3        Results and Evaluation The predicted.and measured control rod group worths are
                       ,      tabulated in Table 3-4. The individual CRA group worths measured were within the acceptance criterion range of 1 15% of the predicted values and the total Group 5, 6 and 7 worths were well within the i 10%
                       ,      tabulated in Table 3-4. The individual CRA group worths measured were within the acceptance criterion range of 1 15% of the predicted values and the total Group 5, 6 and 7 worths were well within the i 10%
Line 229: Line 143:
m                                              .
m                                              .


    .. .
          -      .                                                    .
            .
  .                                      .                                                                  .
                  -    -
(-                                    . (.
(-                                    . (.
                                                                              .
Page 7            "
Page 7            "
     ~
     ~
                          .
                                         .Using reactivity measurements, the differential Boron
                                         .Using reactivity measurements, the differential Boron
       ~
       ~
worth, and.the position of control rods-involved, the worst case ejected rod worth was determined.
worth, and.the position of control rods-involved, the worst case ejected rod worth was determined.
            .
                             - 3.4.3        3esults and Evaluation The measured worth of the worst case ejected rod, Control Rod 6-6, compared acceptably with the predicted value' and its. worth met the' acceptance criterion of < l.0% AK/K.
                             - 3.4.3        3esults and Evaluation The measured worth of the worst case ejected rod, Control Rod 6-6, compared acceptably with the predicted value' and its. worth met the' acceptance criterion of < l.0% AK/K.
;                                          The test results are tabulated in Table 3-5.
;                                          The test results are tabulated in Table 3-5.
                                                      ,
                                                        ,
                                                                                                               /
                                                                                                               /
,
                                      .
1 F
1 F
                                               'S
                                               'S
                     - ~            w a          --          hy -n.-  -  --    e,  ---o-      .-      v---
                     - ~            w a          --          hy -n.-  -  --    e,  ---o-      .-      v---


                              - - - - _ _        _ . - - _ . _ _ _ _ _ _ _
9 TABLE 3-1 CRITICAL-BORON CONCENTRATION AT HOT ZERO POWER VENDOR      IN-HOUSE MEASURED                      PREDICTED    PREDICTED CONDITION                                                VALUE                          VALUE        VALUE All Rods Out.                                              1351 ppmB                        1358 ppmB    1361 ppmB 1
                                                                                    ,
9
                                                                                                                                                  .
                                                                                                                                                .
TABLE 3-1
                                                                                                                                              ,
                                                                                                                                        '
CRITICAL-BORON CONCENTRATION AT HOT ZERO POWER
                                                                                                                                              .
                                                                                                                                        '
VENDOR      IN-HOUSE MEASURED                      PREDICTED    PREDICTED CONDITION                                                VALUE                          VALUE        VALUE All Rods Out.                                              1351 ppmB                        1358 ppmB    1361 ppmB 1
Rods Inserted                                                                                                              ^
Rods Inserted                                                                                                              ^
  *
(Group 8 @ 37.5% w/d)                                      1067 ppmB                        1048 ppmB    1050 ppmB TABLE 3-2 MODERATOR TEMPERATURE COEFFICIENT AT HOT ZERO POWER.
(Group 8 @ 37.5% w/d)                                      1067 ppmB                        1048 ppmB    1050 ppmB
* TABLE 3-2 MODERATOR TEMPERATURE COEFFICIENT AT HOT ZERO POWER.
.
MEASURED VALUE                                    VENDOR PREDICTED          IN-HOUSE PREDICTED CONDITION        REACTIVITY CALCULATOR                                      VALUE                    VALUE                              -
MEASURED VALUE                                    VENDOR PREDICTED          IN-HOUSE PREDICTED CONDITION        REACTIVITY CALCULATOR                                      VALUE                    VALUE                              -
                                                                                             ~
                                                                                             ~
Line 276: Line 164:
                                               ~
                                               ~
Rods Inserted      -0.685 X 10 'AK/K'F                                    -0.668 X 10~ AK/K*F  -0.40 X 10~ AK/K'F m
Rods Inserted      -0.685 X 10 'AK/K'F                                    -0.668 X 10~ AK/K*F  -0.40 X 10~ AK/K'F m
                                                                                                                                                    .
TABLE 3-3 MODERATOR COEFFICIENT EXTRAPOLATED TO 95%FP 6
                                                                                                                                      .
CONDITION                                              COEFFICIENT All Rods'Out                                    -0.121 X 10 4 Ak/k/ F Rods Inserted                                    -0.98 X 10 4 Ak/k/*F
TABLE 3-3 MODERATOR COEFFICIENT EXTRAPOLATED TO 95%FP
                                                                                                                        -
                                                                            .
6 CONDITION                                              COEFFICIENT All Rods'Out                                    -0.121 X 10 4 Ak/k/ F Rods Inserted                                    -0.98 X 10 4 Ak/k/*F


                                                                                                                                          .
;.
;.
                                                                                                                                        .
                                                                                                                                    *
                                                                                                                          .
TABLE 3-4                                                                .
TABLE 3-4                                                                .
CONTROL ROD REACTIVITY WORTHS ~                                              '
CONTROL ROD REACTIVITY WORTHS ~                                              '
Line 296: Line 176:
(%AK/K)        -
(%AK/K)        -
(%6K/K)          PREDICTED VALUES 5'                    l.02                            1.02                  1.05                    0.0 6                    1.03                            0.97                  L.98'              :-5.83 7                    0.69                                                                                        .m.
(%6K/K)          PREDICTED VALUES 5'                    l.02                            1.02                  1.05                    0.0 6                    1.03                            0.97                  L.98'              :-5.83 7                    0.69                                                                                        .m.
0.70                  0.73                1.45 8                    0.44                              0.40                  0.43                -9.09 Total 5-7                2.67
0.70                  0.73                1.45 8                    0.44                              0.40                  0.43                -9.09 Total 5-7                2.67 2.69                    2.76                  0.75' TABLE 3-5 EJECTED CONTROL ROD WORTH                                                        -
                                                                                                                      .
2.69                    2.76                  0.75'
.
TABLE 3-5 EJECTED CONTROL ROD WORTH                                                        -
MEASURED VALUE CRA/ CORE GRID    BORON SWAP                        PREDICTED VENDOR % ERROR BETWEEN R0D SWAP              VALUE          MEASURED & VENDOR t
MEASURED VALUE CRA/ CORE GRID    BORON SWAP                        PREDICTED VENDOR % ERROR BETWEEN R0D SWAP              VALUE          MEASURED & VENDOR t
PREDICTED VALUES                  ^
PREDICTED VALUES                  ^
6-6/N-4              .78%AK/K        0.79%AK/K BORON SWAP ROD SWAP 0.64%AK/K      -17.95        -18.99 6-4/N-12                N/A          0.67%AK/K        0.64%AK/K        N/A        - 4.48 6-2/D-12                N/A        0.72%AK/K          0.64%AK/K        N/A        .-11.I1 6-8/D-4                N/A        0.70%AK/K          0.64*/aK/K o          N/A        -8.57
6-6/N-4              .78%AK/K        0.79%AK/K BORON SWAP ROD SWAP 0.64%AK/K      -17.95        -18.99 6-4/N-12                N/A          0.67%AK/K        0.64%AK/K        N/A        - 4.48 6-2/D-12                N/A        0.72%AK/K          0.64%AK/K        N/A        .-11.I1 6-8/D-4                N/A        0.70%AK/K          0.64*/aK/K o          N/A        -8.57
  ._


  -
(                                  (            Pegn 8 POWER ASCENSION TEST SUMMARIES
    .. .
         -4.0 CORE PORER DISTRIBUTION TEST 4.1 Purpose The objective o2 the Core Power Distribution Test was to measure the power distribution of the reactor core at the power plateaus of 407, 75% and 100% full power during power escalation  . .
                                                        .
          .    .
(                                  (            Pegn 8
.
                -
POWER ASCENSION TEST SUMMARIES
            .
         -4.0 CORE PORER DISTRIBUTION TEST
                                                                                  ,
4.1 Purpose The objective o2 the Core Power Distribution Test was to measure the power distribution of the reactor core at the power plateaus of 407, 75% and 100% full power during power escalation  . .
in order to verify that the DNBR, LHR, quadrant power tilt, and power peaking factors did not exceed allowable limits.
in order to verify that the DNBR, LHR, quadrant power tilt, and power peaking factors did not exceed allowable limits.
The limits placed on the measured parameters were as follows:
The limits placed on the measured parameters were as follows:
Line 323: Line 188:
ii) The minimum DNER must be greater than 1.30 at rated power conditions and when extrapolated to rated power conditions.                                      4 iii) The quadrapt power tilt must not exceed the value allowed in the Technical Specifications.
ii) The minimum DNER must be greater than 1.30 at rated power conditions and when extrapolated to rated power conditions.                                      4 iii) The quadrapt power tilt must not exceed the value allowed in the Technical Specifications.
iv) The highest measured radial and total power peaking factors shall not exceed the highest predicted peaks by more than 5% and 7.5% at the 75% and 100% power plateaus, respectively(8% and 12% at the 40% power plateau). The acceptance criteria for the power peaking factors is a comparison of highest predicted to highest measured and not a grid-to- grid comparison.
iv) The highest measured radial and total power peaking factors shall not exceed the highest predicted peaks by more than 5% and 7.5% at the 75% and 100% power plateaus, respectively(8% and 12% at the 40% power plateau). The acceptance criteria for the power peaking factors is a comparison of highest predicted to highest measured and not a grid-to- grid comparison.
These acceptance criteria are established to verify'that core nuclear and thermal hydraulic calculational models are conserva-tive with respect to measured conditions thereby verifying the acceptability of data from these models for input to safety
These acceptance criteria are established to verify'that core nuclear and thermal hydraulic calculational models are conserva-tive with respect to measured conditions thereby verifying the acceptability of data from these models for input to safety analysis. The acceptance criteria also serve to verify acceptable operating conditions at each test plateau and eventually at rated power conditions.
                                                                        .
analysis. The acceptance criteria also serve to verify acceptable operating conditions at each test plateau and eventually at rated power conditions.
4.2 Test Method Equilibrium conditions were established at 75% and 100% FP ensuring that Xenon was in three-dimensional equilibrium
4.2 Test Method Equilibrium conditions were established at 75% and 100% FP ensuring that Xenon was in three-dimensional equilibrium
:(equilibrium Xenon was not required for the 40% tests) with no APSR motion and minimal power fluctuations and/or controlling rod group motion. The-incore monitoring system and the plant
:(equilibrium Xenon was not required for the 40% tests) with no APSR motion and minimal power fluctuations and/or controlling rod group motion. The-incore monitoring system and the plant computer were used for data collection and analysis.
                                .
computer were used for data collection and analysis.
                                  .
m
m


_ - - -
                                                  .
    .
,
(            Page 9
(            Page 9
(
(
      -
  .    .
4.3 Results and Evaluation
4.3 Results and Evaluation
                 'A summary of the test results is given in Table 4-1. This table indicates that all measured DNBR's were greater than the 1.30 minimum, all linear heat rates were less than the Technical Specification LOCA limit, Figure 3.5.2.4,- (Attachment A) and all quadrant tilts were below the Technical Spec # ~ cation limits. The measured and total power peaking factors wer      thin the acceptance criteria.
                 'A summary of the test results is given in Table 4-1. This table indicates that all measured DNBR's were greater than the 1.30 minimum, all linear heat rates were less than the Technical Specification LOCA limit, Figure 3.5.2.4,- (Attachment A) and all quadrant tilts were below the Technical Spec # ~ cation limits. The measured and total power peaking factors wer      thin the acceptance criteria.
Figure 4-1 shows the core grid /Self Powered Neutron Detector (SPND) string correlation for the core locations used to measure the radial and total power peaking factors. The results of the power distri-bution measuremencs are tabulated in Figures 4-2 and 4-3 for the 40% FP plateau, Figures 4-4 and 4-5 for the 75% FP plateau, and in Figures 4-6 and 4-7 for the 100% FP plateau. These figures indicate that the predicted power peaking factors are.in good agreement with measured values. All measured peaking factors were within
Figure 4-1 shows the core grid /Self Powered Neutron Detector (SPND) string correlation for the core locations used to measure the radial and total power peaking factors. The results of the power distri-bution measuremencs are tabulated in Figures 4-2 and 4-3 for the 40% FP plateau, Figures 4-4 and 4-5 for the 75% FP plateau, and in Figures 4-6 and 4-7 for the 100% FP plateau. These figures indicate that the predicted power peaking factors are.in good agreement with measured values. All measured peaking factors were within acceptance criteria limits.
          ,
4.4  Conclusions Measured DNBR's, Linear Heat Rates, and Quadrant Tilts verified that the core can be operated at rated power without exceeding Technical Specifications or ECCS LOCA power distribution criteria.
acceptance criteria limits.
4.4  Conclusions Measured DNBR's, Linear Heat Rates, and Quadrant Tilts verified that the core can be operated at rated power without exceeding Technical Specifications or ECCS LOCA power distribution
                                      .
criteria.
The measured power distributions verified the predicted distributions and the largest radial and total peaking factors were within the acceptance criteria.
The measured power distributions verified the predicted distributions and the largest radial and total peaking factors were within the acceptance criteria.
The measured DNBR and Linear Heat Rates verified that the Reactor
The measured DNBR and Linear Heat Rates verified that the Reactor
* Protection System setpoints are sufficient to protect the core against' exceeding DNBR or maximum linear heat rate limits and that Technical Specification Figure 3.5.2-3 limits are sufficient to protect against exceeding the LOCA limit heat rate.
* Protection System setpoints are sufficient to protect the core against' exceeding DNBR or maximum linear heat rate limits and that Technical Specification Figure 3.5.2-3 limits are sufficient to protect against exceeding the LOCA limit heat rate.


                                -                                                      _--
        *    '
            .                                                    .
d
d
  '
(          ,                        (
(          ,                        (
      .
                          '
TABLE 4-1
TABLE 4-1
                                                                                                .


==SUMMARY==
==SUMMARY==
OF RESULTS DATE    4/23/78  4/26/78      5/3/78 TIME    1437      1410        1352 Power Level (Nominal %)-                              40        75          100 Group'l-5 (%w/d)                                        100      100        100 Group 6 -(S.w'/d)                                      88.3      90.8        91.7 Group 7 (%w/d)                                          15.0    15.4        13.1 Group 8 (%w/d)                                        27.0      20.2        13.5 Core Burnup (EFPD)                                      0.9      2.6          9.2 Boron Concentration (ppmB)                            1088    863        795 Axial Imbalance (%FP)                                  -1.2      -1.0        -0.9
OF RESULTS DATE    4/23/78  4/26/78      5/3/78 TIME    1437      1410        1352 Power Level (Nominal %)-                              40        75          100 Group'l-5 (%w/d)                                        100      100        100 Group 6 -(S.w'/d)                                      88.3      90.8        91.7 Group 7 (%w/d)                                          15.0    15.4        13.1 Group 8 (%w/d)                                        27.0      20.2        13.5 Core Burnup (EFPD)                                      0.9      2.6          9.2 Boron Concentration (ppmB)                            1088    863        795 Axial Imbalance (%FP)                                  -1.2      -1.0        -0.9
                 . Max Quadrant Pwr Tilt (%)                              +1.52    +1.38      +1.02 (Incore Detectors)
                 . Max Quadrant Pwr Tilt (%)                              +1.52    +1.38      +1.02 (Incore Detectors)
                 - DNBR                                                  8.74      4.32        2.96 LHR                                                    5.31      9.42        12.65
                 - DNBR                                                  8.74      4.32        2.96 LHR                                                    5.31      9.42        12.65 Max Measured Radial Pwr Peak                            1.444    1.424      1.413 Max Measured Total Pwr- Peak        3                  1.707    1.717      1.752 Max Peak Measured At Core Grid / Level-                E-ll/6    N-8/4      N-8/4 Max Predicted Radial Pwr Peak                          1.411    1.387      1.369
          ,
Max Measured Radial Pwr Peak                            1.444    1.424      1.413 Max Measured Total Pwr- Peak        3                  1.707    1.717      1.752 Max Peak Measured At Core Grid / Level-                E-ll/6    N-8/4      N-8/4 Max Predicted Radial Pwr Peak                          1.411    1.387      1.369
                 ' Max Predicted Total Pwr Peak-                          1.651    1.613      1.641 Max Total Peak Predicted at Core Grid                  K-9      N-8        N-8 Percent Error
                 ' Max Predicted Total Pwr Peak-                          1.651    1.613      1.641 Max Total Peak Predicted at Core Grid                  K-9      N-8        N-8 Percent Error
* Max Radial Peak                        -2.29    -2.60      -3.11
* Max Radial Peak                        -2.29    -2.60      -3.11
                 . Percent Error
                 . Percent Error
* Max Total Peak                          -3.28    -6.06      -6.34 Equilibrium Xenon                                      NO        YES, 3-D    YES, 3-D-
* Max Total Peak                          -3.28    -6.06      -6.34 Equilibrium Xenon                                      NO        YES, 3-D    YES, 3-D-
                                      .
* Percent Error =      Predicted-Measured X 100%
* Percent Error =      Predicted-Measured X 100%
Measured i
Measured i
L                                                          &
L                                                          &
: f.          .
: f.          .
                - -
                        .                                      .
                                                                            ,
c                                  (
c                                  (
      .
FIGURE 4-1 CORE SPND STRING / CORE GRID CROSS REFERENCE H-8      H-9    F-8    H-5'    N-8    H-13    B-8  H-1 l'        2.      4    10      14      21    30    37 G-9    F-7    E-9      K-12  C-9    B-7  R-7 3    6'        5      20    29      31    45
                    .    .
* h        *    *
FIGURE 4-1 CORE SPND STRING / CORE GRID CROSS REFERENCE
* L-6    M-10      D-10  C-10    P-6  R-10 12      17        27    28      44    46 E-11      D-5  0-5    M-14 26      33    42        49 N-4  0-12    D-14 41    48      51 l
                                                                                            *
    .
H-8      H-9    F-8    H-5'    N-8    H-13    B-8  H-1 l'        2.      4    10      14      21    30    37 G-9    F-7    E-9      K-12  C-9    B-7  R-7 3    6'        5      20    29      31    45
* h        *    *     *
                                                                                                .
L-6    M-10      D-10  C-10    P-6  R-10 12      17        27    28      44    46
                                                            *      *      *
* E-11      D-5  0-5    M-14 26      33    42        49
                                                                    *
* N-4  0-12    D-14 41    48      51 l
C-13 i                                                                          52 l
C-13 i                                                                          52 l
!
X-X          CORE GRID LOCATION XX DETECTOR NUMBER l
X-X          CORE GRID LOCATION XX
  -
DETECTOR NUMBER l
l l
l l
* The radial and total peaking factors at these core. locations were
* The radial and total peaking factors at these core. locations were
                   - calculated using the average' readings from all detectors symmetric
                   - calculated using the average' readings from all detectors symmetric
: l.                .to this location.
: l.                .to this location.
l
l l-L        m ,                      _
                                    .
..
l-
,
                                          %
L        m ,                      _
                                                                                              - - - -


n
n
    "
        -
  .
               . COMPARISON OF PREDICIED AND CAIfULAT'          E D SITADY StBTE TorAL
               . COMPARISON OF PREDICIED AND CAIfULAT'          E D SITADY StBTE TorAL
               - PFAXLIU.vER DISI        BUTION AT : 40 % FP, EQUILIBR( . XI2DN
               - PFAXLIU.vER DISI        BUTION AT : 40 % FP, EQUILIBR( . XI2DN Measurement Conditions.
                  -
Measurement Conditions.
Cor, trol Rod' Group Positions '                    Core Power Level'    41.1 %FP
Cor, trol Rod' Group Positions '                    Core Power Level'    41.1 %FP
             . Gps 1-4      100 % wd                          Boron Concentration 1088 ppm Gp      5    100 % wd -                        Core Burnup          0.9 EFPD Gp      - 6. 88.3 .% wd                          Axial Imbalance    -1.2  % FP Gp.    '7  15. 0 ~. % wd                      Max Quadrant Tilt    1.52 %
             . Gps 1-4      100 % wd                          Boron Concentration 1088 ppm Gp      5    100 % wd -                        Core Burnup          0.9 EFPD Gp      - 6. 88.3 .% wd                          Axial Imbalance    -1.2  % FP Gp.    '7  15. 0 ~. % wd                      Max Quadrant Tilt    1.52 %
Gp      8  27.0 %'wd
Gp      8  27.0 %'wd I X.XXX      Predicted Values X.XXX      Measured Values Core
                                                                                      '
                 'Centerlines 1.007    1.221 1.046 1.164 1.651 0.971 0.524 0.833 1.096 1.310 1.101 1.148 1.686 0.845 0.560 0.715 1.22 1 1.658 1.031 1.346 1.202 1.141 0.971 0.950 1.310    1.561 1.093 1.298 1.186 1.043 0.976 0.822 1.046    1.031 0.675 1.404 1.369 1.228 1.634 0.911 l                                1.101    1 093 0.852 1.546 1.410 1.230,1.504. 0.758
I X.XXX      Predicted Values X.XXX      Measured Values
                                                    .
                                                            '
                                                                      ,
                                    '
Core
                 'Centerlines 1.007    1.221 1.046 1.164 1.651 0.971 0.524 0.833
                    -
                                                                                                -
1.096 1.310 1.101 1.148 1.686 0.845 0.560 0.715 1.22 1 1.658 1.031 1.346 1.202 1.141 0.971 0.950
      .
1.310    1.561 1.093 1.298 1.186 1.043 0.976 0.822 1.046    1.031 0.675 1.404 1.369 1.228 1.634 0.911 l                                1.101    1 093 0.852 1.546 1.410 1.230,1.504. 0.758
!                                1.164    1.346 1.404 1.556 1.485 1.273 1.392'
!                                1.164    1.346 1.404 1.556 1.485 1.273 1.392'
                                                                             ~
                                                                             ~
1.148    1.298 1.546 1.707 1.480 1.222 1.322
1.148    1.298 1.546 1.707 1.480 1.222 1.322
                                                                                            '
!                                1.651    1.202 1.369 1.485 1.567 1.350 0.957 1.686    1.186 1.410 1.480 1.562 1.339 0.979 7
!                                1.651    1.202 1.369 1.485 1.567 1.350 0.957 1.686    1.186 1.410 1.480 1.562 1.339 0.979 7
3.971    1.141 1 . 2 28 1.273 1.350 1.064 3.845    1.043 1.230 1.227 1.339 0.982 3.524    0.971 1.634 1.392 0.957
3.971    1.141 1 . 2 28 1.273 1.350 1.064 3.845    1.043 1.230 1.227 1.339 0.982 3.524    0.971 1.634 1.392 0.957 3.560    0.976-1.504 1.322 0.979 3.833    0.950 0.911
                                                                                '
3.560    0.976-1.504 1.322 0.979 3.833    0.950 0.911
,                                    ,                                            \ uadrant Q
,                                    ,                                            \ uadrant Q
i                                3.715 ,0.822 0.758                                    Centerline
i                                3.715 ,0.822 0.758                                    Centerline FIGURE 4-2 L                                                          .
!
                                  -
FIGURE 4-2
                                                                                                    >
                                      ...
                                                                                                  -
L                                                          .


..
  .            CCGPAPdSON 'OF PIEDICrED AND CAlfULAT'ED SIT 7JW STATE RELATIVE RADIAL POWT2 DISF; .UTION AT ~40            % FP, IXUILIBRI( XEtDN Measurement Conditions Control Pod Group Positions                    Core Power Level    41.1 %FP Cps 1-4 100 % wd Doron ConcentrationM ppn
    '
      "'
  .            CCGPAPdSON 'OF PIEDICrED AND CAlfULAT'ED SIT 7JW STATE RELATIVE
          '
RADIAL POWT2 DISF; .UTION AT ~40            % FP, IXUILIBRI( XEtDN
  *        .      .
Measurement Conditions Control Pod Group Positions                    Core Power Level    41.1 %FP Cps 1-4 100 % wd Doron ConcentrationM ppn
                                   % ud                    . Core Burnup        0.9    EFPD Gp    5    FC                                                          % FP Gp'  _6-  V3 % wd                          Axial Imbalance    -1.2 Gp    7  ~15. 0 _% wd Max Quadrant Tilt    1. 52 _ %
                                   % ud                    . Core Burnup        0.9    EFPD Gp    5    FC                                                          % FP Gp'  _6-  V3 % wd                          Axial Imbalance    -1.2 Gp    7  ~15. 0 _% wd Max Quadrant Tilt    1. 52 _ %
Gp    .8    27.0_ % wd X.XXX    Predicted Values X.XXX  i Measured Values
Gp    .8    27.0_ % wd X.XXX    Predicted Values X.XXX  i Measured Values Core Centerlines O'.8'54 1.034 0.878 1.007 L . 411- 0.839 3.474 ).687            -
                                                  .
                                      '
Core Centerlines O'.8'54 1.034 0.878 1.007 L . 411- 0.839 3.474 ).687            -
_
0.986 1.093 0.923 1.004 1 .477 n . 7 5 /. B. 60 1 % 6' l.034 1.408 0.901 1.152 1.010 0.965 3.824 ).777 1.093 1.343 0 929 1.118_ 3.978 0.909 0.836_ldll_
0.986 1.093 0.923 1.004 1 .477 n . 7 5 /. B. 60 1 % 6' l.034 1.408 0.901 1.152 1.010 0.965 3.824 ).777 1.093 1.343 0 929 1.118_ 3.978 0.909 0.836_ldll_
0.878 0.901 0.604 1.180 1.038 1.033 1.323 3.736 0.923 0.929 0.668 1.267 1.071 1.057. 1.271 1.640 1.007 1.152 1.180 1.331 1.233 1.007 1.104 1.004 1.118 1.267 1.444 1.256 1.052 1.076 _
0.878 0.901 0.604 1.180 1.038 1.033 1.323 3.736 0.923 0.929 0.668 1.267 1.071 1.057. 1.271 1.640 1.007 1.152 1.180 1.331 1.233 1.007 1.104 1.004 1.118 1.267 1.444 1.256 1.052 1.076 _
l.411 1.010 1.038 1.233 1.244 1.078 3.758 1.427 0.978 1.071 1.256 L.292 1.106 3.809 0.839 0.965 1.033 1.007 L.078 3.843 0.754 0.909 1.057 1.052 L.106 3.815s 0.474 0.824 1.323 1.104 3.756
l.411 1.010 1.038 1.233 1.244 1.078 3.758 1.427 0.978 1.071 1.256 L.292 1.106 3.809 0.839 0.965 1.033 1.007 L.078 3.843 0.754 0.909 1.057 1.052 L.106 3.815s 0.474 0.824 1.323 1.104 3.756 0.460 0.836 1.271'l.076 3.809
                                                                                '
0.460 0.836 1.271'l.076 3.809
                                   '.687 0.777 0.736 0
                                   '.687 0.777 0.736 0
Quadrant
Quadrant
                                         ,                                              Centerline 0.596.0.711 0.640
                                         ,                                              Centerline 0.596.0.711 0.640 0
                                    -
FIGURE 4-3 b
0 FIGURE 4-3
                                          ..                                                  ,
b
                                                            .


          *
   . 2
   . 2
             '    CCFPARICON OF PIT.DICTED AND CAICUIATSD SI'"hDY b 'P"'2 'IUPAL
             '    CCFPARICON OF PIT.DICTED AND CAICUIATSD SI'"hDY b 'P"'2 'IUPAL PEAK IUJER DISI .XJrION AT 75 '            %' FP, EQL. ',IB . XENON Measurement Conditions Controf Rod Group Positions                      Core Power Level      75.7 tFP      -
_
PEAK IUJER DISI .XJrION AT 75 '            %' FP, EQL. ',IB . XENON
    .
              *
* Measurement Conditions Controf Rod Group Positions                      Core Power Level      75.7 tFP      -
Gps 1-4 100 % wd                              Boron Concentration 863 pIxn Up      5  100      % wd                  Core Burnup            2. 6 EFPD Gp      6  90.8 % wd                      Axial Imbalance      -1.0 % FP Gp      7  15.4 ' % wd                    Max Quadrant Tilt      1.38 %
Gps 1-4 100 % wd                              Boron Concentration 863 pIxn Up      5  100      % wd                  Core Burnup            2. 6 EFPD Gp      6  90.8 % wd                      Axial Imbalance      -1.0 % FP Gp      7  15.4 ' % wd                    Max Quadrant Tilt      1.38 %
Gp      8  20.2 % wd X.XXX-  Predicted Values X.XXX    Measured Values
Gp      8  20.2 % wd X.XXX-  Predicted Values X.XXX    Measured Values
                                                        .
                         ' Core Centerlines f.do2 1.198 1.049 1.169 1.613 0.975 0.526 0.848 1 044 1 104 1.19'1 1_146 1_717 n R4R O_577 171.
                                                      .
1.198 1.609 1.038 1.339 1.185 1.127 0.959 0.959 1.30s 1.549 1.070 1.317 1.159 1.052 0.950 0.823 1.045. l.038 0.667 1.371 1.342 1.194 1.579 0.915 1.123 1.070 0.870 1.524 1.389 1.235 1.484 1.767 14169 1.339 1.371 1.548 1.450 1.221 1.357 1.146 1.317 1.524 1.713 1.535 1.221 1.280 1.613 1.185 1.342 1.450 1.502 1.320 0.955 1.717 1.159 1.389 1.535 1.558 1.339 0.921 0.975 1.127 1.194 1.221 1.320 1.055 0.848 1.052 1.235 1.221 1.339 0.967s                            .
                         ' Core Centerlines
                      -
f.do2 1.198 1.049 1.169 1.613 0.975 0.526 0.848
_
1 044 1 104 1.19'1 1_146 1_717 n R4R O_577 171.
1.198 1.609 1.038 1.339 1.185 1.127 0.959 0.959 1.30s 1.549 1.070 1.317 1.159 1.052 0.950 0.823 1.045. l.038 0.667 1.371 1.342 1.194 1.579 0.915
                                                                      "
1.123 1.070 0.870 1.524 1.389 1.235 1.484 1.767 14169 1.339 1.371 1.548 1.450 1.221 1.357 1.146 1.317 1.524 1.713 1.535 1.221 1.280 1.613 1.185 1.342 1.450 1.502 1.320 0.955 1.717 1.159 1.389 1.535 1.558 1.339 0.921 0.975 1.127 1.194 1.221 1.320 1.055
                            '
0.848 1.052 1.235 1.221 1.339 0.967s                            .
O.526 0.959 1.579 1.357 1 055 0.577. 0.S50 1.484 1.280 0.291 N  '
O.526 0.959 1.579 1.357 1 055 0.577. 0.S50 1.484 1.280 0.291 N  '
                                     'O.848 0.959 0.915
                                     'O.848 0.959 0.915
                                         ,                                            Quadrant 0.740, 0.823 0.767                                Centerline
                                         ,                                            Quadrant 0.740, 0.823 0.767                                Centerline FIGURE 4-4 b                                                          .                                          j
                                    -
                                                  %
FIGURE 4-4
                                          ..
* b                                                          .                                          j


                                                                                          ,
                                                        .
    -
: . .. .
~
~
                . .
COMPARISO[' 'F PREDICTED Ato CMTED Sly
COMPARISO[' 'F PREDICTED Ato CMTED Sly
* STATE PEI1sTIVE
* STATE PEI1sTIVE
   ,,                    PADIAL IbdR DISTRIBUTION AT 75        % FP, IAUILIBRIG4 XEBON Measurement Conditions Control Rod Group Positions                Core PoWor I4 vel    75.7 %FP Gps 1-4:100 % wd                      Baron Concentration 863 ppn Gp  5 100      % ud                  Core Burnup          2.6 EFlV Gp  6 90.8 % ud                      Axial Imbalance    -1.0      % FP
   ,,                    PADIAL IbdR DISTRIBUTION AT 75        % FP, IAUILIBRIG4 XEBON Measurement Conditions Control Rod Group Positions                Core PoWor I4 vel    75.7 %FP Gps 1-4:100 % wd                      Baron Concentration 863 ppn Gp  5 100      % ud                  Core Burnup          2.6 EFlV Gp  6 90.8 % ud                      Axial Imbalance    -1.0      % FP
                         .Gp -7 15.4 -% wd                      Max Quadrant Tilt    1.38 %
                         .Gp -7 15.4 -% wd                      Max Quadrant Tilt    1.38 %
Gp  8 20.2 % wd' X.XXX  Predicted Values X.XXX  Measured Values
Gp  8 20.2 % wd' X.XXX  Predicted Values X.XXX  Measured Values Core-Centerlines                                                              .
                                              .
O'.862 1.028 0.883 1.008 1.387 0.845 0.485 0.706 0.995 1.111 0.941 1.009 1.410 0.766 0.473 0.613 1.028 1.380 0.904 1.150 1.011 0.970 0.830 0.790 1.111 1.333 0.942 1.124 0.982 0.914 0.843 0.715 0.883 0.904 0.613 1.177 1.040 1.031 1.301 0.74 6 0.941 0.942 0.683 1.277 1.091 1.053 1.252 0.642 1.008 1.150 1.177 1.321 1.227 1.006 1.095 1.009 1.124 1.277 1.424 1.258 1.048 1.072 1.387 1.011 1.040 1.227 1.240 1.080 0.769 1.410 0.092 1.091 1.258 1.287 1.104 0.756 0.845 0.970 1.031 1.006 1.080 0.852 0.766 0.914 1.053 1.048 7.104 0.811s 0.485 0.830 1.301 1.095 3.769 0.473 0.843 1.252 1.072 0.756 O.706 0.790 0.746
                                  '
Core-Centerlines                                                              .
* O'.862 1.028 0.883 1.008 1.387 0.845 0.485 0.706
_
_
0.995 1.111 0.941 1.009 1.410 0.766 0.473 0.613 1.028 1.380 0.904 1.150 1.011 0.970 0.830 0.790 1.111 1.333 0.942 1.124 0.982 0.914 0.843 0.715 0.883 0.904 0.613 1.177 1.040 1.031 1.301 0.74 6 0.941 0.942 0.683 1.277 1.091 1.053 1.252 0.642 1.008 1.150 1.177 1.321 1.227 1.006 1.095 1.009 1.124 1.277 1.424 1.258 1.048 1.072 1.387 1.011 1.040 1.227 1.240 1.080 0.769 1.410 0.092 1.091 1.258 1.287 1.104 0.756 0.845 0.970 1.031 1.006 1.080 0.852 0.766 0.914 1.053 1.048 7.104 0.811s 0.485 0.830 1.301 1.095 3.769
                                                                          '
0.473 0.843 1.252 1.072 0.756 O.706 0.790 0.746
                                     ,                                      \ uadrant Q
                                     ,                                      \ uadrant Q
0 413,0.715  0,642                            Centerline l
0 413,0.715  0,642                            Centerline l
Line 540: Line 279:
FIGURE 4-5 l
FIGURE 4-5 l
l
l
                                      -
                                                                                                  .
                                                      .


e                                                                                _              .- .
e                                                                                _              .- .
    '.
      ''
2 CO''PARIfni OF PREDICIED AND CAICUIRrhD STEADY STA'PE 'IUTAL
2 CO''PARIfni OF PREDICIED AND CAICUIRrhD STEADY STA'PE 'IUTAL
           -    TJd.-EUdER DISI .3UTION AT :100 -- % FP, I:QUILIBRI~        XDD1
           -    TJd.-EUdER DISI .3UTION AT :100 -- % FP, I:QUILIBRI~        XDD1 Measurement Conditions Control 11od Group Positions                  Coro Power Level    99.6 tFP Gps 1-4 ' 100    % wd                ,
                                                                                        .
  .
Measurement Conditions Control 11od Group Positions                  Coro Power Level    99.6 tFP Gps 1-4 ' 100    % wd                ,
Boron Concentration W ppn
Boron Concentration W ppn
                                 % wd                      Core Durnup        9. 2 - EFPD Gp    5  100 Cp    6  91.7 % wd                        Axial Imbalance    -W %FP-Max Quadrant Tilt    1.02 %
                                 % wd                      Core Durnup        9. 2 - EFPD Gp    5  100 Cp    6  91.7 % wd                        Axial Imbalance    -W %FP-Max Quadrant Tilt    1.02 %
               .Gp    7: 13.1 *. % wd GP    8  13.5 % wd
               .Gp    7: 13.1 *. % wd GP    8  13.5 % wd X.XXX    Predicted Values X.XXX    Measured Values 6
                                                                                    .
X.XXX    Predicted Values X.XXX    Measured Values
                                        .
6
                                      '
Core Centerlines 1.dO2 1.194 1.059 1.196 1.641 1.006 0.544 ).867              _
Core Centerlines 1.dO2 1.194 1.059 1.196 1.641 1.006 0.544 ).867              _
l.108 1.291 1.114 1.161 1.752 0.876 0.569 3.754 1.194 1.601 1.052 1.380 1.247 1.169 3.989 ).975 1.291 1.537 1.050. 1.338 1.190 1.078 E974 3.848 1.059 1.052 0.693 1.448 1.436 1.254 1.563 ).926 1.114 1.050 0.842 1.561- 1.530 1. 261 1.499 ).781 1.196 1.380 1.448 1.616 1.527 1.246 1.354 1.161 1.338 1.561 1.741 1.550 1.257 1.309_
l.108 1.291 1.114 1.161 1.752 0.876 0.569 3.754 1.194 1.601 1.052 1.380 1.247 1.169 3.989 ).975 1.291 1.537 1.050. 1.338 1.190 1.078 E974 3.848 1.059 1.052 0.693 1.448 1.436 1.254 1.563 ).926 1.114 1.050 0.842 1.561- 1.530 1. 261 1.499 ).781 1.196 1.380 1.448 1.616 1.527 1.246 1.354 1.161 1.338 1.561 1.741 1.550 1.257 1.309_
l.641 1.247 1 436 1.527 1.548 1.345 3.973 1.752 1.190 1.530 1.550 1.613 1.389 3.939 1.006 1.169 1.254 1.246 L.345 1.076 0.b76 1.078 1.261 1.257 L.389 0.965s 0.544 0.989 1.563 1.354 ).973
l.641 1.247 1 436 1.527 1.548 1.345 3.973 1.752 1.190 1.530 1.550 1.613 1.389 3.939 1.006 1.169 1.254 1.246 L.345 1.076 0.b76 1.078 1.261 1.257 L.389 0.965s 0.544 0.989 1.563 1.354 ).973 0.569 3.974 1.499 1.309 3.939 O.867 0.975 0.926 Quadrant Centerline 0.754 ,O.848 0.781 6
                                                                                                        .
FIGURE 4- 6
                                                                              '
0.569 3.974 1.499 1.309 3.939 O.867 0.975 0.926 Quadrant Centerline 0.754 ,O.848 0.781
                                  ..
6 FIGURE 4- 6
                                                                                                      -
                                          .
                                            .
                                                                                                    .


v-       *
v-
            *                                                 *                *
* COMPARISO:      ? PREDICITD AND CAICUIATED SI'E(  STATE RI2ATIVE
  -,. _
       .                    PADIAL IOadR DISTRIBUTION AT 100 % FP, Er UILIl3RILM XDON Measurement Conditions Control Pod Group Positions                  Core Power Level  99.6 tFP Gps 1-4 100 % wd                        Doron Concentration 795 ppm
                *  -
COMPARISO:      ? PREDICITD AND CAICUIATED SI'E(  STATE RI2ATIVE
       .                    PADIAL IOadR DISTRIBUTION AT 100 % FP, Er UILIl3RILM XDON
                      ,
                  ,
Measurement Conditions Control Pod Group Positions                  Core Power Level  99.6 tFP Gps 1-4 100 % wd                        Doron Concentration 795 ppm
               ^
               ^
Cp  5      100 % wd                    Core Burnup        9.2 ITPD Cp  6,      91.7 % wd                  Axial Imbalance    -0.9. % FP Gp  7      13.1 % wa                  Max Quadrant Tilt-  1.02 %
Cp  5      100 % wd                    Core Burnup        9.2 ITPD Cp  6,      91.7 % wd                  Axial Imbalance    -0.9. % FP Gp  7      13.1 % wa                  Max Quadrant Tilt-  1.02 %
Gp  -8      13.5 % wd                                .
Gp  -8      13.5 % wd                                .
                                                         -X.XXX  Predicted Values X.XXX    Measured Values
                                                         -X.XXX  Predicted Values X.XXX    Measured Values Core Centerlines 0.875 1.016 0.878 1.002 1.369 0.847 0.492 0.720 0.999 1.116 0.947 1.014 1.37910.778 0.475 0.615 1.016 1.353 0.898 1.142 1.008 0.972 0.837 0.802 l'.116 1.321 0.945 1.124 0.983 0.919 0.847 0.718 0.878 0.898 0.614 1.172 1.041 1.031 1.295 0.757 0.947 0.945 0.683 1.273 1.0 J 1.051 1.239 0.647 1.002 1.142 1.172 1.313 L.224 1.009 1.096 1.014 1.124 1.273 1.413 1.158 1.045 1.076 1.369 1.008 1.041 1.224 1.241 1.086 0.780 1.379 0.983 1.093 1.258 1.288 1.105 0.758 0.847 0.972 1.031 1.009 1.086 0.861 0.778 0.919 1.051 1.045 1.105 0.811s 0.492 0.837 1.295 1.096 D.780 0.475 0.847 1.239 1.076 0.758                '
                                        '
Core Centerlines 0.875 1.016 0.878 1.002 1.369 0.847 0.492 0.720
                          -
                                                                                              ,
0.999 1.116 0.947 1.014 1.37910.778 0.475 0.615 1.016 1.353 0.898 1.142 1.008 0.972 0.837 0.802 l'.116 1.321 0.945 1.124 0.983 0.919 0.847 0.718 0.878 0.898 0.614 1.172 1.041 1.031 1.295 0.757 0.947 0.945 0.683 1.273 1.0 J 1.051 1.239 0.647 1.002 1.142 1.172 1.313 L.224 1.009 1.096 1.014 1.124 1.273 1.413 1.158 1.045 1.076 1.369 1.008 1.041 1.224 1.241 1.086 0.780 1.379 0.983 1.093 1.258 1.288 1.105 0.758 0.847 0.972 1.031 1.009 1.086 0.861 0.778 0.919 1.051 1.045 1.105 0.811s 0.492 0.837 1.295 1.096 D.780 0.475 0.847 1.239 1.076 0.758                '
O./20 0.802 0.757
O./20 0.802 0.757
                                         ,                                          Qaadrant
                                         ,                                          Qaadrant
                               ,    O.C15, 0.718 0,647                              Centerline
                               ,    O.C15, 0.718 0,647                              Centerline i
                                    -
FIGURE 4-7 4
i FIGURE 4-7
g                                                          .
                                                                                                    .
4 g                                                          .


.
                                                        .
      -
    .
l              Pags 10
l              Pags 10
         ~      ^
         ~      ^
(
(
5.0' POWER IMBALANCE DETECTOR CORRELATION TEST 5.1  Purpose The Power Imbalance Detector Correlation test determined
5.0' POWER IMBALANCE DETECTOR CORRELATION TEST 5.1  Purpose The Power Imbalance Detector Correlation test determined the relationship between out-of-core detector and incore detector measured imbalance.
  .
the relationship between out-of-core detector and incore detector measured imbalance.
5.2 Test Method Imbalance measurements were made to determine the acceptability Prior to of the out-of-core detectors to detect imbalance.
5.2 Test Method Imbalance measurements were made to determine the acceptability Prior to of the out-of-core detectors to detect imbalance.
testing, the delta flux imbalance' amplifier gain setting was-adjusted to obtain an expected out-of-core to incore slope of 1.08 to allow for uncertainty in predicting the amplifier gain necessary to obtain the required out-of-core to incore slope of 1.00.      The measurements were made by obtaining various core imbalance conditions at 75%FP while at equilibrium Xenon conditions by adjusting the axial power shaping rod positions.
testing, the delta flux imbalance' amplifier gain setting was-adjusted to obtain an expected out-of-core to incore slope of 1.08 to allow for uncertainty in predicting the amplifier gain necessary to obtain the required out-of-core to incore slope of 1.00.      The measurements were made by obtaining various core imbalance conditions at 75%FP while at equilibrium Xenon conditions by adjusting the axial power shaping rod positions.
Line 616: Line 315:
The relationship between out-of-core imbalance and incore imbalance was found to be linear with a slope of 1.10.
The relationship between out-of-core imbalance and incore imbalance was found to be linear with a slope of 1.10.
This value would assure the RPS trip limits resulting from imbalance indications would be conservative since the RPS indication is' from out-of-core detectors.
This value would assure the RPS trip limits resulting from imbalance indications would be conservative since the RPS indication is' from out-of-core detectors.
_
                                                      .


:                                                    *
                  *
(
(
            '
k          Page 11.
k          Page 11.
4  6.d DETERMINATION OF REACTIVITY COEFFICIENTS AT POWER
4  6.d DETERMINATION OF REACTIVITY COEFFICIENTS AT POWER 6.1 ' Purpose                                                      -
                                                                                                .
,
6.1 ' Purpose                                                      -
The purpose of this test was to measure the moderator temperature coefficient and power doppler coefficient at full power and to compare the results with predicted values.
The purpose of this test was to measure the moderator temperature coefficient and power doppler coefficient at full power and to compare the results with predicted values.
Acceptance criteria coefficient be'more for  the test negative    were than    thatX thg(power
Acceptance criteria coefficient be'more for  the test negative    were than    thatX thg(power
                                                               -0.55    10      doppler AK/K)/%FP, and that the moderator temperature coefficient measured at power operating conditions be non positive above 95% FP.
                                                               -0.55    10      doppler AK/K)/%FP, and that the moderator temperature coefficient measured at power operating conditions be non positive above 95% FP.
6.2 Test Method The moderator temperature coefficient at power operating condi-tions was measured by varying T      using the.T    setpoint controller on the Reactor Deman8" Station and mS1ntaining constant power with the ICS in automatic. The corresponding contral rod motion is related to the reactivity change which is used tn determine the moderator temperature coefficient.
6.2 Test Method The moderator temperature coefficient at power operating condi-tions was measured by varying T      using the.T    setpoint controller on the Reactor Deman8" Station and mS1ntaining constant power with the ICS in automatic. The corresponding contral rod motion is related to the reactivity change which is used tn determine the moderator temperature coefficient.
"
The power dorp]er coefficient is measured by varying Reactor power using the Integrated Control System Unit Load Demand (ICS ULD) station and recording the corresponding control rod motion. The corresponding control rod motion is related to reactivity change which is used to determine the power doppler coefficient.
The power dorp]er coefficient is measured by varying Reactor power using the Integrated Control System Unit Load Demand (ICS ULD) station and recording the corresponding control rod motion. The corresponding control rod motion is related to reactivity change which is used to determine the power doppler coefficient.
The control rod reactivity worth was determined by a differential control rod worth measurement with an on-line reactivity calculator.
The control rod reactivity worth was determined by a differential control rod worth measurement with an on-line reactivity calculator.
Line 638: Line 328:
The power doppler coefficient at full power was below the maximum acceptable value. The moderator temperature coefficient was well below the'non positive limit.                      ,
The power doppler coefficient at full power was below the maximum acceptable value. The moderator temperature coefficient was well below the'non positive limit.                      ,
6.4    Conclusion The measured values of all reactivity coefficients were within the ac_- , table limits. The' acceptance criteria of this test were met in full without deficiencies.
6.4    Conclusion The measured values of all reactivity coefficients were within the ac_- , table limits. The' acceptance criteria of this test were met in full without deficiencies.
                                                                                          .
w 4
w 4
m . _                                            .                                      ,  ,
m . _                                            .                                      ,  ,


                          -              - '
r:;
r:;
                                                      .
        - .
  ~
  ~
                  .
(-                          (:
(-                          (:
    ..          .    ,
s TABLE 6-1                      .
s
                        --
TABLE 6-1                      .
                         ?-  .
                         ?-  .


==SUMMARY==
==SUMMARY==
OF MEASURED AND PREDICTED REACTIVITY COEFF'ICIENTS AT 10 I
OF MEASURED AND PREDICTED REACTIVITY COEFF'ICIENTS AT 10 I
                                                                        -        -
PARAMETER 6        91.7 Control Rod Assembly.
PARAMETER 6        91.7 Control Rod Assembly.
Group (% Withdrawn)                  7        13.1
Group (% Withdrawn)                  7        13.1 8        13.5 Boron Concentration (ppmB)                      795
  -
8        13.5 Boron Concentration (ppmB)                      795
                                                                                         ~
                                                                                         ~
Measured  -0.956 X 10 '
Measured  -0.956 X 10 '
Line 668: Line 347:
AK/K F
AK/K F
Measured    -0.893 X 10~              ,
Measured    -0.893 X 10~              ,
Power Doppler                Vendor                        -4 Predicted  -1.23        X 10 Coefficient
Power Doppler                Vendor                        -4 Predicted  -1.23        X 10 Coefficient aK/K                      In-house
* aK/K                      In-house
                                 % Full Power              Predicted        N/A Measured  -0.791 X 10-4 Moderator Coefficient          Vendor Predicted  -1.29 X 10-4 aK/K                      In-house "F                        Predicted      N/A SN
                                 % Full Power              Predicted        N/A Measured  -0.791 X 10-4 Moderator Coefficient          Vendor Predicted  -1.29 X 10-4 aK/K                      In-house "F                        Predicted      N/A
                                       -w, n
_
SN
                                       -w,
    -
n


t-
t-
            '                                              .
    * .. :
                   ]-                                                                Pags 12
                   ]-                                                                Pags 12
                -      '-
(.                              '(
(.                              '(
, ..
                          "
               . 7.d CONCLUSION
               . 7.d CONCLUSION
:The results an'd conclusions summarized.in the body of this report
:The results an'd conclusions summarized.in the body of this report
                     ~ demonstrate'that the Arkansas Nuclear one Unit 1 Cycle 3 reload has been properly; designed and the unit can be operated in a manner that will'not endanger the health'and safety of the publ!c.
                     ~ demonstrate'that the Arkansas Nuclear one Unit 1 Cycle 3 reload has been properly; designed and the unit can be operated in a manner that will'not endanger the health'and safety of the publ!c.
                                                                              .
a O
                                    .
a
                                        "%,
O


r-o
r-o
: '      >                                                              * *
  ,,r.,t
  ,,r.,t
  .
                         ', ..  ,,        [                '
                         ', ..  ,,        [                '
                                                                              '
(-
(-
                    .      ..
ATTACHMENT A 12 10 C
ATTACHMENT A
J 8    h a
                      ,
o 3
                                                                                                                                .
8 6    a 8
                                      '
12
                                                                                                              -
10
                                          .
C J
                                                                                                              -
8    h a
o
                                                                                        . . . .
        ..
3
                              -
8
                                                                                                                -
6    a 8
u.
u.
                                                     . _                                                                    g 3
                                                     . _                                                                    g 3
                                                                                                                          .-
                                                                                                        .-
                                                 ^-              -
                                                 ^-              -
                                                                                                                  .
4 E
4 E
                                                              .          -_        ._          .
u.]_
u.]_
                                                  .    .          . . .
3 2              l
3
                                                                                                            ,
                                                                                                                  -
2              l
                                                                                                                                     )
                                                                                                                                     )
                                                                                                                                    ,
i l
                                                                                                                                    !
0 12                  l 20                    18                      16                14 Allowable Peak Linear Heat Rate, kW/ft
i
                                                                                                                                    '
l
                                                                                                      '
0
                                                          .                      .
12                  l 20                    18                      16                14
                                        -
      ,
Allowable Peak Linear Heat Rate, kW/ft
                ,
                                                                                                            .
: ARVAfl5A5 POWER & LIGHT COMPAtlY                      LOCA LIMITED MAXIMUM ALLOWABLE                    FIG. NO.
: ARVAfl5A5 POWER & LIGHT COMPAtlY                      LOCA LIMITED MAXIMUM ALLOWABLE                    FIG. NO.
ARKAt!SAS NUCLEAR Of1E-UtilT-~ l                                  LillE/.R llEAT RATE                    3.5.2.4 l
ARKAt!SAS NUCLEAR Of1E-UtilT-~ l                                  LillE/.R llEAT RATE                    3.5.2.4 l
48e                                                    l l
48e                                                    l l
           .' Amendmerit No. . 21            ,
           .' Amendmerit No. . 21            ,
_..
                                                                            .


                                                                    .    -__              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   ,/.
   ,/.
(
(
        .        .
(
(
.
           .        e i
           .        e i
i ARKANSAS POWER & LIGH                            h POST OFFICE BOX 551 UTTLE ROCK. ARKANSAS 72203 (501) 371-4000 July 7, 1978
i ARKANSAS POWER & LIGH                            h POST OFFICE BOX 551 UTTLE ROCK. ARKANSAS 72203 (501) 371-4000 July 7, 1978 1-078-2                                                                                                                      e.
                                                                                                                                        ''
1-078-2                                                                                                                      e.
Director of Nuclear Reactor Regulation ATTN:      Mr. Robert W. Reid, Chief                                                                                            -
Director of Nuclear Reactor Regulation ATTN:      Mr. Robert W. Reid, Chief                                                                                            -
Operating Reactors Branch #4                                ;-
Operating Reactors Branch #4                                ;-
                                                                                        '
                                                                                                                                      .
U. S. Nuclear Regulatory Commission                                      .
U. S. Nuclear Regulatory Commission                                      .
                                                                                      ,
      ,
Washington, D. C. 20555                                                  .                                                  _ . ,
Washington, D. C. 20555                                                  .                                                  _ . ,
                                                                                                                                               . _ ;,          ;
                                                                                                                                               . _ ;,          ;
                                                                                   ;,;                                                          - - -        l
                                                                                   ;,;                                                          - - -        l
                                                                                  "                                                  '


==Subject:==
==Subject:==
Line 789: Line 403:
                                                                                                                                                 ^
                                                                                                                                                 ^
                                                                                       '::                                      C;;;, .
                                                                                       '::                                      C;;;, .
                                                                                                                                                      .
                                                                                                                                                        '
L b MEMBER MIDOLE SOUTH UTIUTIES SYSTEM}}
L b MEMBER MIDOLE SOUTH UTIUTIES SYSTEM}}

Revision as of 00:20, 1 February 2020

Cycle 3 Startup Rept for Period Ending 780507.
ML19326C637
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 07/07/1978
From:
ARKANSAS POWER & LIGHT CO.
To:
Shared Package
ML19326C635 List:
References
NUDOCS 8004240576
Download: ML19326C637 (26)


Text

- --

p- ,~ ,. ,

\J . ^ * -

ARKANSAS POWER & LIGitT COMPANY

. ARKANSAS NUCLEAR ONE STEAM ELECTRIC STATION UNIT ONE YCLE 3 STARTUP REPORT TO TIIE U.S. NUCLEAR REGULATORY COMMISSION LICE)JSE NUMBER DPR-51 DOCKET NUMBER 50-313 FOR TIIE PERIOD ENDING 7 MAY 1978 I

e 8004240'Y M S

s .

t ,

TABLE OF CONTENTS PAGE

1.0 INTRODUCTION

1 l'RECRITICAL TEST

SUMMARY

2.0 CONTROL ROD DRIVE TRIP TIME TEST 1 IIOT ZERO POWER TEST SUMMARIES 3.0 ZERO POWER PHYSICS TEST 2 3.1 Determination of Critical Boron Concentration 3 3.2 Determination of Moderator. Temperature Coelficient 4 3.3 Control Rod Reactivity Worth Measurements 5 3.4 Ejected Rod Worth Measurement 6 POWER ASCENSION TEST SUMMARIES 4.0 CORE POWER DISTRIBUTION TEST g i

i 5.0 POWER IMBALANCE DETECTOR CORRELATION TEST 10 I

6.0 DETERMINATION OF REACTIVITY COEFFICIENTS AT POWER 11

7.0 CONCLUSION

12 l

l l l

i M

1 1

--  ;

I

( ( Page 1

=

1.0 INTRODUCTION

On February 2,1978, the second refueling outage of' ANO Unit 1 began and was completed on April 23, 1T/8. ANO Unit 1 achieved criticality on March 25,,1978, and zero power physics testing was initiated.

Zero Power Physics Testing, which commenced on Mar.h 25, 1978, was successfully completed on March 27, 1978. This program was conducted at a nominal reactor coolant temperature of 532*F and below the level of nuclear heating to eliminate any temperature feedback effects.

Power escalation, which was delayed due to turbine generator problems, was begun on April 23, 1978. This testing program was carried out at three power _ plateaus during the power ascension:

Power Level (%FP) Date 40 April 23, 1978 75 April 26, 1978 100 May 5, 1978 The startup and power escalation testing sequence was completed on May 7, 1978.

PRECRITICAL TEST

SUMMARY

2.0 CONTROL R0D DRIVE TRIP TIME TEST 2.1 Purpose The purpose of the Control Rod Drive Trip Time Test was to verify the integrated, functional trip capability of the Control Rod Drive System and to determine for each control rod assembly, the total elapsed drop time from the initiation of the trip signal until the control rod assembly was three-fourths inserted.

2.2 Test Method j l

Initial Reactor Coolant System (RCS) conditions were established at a j temperature of approximately 532 F, at a pressure of 2155 + 30 psig, all four (4) reactor coolant pumps running, with Boron at a concen-tration of 1822 ppmB. Control Rod Groups 1 through 7 were fully withdrawn and Group 8(APSR's) were fully inserted. The Control Rod Drive Mechanisms (CRDM) was then tripped via the manual trip button.

The insertion times for each CRDM from its initial position to its 3/4 insertion point were measured by the plant computer Rod Drop Timer program. The printout of this program includes trip initia- ,

tion time, initial position and trip insertion time for each CRDM(excluding Group 8). l I

l l

I

\

k ( Page 2 2.3 Results and Evaluation An analysis of the' drop times indicates that rods 5-1, 5-2, 5-3, 5-6, 6-6, 7-4, and 7-5 were fastest at 1.133 + 0.017 seconds and rods 1-2, 1-4, 1-5, 1-6, 2-1, 2-6, 3-2, 3-5, 3-7, 3-11 and 3-12 were the slowest at 1.183 + 0.017 seconds.

'2.4 Conclusions The rod drop times were well below the criteria stated in Section 4.7 of the Technical Specifications, which specifies a maximum rod drop time of 1.46 seconds at full flow conditions.

HOT ZERO POWER TEST SUMMARIES 3.0 ZERO POWER PHYSICS TEST 3.0.1 Purpose The purpose of the Zero Power Physics Test was to verify the nuclear design parameters used in the safety analysis, the Technical Specification limits, and for developing operational parameters. All acceptance criteria established for this test n.ust be satisfied prior to commencing power escalation.

3.0.2 Test Method Criticality was achieved by control rod withdrawal and Boron dilution of the RCS after system conditions j had been established at 532 F and 2155 psig. During the approach ,

, to criticality, a plot of inverse neutron count rate ratio versus Boron concentration was maintained by using NI-l and NI-2 '

of_the nuclear instrumentation, and a plot of boron concentration versus time was also maintained. After achieving criticality, nuclear power was increased and the source and intermediate range nuclear instrumentation overlap was verified to be in excess I of one decade. During this same increase in_gower, the point of sensible heating was determined to be 9 X 10 amps, and the upper powerlgmit for Zero Power Physics testing was established at 5 X 10 amps.

i l

l

-Page 3

~

Physics testing was then conducted which included the following

, . measurements, listed in chronological order:

A. The "all rods out" Critical Boron Concentration.

B. Moderator. Temperature Coefficient of Reactivity at the "all rods out" condition.

C. Differential and Integral Rod Worth of Co.+.re,1 Rod Groups 8, 7, 6,~and 5 by the rod versus Boron swap technique.

D. Critical Boron Concentration at the regulating rods inserted condition.

E. Moderator Temperature Coefficient of Reactivity at the regulating rods inserted condition.

F. Ejected Rod Worth by the Borca swap and rod swap techniques.

3.1 DETERMINATION OF CRITICAL BORON CONCENTRATION 3.1.1 Purpose.

The purpose of this test was to determine the Boron concentrationrequiredtomagntaincriticalityatHot Zero Power (approximately 10 amps) with all control rods withdrawn and Xenon free. The resultant value was used to verify the predicted fuel depletion curves used in OP 1103.15, Reactivity Balance Calculation, and

to verify the "all rods out" Boron concentration j predicted by the fuel vendor.

3.1.2 Test Method

Initial RCS conditions were established at a temperature of l

532 + 2*F. Equilibrium boron concentratiog was attained at 1822 ppm Boron with power stable at 10 amps, and control rod groups 1-6 and group 8 at 100% withdrawn I and group 7 at approximately 85% withdrawn.

l l

I i

'l l

- j Q_ ,

]' ( Pags 4-

' The remaining reactivity held in the inserted portion of Group 7 was measured by withdrawal of Group 7 to its out limit and concurrent reactivity measurements. The, reactivity was converted to equivalent Boron concentration change using-the predicted Boron differential worth. The "all rods out" Boron concentra-tion is the sum of the measurad equilibrium Boron concentration and the equivalent Boron from the reactivity measurement.

The Critical-Boron Concentration at the regulating rods inserted condition was determined after the Control Rod Reactivity Worth Measurements had been made. The pre-dicted Critical Boron Concentration was determined by correcting the. predicted all rods out boron concentration for control rod insertion from the predicted rod worths.

This reactivity worth was then converted to an equivalent Boron concentration change. The Critical Boron Concentration is the sum of the measured Boron concentration and the equivalent Boron concentration change.

1 3.1.3 Results and Evaluation

. The results of the predicted Critical Boron Concentration and measured Critical Boron Concentration for "all rods out" and " regulating rods inserted" conditions are listed in Table 3-1.* Both measured Critical Boron Concentrations were within +100 ppm boron of the predicted valuesi and therefore satisfy the acceptance criterion.

j. 3.2 DETERMINATION OF MODERATOR TEMPERATURE COEFFICIENT 3.2.1 Purpose The pu'rpose of this test was to determine the moderator temperature coefficient of reactivity at Hot Zero Power.

The values measured are used to verify that the moderator temperature coefficient is within Technical Specification limits, that the moderator temperature coefficient is within specified limits of predicted values in the Physics i Test Manual and to provide verification of the data used in OP 1103.15, Reactivity Balance Calculation.

3.2.2 Test Method-The moderator temperature coefficient at Hot Zero Power was measured by using a Reactivity Calculator.

. Thefirststepwastoachievesgeadystatecritical

. conditions at approximately 10 amps on the intermediate range detectors. The Reactivity Calculator method measures reactivity changes'as T is varied in small increments (5-10*F). The'reactivily* change associated with the temperature change provides the data necessary to determine a moderator temperature coefficient.

l t -

my

y. - - - - , - - - m-y

. [ Page 5 The moderator temperature coefficient of reactivity at hot conditions with regulating control rod assembly groups inserted was measured after the Control Rod Reactivity Worth Measurements were made utilizing the same method.

3.2.3 Results and Evaluation The measured and predicted values of moderator temperature coefficient for the conditions of "all rods out" and regulating rods inserted are listed in Table 3-2. The measured values of moderator temperature cogfficient are within the acceptancecriteriaof+0.4XIg AK/K*F of the predicted values and less than + 0.5 X 10 aK/K/*F at Hot Zero Power conditions. Extrapolation of the moderator coefficient to 95% of full power indicated that the coefficient would be negative for all expected Boron. concentrations and allowable control rod configurations.

See Table 3-3.

3.3 . CONTROL ROD REACTIVITY WORTH MEASUREMENT 3.3.1 Purpose The purpose of this test was to determine the integral worth of the regulating control rods and Axial Power Shaping Rods at Hot Zero Power for the purpose of updating the integral control rod worth curves in the Reactivity Balance Calculation and for comparison with the predicted worths. This data was also used to verify reloadthe adequacy of the shutdown margin analysis for the core.

3.3.2 Test Meth i The initial by determined Boron concentration sampling. Then, of the RCS was first rod worths from the-fuel vendor,using the predicted the amount of control Boron dilution required to bring the control rods from the "all rods out" conditions to the all regulating rods inserted its configuration, maximum Group 5 at 0% withdrawn and Group 5 at worth, was determined.

Deboration was initiated and9 the reactor. was maintained critical a,t, approximately 10 amps by insertion of Group 8 until it was approximately at its maximum worth, then by periodic insertion of groups 7, 6 and 5(without overlap), while making concurrent reactivity measurements, until deboration was complete. ,

Frequent sampling of the RCS and Make Up Tank during debora- {

tion was would done be known. so that the Baron concentration versus time U i

S

'd

_~

I I Page 6

_Then, using both reactivity measurements and recorded positions ,of the CRA groups versus Boron concentration, the reactivity worth versus CRA Group position was determined.

3.3.3 Results and Evaluation The predicted.and measured control rod group worths are

, tabulated in Table 3-4. The individual CRA group worths measured were within the acceptance criterion range of 1 15% of the predicted values and the total Group 5, 6 and 7 worths were well within the i 10%

acceptance criterion.

3.4 EJECTED ROD WORTH MEASUREMENT 3.4.1 Purpose The purpose of this test was to determine the reactivity worth of the worst case ejected control rod as specified by the Cycle 3 Reload Report, to verify its worth is less than 1.0% AK/K at Hot Zero Power and that it is within acceptable agreement with the value predicted by the fuel vendor.

3.4.2 Test Method InitialconditionswereestabfishedwiththeReactor critical at approximately 10 amps, Regulating Groups  ;

at approximatelj 0% wd, Group 8 at its maximum worth  !

and Boron concentration at equilibrium. The initial '

(steady state) Boron concentration of the RCS was determined by sampling. Then, using the predicted ejected rod worth the amount of Boron addition required to bring the worst case ejected rod, Control Rod 6-6, to 100% withdrawn was determined.

BorationwasingtiatedandtheReactorwasmaintained critical at 10 amps by withdrawal of Rod 6-6.

Frequent. sampling of the Reactor Coolant System (RCS) and Makeup Tank (MU) during boration was done

)

so that Boron concentration versus time would be known. The rods were fully withdrawn and additional reactivity l compensation was made by withdrawal of Group 5. When steady state Boron concentration was re-established,  ;

Control Rod 6-6 was returned to 0% wd by using Group 5 withdrawal for reactivity compgnsation. The reactor was maintained critical at 10 amps during the swap.

The other three rods quadrant-wise symmetric with 6-6

- were also swapped for comparison.

m .

(- . (.

Page 7 "

~

.Using reactivity measurements, the differential Boron

~

worth, and.the position of control rods-involved, the worst case ejected rod worth was determined.

- 3.4.3 3esults and Evaluation The measured worth of the worst case ejected rod, Control Rod 6-6, compared acceptably with the predicted value' and its. worth met the' acceptance criterion of < l.0% AK/K.

The test results are tabulated in Table 3-5.

/

1 F

'S

- ~ w a -- hy -n.- - -- e, ---o- .- v---

9 TABLE 3-1 CRITICAL-BORON CONCENTRATION AT HOT ZERO POWER VENDOR IN-HOUSE MEASURED PREDICTED PREDICTED CONDITION VALUE VALUE VALUE All Rods Out. 1351 ppmB 1358 ppmB 1361 ppmB 1

Rods Inserted ^

(Group 8 @ 37.5% w/d) 1067 ppmB 1048 ppmB 1050 ppmB TABLE 3-2 MODERATOR TEMPERATURE COEFFICIENT AT HOT ZERO POWER.

MEASURED VALUE VENDOR PREDICTED IN-HOUSE PREDICTED CONDITION REACTIVITY CALCULATOR VALUE VALUE -

~

All Rods Out 0.179 X 10~ AK/K*F -0.017 X 10 AK/K'F N/A

~

Rods Inserted -0.685 X 10 'AK/K'F -0.668 X 10~ AK/K*F -0.40 X 10~ AK/K'F m

TABLE 3-3 MODERATOR COEFFICIENT EXTRAPOLATED TO 95%FP 6

CONDITION COEFFICIENT All Rods'Out -0.121 X 10 4 Ak/k/ F Rods Inserted -0.98 X 10 4 Ak/k/*F

.

TABLE 3-4 .

CONTROL ROD REACTIVITY WORTHS ~ '

.4. .

< CRA VENDOR IN-HOUSE

  • MEASURED WORTH  % ERROR BETWEEN .

GROUP PREDICTED WORTH PREDICTED VALUE-(%AK/K) ' MEASURED & VENDOR

(%AK/K) -

(%6K/K) PREDICTED VALUES 5' l.02 1.02 1.05 0.0 6 1.03 0.97 L.98'  :-5.83 7 0.69 .m.

0.70 0.73 1.45 8 0.44 0.40 0.43 -9.09 Total 5-7 2.67 2.69 2.76 0.75' TABLE 3-5 EJECTED CONTROL ROD WORTH -

MEASURED VALUE CRA/ CORE GRID BORON SWAP PREDICTED VENDOR % ERROR BETWEEN R0D SWAP VALUE MEASURED & VENDOR t

PREDICTED VALUES ^

6-6/N-4 .78%AK/K 0.79%AK/K BORON SWAP ROD SWAP 0.64%AK/K -17.95 -18.99 6-4/N-12 N/A 0.67%AK/K 0.64%AK/K N/A - 4.48 6-2/D-12 N/A 0.72%AK/K 0.64%AK/K N/A .-11.I1 6-8/D-4 N/A 0.70%AK/K 0.64*/aK/K o N/A -8.57

( ( Pegn 8 POWER ASCENSION TEST SUMMARIES

-4.0 CORE PORER DISTRIBUTION TEST 4.1 Purpose The objective o2 the Core Power Distribution Test was to measure the power distribution of the reactor core at the power plateaus of 407, 75% and 100% full power during power escalation . .

in order to verify that the DNBR, LHR, quadrant power tilt, and power peaking factors did not exceed allowable limits.

The limits placed on the measured parameters were as follows:

i) The maximum linear heat rate, LHR, in the core is less than the LOCA limit per Technical Specifications for the axial location of the peak. When testing at a power level below rated power, the maximum LHR when extrapolated to rated power must also meet this criterion.

ii) The minimum DNER must be greater than 1.30 at rated power conditions and when extrapolated to rated power conditions. 4 iii) The quadrapt power tilt must not exceed the value allowed in the Technical Specifications.

iv) The highest measured radial and total power peaking factors shall not exceed the highest predicted peaks by more than 5% and 7.5% at the 75% and 100% power plateaus, respectively(8% and 12% at the 40% power plateau). The acceptance criteria for the power peaking factors is a comparison of highest predicted to highest measured and not a grid-to- grid comparison.

These acceptance criteria are established to verify'that core nuclear and thermal hydraulic calculational models are conserva-tive with respect to measured conditions thereby verifying the acceptability of data from these models for input to safety analysis. The acceptance criteria also serve to verify acceptable operating conditions at each test plateau and eventually at rated power conditions.

4.2 Test Method Equilibrium conditions were established at 75% and 100% FP ensuring that Xenon was in three-dimensional equilibrium

(equilibrium Xenon was not required for the 40% tests) with no APSR motion and minimal power fluctuations and/or controlling rod group motion. The-incore monitoring system and the plant computer were used for data collection and analysis.

m

( Page 9

(

4.3 Results and Evaluation

'A summary of the test results is given in Table 4-1. This table indicates that all measured DNBR's were greater than the 1.30 minimum, all linear heat rates were less than the Technical Specification LOCA limit, Figure 3.5.2.4,- (Attachment A) and all quadrant tilts were below the Technical Spec # ~ cation limits. The measured and total power peaking factors wer thin the acceptance criteria.

Figure 4-1 shows the core grid /Self Powered Neutron Detector (SPND) string correlation for the core locations used to measure the radial and total power peaking factors. The results of the power distri-bution measuremencs are tabulated in Figures 4-2 and 4-3 for the 40% FP plateau, Figures 4-4 and 4-5 for the 75% FP plateau, and in Figures 4-6 and 4-7 for the 100% FP plateau. These figures indicate that the predicted power peaking factors are.in good agreement with measured values. All measured peaking factors were within acceptance criteria limits.

4.4 Conclusions Measured DNBR's, Linear Heat Rates, and Quadrant Tilts verified that the core can be operated at rated power without exceeding Technical Specifications or ECCS LOCA power distribution criteria.

The measured power distributions verified the predicted distributions and the largest radial and total peaking factors were within the acceptance criteria.

The measured DNBR and Linear Heat Rates verified that the Reactor

  • Protection System setpoints are sufficient to protect the core against' exceeding DNBR or maximum linear heat rate limits and that Technical Specification Figure 3.5.2-3 limits are sufficient to protect against exceeding the LOCA limit heat rate.

d

( , (

TABLE 4-1

SUMMARY

OF RESULTS DATE 4/23/78 4/26/78 5/3/78 TIME 1437 1410 1352 Power Level (Nominal %)- 40 75 100 Group'l-5 (%w/d) 100 100 100 Group 6 -(S.w'/d) 88.3 90.8 91.7 Group 7 (%w/d) 15.0 15.4 13.1 Group 8 (%w/d) 27.0 20.2 13.5 Core Burnup (EFPD) 0.9 2.6 9.2 Boron Concentration (ppmB) 1088 863 795 Axial Imbalance (%FP) -1.2 -1.0 -0.9

. Max Quadrant Pwr Tilt (%) +1.52 +1.38 +1.02 (Incore Detectors)

- DNBR 8.74 4.32 2.96 LHR 5.31 9.42 12.65 Max Measured Radial Pwr Peak 1.444 1.424 1.413 Max Measured Total Pwr- Peak 3 1.707 1.717 1.752 Max Peak Measured At Core Grid / Level- E-ll/6 N-8/4 N-8/4 Max Predicted Radial Pwr Peak 1.411 1.387 1.369

' Max Predicted Total Pwr Peak- 1.651 1.613 1.641 Max Total Peak Predicted at Core Grid K-9 N-8 N-8 Percent Error

  • Max Radial Peak -2.29 -2.60 -3.11

. Percent Error

  • Max Total Peak -3.28 -6.06 -6.34 Equilibrium Xenon NO YES, 3-D YES, 3-D-
  • Percent Error = Predicted-Measured X 100%

Measured i

L &

f. .

c (

FIGURE 4-1 CORE SPND STRING / CORE GRID CROSS REFERENCE H-8 H-9 F-8 H-5' N-8 H-13 B-8 H-1 l' 2. 4 10 14 21 30 37 G-9 F-7 E-9 K-12 C-9 B-7 R-7 3 6' 5 20 29 31 45

  • h * *
  • L-6 M-10 D-10 C-10 P-6 R-10 12 17 27 28 44 46 E-11 D-5 0-5 M-14 26 33 42 49 N-4 0-12 D-14 41 48 51 l

C-13 i 52 l

X-X CORE GRID LOCATION XX DETECTOR NUMBER l

l l

  • The radial and total peaking factors at these core. locations were

- calculated using the average' readings from all detectors symmetric

l. .to this location.

l l-L m , _

n

. COMPARISON OF PREDICIED AND CAIfULAT' E D SITADY StBTE TorAL

- PFAXLIU.vER DISI BUTION AT : 40 % FP, EQUILIBR( . XI2DN Measurement Conditions.

Cor, trol Rod' Group Positions ' Core Power Level' 41.1 %FP

. Gps 1-4 100 % wd Boron Concentration 1088 ppm Gp 5 100 % wd - Core Burnup 0.9 EFPD Gp - 6. 88.3 .% wd Axial Imbalance -1.2  % FP Gp. '7 15. 0 ~. % wd Max Quadrant Tilt 1.52 %

Gp 8 27.0 %'wd I X.XXX Predicted Values X.XXX Measured Values Core

'Centerlines 1.007 1.221 1.046 1.164 1.651 0.971 0.524 0.833 1.096 1.310 1.101 1.148 1.686 0.845 0.560 0.715 1.22 1 1.658 1.031 1.346 1.202 1.141 0.971 0.950 1.310 1.561 1.093 1.298 1.186 1.043 0.976 0.822 1.046 1.031 0.675 1.404 1.369 1.228 1.634 0.911 l 1.101 1 093 0.852 1.546 1.410 1.230,1.504. 0.758

! 1.164 1.346 1.404 1.556 1.485 1.273 1.392'

~

1.148 1.298 1.546 1.707 1.480 1.222 1.322

! 1.651 1.202 1.369 1.485 1.567 1.350 0.957 1.686 1.186 1.410 1.480 1.562 1.339 0.979 7

3.971 1.141 1 . 2 28 1.273 1.350 1.064 3.845 1.043 1.230 1.227 1.339 0.982 3.524 0.971 1.634 1.392 0.957 3.560 0.976-1.504 1.322 0.979 3.833 0.950 0.911

, , \ uadrant Q

i 3.715 ,0.822 0.758 Centerline FIGURE 4-2 L .

. CCGPAPdSON 'OF PIEDICrED AND CAlfULAT'ED SIT 7JW STATE RELATIVE RADIAL POWT2 DISF; .UTION AT ~40  % FP, IXUILIBRI( XEtDN Measurement Conditions Control Pod Group Positions Core Power Level 41.1 %FP Cps 1-4 100 % wd Doron ConcentrationM ppn

% ud . Core Burnup 0.9 EFPD Gp 5 FC  % FP Gp' _6- V3 % wd Axial Imbalance -1.2 Gp 7 ~15. 0 _% wd Max Quadrant Tilt 1. 52 _ %

Gp .8 27.0_ % wd X.XXX Predicted Values X.XXX i Measured Values Core Centerlines O'.8'54 1.034 0.878 1.007 L . 411- 0.839 3.474 ).687 -

0.986 1.093 0.923 1.004 1 .477 n . 7 5 /. B. 60 1 % 6' l.034 1.408 0.901 1.152 1.010 0.965 3.824 ).777 1.093 1.343 0 929 1.118_ 3.978 0.909 0.836_ldll_

0.878 0.901 0.604 1.180 1.038 1.033 1.323 3.736 0.923 0.929 0.668 1.267 1.071 1.057. 1.271 1.640 1.007 1.152 1.180 1.331 1.233 1.007 1.104 1.004 1.118 1.267 1.444 1.256 1.052 1.076 _

l.411 1.010 1.038 1.233 1.244 1.078 3.758 1.427 0.978 1.071 1.256 L.292 1.106 3.809 0.839 0.965 1.033 1.007 L.078 3.843 0.754 0.909 1.057 1.052 L.106 3.815s 0.474 0.824 1.323 1.104 3.756 0.460 0.836 1.271'l.076 3.809

'.687 0.777 0.736 0

Quadrant

, Centerline 0.596.0.711 0.640 0

FIGURE 4-3 b

. 2

' CCFPARICON OF PIT.DICTED AND CAICUIATSD SI'"hDY b 'P"'2 'IUPAL PEAK IUJER DISI .XJrION AT 75 '  %' FP, EQL. ',IB . XENON Measurement Conditions Controf Rod Group Positions Core Power Level 75.7 tFP -

Gps 1-4 100 % wd Boron Concentration 863 pIxn Up 5 100  % wd Core Burnup 2. 6 EFPD Gp 6 90.8 % wd Axial Imbalance -1.0 % FP Gp 7 15.4 ' % wd Max Quadrant Tilt 1.38 %

Gp 8 20.2 % wd X.XXX- Predicted Values X.XXX Measured Values

' Core Centerlines f.do2 1.198 1.049 1.169 1.613 0.975 0.526 0.848 1 044 1 104 1.19'1 1_146 1_717 n R4R O_577 171.

1.198 1.609 1.038 1.339 1.185 1.127 0.959 0.959 1.30s 1.549 1.070 1.317 1.159 1.052 0.950 0.823 1.045. l.038 0.667 1.371 1.342 1.194 1.579 0.915 1.123 1.070 0.870 1.524 1.389 1.235 1.484 1.767 14169 1.339 1.371 1.548 1.450 1.221 1.357 1.146 1.317 1.524 1.713 1.535 1.221 1.280 1.613 1.185 1.342 1.450 1.502 1.320 0.955 1.717 1.159 1.389 1.535 1.558 1.339 0.921 0.975 1.127 1.194 1.221 1.320 1.055 0.848 1.052 1.235 1.221 1.339 0.967s .

O.526 0.959 1.579 1.357 1 055 0.577. 0.S50 1.484 1.280 0.291 N '

'O.848 0.959 0.915

, Quadrant 0.740, 0.823 0.767 Centerline FIGURE 4-4 b . j

~

COMPARISO[' 'F PREDICTED Ato CMTED Sly

  • STATE PEI1sTIVE

,, PADIAL IbdR DISTRIBUTION AT 75  % FP, IAUILIBRIG4 XEBON Measurement Conditions Control Rod Group Positions Core PoWor I4 vel 75.7 %FP Gps 1-4:100 % wd Baron Concentration 863 ppn Gp 5 100  % ud Core Burnup 2.6 EFlV Gp 6 90.8 % ud Axial Imbalance -1.0  % FP

.Gp -7 15.4 -% wd Max Quadrant Tilt 1.38 %

Gp 8 20.2 % wd' X.XXX Predicted Values X.XXX Measured Values Core-Centerlines .

O'.862 1.028 0.883 1.008 1.387 0.845 0.485 0.706 0.995 1.111 0.941 1.009 1.410 0.766 0.473 0.613 1.028 1.380 0.904 1.150 1.011 0.970 0.830 0.790 1.111 1.333 0.942 1.124 0.982 0.914 0.843 0.715 0.883 0.904 0.613 1.177 1.040 1.031 1.301 0.74 6 0.941 0.942 0.683 1.277 1.091 1.053 1.252 0.642 1.008 1.150 1.177 1.321 1.227 1.006 1.095 1.009 1.124 1.277 1.424 1.258 1.048 1.072 1.387 1.011 1.040 1.227 1.240 1.080 0.769 1.410 0.092 1.091 1.258 1.287 1.104 0.756 0.845 0.970 1.031 1.006 1.080 0.852 0.766 0.914 1.053 1.048 7.104 0.811s 0.485 0.830 1.301 1.095 3.769 0.473 0.843 1.252 1.072 0.756 O.706 0.790 0.746

, \ uadrant Q

0 413,0.715 0,642 Centerline l

~

FIGURE 4-5 l

l

e _ .- .

2 COPARIfni OF PREDICIED AND CAICUIRrhD STEADY STA'PE 'IUTAL

- TJd.-EUdER DISI .3UTION AT :100 -- % FP, I:QUILIBRI~ XDD1 Measurement Conditions Control 11od Group Positions Coro Power Level 99.6 tFP Gps 1-4 ' 100  % wd ,

Boron Concentration W ppn

% wd Core Durnup 9. 2 - EFPD Gp 5 100 Cp 6 91.7 % wd Axial Imbalance -W %FP-Max Quadrant Tilt 1.02 %

.Gp 7: 13.1 *. % wd GP 8 13.5 % wd X.XXX Predicted Values X.XXX Measured Values 6

Core Centerlines 1.dO2 1.194 1.059 1.196 1.641 1.006 0.544 ).867 _

l.108 1.291 1.114 1.161 1.752 0.876 0.569 3.754 1.194 1.601 1.052 1.380 1.247 1.169 3.989 ).975 1.291 1.537 1.050. 1.338 1.190 1.078 E974 3.848 1.059 1.052 0.693 1.448 1.436 1.254 1.563 ).926 1.114 1.050 0.842 1.561- 1.530 1. 261 1.499 ).781 1.196 1.380 1.448 1.616 1.527 1.246 1.354 1.161 1.338 1.561 1.741 1.550 1.257 1.309_

l.641 1.247 1 436 1.527 1.548 1.345 3.973 1.752 1.190 1.530 1.550 1.613 1.389 3.939 1.006 1.169 1.254 1.246 L.345 1.076 0.b76 1.078 1.261 1.257 L.389 0.965s 0.544 0.989 1.563 1.354 ).973 0.569 3.974 1.499 1.309 3.939 O.867 0.975 0.926 Quadrant Centerline 0.754 ,O.848 0.781 6

FIGURE 4- 6

v-

  • COMPARISO:  ? PREDICITD AND CAICUIATED SI'E( STATE RI2ATIVE

. PADIAL IOadR DISTRIBUTION AT 100 % FP, Er UILIl3RILM XDON Measurement Conditions Control Pod Group Positions Core Power Level 99.6 tFP Gps 1-4 100 % wd Doron Concentration 795 ppm

^

Cp 5 100 % wd Core Burnup 9.2 ITPD Cp 6, 91.7 % wd Axial Imbalance -0.9. % FP Gp 7 13.1 % wa Max Quadrant Tilt- 1.02 %

Gp -8 13.5 % wd .

-X.XXX Predicted Values X.XXX Measured Values Core Centerlines 0.875 1.016 0.878 1.002 1.369 0.847 0.492 0.720 0.999 1.116 0.947 1.014 1.37910.778 0.475 0.615 1.016 1.353 0.898 1.142 1.008 0.972 0.837 0.802 l'.116 1.321 0.945 1.124 0.983 0.919 0.847 0.718 0.878 0.898 0.614 1.172 1.041 1.031 1.295 0.757 0.947 0.945 0.683 1.273 1.0 J 1.051 1.239 0.647 1.002 1.142 1.172 1.313 L.224 1.009 1.096 1.014 1.124 1.273 1.413 1.158 1.045 1.076 1.369 1.008 1.041 1.224 1.241 1.086 0.780 1.379 0.983 1.093 1.258 1.288 1.105 0.758 0.847 0.972 1.031 1.009 1.086 0.861 0.778 0.919 1.051 1.045 1.105 0.811s 0.492 0.837 1.295 1.096 D.780 0.475 0.847 1.239 1.076 0.758 '

O./20 0.802 0.757

, Qaadrant

, O.C15, 0.718 0,647 Centerline i

FIGURE 4-7 4

g .

l Pags 10

~ ^

(

5.0' POWER IMBALANCE DETECTOR CORRELATION TEST 5.1 Purpose The Power Imbalance Detector Correlation test determined the relationship between out-of-core detector and incore detector measured imbalance.

5.2 Test Method Imbalance measurements were made to determine the acceptability Prior to of the out-of-core detectors to detect imbalance.

testing, the delta flux imbalance' amplifier gain setting was-adjusted to obtain an expected out-of-core to incore slope of 1.08 to allow for uncertainty in predicting the amplifier gain necessary to obtain the required out-of-core to incore slope of 1.00. The measurements were made by obtaining various core imbalance conditions at 75%FP while at equilibrium Xenon conditions by adjusting the axial power shaping rod positions.

From this data, plots of incore imbalance versus out-of-core imbalance were maintained and the slope was determined.

5.3 Results and Conclusions

~

The relationship between out-of-core imbalance and incore imbalance was found to be linear with a slope of 1.10.

This value would assure the RPS trip limits resulting from imbalance indications would be conservative since the RPS indication is' from out-of-core detectors.

(

k Page 11.

4 6.d DETERMINATION OF REACTIVITY COEFFICIENTS AT POWER 6.1 ' Purpose -

The purpose of this test was to measure the moderator temperature coefficient and power doppler coefficient at full power and to compare the results with predicted values.

Acceptance criteria coefficient be'more for the test negative were than thatX thg(power

-0.55 10 doppler AK/K)/%FP, and that the moderator temperature coefficient measured at power operating conditions be non positive above 95% FP.

6.2 Test Method The moderator temperature coefficient at power operating condi-tions was measured by varying T using the.T setpoint controller on the Reactor Deman8" Station and mS1ntaining constant power with the ICS in automatic. The corresponding contral rod motion is related to the reactivity change which is used tn determine the moderator temperature coefficient.

The power dorp]er coefficient is measured by varying Reactor power using the Integrated Control System Unit Load Demand (ICS ULD) station and recording the corresponding control rod motion. The corresponding control rod motion is related to reactivity change which is used to determine the power doppler coefficient.

The control rod reactivity worth was determined by a differential control rod worth measurement with an on-line reactivity calculator.

'esults and Evaluation The results of the reactivity coefficients test are summarized in Table 6-1.

The power doppler coefficient at full power was below the maximum acceptable value. The moderator temperature coefficient was well below the'non positive limit. ,

6.4 Conclusion The measured values of all reactivity coefficients were within the ac_- , table limits. The' acceptance criteria of this test were met in full without deficiencies.

w 4

m . _ . , ,

r:;

~

(- (:

s TABLE 6-1 .

?- .

SUMMARY

OF MEASURED AND PREDICTED REACTIVITY COEFF'ICIENTS AT 10 I

PARAMETER 6 91.7 Control Rod Assembly.

Group (% Withdrawn) 7 13.1 8 13.5 Boron Concentration (ppmB) 795

~

Measured -0.956 X 10 '

' Vendor -4 Predicted -1.430 X 10 Moderator Temperature Coefficient In-House '

Predicted -0.84'2 X 10~

AK/K F

Measured -0.893 X 10~ ,

Power Doppler Vendor -4 Predicted -1.23 X 10 Coefficient aK/K In-house

% Full Power Predicted N/A Measured -0.791 X 10-4 Moderator Coefficient Vendor Predicted -1.29 X 10-4 aK/K In-house "F Predicted N/A SN

-w, n

t-

]- Pags 12

(. '(

. 7.d CONCLUSION

The results an'd conclusions summarized.in the body of this report

~ demonstrate'that the Arkansas Nuclear one Unit 1 Cycle 3 reload has been properly; designed and the unit can be operated in a manner that will'not endanger the health'and safety of the publ!c.

a O

r-o

,,r.,t

', .. ,, [ '

(-

ATTACHMENT A 12 10 C

J 8 h a

o 3

8 6 a 8

u.

. _ g 3

^- -

4 E

u.]_

3 2 l

)

i l

0 12 l 20 18 16 14 Allowable Peak Linear Heat Rate, kW/ft

ARVAfl5A5 POWER & LIGHT COMPAtlY LOCA LIMITED MAXIMUM ALLOWABLE FIG. NO.

ARKAt!SAS NUCLEAR Of1E-UtilT-~ l LillE/.R llEAT RATE 3.5.2.4 l

48e l l

.' Amendmerit No. . 21 ,

,/.

(

(

. e i

i ARKANSAS POWER & LIGH h POST OFFICE BOX 551 UTTLE ROCK. ARKANSAS 72203 (501) 371-4000 July 7, 1978 1-078-2 e.

Director of Nuclear Reactor Regulation ATTN: Mr. Robert W. Reid, Chief -

Operating Reactors Branch #4  ;-

U. S. Nuclear Regulatory Commission .

Washington, D. C. 20555 . _ . ,

. _ ;,  ;

,; - - - l

Subject:

Arkansas Power G Light Company Arkansas Nuclear One-Unit I l Docket No. 50-313 License No. DPR-51 Cycle 3 Startup Test Report (File: 0520.2)

Gentlemen:

Per our letter of March 20, 1978 we now submit our Startup Test Report for Cycle 3 of Arkansas Nuclear One-Unit 1.

Very truly yours,

-,/ -

,/

j' cr2 a Daniel H. Williams Manager, Licensing DiiW: ERG:dr Attachment ,

^

':: C;;;, .

L b MEMBER MIDOLE SOUTH UTIUTIES SYSTEM