ML20216H946

From kanterella
Jump to navigation Jump to search
Cycle 13 Startup Rept
ML20216H946
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 09/08/1997
From:
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20216H934 List:
References
NUDOCS 9709170118
Download: ML20216H946 (47)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

/ f Attachment to 2CAN099702 Page 1 of'47 ANO-2 Cycle 13 Startup Report ABSTRACT This report summarizes the results of the startup physics test program. Results of these activities verify the cycle 13 nuclear design calculations and demonstrate adequate conservatism in core performance with respect to the Arkansas Nuclear One Unit 2 (ANO-2) Safety Analysis Report (SAR), Technical Specifications, and the Cycle 13 Reload Safety Evaluation. Cycle 13 achieved l Initial criticality on June 8,1997.

l l

TABLE OF CONTENTS Page 1.0 i N T R O D U C TI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 l

1 2.0 R EACTO R C OR E D E S C RIPTIO N ..... .. ..... . . . . . . . .. . . . . . . . . ... . . .. .. . . .... ... .. 6 1

3.0 P R E C R ITI C AL T E S T S . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Control Element Assembly Drop Time Testing ..................... 8 4.0 LOW POWER PHYSICS TESTIN G ..... .........................................10 4.1 initial C riticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 C ritical Boron C oncentration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.3 C EA Reactivit y Worth . .. . .. .. . .. ..... ........... .... . .. . ....... . ... . . . . . .. . . .. .. 10 4.4 Temperatu re R e activity C oefficien t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.0 P OWER AS C E N SION TE STIN G ................................................... 13 5.1 Reactor Coolant System Flow Rate ...................................... 13 i

9709170118 970908 PDR ADOCK 05000368-P pog

i # Attachment 13) 2CAN099702 Page 2 of 47 5.2 C ore Power Distribution . .. ..... . .. ... . .. . ... . . . . . . .. . . .... . . .. . .. . . . . .. .. . .... . 14 5.2.1 29% Power Plateau Results .......................................14 5.2.2 69% Power Plateau Results ....................................... 15 5.2.3 100% Power Plateau Results ..................................... 17 5.3 Cycle Independent Shape Annealing Matrix Validation ........18

5.4 Radial Peaking Factor Verification ....................................... 21 5.5 Temperoture Reactivity Coefficient ....................................... 23

6.0 CONCLUSION

S..............................................................................24

7.0 REFERENCES

................................................................................25 8.0 FIGURES Figure 1 ANO-2 Cycle 13 LPPT Bank B Worth versus P o s i t i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 2 ANO-2 Cycle 13 Power Ascension Boron Concentration and Power Level versus Time ............ 27 Figure 3 ANO-2 Cycle 13 Power Ascension Axial RMS Errors versu s Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 Figure 4 ANO-2 Cycle 13 Power Ascension ASI Errors versus Time...........................................................................29 Figure 5 ANO-2 Cycle 13 Power Ascension Axial Form Index Errors versus Time .. . ... ... ....... ........ .. . . .. . . . . . . . ... . .. . .... . ... . 30 Figure 6  % Calorimetric Power vs Time ................................... 31 Figure 7 C E C O R AS I v s Time . . . . . . . . . . . . . . . . . . . . .. . . .. . . .. . . . .. . . . . . . . . . . . . . . . 31 Figure 8 CPCs Minimum DNBR vs Time .................................. 32 Figure 9 CPCs Linear Power Density (Kw/ft) vs Time .............. 32 Figure 10 COLSS DNBR % Power Operating Limit vs Time ...... 33 Figure 11 COLSS PLHR % Power Operating Limit vs Time ...... 33

f # Attachment to 2CAN099702 Page 3 of 47 Figure 12 CPCs Top Excore Signals (% Power) vs Time ........... 34 Figure 13 Normalized Top Excore Detectors %(M-P)/P Errors v s Ti m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 l

1 Figure 14 CECOR ASI vs % Calorimetric Power ........................ 35 Figure 15 CECOR Maximum Planar Fxy vs % Calorimetric Power..........................................................................35 Figure 16 COLSS DNBR % Power Operating Limit vs

% C alorimetric P ower .. .. .... . .. .......... . . . . . .. . . . . . . . . . . . . . . .. . . . . . 36 Figure 17 COLSS PLHR % Power Operating Limit vs

% C alorime tric P ower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 18 ABB GETARP Output for the 29% Power Plateau ..... 37 Figure 19 ABB GETARP Output for the 69% Power Plateau ..... 39 Figure 20 ABB GETARP Output for the 100% Power Plateau ... 41 Figure 21 C EA and I C I Locations .... . . . . . . . .. ... . . . . . . . . . .. .. . . . . . .. .. . .. . .. . . . 4 3 Figure 22 Arkansas Nuclear One Unit 2 Cycle 13 Core L oa d i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Figure 23 Arkansas Nuclear One Unit 2 Integral Burnable Poison Shim and Enrichment Zoning Patterns for B atch R Fuel Assemblie s .................. ... .......... . .... . ...... 4 5 Figure 24 Arkansas Nuclear One Unit 2 Cycle 13 Fuel Ma na g ement Scheme . . . . . . . . . . . . .. . . ... ... . . . .. . . . . . .. . . .. . . . . . .. . . . 46 Figure 25 Arkansas Nuclear One Unit 2 BOC Assembly Average Burnup and initial Enrichment Distribution ................. 47

Attachment to 3CAN099703 Page 4 of 47 4

1.0 INTRODUCTION

This report summarizes the results of the ANO 2 Cycle 13 startup physics test program. The startup physics test program consisted of a series of tests performed at various stages, inc!uding prior to initial criticality, low power physics testing (LPPT), and duritig power ascension. Table 1.0-1 provides a chronologicallisting of these tests.

The objective of these tests were: (a) to demonstrate that, during reactor operation, the measured core physics parameters would be within the assumptions of the FSAR accident analyses (Reference 7.4), within the limitations of the plant technical specifications (Reference 7.3), and within the limitations of the cycle 13 reload safety evaluation (Rcference l

7.1 and 7.2); (b) to verify the nuclear design calculations; and (c) to I

1 provide the bases for validation of database constants in the core protection calculators (CPCs) and the core operating limit supervisory system (COLSS). Specifically, each cycle independent shape annealing matrix (CISAM) installed in each channel of the CPCs is validated and the all rods out (ARO) radial peaking factor (RPF) is verified and conservatively adjusted in the CPCs and COLSS during power ascension.

Section 2 of this report gives a brief description of the reactor core.

Section 3 discusses the precritical control element assembly (CEA) drop time test. In section 4, initial criticality and the low power physics tests are presented. Section 5 describes the power ascension tests which includes a reactor coolant system (RCS) flow rate determination, core power distribution measurements, the CISAM validation, radial peaking factor verification, and a temperature reactivity coefficient measurement.

The conclusions of this report are given in Section G. Section 7 lists the references cited in this report.

, e Attachment to 2CAN099702 Page 5 cf 47 Table 1.01 Startuo Events in Chronoloalcal Order DAIE T1Mg ACTIVITY 06-07-97 2000 Initiated CEA drop time testing 06-08-97 0800 Completed CEA drop time testing 06-08 97 1400 Initiated LPPT and invoked Special Test Exception i

3.10.2 and 3.10.3 06-08-97 1905 Commenced approach to criticality 06-08-97 1955 Reactor critical (Group 6 at 110 inches withdrawn, all others ARO) 06-08-97 2030 Started determination of power testing band for LPPT 06-08-97 2125 Completed determination of power testing band for LPPT 06-08 97 2130 Started withdrawing group 6 to greater than 130 inches withdrawn 06-08-97 2230 Completed CEA coupling check 06-08-97 2232 Started critical boron concentration (CBC) measurement 06-08-97 2239 Completed CBC measurement 06-08-97 2240 Started temperature reactivity coefficient measurement i 06-08-97 2339 Completed temperature reactivity coefficient measurement 06-08-97 2340 invoked Special Test Exception 3.10.1 06-08-97 2348 Started CEA reactivity worth measurement 06-09-97 0920 _ Completed CEA reactivity worth measurement 06-09-97 1321 Revoked Special Test Exceptions, LPPT complete, ad initiated power ascension 06-10-97 .2017 invoked Special Test Exception 3.10.2 at 20% power

! t Attachment ts 2CAN099702 Page 6 of 47 I

06-10 97 2119 Commenced power increase to 29% power plateau at approximately 3%/ hour 06-11-97 0415 Completed core power distribution measurement at 29% power plateau 06-12 97 0135 Resumed power ascension at approximately 3%/ hour to 69% power plateau 06-12-97 2300 Stabilized power at 67% power 06-13 97 0340 All the acceptance criteria to proceed above 70%

power met (RCS flowrote, core power distribution, CISAM validation, ARO RPF verification for CPCs and COLSS) 06-13-97 0430 Re /oked Special Test Exception 3.10.2 06 13-97 0515 vower ascension resumed at 3%/ hour 06-13 97 1830 Stabilized power at approx. 95% power for power indication check 06 13-97 NA Power ascension resumod to 100% power plateau 06-16 97 NA Stabilized power at 100% power plateau 06-17-97 NA Completed core power distribution at 100% power plateau 06-25-97 NA Completed reactivity temperature coefficient at power 2.0 REACTOR CORE DESCRIPTION The design of the ANO 2 Cycle 13 core includes using gadolinia as an integral burnable absorber. Gadolinia, integrally mixed within select fuel pins, replaces individual B4C pins as the poison in the fuel assemblies.

The 76 new fuel assemblies designated as batch R were loaded with fuel rod enrichments as high as 4.40 w/o U-235 and gadolinia enrichments of 2.30 w/o. In addition,1 batch K,16 batch N, and 84 batch P assemblies were loaded into the cycle 13 core. The use of gadolinia is considered

! / Attachment to 2CAN099702 Page 7 of 47 the most significant change in the cycle 13 core design. (Reference 7.1, ANO 2 Core Assessment Report (CAR) for Cycle 13)

The mechanlual design bases have not changed since the original fuel design. As part of the fuel operations quality improvement program (OlP),

the designs and manufacturing processes for the ABB-CE 16x16 GUARDIAN" and HID 1L spacer grid assemblies were modified to incorporate the coreless spacer grid assemblies into the Batch R fuel bundle assembly design. This is a manufactu41 process change and does not impact the mechanical design bases. (Reference 7.1, ANO-2 Cycle 13 CAR) 2.1 Loadino Pattem and Assembly Burnuo Figures 22 through 25 from the ANO-2 Cycle 13 CAR give the loading pattem and beginning of cycle (BOC) assembly average design burnups.

2.2 Control Element Assembly locations Figure 21 gives a map of the CEA locations.

2.3 Incore Instrumentation (101) locations The ICI design consists of 42 fixed ICI assemblies inserted into the center guide tube of 42 fuel assemblies. ICI locations are identified in Figure 21. Each ICI assembly contains 5 self-powered rhodium detectors and one core exit thermocouple (CET). All 42 ICI assemblies were replaced during 2R12 prior to the cycle 13 startup. During power ascension, 207 of 210 possible detectors were operable.

,a .' Attachment t3 2CAN099702 PageBof47 2.4 Verification of Core Loadina After the reactor core was loadsd, core mapping was performed using an underwater television camera, monitors, and video taping equipment. This core mapping operation verified that the core was correctly loaded. Core mapping was performed by the reactor engineering organization. The core mapping operation included a comparison of the identification numbers on the fuel assemblies, CEA configuration, and fuol assembly orientation against the design configuration, i

3.0 PRECRITICAL TESTS 3.1 CEA Droo Time Testina This testing verifies that the drop time of all CEAs are in accordance with the surveillance requirements of ANO-2 Technical Specification 4.1.3.4. The method used by this test involves special control element assembly calculator (CEAC) software (CEA Drop Time Test, or CDTT software) which allows the measurement of all CEAs simultaneously. After the establishment of hot, full flow RCS conditions (i.e., greater than 525 'F with 4 reactor coolant pumps operating), and with the RCS boron concentration at a sufficient level to keep the reactor adequately shutdown during the test, all CEAs are withdrawn to the full out position. The CDTT software is then loaded into one of the CEAC channals-and initiated. The software transmits a large penalty factor to each of the CPC channels, thereby initiating a reactor trip. The CDTT software records CEA positions every 50 milliseconds during the drop, and verifies that all are within the drop time limit.

f .- Attachment to 2CAN099702 Page 9 of 47 From technical specification 3.1.3.4, the maximum individual and average 90% insertion times required for all CEAs are:

Individual Limit = 3.5 seconds Average Limit = 3.2 seconds A 50 msec allowance is used for measurement uncertainty.

All CEAs passed the limit of 3.45 seconds (technical specification limit minus 0.05 seconds). The slowest drop time was 3.085 seconds (CEA #80). The average CEA drop time was 2.844 seconds which passed the average limit of 3.15 seconds (technical specification limit minus 0.05 seconds),

in addition, ANO-2 utilizes the CEA drop time testing data as a CEA coupling check. li measured and expected drop times differ by more than 0.1 seconds for a CEA, then an additional review is performed to determine the condition of the CEA. Expected drop times are obtained from historical data. After further review, additional CEA coupling data is taken during low power physics testing for suspect CEAs by exercising the suspect CEAs individually and monitoring the reactivity trace behavior on the reactimeter. This provides a final confirmation that the suspect CEAs are coupled. For cycle 13,14 CEAs were verified during the coupling check as part of low power physics testing. All 14 CEAs v.mre determined to be coupled as a result of this testing.

/ .

Attachment to 3CAN099702 Pago 10 of 47 4.0 LOW POWER PHYSICS TESTING 4.1 initial Criticality ANO 2 normally withdraws CL 's to criticality. Shutdown Banks A and B are withdrawn and then the RCS is diluted to an estimated critical boron using a target CEA position of group 6 at 100 inches I withdrawn. For cycle 13, The estimated critics position based on a measgrad RCS boron concentration of 1678 ppm prior to starting the withdrawal of group 1 was group 6 at 93 inches withdrawn. For cycle 13, criticality was achieved with group 6 at 110 inches withdrawn.

4.2 Critical Boron Concentration This test procedure specifies that Group 6 is withdrawn greater  !

than or equal to 130 inches withdrawn. Multiple stable RCS boron samples are obtsined and averaged. The residual worth of group 6 is determined using the reactimeter. The average RCS boron sample is corrected for the residual group 6 worth to determine the

. ARO critical boron concentration (CBC). For cycle 13, the ARO i

CBC was predicted to be 1695 ppm (per ABB-CE, fuel vendor).

The average measured ARO CBC was 1689.3 ppm. The acceptance criteria is i 100 ppm difference between measured and predicted. Therefore, the -5.7 ppm difference for cycle 13 was very good relative to the acceptance criteria.

4.3 CEA Reactivity Worth i

ANO-2' utilizes the CEA exchange method to determine the CEA reactivity worth. For cycle 13, shutdown bank B was used as the reference group. The worth of the reference group is obtained by exchanging CEA worth with dilution of the RCS at a continuous

Attachment to 2CAN099702 Page 11 cf 47 dilution rate of approximately 40 gpm. This provides both a total worth and an Integral worth curve for the reference group. The measured worth of bank B was 2.2223 %Ak/k versus a predicted worth of 2.1385 %Ak/k. The acceptance criteria is 10%.

Therefore, the -3.77% differencs for cycle 13 was weil within the acceptance criteria.

The remaining CEA benks (or groups) are combined into test l groups. These test groups are exchanged with the reference l group. The final position of the reference group with the test group fully inserted and the referenco group integral worth curve are used to determine the test group worth. For cycle 13, the four test groups were 'aanks 1+2, banks 6+P, banks A+5, and banks 3+4.

The results are listed below in Table 4.3-1. All test groups were well within the act.eptance criteria limits.

The total measured CEA worth was 7.2527 %Ak/k versus a total predicted worth of 7.1235 %Ak/k. The acceptance criteria for the total CEA worth is i 10%. Therefore, the -1.78% difference for cycle 13 was well within the acceptance criteria limit.

TABLE 4.3-1 Measured Predicted Acceptance Test Group _ %Ak/k %Ak/k Criteria  %(P-M)/M Banks 1+2 1.5059 1.4781 i 15% -1.85%

Banks 6+P 1.5180 1.4806 i15% -2.46%

Banks A+5 1.0994 1.1126 i 15% 1.20%

Banks 3+4 0.9071 0.9137 i 15% 0.73 %

,- . Attachment to 2CAN099702 Page 12 of 47 4.4 Tomooreture Reactivity Coefficient The isothermal temperature coefficient (lTC) is measured at approximately the ARO configuration. The average RCS temperature is varied by first increasing and then decreasing temperature by about 5'F. The change in reactivity is determined using the reactimeter. The acceptance criterion states that the measured value shall not differ from the predicted value by more than i O.3 x 10 %AWF. I The moderator temperature coefficient (MTC) of reactivity is calculated in conjunction with the ITC measurement. After the ITC has been _ measured, a - predicted value of fuel temperature l coefficient (FTC) of reactivity is subtracted to obtain the MTC. The MTC value must be less positive than + 0.5 x 10 %AWF when power is s 70% and less positive than 0.0 %AWF when power is

> 70%. The MTC must also be within the limits of the Core Operating Limits Report (COLR) for the current cycle. The measured MTC shall be extrapolated as necessary for comparison with the COLR. The extrapolated value shall be within the limits of the COLR for the current cycle.

For cycle 13, the zero power MTC positive limit is + 0.33 x 10

%AWF which decreases linearly with power to +0.0 x 10

%AWF at 50% pon.. At 90% power, the MTC upper limit is -0.4 x 10 %AWF. The lower MTC limit (i.e., most negative) for all power levels is -3.4 x 10 %AWF. (Reference 7.2)

During low power physics testing for cycle 13, the measured ARO ITC was 0.0621 x 10'8 %AWF versus a predicted ARO ITC value - I of -0.0786 x 10 %AWF. Therefore, the 0.0165 x 10 %AWF .

Attachment to 3CAN099702 Page 13 of 47 difference was well within the

  • 0.3 x 10 %AWF acceptance criteria limit.

The measured MTC at zero power was extrapolated to 50% power in order to compare to the COLR limit. The measured MTC is linearly extrapolated using predicted MTCs at zero and 100%

power. The extrapolated MTC at 50% power was -0.309 x 10

%AWF versus an upper (or positive) COLR limit of +0.0 x 10'

%AWF at 50% power. The measured MTC at zero power was extrapolated to 100% power to compare to the COLR limit. The extrapolated MTC at 100% power was -0.724 x 10 8 %AWF versus an upper (or positive) COLR limit of -0.42 x 10 %AWF and a negative COLR limit of -3.4 x 10' %AWF at 100% power.

Therefore, the extrapolated MTC was in compliance with the COLR limits.

1 5.0 POWER ASCENSION TESTING 5.1 Reactor Coolant System (RCS) Flow Rate At the 69% power test plateau, the RCS flow rate was determined by calorimetric methods at steady state conditions in accordance with ANO 2 Technical Specification Table 4.3-1, item 10, Note 8.

The acceptance criterion requires the measured RCS flow rate to be at least 2.93% greater than the design flow rate of 120.4 x 10' lbm/hr to account for measurement uncertainties during cycle 13.

The measurement was performed at 66.64% power as indicated by secondary calorimetric power.

The RCS flow rate determined calorimetrically was 5.17% greater than the required design flow rate which satisfies the acceptance criteria for cycle 13. The

. Attaclunent ts 2CAN099702 Page 14 of 47 COLSS calculated RCS flow rate and largest CPC calculated RCS flow rate were 4.69% and 3.84%, respectively, greater than the required design flow; therefore, the CPCs and COLSS calculations were conservative relative to the calorimetric calculation of RCS flow rate (i.e., less than), so no adjustment was required.

5.2 Core Power Distribution 5.2.1 29% Power Test Plateau Results Core power distribution data using fixed in-core neutron detectors is used to verify proper core loading and consistency between as-built and engineering design models. The first power distribution measurement is performed after the turbine is synchronized and prior to exceeding 30% power. The objective of this measurement is primarily to identify any fuel mistoading that results in asymmetries or deviations from the reactor physics design.

Because of the decreased signal to-noise ratio at low powers and the absence of xenon stability requirements, radial and azimuthal symmetry criteria cre emphasized, whereas pointwise absolute stutistical acceptance criteria are relaxed. A core power distribution map at 29% power is given in Figure 18. The acceptance criteria at 29% follow; a For a predicted relative power density (RPD) < 0.9, the measured and predicted relative power density values shall agree within *0.1 RPD units.

1

b. For a predicted relative power density 2 0.9, the measured and predicted relative power density ,

values shall agree within i10%.

c. The power in each operable detector shall be within i 10% of the average power in its symmetric detector group.
d. The vector tilt shall be less than 3%.

The acceptance criteria stated in a, b, and c above were met for all 177 locations and all operable detectors (207 operable out of a possible 210). From Figure 18, the maximum percent difference for a predicted RPD 2 0.9 occurred in the center fuel assembly and was 6.31%

(predicted RPD of 0.913 versus measured RPD of 0.971).

The largest percent difference for an operable incore detector relative to the average power in its symmetric group was -3.28%. The vector tilt was measured to be 0.48%;

therefore, the acceptance criterion stated in d above was met.

5.2.2 69% Power Test Plateau Results At the intermediate power plateau of approximately 69%

power, a core power distribution analysis is performed to again verify proper fuel loading and consistency with design predictions. The acceptance criteria at the intermediate power analysis follow.

. . Attachment 13 2CAN099702 Page 16 of 47

a. The measured relative power distribution is compared to the predicted power distribution by calculating the root mean square deviation from predictions of the relative power density for each of the 177 fuel assemblies. This RMS error may not exceed 5%.
b. The measured radial power distribution is additionally l compared to the predicted power distr'bution e using a box by-box comparison of the RPD for each of the 177 fuel assemblies. For a predicted RPD a: 0.9, the measured and predicted RPD values shall agree -

within i 10%.

c. For a predicted RPD < 0.9, the measured and predicted RPD values shall agree within t15%.
d. The measured axial power distribution is also compared to the predicted axial power distribution.

The acceptance criterion states the RMS orror between the measured axial power distribution and the predicted ax!al power distribution shall not exceed 5%.

e. The measured values of total planar radial peaking factor (Fxy), total integrated radial peaking factor (Fr),

core average axial peak (Fz), and 3-D power peak (Fq) are compared to predicted values. The acceptance criteria state that the measured values of Fxy, Fr, Fz, Fq shall be within i 10% of the predicted values, and that COLSS and CPC constants shall be

_ = _

==.

e' Attschment 13 2CAN099702 Page 17 cf 47 adjusted to appropriately reflect the measured values.

All of the acceptance criteria stated in a through e above were met for cycle 13.

TABLE 5.2.2-1 PEAKING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED $6 DIFFERENCE

  • Fxy 1.5501 1.5600 -0.6373 %

! Fr 1.5360 1.5400 -0.2609 %

Fz 1.1464 1.1600- -1.1741 %

Fq 1.7657 1.7800 0,8041 %

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 19) l Calculated RMS values were: )

RADIAL = 1.4082 AXIAL = 2.2487 A relative power density (RPD) map for the 69% power test plateau is given in Figure 19. The maximum percent difference for a predicted RPD 2 0.9 was -3.22% (predicted RPD of 0,955 versus measured RPD of 0,924).

5.2.3 100% Power Test Plateau Results The final core power distribution analysis la performed with equilibrium xenon at approximately 100% power. At this plateau, axial and radial power distributions are compared to design predictions as a final verification that the core is operating in a manner consistent with its design within the associated design uncertainties. The acceptance criteria

f -/ Attachment to 2CAN099702 Page 18 of 47 are the same as those for tr.a intennediate power dist.-ibution analysis which are stated in 5.2.2.a through 5.2.2.e. All of the acceptance criteria stated in 5.2.2.a through 5.2.2.e for the 100% power test plateau were met for Cycle 13.

TABLE 5.2.3-1 PEANING PARAMETER COMPARISON PARAMETER MEASURED PREDICTED  % DIFFERENCE

  • Fxy 1.5496 1.5400 0.6239 %

! Fr 1.5403 1.5300 0.6731 %

, Fz 1.1140 1.1200 -0.5400 %

l Fq 1.7127 1.7100 0.1590 %

  • % Difference = %(M-P)/P obtained from GETARP output (Figure 20)

Calculated RMS values were:

RADIAL = 1.2650 AXIAL = 2.1090 A relative power density (RPD) map for the 100% power test plateau is given in Figure 20. The maximum % difference for a predicted RPD 2 0.9 was -3.09% (predicted RPD of 0.952 versus measured RPD of 0.923).

5.3 - Cvele Indeoendent Shape Annealina Matrix (CISAM) and Boundarv Poir.t Power Correlation Coefficient (BPPCC) Validation The CPCs, part of the modern ABB Combustion Engineering reactor protection system, uses excore neutron flux detector signals to infer the axial distribution of reactor power. The 4

i Attachment ts 2CAN099702 Page 19 of 47 algorithm which infers the core power distribution from the excore signals includes an adjustment for the non-uniform transport of neutrons between the core and the excore detectors. This adjustment is provided by the shape annealing matrix (SAM). Prior to cycle 13, the ANO-2 Technical Specifications required measurement and installation of appropriate SAM elements and BPPCC after each refueling. The cycle independent SAM concept was approved as ANO-2 Technical Specification Amendment No.  ;

l 186 and relaxes the requirement for specific SAM measurements during startup testing. For cycle 13, the CISAM and BPPCC were installed prior to startup and validated using the ABB Combustion Engineering fast startup (CEFAST) computer code.

TABLE 5.3-1. CISAM Validation Summary 8,"^".'.."""'.^.!'."'.."".'.".'"..".S'.".".'.'."...""".!

..l.'"!"ff.. ....'.'.".'.'... ..l..". - ..Cf.f. .."."..C, ,,C,N,,0, NLMBER CASES (1) 84 84 84 84 NUMBER 90D0ED (1) 0 0 0 0 ASI RANGE .0650 MIN 1232 .1232 .1232 .1232 MIN N/A .1715 .1715 .1715 1715 MAX M/A .0483 .0443 .0483 .0483 RMS ERROR 7.5000 MAX 6.8036 7.8832 8.1963 8.5218 ASI ERROR .0750 MAX .0470 .%07 .0640 .0694 AFI 1RROR .1000 NAx .0388 .0308 .0346 .0233 REVIEW STATUS PASS REVIEW REVIEW REVIEW (1) Ca4 COUNTS ARE NOT USED IN THE " PASS / REVIEW" STATUS DEctSION Channel A passed the validation process because all of the errors (Axial RMS, axial shape index (ASI) error, and axial form index (AFI) error) were within the allowed guidelines for this particular channel. ASI is defiried as the power generated in the lower half of the core less the power generated in the upper half of the core

t i Attachment to i

2CAN099702 Page 20 of 47 divided by the sum of these powers and is given by the following expression.

ASI = (P t-Pu)/(Pt+Pu)

AFI provides an indication of the axial power shape as to whether it is cosine shaped, flat, or double peaked and is defined by the following expression based on a 20 node axial power distribution.

AFI = (Ps+Pis)/2 - P io i

For the other channels, the status was marked as REVIEW by the code. The CISAM validation process does not involve a clear cut PASS / Fall criteria, but rather it is subject to engineering judgment within the given guidelines. In other words, the MAX values are actually guidelines subject to engineering judgment as opposed to rigid limits. Hence, for Channels B, C, and D, there was not an obvious situation like the one that existed for channel A. For these channels the ASI errors and the AFI errors were within their allowable guidelines (see Figures 4 and 5), but the axial RMS values exceeded the suggested guideline value of 7.5, thus calling for a decision based on a review of the existing data (see Figure 3).

The data was reviewed and ABB Combustion Engineering was consulted. According to ABB-CE lt is not uncommon for the RMS guideline to be exceeded at low power levels up to tround 30%

and even beyond 30%, and this is acceptable as long as the points that exceed this guideline above 30% are isolated points and there is a clearly defined trend of decreasing RMS.

t

  • Attachment to '

2CAN099702 Page 21 of 47 Based on this, the data (Figure 3) was reviewed. For channels B and C the decision to accept was relatively easy, since although some of the points exceeded the guideline, all of the offending points were below 30% power. Channel D was the most troublesome since even above 30% power, about 4 or 5 points still l exceeded the guideline. However, these offending points were becoming visibly less frequent and there was a clearly defined trend of decreasing RMS even for this worst channel. It was on the basis of this clearly defined trend that the CISAM for CPC Channel D was accepted.

5.4 Radial Peakina Factor (RPF) Verification At the 69% power test plateau, the RPF for the "all CEAs out" (or ARO) configuration was measured using in-core detector data and CECOR computer code. The measured ARO F,was 1.5501. The ARM 1 constant in the CPCs and the AB1(01) constant in COLSS were appropriately and conservatively adjusted as a result of this measurement prior to the plant increasing power above 70%. For cycle 13, adjustments for other CEA configurations were not required.

For ANO-2, the CEA shadowing factors (RSFs) are not measured.

The CPC database and addressable constants include allowances for using predicted CEA shadowing factors.

l

g . Attachment to 2CAN099702 Page 22 of 47 i

TABLE 5.4-1. Addressable Constants Summary

. .Par.t.1 Li.l.f.Of < Mou.l.icaED

... C.OL.es.AD0at..s.sASLE..C.O.NS.

. . . ... .. . .. TAN.TS.

CONFIG VAR NAME ORIGINAL UPDATE ARO AB1(01) 2.0000 1.5821

..Pa.rt.2.. ... ..L.I.S.T.o..f . ... M.O.N.IT0.aE.D..CPC..AD0.erssAa.l.t

.. ... . . .. .... C.O.NS.TANTS..

CPC ADeaESSASLE CNANNEL A CHANNEL 8 CHANNEL C CHANNEL 0 CONSTANTS LASEL PolNT 10 CRIGINAL UPDATE ORIGINAL UPDATE ORIGINAL UPDATE ORIGINAL UPDATE AaN1 (*) 74 .2000 1.0207 .2000 1.0207 .2000 1.0207 .2000 1.0207 SC11 81 5.8775 8.8274 6.4151 8.0209 SC12 82 2.5790 2.3949 .2347 1.9998 SC13 83 5.60a3 3.1592 3.8940 2.6600 SC21 84 .0778 9228 .3388 .6439 SC22 85 1.7497 3.5257 2.6255 3.1361 SC23 86 1.2654 .3218 .7058 .4562 Sc31 87 2.9552 4.9047 3.4762 4.3770 BC32 88 1.3287 1.8693 .1397 1.8637 Sc33 89 7.3429 5.8374 6.1482 5.2038 BPPCC1 99 .0206 .0206 .0206 .0206 DPPCC2 100 .1386 .1346 .1346 .1346 BPPCC3 101 .0206 .0206 .0206 .0206 BPPCC4 102 .1346 .1346 .1346 .1346

(*) Although the AP.M1 calculated by the code was 1.0207, it can also be calculated by hand using more significant digits.

Accordingly, it was calculated per ANO-2 Procedure 2302.034 (Reference 7.12) as follows:

ARM 1 (new) = Measured ARO F,/ ( ARO *F,

  • f ) --

where Measured ARO F,= 1.5501 (from GETARP)

ARO *F, = 1.55 and f = 0.98 hence, ARM 1 (new) = 1.5501/ ( 1.55

  • 0.98 ) = 1.020474 This value of 1.020474 was rounded up to 1.0205, which was the value entered in the CPCs.

.t C Attachment to 2CAN099702 Page 23 of 47 i

5.5 Tomoerature Reactivity Coefficient During the ITC and MTC measurement, turbine load is used to increase RCS average temperature, which decreases reactor power, and then to decrease RCS average temperature, which increases reactor power. This manipulation yields'a ratio of RCS temperature change to reactor power c,hange. Using a predicted power coefficient (PC) with the measured average ratio, an ITC is inferred. Using a predicted fuel temperature coefficient (FTC) with the inferred ITC yields an MTC.

The difference between the predicted and inferred ITC shall be less than 0.3 x 10d Ak/k/ F. For cycle 13, the MTC shall be less d

negative than -3.4 x 10 Ak/k/'F but less positive than the curve in the cycle 13 COLR.

For cycle 13, the ITC and MTC passed the acceptance criteria.

d The measured ITC was -0.704 x 10 Ak/k/*F versus a predicted ITC of -0.911 x 10" Ak/k/*F. The difference was 0.207 x 10 d Ak/k/*F which was within the t 0.3 acceptance criteria. The d

- measured MTC was -0.574 x 10 Ak/k/ F versus a predicted MTC d

of -0.781 x 10 Ak/k/'F. The measured MTC was in compliance with the Cycle 13 COLR limits. The difference was 0.207 x 10" Ak/k/*F which was within the i 0.3 acceptance criteria.-

In addition, the measured MTC was extrapolated to 100% and 0 ppm boron to verify by linear extrapolation that the negative MTC -

limit of -3,4 x 10" Ak/k/'F would not be exceeded during cycle 13.

A predicted AITC/A100 ppmb of 0.13 x 10" Ak/k/'F was used for __

the extrapolation. The extrapolated MTC does not exceed the d

negative MTC limit of -3.4 x 10 Ak/k/*F for cycle 13. Finally, the

$.

MTC is measured at power within 14 EFPD after reaching an hot full power equilibrium boron concentration of 300 ppm per technical

specification 4.1.1.4.2.c.

6.0 CONCLUSION

S Pased upon analysis of the startup physics test results, it is concluded I that the measured core parameters verify the cycle 13 nuclear design calculations and the proper loading of the core. All test values met acceptance crite.ia limits and requirements contained within the ANO-2 SAR and Technical Specifications. These results include:

CEA Drop Times Critical Boron Concentrations '

CEA Reactivity Worths Temperature Reactivity Coefficients (during LPPT and at power)

RCS Flow Rate by calorimetric measurement Core Power Distributions at 29%,69%, and 100% power test plateaus CISAM Validation Radial Peaking Factor Verification The above test results demonstrate adequate conservatism in the cycle  ;

13 core performance with respect to- the ANO-2-- SAR, Technical Specifications, Cycle 13 COLR, Cycle 13 CAR, and Cycle 13 reload safety evaluations.

- _ .. ~ _ _ -_

i ' Attachment to 2CAN099702 Page 25 of 47

7.0 REFERENCES

7.1 ANO-2 Cycle 13 Core Assessment Report (CAR) 7.2 ANO-2 Cycle 13 Core Operating Limits Report (COLR) 7.3 ANO-2 Technical Specifications 7.4 ANO-2 Safety Analysis Report (SAR), Section 4.5, Startup Program and Section 15, Accident Analysis 7.5 ANO-2 Procedure 2302.003, Revision 9, Determination of CEA l Group Worths by Exchange 7.6 ANO-2 Procedure 2302.009, Revision 20, Moderator Temperature Coefficient at Power i

l 7.7 ANO 2 Procedure 2302.021, Revision 16, Sequence for Low

{

Power Physics Testing Following Refueling 7.8 ANO-2 Procedure 2302.022, Revision 11, initial Criticality Following Refueling 7.9 ANO-2 Procedure 2302.023, Revision 8, Low Power Physics Base Power Level Determination 7.10 ANO-2 Procedure 2302.026, Revision 11, Isothermal Temperature Coefficient Measurement 7.11 ANO-2 Procedure 2302,028, Revision 9, Determination of Critical Boron Concentration and Inverse Boron Worth 7.12 ANO-2 Procedure 2302.034, Revision 14, Power Ascension Testing Controlling Procedure 7.13 ANO-2 Procedure 2302.039, Revision 10, Core Power Distribution Following Refueling 7.14 ANO-2 Procedure 2302.046, Revision 7, CEA Drop Time Test 7.15 ANO-2 Procedure 2302.057, Revision 2, RCS Calorimetric Flowrate Calibration Using RCSFLOW Program 7.16 CEO-97/169, ANO-2 Cycle 13 Startup Physics Test Results, June 27,1997

B 9

i-R B

__ g B

B f

e 0

r/ W l 9 I *

=

8 E

@ d' '

[/ e I

h .1 g ll l "l dm f/ 8l

//

-g' S

2 g JF e 4f n g 6 8 A n gf a

" i; e 9

eg; EEt

-fd

=

o Jia y g nnaassessecessssassasgas (oW 811e0 lusojad ) ypog leJ6e}ul

<na

\

  • pre 1 Jamed lusoJed 9 @ s a R e E 9 R R 9 o g$

gi e '

l.

. 89 B

,1 -;! h -

Il 13

- 88 I

E i *: . 59

] i .

./

g8

$]

  • J 1 -

1 , ,i ga g *

~

..._ . .. . c' 88 3

1 L/. .. .. g8 gg i 8-9 e -

. ' -. . ... g8

. "m e .

g9 9

. .- /-

.. (*:=

. , 88 as; i -

uru -

ja6 9 eees9Wdd 'uopaJ1ueouoo 9 8 8 8 8 8gg yk g uoJog RH&

s 00:81 52/61/6 n h hi >0:21 52/61/6

" \ y', p' U d>

, '/00:6 52/61/6 n  !.l 7

00:0 52/81/6 j

m

'l >0:81 52/51/6 n

1 n

[f j

l

!i 10:21 52/51/6 00:6 52/51/6 p'gggr / / r' .

j j

/

00:0 52/51/6 00:81 52/41/6 n '

! l ! '  !

y l ;0:21 52/41/6 n l '

l '

ll/ 00:6 52/41/6 n

n

/ /

j

/

00:0 52/41/6

/

g I

>0
81 52/31/6 n

/ /  !'i

>0:21 52/31/6 H

n

! lll 00:6 52/31/6 3 /  !

'f U l /

l ll 00:0 52/31/6 M g Q3 / /

0:81 52/21/6

)m H /

  • w'g

/ i 00:21 52/21/6

! 00:6 52/21/6

" /

E 00:0 52/21/6

/ '

>0:81 52/11/6 W

b' j8 l 0:21 52/11/6 g __>= 00:6 52/11/6 9 _

00:0 52/11/6 l '

\ - l0:81 52/01/6

/ n k W' i0:21 52/01/6 y gA4 d

< n i i

,-0:6 52/01/6

__c- 00:0 52/01/6

  • M.
0
81 52/9/6 8 8 _8 d d O 0 h eerrE SMR laixA 0

> 0wm

s o 00 81 52/61/6

" .i >

bd  :

0:21 52/61/6 n

mI>

4.

4 68W@2 I

00:6 52/61/6 n

4 9, 4. ,e ,.

e

\

s j 00052/61/6

c;8152/51/6
0
21 52/51/6 o

d DE:

u I I 00:6 52/51/6 I

' 00:0 52/51/6 l

I i0;81 52/41/6

0
21 52/41/6

"  ! If l 00;6 52/41/6

u l[

/ l ,

g 00:0 52/41/6

/

I n

1

0
81 52/31/6 l

5 l l l[-  ; 0:21 52/31/6 l n  !  ! '-

l=

00
6 52/31/6 I

1 00:0 52/31/6 H I ,

0
81 52/21/6 3 n u l I

l l

l

[f b I

0
21 52/21/6 3 l '

n l l l h l 00:6 52/21/6 H

, n d 00:0 52/21/6

0
81 52/11/6

/

r P'  ; 0:21 52/11/6 o-o_

00:6 52/11/6 w

00:0 52/11/6

0
81 52/01/6

" \"

0:21 52/01/6 i n >

N.-V R e n f 00:6 52/01/8

/ I

" S

>--- 1rg 00:0 52/01/6 PUWi

'0:81 52/9/6 5

58* E 10 8 hh h rorrE ISA h

3

>OumNr

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ . _ _ _ _ _ _ _ _ _ = . . . . . .

0
81 52/61/6 i<

b bl 0:21 52/61/6 u

ii 998E y

" 9i 9 9'S [ - c$,I /

00:6 52/61/6 u 99 f 00:0 52/61/6

'  ! i i 8 ih-c' 1

g 0:81 52/51/6 i i \ l;0:21 52/51/6 m I 00:6 52/51/6 I

" (f 00:0 52/51/6 o ;0:81 52/41/6 l

_ j

>0:21 52/41/6

.l n

H

!j 00:6 52/41/6 l

j I.

u j 00052/41/6 l

l ;0:81 52/31/6 q H  ! f l0:21 52/31/6 j

! 00:6 52/31/6 F '

! 00:0 52/31/6 u > 0:81 52/21/6 h

m ,

" l 0:21 52/21/6

" fI 00:6 52/21/6 00:0 52/21/6

> 0:81 52/11/6

/

0
21 52/11/6 r- 00:6 52/11/6 u

f I '!

h0:0 52/11/6 o's 9, d ll  ;:0:81 52/01/6 o

u W

CS ?fY l:0 21 52/01/6 ll 0l I

' ;10:6 52/01/6

- j u

00:0 52/01/6 h [

o ';0:81 52/9/6 g@o .

O 15 g %

5 hh h rorrE IFA D$2

s o Attachment to 2CAN099702 Page 31 of 47 Figure 6 i V re. eon I til

_: - cm -. > -

a ye:.- =t .n y_ .

.- -- r g - -- - -- &'M ) -f f

m w ry".ws..mmy.

gry:

< g : g ;.

mp. e ~s u m m m m m m m m u

-rf g

~

MW M'n.l ..--r p g" - ",

m,.m a s s.nx,m, a c y . wmFF%T. . ~ p,y t

4 g: . aj ss,oso , . ..M bd C

d;@IPC M NBR FW ,

AsuaMM?

C&T MLEf Q9 CkIMIFLEI!U
DCrAaANKl{

.PhotRC . .Mi CADFDCERR c+ecocann d,snagigtg M

g. "0.0 .

hA S=GANOLUf4edcecem empty cach xo.4*s 4."C= CYAN Med tm 10= RED empty bom

JimQAgf't &939. 514 4 > ; y g e; VIbst = _.. 3fgg,33.,,,. rypyyayQ Figure 7
.ema.w. _ =

tamme*A s*=wA ll 1 .,.,3% p 8 Owwtweg ; ig g g- 7, .

,st y :gg' r s. .u .c .

.ii&% euMerv:v n y m e;-

, -m.~, .m m y,_, ,<...m 4 ,.-

'n i

Q qqqqMU _ n,m.m'a,yph ': Q % GyA %giwam ' n -

O.000 (

i csun g a h

DT tegtNN?

QNoufutt;&

C crasaNKn; CIA. N Nk AmeAntm,

-0.oes c

$3D6K Ml g4gggggggi C 80195sW1 TitAROC52

' c inso c c u m -

%$3TEMtERR IMm' O.0 I'3 $ '

' min.- ,-Q0 m

lA=0LU er$y esch 18 GAN f5edeachs

'O' N jC= CYAN reed bon de 40A388L84146m ag; o . . J TML m_DAg;,;gggg g3 fymt; ay.; Ayyr;JTIM;jiD-RED _ , _ empty, _ tm l

. Attachment to 2CAN099702 Page 32 of 47 Figure 8

',e AN I or N I Ve t .ie l r - . .

- 4 k g, --

~-}_ 'lldidh .y L f ihe:

$15?NY l l

$*s5'"A IannY' 0-.-

" g:gl;4 >c sf:i 3.l g 'gaumauC O W T Mft%.1, ' "*

  • " ~ 'j ~ $__:]EGiji 7.1e4 '

q .b s@}j

?--

- i>

LW h .

POL 2 POL 7 194ATm i '

4SUTLET 1l$AsANK 53 pgnmi saame

'CMpecsm b i-

! RO

.. % _. l' .0LdMyE

,,0=GRN feed oscan C= CYAN feedta l 1.se3 . I O-RED empty bom

?9sti N N rti m W W 6 h i - ""

m.g=L'*,Jxa996GWIIPM* A- K , _ __ ' "

_ ___  ;.;;m Figure 9

" " !!BB R!!E EI R! H E!E llR RFi n.osa yj J'XSgtege)]i _

- l  :

fd62EEE gi-

~ (CNARANEM 20 'a Stas

._ ggg,i
-

=.

11AE.EER M 0.0

.. 91mlif ao

. w w-ow empty cieu 9.GA N Hied crcle s.eae ClC= CYAN li5edtm 0

Ann'14,7&set- eaa 41agenp g 33; nadE IN D4Y3p ; y. .g _3-ath(17,34ss7; As rsy

t A Attachment to 2CAN099702 Page 33 of 47 Figure 10

' a AN I or NI Ve e. iun i j y

'wa,.

nc F0 -V.Wr* 9> :'w' na :* :4 ' < *. . e : : t

'; $1 , ..

. < %pr.p..f < tlO..;X 3 . .. :.,y.; . .; e n @)qJ

. l!u febLuha.46.sant a iJ 1al.a a 2 "

i i j y wu,.h. .- ~. .,mm 110.965

.-um-mn.mvawJdfd b ij41 a i d

igg 2 1 RV

+ , -m

.l-' f_5_W-

, 1. IAu 11 ..

  • 94.413 lissaa meget W D0 iW3E_._._ ,e.c=

aw x.GRN 2 feedcircla

. " = " I C= CYAN Abed bou lo.nco 8146' 5%P.*.""q448%4 MffQ44(9WWW e , .,,,_ di%$M W84 Elf 4W h 5. m .1,..___e ___sbo.

Figure 11 i

'# AN I or N I Ve r:. sun I C4 3 - w g,0.n;:num, %pg '-~~ m . . a t y' .s 3 l l : Wge; rigp/

? ,. ..( j.w.1,. J;, . .i, . ,, ,, . ,f: .r.:.,j

. : .,;. :,'..f.',,.,, +,.,. . '. / . ( . , -

'+y J .1 a.murmi: w m 1 L ' M. s.: . .. '. , . . -

~~- \t-t'i .

swm' - '[i tA

f. ' , . , .  ; + lD ,W ,,! h,' 7,'fj ?
  • ' (. 'q . ., ' V,'UM t v e m 7 ss' 4,
: wgy E piw : sushgeggrggy :We. r :4q 117.420 P EM iti nD

_CWEA 'J EISMJ 102.svo f' gggi

( :g g L tMR' 0

N 2T i

.a a0 1.,.

gjlQO id=0LU erMW cacts NB=GAN feedescio

"#0 dC= CYAN filed bou

-!D=AED ernpty ban

-Just: &S,..;15911.4 RA 14 pg. .999 pgHDEL N4 43Er3.% .,pg; i _,p v. 41118 47,,4FPpJL5;EK+&g% s ,,

l

  • A Attachment to l

2CAN099703 Page 34 of 47 Figure 12 em ' a AN I o r N I Vr r t,

' i

$h $ arr M g, .

s. k -

wimAs ; GEN at 4

n wm we .

t Okkkfh3

_Laiami M M T E90NEFBW 1w87"'fV Nh.r; t i f' i L bNNNhBNd bh  !

l ao7-ns _.# -

i l

ll l 1

i' )I

/ Wi wedg

/

+ cegY h:

y a ras

!g a0 u!b"&

p=GRN feed osces C= CYAN filed bm

'd. I we4 ue w .3megaam a.=n.c=w;=-IT'$__6* _

Figure 13 e

t . . . _

%__q w..n.= w w .. = m , m , .- ~  ;

-o. sn i g

k N..N. t m '

a's a

y

/

& h Y! ~f

. . .s , -

.g"K F'

d lutki Ag..M$

2.o54 SCL__.

y;}g ggg(

T s

xc Y

gg ~$

.;Cfsnt,88mg.1 J

.ynes

.;gJ.h80DC@R' "C3M RNcffin

~..__.. ,~

(~ } RD'

. _ ~ " ' ~ ~ ~ ~ , _ _ _ _ . _ , , ,',"'..g', lQ0 (TdLO ernptyescle

iG=GRN Naad eircle

-3.sie _

, _,/ s.IC= CYAN fited ba

-40= RED empty _bou

Jun?.404,ASEtaau.; .e;;a, g6 +.TWatIMmie;s%igungang,VM ?If#A**Taa #U'ei= nice-,

'. O Attachment to 2CAN099702 Page 35 of 47 Figure 14

.h . ar .u. ,. . . _ . - -

..y .. _m r__9

,,g Jgg :.t_ g _

EN  !

m wwwwaunw 0.000 lumammmmmmmmmmmmmmal w m m ppmm l l

M

  1. tiitdM w gj-
  • g l

'" ' i

-0.00s

. Ii p"*

a

.r ?l >y-l '

Ili i b IL a

0.0 a(

up"s QO 4LU empty cede

.o yr Id*d f.0= RED em s 8449n g..,@w .'cM 4 a MMNt f'4RlNRML MG:mgifeWpflidMR$ _ _o y ,,tm Figure 15 I RNelegg oc __.

$%I108847%s% c  ?

.,., 3 J., _-,.....mm E .....-,._......_.........a.m....._m.

. ._.k N y..ppiMW .m,_

PP:Je WW.m ROP _" MN3 X M "" N f80WEWf'-WW9hFt.

4.557 -'

g' -

lN A N

$ d4  %

s e.

as .*

f.h t

. &Mi l

1.ssa , Y b t

g

.3 , 1 s a .o- . .  ; $

e oze

. . .4* glao

.,=

" TJno i

, jA4LU empty cecia

-. B=GRN feed encle 1 s 4., IC= CYAN Imed tm

lO-RED empiy tm IA44ihWWiM40- aeWr
.:g grt m s'L M ag4gggg g 443% ,.,3 4 3 < JF 3 7FaGjgegen, I

1 1

1

~' Attachment to 2CAN099703 Page 36 of 47 l Figure 16

',e AN I ur N t Ve c.suse I til . 9 l

, J ^ jg k[hMId;5Od.'@h  ! IN%2'bh. gb '. >. .l k[

f r - -

}--D [%'ff f k l9 Q2.,*)

Q -s

% *'y ' - l g  % <! ).f

) g{.

  • 3

'- I v

-, w w -w, o'J'^ ' .

t.: :b non

~-

WQ R WeWMMs Micpgeu;nga therva es edM_af-pue MmW

.' o.pss d O'N ammer N

yh

,r .

l l

94.413 >

zin-  : ,

ram sF lS'h* '

XM

= =g 6W y r;igy ao

-m, l -. '; a0

    • =6LU Nledceces m cscia
  • * ,ps ,  ;*B.GRN
17. ort dC=C(AN feed tm lj0AEDervyta m*When;t,wwww-asem.m,p4wa mas, agem , . . - , .

Figure 17 S

h_

E E

_z..

m .. _

m J:,' ^" ' "'. " ' V' ."' ' " '

._ _ w.'-- _ == a m = sg-m ML2

= .---- - - - _ ,_, ,d

,b s:_:.

== in n Ah

,,,,,,, q

%E g, p wao

  • g k00

'A=8LU ercy esceu

.GAN Hied escia ev.8#e?ro . -C/AN liend tm re,4% s- , -3f d .

3 rsm.=vsv PUWEM , i . g.( -

y 78.78 SD d g,.R'D p m?==my br 1

1

' ' Attachment to 2CAN099702 Page 37 of 47 FIGURE 18+ ABB GETARP output for the 29% Power Plateau ns ...

N. em Ar.3 s I

e MMMM.: mmmn samassage8 TTTm11m -

AMA n. tmm.

9999999999 N WLM m

aus ens em esse esses esa

. sen.sa.s m m

m asa anA em Sannannana osansamma 3mmm M maan ammannse 9memt uma m 4 h { ( 4 A.

em m M TTT &AA A8A GM sER P99 M OmgeMW Tft ama Asa um WA M9 BESM TTT AAA MA est BEL Mt LFfes 4 A saamass to WWRACT SASL 3W5 (WIS SeemM FILM se CWahlagN OF M1AL aus meals See MagelsutIWm. Esta tuoman sus tem teemise to M&aN CWDahsasBI es Tup Wigug anameM Fis.es. EMS Inst 1HIS genemass My le IWIM FWL 154 EWER Wim SWeemt Finas CMA15e 98 394 CSCsR.

O estauree etamp pak ut asvlaMu 4 lab 1ebba0 peg 8t.LDM 9eSAsed. Okla GEfesCTOD Fusas.ststent. eel i

i 9: RELAf3VO

+ e A4M.Ab => scum; DifM18Utlef CMasamlaan

- +

8 teEDICTED s a .384 8 494 0 .448 a .444 4 .404 s 8 estslans e e .tM s .441 e .Mt a .444 e .361 e i NFftABC8 . Isand..smassC150s - E 100 0 3 4 NeTER a e 14.48 3 4.96 s 4.6% 5 ORBesCEED e .e -

. 4.14.e. s ll.1S e . - 4 a .349 0_ .414 a 148 3 3.484 e 1.169 s 3184 s 914 s .See # .ite 4

  1. .291 e .481 e 189 a 4.881 # 308 e 903 e .991 s a 4.89 e 148 e 4.14 e lett e .L.lM 4.00 se 3149 *l.44 s#1.M e .98 8 e.81 8

+ --  : e  :- . .  : . .  :

t a .438 s .tet # 1.118 s 4.fl0 81.194 s 8 800 4 3149 s 4.814 s 4.115 3 .943 8 . 43 8 s s

.484 3.494s.tst 3 4.134

  • 8.30 a *4.94 a 1.189 s .8.31sa4.19e *.84e s1.848 .l.tl sa 4.449 *.11 #e.l.8.%L net es .4.L34 4.8% es 8.14 . tee #s .484 3 34 ss e -e .
_ _ _ _ -; .+  : e. e .. : +

s .310 e 988 a 4.018 s 4.885 e 1.304 s 4.948 3 4.364 a 3.844 s 1.841 a 1.lle e 1.815 a .tst a .349 e e .944 s .894 s e .314es 8.31 0.93 . 948e s.l.04 4 984s s8.H 4.M4# s 1.888 00 s s.44 4.844s 4 34 s 8.318 e .48as1244 14ae1.388 l.98 e sL .8.H4 .01 8 s .8.M8 8 t.84 s 19.48 e p +. - e.  :  : . ..-  :  : . . e  : e e .186 s 3.118 s 1.344 s 4 194 41.319 4 8.144 a 3.841 e 1.143 e 1.814 s 4.194 s 4.184 s 1.419 s .Sil a

  • 4 .MS a 4.lM s .489 3 e 4.84 s .8.01 a3.M .5 e891.01 s 3.199 a .88ea 1.819 8.03 a s4.41 4.391 a 3.18 e 1.895 a a 35.193 43 .44 ss 1.314 s 1.891 a .4 896 3 4.188 a
t. 99 e + 8.0 4 3. + 8.M.: . a e e  :  :  :  : .+ - - - -  : .
  1. .334 a 119 a 1.tne a 199n a 3.314 a L.M13 4.343 s 3.816 a 1.364 a 1.H1 3 8.815 a 4 308 s 8.314 s 118 e .484 e s +349 e 118 s 188 8 .389 e 4 81.,s 3.48e a 8.84 .1448 a 8.19 t.ilte a s01 4 314 # 1.81 s 4s 3e4 4 48 s 3.49 3.333 a 4.44 e 4.841 s s94$.308 a s4.319 e 4 991: s4.10 1800 s 3.n49 4 a e .33 e 88.98 4 e - 4 .-e  :  : - - .44 +a .t.43.s . 4 3 .434 s 3.LS1 a L.let # 1.894 4 3.143 41.904 4 4.854 81.194 s 4.364 s 1.048 # 1.144 s 1.948 e 1.159 s 1.lH s .486 s

.ete a n. net a t. net a 4.858 38 4s 1.494 a 18L8 .63 s3 3.990 4 98 e 1.8M 3.13 ss1.308 8.M e4 4.848 e 4168 3.96 4s 8 tee .8%# 81.nes . 63 #4.1.400 8.58 3s 4.44 .448 se 4.89 e: 8.44 ,e_ .ee s -3 a .it a

+ _ _ 8.44 a.  : .  : . - - : .  : +  ; w -6 s .483 s 3.109 e n.M4 8 4.364 s S.M4 s 1.866 3 4.168 s .358 s 4.168 s U819 a 1.848 e 4.3H e 1.see a 1.149 s .4e8 e a .983 8 .600 e s 8 43 a 31.1903e s a.44 1310s a 1334 s 4.314 s 4.848 44 s36.88 4.lMs e .91% 14 3 1.30% a 1 8.M 849 a 3: 1.308 l.95eea.33.49l.831s6 3e 49.,s

.1.543 s .1.144 a e .+ .: 4 4 %e s 4 .M..ae 1 to..a. . + _ _ -  : .: 4 8.44s.1494  : . . .

s .434 s 3.164 41 llt a 3.888 s 5.tM s n.963 e 4.864 8 8.190 e 4.864 s 6.304 e n.343 3 3.944 s 3.140 a 1.481 a .484 e e .444 s .444 s 44 a 3.14 a .44 s 1.48 e 8.14 s 1 04 s .00 e 8 98 e a

e 4.4L e 4.ste

e. 3.43 a . 43 .a.
. # 4.468 s 1864 s 1.169 31.384 .  :  : 3 4.311  : ___*s 4.339 8%.8 + a 4.811
+= a 4.851 e # L.494 e 1.364 s 3.168 3 n. In s .334 113 s 5.818 e 4.399 a 1.31S a 1.84141.344 s 3.310 31.M3 4 8.841 e 1.814 e 1.308 s 3.214 # 110 a .334 s a .3M a 194 41141 s 4191 s 3 Mt # 18e4 a 18ee # l.2M a 3.914 a 1.80S e 4.319 a 1.3H s 4 8e8 a 13e 3 .344 e a 14.64 3 1.el a 4.M e 6S e 14 s .80 8 .44 s 3.54 a .9% 3 8.48 s . 30 a .45 s l.00 a 3.433 8.01s
- -e .-6  ; e  : . - .

+ 4 3 .lli a 1.116 s 1.384 a 1.LH # l.fie 41.149 a 1.841 e 1.144 s 1819 31.1014 3.8M a 3.11$ 4 .988 3 s . 5 84 s a .tse ss1.439 3.03 .4.19 e4 1.845 8.44 ae 1.168.43 # 4 L.63 M3 ae 4.M 4.143 s e 4 818 s 1.198 4 .t.8ee 38 se4.81 1.394 s .S.M8 e 3.43 a .8.43s 3 146s 5.064 s 4 . +  : .e . .9% .e.: 3 45 s  : ..: + _ e a .M98 .943 a 4 018 e 4.8M a 4.8913 8.9%4 3 4.3H 3 8.NS s 1.305 a 1.331 s 1.958 a .Mt e .314 e e .994 4 .939 e 4.641 e teo a .34L a 8.M a ..On s el.14 e .08 s 51 a 38 4 6,38 s .99 a .11 s ll.84 a a .1.53 4 8.48 e *8.44 p+_:  ; .* s .1.896. + s 1.4918 4.844 31.314 a 1.MS s 1899 s 3.111 s 1 M4 a

.  : - e s .431 e 448 s 1.111 a 1.314 81.149 s 1.M4 e 1.189 a 1.314 31.110 3 .M3 s .438 s a .4M s .tst a 1.119 s 4.41% a 4189 a 3.835 8 4. net 31849 a 4.184 e .tae a .481 s

  1. 1.54 s 4.M e .4.05 a .3.It a .H s .t.4 5 s . 64 s 8. M e 4.14 a .3.49 s 3.84 4 e ..  : - .+

a .310 s .las s 114 s 3.181 a 1.104 s 1.134 s 114 0 .511 e .349 4 e .See s 133 e .541 e .313 e a

5,M e tet a 114 s .4 80s # .1.144 s 3.100 g .04 a 9.69 4 e . 53 e. .?! 8 8.30 a 8.14 3 +3.36

. -  : .w a 1 41.e:

e .896 8 .4M e 448 8 .424 0 .834 4

% a .3 54 s .448 s .M1 a .444 a .451 e s 13. 13 3 4.09 3 4.49 4 4.11 a 44.4% e w o __ +.- e I

tege 1

'> ** Attachment to 2CAN099702 Page 38 of 47 FIGURE 18. ABB GETARP output for the 29% Power Plateau, continued 9**,,.

RELAfitE Mlas BWWh Slf5BfSWil0B OAINdtteDN asse casencise smaa . S tltfgassEE 9 . M40 . Hee a.3131 3 .4064 .eees os.tlee 8 . S tet . l ast +9.9964 4 .Sete .4406 *1. M i t 9 19M .6500 +S. 03 93 4 18 ' e 1999 +4.13 48 1 1 890 1444 *4.4319 9 .999e 16 M el.llel 9 .8 9M .0 t24 + 0.1964 10 .9919 . 6 .J1 =8.44 31 14 .0 fte . Stet *0.5701 88 .9914 .0139 +8. 0819 13 . t h et .0003 *8.9319 le 9830 .9035 *8. M34 il . Seet . 914e + 4. 004 4 16 .9434 .9319 +3. 4133 11 . 910e . leet * $.1144 le .9930 .64 83 af. tMS le 1.Dene . tees *8.1199 34 8 6834 . 99ee +3. M Ps

  1. 1 4.0310 4.4814 on. 6799 SS 1.0514 4.0341 el.4llt SS 5.0498 8 0843 *l.4H1 34 S .St et 4 9181 e.6418
  1. 1 4.9936 l.0044 e. 84e4 M 1.1088 8.1991 *.4305 31 8 3800 8.8311 .1918 M l. nase 8 lHe . Site il 4.1444 8. 84 D9 .5433 M l.1944 4.4485 .6499 31 8.nese 3.4119 . Deet i

M l.4196 4 44e6 .9164 i 84 l . ltee 8.3e43 1. Mla H 4.1919 1.8400 n.1434 34 4.1990 5.9311 8.8140 M l.2334 8.3446 3 1131 81 4 8410 5,3949 8.8101 M 1.8314 8.3640 4.1460 M l.33M l .31 H 4.1108 40 8.33 he 4 3194 4.4416 41 4 3440 1.3113 4.5Mt 43 4.2004 4.3 Set 4.4441 43 4.1986 8 3316 4.9189 44 l. leet 8.39S1 3.4490 44 8. ll M l.1414 f .8141 44 8 M98 8.1641 1. tee n 41 4.4849 8 0839 .tell se .MM .6411 e. 9444 49 . tile .4444 +8.1844 le 1986 ,1M4 e.0Le3 58 .38 M .6833 31.9944 1

peartas pann . ameNdL180M DAgasSTM 95Ad . feeMette 4 DiffMIIIES

( rut 1.5444 8. 91e4 *l.01M 4 i fu 4.5394 8. 54e0 .. Sill 4 PS 1.2153 8.33ee 4.53a4 4 90 4.M98 8.0000 4.3416 4 9 CAanEATE4 AIS 1148.peB hacIAL

  • 8.3913 M146
  • 3.1993 4 amneese &8t * *.lett OpeBICTtD Asl * . 1194 i e McEnAmes Canula asem, l

o enuman rav'" une simu Me a mins le.ee. . Or sus Ms ices was.

8 P- It me uttella Mm Em taleLW $4.900 t er Tus saBefCTED taEAm.

9 GE&9 tate PS MS WTIEIIE PblE W 181 515 te.900 t Of '31st GumplCTes talus.

t neume 50 Who et1tIIe Mang a elets 14.996 8 Of TIst sume(CTee ishLus.

4 les Resum GII AltthL MSTRIOUTies me 154 Stense a WilM. To S.944 t.

4 135 EMBEL CM RAtlAL Otralewildas as less fiese M Eps4L 10 5.000 S.

6 ALL paastCitt ItastAL 90uma less gamer 6.8 que st11ess mm sul stuMe St.ees 4 er neAsungs.

9 Al4 ImmICTS8 RAstAI. femme sneafsm 1 man OR Sem4L 10 9.9 4AA S13 sale Male em tenus 44.464 4 0FteAaense.

8 * *

  • AL& arrertaluc4 Cm1Tm2A MORS WWW. ***
yttupnuoul go C3YN06640E d'88 C6 oJtL JI0 22 I6*-Yga onyud onadna ;o2 Gte ' 964 dom *3 dTe4*en oH3vsnt30 dv&V SY&eYD&8c AGWtV42410t* tot 2231(

d 3 4

......... ... ,43!Y&!A91YQlV!'

.... . , omit 01.81ISA1!.oN

. . ... .. D04V 18091 8 44301J13G I I *!tt 8

  • tit 8 'tte i 'ttS # ' tit i )W1Yt * -ist013L1CI f Wfvratto 8 i 'ttO i *991 i
  • tot i *999 f 6 dt4A04iM32 * .~.-**
  • I 100'0 i 10 20

,8 l 018J5E 8

e ,. ...... . ,. .' ..i l t9

..'...8 t*98 8

,  !'09 i,.. 4'819

  • tL i 8 dird!J&lO
  1. *tL9 * *tt6 I 181 i t*tte i 1*t16 i *Lts i *tt9 I *tLt e i *lat f *ttO f *LtO
  • &iL # t* i t'll& i 1' lit i !'til # 'ttE i 'tt9 8 *446 #

i 9*tO i t'&9 f *43 i **t6 # .t'tS 8 **lt # 14 f t

,.. . ... .- y.... ,... . . ..........'........'$t i...e. .'09 f... . . .

i '988 i tit 8 1*t00 i l 110 # 'sti f *tte i j

f '981 i '4ti t

i l'ttE 8 t*t61 # 1*ttE 9 t # .t

i t*4S( i649 f l t89 i t*tel i !*tte i l'tte ' lit i i l't99 81*tet i t120 i

..,....'L6 . .. ...... .i .#

i t

...t'..I ,f. . .'. ,f_

t rt .'tI #

y l' tS .,-

  • 8 .t*tt I .t'91 i.,.t'426 .'...,-

tt I f *L9 f 8

8 *!t9 I '441 i t*090 # t* tit i t*teD # l' tit i l* tot i t' tit f t'200 81* tit i t*090 i '449 8 'tt9 8

  • 491 i t
  • 0tI i 1 i t otI i 9'tel i .'el& # *869 &*tt I i

fa

  • t9 ,...t*62

.. *t'.te 8....'at'466 ti

.,f.. **0( ...,#- i t*tel '04 1*t4

,8. i .....f l't94 itst'814 i - 01 i .t*09 8 l'!tt f t'200- ,. 'ti 8

,i l'teL....' . ,8 .....' ... ....i .t'*t6 i ff 'tt9 8 l'ttt 81* tit i t'llI i t'8L( i l't09 8 l'891 # 1*l&9 81 ttE 8 l t42 81* tit 8 t*t90 8 ' lit f t'12$ 8t 8 *&9 8 f*S*l& t*ttf i #-t*tI t'862

  1. , . ...'i t'teL i l'tte i t*16( # t'tet i t*t62 i t'*t&t* 8 tt69 91 .. ' t t ...t * &S i. t*tS I I 1'861
  • tL 8 .t*tt8 t*tt9 i t'tto lB f 8

,_ -- ,. . . ... . . . ..... ,. i.t*tt . i 'tS #, . tS t. .........8 ..'...... ,

(

f 'tt9 i *&tO i t* tot i t*!00 8 1*ttE 8 1*#&t 81*til 8 t* tit i l'ttE i 1*ELt i t*t&R i t*t09 # 1'209 i 'ttO f 'tte i s

9'tts

,i -...i. #.~.o

  • Lt6
  • tS f iat*CL-.1*tet e i.'i- t*t46

..r i 8 *te OL t*tL6 8 l*teL i 1*8titt*tS i l't918  !*ttE i '90 t'ILO **00 i 1*ttt8 i**tt t'ttOI .t t t*tel # 'ttI # *tL ft

,i.-.'..e . .' 26e8.. 4'tt9

'tI t lO 8 t'ot

y. ...p f LS

.'-.,f . ,#. .r .. r .' ..p tS 8

..o i

  • tit i t'tto 8 1*ttt # 1* tit 8 l t&D f l tit i t*t&9 i t* tit i t* tot i l t11 f l tit ii t*lL9 tat 6g8i tt290 849 #8 t'tt9 t*tte#i t*t'1818 t03 i '*littit8f t'002 i 1* 8tot 'ti i t*tts # t'tt9 i t'*ttE

,f 92 8 -t*ES

'...q . .

f s

  • 99 i t*te f

'tti ,,ttt9 i

  • tS#, t*202 8 l*!! .8 i t*ttS 90

'.+..f.

  1. *tI t*til# iI*fS

...... ..i.. '...,i 84 **lG f *l' 9 4 t t lO f

...... .e '....

i f *960 8 t*tto 8 t'290 8 t* tot i 1*396 81*ttE i l'tcE #

tit i 'tte i t* tit i l'ttt i t*t91 8 t'801 i t*tte i t'140 8 '040 8

,# *....,ftot i*1*96 l'tte8,....'...8 8 t'tLtit 81*92 1*2t6 i ..,i-t*tt9*tt 8 t*tet .. t*i ..t' &t *2$i it'ttt

.... ...... i l'teL

,i '....i i t*tto 81*tet f l t4 8 t'216 8 t'tte i 'L(

1*ttL8 8 l'946 #

t*t6 8 *gO I. -t*tt 91

  • 92 t'46

,....'....f. *t*69

'....f ....... .,I ,

i 'tt4 8 1*ttI 8 **t94 8

.f *t918 t*1tI # l't94 # t*t56 8 t*te6 e l' tot 8 l'tLS 81*ttt I t*tLS f t*tiL 8 t*t418l' tit I t*t49 8 l' tit tit # !* tis i 'ttt I 8 lett9 # t*gge # t* tat I t* tit i 1*t&D i 1*ttO f l'ttO i t* tit i i t*ti I

, ......p ..

    • 6T 8 **09 #

o r 'p-ti i t'46 8

  • ES 8 =*09 f

.p p 91

'...8....' ..e 81 f *tS i 1*&& i 1**00 tit8 i t' lS i =*19 8 t'ttg

  • '!E #i

.. .e . ...o .. .o.. .. o . .p ... .o f

  • tit i tLR i 1*#&t i l*t!! i t*ttI 8 tL2 8 1*t00 i l't00 8 'tte 8 'ttl i f

6'219 *&te i t*t09

  • 91 i 8 *tS i .t't81 8 t i t*t69 # 1't98 i t't96 8 1*tel i t*t12 8 l' tit i l'tet 8iLt 88t*!0(
  • 4( 8# t't64 8 t' ti T't&& 8 t*ttt i 'tt9 i

.*&9 # .* **t9 # 1*tl&

'91 i 8 l' 60 8 l' te # l'tI # O'!ti *09 #f

,8 e ...... .. ,... #.. '.t9

. .f.. .. 'LL 8, r y

  • t9 i a '91

. 8,- __, ... .

t 'tt6 i t*ttO f 1* tit 81'142 8 t*t&R i 1*t&D i t*t91 # t*tt9 81*tLI 81*168 i t* tit i t* tit # att9 i

  1. 'ttittt i t*tte i t*t89 i t*tet f t*t91 f t*tet i t'ttl i t*t418 t*tt9 # t* tot # t'868 8 l'ttt f

,i .'...4 ..t'.90

. . . .f 't'69 i, .,.. ' .8....' 00 .i

.*tL 8 . lO 90 # 1*te i *t6 f

,.. '.....09 8 -t*01 i, -t*tO i, t'ttt

  • 49 8i i *t69 8

i '619 # t*099 8 t* tit i t*teD f 1*tte f t'201 i t'219 f t* tot I t* tit i t'098 8 *4ti f *tt9 f

  • 269 i 'eit i t '646 i *264 i

,8- 9*LD ,. t*ti i-e i =t'eet

'ot 8 at*tL i 1*208r .'

  1. - 09 f t'166 r.

f **tL881*ttE

  • 69 ii t' tit04i 8t*t91

.e .' e.

    • 82 i 8t't01

-r - -

  • t*tI i it*t6$

o

    • 46fi **0tL r

ti f

..'..o f 0*t6 f

....o

  1. *320 * *6$$ i 1* tit i t*!00 8 1' lit 8 1*290 8 t*t96 8 l 809 i t*t90 f 619 i '920 #
  1. 'tt4 8 *426 i 1* tit 8 t*t&S i l'tt6 i l' tit i t* tit i tt81 8 l'ttI f '6tS *
  • tit 8 i

, '20 ,# .t*tf ,8 *t'91 # -t*t9 8 .'t6 8.*t*OL f .*tt i .t

.....'tt .I .t 60 t, .g'*tt ,I ..' .f t 96 i *tt9 f '119 f 116 8 1*tLO # t*1tI f *&tO 8 "116 i tit 8-8 *206 i ' tit i *Lts 'Lt8 i i t* 1'tel 8 l'tll i t*toL i ' tit 8 8 '26( i t 9%

,f. .' ..i ' 06

.I **eL ,f -t't(_,8 *t*t9 ,- .

i *!*ts ,8 *tf ,. 1'1ZL 8 'l(

,i9*t6 i .

f 'ttO i ' lit f *tse i *lCS f 'ttt i f *tSD f *t91 8 '091 8

  1. s tt t*ts t t'066

'09 i i 1 68 i 6'lil #

,8.. . -.....' .. *t9 ,f

--1 t Ih>

i /4ttactinmenit to l

2C:/(14104)9r7()2 l'alge dlC) c>f 47 {'

FIGURE 19. ABB GETARP output for the 69% Power Plateau, continued RELATIVE All AL POWIk D187R19UT10N CE*PARISCN NODE PRtDICTED MLA8. t 01FFBk!NCE 1 .4160 .4734 13.7942 2 .4600 .6690 3.4420 3 .4670 .6til -1.7772 4 .7260 .7310 .6946

& 7000 7963 2,0004 6 8250 .0500 3.1416 7 .6600 .9964 4.1120 0 .0000 .9304 4.6404 9 .9140 .9571 4.7100 10 .9360 .9760 4.4479 11 .9420 .9900 4.0104 12 .9680 1.0005 3.3560 13 .9820 1.0073 2.6776 14 .9960 1.0126 1.7486 15 1.0010 1.0171 1.0011 16 1.0190 1.0219 i

.2840 17 1.0J00 1.0276 .2400 10 1.0410 1.0343 . 6476 19 1.0610 1.0422 .0370 24 1.6610 1.0512 .9201 21 1.0710 1.0411 .9276 22 1.0800 1.8713 . 8036 23 1.0090 1.0816 .6027 24 1.0980 1.0914 .6032  !

24 1.1040 1.1004 . 6070 26 1.1140 1.1083 . 5077 27 1.1210 1.1151 .5274 28 1.1200 1.1206 .654e 29 1.1350 1.1240 .0104 30 1.1410 1.1245 1.0922 31 1.1460 1.1314 -1.2719 32 1.1510 1.1340 33 1.4798 1.1640 1.1364 1.6238 34 1.1570 4.1309 1.6429 36 1.1490 1.1415 1.6122 36 1.1600 1.1439 -1.3889 37 1.1490 1.1451 -1.1430 30 1.1410 1.1464 9170 39 1.1420 1.1449 .6140 40 1.1460 1.1402 .4142 41 1.1340 1.1310 .3403 42 1,1210 1.1160 .4494 43 1.1000 1.0934 .5020 44 1.0130 1.0624 .9710 in 1.0380 1.0217 -1.5747 46 .9930 .9494 -2.3328 47 .9348 9044 -2.9538 48 8620 0310 -3.5000 49 7950 .7438 -6.2452 50 .6400 .4443 .8231 11 .4770 .5363 1

12.4409 PSAKING PARAMETER COBOAR!s0N PARAMETER MEAS. PREDICTED 4 DIFFERINCE FET 1.6501 1.6400 .6373 4 FR 1.5360 1.4400 .2609 %

F3 1.1464 1.1600 -1.1741 4 FQ 1.7667 1.7000 .0041 1 0=

CALCULAT80 RMS VAWE3 LADIAL = 1.4082 AKtAL = 2.2481 0

MEASURED A31. = .0494 PREDICTED AST = .0616 0

ACCEPTANCE CRITIRIA O& PORT 0

MEAKURED F1Y WAS WITHIM PLUS 03 MINUa O 10.000 4 0F THE PREDICTED VAUUS.

MEAKURED FR WAS WITNIN PLUS OR MINUS O 10.000 % of THE PRIDICTED VALut.

MEASURED F1 WAS WITHIN PLUS OR MINUS O 10.000 10F TMS PREDICTED VALUS.

MLArukSD FQ WAS WITHIN PLus OR MINUS 10.000 1 0F THE PRIDICTED VALUE.

6 O

RMS Ethon ON A11AL DISTRIBUTION W AS LR38 TRAN OR EQUAL 10 4.000 4 RMS ERROR ON RADIAL DISTRIBUTION l AS LES$ THAN OR EQUAL 70 6.000 4.

6 ALL PREDICTED RADIAL PCmdR3 lea 3 TRAN 0.9 0

WER$ WITHIN PLUS OR MINUS 15.000 1 0F MEASURED.

ALL PREDICTED RADIAL PATERS GREATER TRAN OR sQUAL TO 0.9 wtR8 WITWIN PWS OR MINUS 10.000 4 0F MEASUR10.

0 ***

ALL ACCEPTANCE CRITERIA WERE MIT. ***

FIGURE 20. ABB GETARP output for the 100% Power Plateau 4

- ~

t, q yttuptmout so C3VN066LOZ d880tl F PL owtytatta avty gyts'yJt30 gleutegtlaew*sO(

0000 g,_ -e tElWIAI 4vQIV!'.4,MIE 418LtitaL!0N O]eeW4tsom 8 44301JL30 f f 'tte # lit I f WTYf04SQ I '961 f ' lit f *t90 f IM1VF *-J t3GIJt 848 t'ttl

  • 66I f 'tll ' i '102 i l olaJta "tI( f *249 i t d f 4 J R E S N35 * * *---* **-* *------ 3 100 ' 4

.f...........8 ,.......,...............,....'L4i....l'.te8.

t 94

....'...,8....'...e.......

9 et f J tICt 3t kO f "ttO f 'til i lit f

  • tit f 'gtt f *tet i f

t't61

  • t9 ii
  • %t6 i ' tit i t* tit i t*t*tittiti 81't00 #

' tit i t'111

,...................'....................f.....

i t 49 f *tI # *tS *06 t' t9 f .' *00

  • tit i *420 *6L ii *tet t*te ii
  1. ttt f '61( # 149 i !*ttO f '642 i 'tt( f f 'ttI f
  • t6 # t*ttt i t***tL

-t'tf6 i t*ttO

-t 4L ii l'ttO t61f il'tDG t* titf t'291 i t*tte f i t

  • tte i t'let i t'liS f lit i

.........f............'lO 8........'...........8........f........f............'...

  • tO *t9 1**29 tit ff t'* 9L i ....'...........,...............,

-t 06 # .t'6t6 atI f 8 .t6 8 f *t61 # '412 8 t'099 i t* tot 8 1* tot 8 l* tit i 1*t46 # !'tt4 # t01 i t'099 8 '61( f '440 i i *569 t f *691 8 1*091 8 t'tte i t*200

-t i t*!tO f t*tt8 i t*ttO i t'160 #l'200 t i t'!09 l 7 '63$ f

, ....' 9 6 I. ....* t S f *l*0t I -t lt i t'9( f t **te .t' tt f -t'096 te i **te l'269 ts f

................'9LI....'.Si.....'.L...............'ot f............#....'.......'....f.......,I....'....I f *ttt i 1't90 8 ttI i l'ttE i t*tl& f f *til f \*1tt i l'240 1*t01 # it'16C t*t6ff i1*l't41 i l't66 8 t*200 i l't69 tot i t*lli f '12$ f l'ttO8i t*tte i t*tet i l'86E # l'tCS f 'liL i

,.......8....'ll ,.-l'91 f,........#

8 *41 *0( 8 'te 1 t 99 i,....*tS i........'....i....'!! 1*!tt

  • 46 Ii t*t6E
  • 09 #i =t' tt I .t'tI 8 *tL #

l i

  1. *ttO f '089 8 l't49 i t*tcO f 1*ttO i l'ttf 8 t* tit 8 1'llI 8 l' tit 8 t*!tE f t*tal f t* tot f l't6L f ' tit # ' lit i i *!ts t 09i 'ttO **56i t* tel i t f* tte**148 t'289 t*08 i 8t *!06 i l'ttS t 99 i t*t94 # t*ttO f t*tel 8 l'ttO f t*146 i t'teD f ' tit 8

,I....'....i.......,i- -t'ot l 1*tS

,.......,i............'t9f........'....f........i....................'lO t*16 f *&S I - ti f -l I(

8........'.......'....#....'t9

  • 9'219
  • 46 8............f i f *t91 # 1* tit i t*llO 8 t'291 i t*ttO f l'tt9 8 1*got i t*!te i l'ttE f l' tit i t*tet t t*ttt f t* tit 8 1' lit f ' tit #
  1. ' nit f t DC f -t'100 *14 i- 8 1'191 8 1*t59 l# t*t4( # l'ttt i t*tet f t* tit 8 t*869 i t* tit f l't6L i t*t9( i 1*ttg i 1*t00 f 'ttE t i *00

- f....'6 i.....'.tS 1

i *t9 f 8L 8 62 i 49 i l tO i

.....'L6 #...+............'........'........'........'...,....'....i....'....#.......f.......f tt - tE -1*t6 *tI

  • t00 tt6 i l'tt6 #  !*let i 211 8 1* tit f '49L i t66 8 1*2te i t*tt6 i *t61 i I

'0618 it l't91 i l't91

  1. t 09 f -1'
  • t e i l'ttl 8 1*881 t *t91 i 1*i t'!tt 8 1*!tO f i'tt9tisi it'291 1* 1*t91 ii t'29Lt*265 fi t't'216 i t tiG i t t99 '966 #

st i l tt 1*tS *t6 -t t'681 1C 8 - t2 f *tS t t6 t 99 f

,....'...,.......,#....'........'...8........i.......,#....'tt i........'...,#....'............#....'....i....'....f. . . . ' . . . + .ot. f. .-t' .tO. .f. 'ti ,f _

f *t91 8 I '999 i t* tot i t*tlE i t* tit i l'ttO f t'111 i t* tit i 1' lit i *99l'telt il'ttl t*lOtit i l'tet 8ttE t'ttL ii 1*

tet ff 1'teL t*ttI l'tt9 i t*ttO t*tt9f#8 i1+t69 l'ttl i t*tto 8 t* tit i '998 i

  • &g i fl' 09
  • t*tte i 1* tit I l't03 #

,f. .....I.. .*&S I . 21 *tt i 1'tt9

  • ti ff

.........'...,f.......,............'........'...,.......,....'tLi........'........'tif...,....'...

  • t9 f 09 i l l ti f
  • t9 f -

....'91 f

f *!ts I 'Lt9 i t

  • 16L i t' tot i 1*tL\ 8 f

t'251 ti # f

'tt6 8 l

  • 6# # -t'ttS 1*t62 i l'iL( # t'ttO t* ELE f t*i t'ttO f tit i 1*i 1*

ttt if t'849 tit f 1'tLE i t'iLO f 1*t00 # t'169 f Lt9 I 'ttO f tit i *69l't49 i l't91 i t'146 i t*t0902 f 'tte f *tel t l

,....'........... 02 8 t' tL '

f - ti f **01 *&1

..'........'..-+....'01 ... f.. '1L #,

  • tt

.............,f.......,i........I....'...,i....'...+....'....#....'...8.......f

- 00 I - 09 t*t6 f

'tt$

' lit iI 1*t12 t*liL i it'l'ttttel ff l't6( f t*ltO i t*ttO i t*t9L f t't42 i l'ttt i t'16( i 1*t01 i t*llo i ' lit i t*tet i t'291 i t't4( f t*!t9 f l't60 i 1*lat i t* t41 i t'26E i t'tt9 # 'tt6 #

f

  • te 29 f

,.......................,...............8............'...8.....

  1. *tI f -t*tL f -t*tt ' *to f 96 *99 # ti *tS *99 8 '240 8 '61( i t

.....'....f........f........# -t'lO i. . . .t .09. .f. . . . . ' . . . .

i *269 f *692 i t'099 i t* tot 8 t*tcO l !* tit t t*t66 i l* tit 8 1* tot i l'tel i 1*099 f '4tE i '!et i

,i 1*t9 f +t 11 f -t'091 *tt I i.t*t9 1*2tt# i-t*tL t*t098# !*t90

  • 91 f 8 1* tot i 1*tt9 i t *16D i t *t81 i t
  • 096 f '652 f *26L I
  • 94 f 2$ f - -t*te # t

............'...................................,............'........'tIf................'90f.....'.2i. . . ....' t t I. ...

0 l I

  • tit 8

'61( # t*1$0 # 1*t69 i l'ttO 8 1*tt6 i t* tit 8 1*teL i l'ttE f ' elf i ttt f f 'tt6 i

  • 4it 8 !*ttO i -t*tL 1*tal i t*ttE f l'ttO i 1*ttO f t*ttt i t*tt6 8 'ttO i ' tit i *

,i .......,f -t*06 i -t*ts f....................

    • tL - 98 *96 *16 f *t tt -t*OC f -t*tS #.... . ............'...,i

..f....'....f.......,i.......+....'....I - ot i *tet 8 *%ti f 'L!t I 1* tit f t*t96 i t'ttt i *t89 f '92$ f *ggO f I *t61 i i t t'ttE f **04 'ttE i t*069 -t'96 i t*ttO i t'100 f 'L!t 8

  • tiL f *261 f

.....'tC i........'t6 f...,........f -l*04 f -t*tt 8.................,i....'....#............'

- t9 t*t9 f t 20

..t i *ttO f *391 f *96$ # '991 f 'tf6 f a

  • 390 f *teL f *t92 #

s'319ti # f *te i 9'*61tit i

,....'........... ...............8 ........

i *ti f *tO

\

l i

l

? I ' 8W Attachment to 2CAN099702 Page 42 of 47 FIGURE 20. ABB GETARP output for 100% Power Plateau, continued Et1ATIVE AK!AL POWER D18tR3DUT10N CoCAstscW E003 FREDICTED MEAS. I DIFFERENCE 1 .4690 .6107 11.2712 2 6060 .4141 1.6069 3 7320 7081 -3.2680 4 1950 7090 .6511 6 .0%30- .0696 .7614 6 .0990 .9174 2.0116 7 .9360 ,9630 2.000%

0 .9650 ,9942 3.4409 9 .9090 1.0230 3.6149 13 1.0000 1.0411 4.2066 11 1.0230 1.0619 2.0216 12 1.0350 1.0676 2.1017 13 1.0440 1.0694 1.3233 14 1.0640 1.0601 .3060 16 1.0660 1.0696 . 4124 16 1.0730 1.0692 +1.2054 11 1.0000 1.0690 -1.0116 10 1.0010 1.0617 -2.3269 19 1.0930 1.06%1 2.5607 20 1.0900 1.0699 -2.5651 21 1.1030 1.0769 2.4668 22 1.1080 1.0826 2.2942 23 1.1120 1.0096 -2.0236 24 1.1150 1.0942 -1,6494 26 1.1100 1.1821 1.4193 26 1.1210 1.1971 1.2444 27 1.1230 1.1107 -1.09$0 20 1.1240 1.1130 .9807 29 1.1260 1.1140 +.9021 30 1.1260 1.1130 1.0042 31 1.1260 1.1120 1.0004 32 1.1260 1.1111 1.2321 33 1.1230 1.1092 -1.2270 34 1.1200 1.1072 1.1419 35 1.1160 1.1062 .9649 36 1.1110 1.1031 . 7165 31 1.1060 1.1006 . 4070 30 1.0970 1.0970 . 0021 39 1.0010 1.0917 .4340 40 1.0760 1.0838 .014%

41 1.0600 1.0719 1.1233 42 1.0400 1.0649 1.4125 43 1.0110 1 0314 1.4159 44 .9070 1.0001 1.3290 in .9600 9599 1.0391 to 9030 .9097 .7406 47 .0440 .0409 .3300 to .7770 .7711 .0079 49 .7040 6943 1.3717 to .&750 6011 4.4314 61 .4310 .4983 15.6097 1

FIAKiwa PARAMEtst contARIsou FARAMETIR MEAS. PRIDICTED 4 DIFFSRINCS FET 1.6496 1.5400 .6239 4 FR 1.6403 1.4300 .6731 4 F8 1.1140 1.1200 .6400 t FQ 1.7127 1.7100 .1490 4 0 CA14U1.ATED RMS VALUE3 RADIAL = 1.2650 AXIAL

  • 2.1996 0 MEASURED ASI = *.0090 PREDICTED Rat * . 0003 0 ActEPTANCE CSITERIA REPORT O MEASURED F1Y WAS WITHIN PLUS OR MINU$ 10.000 t OF THE PRIDICTED VALUS.

O MEAKURED FS WAS WITHIN PLUS OR MINU3 10.000 % OF THE PRIDICTED VALUS.

O MEAKURED F1 WAS WITNIN PLUS OR MINus 10.000 t of THE PREDICTED VALUE.

O MEASURED FQ WAS WIT *'N FUU$ OR MINUs 10.000 % of THE PREDICTED VALUE.

O RMS takOR DN AztAL DISTRIBUTION WAS LESS TRAN OR SQUAL TO S.000 4.

0 SMS ERROR ON RADIAL DISTRIBUTION WAS LES$ THAN On SQUAL TO S.000 4.

O ALL PREDICTED RADIAL POWERS LESS THAN 0.9 WISE WITHIN PLUS OR MINUS 15.000 4 0F MEASURED.

0 - ALL PREDICTED RADIAL F0WERS GREAflR TRAN OR EQUAL TO 0.9 WER3 WITHlu PLUS OR MINUS 10.000 4 OF M1A3URED.

0 *** ALL ACCEPTANCE CRITE81A WERE MIT. osa

l, ', ' ' h Attachment to J

i 2CAN099702 s Page 43 of 47 4

1 i

j .

FIGURE 21. CEA and ICI Locations M

I q

i a e c . e e e a J u a u a e s l l .

I I I f  :  !  ! l l l l  ;

4 . . . . . .

j i -e- -- -e- -- ea' o..l n.e e i e .

  1. # 1 t 1 ' t 9
  • 1 k * ' l i

j l

muime M

. W..

M.c malu.m mWis.m e. --h.j-c.

n mmium l

l i

i a

g -

g . .

g .* "A s.

!  %.e, -

l

. - __ M. .e . h> .. . ,

l A m y m g g d 3 .. ,

_.L__

s . . . -. . . . . -

m W

! o u -

= gaggi .e n

"""."."""*. E_,. M M M.

~

, , . _, . C. .. -

! _ m g Engal *  :.:.

l

... . O_. .e -

U.e . U M_, .

~~~"'

p 4

i

= - -

i i M &- tion o o M " .L i

,. .mp . '

to . s t

. pe . a . . r . . .

A * * '

n.. .

. .. Q g Q

g .

n.

7 ., c 1 . p. . 4

. ,. . . P. .

as M ,,,Jo,,,, et u g M es M.

,w i, o' ,

l u . m., . s.e 5

ce r-14 . ,. . . . ,. .

l et 4 es 44

,n

  • maq j 18 -

, i j -;e 6 e = basese bietnsessneseee Leestion Note: ICI nuenbees 21 and 26 emitted. These looetiene .entein Reacter Vessel Lewel Monstokig bietrumente.

\

)

i l

I

l

' . ' - ** Attachment to 2CAN099702 Page 44 of 47 FIGURE 22.

Arkamass Nuclear One Unit 2 Cycle 13 Core Leading AssemtWy Numberof FuelReds iniuol Number of intial M Fuel Rods B.C Desi0 nation Assy's perAssy Endchment Shime/Assy shim Loadin0 Shim Rods (Wo U-235) (em B 104n)

K2 1 172 4.11 12 0.018 172 12 52 3.8F $2 N2 18 188 4.11 18 0.024 2888 258 52 3.85 832 P0 18 184 4.11 0 -- 2944 0 52 3.85 832 P1 8 178 4.11 4 0.018 1408 84 52 3.85 418 P2 80 184 4.11 18 0.028 10080 980 52 3.85 3120 R1 18 178 4.40 0 2818 0 52 3.00 832 8 2.30 (Ged) 128 R2 12 172 4.40 0 - 2084 0 52 3.00 824 '

12 2.30 (Gad) 144 R3 18 188 4.40 0 2848 0 52 3.90 832 18 2.30 (Gad) 258 R4 32 184 4.40 0 5244 0 52 3.90 1384 20 2.30 (one 840 Totals 177 .

40480 1292

% * * ' ** Attachment to 2CAN099702 Page 45 of 47 FIGURE 23.

Arkansas Nuclear One Unit 2 Integral Burnable Poison Staim and Enrichment Zoning Patterns for Batch R Fuel Anemblies 9SeG

$2S&

ilBBBfli R1 R2 R3 R4 O High Enrichment (4.40 w/o)

B Low Enrichment (3.90 w/o)

E Gadolinia Rod (Gadolinia enrichment = 6 w/o: carrier enrichment = 2.3 w/o)

D *$ '* Attachment 13 2CAN099702 Page 46 of 47 FIGURE 24.

Arkansas Nuclear One Unit 2 Cycle 13 Fuel Management Scheme

, 1 l

nn xx nn- OC Location (Current Cycee 13) 1 2 2 35 3 14 xx = QC Location (Previous Cycle 12) 55 BB = Fuel Batch identfier N2 P2 P2 rr er = No. of 90 Degree Clockwise Rotations 2 2 2 4 5 5 20 8 18 7 8

(

N2 P2 P2 R1 R2 2- 2 2 l 9 28 10 11 12 13 7 14 P2 R1 R2 R3 P1 R4 2 2 I 15 22 16 17 12 18 19 11 20 21 30 N5 R1 P2 R3 P2 R4 P0 I

2 2 0 3 M @ M 24 H 31 26 U N N P2 R2 R3 Pit R4 P2 R4 2 2 2 29 37 30 24 31 32 23 33 34 10 35 36 8 N2 P2 R3 P2 R4 P0 R4 P2 2 2 0 2 ,

2 37 42 38 39 38 40 41 33 42 43 16 44 6 P2 R1 P1 R4 P2 -R4 P0 PC 2 2 2 2 2 45 14 46 47 48 30 49 50 8 51 6 52 31' P2 R2- R4 PO R4 P2 P0 K2 1 2 1 1 0

'Reinsested trom Cycle 9, QC Location 31

41** Attachment to 2CAN099702 Page 47 of 47 FIGURE 25.

Arkansas Nuclear One Unit 2 BOC Assembly Average Burmup and Iaillal Enrichment Distribullon

EOCl2 = 461 EFPD m BS BS = Batch idenMEerfor Assemtdy nn 1 N2 2 P2 3 P2 muum SOC Assemtdy Average Bumup (MWD /1) 34000 23500 13400 y.yy .

IrWiel Entchment (w/o) .

4 N2 5 P2 8 P2 7 R1 8 R2 37000 23900 23200 0 'O 4.40/3.90 4.40/3.90 9 Pt 10 R1 11 R2 12 R3 13 P1 14 . R4 24300 0 0 0 21200 0 4.40f3.90 4.40/3.90 4.40/3.90 4.40/3.9'O 15 N2 14 R1 17 Pt 18 R3 19 P2 20 R4 21 P0 37100 0 23000 0 21000 0 19300 4.40/3.90 4.40/3.90 4.40/3.53 22 P2 23 R2 24 R3 as P2 26 R4 27 P2 28 R4 23000 0 0 23100 0 24300 0 4.40f3.90 4.40/3.90 4.40tJ.90 4.40/3.90 29 N2 30 P2 31 R3 32 P2 33 R4 34 P0 35 R4 38 P2 35000 23200 0 21100 0 17500 0 20700 4.40/3.90 4.40/3.90 4.40/3.90 37 P2 38 R1 3N P1 44 R4 41 P2 42 R4 43 PO 44 P0 23500 0 21300 0 24200 0 17500 19200 4.40/3.90 4.40/3.90 4.40/3.90 45 P2 48 R2 47 R4 44 PO 40 R4 50 P2 51 P0 52 K2 23400 0 0 19300 0 20700 19200 38800 4.40f3.90 4.4013.90 4.40/3.90 NOTE: Batch M gacHinia mds have carrier e6richnent = 2.30 wt% U235 o