ML20217J558

From kanterella
Jump to navigation Jump to search
Cycle Restart Physics Test Summary, for Jul 1997
ML20217J558
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 07/31/1997
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20217J554 List:
References
NUDOCS 9708140328
Download: ML20217J558 (31)


Text

-. - _ _ . - _ _ . _ . . _ . _ - . . . _ . _ . _ .

?

.:._c-i ,-

. c, .

4 4

4 sequoyah Nuclear Plant

Unit 1, Cycle 9 Restart Physics Test Sumicary i .

ys i

Nuclear Fuel PWR Fuel Engineering i

July 1997 k

i i

l' l:;

t 9708140328 970807 V t -

PDR ADOCK 05000327 P pm ~

s s s

ABmTRACT

-The Sequoyah Nuclear Plant Unit 1 Cycle 9 Restart Physics Test Summary covers the period from March 30, 1997, through May 31, 1997. The report presents restart physics test results and operational data for the first 16 effective full-power daya (EFPD). The tests included are initial criticality, primary coolant critical boron concentration, reactivity control, isothermal temperature coefficient, and power distribution measurements.

k

  • o

. +

TABLE OF CONTENTS Section Title Page ABSTRACT. . . . . . . . . . . . . . . . . . i LIST OF TABLES. . . . . . . . . . . . . . . . iii .

LIGT OF FIGURES . . . . . . . . . . . . . . . iv

1.0 INTRODUCTION

AND CYCLE DESCRIPTION. . . . . . 1 .

2.0 TEST PROGRAM

SUMMARY

. . . . . . . . . . . . . 7 3.0 CORE RELOAD

SUMMARY

, . . . . . . . .. . . . 10

> 4.0 CORE PERFORMANCE. . . . . . . . . . . . . . . 13 4.1 INITIAL CRITICALITY . . . . . . . . . . . . . 13 4.2 REACTIVITY CO!iTROL. . . . . . . . . . . . . . 13 4.2.1 CONTROL ROD BANK WORTH MEASUREMENTS . 14 4.2.2 BORON WORTH AND ENDPOINT MEASUREMENTS 14 4.3 ISOTHERMAL TEMPERATURE COEFFICIENT MEASUREMENTS 14 4.4 POWER DISTRIBUTION MEASUREMENTS . . . . . . . 15 4.4.1 ASSEMBLY POWER DISTRIBUTIONS. . . . . 15 4.5 REACTOR COOLANT FLOW MEASUREMENT . . . . . . 16 t

il

  • -o LIST OF TABLES Table Title Page 1.1 SEQUOYAH UNIT 1 CYCLE 9 CORE DESIGN PARAMETERS 3 1.2 SEQUOYAH UNIT 1 CYCLE 9 FUEL SPECIFICATIONS . . 4-2.1 SEQUOYAH UNIT 1 CYCLE 9 CHRONOLOGY OF STARTUP PHYSICS TESTS. . . . . . . . . . . . . . . . . . 8 4.2.1 -SEQUOYAH UNIT 1 CYCLE 9 ROD SWAP INTEGRAL BANK WORTHS . . . . . . . . . . . . . . . . . . . . . 19 4.4.1 SEQUOYAH UNIT 1 CYCLE 9 INCORE FLUX MAP

SUMMARY

22

{

l I  :

iii  !

1

LIST OF FIGURES Figure Title Page 1.1 SEQUOYAH UNIT 1 CYCLE 9 CORE COMPONENT CONFIGURATION . . . . . . . . . . . . . . . . . 6

-2.1 REACTOR POWER . . . . . . . . . . . . . . . . . 9 3.1 SEQUOYAH UNIT 1 CYCLE 8 CORE CONFIGURATION . . 11 3.2 SEQUOYAH UNIT 1 CYCLE 9 CORE CONFIGURATION . . 12 4.1.1 ICRR DURING CONTROL BANK WITHDRAWAL FOR CHANNEL N-31 . . . . . . . . . . . . . . . . . 17 4.1.2 ICRR DURING CONTROL BANK WITHDRAWAL FOR CHANNEL N-32 . . . . . . . . . . , . . . . . . 18 4.2.1 INTEGRAL BANK D WORTH . . . . . . . . . . . . . 20 4.2.2 DIFFERENTIAL BANK D WORTH . . . . . . . . . . . 21 4.4.1 SEQUOYAH UNIT 1 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F102 AT 28.8% POWER) . . . . . . . . 23 4.4.2 SEQUOYAH UNIT 1 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F103 AT 70.5% POWER) . . . , . . . . . 24 4.4.3 SEQUOYAH UNIT 1 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F104 AT 99,9% POWER) . . . . . . . . . 25 iv

s .

=

I 1.0: INTRODUCTION AND CYCLE DESCRIPTION "!

l The. purpose of this report is to discuss the Cycle 9 startup

' physics testing program. The startup tests are performed to-

-verify that the core performs as designed. Tables 1.1 and 1.2 contain core-design parameters and fuel specifications for

Cycle'9.

~

Sequoyah Unit 1 was-shut.down on March 22, 1997, ending its eighth cycle of operation.-During the 51-day outage, the unit was refueled by replacing 113 burned fuel assemblies with 80 fresh

. Framatome Cogema Fuels ;(FCF) Mark-BW fuel assemblies, 8 twice-

-burned. assemblies'previously discharged from SON Unit 2 Cycle 6, 10'twice-burned assemblies previously discharged from SQN Unit 1 '

Cycle 4, 15-twice-burned assemblies previously discharged from SON Unit 1 Cycle 6, and shuffling the remaining burned fuel assemblies. The characteristics of the 80 fresh fuel assemblies are shown below:

1 Number of Host Number Gadolinia Carrier Nominal Batch Fuel Enrichment ofGd Concentration Enrichment Loading identification Assemblies w/o U235 Pins w/o Gd:Oi w/o U235 Kg U l1A 4 3.60 8 6.0 2.52 455.60 110 - 16 3.60 16 S.0 2.52 454 63 i 1IC 4 4AX) 0 -- --- 456.56 IID 28 4.00 4 2.0 2.80 456.40 1IE 8 4.00 12 2.0 2.80 456 07 11F I2 4.00 16 6.0 2.80 454.63

. 1IG 8 3.67 0 --- --- 456.56

'The final core loading pattern is presented in Figure 3.2.

-Cycle 9-is the first application of the Mark-BW fuel in Unit 1.

The remaining fuel is of either Westinghouse Standard or 4 Westinghouse Vantage-5H design.

Selected fuel rods in the Mark-BW fuel assemblies contain sintered urania-gadolinia pellets, while the remainder of the rods will-contain only uranium dioxide pellets. The urania-gadolinia bearing rods are a form of fuel integral burnable-t absorber and are utilized to control assembly power peaking and

.the_ moderator temperature coefficient (MTC). The fuel inserts 3

(with the exception of fresh discrete burnable absorber inserts) to:be-loaded in Cycle 9 are.__of the same design as that loaded in Cycle 8. The fresh discrete burnable absorber inserts will consist-of FCF burnable poison rod absorber (BPRA) assemblies and

, are also used-for power peaking and MTC control. Spent Wet Annular Burnable Absorber (WABA) clusters with a minimum of 8 rodlets are loaded in all Vantage 5H assemblies located adjacent to the baffle which do not have rota!.ed midgrids to prevent flow induced grid rod fretting. All fresh Mark-BW fuel assemblies utilized for Cycle 9 contain axial _ blankets which consist of UO, 1

_ _ _ _ . . . . . . _ . . _ - _ _ _ _ . _ _ . _ . _ _ _ _ ~ . . _ . _ . _ _ _ _ . _ . _ _ . _ .

.. .. i

( . ..

I i

i fueli pellets enriched to 2.0 wt Un. 'in the top and bottom 6Jinches of the active fuel column (9 inches in the gadolina fuel rods).

Cycle'_9 utilizes 640 fresh burnable poison rods in BPRA patterns of.8, 16,- and:24 rods per assembly. In addition, 688 gadolina i fuel rods were used-in patterns of'4 (2 different patterns-used),

8,-12, and 16 rods.per assembly.. The secondary neutron sources,-

which each-have 6 source-rods, are located in 2 assemblies. Core locations for the burnable absorbers, neutron sources, and control rods are-indicated in Figure 1.1. i Cycle 9 has a projected full power capability of approximately-17,569 MWD /MTU (458- ef fective full power days, EFPD) . The safety l

analysis for Cycle 9 is valid up to a burnup of 19,567 MWD /MTU-which includes a power coastdown.

l l

4

[

t f

  • 1 2

%: ..g

. - i Table-1,1-s SEQUCYAH' UNIT 1-CYCLE 9 CORE DESIGN PARAMETERS ~-

t Power Rating -

3411 MWT

[ Coolant Temperatures  ;

Hot'Zero Power' 547.0 0F i Desi'gn Inlet, Hot Full Power '546.7 0F Design Core: Average, Hot Full-Power 582.2.0F Vessel Average, Hot Full Power 578.2 OF System' Pressure 2250 psia Hot-Channel Factors Westinghouse Fuel 4

Limiting Heat Flux, FQ- 2.40 Nuclear Enthalpy Rise, FDHN 1.62 FCF Fuel Limiting Heat Flux, FQ 2.50 Nuclear Enthalpy Rise, FDHN 1.70 i:-

4, 4 4

i 4

4 h

4 i

l Table 1.2 l SEQUOYAH UNIT 1 CYCLE 9 FUEL SPECIFICATIONS Core Loading

- Enrichment Nominal Number (weight Assembly of Batch percent Loading Assemblies U-235) (MTU)

- S27A 3.60 0.46393 8 S 3.75 0.45903 10 7B 3.90 0.46438 15 10A 3.80 0.46416 56 10B 4.00 0.46321 24 11A 3.60 0.45560 4 11B 3.60 0.45463 16 11C 4.00 0.45656 4 11D 4.00 0.45640 28 11E 4.00 0.45607 8 11F 4.00 0.45463 12 11G 3.67 0.45656 8 Total 88.84 193 J

I

?

4 1I j 4

Table 1.2 (Continued)-

Active Fuel Height 144 inches Lattice Configuration 17 x 17 Lattice Pitch 0.496 inches Assembly Pitch 8.466 inches No. of Fuel Rods Per Assembly 264 No. of-Instrument Thimbles per Assembly 1 No. of RCC Guide Thimbles Per Assembly 24 No. of Grids Per Assembly 8 Fuel Rod Outside Diameter 0.374 inches Clad Thickness (FCF Mark-BW) 0.024 inches

, Clad Material Zircaloy-4 Pellet Diameter (FCF Mark-BW)' O.3195 inches Burnable Absorber Rods 640 (Al 2O3-B 4C)

Gadolina Fuel Rods 688 5

.- - _ . _ ~ . . .

e. ,

'e e

R P N M L- K J H G F E D C B A I I I I I I I 125W BSW DCPD DCPD DCPD 85W 12SW 1

DCPD RCCA DCPU RCCA 16tJ 0 RCCA 16L20 RCCA DCPD RCCA DCPD 12 4 16 4 12 2 2.0 2.0 6.0 2.0 2.0 DCFD DCPD DCPD RCCA DCPD RCCA 6SSA RCCA DCPD RCCA DCPD DCPD DCPD 16 16 16 16 --

3 6.0 6.0 6.0 6.0 RCCA DCPD RCCA DCPD 24113 DCPD RCCA DCPD 24I1 3 DCPD RCCA DCPD RCCA if 4 16 4 16 4 6.0 2.0 6.0 2.0 6.0 125W DCPD RCCA DCPD 24115 DCPD 24L2.5 DCPD 2412.5 DCPD 24L2.3 DCPD RCCA DCPD 125W 16 4 4 4 4 16 -$

, 6.0 2.0 2.0 2.0 2.0 6.0 BSW RCCA DCPD 24L2.3 OCPD RCCA DCPD RCCA DCPD RCCA DCPD 24L2.5 DCPD RCCA BSW 12 4 16 4 12 -6 20 2.0 6.0 2.0 2.0 DCPD 16L2.0 RCCA DCPD 2411$ DCPD 812.0 DCPD 8L2.0 DCPD 24L2.5 DCPD RCCA 16L2.0 DCPD 4- 4 8 8 4 4 -7 2.0 2.0 6.0 6.0 2.0 2.0 DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD 90* 16 16 16 16 16 16 -8 6.0 - 6.0 6.0 6.0 6.0 6.0 DCPD 16L2.0 RCCA DCPD 24L2.5 DCPD 8L2.0 DCPD 8L2.0 DCPD 24113 DCPD RCCA 16110 DLYD 4 4 8 8 4 4 9 2.0 2.0 6.0 6.0 2.0 - 2.0 SSW RCCA DCPD 24113 DCPD RCCA DCPD RCCA DCPD RCCA DCPD 24L2.5 DCPD RCCA BSW 12 4 16 4 12 - 10 2.0 2.0 6.0 2.0 2.0 125W DCPD RCCA DCPD 24L2.5 DCPD 2412.5 DCPD 24L2.5 DCPD 2412.3 DCPD RCCA DCPD I2SW 16 4 4 4 4 16 - 11 6.0 2.0 2.0 2.0 2.0 6.0 RCCA DCPD RCCA DCPD 24L2.5 DCPD RCCA DCPD 24115 DCPD RCCA DCPD RCCA 16 4 16 4 16 12 6.0 2.0 6.0 2.0 6.0

< DCPD DCPD DCPD RCCA DCPD RCCA 6SSA RCCA DCPD RCCA DCPD DCPD DCPD 16 16 - 16 16 13 6.0 60 60 6.0 DCPD RCCA DCPD RCCA 16L2,0 RCCA 16L2.0 RCCA DCPD RCCA DCPD 12 4 16 4 12 14 2.0 2.0 6.0 2.0 2.0 12SW 8SW DCPD DCPD DCPD BSW 12SW 15 0*

Key T)pe ComPunent Type nn Number dFresh GaMinia Rods Kx Friah GaMinia Ima&ng(w/o) fmPonent Two antxx Numtwe dlumped thamable Poison Rods at x.x w'o ll.C in Al On nnSW . Number dSpent walla Reds nSSA Ember dRock in Secamle.y Source Assembly F10URE 1.1 SEQUOYAll UNTI' l CYCLE 9 CORE C(ntPONENT CONFIGURATION 6

. i

. l 2.O TEST PROGRAM

SUMMARY

This report covers the period from March 30, 1997, through May 31, 1997. Significant milestones for this period are summarized ,

- as follows:

Start of Core Unload March 30, 1997 End of Core Reload - April 20, 1997 '

Initial Criticality May 11, 1997 Completion of Zero Power Physics Testing May 12, 1997 Initial Power Generation May 12, 1997 Power Escalation to 30% Power May 12, 1997 Power Escalation to 70% Power May 16, 1997 Power Escalation to 100% Power May 19, 1997

' table 2.1 summarizes the startup physics tests that were performed during cycle 6 startup. A reactor power histogram for May 1997 is shown in Figure 2.1.

7 l

l

.- - - - - - - . ... - . - . . . - - _ . ~ - - . . . _ . _ - - . - - -

+

. t TABLE 2.1 SEQUOYAll UlJIT 1 CYCLE 9 CllRO!10 LOGY OF STARTUP PilYSICS TESTS TEST DATE 4

Initial Criticality May 11, 1997 Boron Endpoint - ARO May 11, 1997 Isothermal Temperature Coefficient - ARO May 11, 1997 Dank D Worth - Dilution Method May 11, 1997 Rod Worth - Rod Swap Method May 11, 1997 Flux Map at 30% Power May 14, 1997 Flux Map at 70% Power May 16, 1997 Flux Map at 100% Power May 20, 1997 8

, t O

MEACTOR POWER (%)

o 5 W 8 8 8 8 8 8 8 8 i,

, . _ j .

t 24 >~e<-m=~. * * , n . . e e.e<meen m

  • w.e e ne. .wekww.n ,mm.sen.m., ewee. * *.

, 4. x s'

fi{'-

j -e4r ee=*ee.4sse,,eseMeeMe=eemeneeersense weem aaseso . ee.-  : ese= sis e esv.swomogees<astseeeemans***d

' 'g 4 ,

-#.wiksegg'es#4 641

  • Mise + erg -eSegt. .grassegm d essmaevae+,seemes nongmaswo gy.-

k >='*fta'wste9r-esta. N5q'ede itr - HMftau,, ret esi,4tgq W ecysest ra i w+ ,4 regpJ.._.

6<>4-- - - + - - --~~ - = ~ ~ - - ~- r -- - - -

t 6<iA - ~ m ..~ < - +- - uw -~~ -%~+ -

( y -7 7(>1. <

~ .w

- [, Y

$(>iy -* 4:;  ; $e d* $j H ,'-

,1

.n , ,

-. ~d 94>.u.+- .

..~e. s-a

~ ,- ~w,.2 ,+ + -s ;; }:+a- 4 4% 6

.'g4y Y.

- k.{')

j l -ti . eSem,+ 4 ut wace a Jan ae.i i.ae- .1. ss+nanwawa++< 4.adeeen a,+4- -eeaie+axena,e m M pm a 6 chnens .

n .

._-.- esas.=-e.pga +.we j2

- #'m% "

J,,i - p ., ' .- .4 .

' 1?- '

13 a-~~ e ~~~4 -~~--------~ ~~-- .

f,,:N ' '

j4 ,_.

.e;. s.4 -

,. . .A y .

' ' ' ' ~ ~ ~~~ '~~ ~ ~ ~ ~ - " -- -

'~~~ " ~ ~ - - - - ~ " ~ ~ ~

E<

,6 . - - --.__ .- t w. -.- -.a - o .

<t. ,

-4 3 $7 y __ _ _._ _ ..

< .s . .

3i ., ,

4M4 N " ,. NM$MM$ . kW; 'W%5f4fd4W5'44,M. WG4-

-@SPfl4'Af M* 4'4 5kWW.kNMk-M 80'WOWOW E'EF bi! '1 4.MM $$$d2

- ! ~~ '

c( t jh ew A c. ,w - v-a.ke m -+*~ 4- # h w,M * **Ae- n ie.i 9 a p .g v u.- - . wg e. . -4 Mmw >

c .

w. - < ~ ~ <>

3l 20 ~ > - ~ - - - --

21 v , >w ., , . , [< >

- a

.hmee.new .h w i.aa*M.4%==h4w n.+=4b >=+m e =WWu -jk etippee.

,oo e*= ephe.- e== em a -

w 4e -A+4 6

.eaa=pir.=mme .-==+ 4-- .+ u eesses- e w. pen, a,nm b-hePwa pov 94s4 ' "()

r

..>5. > >

M weste***MD.WelBemme,est>59'p*8e *I9P'n99ea' eib9 tem 6e+*esets. -

.,4e 49494o k e.

i , ,

,. >s ..

% we.4me+ Nm**. . '

~

,- .. . t, v . ,-

  • pan.eee$ wesseeaneti.epenses>senaste+<ies _ sene 5Hio6.sheseapes.e. 'seeen e -. .- . >

1 27 e . .

w i wm. >

. v. . 4

> i 26 ~- = -s . ~ . - - -- -

A- , 4 f

m,."36

---~

29 *ev.ev,4 - w .__

,v

. w,

-I ..

. ).,

( L. ..'.

I g

,. .., ' % ',, m ' . u ;t  ;

+ **. +4>

hwa .,*rj W.t . neem .f* Q f**=**WN .

Mk h st u-a - [ .

-. - - ~ ~ ._,.

t l

I I

. _ - - - - .. ,, . . , _ , , , , , , _ - , _ , _..-,-_,-~__.._m _ ~ -.... ,- . , . _ . _ . _ . .

3.0 CORE RELOAD

SUMMARY

The Cycle 9 core offload started on March 30, 1997. The core offload was completed on April 1, 1997. Figure 3.1 depicts the Cycle 8 core configuration prior to the fuel shuffle. The core configuration for Cycle 9 is shown in Figure 3.2.

The neutron ccunt rate was monitored throughout core load as a precaution to ensure that core loading proceeded as planned.

This monitoring was accomplished by utilizing the permanent excore source range detectors. The neutron count rate was monitored at specific intervals for each detector. The inverse count rate ratio was calculated after each assembly was loaded to ensure an orderly and safe loading.

Upon completion of core reload, core verification was performed.

The fuel assemblies and inserts were verified to be in their correct location according to the Unit 1 Cycle 9 core loading pattern.

10

-=. __ _ _ _ _ _ _ _ _ . _ . _ _ __- . _ _ _

A P N M L M J H 0 P E D C U A J23 J06 J4I'~ 753 Jos J1s J41 SA SA 9A SA SA SA SA 1 H17 Ett K02 K63 K66 K04 K68 K74 K10 E54 H27~

85 8 10A 105 108 10A 108 105 10A 8 88 2 H22 K57 K35 Kil H43 J35~ J43 J34 H42 K20 K40 K58 H23 88 105 10A 10A SW SA SA 9A SB 10A 10A 105 88 3

~E61 K42 J60 J42 K51 J64 K22 J48 K52 J11 J78 K34 E15 98 10A 98 10A 9A 98 10A 8 A 8 10A DB DA 10A J37 K05 K28 J28 K29 H11 K55 J07 K34 H05 K14 J22 K32 K01 JOS DA 10A 10A DA 10A SA 10A DA 10A SA 10A SA 10A 10A 9A 8 J24 K75 H45 Kee Hoe J73 J38 Kit J49 J75 HOT K47 H44 K62 J59 DA 105 85 10A 8A 95 SA 10A 9A DB 8A 10A 8B 108 9A 4 J04 K74 J40 Jet K43 J03 K7T J13 K74 J61 K44 J70 J14 K64 J68 9A 105 9A 98 10A SA 105 9A 10B 9A 10A 98 9A 105 SA 7 Ji9 K11 J51 K25 J02 K26 J45 H64 J25 K23 J57 K24 J10 K12 J50 SA 1DA SA 10A SA 10A SA 88 SA 10A 9A 10A SA 10A DA 8 75 K71 J04 J71 Kit J32 K79 J36 K80 J26 K41 J65 Jft K72 J54 DA 105 DA DB 10A SA 108 9A 108 9A 10A 98 SA 108 9A 9 J12 K69 H46 K33 H02 J74 J44 Kit J11 J78 H04 KIO H41 K70 J18 DA 105 85 10A SA DB DA 10A 9A DB 4A 10A SB 108 SA 10 J53 K03 K21 J27 K13 H09 K38 J35 K37 H03 K27 J62 KiB K05 J44 DA 10A 10A 9A 10A SA 10A SA 10A 8A 10A SA 10A 10A SA 11 E20 K54 J79 J30 K83 J72 K17 J67 K49 J31 J77 K54 E65 8 10A DB 9A 10A 98 10A DB 10A SA 98 10A 5 12 H18 K59 K48 K31 H40 J05 J47 J46 H38 K30 K45 K60 H20 8B 108 10A 10A 88 9A SA SA 88 10A 10A 108 8B 13 H19 E31 K05 K65 K67 K04 K81 M73 K07 E54 H28 8B $ 10A 108 108 10A 108 108 10A 5 8B 14 J17 J01 'J52 J20 J39 J66 J15 A38EMblY10 SA SA 9A SA SA - SA SA REGION 18 REGION 8 8.76 WM REGION SA .).10 WM REGION 105 4.20 WM REGION 8A.3.00 W4 RE060N 88 3.00 WM RE040N 88 3 to WM RE060N 10A . 3,0C W4 FIGURE 3,1 SEQUOYAH UNIT 1 CYCLE 8 CORE CONFIGURATION 11

e R P W W L M J N O P 5 0 0 8 A T54 G50 K41 Kid K39 G52 W 827A 75 10A 10A 10A 75 827A 1 K30 E2f AA80 AAll AA44 AA41 AA43 AA50 AA77 EIS K31 10A 8 110 11E 11D 11F 110 11E 110 8 10A 2 K18 AA71 AA40 AA07' G49 7 79 K25 K64 G57 AA08 AA64 AA70 K21 10A 11C 11F 115 75 105 10A 105 75 118 11F 11C 10A 3 E17 AA42 K57 Mel AA24 K65 AA08 K73 AAH K54 K58 AAll E39 8 11F 108 10A 11D 105 115 105 11 0 10A 108 11F 8 4 Til AA75 AAll K45 AA37 K01 AA21 K12 AA28 K08 A/.39 K42 AA19 AATIT 827A 110 115 10A 11D 10A 110 10A 11D 10A 11 0 10A 115 110 827A 4 Dec AA49 W~KKIS K09 K80 K33 AA12 K50 K79 K07 AA25 G59 AA51 Get 75 11E 75 11D 10A 108 10A 11 8 10A 105 10A 11D 75 11E 75 0 K37 AA41 K64 Kt2 AA33 K52 ~ AA04 Kil AA03 K51 AA30 K75 K68 AA45 RII 10A 11D 105 105 11D 10A 11A 10A 11A 10A 11D 108 108 11D 10A 7 K29 AA47 K17 ~AA11 K04 AA13 K24 E19 K23 AA18 K06 AA14 K22 AA65 K27 10A tlF 10A 11B 10A 118 10A 8 10A 118 10A 118 10A 11F 10A 8 K34 AA44 K47 K70 AA28 K49 AA01 Kit A102 K53 AA34 K89 K61 AA44 KII 10A 11D 105 105 11D 10A 11A 10A 11A 10A 11D 108 108 11D 10A 9 7 43 AAll 0 54 AA32 K02 K78 K44 AA10 K47 K77 K10 AA22 G53 AA54 G54 8 11E 75 11D 10A 105 10A 118 10A 108 10A 11D 75 11E 75 10 7 54 AA73 AA16 K54 AA23 K05 AA31 K11 AA29 K03 AA40 K35 AA09 AA76 T53 SITA 110 115 10A 11D 10A 11D 10A 11D 10A 11D 10A 118 110 827A 11

~ E14 AA43 K89 K34 AA34 K63 AA15 K74 AA27 K40 K40 AA48 E57 8 11F 108 10A 11D 10d i1B 10B 110 10A 108 11F 5 12 K32 AAtt 3XII ~MIO G47 K71 K24 K72 G54 AA04 AA57 AA72 K24 10A 11C 11F 118 78 108 10A 10B 78 118 11F 11C 10A 13 K20 [29 AA74 AA53 AA42 AA66 AA47 AA55 AA79 E48 Kil 10A 6 11 0 11E 11D 11F 11D 11E 110 8 10A 14 T82 Gli K44 K13 K43 G45 T39 ASSEMBLY ID 827A 78 10A 10A 10A 78 827A REGION 18 REOM 327A 3 to WM RE0 m 10A.3.00WM REON itt .3.60 W4 REON 11E.4 00 WM REON 8 3.75 W4 REOM 100 4.00 WM RE0lON 11C .4.00 WN REGION 11F .4.00 WM RE040N 75 3.90 W4 REoloN 11 A . 3.60 W4 REGION 11D 4 00 W4 RE010N 110 3.47 WM b4e:ReqNoti 837A was discharged from Sequoyah UnN 2 Cycle 6 FIGURE 3.2 SEQUOYAH UNIT 1 CYCLE 9 CORE CONFlOURATION 12

~ -

o .

1 4.0 CORE PERFORMANCE i The operational power capabilities of Sequoyah Nuclear Plant are governed by limita imposed by the safety analysis as presented in the Sequoyah Updated Final Safety Analysis Report (USFAR).

Various core parameters were measured during the restart physico testing to onoure the conservatism of assumptiono made in the safety analysis and to verify the core performed ao designed.

The following sections discussed the results of the core physics tests.

4.1 INITIAL F?1TICALITY Initial criticality was achieved on May 11, 1997, at 0339 EST.

The reactor coolant system temperature and pressure were about 518'F and 2235 PSIG, respectively. The soluble boron concentration was 1712 ppm, and all control banks.were fully withdrawn with the exception of control bank D which was at 164.5 oteps.

The approach to criticality proceeded by guidelines set in the Restart Test Instructions. The RCS was diluced to about 1712 ppm, the shutdown banks were withdrawn, and then withdrawal of the control banks was started. During control bank withdrawal, inverse count rate ratio data was recorded and plotted for source range detectora N-31 and H-32 (Figures 4.1.1 through 4.1.2). As planned, the control banks were withdrawn until the reactor became critical.

After bringing the reactor critical, the neutron flux level at which nuclear heating first occurred was determined, thus establishing a range below nuclear heating at which all zero power physics measurements were performed. The calibration of the reactivity computer was verified by comparing its output to a reactor period.

4.2 REACTIVITY CONTROL Excess reactivity is controlled by neutron absorbing control rods, boric acid dissolved in the reactor coolant, discrete burnable absorber rods, and gadolinia fuel rods which contain 2 or 6 w/% Gd,0 . Both the control rod position and the boron concentration may be adjusted separately or in conjunction with one another to compensate for various reactivity changes and to maintain the required shutdown margin. Rod bank and boron reactivity worths are measured at hot zero power (HZP) for comparison with designed predictions.

D

  • e i

4.2.1 CONTROL ROD BANK WORTH MEASUREMENTS Control rod bank worth measurements for Cycle 9 were done by using the boron dilution method for determining the integral and differential worths of the reference bank, control bank D, and then using the rod swap method to measure the worth of the other rod banka. These other banks are called test banka.

The rod swap procedure starts with establishing an equilibrium condition with the reference bank inserted. Each remaining rod bank is then inserted and the reactivity change in compensated ithdrawing the test bank that was previously inserted by andw/or the reference bank.

The measured integral worth of control bank D was 1254.5 pcm, which met the acceptance criteria of 1219 1 182.0 pcm. Figures 4.2.1 and 4.2.2 provide plots of the integral and differential worth of control bank D. Table 4.2.1 shows a comparison of measured and predicted wortha based on the rod swap.

4.2.2 BORON WORTH AND ENDPOINT MEASUREMENTS i

Reactor coolant system boron measurements were made during zero power physics testing to determine differential boron worth and concentration endpoints for the ARO configuration. The differential boron worth measured over the range of control bank D at ilZP was -7.71 pcm/ ppm. The measured differential boron worth was within 15% of the predicted worth -7.12 pcm/ ppm. The boron endpoint was established for the ARO configuration. The boron endpoint value includes corrections to the measured data to account for differences betw9en the critical configuration and the endpoint configuration. The ARO boron endpoint was calculated to be 1757.5 ppm, well within the review criteria of 1769 i 50 ppm.

4.3 ISOTl!ERMAL TEMPERATURE COEFFICIENT MEASUREMENTS The isothermal temperature coefficient (ITC) was measured during zero power physics testing to verify a negative moderator temperature coefficient (MTC) as required by Technical Specifications. The ITC is defined as the change in core reactivity per unit change in moderator, clad, and fuel temperatures. From the measured ITC, a value for the MTC is obtained from the relationships

-MTC = ITC - Doppler Coefficient 14

o .

0 The predicted hot zero power beginning of cycle Doppler j coefficient was -1.62 pcm/*F.

This measurement was performed by heating up and cooling down the primary system by regulating steam dump to the atmosphere or the condenser. The cooldown range was from 548.6 to 545.6'F and the heatup range was from 545.7 to 547.4*F. During the heatup and cooldown, an X-Y recorder wan utilized to plot the change in -

reactivity with respect to the cha& des in the primary system temperature. The slope of this curve of T-average versus reactivity is the ITC.

Measurements of the ITC were taken with D bank at 214 steps. The ITCn measured during cooldown and heatup were -2,41 and -3.06 pcm/*P respectively, with an average of -2.735 pcm/*F at a T-average of 547.1*F. When corrected to a temperature of 547'F, ARO, and the predicted ARO critical boron concentration, the ITC was found to be -2.61 pcm/'F which is within the review criteria of -2.28 1 2 pcm/'F. The MTC was calculated to be -1.1 pcm/'F which is within the acceptance criteria of < 0 pcm/*F.

4.4 POWER DISTRIBUTION MEASUREMENTS Analysis of core power distribution data during startup testing is necessary to verify proper core loading, design calculations, and compliance with Technical Specifications. Three-dimensional core power distributions are detennined from moveable detector flux trace measurements using the INCORE computer code. The MONITOR computer code calculates the margins to the thermal limits using the INCORE output as input.

Table 4.4.1 summarizes representative INCORE flux maps for startup of Unit 1 Cycle 9. This table includes the core conditions at the time of the measurement, and INCORE results for the maximum heat flux hot channel factor (excluding uncertainties) FQN(z), the maximum nuclear enthalpy rise hot channel factor FDHN, incore quadrant power tilt ration (QPTR),

and axial offsets. The margins to the thermal limits calculated by the MONITOR computer code are also included. Note that the maximum peaking factors identified in Table 4.4.1 are useful from a core design standpoint, but are not necessarily the most limiting according to Technical Specifications since they do not include reduced margins associated with the fuel type and the axial location of the peaks.

4.4.1 ASSEMBLY POWER DISTRIBUTIONS Power distribution measurements were made during startup testing at 30% power, 70% power, and 100% power, Relative assembly power is analyzed with respect to the difference between designed and 15

. , 4 measured values. Figures 4.4.1 through 4.4.3 provide a relative power distribution for all assemblies for the flux mapa described in Table 4.4.1. Also included in these figures are comparisons between measured and designed assembly powers including the RMS difference.

The 30%, 70%, and 100% power flux maps met all Technical Specification requirements on thermal limits as shown in Table 4.4.1.

4.5 REACTOR COOLANT FLOW MEASUREMENT A reactor coolant flow measurement was performed. The measured flow was 381,070 GPM which met the requirement of 360,100 GPM for operation at 100% of rated thermal power.

d 6

l

m_ _ . .. _ . ._ ._._. -_m _

_.m__._ . _ _ _ _ _ _ _ _ _ __ _

_ _m___m_. ____.m .___.___....__.m. .m.____.-...._m __, _ = _ _ .

e

'e p 4

KRR p o o o +

O N & 9 9 d

^

N O >

s

t c9.-: , ,

. ;f .

i I.

am y""

1 s e6 r

%:p 1

4 ee I  ;

i

.t

,'l- h1 +q,' .

O

.g -

4 n

, a L.

g ,

4 h

s l

.? O J,

p $

. i, .

~1'

I'

!N ' 4 V / i;,. ,

1 1

' s= r r . p:?

'.3" 4, ,

4 .e

~

s , .

m 1 r e

\

?

i.

+ .

~, a

? .ty I.!..!

is ..

f;lL . '

s - , .

3 . 4. [

(

t._

.. v ; ,

< :.,,h"

>s.

I t' .

~

?'.

. p.

_- = _- _ . _ _ . .m_-_ . _ _ _ _ _ . _ _ ____.__.__-._-_..._._m___. _ . . _ _ _ _ _ _ . .. - _ - . _ , _ - _ _

1

  • e t
  • . p e

I

... amen l l

ICRR O O O O d O 4 6 gm en se b4 i O ,

i -... s.. p.

k l

' [3

-s*  ; 3< i _'_ i 5'l ,

y - p' ,,4 1

-:- ,;p <

s t

'I... t  ; t I -,

- ,t: g (> , +,-

r-

, - g - .,:, t I -

7.' t A; ,

rG ' 7

> + 'P t 7 .:

gy '4 d t

> ' 3 4 ',

8 <

. s 6

,p 3

^

4t-

'* l, ; ' '

)'^ h  !- ..-. .s. [{

, g%g 3

9 3 g

, %']

L ':'

  1. g ..q' g, -

,'n .

,n 1

jf. f w..

4 h

i f N-h '

,... Z '/ [)"7  ;

^

i s

,i.. .

sn Y y ,- ' ' 'l

,  ? , .- z,' > , .) {

?) *

]

c"-' ' '

f; y ,

m' 1 t ,

zg3

.. m. ,

v -

  • .J. .(i ,<g'

-s,3 r ,

a +j ' , ,

W; s ' - -

+

4.a_i..

f4%  ;!t(i .h . . > ,

1 i g ;-, m.

si ,

~'_},.-y<

I 1

' c.cj^ . y' a

= N/s, er Lt ._-.

y',

c t

I l

.t

(-

k " )'

>3r.a . 4

.3.j. .

1

^=

y i ,

... t g., .

g ,n.,

5. E' - I y

+ y.; el 11 *

._ .,I.

} hY , -

(

{ g k

..d 1 p5 T, 9 , _?j.. ,

' Q._ ,

l' ~i _ , +

i 4 N-

. {_I g~

' , +'

9

';- [! .' . 4 g , n J.4

<- i . -; ,

, 4 ,

1

.y'{ . #
1. L , '

b '

j. , .'3Y <

~

'. ; 9 _

f .l 's 9 4

.,_' \

(

s c . _i > a.. , ,

_x . ,

s q.y. y s i 1 E ,/ si 4, <

a 3.

"-.{- , fi c,

u' ' - 3, g: , u 5 a..-- m...

1N g p' i5 ]' 5 ' j ,k ;  ;

'l d}

y s a s. xq. s

- e y +

i .5 '

i s'

'." i i ' Yi h v

..1.,'" #

'[ j

W"k a u'h  ; h' *W"' .

q p,re g "' }. k ,

,. _' 4 . -

xe

. ;g_ -9 e y 'm s .,:

-s & - , s -

, n.u-- .. , _c. . ;

->ss

+

n t 5 d k :1"$ s -' ' ~ ...

-s cy . .- '

y"

'f. v:. . _s((j t \

.s a ,s 1 -:-. < 4 n 6 t. 2 G, ..E..

s I

t

..s-9 '

, 1 w

w

b f Table 4.2.1 Sequoyah Unit 1 Cycle 9 Rod Swap Integral Bank Worths 14EASURED PREDICTED DIFFERENCE BANK WORTI! (pcm) WORTil (pcm) PERCENT
  • D** 1,254.5 1219 2.9 C 823.5 813 1.3 B 583.5 533 9.5 A 374.5 385 -2.7 SD 376.8 348 8.3  ;

SC 380.3 351 8.3 SB 819.6 765 7.1 SA 203.2 195 4.2

  • Calculated using ((14easured - Predicted) / Predicted)
  • 100
    • Dank worth measured by dilution method 19

44- -u a--m. , - - - - . - ._m_ -- -s --ei__ u f .p

-- _-+~,--a3---.,.a'h4--e,41-e--+. -

mae- w.-A.. =J e-p--4 --*-Ali ---di.e4AL-4 A4=4LJhMJ+ -.-A4-M.M- e., e d

.e p e

I l

i l

l FIGURE 4.2.1 INTEGRAL BANK D WORTH I

- POL, HZP, No XE j

'~

_ Qs l d'- '-)

> .;-' y; I j g .-t-8

.4 ,

s se = (s4,Jo $ea4 4- +.J u *4 ess 94a ti ga tf1 4(t+44 e o ? ki4H/**42 t34 gg.4ept 4 444 $ 4 f+ ki4=(e+= 4 *a9 88$4+94454 a48 m* **4 9 ti t i ..

F

I-  ;, ..,.. , ,

y L ,.

                                                                          '                                'E '

5 ., j i F F V. k 300  ;, w 2" u.-

                                                                                                                   ,g                                                 ,                 ,i                                                                                               e
                                                                                                                                                                                        .i:

4 . I ',  ! c

                     %                                      r i                        t                                  t       '*
  • t I ' i ' 'U t'" '+ j '

t 't 4

                                                                                                   .",t'
                                                                                                                                                                         .M .
                                                                                                                                                                      ,-A.. ' ,@ 'c
                                                                                                                                                                             +

s > > ii j 'f 4 qt%' L e  ! - 5 "' : i

  • 4 y 1

j z , I'

                                         ;                                                                                                                                               g

[,i . ' s g. 3 A. 5 I - 1 (

                                                     <                  y      o                                                         r 4
                                     >:                                                                                                      s 1(
                                                                                                                                                                    ,-                                                       d T ,' <
                                                                                                                                                                . i (q 0-n                 R R-R
                                                                                                          $-                  E W

R N 8- 8 $ R E E W k Roo BANK PosmoN(5TEPS WITHORAWN) 20

                        ,   o   .

0 I FIGURE 4.1.2 DIFFERENTIAL BANK D WORTH BOL, HZP. NO XE

                                                                                                                                                                                                                                                                   ^

9 g- .9 L q '? ,( h1'f.[. ' 3 , g-t { 6 -

                                                                                           ' I t _

l 'h g . .j ' , ' , 7

                                                                                                                                                                                                                                                                                    , >                       > .. >p e
                                                                                                                         ..)         ..

[6 < ,

                                                                 ..l':.
                                          -l
                                                                                                                                                                                                                                                                                        '.4               .,
                                                                                                                                                                                                                                                                                                          - l 4

a4 '=6.- og (N s % 4 4=cere ,e 4 4 4 ++.* rtwh* care -d e sak ssed er asieN o*t es+ 4 4ts l+ <s*E te= Weta# #et-t-- 6fG twMa te s e +afe#d"ef n e ** + s* s We e' *****"*Ak****'- I.1 t.. m,9~ -

                                                                                                                                        . t;           1 1 3, ?,

s

                                                                                                                                           +

03 NE$M f46 Si - hD h7E8 ' "d *Iff kI UU3k+ I! *I a4 4 6 e 4r44 $= D44 $+ tem +'4 e Ne ji'4 4hh4kJ k k EM fI -y

                                               'b%           50 i        IES Y'(MFM Oh k ' 84d        6 (T4   4    -a4k h NT                                     4 uW                                                                              be$                                                        #$4
                                                                                                                                                   $3gg4eg$$3(s&MNg49e-                                                              } ggyppe,$y(psedet444 $$ab4ppage64emmeate spegsg.m%egsge46, egg 4$_                                      ege4peege449eglf
                                                                                             >    4
                                                                                                                                                                                                                                                                                                                               ...y O

b n - . - - h hhhh h h Roo RANK POSITKW (STEPS WITHDRAWN) 21

_ _._._ __ ._...__....______m.- _.. _ _ _ _ _ _ _ . _ _ .... _ - _ _ . - e ,

                                                                                                                                                                                   ?

Table 4.4.1 )

SEQUOYAH UNIT 1 CYCLE 9 INCORE FLUX MAP

SUMMARY

INCORE Run IN9F102 IN9F103 IN9F104 l _ MONITOR Run MN9F102 MN9F103 MN9F103 i Date 5-14-97 5-16-97 5-20-97 Power Level (%) 28.8 70.5 99.9 & D Bank steps 186 187 209 Burnup (MWD /MTU) 23.3 68.9 191.9 , Maximum FQ(z) 2.063 1.860 1.776 Radial Location C 3 XX C 3 XX C 3 MD Axial Point 22 32 32 Maximum FDH- 1.490 1.437 1.425 Hadial Location C3 L7 C 13 , QPTR-Quadrant 1* .9787 .9854 .9877 QPTR-Quadrant 2* .9992 .9957 .9960 QPTR-Quadrant 3*. 1.0185 1.0151 1.0130 QPTR-Quadrant 4* 1.0036 1.0037 1.0034  ! Axial Offset 7.91 1.789 .887 FQ Operational .2606 .6321 2.822 , (LOCA) Margin (%) * * , FQ RPS (Centerline Fuel 21.08 23.93 23.18 Melt) Margin (%) *

  • FDil (Initial Condition 9.446 11.22 13.11 DNB) Margin (% ) *
  • i FDH (Steady State DNB) 6.934 8.797 10.72 Margin (%) *
  • t
  • Relative locations of the quadrants: OUADRANT 2 OUADRANT 3 QUADRANT 1 QUADRANT 4
                      ** The margins shown are the current margins at.the limiting conditions calculated by the MONITOR computer code.

4 J

                                                                                                                                                                                   ?

9 22-

       . ,_ ,_-_                 .     -          _ _ . _ _ . . , - .     . . _ . . . _ _ . . _ . . _ . . . _ . . . _ . _ . ._ . . _ _ _ , . , , _ , _ . ~ . _ _ . _ _ .

_ _ - . _ _ . . _ _ _ _ _ _ . - _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~

        ,             e
  ..            g.

e Mf Atunto Amp Pittluf Dif fitthts Of MtAguktD Aub PetDltit0 POWet R P W M L K J N 8 F t D C 8 A

                                                                     . . 2 75 .  .393. .456. 454    4 56. 4 00. .280.

1 . 1.0. 1.2. . 3. 1.2. . 3. 2.8. 2.7.

                                               .     .376. .500. 1.028. 1.D95. 1.028. .996. 1.039, 1.124. 1.0$9 .477. .3 79, 2                           .      9.2. 9.5.            .9      1.1.   . 8. 1.6.       .3. 3.4. 3.5. 4.3. 9.9.
                                   .     . 364. 1. 099. 1.160. 1.152. 1. 075. 1.156. 1. D56. 1.147. 1.114. 1.193. 1.137. 1.132. .399.

3 . 6.T. 6.4 6.1. .9. 1.1. *2.4. 3.6. 1.6. 4.1. 4.1. 3.9.- 9.6. 15.7. . . 484. 1.152. 1. 201. 1.144. 1. 214. 1. 244. 1.156. 1. 282. 1. 294. 1. 228. 1. 240. 1.18$ . .500. 4 . $.9. 5.2. 1.0 4.1. 3.8. 3.7. 4.3. 1.2. 1.F. 2.1. 2.1. 8.4. 11.2.

                             . 290. 1. 080. 1. 216. 1. 225, 1. 252. 1. 277. 1. 251. 1.181. 1. 24$ . 1. 315. 1. 281. 1. 225. 1. 215. 1. 085. .291.
                   $. 6.1. l.6. 6.1.                             1.9. 3.4        *3.4. +5.1. 6.5. 6.2.          1.0.     . 9. 2.4        6.$. 6.5. T.1.

t .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..

                        . 407. 1.149, 1.124. 1.300. 1.308. 1.255. 1.166. 1.178. 1.200. 1.314. 1.314. 1.327. 1.146. 1.167.                            41Y.
6. 4.4. l.T. 5.0. 2.1. *1.5. .l.0. *6.5. +8.2. 4.1. . 6. . 6.- S.2. T.8. T.T. 7.2.
                        .      481. 1. 092. 1. 217. 1. 356. 1. 325. 1.192. 1. 2 D4. 1. 063. 1. 229. 1. 210. 1. 304. 1. 581. 1. 245. 1.116.               486.

T. S.I. l.4. 4.4. 2.9. . 2. 4.T. 6.l. *T.T. *4.6. 3.0. *1.0. 6.9. 6.9. T.8. 6.3.

                        .      479. 1.D$2. 1.124. 1.220. 1.269. 1.218. 1.066                   .887. 1.092. 1.225. 1.258. 1.252. 1.167. 1.103. .501.

8 4.2. 4.0. 2.6. 1.0. .$. *$.1. *T.S. 8.l. $.2. 4.6. +1.9. 3.7. 6.6. 9.0. 8.9.

                        .    . 476. 1. 075. 1.191. 1. 295. 1.104. 1. 2D$ . 1. 217. 1. 074. 1.191. 1.175. 1. 303. 1.317. 1. 212. 1.128. .500.
9. 4.0. 3.8. 2.8. .3. 1.1. +3.3. +5.5. 6.8. *T.6. 6.1. +1.9 1.5. 3.9. 8.9. 9.3.
                        .    .396. 1.103. 1.083. 1.211. 1.269. 1.263. 1.193. 1.209. 1.166. 1.248. 1.288. 1.237. 1.059. 1.222.                            438.
10. 1.9. 1.8. 1.8. 4.1. 4.0. +4.4 4.6. .$.8. 6.5. *$.l. +3.0. *2.8. *1.1. 12.4. 12.4.
                             . 2 TT. 1. 056. 1. 060. 1.142. 1. 226. 1. 257. 1. 256. 1. 211. 1. 276 , 1. 2 75. 1. 300. 1. 207, 1.182. 1.146. .306.

it. 1.8. 1.6. .T.I. 4.6. *l.3. *l.3. $.4 4.1. 3.2. 3.5. .4. .4. 3.1. 12.0. 12.2.

                                    .      481. 1.148. 1.186. 1.132. 1. 201. 1. 219, 1.149, 1.237. 1. 219. 1. 212. 1. 226. 1. 2D8              .$17.

12 . 5.4 5.0. *2.3. +5.9. +5.7. *6.1. 4.9 4.2. 3.4 1.2. 1.0. 10.3. 13.1.

                                         . 563. 1. 064. 1.122. 1. 091, 1. 016. 1. D92. 1. 043. 1.125. 1. 042. 1.179. 1.1$4. 1.118              .392.

13 . 5.3. 5.0. 2.5. *4.8. *5.1. 6.3. 4.8. 3.4 2.0. 3.3. 5.5. 8.2. 13.8.

                                                .    .363.       473, 1.036. 1.077. 992. .970. 1 006. 1.066. 1.031                475. .3 75 .
                    *4                          .     %.3.       3.5. 1.2.          .9. 4.2. 4.1. 2.9.          1.6. 1.1. 4.2. 8.7.
                                                                     .  .287     .3 90    442. .445. 451. .363.     . 2 75 .                     . MEAS .

15 . 5.1. 1 +3.6. 3.2. 1.5. *1.6. 1.3. . OlFF . W0tt ** VALULD DO WO1 INCLUDE F DELTA *N UNCERI AINIT tiAWDA40 0(VIAll0N e 5.298 200T*MEAN+50UARE EFROR e $.372 THE MAXIMUM PEtttN1 Olf f tRENCE IN MEASURLD Vs. PktDICit0 AlstutLY POWER 18 15.727 IN LOCAfl0N 8 3 FIGWE 4.4.1 SteU0 TAN UNIT 1 CtCLE 9 RELATIVE AlltMcLY POWtts (MAP IN9f102 AT 28.8 % POWER) 23

 .e
  • e 6

MCASURtD AND Fittiki Olf f tRthCE OF CA%URfD AWD PREDICf 3 l'0WER 8 P W M L K J N 0 f I D C 8 A

                                                  .  .298.      411. 478. . 4 T3. 4 75. 409  .209 1                                      . a.6. 3.4. 4.3. 5.9. 4.8. 3.9. 3.9.
                                 .  .%85. .5D6. 1.026. 1.D63. 1.012.            981. 1.026. 1.093. 1.D49     .512.  .393.                   I I                     . 3.6. 3.T. *.9. 3.2. 3.9. *4.9. 2.5. *.T. 1.1.                            4.8. 5.T.
                        .. ... ... ... ... ... ... ... ... ... ... ... ... ..                                                               l
                        .  . 383. 1. 058. 1.122. 1.120. 1. 062. 1.134. 1. D67. 1.146. 1.105. 1.176. 1.131. 1. 064          .396.

3 . 3.0. 2.7. 3.5. 1.2. 1.1. 3.0. 3.7. 2.1. 2.4. 3.4 4.3. 5.3. 6.b.

                           .502. 1.110. 1.2D4. 1.170. 1.222. 1.233, 1.152. 1.257. 1.262. 1.214. 1.222. 1.135               .516.

4 . 2.T. 2.4. .6. 1.0. *.6. 2.T. 3.4 1.1. 1.9. 2.4 2.1. 4.7. 5.6.

               .  . 300. 1. 058. 1.1 T2. 1. 211. 1. 247. 1. 2 TT. 1. 245. 1.194. 1. 239. 1. 307. 1. 272. 1.110. 1.164. 1. 057       .317.
5. *.3. 1.9. 3.0. 2.2. .6. *.6. 2.4 3.6. 3.5. 1.4 1.4 2.5. 4.4 4.9. 5.4
               . 41T. 1.113. 1.124. 1.270. 1.301. 1.262. 1.185. 1.194. 1.213. 1.3D9. 1.303. 1.285. 1.135. 1.165.                  448.
6. 2.0. 1.2. 4.2. 2.6. 9. *2.2. 3.T. *5.3. 1.F. 1.5. 1.4. 4.5. 5.T. 6.0. 5.4.
               . 492. 1. D63. 1. 211. 1. 305. 1. 3 D4. 1. 204. 1. 225. 1.105. 1. 251. 1. 226. 1. 268. 1. 342. 1. 234. 1.117.     .523.

T. 1.4 1.0. 3.5. 2.6. 1.5. 2.4. +3.9 5.1. 1.8. . 3. .9. 6.0. 5.5. 6.1. 4.6.

               .  . 501. 1. 038, 1.130. 1. 208. 1. 265. 1. !!3. 1.1 D5. .947. 1.136. 1.239, 1.245. 1.236. 1.169. 1.087              .bi9.
8. *.3. .T. 2.0. 1.2. 2.1 2.9. *l.2. 6.4 2.5. 1.6. .$. 3.6. 5.5. 5.3. 3.2.
                  .499. 1.059. 1.181. 1.280. 1.287. 1.216, 1.233. 1.115. 1.220, 1.199. 1.293. 1.306. 1.217. 1.098.                  .515.
9. .2. .6. 1.0 1.0. .8. *1.2. 3.3. 4.3. 4.3. 2.8. .T. 2.8. 4.0. 4.3. 3.1.
               . 427. 1.100. 1.0T2. 1.211. 1.265. 1.266. 1.208. 1.220. 1.164. 1.262. 1.292. 1.243. 1.097. 1.133.                  439.
10. .3. .1. a.2. 1.6. 1.5. 1.9. 2.1. 3.2. 3.8. 2.2. .2. .4 1.7. 2.9. 3.1.
                  .301. 1.036. 1.085. 1.157. 1.223. 1.257. 1.250. 1.216. 1.261. 1.275, 1.287. 1.217. 1.192. 1.073. .312.
11. .3. 1, 4.3. 2.1. 2.5. 2.5. 2.6. 1.9 1.2. .T. 2.6. 2.6. 4.7. 3.4 3.6.
                        .  .518, 1.144. 1.156. 1.149. 1.203. 1.222. 1.149. 1.232. 1.222. 1.220. 1.228. 1.160               .514 12           . 6.2. 5.6.     .9      3.1. 2.9. 3.9. 3.7. 2.T.      .T. 3.3. 2.6. T.0. 5.2.
                        .  .383. 1. D61. 1.102, 1.116. 1. 046. 1.114. 1. 064. 1.137. 1. 060. 1.150. 1.115. 1. 074          .398.

13 . 3.2. 3.0. l.6. 1.9. 3.0. 4.8. 4.0. 2.T. 1.3. 1.5. 2.9. 4.3. T.0.

                                 . 382. 492. 1.020, 1.070. .988            968     999. 1.080. 1.020. 482. .382.

14 . 2.9 .T. 1.F. 2.8. 6.1. 6.2. 5.1. 1.7. 1.5. 1.2. 2.7.

                                                  .  .291.      409    466. 468. 4 74. .419    .296.                     . MEAS .

15 . 3.1. 3.9. 6.6. 6.8. 5.1. 1,6. *1.3. . DIFF . Nolt ** VAlutt 00 NOT INCLUDE F DELIA*H UNCERTAINTY

                 $1A40ARD DEVIAllDN e        3.365         RD07 MEAN $00Att (RROR e        3.360 THE MAXIMUM PERCENT DIFFERENCE IN MEASUttD VS. PRIDICIED At$tMhlY IDWtt Il 7.003 lN LDCAflDN C12 FIGURE 4.4.2 St0UOYAN UNIT 1 CYCLE V RELAflVI AlttMBLY POWERS (MAP IN9F103 Af 70.5 h POWER) 24

ce e w 4 4 e MratuntD 6mp PitCINT DilfikthCt Of MEAtutt0 As PetDICifD POWit R P W M L E J N G f f 0  ? 8 A

                                                . .293. .4t4      .4 79     4 TT. .476. 615. .293.

1 . *1.6. 1.T. 3.0. 3.9 3.6. *1.5. 1.5.

                                 . .991. .$14. 1.010. 1.070, 1.012. .966. l.023. 1.095. 1.043. .510. .394 2                      . 4.9. 5.0.      1.4      1.6. 2.9.      3.6. *1.9.       .$. 1.6. 4.0. 5.l.
                         . .587. 1.070. 1.158. 1.111. 1.054. 1.127. 1.067. 1.140 9.099. 1.1T3. 1.156. 1.009. .399 3              . 3.6. 3.6. 4.1.         1.4. 1.5. 3.6.      6.1. 2.5. 2.2. 3.1. 3.9. l.4.                  7.1.
                         . . 505. 1.121. 1. 266. 1.162. 1. 202. 1. 231. 1.189. 1. 258. 1. 251. 1. 216, 1. 2 T3. 1.151. .519 4              ,   3.1. 3.0.       .3. 2.4         2.2. *3.3. 3.6.        1.5. 1.1. 1.8. 2.4. 5.2. 6.1.
              .   .503. 1.054. 1.175. 1.212. 1.237. 1.260. 1.240. 1.195. 1.234. 1.280. 1.254. 1.217. 1.187. 1.073. .310.
5. 1.8. 2.T. 3.3. 1.5. 1.5. 1.6. 2.8. +4.0. 3.8. . 3. . 2. 2.2. 4.7. 4.7. 4.4
              . 425. 1.115. 1.106. 1.253. 1.279. 1.247. 1.181. 1.197. 1.209. 1.289. 1.247. 1.275. 1.125. 1.164                  460.-
6. .8. 2.4. 2.9. 1.3. .6 2.6. 3.6 4.6. 1.4 .6. .5. 3.T. 5.1. l.2. 4.4.
              .    . 503. 1. 068, 1.198. 1. 303. 1. 292. 1. 200. 1. 221. 1.118. 1. 252. 1. 222. 1. 2 B4. 1. 331. 1. 220. 1. 095. .$14.
2. 1.9. 2.5. - 2.6. 2.0. .T. *2.1. +3.3. *4.2. 1.6. . 1. .T. 4.f . 4.5. 9,1. 4.1.
              . .504. 1.041. 1.136. 1.249. 1.259. 1.225. 1.119. .999. 1.164. 1.233. 1.243. 1.267. 1.161. 1.076. .518,
4. 1.6. 1.4. 1.3. 1.2. 1.2. 2.3. 4.1. 4.8. 2.0. 1.F. . 1. 2.7. 4.4. 5.2. 4.4
              .    .501. 1.059. 1.178, 1.284. 1.282. 1.211. 1.240. 1.128. 1.223. 1.189. 1.278. 1.296. 1.202. 1.092. .515.
9. 1.4 1.6. .9. .9. .$. 1.0. *2.3. 3.6. 3.6. +3.0. *.4 1.3. 2.9. 6.8. 4.4.
              . 420. 1. 086. 1. 067. 1. 204. 1. 254. 1. 255, 1. 2D6. 1. 221. 1.162. 1. 240. 1. 264. 1. 221. 1. 073. 1.154 .466.
10. . 2. . 1. . 3. *2.0. 2.1. 2.0. 1.T. 2.6. 3.6 3.2. 1.6 1.3. . 2. 6.0. 5.9
              .    .297. 1.023. 1.081. 1.162. 1.217. 1.247. 1.249. 1.223. 1.258. 1.255, 1.266. 1.203. 1.16T. 1.098.               .318,
11. a.2. *.1. 4.6. 2.6 3.1. *2.9. 2.T. 1.T. *1.6 2.0. .8. .T. 2.6. 7.0. 6.9
                         . .514. 1.166. 1.235. 1.152. 1.194. 1.221. 1.197. 1.240. 1.207. 1.206, 1.256. 1.180.            .5 54.

12 . 4.9. 4.8. . 6. 3.6. 3.$. +4.0. +3.0. 2.6. 1.8. 1.3. 1.1. T.8. 8.9

                         . .388. 1.074. 1.120. 1.108. 1.042. 1.116, 1.074. 1.135. 1.052. 1.152. 1.128. 1.093.            .413.

13 . 4.0 3.9. 2.4 2.6. 3.1. 4.5. 3.6. *2.8. 1.7. 1.6. 3.2. 5.8. 10.8.

                                 .  .388.  .4a9. 1.024. 1.075. 995. 975. 999. 1.068. 1.022.                496.  .395.

14 . 3.9. 1.9 . 3. *1.3. 4.6. 4.6 4.1. 1.8. . 2. 1.4 5.9

                                                .  .298. 615    470. 4 72. 4 74   413.  .297.                         . MEAS .

Il . .0. *1.T. 4.7. 4.9. 4.0. *1.9. . 2. . OlFF . bott *. VAlutt D0 b0f INCLUDt F DELTA.H UNCERTAINTY STANDARD DEVIAll0N e 3.314 A001 M(AN 800ARE (RROR

  • 3.325 tnt MAXIMUM PthCENT Dif f tRENCE IN MEASUttD VS PRE 0ltit0 ASSEMBLY POLTR l$ 10.704 IN LOCAfl0N 813 fleunt 4.4.3 MOUDVAN Unli 1 CYCLE 9 RELAllVE ASSEMSLY POWERS (MAP IN9FiO4 Af 99.9 % POWER) 25}}