ML17037B505: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 2: Line 2:
| number = ML17037B505
| number = ML17037B505
| issue date = 11/02/1977
| issue date = 11/02/1977
| title = Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle 5 September 1977
| title = Start-up Physics-Test Results-Cycle 5 September 1977
| author name = Dise D P
| author name = Dise D P
| author affiliation = Niagara Mohawk Power Corp
| author affiliation = Niagara Mohawk Power Corp

Revision as of 19:36, 2 April 2019

Start-up Physics-Test Results-Cycle 5 September 1977
ML17037B505
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 11/02/1977
From: Dise D P
Niagara Mohawk Power Corp
To: Lear G
Office of Nuclear Reactor Regulation
References
Download: ML17037B505 (34)


Text

DISTRIBUTION AFTER ISSU OF OPERATING~ICEiVSE U.S.NUCI EAR REGULATORY CQMM'IQN l.NRC FOai+195 (2-7S)NRC DISTRIBUTION FQR PART 50 DOCKET MATERIAL OOC T NUMBER FII E NUMBER TO: Mr.George Lear FROM: Niagara Mohawk Pwr>>Corp'yracuse,~kew York j.Donald P~Disc i OATS OF OOCUME N T 11/2/77 OATS RE CEI V E 0.11/4/77"-TTER)klRIQINAI QCQPY C}NOTORIZED T UNCLASSIF ISO~3-f-/7/fg.PROP INPUT FQRM ENCI.QSURE NUMBER OF COPIES RECEIVED"Nine Mile Point Unit 1 Start-up Physics-Test Results-Cycle 5 September 1977" pLANT NAIIE: Ni.ne Mile Point Unit No 1 RJL.11/7/77 (1-P), (29-P)SAFETY BRAVCH CHIEF: 7)FOR AC i ilON/INFORMATION INTERNAL 0 ISTRI BUTION I GE (2)OELD CHECK EISENHUT SHAO BUTLER GRITS~OLLINS J.O~LPDR: TIC O~EXTERNAL DIS I RIBUTION NTROI.NUMBER NSIC 16 CYS ACRS SENT CATE 0 Y~~->iO)12, v'I e", j't r*

y~tt'5 Yv'rg I~"X~(('(tLBS~It NIAGARA MOHAWK POWER CORPORATION NIAGARA'~MOHAWK 300 ERIE BOULEVARD, WEST SYRACUSE, N.Y.I3202 Cgpg November 2, 1977'<o~'-'irector of Nuclear Reactor Regulation Attn: Mx.George Lear, Chief Operating Reactors Branch g3 U.S.Nuclear Regulatory Commission Washington, D.C.20555 Re: Nine, Mile Point Unit 1 Docket No.50-220 DPR-63

Dear Mr.Lear:

Your letter of March 4, 1977 requested Niagara Mohawk to submit a summary report of the startup physics tests within 90 days following completion of the Cycle 5 startup test program.The enclosed information addresses your re'quest.Very truly yours, NIAGARA MOHAWK POWER CORPORATION Donald P.Disc Vice President-Engineering 773il0112 SWW/szd Enclosure NINE MILE POINT UNIT 1 Start-up Physics Test Resu1ts-Cyc1e 5 September 1977 Test Abstracts and Results The test abstracts, results, and comparisons of measured and predicted responses for the star tup physics tests are outlined below.1.0 Control rod drive scram tests (hot)2.0 Shut down margin tests.3.0 Instrumentation calibrations.

4.0 Cold Critical comparison with actual measurements.

5.0 Power

distribution calculation comparison above 505 power with actual measurements.

1.0 CONTROL

ROD DRIVE SCRAM TESTS (hot)

1.1 Control

Rod Drive Scram Test Abstract Following a major refueling outage, it is necessary to verify that the control rods fully insert upon receiving a scram signal within the time interval specified in the Technical Specifications.

The general procedure is to withdraw the control rods in the A sequence to the"black and white" pattern;then alternate between scram-insertion and withdrawal until all the previously withdrawn rods.have been scrammed arid the remaining rods withdrawn.

At this point, the rod pattern will be in the B sequence"black and white";then alternate between scram-insertion and withdrawal until all rods have been scrammed, and the rod pattern is the A sequence"black and white" again.After analyzing the scram times, the control rods are withdrawn to the specified beginning of cy'cle pattern.The control rod time testing shall be considered acceptable if Technical Specification 3.1.1C is met.

1.2 Control

Rod.Drive Scram Test Results Table 1.1 contains the results of the control rod drive scram tests (hot).Results of the test are within the values specified by Technical Specification 3.1.1C.(see.Table 1.2).

Tabl e.1.1 ROD SCRAhf TIhKS AFTER JULY 1977 OUTAGE RODS 02-19 02-23 02.27 02-31 02-35 06-15 06-19 06-23 06-27 06-31 06-35 06-39 10-11 10-15 10-19 10-23 10-27 10-31 10-35 10-39 10-43, 10-07 14-11 14-.15 14-19 14-23 14-27 14-31 14.35 14-39 14-43 14-47 18>>03 18-07 18-11 18-15 38-19 18-23 18-27 18-31 18-35 18-39 18-43 18-47 18-51 22-03 22-07 22-11 22>>'15 22-19 22.23 2?-27.32.33.33.33.34.34.34.34.34.33.33.34.35.35.32.32-.37.35.32.35.33;36.37.35.39.36.35.33.34.34.34.34.36.34.35.39.37.35.35.34.36 37.34.34.36.32.36.32.34.35.34.35 20~o.72.76.71.76.76.80.78.77.78.82.79.78..84.82.72.72.91.84.81.81.76.79.82.75.93.90.85.74'77.78.79.71.71.80.73.87.85.80.75.80.88.85.81.78.75.74.84'.75.75.83.72.78 50<o 1.54 1.73 1.60 1.66 1.63 1.80 1.69 1.69 1.70 1.'82~1.77 1.74 1.87 1.84 1.65 1.65 1.98 1.84 1.86 1.75 1.68 1.67 1.85 1.68 2.07, 2.00 1.88 1.66 1.75 1.71 1.78 1.59 1.54 1.73 1.61 1.91 1.84 1.78 1.71 1.74 1.95 1.88 1.77 1.72 1.68 1.62 1.86 1.68 1.76.1.94 1.65 1.69 90~o 2.66 2.94 2.74 2.80 2.68 3.06 2.78 2.86 2.85 3.07 2.99 3.07 3.20 3.11 2.82 2.87 3.31 3.25 3.19 2.95 2.85 2.78 3.14 3.00 3.40 3.39 3.23 2.94 2.99 2.93 3.03 2.74 2.90 2.88 2.95 3.23 3.07 3.01 3.25 2.93 3.28 3.22 3.02 2.96 3.00 2.79 3.11 2.89 3.19 3.44 3.08 2.85, y Tab1e 1.1 (Continued)

RODS 22-31 22-.35 22-39 22-43 22-47 22-51 26-03 26-07 26-11 26-15 26-19 26-23 26-27 26-31 26-35 26-39 26-43 26-47 26-51 30-03 30-07 30-11 30-15 30-19 30-23 30-27 30-31 30-35'30-39 30-43 30-47 30-51 34-03 34-07 34-11 34-15 34-19 34-23 34-27 34-31 34-35 34-39 34-43 34-47 34-51 38-07 38-11 38-15 38-19 38-23 38-27 38-31.35.37~33~33.33.35.31.34.33.36,.39.34.36.33.36.33.34.35,.31 ,35.35..34'.37.38.34.37 37..36.36.35.30.35.31.31.32..36.35.36.37.39.36.37.31.32.32.31.36.35.34.36.36.30 20~a.82.82.77.77.74.81.76.79.74.83.88.80.84'71.87.79.82.86'79'8]:80.82.83.87.77.91.89.86.74.80.72.79.73.71.74.87.83.81.88.93.76.80.74.75.75.78.80.76.81.86:80.77 50~o 1.80 1.78 1.68 1.72 1.55 1.80 1.69 1.72 1.67 1.81 1.88 1.84 1.89 1.69 1.80 ,.1.73 1.88 1.81 1.82 1.75 1.76 1.85 1.82 1.82 1.68 2.08 1.93 2.00 1.68 1.76 1.65 1.73 1.58 1.54 1.65 1.98 1.90 1.78 1.99 1.91 1.68 1.70 1.69 1.62 1.61 1.72 1.74 1.73 1.78 2.03 1.75 1.76 90~3.07 2.99 2.82 2.96 2.59 3.04 2.86 2.90 2.87 3.07 3.18 3.27 3.22 2.93 3.06 2.94 3.18 3.08 3.08 2.92 2.99 3.16 3.07 3.08 2.88 3.48 3.21 3.34 3.09 2.98 2.85 2.91 2.66 2.58 2.80'.40 3.27 3.05 3.48 3.19 3.04 2.85 2.87 2.77 2.74 2.90 2.94 3.20 3.06 3.43 2.99 3.00 Table l.1 (Continued)

RODS 5 o~20~o SO~o 90~o 38-35 38-39 38-43 38-47 42-11 42-15 42-19 42-23 42-27 42-31 42-35 42-39 42-43 46-15 46-19 46-23 46-27 46-31 46-35 46-39 50-19 50-23 50-27 50-31 50-35 Average.36.3'3'35.30.31.36.37.$5.37.33.36.36.30.29.35.32.36.35.36-.28.32.34.31.35.33.345.81.78.75.72.77.82.86.78.86.72.85.81.76.72.78.79.83.84;80.69.76.77.74.80.77.814 1.75 1.69 1.63 1.54 1.72 1.77 2.07 1.69'.90 1.58 1.83 1.74 1.68 1.60 1.67 1.75 1.81 1.87 1.70 1.51 1.64 3.61 1.63 1.75 1.63 1.78 2.96 2.89 2.76 2.60 2.93 2.99 3.65 2.85'.23 2.79 3.04 2.94 2.84 2.72 2.79 3.01 3.03 3.06 2.88 2.60 2.75 2.70 2.78 2.92 2.78 3.08 Table 1.2 Avera e Scram Insertion Time Com arisons'A Inserted From Fully Withdrawn Average Scram Insertion Times (SEC)After July 1977 Tech Spec Outa e Limit 20 50 90 0.345 0.814 1.78 3.08 0.375 0.90 2.00 5.00

2.0 SHUTDOllN

MARGIN TEST

2.1 Shutdown

Mar inTest Abstract The purpose of this test is to demonstrate that the reactor can be made subcritical with a shutdown margin of 0.25Ãk at any time in the subsequent cycle with the strongest operable control rod fully withdrawn.

With the core at its most reactive condition, cold and xenon-free the analytically strongest control rod is fully withdrawn from the core.A second control rod is then withdrawn to a position which results in an amount of reactivity at least equal to the required maroin.The shutdown margin test shall be considered acceptable if the reactor has remained subcritical throughout the test.

2.2 Shutdown

Mar in Test Results Figure 2.1 summarizes the results of the Shutdown Margin Test.Control rod 18-27, shown analytically to be the strongest, was fully withdrawn from the core.Control rod 14-31 was then withdrawn to position 08 which analytically resulted in an insertion of approximately

.8%delta K.As shown on Figure 2.1 the reactor remained subcritical throughout the test.Results of the test are within the criteria specified in the Technical Specification.

FIGURE 2.1 REACTIVITY MARGIN-CORE LOADING Procedure:

1.All Rods In SRM'1 12 13 14 Readings 43 35 29 17 2.Rod CR1 18-27 selected 3.Rod CR1 18-27 position 48 4.Reactor Subcritical SRM'1 12 13 14 Readings 44 50 30 20 5.Rod CR2 14-31 Selected 6.Rod CR2 to position 08.7.Reactor Subcritical SRM 11 12 13 14 Readings 45 58 32 19

3.0 Instrumentation

Ca1ibration Test T.\3.1 Instrumentation Gal ibr ation Test Abstract The purpose of this test is to calibrate the Local Power Range Monitoring (LPRM)System.The LPRM System is a spatial array of in-core fission chambers used to monitor the in-core neutron flux.In the process computer formulation, each chamber signal is calibrated to produce a meter reading which is proportional to the neutron flux in the water gap at the axial elevation of the chamber.The calibration procedure consists of data taking, calculations and amplifier adjustments.

A set of LPRM readings and Transverse In-Core Probe (TIP)traces are recorded.The process computer is used to determine the correct readings'hat the LPRM's should have read based on the TIP traces.The individual amplifier input calibration currents required to produce a selected standard meter reading on each LPRM meter are recorded.These input currents are divided by the ratio of the calculated-to-observed LPRM readings (Gain Adjustment Factors-GAF).

These new input calibration currents are then applied and the amplifier gains adjusted to produce the selected standard meter readings, thereby calibrating the LPRM's.

3.2 Instrumentation

Calibration Test Results Figure 3.1 contains the LPRN Instrument Calibration Results for an instrumentation calibration performed at a power level of 985 of rated.

FIGURE 3.1 LPRN INSTRUMENTATION CALIBRATION RESULTS LPRH PROBE AS FOUND'NPUT'CURRENT G;A.F.REqUIRED INPUT CURRENT'105%8-41C 36-33C 36-49C 44-41C 28-41A 36-33A 36-49A 44-41A 36-41C 28-49C 44-33C 28-33C 36-41A 28-49A 44-33A 28-33A 36-17C 44-25C 28-09C 28-25C 36-17A 44-25A 28-09A 28-25A 28-17C 36-09C 36-25C~44-17C 28-17A 36-09A 36-25A 44-17A 12-33D 20-41D 12-33B 20-41B 12-41D 04-33D 20-49D 20-33D 12-41B 04-33B 512 880 855 851 720 842 994 943 1100 10 10 515 970-874 N o 807 783 970 815 630 903 970 473 752 890 949 1060 656 970 927 750 536 823 930 894 983 307 1120 1483 1240 1160 1060 857 D e t e c.87 1.05 1.00.99 1.78 l.05 1.01.99 1.08 1.06 1.11 1.08 1.11 tor 1.05.68 1.04 1.06.96 1:09 1.09 1.0,8 1.05 1.10 1.06.97 1.00 1.01 1.09 1.03 l.11 l.00 1.03 1.00 l.00 l.17.35 l.05.96 1.18 1.03 1.05 588 838 Same 859-395 801 984 952 1018 952 463 898 787 I npUt 768 1151 932 768 656 828 890 438 716 809 895 1092 Same 960 850 728 482 Same 902 Same Same 262 1160 1412 1292 983 1029 816 FIGURE 3.1 (Continued)

LPRM INSTRUMENTATION CALIBRATION RESULTS LPRM PROBE AS FOUND INPUT'CURRENT G.A.F.REQUIRED INPUT CURRENT 105K 20-49.B 20-33B 12-17D 20-09D 04-25D 20-25D 12-17B 20-09B 04-25B 20-25B 04-17D 12-09D 12-25D 20-17D 04-17B 12-09B 12-25B 20-17B 12-.33A 20-41A'12-33C 20-41C 12-41A 04-33A 20-49A 20-33A 12-41C 04-33C 20-49C 20-33C-12-17A 20-09A 04-25A 20-25A 12-17C 20-09C 04-25C 20-25C 04-17A 12-09A 12-25A 859 887 1410 1200 1290 1123 1031 791 1000 1018 1110 1052 1020 941 1010 930 980 685 N o 870 676 820 840 944 743 738 1150 1095 580 830 910 733 N o 555 1000 823 1030 970 753 1061 413 Detec Detec 1.00 1.01 1.09 1.08 1.03 1.13 1.05 1.02 1.05 1.08.95.99 1.02 1.04 l.13 1.04.95.99 tor 1.03 l.Ol 1.02 0.00 1.06 1.02 1.09 1.01 0.00 1.03 1.20 1.04 l.18 tor 1.06 1.05 1.12 1.08 1.07.96.99 1.05 Sarge 878 1293 1111 1252 993 981 775 952 942 1168 1063 1000 905 971 894 1031 691 Input 844 669 803 712 890 728 677 1138 755 563 691 875 621 523 952 734 953 906 784 1071 393 Input FIGURE 3.1.(Continued)

LPRM INSTRUMENTATION CALIBRATION RESULTS LPRM PROBE 20-17A 04-17C 12-09C 12-25C 20-17C 28-41B 36-33B 36-49B 44-41B 28-41D 36-33D 36-49D 44-41D 36-41B 28-49B 44-33B 28-33B 36-41D 28-49D 44-33D 28-33D 36-17B 44-25B 28-09B 28-25B 36-17D 44-25D 28-09D 28-25D 28-17B 36-09B 36-25B 44-17B 28-17D 36-09D 36-25D 44-17D AS FOUND INPUT CURRENT 694 990 970 725 900 760 870 926 800 557 1050 1000 1108 1090 904 1010 1230 1300 1460 1420 1250 1008 740 741 970 1300 710 1540 1256 1042 800 680 275 1100 1143 995 1120 G.AD F.1.01.97 1.02 1.11 1.02 1.01 1.03 1.04" 1.01 1.05 1.06 1.03.98 1.07 1.01 1.05 1.80 1.09 1.02 1.30 1.09 1.09 1.03 1.00 1.07 1.09 1.04 1.22 l.11 1.10 1.04 1.02 0.00 1.06 1.03 I.13.99 REQUIRED INPUT CURRENT 105K 687 1020 950 653 882 752 844 890 792 530 990 970 1130 1019 895 962 683 1193 1431 1092 1147 925 718 Same 906 1193 683 1262 1131 947 769 666 238 1037 1109 880 1131 Ho Detector Input-No signal is received from the LPRM.This could be caused by faulty connections or failed detectors.

4.0 Cold Critical Comparison

'Il~e 4.1 Cold Critical Com arison Test Abstract The cold critical control rod pattern was analytically derived as shown on Figure 4.1.Control rod withdrawals to target control rod inventory were compared to the analytically derived pattern.

4.2 Cold Critical Com arison Test Results Figure 4.2 contains the actual cold critical control rod pattern.The difference between the observed and predicted control rod inventories is less than one percent in reactivity.

COI:RITICAL CONTROL ROD PATTERNX=POSITION 48 51 47 43 39 35 31 27 23 19 15 11 7 3 X X X X X X 2 6 10 14 18 22 26 30 34 38 42 46 50 FIGURE 4.1 51 47 43 39 35 31 27-23 19 15 ll 7 3 2 6 1014 18222630 34384246 50 FIGURE 4.2

5.0 Power

Distribution Comparison

6.1 Power

Distribution Co arison Test Abstract The power distribution in the core is monitored by the process computer.Off line predictive Models are used to develop a power distribution corresponding to specific plant operating conditions.

5.2 Power

Distribution Com arison Test Results The power distribution comparison test was performed under the core operating conditions shown on Figure 5.1.Comparisons of the actual to predicted core axial power distribution is shown on Figure 5.2.Comparisons of the actual to predicted core average radial power distribution is shown on Figure 5.3.

'6 Date Core Power Level Core Flow Rate Pressure Subcooling August 31, 1977 1830 MMt (98.9%)66.4 Nlb/hr.(98.4/)1035 PSIA 22.9 Btu/Lb.CONTROL ROO PATTERN NOTCHES WITHORAWN BLANK~48~FULL OUT'1 47 43 39 35 31 27 22 34 14 38 22 14 22 14 34, 38 14 34 34 22 23 22 19 15 11 7 3 14 38 14 34 14 14 34 22 2 6 1014 18 22 26 30 34 384246 50 Figure 5;1 NINE NILE POINT UNIT 1 OPERATING CONDITIONS FOR BEGINNING OF CYCLE 5 COf<PARISONS

1.6 Predicted

Actual 1.4 1.2 1.0 0.8 0.6 0.4 0.2 BOTT H AXIAL NODE TOP FIGURE 5.2.Core Average Axial Power Distribution Comparisons for Nine Mile Point Unit 1, August 31, 1977

~>1 1 IE 1 die~~Figure 5.3 CORE AVERAGE RADIAL POWER DISTRIBUTION

~Rin'Actual'Predicted Center Edge 1 2 3 5 6 7 1.012 0.927 1.123 1.082 1.104 1.043 0.824 1.002 0.922 1.084 1.072 1.127 1.056 0.816 RECEIVEO DOCUHEHT PRGCESSI!IG UNIT