ML20071B398

From kanterella
Jump to navigation Jump to search
Reactor Bldg Containment Integrated Leak Rate Test, Conducted on 821208-09
ML20071B398
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 02/17/1983
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20071B395 List:
References
NUDOCS 8302280245
Download: ML20071B398 (152)


Text

{{#Wiki_filter:. TENNESSEE VALLEY AUTHORITY DIVISION OF NUCLEAR POWER 1 REACTOR BUILDING CONTAINMENT INTEGRATED LEAK RATE TEST SEQUOYAH NUCLEAR PLANT UNIT 1 CONDUCTED DECEMBER 8-9, 1982 DOCKET NUMBER 50-327 Submitted to The United States Nuclear Regulatory Conunission Pursuant to Facility Operating License 8302280245 830217 PDR ADOCK 05000327 P PDR

TABLE OF CONTENTS . gage _ 1.0 ~

SUMMARY

1-2.0. INTRODUCTION 1 3.0 TEST PURPOSE AND RESULTS 2 3.1 Test Purpose 2 3.2 Test Results 2 4.0 CONDUCT OF TkST 4 5.0' MEASUREMENTS AND CALCULATIONS 7 5.1 Test Equipment 7 5.2 ' Sensor Location 8 5.3 Computer-Based Data Acquisition and Data Reduction 8 5.4 Reactor Building Containment Model 8 6.0 ANALYSIS OF TEST DATA 9 6.1 Instrument Check 9 6.2 Discussion of Graphical and Tabular Results 10 6.3 Discussion of Agreement (Verification Test) 12 7.0 ' CONCLUSIONS 12 Tables Figures Appendices: A. Instrumentation Error Analysis B. Calculations of Verification Agreement 'C. Special Test Instrumentation Guide D. Temperature Stabilization Check E. Local Leak Rate Summary F. References

DEFINITION OF SYMBOLS AND ABBREVIATIONS CILRT Containment integrated leak rate test E Repeatability error e Absolute error Measurement system error

  • F Temperature,-degrees Fahrenheit ISG Instrument Selection Guide L

Full pressure design basis leakage A L Containment leak rate during full-pressure CILRT AM L Imposed leak rate for verification R L Containment leak rate during verification RM LLRT Local leak rate test P Pressure P, Design accident pressure psia Absolute pressure psig_ Gauge pressure

  • R Temperature, degrees Rankine T

Temperature T Dewpoint temperature dp t Time UCL Upper confidence limit V Containment volume, cubic feet MLR Mass Leak Rate TTLR Total Time Leak Rate

. 1.0.'

SUMMARY

i

A reactor building. containment integrated leak rate test (CILRT) was conducted on Sequoyah Nuclear Plant unit 1 December 8-9, 1982.

-The reportable mass leak rate (MLR) for.the CILRT was 0.02530 percentage of containment air mass per day (% per day), and the observed 95% upper confidence limit-(UCL) was 0.09429% per day. The above mentioned 95% UCL includes. leakage measured from type B and C tests for testable lines that were in. service during the test. The measured mass leak rate.was less than 13.5% of the. allowable 0.1875 % per day (0.75 L )* A -The reportable total time leak rate (TTLR) for the CILRT was 0.03651% per day, and the associated 95% upper confidence limit (including the type B and.C test leakage from testable inservice lines) was 0.09313. f Table 6 lists the lines that were in service during the CILRT. 2.0-INTRODUCTION As prescribed in.Sequoyah Nuclear Plant-(SQNP) unit 1 Technical Specification 4.6.1.2, the leakage of air from the boundary forming-the reactor building primary containment is limited to 0.25 percent by weight of the containment air mass per day at a pressure of P, 12.0 psig. In conformance with Title 10, Code of Federal Regulations, Part 50, Appendix J, Sequoyah Technical Specifications i require that a reactor building CILRT be performed as part of the surveillance programs to demonstrate the continuing leak-tight integrity of the reactor building primary containment. 1 The first inservice reactor building CILRT was successfully completed on Sequoyah unit 1 by personnel of Tennessee Valley Authority (TVA) on December 9, 1982. This test was conducted in less than 24 hours in accordance.with the procedure outlined in

i..

Becthel's topical report, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants" (BN-TOP-1) and a plant approved Surveillance Instruction, SQNP SI-156, which is on file at the plant site. This Surveillance Instruction implements the requirements of Sequoyah unit 1 Technical Specifications and 10 CFR 50, Appendix J. The American National Standard for Containment Testing, ANSI 45.4-1972 and the proposed American Nuclear Society for Containment Testing, ANS 56.8, provided guidance for the procedure implemented by the Surveillance Instruction. Sequoyah unit 1 is a 3,411 megawatts thermal, pressurized-water reactor employing an ice condenser suppression containment. The Final Safety Analysis Report defines the calculated peak accident . pressure, P, to be 12.0 psig. The reactor building containment is divided int

  • four major compartments--the lower ice condenser compartment which houses the energy-absorbing ice beds, the upper ice condenser compartment which encloses the support equipment for the ice condenser system, the lower compartment which contains the r

e .c,-,

i. reactor and the main piping systems, and the' upper compartment which provides for a large work area within containment and also can accommodate the displaced air mass from the other compartments in the unlikely event of a loss-of-coolant accident (LOCA). These four compartments are connected by means of blowout panels located between the lower campartment and the lower' ice condenser com-partment and between the upper and upper ice condenser compartments. In the event of a LOCA, steam flows from the lower compartment through the ice condenser compartments and into upper containment. The upper' compartment is sealed from the lower compartment to ensure that any steam released in an accident will be forced through energy-absorbing ice beds. For the performance of the' CILRT, the 4 lower and upper compartments were not sealed from each other to promote the free flow of air in containment. This report outlines the objectives, principal events, special equipment used, and analysis of the test results for the CILRT completed on December 8-9, 1982, on Sequoyah unit 1. 3.0 TEST PURPOSE AND RESULTS 3.1 Test Purpose The objective of the inservice Containment Integrated Leak Rate Test was to demonstrate the continuing leak-tight integrity of the' unit I reactor building containment for return-to-power operation. I For Sequoyah unit 1, the leak-tight integrity is defined in Technical Specification 4.6.1.2 to be that the leakage of air [ from containment is not to exceed 0.1875 percent per day (0.00/8 percent per hour) at peak accident pressure, P,. 3.2 Test Results 1 The leak rate reported in the CILRT by the Mass Method was 0.02530 percentage of containment air mass per day (0.00105 percent per hour), and is shown graphically in figure 9. The observed 95 percent upper confidence limit for the measured i leak rate was 0.09429 percent per day (0.00393 percent per hour). .The reportable leak rate represents only 13.5 percent of the allowed 0.1875 percentage of containment air mass per day (0.75 L ) as described in Technical Specification 4.6.1.2. A The Total Time Leak Rate (TTLR) reported during the CILRT was 0.03651 percent per day (0.00152 percent per hour), and the Total Time Leak Rate 95 percent upper confidence limit was 0.09313 percent per day (0.00388 percent per hour). The TTLR is shown graphically in figure 13. This reported TTLR was only 19.47% of the allowed 0.1875% per day. t During the 5-hour. and 51-minute stabilization period, primary containment was tested for previously undetected leakage using a soap solution. No additional leakage was discovered other than that found during the type B and C testing. In addition no repairs were performed during the CILRT or the subsequent verification test. 'Two significant temperature increases occurred in the average temperature in the lower compartment'during the CILRT. The first increase in the average temperature in the Lower. Compartment began with sample number 45 at 2.00 hours into the CILRT and peaked with sample number 47, lasting 10 minutes. The increase was 0.29713 *F in magnitude over these samples and was followed by a steady decline in the average temperature for the compartment. The second temperature-increase began with sample number 62 and peaked with sample number 70, lasting 80 minutes. The increase in temperature for these samples was - 0.31587 *F and temperahare resumed a _ downward trend following sample number 70. Similarly, two significant temperature increases also occurred in the upper compartment. The first temperature increase began 0.833 hours into the CILRT with sample number 38 and peaked with sample number 40. The overall increase in temperature for the upper-compartment was 0.48971 'F and was 20 minutes in duration. The second significant increase in the average temperature of the upper compartment began with sample number 45 at 2.00 hours into the CILRT and-peaked with sample number 52. The ovetall increase in average temperature for the compartment was 0.23786 'F.and was 70 minutes in duration. 2 These conpartmental temperature increases weie closely monitored by test engineers and posed little problem to the successful completion of the CILRT. After the completion of the CILRT, a supplemental forced leakage verification test was conducted to check the results of the CILRT. The imposed leakage was measured using a mass flow meter technique, utilizing a Hastings Mass Flowmeter. A forced leakage rate (L ) of 1.0185 L W88 imposed on the containment building. p A Thereportedcontainmentmassleakrate(Q)duringthe8-hour verification test was 0.27500 percentage or containment air mass per day shown graphically in figure 31. Agreement, using MLR, between the CILRT and-the verification test was achieved and was i found to be -0.01182 L which is clearly within the 0.25 LA required by 10 CFR 50,AAppendix J The reported TTLR during the 8-hour verification test was 0.27654 percentage of containment air mass per day and is shown graphically in f!gure 35. Agreement, using TTLR, between the CILRT and he verification test was also achieved and was found to be -0.0512L *A I l

p 1 l,. The leak-tight integrity of Sequoyah Nuclear Plant unit I was accurately measured.and recorded by computer-based instrumentation. The computer-based data acquisition system provided reliable, immediate calculations of test data, which allowed test engineers to more easily monitor important test-parameters. The CILRT and subsequent verification tests were successfully completed at 0700 hours on December 10, 1982. 4.0 CONDUCT OF TEST In compliance with Surveillance Instruction SQNP SI-157, local leak rate tests (LLRT) were' performed on containment. closures (hatches and resilient seals), bellows,.and' electrical penetrations. Local tests were also performed on valves forming the boundary of the primary containment in accordance with Surveillance Instruction SQNP SI-158 and SI-158.1. The above mentioned Surveillance Instructions were performed prior to the CILRT. All valves and penetrations l satisfactorily met-leakage requirements prior to the performance of the CILRT. Appendix E shows a complete summary of the LLRT performed on Sequoyah Nuclear Plant unit I since the preoperational CILRT performed in March 1979. Figure 1 depicts the sequence of events for the CILRT and its verification conducted December 8-10, 1982. The following is an l accounting of significant events occurring during.the test program. l Date and Time Event i 12-01-82 1200 RCS pressurizer water level monitor line connected and celibrated. 12-06-82 0800 Received administrative control of unit (1) Reactor Building. 12-07-82 1800 All sensors and other special test equipment in place and calibrated. 12-07-82 1830 Temperature sensor at location nine (9) showed erractic readings and was deleted prior to j pressurization. The volume weights of all the upper campartment RTDs were adjusted accordingly. 12-07-82 2200 Dewpoint sensor at location five (5) was deleted prior. to pressurization due to a calibration error. The volume weights of all other lower compartment dewcels were adjusted accordingly. 12-07-82 2400 Lower airlock door passed SI 159.2.

f ' W Date and Time Event 12-08-82 0050 Upper airlock door passed SI 159.2. 12-08-82 0100 All prerequisites completed and signed off. 12-08-82 0148 Started pressurization of containment with both compressors. 12-08-82 0130 One compressor shut down for repairs, continued pressurization with other compressor. 12-03-82 ,0400 Average containment pressure 1.8749 psig. 12-00 82 0600 Average containment pressure 3.6060 psig. 12-08 82 0843 Compressor repaired, resumed pressurization with both compressors. 12-08-82 0853 Average containment pressure 6.1058 psig, shut down both compressors. 12-08-82 0857 Isolated pressurization valve X-54 while replacing gasket on compressor dryer. 12-08-82 0925 Average containment pressure 6.0877 psig. 12-08-82 1015 Compressors repaired, isolation valve X-54 opened. 12-08-82 1016 Resumed pressurization with both compressors. ~12-08-82 1023 Average containment pressure 6.0818 psig. 12-08-82 1123 Average containment pressure 7.1683 psig, shut down both compressors. 12-08-82 1135 Resumed pressurization with both compressors. 12-08-82 1223 Average containment pressure 8.2541 psig. 12-08-82 1233 Average containment pressure 8.4592 psig shut down compressors. 12-08-82 1243 Resumed containment pressurization. 12-08-82 1323 Average containment pressure 9.2346 psig. 12-08-82 1339 Average containment pressure 9.579 psig.

_ Date and Time Event 12-08-82 '1349 - Average containment pressure 9.6124 psig. 08-82 1350' Resumed pressurization. 12-08-82 1439-Average containment pressure 10.5820 psig. 12-08-82 1448 ~ Shut down compressors. ~ '12-08 1459 Containment pressure 10.7580 psig, resumed . pressurization. 12-08-82 1549' Average containment pressure 11.7806 psig. 12-08-82 1559~ Shut down compressors 12-08-82 1609 Average containment pressure 11.9860 psig, resumed pressurization with one compressor. 12-08-82 1629 Average containment pressure 12.3866 psig. 12-08-82 1639 Average containment pressure 12.5643 psig shut down compressors. 12-08-82 1645 Average containment pressure 12.5936 psig, closed pressurization valve X-54. 12-08-82 1700 Compressor discharge line vented. 12-08-82 1710 Began bubble testing of penetrations and leak paths listed in Appendix J of the procedure. 12-08-82 1750 Sample 1 of stabilization period, average containment pressure 12.5470 psig. 12-08-82 2340 Containment stabilization temperature criteria met. 12-08-82 2341 Began CILRT sample with sample 33 as base. 12-09-82 0051 Unusual temperature increase recorded in upper compartment of approximately 0.5 *F over a 30- ~ minute duration, with the peak temperature cccurring at sample 40. 12-09-82 0201 A similar temperature increase recorded in lower compartment of approximately 0.3 *F over a 30-minute duration, with the peak temperature occurring at sample 47. 12-09-82 0251 Another unusual temperature increase in the upper compartment of approximately 0.3 *F over a 20-minute period, with the peak temperature occurring at sample 52.

] m-i Date'and Time Event 12-09-82 0551 A similar temperature increase in the lower compartment of-approximately 0.3 *F occurred over a 30-minute period, with the peak temperature occurring at sample 70. ^

12-09-82 1502 CILRT concluded with.15.345 hours of data, samples 33 - 122.. Reportable MLR value of 0.02530 %/ day and a TTLR value of.03651 %/ day.

i '12-09-82 1505 . Began verification test setup. 12-09-82 1526 Established imposed flow through Hastings . flowmeter. 112-09-82 1536 Sample 1 for verification test 4 + 12-10-82 0305 Rebased sampling program to sample 34. 12-10-82 0700 Verification completed with 7.917 hours of data,- samples.34 - 131. Verification per Appendix J was -1.182% for the MLR method and -5.12% for the TTLR method. 12-10-82 0810 Began depressurization. 12-10-82

1835 Depressurization completed.

.12-11-82' 1127 Completed removal and calibration of all special test equipment. 12-11-82 1400 Released administrative control of reactor building. 5.0 --MEASUREMENTS AND CALIBRATIONS 5.1 Test Equipment-Table 1 lists the range, accuracy, and repeatability of the special test equipment used in the unit 1, cycle 1 CILRT. ' Prior to the start of the CILRT, all test equipment was calibrated by the TVA Central Laboratiories or other facilities with standards traceable to the National Bureau of + Standards. After installation of all special test equipment insideLeontainment, each sensor was checked for functional operation. The special t'est instrumentation interfaces with a portable minicomputer which produces highly accurate remote scanning of temperature, pressure, and dewpoint sensors. Upon test completion and depressurization each sensor was .again functionally checked to ensure adherence to calibration.

, -Pressurization for the CILRT was achieved using portable. high-capacity air compressors. The compressors.were rated at 3,500 SCFM of dry,' oil-free air, and brought containment to test pressure in approximately 15 hours, including final " topping off" stages of presurization. ,5.2 -Sensor Location Table 2111sts the final volumetric weighing factor for each temperature and dewpoint sensor based on the 4-compartment model. Figures 3 through 8 indicate sensor locations. The pressure sensors were divided so that two sensors measured each of the four compartments through penetrations X-27C, X-87D, X-87A, and X-98. An additional. pressure sensor measured barometric pressure at the test station. ~ 5.3 Computer-Based Data Acquisition and Data Reduction The raw test data: measured by the special test instrumentation during the Sequoyah Nuclear Plant unit 1 CILRT was scanned and collected by a microprocessor based data acquisition system. This raw test data was automatically presented to a portable minicomputer system for correction to calibration curves and reduction to containment leak rate. The minicomputer produced immediate statistical and graphical results of the containment test parameters, including temperature, pressure, vapor pressure, mass, and mass leak rate plots. These calculated results were reported automatically to the test director as the data was collected. Figure 2 depicts the functional relationship between the special test instrumentation and the data acquisition and analysis system. All calculations performed by the minicomputer system were in conformance with the procedures outlined in ANS 56.8, ANSI 45.4 and Bechtel Topical Report (BN-TOP-1). = Source listings for all computer programs are on file with the Division of Nuclear Power, Mechanical Branch, in Chattanooga, Tennessee. Table 3 identifies the principal function of each computer program. 5.4 Reactor Building Containment Model An ice condenser pressure suppression containment presents special problems not normally encountered in the leak testing of dry containment structures. The pressure suppression design feature requires the reactor building containment to be divided into distinct compartments, where vastly different temperatures and vapor pressures may exist. While each compartment is vented to the containment atmosphere during the performance of the CILRT, the direct circulation of air is limited.

a, Since an ice condenser containment typically exhibits a"40*F temperature differential between the ice campartments and others, it is necessary to compensate by compartmentalization -so the leak rate is accurately measured. For Sequoyah unit 1 CILRT, a 4-compartment containment model was used to measure the leak rate. The free air mass is calculated individually. for each compartment,-and containment leak rate is calculated from the sum of.the. compartmental masses. Each sensor within a compartment is volume weighted for the calculation of com-1 -partment average. temperature and vapor pressure. Figure 30 depicts the' four compartments used in the Sequoyah unit I reactor building. containment model. 6'.0 ANALYSIS OF TEST DATA The previous sections of this report have discussed the general test conduct, calibration methods, and test equipment. In this section events and problems that influenced the test results are discussed and are used to formulate conclusions on the performance of the Sequoyah unit 1, cycle 1 CILRT. 6.1 Instrument Check The data presented in this section reflects the test resulta following recalibration and deletion, if necessary, of the special test equipment used during the test. One humidity sensor was deleted prior to the start of the ). CILRT due to an error in calibration data. DPE-5, as.shown in figure 3, was deleted and its volume weight was set equal to zero, with the volume weights for'DPE's 3, 4, and 6 adjusted accordingly. One temperature sensor, RTD-9, was also deleted prior to the start of pressurization and the CILRT due to erroneous readings. The sensor's volume weight was set equal to zero and the volume weights of the other temperature sensors in the lower compartment were adjusted. I Four of eight Mensor Quartz Manometer pressure gauges were .found to be slightly non-conservatively out of tolerance when the gauges were calibrated following the CILRT. The manometers were indicating slightly higher than the actual pressure readings according to the post-test calibration report. Test p engineers corrected each pressure reading taken by these manometers during.the CILRT and subsequent verification test j and the changes in the manometer readings did not affect the ~ success of the unit 1 CIIRT. In addition, all test results and reported data in this report include corrected manometer readings.

r - s The instrumentation' error analysis of Appendix A indicates that the instrumentation used in the unit-1, cycle 1 CILRT was extremely accurate to 10.0090 L in determining the 3 containment leak rate for unit I, far surpassing the recommendations of ANS 56.8 which states that the measuring-system be capable of detecting 0.25 L

  • A 6.2 Discussion of Graphical and Tabular Results The December 8-9, 1982, CILRT that was' performed on unit 1 at-Sequoyah Nuclear Plant was concluded after 90 samples were taken in 15.345 hours of testing. Figure 9 is a graphical representation of the MLR and figure 13 is a graphical representation of the TTLR, expressed as a percentage of containment air mass per day, during the CILRT. Tabulated data' accumulated during the CILRT is shown in Table'4.

The CILRT was started following a 5-hour and 51-minute stabilization period. There were two significant abrupt' increases in temperature experienced in both the upper and lower compartments with cyclical temperature trends experienced in the ice-upper compartment. The first of the temperature increases that was experienced in the lower compartment occurred at 2.00 hours into the CILRT. The increase of 0.29713 *F resultei in corresponding increases -in the total time and mass leak raies for the samples involved (samples 45-47). The second and most significant temperature change occurred between 4.833 and 6.166 hours into the CILRT. It was 0.3159 *F in magnitude, and again, the increase'in compartmental temperature resulted in appropriate increases in total time and mass leak rates. r One temperature increase occurred in the upper compartment l between 0.833 and 1.167 hours into the CILRT. The increase was 0.48971 *F in magnitude'and resulted in an expected increase in mass leak rate and total time leak rate. The second upper com-partment significant temperature increase occurred between 1.00 ad 3.166 hours into the CILRT. The increase of 0.23786

  • F once more caused a corresponding increase in mass leak rate.

I The corresponding increases to mass leak rates and total time leak rates were only temporary and following the above mentioned abrupt increases in temperature, the mass leak rate and the total time leak rate resumed a slowly downward trend. l I L.

_j1 In each case efforts were made by test engineers both during the test and the weeks thereafter to determine the cause of the-temperature increases, but no exact reason for.the increases has been discovered to date. The temperature trends in the ice-upper compartment were cyclic in nature. The first cycle beginning with sample 38 and'ending 10 samples later with sample number 48, lasting 60 minutes. Between samples 38 through 42 the compartment experienced a 0.3732*F increase, and the cycle ended with a 0.43683*F decrease in compartmental temperature between samples 42 and 48. The second cycle began with sample number 48 and ended with sample 89. A steady increase was experienced between samplen 48 and 73 and was 2.21258 'F in magnitude and was followed by a steady decline in average compartmental temperature between samples 73 and 89 amounting to -1.43047 *F. A third and relatively small cycle seems to have occurred between samples 89 and 95. The peak of the cycle occurred with sample number 92 and was 0.26057 'F in magnitude._ A fourth and final. cycle began with sample 95, peak with sample 119, and concluded with the last CILRT sample (sample 122). Between samples 95 and 119 a steady overall increase of 2.27163 *F was experienced and was followed by a steady decline of -0.6212 'F between sample 119 and the conclusion of the CILRT. These trends in the upper ice condenser compartment had little effect on the MLR and TTLR and were closely monitored.by test engineers. The cyclic trends were suspected to be_ caused by the defrosting cycles of the air handling units located in the upper ice condenser. Due to the fact that the steam generators, accumulators, and the RCS pressurizer were laid up wet and vented to inside con-tainment during the CILRT, it was determined that the reactor coolant system (RCS) pressurizer water level should be monitored to account for any changes in free air volume during the test. Since any change in the level of the steam generators or j accumulators would be reflected in the RCS pressurizer water level, only the RCS pressurizer level would require monitoring. I The pressurizer was monitored through LT 68-321. Figures 14 through 29 show compartmental temperatures, corrected pressures, vapor pressures, and masses during the 15.345 hour CILRT. Table 4 is a tabular listing of important measured parameters and corresponding results for the unit 1 CILRT. Final results indicate a MLR of 0.02530 percent per day and a TTLR of 0.03651 percent per day. The associated 95 percent upper confidence limits for the Sequoyah unit 1, cycle 1 CILRT were 0.09429 percent per day for MLR and 0.09313 percent per day for TTLR.

4 , i After instrumentation received post-test calibrations, the calibration reports indicated that all. instrumentation used in the unit 1 CILRT and subsequent verification test was in proper tolerance, with the exception.of items already mentioned. 6.3 Discussion of Aareement-(Verification Test) Appendix J to 10 CFR 50 specifies the technique for the calculation of agreement between.the CILRT and its subsequent-verification. Appendix J requires the absolute value of the difference between the measured containment leak rate with a superimposed leak and the sum of the imposed leak and the measured containment leak rate be less than 0.25 L

  • A The verification test was concluded at 0700 hours on December 10, 1982.

After collecting 98 samples in approximately 8 hours, agreement, as prescribed by Appendix J of 10 CFR 50, between i the CILRT (L ) and the imposed leak. rate ( ) was reached at- -0.01182 L, ich is well within the i 0.25 all wa le limit. A A Agreement was also' reached using TTLR and was found to be -0.05125 L. Appendix B details the methods of agreement 3 calculations. Tabulated data collected during the 8 hour verification test is shown in Table 5. Figure 34 shows the total containment air mass-loss during the 8 hour verification-test, while Figure 33 shows the cor-responding total containment pressure. Figures 36 through 51 show compartmental temperatures, corrected pressures,' vapor pressures and masses for the 8 hour verification test.

7.0 CONCLUSION

S The reactor building containment integrated leak rate test performed on Sequoyah Nuclear Plant unit 1, cycle 1 December 8-9, 1982, recorded a MLR of 0.02530 and a TTLR of 0.03651 percentage of containment air mass per day, which clearly demonstrates the leak-tight integrity of unit 1. The total leak rate was much less than the allowable 0.1875 percent of containment air mass per day as i prescribed under Sequoyah Technical Specifications. The full-pressure CILRT (12.0 psig) was completed in 15.345 hours, completing TVA's first short-duration CILRT. The test results indicated that the containment leak rate could be accurately 4 measured in less than 24 hours. i 5, ,,n-r.,-- v- --gy,-,,., n. .., -, -w ,-,,m- -,.,,...v.--,n,, ---m .,,,,,-.,-n-,

b '. The technique of multicompartment modeling coupled with a computer-based data acquisition system yielded immediate results that accurately measured and displayed the unit 1 containment leak rate. I I t n--,- ,,-,--,----,r,

TABLES I i I l

l Table 1 Manufacturer Measured and Number Instrument Specification l Parameter Model No. Used Containment-Leeds & Northrup 48 Range: 0-250*F Temperature Model No. 178055 Accuracy: 10.1*F Repeatability: 0.001*F. Containment Mensor Corporation 8 Range: 0-30 psia, 400,000 counts.F.S. Pressure Model No. 10100-001-Accuracy: 10.015 percent reading l Repeatability: 10.0005 percent reading Containment Foxboro Corporation 12 Range: -50 to +142*F ~ Dewpoint Model No. 2701 RG Accuracy: i1*F dewpoint Repeatability: 10.10*F Analog to Acurex Corporation 1 Accuracy: 10.001*F dewpoint Digital Autodata Nine 10.001*F temperature il count pressure Converter Verification Teledyne-Hastings 1 Range: 0-25 SCFM Flow Mass Flow Meter Model AHL25 Accuracy: 12 percent of range with H-3M Transducer Repeability: 14% of range TVA No. 4699.36 i Mensor Princo 8 Range: 49* to 57*C Chamber ASTM 19L Accuracy: 10.12*C Temperature Atmospheric Texas Instruments 1 Range: 0-50 psia Pressure Precision Pressure Gauge Accuracy: 10.015% F.S. Model No. 145-01 RCS Pressurizer Plant Process Transmitter 1 Range: 0-100 level Water Level Model LT-68-321 Accuracy: 15 percent F.S.

TABLE 2. VOLUMETRIC WEIGHTING GROUPS-Volumetric Weight Number of Segment Per Sensor by Temperature Transducers Volume Compartment (Percent) I. Upper compartment' 13 651,000 7.6923 II. Lower compartment 25 383,720 4.0000 III. Ice-upper compartment 6 47,000 16.6667 IV. Ice-lower compartment 4 110,500 25.0000 48 Dewpoint I. Upper compartment 3 651,000 33.3333 II. Lower compartment 2 383,720 50.0000 III. Ice-upper compartment 3 47,000 33.0000 IV. Ice-lower compartment 4 110,500 25.0000 12 l t i

TABLE 3 CONTAINMENT LEAKAGE MEASUREMENT MINICOMPUTER ROUTINE

SUMMARY

Routine Name FORE a. Automatically acquires, stores, and corrects raw data to calibration Curves. 'b. Calculates volumetric weighted containment air mass and leak rates as defined by ANS 56.8 (draft). c. Prints for each sample a summary with average parameters and containment leak rate.- TABLE Provide a summary for all samples from test start of average parameters, including calculated containment leak rate. TALLY a. Calculate statistical confidence levels for the measured leak rate from the test start. b. Provide a summary comparison of reportable leak rates as defined by ANS 56.8 (draft). BASE a. Allow test director to change the sample considered the test base. b. Provide a summary for each sample leak rate recalculated with a shift in the test base. PLOT Provides graphical display of test data. VERIFY Calculates " induced-leakage" results during verification test.

TENNESSEE VnLLEi AUTHORITi CONT AINdENT LEAhnGE iiEASUAEnENT TEST SufiHAkY CILRT HOURS AVERAGE CORRECTED TOTAL HASS F-T-F TOTAL TINE NASS SANFLE SINCE TEMPERATURE PRESSURE OF AIR LEAK RATE LEAA RATE LEAA RATE START (DEO F.) (PSIA) (LBM) (% PER DAY) (% FER DAV) (1 FER DAY) 33 0.000 63 0614 26.9808 166355.36 0.0000000 0.0000000 0 000000C 34 0.166 63.0143 26.9802 166366.52 -0.9680673 -0.9680672 -0.9683977 35 0.333 63.0200 26.9806 164346.73 -0.0188972 -0.4924398 -0 4932304 36 0 500 63 0568 26.9601 164352.30 1.2527072 0.08S4514 0.0763840 37 0.667 43 0414 26.9800 166306.73 -0.3833758 -0.029762S 0 0990494 38 0.833 63.0245 26.9788 166354.97 0.1532083 0.0067673 0 1141700 39 1 000 63 1758 26.9778 166301.17 4.6476312 0.7819511 0.4065552 40 1 167 63 2882 26.9765 166258.23 3.7107060 1 2009596 1 0694443 41 1 333 63.1699 26.9776 166301 46 -3./700706 0.5812210 0.9639882 42 1 500 63 1709 26.9773 166299.44 0.1917462 0.5378546 0.8685461 43 1.666 63.0790 26.9768 166325.58 -2.2690771 0.2578545 0.6739482 44 1.833 63.0566 26.9735 166312.69 1.1138586 0.3358103 0.5787684 45 2 000 63 0594 26.9735 166312.09 0.0515350 0.3121717 0.5036739 46 2.167 63.1795 26.9732 146273.09 3.3702043 0.5478143 0.5387535 47 2 333 63.2385 26 9726 166251 31 1.8909712 0.6434765 0.594980a 48 2 500 63.1637 26 9735 166280.47 -2.5204709 0.4322194 0.5640656 49 2.667 63.1658 26.9727 166774.89 0.4321277 0 4353311 0.5412956 50 2 833 63.1832 26.9727 166266.80 0.5290321 0.4406.51 0.5252470 51 3.000 63 1731 26 9724 166269.83 -0.0391391 0.4113183 0.5033866

  • 2 3.166 63.2407 26 9711 166240.98 2.5041616 0.5"_11455 0.51641"8 53 3 333 63.1432 26.9718 166276.09

-3.0352893 0.3430767 0 4798353 s 54 3 500 63 1242 26.9720 166283.20 -0.6174997 0.2974655 0.4393109 55 3.667 63.1054 26 9722 166289.72 -0.J431433 0.2582325 0.3977433 56 3 833 63 1075 26.9707 144278.73 0.9535292 0.2884250 0.3710350 57 4 000 63.0807 26 9708 166287.80 -0.7832969 0.2436950 0.3396130 58 4.167 63.0619 26.9700 166288.58 -0.0675219 0.2312234 0.3114610 59 4.333 63 0375 26.9703 166297.95 -0.8133285 0.1911347 0.2803172 60 4.500 63.0325 26 9705 166301.00 -0.2633194 0.1742755 0.2510335 61 4.446 63.0402 26 9707 166299.31 0.1464782 0.1732834 0.2269604 62 4.833 63 0427 26.9703 166295.36 0.3416373 0.1790962 0.2082322 STOP -- TABLE 4 Page 1

o TENNESSEE VALLEY AUTHORITY CCNTAINi1ENT LEAKAGE iiEASUREMENT TEST SUhMARY CILRT HOURS AVERAGE CORRECTED TOTAL HASS P-T-P TOTAL TIME MASS SAMPLE SINCE TEMPERATURE PRESSURE OF AIR LEAK RATE LEAA EATE LEAK RATE START (DEG F.) (PSIA) (L8M) (2 PER DAY) (% PER DAY) (% PER DAY) i 63 5.000 63.0545 26.9697 166287.69 0.6659559 0 1952788 0.1954181 64 5 167 43.0663 26.9696 164282.58 0 4415936 0 2032344 0.1864118 i 65 5.333 63.0429 24.9677 166278.77 0.3309689 0.2072123 - 0.1798641 66 5.500 63.0590 26.9680 166274.83 0.3403289 0 2112494 0 1750875 67 5 467 63.0626 26.9681 166274.50 0.0283414 0.2058575 0.1702383 68 5.833 63.0475 26 9665 166262.75 1.0200849 0.2290535 0.1703413 69 4.000 43.0758 26.9657 144234.86 0.4820741 0 2416514 0.1721614 70 4.146 43.1114 26.9659 164244.44 .0.8858964 0.2590076 0.1768799 71 4.333 43.0442 26.9649 164259.39 -1.2737938 0 2186138 0.1751794 72 6.500 62.9898 26.9658 166281.89 -1.9535314 0 1630784 0.1658730' 73 6.667 62.9794 26.9653 166281 34 0.0472670 0.1601768 0.1574454 74 4.833 62.9493 26.9642 146277.49 0.3174070 0.1639992 0.1510273' 75 7.000 42.9453 24.9432 1662/2.53 0.4456717 0.1707141 0.1459080 l 76 7.167 62.9516 26.9421 164249.45 0.2460408 0.1729327 0.1423295 77 7.333 62.9290 26.9626 166279.52 3.8736098 0.1492149 0.1357860 78 7 500 62.9170 26.9632 166284.97 -0.4441911 0 1315557 0.1282720 79 7 666 62.9070 26.9622 164283.39 0.3104143 0.1354363 0.1019384 80 7.833 42.8948 26.9623 166287.53 -0.3578756 0 1249229 0.1152425 81 8.000 42 8846 26.9599 146274.98 1.0891607 0.1449546 0.1117406 82 8.167 62.8685 26.9599 146280.06 -0.4389262 0.1330195

0.1073630 83 8.333 62.8558 26.9600 166283.70

-0.3160529 0.124062 0.1024868 84 8.500 62 8254 26.9599 166292.63 -0.7711192 0.1064814 0.0961541 85 8 667 62.8225 26.9603 144295.08 -0.2120127 0 1003461 'O.0899743 86 8.833 62.8398 26.9592 166281.63 1.1677984 0.1204303 0.0864512 4 87 9.000 62.7650 26.9571 166291.23 -0.8303504 0.1027920 0.0818593 88 9.146 62.7371 26.9574 166301.14 -0.8599319 0.0853359 0.0757054 69 9.333 42.7554 26.9579 164297.94 0.2748176 0.0887603 0.0707122 90 9.500 62.7634 26.9589 166300.00 -0.1790322 0.0840745 0.0657112 91 9.667 62.7649 26.9585 164293.03 0 4294079 0.0900378 0.0618186 92 9.833 62.7574 26 9569 166286.23 0.7634129 0.1014224 0.0592406 STOP -- TABLE 4

  • i Page 2

+ TENNESSEE VALLEY.4UTHORITY CONTAINMENT LEAKAGE iiEa3UREMENT TEST

SUMMARY

CILRT ] HOURS AVERAGE CORRECTED TOTAL HASS F-T-P_ TOTAL TIME-MASS SAMPLE SINCE TEMPERATURE PRESSURE OF AIR LEAK RATE LEAK RATE LEAK RATE START (DEO F.) (PSIA) (LBM) (% PER DAY) (% FER DAV) (% PER DAY), I 93 10.000 42.7565 26.9559 166279.92 0.5455322 0.1088359 0.0579129 94 10.167 62.7671 26.9558 166275.27 0.4024496 0.1136556 0.0571434 I 95 10.333 62.7603 26.9564 166280.27 -0.4340764 0.1048459 0.0556620 96 10.500 62.7798 26.9571 166277.77 0 2160799 0.106613e 0.0547104 97 10.833 62.8091 26.9571 166247 08 0.4628929 0.1175666 0.0549736 98 11.000 62.8092 26.9566 144262.72 0.3784792 0.1215073 0.0555700 99 11.147 62.7941 26.9568 144247.97 -0.4338157 0.1129073 0.0555453 100 11.333 62.7839 26.9576 166275.45 -0.6497871 0.1017230 .0.0543534 101 11.500 42.7934 26.9596 166283.70 -0.7130843 0.0898959 0.0525994 102 11 667 62.7775 26.9595 166284.87 -0 2741457 0.0846869 0.0504324 103 11.833 62.7800 24.9591 166282.05 0.4191240 0.0893835 0.0483724 104 12.000 62.7857 26.9586 166276.33 0.4942775 0.0950150 0.047S465 105 12.166 62.7328 26.9588 166293 05 -1.4514345 0.0738912 0.0453453 106 12.333 42.7311 26.9583 166290.39 0.2295673 0.0759979. 0.0432390 107 12.500 42.7626 26 9594-1642E4.03 0.3784262 0.0800184-0.0417202 108 12.667 62 7991 26.9599 166276.94 0.7859634 0.0893213 0 0410577 109 12.833 62.8123 26.9597 166270.73 0.5383209 0.0951378 0.0409412 110 13.000 62.8278 26.9583 166256.56 1.2249732 0.1096434 0.04:1302 i til 13 167 62.8269 24.9587 166238.28 -0.1485741 0.1063695 0.0428938 4 112 13.333 62.7922 26.9586 166248.58 -0.8940180 0.0939014 0.0427042 113 13.500 42.7263 26.9587 164288.86- -1.7530717 0.0710641 0.0410293 2 114 13.666 62.7179 26.9591 166293.75 -0.4245465 0.0650387 -0.3390858 115 14.094 62.4660 26.9547 166294.25- -0.0168706 0.0625530 0.0343926 4 116 14.260 62.6522 26.9559 166293.59 0.0569661 0.0624876 0.0350797 1 117 14.427 62.6374 26.9566 166302.44 -0.7443215 0.0529208 0.0325880 118 14.594 62.6316 26.9563 164301.28 0.0999236 0.0534582 0.0303285 119 14.760 62.6355 26.9559 166297.34-0 3404256 0.0566893 0.0285728 120 14.927 62.6344 26.9541 164285.58 1.0181719 0.0674414 0.0277635 121 15.179 42.os2' 24.9533 166290.34 -0.2737922 0.0417956 0.0245634 4 122 15.345 62.5921 26.9532 166292.97 -0.2278696 0 0586581 0.0252981 ? STOP -- 1 i TABLE 4 Page 3 1i

. -. ~.. - ._.. _ ~ m. - ~ - ~ ~ " 3 TENNESSEE VALLEY AUTMORITY CONTAINMENT LEAKAGE HEASUREMENT ~~ ~~ - - - - - TEST'

SUMMARY

' - - ~

VERIFICATION TEST _e . - -- - - - - ALL-COMPARTMENTS----- HOURS AVERAGE CORRECTED TOTAL HASS P-T-P TOTAL TIME MASS. SAMPLE SINCE TEMPERATURE PRESSURE '0F AIR ' LEAK RATE LEAK RATE LEAK RATE t START (DEG F.) (PSIA) (LSM) (X PER DAY) (I PER DAY) (1 PER DAY) ..ee. .me.eem.m.m eme.. eemme. ...,eem.m.meemme.e .,ee......._ _ -__ -- - _e e .m e _ m e m e e e - - e g___ =-me...,me..e--. __em.m. 34 0.000 62.4929 26.9414 164235.64 0.0000000 0 0000000 0.0000000 35 0.083 62.5098 '-~ ~ ~ ~ " -~ ~ " 26. 9 4 2 4 ~ ' ' ~ 146 23 4.'14. ~ - ' - ' O.2614408 ~^^ ~ ' O.2616608 ~~ 0.2634618 36 0.166 62.5132 26.9423 - 166231 86 0.3944553 0.3283487 0 3305100 37 0.250 42.5202 26 9423 166228.53 0 5754803 0.4109631 0.4098557 .e_. ~38 - ~~ 0 333 " - ~ 42.5371-~~ ~ 26.9425'~~~ '146223;53--~~ 0.8445886 0 5244094~~~ ~ ~ 0.5142891 " 39 0.416 62.5476 26.9414 166212.41 1.9407921 0.8063219 0.7488812 40 0.500 62.5638 26.9403 166199.89 2 1643834 1.0332787 0.9848665 41 0.583 42.5973 26.9403' 166168.38 ~~ ~1.9915988 1 1704643 1.1670927 42 0.467 62.6638 26.9401 166145.77 3.9105062 1.5133829 1.4348959 43 0.750 62.7232 26 9394 166143.42 ~ 3.8650901 1 7751911 1.7034923 ,f' ' 44 0.833 42.7328 - ~' -~26.9394' - ~ ~ ~ "166138.19 - ~~ ~ 0.9135939 ~ ~~~~ 't.4895113 1.8143556 ~ 45 0.916 62.7412 26 9397 164136.69 0 2595176 1.5591863 1.8191913 1.4686809 1 7741917 46 1.000 42.7547 26.9399 146133.94 0 4757866 1.3321527 1.4902493 47 1.083 62.7658 ~ 26.9407 ' ~'166135.69' '-~ ~ -0 30 2 7783 ' 48 1.166 62.7650 24 9392 166127.45 1.4372728 1.3395526 1 4279716 49 1.250 62.7760 26.9391 166123.44 0.6947953 1 2964380 1 5662878 I. 50 ~1.333 62.7888 ~ -^ 26'.9387 - ~ ~ ~164117.17 --~1;0841230 " ~ 1.2830932 ~ 1.5141419 51 1.417 62.7922 26 9382 166113.92 0 5623593 1.2405859-1.4600071 ,52 1 500 62.7900 26.9373 166108.97 0.8570741 1.2192030 1.4131708 $3 1.583 42.7908 26.9365 164104.31 '0.8128581 1.1979226 1.3692991 e 54 1.666 62.7785 26.9363 166106 30 -0.3433902 1.1207012 1.3149210 55 1.750 62.7830 26.9364 166105.13 0.2027871 1.0768921 1 2607820 56 1.833 42.7957 26.9360 '146098.75 ~~1.1031696' '1.0780494 1 2186751 57 1.916 62.7865 26.9370 166106.78 -1.4021300 0 9709661 1.1597759 58 2.000 62.7847 26.9356 166098.81 1.3789482 0.9379582 1.1155652 59 2.083 62.7896 26.9366 166103.03 -0.7300664 ~ 0.9191163 1.0655454 60 2.167 62.7873 26.9371 166106.19 -0.5461840 0.8626610 1.0129197 164100.03 1.0653088 0.8701503 -0.9706801 61 2.250 42.7995 26.9368 ~~~ 166099.64- ~~ ~ ' ~ 0.0481965~ -~~~ ~ ~~0.8416960 0.9310198 62' 2.333 42.8010 ~~~ 26.9369 63 2 416 62.8013 26.9358 166092.17 1 2924817 0.8572348 0.9006106 64 2.500 62.7964 26.9350 166088.95' O.5370359 0 8471934 0.8740234 65 2.583 62.7961 26.9346 166086.03 0.5056686 - 0.8361403 0 8498032 i eeeeeeemeeeeemee ..emeewe.em.emeem.ee$eeme. .meeemeneoe..ee o e e w e e e e m e o e e e e .. h.~e e m e e m o e'. eeEom"mapeme -eme-eeeemeemeeem.em e. STOP -- TABLE 5 . g. f i

.~. TENNESSEE VALLEY AUTHORITY 'CONTAINHENT LEAKAGE HEASUREMENT~ TEST SUHMARY ~ ~ ~ VERIFICATION TEST ALL COMPARTMENTS HOURS AVERAGE CORRECTED TOTAL HASS P-T-P TOTAL TIME MASS ~~ SAMPLE SINCE TEMPERATURE PRESSURE OF AIR ~ LEAK RATE LEAK RATE LEAK RATE START (DEG F.) 4 PSIA) (LBM) (% PER DAV) (% PER DAY) (% PER DAV) g 24.9350 166084.02 0 3519234 0 8210985 0.8269827 66 2.666 62.8088 ~ 26.9340 '166077.89 ~ 1 0600426' 0.8283253 0.8094903 67 2.750 62.8085 68 2.833 62.8068 26.9336 144075.73 0 3731921 'O.8149009 0.7924164 69 2.917 62.7950 26.9347 166085.48 1 6874989 0.7433065 0.7669616 70 '~ 3.000 - 62.8037 ~ ~^ 2 4. 9 3 3 3 ~ ~ -- ' ~~ 146074~06 ~ 1'.9767457~ ~ 0.7775860 ~~ 0.7507576 71 3.083 62.8041 26.9340 166078.11 -0.7066250 0.7377574 0.7307995 26.9339 146079.88 -0 3055844 0.7102515 0.7096744 72 3.166 62.7951 - 26.9341 ~ 166084.'95 --- -1 22G0289 -' ' ' ' ~ 0.6605578 0.6850573 73 3.250 - 62.7756 74 3.333 62.7812 24.9334 166080.44 1 1276274 0.6722324 0.6650978 75 3.416 62.7962 26.9323 166068.38 2.1061552 0.7069260 0 6527525 '~- ~ 76' ~ ~ 3.500~ ~ 62.8088 "-~ 26. 9317 ~ ~~~~ ~ 14 406 0. 03 - - 1.4441736~~~ ~~'O.7244816 ' ~0 4443684 77 3.583 62.8098 26.9315 166058.02 0 3488909 0.7157205 0 6362889 166055.16 0.4949443 0.7106807 0.6287585 78 3.667 62 8098 26 9311 '~ 164054.80 ~ ' ~ 0.0622072 0.6962406 0.6204176 79 3.750' 62.8046 ~~26.9309 80 3.833 62.8034 26.9305 166053.25 0 2701315 0.6870330 0.6124315 0.6704267 0.6036094 81 3.916 62.8042 26.9306 166053.78 -0.0919595 ~~ '0.6644944 0.5951890 82 4.000 62.8020 - ~~--"26.9302 166051.55 ~~0.3867697 83 4.083 62.8027 26.9308 166055.00 -0.5977429 0.6384992 0 58473*/4 26.9300 166043 17 2.0655487 0.6670009 0.5792428 84 4.166 62.8219 26 9292 166039.50 ~ ~ ~ 0.6356410 ' ~ ~ ' O.6663703 0.5745122 85 4.250 62.8190 86 4.333 62.8155 26 9293 166040.86 -0.2353277 0.4490001 0.5684182 87 4.417 62.8121 '~ ~ -~ 24.9275 "~~ -~166037.50 ~ ~ ' - ^ 0 5815520 0.6477121 0.5627751 26.9286 88 - 4.500" 62.8040 166033.03 0.7736152 0.6500311 0.5584254 ~' 89 4.583 62.8088 26.9269 166028.38 0.8132299 0.6529605 0.5549116 71 4.750 62.8008 ~26 9252 146020.33 ~~ -0.8764513 0.6256134 0.5491268 90 4.464 62.7959 26.9271 166033.44 2 2695069 0.6544629 0.5445353 92 4.833 42.7819 26 9268 146036.34 -2.7728586 0.5953168 0.5386521 26.9260 166030.58 1.0069659 0.6022269 0.5329708 93 4.916 62.7841 ' ~ ~ ~~26.9254 - 166034.98' -0.7628272 ~^-~ 'O.5794450 0.5254427 94 5.000 62.7592 95 5.083 62.7665 26 9258 166034.88 0.0189349 0.5702374 0.5178099 96 5.167 62.7609 26.9247 166030.00 0 8439571 0.5746445 0.5113056 97 5.250 62.7486 26.9220 166017 75 ~2 1207750 0.5991924 0.5078886 ______.-- __..____. ________.. ________.....____._________i;_____.~._.'_'_.;__'.............._;;.._..__......_______.........._... STOP -- ' TABLE 5 Page 2 N

VENNESSEE VALLEY AUTHORITY TEST

SUMMARY

VERIFICATION TEST ALL COMPARTMENTS HOURS AVERAGE ~ CORRECTED ~~ - - -~ -~~ T O T A L H A S S - ~ ~-~ - P-T-P' ~ TOTAL TIME MASS SAMPLE SINCE TEMPERATURE PRESSURE OF AIR LEAK RATE LEAK RATE LEAK RATE (X PER DAY) (% PER DAY) START (DEG F.) (PSIA) (LBM) (% PER DAY) 98'~ 5.333 60 C. -- 26 9210 '166025.80 m 1.4055432 ' ~ ~ 0.5681079 0.5020783 i 99 5 414 6 2.. " - 26.9213 166029 16 -0 5816048 0.5503954 0.4950551 1.0766234 0.5583642 0.4896472 100 5.500 62.A?'- 26 9199 166022.94 ~ -1.0523171 0.5342970 0.4826460 101 5.583 62.N '. ^26.9198 166029.02 102 5.666 62. f0 26.9183 166030 77 -0 3056508 0.5220334 0.4753412 0.5040942 0.4670504 103 5.750 62. 26.9187 166034.89 -0.7141353 0.4867073 0.4580541 104 5 833 6R. m _ ~~ 26.9184' ~~ 166039.00 ' ~ " -0.7114125 ' - 105 5.917 60.>'53 26.9188 166045.09 -1.0549202 0.4649687 0.4480589 0.4664313 0.4391332 26 9183 166041.80 0.5707179 0.4433592 0.4289660 106 6.000 62.5967 26.9189 - 166048.84 ' 1.2306956 107 6.083 62.5864 108 6.166 62.5920 26.9185 166043.97 0 8438861 0.4487699 0.4200838 109 6.250 ' 62.5677 ~~-~ - ~ 26.9182 ~~ ~ - 16 60 4 9. 2 5' ~ - - 0.1487608 ~~ 0.4248977' ~ 0.4105427 62.5762 26.9187 166050 11 -1.0630032 0 4285891 110 4.333' ^ 0.4013144 til 6.416 62.5537 26 9168 166045 38 0.6767157 0.4281363 0.3930238 112 6.500 62.5615 26 9172 166044.73 0.1108976 0.4240592 0.3851746 113 6.583 62.5433 26.9153 166038.80 1.0278355 0.4317023 0.3785165 114 4 667 62.5413 26.9158 166042.33 -0.6113135 0.4186479 0.3712452 166042.77 -0.0757363 0.4125336 0.3643456 115 . 750 62.5286 26.9152 ~166043.25 ~- -0.0845928 - ~-" 'O.4065132 0.3574491 116 6.833 42.5260 ~ ~~ 26 9152 117 6.916 62.5127 26.9160 166051.89 -1.4957845 0.3835687 0 3493049 0.3824094 0.3417513 118 7.000 62.5106 26 9157 166350.23 0 2866997 'O.3711818 0.3340492 '0.5707003 119 7.083 62.5038 - 26.9159 166053 53 120 7.166 62.4966 26.9152 166051.31 0.3874644 0.3713650 0 3267595 121 7.250 42.5022 26 9148 166046.83 0.7762555 0.3760184 0.3204366 '~122 ~~'-" 7.333 62.4950 26.9131 166038.66' -" ~~1.4146084 - - ~ 0.3878258 0.3152807 ~ 123 7.417 62.4882 26.9119 166033.41 0.9088562 0.3936795 0.3109138 -0 4167433 0.3824391 0.3063400 124 7.500 62.4797 26 9120 146036.97 - - 0.2728894 - ' ' - 0.3812398 0.3017181 1'25 -' 7.583 62.4770 ~ 26 9116 166035.41 126 7.666 62.4732 26.9114 166034.89 0.0892644 0.3780586 0.2974283 -0.3462388 0.3702595 0.2930858 127 7.750 62.4668 26 9114 166036.89 -0.3922189 ~ ---- - ' O. 3 6 213 71 0.2883527 128 7.833 62.4652 26 9117 166039.16~ 129 7.916 62.4577 26.9110 166037.22 0.3383784 0.3618846 0.2840646 130 8.000 62 4518 26.9112 166040.13 -0.5031212 0.3523622 0.2794186 131 8.083 62.4497 26.9110 166039 58 0.0946717 0.3501940 0 2750902

------- ---- - -- --- --- :... --. '. :---- ;;; X::-- - T --- --- :G;:- -- _- - -

STOP -- TABLE 5 Page 3 V m i..m i is

TABLE 6 TESTABLE PENETRATIONS REQUIRED TO SE IN SERVICE DURING TEST PERFORMANCE Leakage Rate 'Added to Penetration Description Justification 95% UCL X-27(C) Integrated Leak Rate Isolation valves required a0.0000 SCFH System-Pressure to be open to monitor containment pressure. X-47A Ice Condenser System Glycol cooling supply to 0.0000 SCFH air handling units in ice condenser required to ensure ice condition is maintained. l X-47B Ice Cond-nser System Same as X-47A. 0.0559 SCFH l X-54 Thimble Renewal Used as pressurization 0.0000 SCFH i point for air compressors. l X-98 Integrated Leak Rate Same as X-27(C). 0.0000 SCFH System Pressure X-114 Ice Condenser System Glycol return from air 0.0000 SCFH l handling units required to ensure ice condition is maintained. X-115 Ice Condenser System Same as X-114. X-118 Hatch Used as source for 0.0000 SCFH verification flow and post test depressuri-zation. X-46 Waste Disposal Used to provide leakoff 0.0000 SCFH for RCP seals. Page 1

TABLE 6 TESTABLE PENETRATIONS REQUIRED TO BE IN SERVICE DURING TEST PERFORMANCE Leakage Rate Added to Penetration Descrip:1on Justification 95% UCL i X-110 UHI Required since reactor 0.0000 SCFH coolant pressure will exceed test pressure. X-87A Integrated Leak Rate Same as X-27C. 0.0000 SCFH System Pressure X-87D Integrated Leak Rate Same as X-27C. 0.0000 SCFH System Pressure t I Page 2

- ~., _ _. _ f l l FIGURES

S C P (1)- CYCLE (1) ' CILRT-SEQUENCE OF EVENTS ALL sNSTRyuCNTAfs0N aNSTALLEO PRgAgouaSITES AND CALisR ATIONS COMPLETE COMPLETED toutPutNT RE A0f gg.y.gg it-e.et seco -2400 0t 00 - 0830 2400 NRS MRS MRS MAS MRS h ST A tilt. ATION CiLR7 j PR E S Sunit ATION Smut 00wN f ouPRESSORS at SS4Sasig COMPRESSORS A8NOR M AL CouPARTMENT C CouPRESSCRS SMUTDowN f RE P A'R E D TruPERATURE INCRE ASE ggSAN CONTAimugNT {uPPEn) fLowt pl EP I I / G C010poig S.450 t p.sg j it.-.2 N PRESSURitAT10M l ' / Ti..S. 4 . m,u, son.,.i. S.O.0,... ..iOS., 4 l 0e 4 8 0400 OSSS pots tits 1255 IS$9 6499 e4Se 1790 2340 00S1 0208 0250 0500 MRS MRS MAS MRS MR$ ISIS MitS MRS MRS MRS MRS Mft3 MR$ MAS MitS 2400 1023 Mets DWIS + vt RIFIC ATiON CILAT g ABNORuaL COMPARTutNT RiseSED START OF vtRIFIC Aft 0N INCREASE /7tuPERATURE TO S AMPLE nuusER Se (L0wt R) a-S-s t 1 IS02 1804 2400 0700 0000 MRS MRS MR$ MRS MR$ MRS MRS 0500 CSSI IS S S RCLE ASED ADulNISTRATayt MRS CONTROL ON RE ACTOR SLDS. BL0wo0wN St4AN DE P R ES tu RIZ Afl0N CONTAINutNT PRES $uRC POST TEST C ALISR Aft 0NS COMPLEftD nN ALL SPECI AL TEST CouiPutNT 0.0 pseg 13-90-8 2 titT 6400 08f0 teSS 2400 MRS MRS MR$ MRS MRS 3 0800 MRS 4 Figure 1 1

i COMPUTER BASE ACQUISITION ANO DATA REDUCTION SYSTEM l 1 l WINI COMPUTER ) SYSTEM TWO 1 TWO MENSOR l MENSOR OUAATZ OpMT 2 MANOMETER MANOMETER jg TWO 9 4-TWO ~ MENSOR DATA ACQUISLTION MENSOR OuARTZ I UHlf b QUARTZ MANOMETER (AUTO DATA MINE) idANOMETER JLd kJLJL4L4k PRZR LEVEL LT 68-321 TEST STATION T EMPE R AT URE VESSEL METAL AT MOSPHERIC TEMPERATURE PRESSURE MASS FLOW METER %s OUTSIDE CONTAINMENT % g // INSIDE CONTAINMENT /) b b m m 5 G o C I 5 5 m m m m a z MULTIPL EX MUL,TlPLEX 2 3 UNIT A UPAT 8 SENSING SENSING LINES LINES TRANSOUCER SIONAL C08EMTIONING Ak 4k 48RTD (I DEWPOtNT TEMPERATURE TRANSDUCERS TRANSOUCERS Figure 2

I I ~ x \\ s / l / hDPE-1 [b N l% l } \\ / 'DP E-12 DPE-10 3 [ DPE-13 DPE-ll \\ i i i i c_ I l s/o n i

d.__

hDPE-2 , {I 1 6 I DPE-7 DPE-8 h { u'-~~k DPE-4 I' 'I h DPE-9 'L g g np y,_3 _._.q cm, c ) j! / DPE-6 lh 'u/ 'Ai -- I !l / r l i. _, v l / i =

_m s .\\ i y 4 O I \\\\ DPE LOCATIONS FIGURE 3

t RTID-1 h R D-2 / RTD-8 RTF6 RTD-5 RTD-15 R D-7 l RTD-18 RTD-16 RTD-4 i RTD-3 RTD-19 RTD-17 N RT D-20 j JmC i gi n I I \\ I i /_13TD-26 }k g g RTD-49 lRTD-47g l !I RTD-25lRTD-48 l l/ I

  • ! O I

RTD-9 E j RTD-10 M i RTD 11 RTD-21 q [TE E LE " /% 8 RT"- RTD-24 1TD-13 , ;i - v=? RTD-36 1: 1 e RTD-37 i RTD-27 "[ RTD-38 RTD-34 RTD-30 E 6-, 1 3 [ } ,RTD-35 i / RTD-31 L--' , ;_j_jj / RTD-2 l l uf 'm g d,_ / RTD-3 u (TD-19 1TD-12 \\ l RTD-43 RTD-39 RTD-40 RTD-44 RTD-41 RTD-5 l RTD-42 s I RTD-46 RTD LOCATIONS FK@NM 4

i l '~

a.,

i'"\\ t } }' ,,-i RTD-6 i ,N M ~l \\ sq m \\ \\ -' * - ~ ~ .,-3. DPE '~- N N j/ . N f - P[bh-'"-- i / \\ f ., g &D-i4 l 'M N, .l . f/ l l ,/' '. ;./ \\ i , ' li / N -, RID-3 \\ / t l s j l l l/ N i + \\ 1, ,j j .',i,~ 's \\ u i ff' N.'h.RTD-9 \\ / i, j /', i,

  • RTD-10

\\ h / / I; i j { i i s ll l l' RTD-13 t s s !j RTIw5 '.j ,;l / 'E j {, il h (- !{ I f jj.


/

RTD-7 RTD-1 g g RTD-2 g;l ~ RTD-12'Ei,. I. I M .:jaRTD-l1 A I t DPE-t i.1 il 1, ,, n, \\.-._-...r- .....,1

r-

.i < >. g 'kk \\ .g ', lll-i x) .( ( [ ( \\ ,\\ 'jI / .\\ / i \\s \\N\\ 'y \\g f,. ' ; -- s. / / \\ \\' NEI RTD-4 g i ' q-DPE-2 ,/ /j q /s/./ / / s q \\ 8:;. Q \\ f f~ / l ~. g 's., N - Q -- - p. --j-, " ' \\ 'k. ,/ j/ \\ ,,, / .s ~, e,/' ' s.. RTD-8 g ,/

  • ,/

PLAN-UPPER COMPARTMENT SENSOR I.0 CATIONS FIGURE 5

,, / -. _ _, _ ~.., ..p -'(( (l.f A 'N p N. \\ 1 'I l ~- ,/ Dn s s 'x s ,"/ '^ '~/ RTD-42 \\ / UsJ 'N g N \\ / \\ RTD-2 j i j ,/ (g i N \\, %-- / s s / / ? 'x s. i s / &,/ j,_,h a' \\ , 7 R D s 'j RTD-47, / RTD-43\\ / . 's /' / [ T -35 h.'. _/. _ RTD-34 ! l'l I '~ t-RTD-40 \\,- - (g'o ~99 y A i s l I Q g RTDj46 DPE-5 [, ) I - ' ' ' '-s \\ )IRTD-32 \\ ,/ N j -k,,' RTD-29 iE PE-3U' \\ sf g- ' - / O ,RTD-36(,a 0-gE:,, e y' : \\ o \\, RTD-37 \\\\ s, RTD-25, N,'iTD-4 \\' '\\ftyGil ^ q' q % \\ TD-45 / lERTD-38 \\ 's, gN g Q.;77 ' '-kc-f-C'.k.,,'l'f' ~</ 'h N RT 33 /f k RTD-3 TDUE N /

  • " ""M.

\\ s' a PE-6,jf D 5 \\ s RTD-31 ~ /

=.... _. -

's-f & v N,, N PLAN-LOWER COMPARTMENT SENSOR LOCATIONS FIGURE 6

'*Ne

  • N"'ON as,

,/* k ',s?lV lf h.,.'['\\ x N / /\\,,v x .\\ 'x ,e ~_ s.s.7< %'\\' q o, Y \\ -H'\\ \\; 1 -. y -.. _. ... n ---{ ~-l q ) L5 ( ,i "Y / 'v s '. <- \\gs. j/ s sa\\eo g+ ~ t a s oys. s \\s\\,. ./. bj *., j n

  • y

,,,. / r\\ g_ - /\\ ./ /g \\ 'J'/s 02 bl i / 'r' 9kt .s 'W_ __ / - ~. UPP R ICE COMPARTMENT FIGURE 7

+ m. %, . _ =... / s 5y -Q,[p' 2]EPE '\\g ~ N '3. 0 7-- N- + j h sx.\\ f a 3 HJ:1l" f %. ' '\\ () g \\ 3 YC ' N ,..g+q '\\ / r. ,/<'%,g h.ge

k.,, \\

,b., '. / '\\ 2 f -\\.- \\ I i s O

t..

l l t ~~ / [! l R.y.# .~

  • =/

/ / s l -{ T '.- / j + i i \\y*\\ e. h , +,$ / e\\O 7 / 0 ./ \\ \\,. i*~.4o ~' L2,\\o\\, v' 'L '\\ w/,y ,/ .\\ 1 or u a 'x . ___L- 'y ... '~ i ' ,Ny,g ~.... (-~ ~%~e 'x_' ,'=%, LoyER ICE cong,, rzcugg,

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) CILRT MASS LEAK RATE PLOT 1.2e L ~ E t.ee A K e.se R A e.se 3 E ,,4, I N / N ~ ~ -e.ee. P ~* ** E R ~ -e.4e D A Y -e.es i i 4, s. 8-ic ME CHOURS) Figure 9

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) CILRT AVERAGE MASS PLOT 186376 t66368.." M i A eesse. ; S S 16634s..- I I66338.." N iS632a. ; L B sessie.." M 16630s.." N ~ 166298..: 166288.." 166278. 2 1 i 166264.; 186258.." i 186248. " i i g i i i i i i 8 2. 4 6. s. 10. 12. 14. 16. l TIME CHOURS) l Figure 10 l -g

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLECl) CILRT AVERAGE TEMPERATURE PLOT es.se f a i T es.2e E M Os.it 2 I _f N l 8s.00 I G 62.90. R E 82.89 2 S F 62.78 l 62.68 ~ i e2.se ,,,,,,,,1 S. 2. 4. 6. 8. IS. ft. 14 16. TIME CHOURS) .i Figure 11 i

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) CILRT AVERAGE PRESSURE PLOT 26.98258 26.Seech P R 26.s77s 'E S 26.975th S ~ U 26.972st R E 26.970th I N 26.o67sc i P

26. M S

I A 26.960et 26.95754-26.955eC i

26. asmar-i i

g i g e i i i i i i i i i i i S. 2. 4. 6. 6. 19. 12. 14. 16. TIME CHOURS) Figure 12

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) CILRT TOTAL TIME LEAK RATE PLOT 1.4e L~ E t.n A K i.ee e.se A T E y e.4e _ N e.n _ e.ee P E -e.2e R -e.4e [ 9 A y -e.se -e.se dj -i.es i i _i I 2. 4. 6. s. I8* 12, h4. 16. TIME CHOURS) Figure 13 i

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLEC1) CILRT-UPPER TEMPERATURE PLOT 78.48 78.3e.- T ~78 2' ~ E M 78.le ; P 78.es.- I N se.e, i: D es... 2 E G Se.7e 2 R E es.se 2 E S es.se.-: F es.4e 68.3e.- 69.?e 2: 69.le 2 i es.ee 1 e. 2. 4. 6. 8. le. 12. 14 16. TIME CHOURS) Figure 14

TENNESSEE VALLEY' AUTHORITY SONP-UNITI-CYCLECl) CILRT UPPER VAPOR PRESSURE PLOT i 4

e. i i 7 --

~. e.lis75C V A s.i nsset P O

e. i nsasi R

e.iisses i p R

e. iin7si E

l S

s. i iased 5

S U e.i tze5d W R E e.iireef { l l I a.iii75d L l N l s.iitSet j P S ,, i i 2sf I A ,,,,i f

s. : i e758" i

i i i g i i y i i i i i e i y i i l e i g s. 2. 4 6. 8. is. it. i4. ' i 6. TIME CHOURS) Figure 15

4 TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLEC1) CILRT UPPER PRESSURE PLOT 26.97751 26.9759 R 26.97255 E - S 26.9780 C S U 26.9675 L p E 26.9658 L I N 26.9625d P 26.96eek S I 26.9575k A 26.9550k 26.9525C 26.9500k 26.94759-8. 2. 4 6, 8. le. 12, 14 16. TIME CHOURS) Figure 16

TENNESSEE. VALLEY AUTHORITY SONP-UNITI-CYCLECl) CILRT UPPER MASS PLOT sessa. M sesee. _ A S SGs48. y N sosse. _ L B M sosse. _ 80489. SO468. _ 89448. _ 429. S. 2. 4. 6. S. 18 12. 14 16. TIME CHOURS) Figure 17

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) CILRT LOWER TEMPERATURE PLOT 79.28 78.18 : T E 78 ** - M P 5 09.99.- I y i N t 89.88.- D E es.7e ; i G l R E E es.se.- 3 F es.4e.- t 69.30 Z ee.2e.- es.is S. 2. 4. 6. 8. IS. 12. 14. I6. TIME CHOURS) Figare 18 1

6 1 4 ,1 l l 2. g 1 T Y O T L I P R 9 O) E , 1 H1 ) R TC S U UE R S AL U S O9 C E YY .H1 R C e ECT S L - R P i E g ru L1 L R Mi ATI I O F VIC P T N A EU V E - SP e R SN i E EO W NS O N L ET 4 / 2 r .e jII

}
7
g:

e s e e e e e e e s e s e s e s s e e t 3, e c s s 4 4 s I e e 8 e e a a e e e i n i I i. n. l. n. n n e e s e e e e o e YAP 0R P ESSURE IN PSIA

W e d e m e l-H _5 En FO ^ r -- Wv -I (/) DW E A D <J W Oo O I ei E

y. >.

fv g woF ] Ww J i m 3 J M JH M Ig <F E H >HO t-1 Z WD h, W I w a. (/) Z O WO Z 0) o ZW t-v' e l' o e e i ...uuuuu ' ' ' w ' ' ' 's ' ' ' w i ' ' 'wil m m a E e E E h N h u 8 8 9 9 9 9 9 9 9 a a a a a a a a a = = n i

o. m W (n u) D m W HZ
a. (O H 4 I

~

')l ll I .e l 4 g 1 2 g 1 Y T I R e O) l ) H1 T S TC O UE L RU AL P O C .H2 1 YY S C ECT s e L - R S E u r A LI L M g ATI Mi VIC IF R N T E EU W E - O S SP L SN EO NS NE T 4 2 g a. - ; : 2.: .:2.- ~- ~ - ; i ; :2I e s e 5 8 s s 5 e 5 e 5 e e e 0 8 e e 7 7 6 6 5 5 ie s s 7 7 7 7 7 7 7 7 7 7 2 a 2 2 8 2 2 2 2 2 2 2 2 5 E 5 5 8 5 5 5 5 5 5 5 5 MASS IN LBM l l1tllllii\\llt!llI i! Ii I

4 TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLEC1) CILRT ICE-UPPER-TEMPERATURE PLOT 29.2s0 29.989 ; T E 28.7sa.- M i P as.sse.- I as.ase.- N 28.989 ; D E 27.7sa i G R 27.see i E E 27.2se. S 27.900.- I F 26.7s0 ; 26.s99 ; 26.2se.-:

26. eM 1

9. 2. 4 6. e. 10. 12. 14. 16. TIME CHOURS) Figure 22

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLECl) CILRT ICE-UPPER VAPOR PRESSURE PLOT e.sene q

e. esse :

y A P

e. eses.-

0 R e.es7e." P -i \\ S S

e. esse J G

U h e.as4e { \\ .e.as3e." N P e.aste [ f S I e.aste ; A I g g g g g ..g e. 2. 4. 6. 8. le. 12. 14, 16. TIME CHOURS) Figure 23

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLECl) CILRT ICE-UPPER PRESSURE PLOT 27.84 9 27.eSe7k P R 27.e37.f E S 27.e34Sk S U 27.eSier R E 27.9 I N 27.ete2d P 27.e:Ss S I 27.e2e8k A 27.0181 5 27.e t E4C 27.0127

27. ell : -

9. 2. 4. 6. 8. te. 12. 14. 16. TIME CHOURS) ( Figure 24

6 1 4 1 2 1 YT I R T 8 O) O ) 1 M1 L S TC P R UE U AL S O 5 C S H 2 YY A C e ECT 8 L - R M ru L1 L E g R M i ATI F E VIC I P T N P EU U E - 6 SP E SN C EO I NS N E T 4 2 S

~

2:..:..:.2~ . ~

. : :2:"..~

5 n s e 5 a s s 5 8 5 8 59 0 e s s 4 4 s s 2 2 1 1 8 e e e e 8 e e 8 e 9 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 MASS Ig LBM ll lll j

6 1 4 1 g 2 1 g Y T T O I L R P g 10 O) ) HI E S TC R R UE U U AL T H 6 O C 2 A YY R C e ECT S r L - R E E g u LI L P i M MF ATI VIC I E T T N EU R E - E 6 SP W SN O EO L NS N E E C T I 4 2 g i S - ~ 8 e e 8 a 8 0 8 8 8# 4 s. s. 8 4 2 0 8 0 6 s s s s 8 5 4 4 4' 1 i i 1 i 8 1 1 1 I TEMP IN EGREES I 1 l

.s i 4 ,1 2 ,1 TO L Y P T I E .e R R t O) U ) Hl S S TC S R UE E U AL R J,l .H2 O 7 C P YY C e e ECT r L - R R u LI L O E g P Mi ATI F VIC I AV T N EU R E - E s SP W SN O EO L NS N E E C T I 4 .a .e ._2: ~: d"_: - _J -[_ e e e a a e s e e s s s s s 4 4 2 4 4 4 4 4 4 4 e. e. 8 e. e. e. e. e e 8 e e a e VAP0R PRESSURE yN PSIA ll llllt

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLECl) CILRT ICE-LOWER PRESSURE-PLOT 27.8500A 27.8472C R .c7.e44sk E S 27.8418k S U 27.eseir R E 27.8364C I N 27.esszi P 27.estok S I 27.9283k 27.8256 5 27.822ek 27.9292b

  1. 7*

i i i i i i i S. 2. 4. 6. S. 18. 12. 14. 16. TIME CHOURS) Figure 28

TENNESSEE VALLEY AUTHORITY a SONP-UNITI-CYCLECl) CILRT ICE-LOWER MASS PLOT 178te. 17819.." M A S 17ese. ; S I tenne. ; N 18888. 1 L B M te97e. ; 16968.." I 16968. t es4e..- tesse. ; 1 1 ISMe. e. 2. 4 6. S. Ie. 12. t4. IS. l TIME CHOURS) Figure 29 i i i

1 1 ~ / l i ICE CONDLNSER l ~ UPPER COMPARTMENT i t i .<...y ('$5f \\ i iy% 3 ~, ICE CONDENSER LOWER COMPARTMENT ll j', f '?.*

  • .y

.s I?' l .l ? bet(( i ' ", J l 'g .E: I I l [ i l i i 1 a i I t f i y,ia ri- '50 4

TENNESSEE VALLEY AUTHORITY .SONP-UNIT 1-CYCLEC1) VERIFICATION TEST NASS LEAK RATE PLOT 2.2e 4 L ~ E 3.se 1 A K i.ee R A i.se T E i.4e I N t 2e X ~ t.se P E e.se R e.es O A e.4e y e.2e e.es e. i. 2. s. 4. s. e. 7. s. s. I TIME CHOURS) Figure 31

.e S 7 Y T T O 6 I L R P O) ) H1 E TCT S R R UES U U ALE 5 T O CT H 3 2 A YY R ECN C e L - O E r L1 I P E u g M M i ATT E I F VIA 4 NC T T EUI E F E G SPI A SNR R EOE E NSV 3 V N A E T 2 l 8 .. ~ e e 8 0 e 0 0 e 5 e 5 0 5 0 5 8 0 5 5 4 4 6 6 7 2 2 2 2 2 2 2 2 0 0 6 6 6 6 6 6 TEMP IN DEG E F

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) VERIFICATION TEST i AVERAGE PRESSURE PLOT t' 2s.9425a i 2e.9s97EE R 2e.937ed E S 26.934SC S U 2e.9 ster R E 2e.9289C N 2e.9esed P as.92ssi S I 26.9288k A 26.91813' 26.S t E4h ~ 26.9127t" j

26. S i m.:

9. 2. S. 4. 5. 6. 7. S. 9. TIME CHOURS) Figure 33

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLE (1) VERIFICATION TEST AVERAGE MASS PLOT 186248. 16622 2 M A se 2.; S S leelte. 2 I N i L tes:4e. B ~ M to6:2e.. 18619. 2 166088. 2 ~ 166860. t 6604e. 2 ~ 166028. ~ 166e88. e. t. 2. 3. 4. 5. 6. 7. S. 9. TIME CHOURS) Figure 34

.e e 7 T Y O T L s I P RO) E ) H1 TC T T S A R UES .U R ALE 5 CT O K YY H5 A 3 ECN C L - O E er L1 I L E u M g ATT .I F E i VIANC M 4 T I EUI E - F T SPI L SNR A EOE T NSV 3 O N T E T 2 1 e - - - : _.. _ -. _ : _ - ~ _ - ~ ~ s e e s s e e e e 8 e. s 4 a. e. s. S. 4 2 9 o 2 l i i 1 e e e e 0 LEAK RATE 7N pE DA

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLEC1) VERIFICATION TEST UPPER TEMPERATURE PLOT 69.358 89.389 l T E ,2s. j M P 69.298 I

  • * ' * * ~

N D 69.199." E G 69.aSe.- l R 69.999 E S 68.959.- F 6 8.990.- 08.859 ; i 68.898.- 68.758 - i g.... i i. ..i... g i i i. i.... 9. l. 2. 3. 4. 5. 6. 7. S. S. TIME CHOURS) Figure 36 l

TENNESSEE VALLEY AUTHORITY SONP-UNITt-CYCLECl) VERIFICATION TEST UPPER VAPOR PRESSURE PLOT e.is700 e.tiese - y A P e. i i see.- 0 R p ,,,,,,, _f R l 4 [f S 1 S

e. ii 4se ;

i U k I N R ) ( E

e. i 4ee _-
8. i t 35e _

p P e.i nsee ; S I -~ }

e. i izse; A
a. i i2ee -

e. i. 2. 3. 4. 5. 6. 7. s. s. TIME CHOURS) Figure 3 7

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-OYCLECl) VERIFICATION TEST UPPER PRESSURE PLOT me.e4ee j P re.essed R E j S 3. l S U R E as. esse i I N se. ease J 1 P S I A i 2e.eisel re.sese J re.eeec ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, s. 1. 2. 3. 4. s. e. 7. e. e. TIME CHOURS) Figure 38

TENNESSEE VALLEY AUTHORITY-SONP-UNITI-CYCLEC1) VERIFICATION TEST UPPER MASS PLOT sosse. _ 80s48.. M i A sesn. ; S i S eesu. ; I sosis..- N s.; j L B ss4es. ; M so4ee..- 89479..- so4es..- 89458..-: C9440..- 89438. ;

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,e.

sa42e. s. i. 2. s. 4. s. a. 7. s. TIME CHOURS) l Figure 39

l TENNESSEE VALLEY AUTHORITY SGNP-UNIT 1-CYCLECl) VERIFICATION TEST LOWER TEMPERATURE PLOT Se. lee ~ T ee.see._ E i M p ee.see _ I j l N D E G R l E E i g 88.989 F se.see _ ... e. _ i 68.929 e. l. 2. 3. 4 E. 8. 7. S. 9. TIME CHOURS) Figure 40

L TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLECl) VERIFICATION TEST LOWER VAPOR PRESSURE PLOT. e.tises a.ise5s [ V A

e. ieneei P
8. -i e

i l j p e.iesee r R i [ S \\ e S e. i e7ee.- U R ~ e,isese E I y

3. iesee g N

- f

s. iesse ;

P i S

e. iesse ;

I A

e. ie4sel 8'I8

..g ....,....g ....g ....g y .... g.... g S. i. 2. S. 4. s. a. 7. s. e. TIME CHOURS) Figure 41

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) VERIFICATION TEST LOWER PRESSURE PLOT 26.92E88 26.92224" P 5 R

2...i nsa.

E S 26.9168k S U 2e.st 4t r R E 26.31144 I N 2s.ees7d P 2.. f S I A 1 26.9806k 26.8979C ..-q

20. SMw

.... g.... .... i ,.... i i.. ..i....g .... g.... S. 1. 2. 3. 4 5. 8. 7. S. S. TIME CHOURS) Figure 42

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLECl) VERIFICATION TEST LOWER MASS PLOT 4 5 52755. 52758..- M 3 i A s274s..- S t S s274e..- I E2735..- N i 52738. ; L i i B s272s..- M i s272s..- 52715..- 52710..- 52705..- 52708. ; ~ 52605..- l 52600. l ,,,, g 8. 1. 2. 3. 4. E. 8. 7. 8. 8. TIME CHOURS)

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLECl) VERIFICATION TEST ICE-UPPER TEMPERATURE PLOT St. EGG 2s.75e Z T E to.5ee i M P te.25e : I ~ es.ees - N D 2$.75e.- E G 2e.5ee.- R 2e.25e b E S 2e.ses ; F 27.758 - 27.5ee." 27.258. ". 27.ste ~ .... g.... g ..i... i. ..i ...i....g e. 1. 2. 3. 4. 5. 6. 7. e. e. TIME CHOURS) Figure 44

TENNESSEE VALLEY AUTHORITY l SONP-UNIT 1-CYCLECl) VERIFICATION TEST l ICE-UPPER VAPOR PRESSURE PLOT l e.eese I f e.asse - 7 y A y I P

e. esse ;

0-R 1 s.es7e ; y P [ s.esee 2 S g S

s. esse ;

U R E a.esa ; I N e.asse : P e.esme ; S I ~ k 8 8888 A 4

o. esse -

....i....,....g ..g .,....g e. 1. 2. 3. 4 s. e. 7. 8. 9. TIME CHOURS) Figure 45

i TENNESSEE VALLEY AUTHORITY l SONP-UNIT 1-CYCLECl) f VERIFICATION TEST ICE-UPPER PRESSURE PLOT

27. 5=

~ I 27.tet2E l P l R m. esi E i. s 2e.seest S U ~

    • ***E R

E re.sei4c I N 2s.eee7c ~ P es,. t S I 26.9:33U A 26.Geesk 26.9779C 2s.8752

26. a @-

S. 1. 2. 3. 4. 5. 6. 7. S. S. TIME CHOURS) Figure 46

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) VERIFICATION TEST ICE-UPPER MASS PLOT 7048. 4 i 70ss. 1 M A S 7ess. S I 7e2s. i N 728. L j B M 7eis. 7eie. .~ 7895. I 7000. esos. l 6e98 ~ e. i. 2. a. 4. s. e. 7. s. e. TIME CHOURS) Figure 47

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) VERIFICATION TEST ICE-LOWER TEMPERATURE PLOT 17.00 17.88 T E 17.7. j M P 17.64 I 87 5" ~ N D 17.48.- E i G 17.S0.- R 17.es 3 E E S 17.18.- F 5 17.88.- 16.90 te.se.- le.7e 8. 1. 2. 3. 4. E. 8. 7. 8. 9. TIME CHOURS) ( Figure 4B l

TENNESSEE VALLEY AUTHORITY SONP-UNITI-CYCLEC1) VERIFICATION TEST. ICE-LOWER VAPOR PRESSURE PLOT a.e4eeen ..e,4 h V A e.e4eset P O e.e4 east R e.e4eese' P R e.e477sc E S e.e4M \\ f ( S U e.e472sc R f\\, E e.e47ese I ~ I a.e4e7se l N ~ j e.e4esea f P l S ,, 4 2se I A ,, 4 c l l " * *E 18 l e. i. 2. s. 4. s. e. 7. s. e. l TIME CHOURS) Figure 49

TENNESSEE VALLEY AUTHORITY SONP-UNIT 1-CYCLEC1) VERIFICATION TEST ICE-LOWER PRESSURE PLOT 27.eles l l P 27.sesel l R E 27.0000 S U R E 2e.sose I N 2e.soes _- 4 P 2e.e9501 I A 2o. steel 26.e758 2 26.e7M ~ ,,,, g,,,, S. l. 2. 3. 4. E. 8. 7. S. a. TIME CHOURS) Figure 50

TENNESSEE VALLEY AUTMORITY SONP-UNIT 1-CYCLEC1) VERIFICATION TEST ICE-LOWER MASS PLOT 19918. 10005.." i M E A 18888. - S d S isees..-: I issee..- N i 18885..- L B isses. ; M i 16675..- 18879. ; 16865..": 16868..-: 16855..- ~ 16858. ; ~ 16845. - i.... g g g ..g ..g .... i ....g 9 1. 2. 3. 4 5. 8. 7. S. S. TIME CHOURS) Figure 51

w I APPENDICES l

APPENDIX A INSTRUMENTATION ERROR ANALYSIS Instrumentation Error Analysis: (as defined in Appendix G, ANS 56.8 Draft). Assumed conditions at the time of test: l P = 12 + 14.696 = 26.696 psia T = 459.67* + 54 = 513.67'R T = 60'F dewpoint dp t = 15.34 hours Using the absolute method: l 1. Total Absolute Pressure Method i Number of sensors: 8 Range: 0-30 psia Repeatability error (E ) = p 10.0005-percent reading = 10.0001335 psia Accuracy error (E ) = 10.015 percent of reading = 10.001416 (p = 1 x 30 psia = 0.000075 400,000 = [(E )2 + ( )2)h = 0.000054 psia (using repeatability) ep p (no. sensors)' e = 10.00141602 psia (using accuracy) p 2. Water Vapor Pressure i Number of sensors: 12 Sensor repeatability error (E): 10.1'F Sensor accuracy 1.0'F

Measurement system error ((), excluding sensor: 10.001*F e = i[(Epy)2 + (g)2) py (no. of sensors) E = 10.1*F (0.0092 psia /*F) = 10.00092. psia (using PV reportability) E = 11.0*F (0.0092 psia /*F) = 10.0092 psia (accuracy) py (py = 10.001*F (0.0092 psia /*F) = 10.0000092 psia e = 10.0002656 psia (using repeatability) py e = 10.002656 psia (using accuracy) py 3. Temperature Number of sensors: 48 Sensor repeatability error (E ): 0.001*R T Sensor accuracy error (E ): 0.1*R T Measurement system error (() excluding sensor: 10.001*R T= [(E ) # (b) e T T (no. of sensors) T= 0.0002040 (repeatability) e 0.0144345 (accuracy) e = T 4. ISG (using repeatability) 2 ~ 3 2 + 2 (e 32 + 2[e 3 ISG = i 2400 2 e T _f l Pv ( T[ Pv[ 15.345 P/ 4 ~[0.000054j2+2[0.0002656}2+2'0.000204)2"% ISG = 1 2400 2 15.345 \\ 26.696 / \\ 26.696 / i 513.67 / _ ISG = 0.002247 percent / day = 0.0090LA 5. ISG-(using accuracy) ISG = 12400 2[0.00141602}2+2[0.002656j2+2[0.0144345)2 15.345 ( 26.696 / \\ 26.696 / \\ 513.67 / ISG = 10.025697 percent / day = 10.102789LA T -. + - - - -, - - ,s-.e,--- ,-.------,,,-,-.,n --,-e--

4 APPENDIX A 1 DEFINITION OF SYMBOLS P - Absolute pressure, psia T - Temperature, degrees Rankine-Temperature, dewpoint T dp-t - Time, hours-Measurement system repeatability error E - Error associated with the sensor ISG - Instrumentation selection guide e - Error associated'with measurement of change in a given parameter Subscripts Temperature T Pressure P PV - Vapor pressure w m

  • -wy+-e-y-

e w-


%+

-t---w7---

ye T qu = -

APPENDIX B CALCULATION OF AGREEMENT (USING MLR) ' Agreement: L -L ~L =_.25 g R M LA-Where: Ig = containment leak rate measured during verification L = imposed leak rate for verification R L = containment leak rate measured during CILRT g L = full pressure design basis leakage A Ig = 119962.5156 SCCM L = 110194.7656 SCCM R L = 11046.10937 SCCM g L = 108188.1953 SCCM A L ~L ~LM = 119962.5156 - 110194.7656 - 11046.10937 = -0.011812 RM R 108188.1953 3A J Therefore, compliance with Agreement: 0.01181 LA < 0.25 LA Appendix J, using the MLR, has easily been met. 1

APPENDIX B CALCl!LATION OF AGREEMENT (USING TTLR) ~L Where: Q-LR AM = 1.25' A g = containment leak rate measured during veriffcation .Where: I L = imposed leak rate for verification R L = containment leak rate measured during CILRT g L = full Pressure design basis leakage A L = 120593.02 SCCM RN LR = 110194.7656 SCCM L = 15942.89 SCCM g L = 108188.1953 SCCM A M = 120593.02 - 110194.7656 - 15942.89 = -0.051250 L ~L ~L RM R 108188.1953 A ~ Agreement: -0.5125 L ( 10.25 L Therefore, compliance with A A Appendix J, using the TTLR, has also been met. i .--,w-, -,.,,-v.,

APPENDIX C SPECIAL TEST INSTRUMENTATION -I. Pressure Measurement.: -(8 Total) Two Mensor Quartz Manometers Per Compartment C II. Temperature Measure (48 Total) Upper Compartment (13 Total)- V = 651,000 cubic feet. RTD' -1 RTD -2 RTD -10 RTD. -3 RTD -11 RTD -4 RTD -12 RTD -5 RTD -13 '6 RTD -14 RTD RTD -7 RTD -8 Lower Compartment (25 Total) V = 383,720 cubic feet RTD -25 RTD -38 RTD -26 RTD -39 RTD -27 RTD -40 RTD -28 RTD -41 RTD -29 RTD -42 RTD -30 RTD -43 .RTD -31 RTD -44 RTD -32 RTD -45 RTD -33 RTD -46 RTD -34 RTD -47 RTD -35 RTD -48 RTD -36 RTD -49 RTD -37 Ice Condenser (10 Total) Upper Volume Lower Volume V = 47,000 cubic feet V = 110,500 cubic feet RTD -15 RTD -21 RTD -16 RTD -22 RTD -17 RTD -23 RTD -18 RTD -24 RTD -19 RTD -20

) l APPENDIX C SPECIAL TEST INSTRUMENTATION-(Continued) III. Vapor Pressure Measurement (12 Total): Upper Compartment (3 Total) DPE -1 DPE -2 DPE -3 Lower Compartment (2 Total) DPE -4 DPE -6 4 Ice Condenser (7 Total) Upper Volume Lower Volume DPE -10 DPE -7 DPE -11 DPE -8 DPE -12 DPE -9 DPE -13 IV. Test St.ation Eqalpment Temperature: 1 RTD Barometric Pressure: 1 Pressure Gauge i l t

CPPENDIX D [ TENNESSEE VALLEY AUTHORITY CILRT TEMPERATURE STABILIZATION TEMP. STABILIZATION CRITERIAt ABS (AVG. RATE OF TEMP. CHANGE FOR LAST 4 HOURS - AVG. RATE OF TEMP. CHANGE FOR LAST. HOUR) MUST BE LESS THAN OR EDUAL TO 0.5 (DEG.F/HR.) RATE Or CHANGE OF CONTAINMENT TE6P.(DEG.F/HR) TEMPERATURE SAMPLE NO. TIME 0.1191 63 2472 8 1.491 0.1841 9 1 857 .63.2166 0.2377 63.1769 10 2.024 63 1551 0.1312 11-2.191 0.1537 12 2.358 63.1294 0.0520 13 2 525 63.1208 0.0119 63.1188 14 2.691 0.1230 15 2 858 63.0982 0.1275 16 3.024 .63.0770 0.0080 17 3.191 63.0757 0.0937 18 3.357 63.0401 0 0702 63 0484 19 3 524 0 0262 20 3.691 63 0527 0 0232 63.0566 21 3.858 0.0494 22 4.025 63.0484 23 4.191 63.0519 . 0.0215 0 0570 24 4.358 63.0424 0 0195 25 4.524 63.0457 0 0509 26 4.691 63.0542 0 0802 27 4.857 63.0675 0 0080 28 5.024 63.0662 0 0014 29 5.191 63.0659 0 0982 30 5.358 63.0495 0 0309-31 5.525 63.0444 0.2208 32 5.491 63.0811 THE AVG. RATE OF TEMPERATURE CHANGE FOR THE LAST 4 HOURS 6 0 0783 (DEG.F/HR)..... THE AVG. RATE OF TEMPERATURE CHANGE FOR THE LAST HOUR = 0.0733 (DEO.F/HR). Teru TEMP. STABILIZATION CHECK INDICATED A VALUE OF 0.0051 DEG.F/HR.e WHICH IS ONLY 1 02 PERCENT OF THE RECOMi4 ENDED 0.5(DEG.F/HR). CHECK INDICATES COND. ARE FAVORABLE TO PwGCEED WITH CILRT. STABILITY

d APPENDIX E LOCAL LEAK RATE TEST

SUMMARY

A. Type B Tests Two methods were used to perform the type B tests the absolute method (pressure decay) and the volumetrics mass flowmeter method. Both methods use air or nitrogen as the test medium, with the testable volume pressurized to a ' designated test pressure. The absolute method determines the leakage rate by a measured pressure drop during a set time specified in Sequoyah's surveillance instruction,.SQNP SI-157, for testable penetrations and SQNP SI-159 for the personnel air lock test. The Volumetrics mass flowmeter ) makes a direct mass flow measurement with' readings given in standard i cubic centimeters per minute (SCCM). All testable penetrations were tested prior to the performance of the CILRT. Any penetrations or hatch covers opened after the_ completion of the CILRT will be tested prior to unit startup under the applicable plant-approved surveillance instructions. A summary of all type B test data since the unit 1 preoperational. .CILRT conducted in March 1979 is included in this appendix. B. Type C Tests 4 Three methods were used to perform the type C tests--an airflow method, a water displacement method,.and the volumetrics mass flowmeter method. The airflow method consists of a rotameter flow facility in line with the testable valve through a test connection. An air supply is connected to the rotameter facility, which measures the flow of air necessary to replace the air leakage past the valve being tested. From this, a leakage rate is determined. The water displacement method consists of a calibrated water test tank equipped with a sight glass. A timed. water level drop is L measured to calculate the leakage past the valve (s) being tested. l A separate air source is used to maintain the water pressure at j the prescribed test pressure. A special " water inventory test" is conducted on containment spray, applicable only to valves FCV-72-2 i and FCV-72-39 and ERCW discharge isolation valves. .The Volumetrics mass flowmeter is also used to conduct type C tests. The results of these tests are noted in the summary of type C data l-in this' appendix. All testable containment isolation valves were tested prior to the performance of the CILRT. s _ _ - _ _ _ _ - - ~. _ - - -, _..., - _ _ Any maintenance action or repairs on containment isolation valves subject to type C tests which would affect leakage from primary containment will be reteated under the applicable plant-approved surveillance instruction before unit startup. A summary of the data for all type C tests since the unit 1 pre-operational CILRT is included in this appendix. ' Penetrations in water-scaled systems subject to inventory restrictions and penetra-tions_whose leakage might bypass the shield building emergency gas treatment system are identified in table E-1 of this appendix. n l t I i-l [ l l

APPENDIX E

SUMMARY

OF LOCAL LEAKAGE RATES Type B Leakage: A. Bellows 0.0037 SCFH B. ' Electrical 0.7095 SCFH' C. Resilient Seals 0.0974 SCFH D. Air Lock Doors 5.8901 SCFH Total Type B 6.7007 SCFH

Type C Leakage 0.8195 SCFH Actual Maximum Allowable Total (Types B and C):

7.5202 SCFH 141.9 SCFH Penetrations defined as potential bypass leakage paths: 6.3374 SCFH 59.1250 SCFH ~ Penetrations water sealed to at least 1.1 P subject to in*entory restrictions: A. ERCW discharge 0.0086 CFH 0.24 CFH B. Containment Spray 0.0179 CFH 0.08 CFH

G mOCoOOOOOOOOOOOOMMMMMMM e4

  • M M v4 M * *

~9 N 00 c0 00 c0 00 00 00 c0 00 c0 00 00 c0 c0 c0 00 c0 00 00 00 00 00 00 c0 c0 co c0 c0 00 00 e NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN O NNmeoM N 4 M m m N 00

  • O N 4 c0 m 4 c0 M 4 to M c0 m O CO N 4 M e4 N e4 N O O M N N O M NMMMCCMONOOOM-NNNOO 4

NNNNNNNNNNNNNNNNNNNNNN%w%%%%%%% asW O 4 in @ @ N N N m m O O O O M N M M M 4 4 aA to e no to to an to W @ MMe4MCOCOCCOOOOOOOOO b M O O O O O O C O O e4 M OOOOOCNOCOOOCCCOCCCOOOC4moOCCOO CCCOOONOCCCCOOOCCOCCOOOMc00COOOO AM G COCOOCnoCCCOOOOOOCOOCOOMOOOOOOO + C. O. O. C..O. O. O. O. O. O. O. C. C. O. O. C. O. C. O. O. O. O. O. M. C. M. O. O. O. O. O. 9 ea g g M rn CCOCOOCOCOOOCOOOOOOOCCOCCOCOOOO -9 te.eW A o O O O O O N O O O O O O O C O C O O O O O O 4 in O O O O O O se CCCO OONOOOOOOC OOCOOOOOO Mc0OOOO OO 4 C OOOOOOnOOCOOOOCOOOOOOOOnOCOCOCO >MG O. O. O. O. C. O. C. O. O. O. O. O. O. C. O. O. C. C. O. O. O. O. O. e4 C. M. C. C. O. O. O. e-e e a g g g > A M t/3 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO i OCCCCONOCOOOOOCCOOCCCCC4toOCOOOO C C O O O O O N O O C O O O O C O O O C O O O O n c0 C O O O O C. O AMUM OOOOOOnoCOOCCOCOOOOOCOOMOOOOOOO O. C. C. C. C. O. O. O. O. O. O. O. O. O. O. O. O. O. Q. O. O. O. O. M. O. m. O. O. O. O. O.

==4 4 eMN 4 g c eg y M ee % A M r/5 OCCOOOCOCOOCOOOOOCOOOOOOCOOOOOO H T M C C 'M M A C a t/3 C se ' o 4 000000N00C00000000000004m000000 ' Ca3 to I se W O O O O O O N O O C O O O O C O O O O O O O O M c0 C C O O O O A e 00 4, >M0M CCCCCOMOOOOOCOOCCOOOCCCMCCOOOOO' O. C. O. O. C. C. C. C. C. C. O. O. O. O. O. O. O. O. O. O. C. C. C. M O.. C. C. C. C. O. b M e ed e4N se eU O C ff M t/3 COOCCCCCCCCOCCOOOOOOOOOCCOOOCCC M L U M U A b 4 se C i o 5 are Ed an l M C 0 .e>A i en e4 an O e e i m>M O H M l L c C I 4 .o,4 i b M M es E e4 e ce U a in CW t/2 o 00 eA J' MM 4 es 4 WA I A M i l l ~ .. _ -, ~. _ _

4 W W mMMMMmmmmmMM M M MmmMMmmMmMM-MMMMm e @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q O NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Om@CmW@mommmNM4mW@N@NmmNNNmW@@N M MNNM M mmNMMMOOOOOOmmmNONN-NNOCmN 3. m NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN r W @@@NNNNNNNN@@@@@@@@@@moommeNNNN H 'OOOOOOOOOOOOOOOOOOOOOOM MM-MmmmM l OOOOOOOoOOOOOOOOOOOOOOONOOOOOOO C000000000000000000000040000000 AMGM OOOOOOOOOOOOOOOOOOOOOOON 0000000 W euN C.000000000000000000000.C.M.O.000000 g ggy bMM@ C000000000000000000000000000000 M W W C0000000000000000000000N0000000 4 W C000000000000000000000040C00000 >M-GN OOOOOOOOOOOOOOOOOOOOOOON 0000000 M@ .C. C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. C. M O. 0 0 0 0 0 0 M 44% g gu COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO COOOOOCCOOOOOOOOOOOOOOONOOOOOOO C C000000000000000000000040000000 O AM GM OOOOOOOOOOOOOOOOOOOOOOONC 000000 4 W 4 4MW 00000000000000000000000..0000000 h p-g g gu m 4 %AMM C0000000000000000000C0000000000 i M T U 3 C M A C M I t/2 C e O W D H. b a r-. siaissa!8si88Hi!!!i!! hie!!illHH .s t ' O.Q.b.O.C.o.b.O.b.C.o.b.o.C.O.O.O.O.O.O.O.O.O.M.C.C.O.O.O.O.O. @ H M e M e& ( m eegy H U G e >AM@ C000000000000000000000000000000 M G G U A U M 9 4 C0 W W k m 4 W W N-M >A MM S m 04 5 O M m I il G

  • et I

M i e a a a C c 1 ) l e@ NA M& 4 4 4 WA e A M i t i l'.

y . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 'M e NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN A NmmN@Mm@@@MONMNMM4M@mO4MNMmNON4 OCOMMOONOWNNNMOOMMNNNMCMMNNNMOO 4 . NNNNNNNN NNN NNNNNNNNNNNNNNNNNNNN. e MMMMMNNNMMMMMM 44444444 mmmmmmm@@ G OOO000000000000000000000000000C 4 C000000003 OOC 000000000000000000 0000000000000000000000000000000 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO AMGM C. C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. C. 0 0 0 0 0 0 0 0 M 44W g qgy bHMM C00000C00000000000000000C000000 9W b CC00000000000000000000C00000000 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 4 G>M GN 'OO0000000000000000000000000C000 M e#4 0000000000000000000000000000000 g qev >HMM COOOOOOOOOOOOOOOOOOOOOOOOOOOOOO .0000000000000000000000000C0000O 000000000000000000000000000000O C OCOCOOOOOOOOOOOOOOOOOOOOOOOOOOO O AMUN C. 0 0 0 0 0 0 0 0 0 0.C. 0 0 0 0 0 0 0 0 0 0. C.0 0 0 0 0 0 0 0 w 4 44% w .p. g qgy C0000000000C0000000000C00000000 M e ANMM I.a 9 "B A I m C e 0 Ca3 D H N CC00000C00000000000000000000000 1 4a t G n G COOOOOOCCOOC 000000000000000000C A

3. "G*5

-8888888888888888888888888888888 Q M HU G 4 >WMW CC00000000000000000000000000000 M G U A U AM 4 A 3 -C O N. w w m & G G 4 > HH m 0 4 e m>2 O m M G C S O 4 w 2 4n 5 M G w 9 a M C G m G NA M9 e4 4

1 4 g mOOOOO OOOOMMMMMM MMMM 4 .NNNNNNNN . N cc c0 00 c0 c0 C cz) a0 c0 c0 co c0 00 00 c0 00 00 cc e0 00 4 00 00 00 00 00 00 00 00 NNNNNNc0NNNNNNNNNNNNNN' A NNNNNNNN m N N e M M in eo c0 m M m M M Nc0 M N M 4 m m M 4 M 4 N O N M C*MMNNNN MONN ONmNMMMCCMOOMNoMM NNNNNNNNNNNNNNNNNNNNN to NNNNNNNN O in an @ N m o O O N N M M M to no 60 to @ @ @ @@@@@@@OO CCCCOMMMMMCOCOCOOCOO W CCCOOO M H r OOOOOOOOOOOOOOCOOOOOO OOOOOOOO OOOOOOOOOOOOOOOOOOOOO OOOOOOOO OOOOOCOOOCOOCOC00OOOO AM UN OCOOOOOO O. O. O. O. C. O. O. O. O. O. O. C. O.O.O.O.O.O.O.C.O. O.C.O.O.O.O.O.O. M N9> eegy b A M t/3 -O O O O O O O O OOOOOOOOOOOOOOOOOOOOO M t>e b OOOOOOOOOOOOOOOOOOOOO en OOOOOOOO OOOOOOOOOOOOOOOOOOOOO OOOOOOCO 4 W ~M G N OCOOOOCO OOOCCOOOOOOOOCOOOCOOO M NM> O. C. O. O. C. O. O. O. O. O. O. O. O. O. O. O. C.O. C. O. C. O. C.O.O. O. O.C. O. g cgy >WMM CC000000 000000000000000000000 a OOOOOOOO OOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO i-c OOOOOOOO OOCOOOOCOOOOOOCOOOOOO O AM GN COOOOOOO O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. C. O. O. O. O. O. O. O. C. O. O. O. C. O.' M 4 eMW W M eg gy M e % 4 % tt) OC000000 OOOOOCOOCOOOCOOCOOC00 l M 4 8 2 .O M - t t/3 5 e O En1 A ' b fae OOOOOOOOOOOOOOOOOOOOO 4 OOOOOOOO 88888888888888 C. 0 8.8 8 8 8 88 8C. 8.8 8 8 8 8 8 .li . M. u. E 000000000000000000 0 0. C. 0 0 0 .3 M. mb M ..a Ha 0 4 > W M t/3 OOOOOOOO OOOOOOOOOOOOOOOOOOOOO Y ~ W U .cw 4% C0 6 m ac4 4 to no M W W 4 >.O 00 M e4 S in en O e5 e e En > E O O M M M i. 1 e c c G O O 4

  • e4

,4 2 M M 3 4 4 S s-4 M =c4

  • m 9

-9 9 En C d G U t/3 W 00 N.C Ma e4 4 in Wb I I W M M' 4 f 1 k y en... =--

[ s M MMM MM M MMMM M MNNNNNNNNNNNNNNNNNNN n O NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN AC@N4CNN@@@NNM@M4M@mMMANONWmNNm M NMMNONNNNOMNOCOMMNNNMNNNMOCOMMM e NNNNNNNNNNNNNNNNNNNNNNNNNwNNNNN G @N@@200MMNNNM NM44444mmDDD@@@@@@ HB OOOOOM MMMMMMOOOOOOOOOOOOOCCCOOO 1 CO00000000000000000000000000000 0000000000000000000000000000000 AM GM C000000000000000000000000000000 M eMW C.000000000000000000000000000000 g g av 4 kMMD C00000000000C000CO0000000000000 M .M e C0000000 0C00000000000000000000 < W C0000000 0000000000000000000000 >M U CCCCOOOO COOOOOOOOOOOOOOOOOOOOO C.0 0 0 0 0 0 0 0 0.C.O.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M ed g og >AMM OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO C0000000000000000000CC000000000 C C00C00000000000CC00000O0000000O O AMGM OOOOOOOOOOOOOOCCOOOOOOOOOOCCOOO M M 44W C.0 0 0 0 0. C.C.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. C. C. 0 0 0 u M ey nu M N %AMM C000000000000000000000000000000 l M T T 4 3 m w 4 M I M C e O W D H - b M COOOOOOOOOOOOOOOOCCOOOOOOOOOOOO W m l W e W C0000000000CC00000000000000000C A G < >M GM OOOOOOOOOOCCOOOOOOOOOOOOOOOOOOO e M eUN C.O.C. O. C. O. O. O.O.O. O. O.O. O.O. O. O. O. O. O. C.C. O. O. O.O. O.O.O.O. O. M H M . M g g gu <HU G e >AMD CC00000000000000000000000000000 U> U 4 M 4 W-O m M k m M & W .N. e>4 MM E D C 4 5 e W>M C H M .N O v4 M A M 4 e 8 M G M M M 2 C 0 M 0 44 MM 9 9 4 yA e m M E 4 9 e, m- ,c ,y- .c.-.

5 d

4..

W W NNNN mmOCCCOOOOOmmmMMMMM MMWMMN 4 00000000 5 W 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 A NNNN NNNNNNNNNNNNNNNNNNNNNNNNN

  • M ao c0 00 es M m O @ m e0 O m N 4 m 4 M M to ao @ N M N O N 00 M

NNNN-M m N m M N O N M M M C m o M N N N c* N N M N N N e -NNNN NNNNNNNNNNNNNNNNNNNNNNNNN W @@@9 O 4 an @ @ @ C O M N N M M 4 in to to @ 00 00 C m M M M b oOOO m o o o O O m e M M M O O u o O C C C O M m e-s m M CCOO OOOOOOO C00COMCCOmcCCOOOOC OOOO O COCOO OOOCmOOOmoOOCQOCO AMGM COOO O COOOO OsnOCMOOOMOOCOCOOO M eMb O. O. C. C. O. . O. O. O. O. O. C. O. N. O. C. O. C. C. C. *. O. C. C. C. C. C. O. O. g gy ) M tJ3 OOCO OC000OOCCOOCOCC 000000000O 4 %4 b M C O O O '. OCOOOOOOC00CCMCCCeCOCCCOOC COOO OOOOOOOOCOCCmoCCmcooCOCCO 4 >& M W IC CCOC CCCOOOOOOtoCCMCCCMCCCOCOOC H e4h C. C. O. O. C. C. O. O. O. O. O. O. C. N. O. O. O. O. O. O. M. C. O. O. C. O. O. C. C. g qgy > M M t/3 OOCC OOOOCOOOOCOOCCC00OCOCOOCO 4, 8OOO O O O O Q O C O OC0C C M o C O m o o O O O O C O CCC COCCOCCOCOComoOOmoOOOOOOO C O .C M G OOCO C O O O O O O C o sn O O m o O O M O C C O O O O O

    • 4 M eM C. C. C. O.

' O. C. O. O. O. O. O. O. O. N. O. C. C. C. C. o. m. o. O. C. C. C. C. C. O. w 4 g qg n 4 k m M ft) OCOO -OCOCOOCOCCOOCC000CC000000 i e=e

  • C e

4 3 C .4 ..Q. 2 m I r/3 C 'e. O M 3 b b M COCC OOOOOOCCO000OMOCO@cOOOOOOO W e i G e OCCO OOCCOOCCOOOOmoCCmoCOOCCCC A G 80 4; >M G COCC C O O O O O C O Oan O O M C C O M O O O C O O O O an H m e e4 gM C. O. C. O..

o. C. C. O. C. O. O. C. O. N. O. O. O. O. O. C. M. C. C. O. C. C. o. O. C..

4 M g W g > U G n > A M tt) OOOC OCOCOOCOOOOOOOCOOOCOCCOCO 'R $ M r. e 4e C O m M

  • et be so to M W W 4 >.O 00 N

. H e-4 3 ..A to 3 4 3 0 0

  1. >M C

O M M M y C C .O .O a c4 .4 g l M M M 4 4 g e4 e-4 w a4 =c4 M eJ M M C C W W t/3 W 00 4.4 'i .M M W 4 LO Ub e I M M M i

W M NNNNNNNNNNNNNNNNNNNNN mOCOOOOC as c0 c0 00 00 00 c0 c0 00 00 00 40 c0 c0 c0 00 00 00 00 cc 00 00 ' N 00 00 c0 c0 00 00 00 O NNNNNNNNNNNNNN%%%%%%% NNNNNNNN @ N N C9 00 M M C') M 4 (9 @ M N m m N @ N N m co C0 (9 m O M M m M N N O O O N C'lO M M N N M e4 N N O O M M M M M N M (9 N N O te NNNNNNNNNNNNNNNNNNNNN NNNNNNNN W N N M N M M M 4 4 4 4 4 mt'i m m @ @ @ @ @ C4m@@mmo H M M C O O O O O O O O O C C C O O O c) C? O MOOOOOOM t COOOOOOOOOOOOOOOOOOOO O@OOO4OO COOOOOOOCOOOOOOOOOOOO OmoCCMOO AM WM CCOOOOOOOOOCOOC 000000 00000@o0 M N9N O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. M. O. O. O. O. O. C. 4 ey A M W3 COOOOOOOOOOCOOCOOOOOO OOOOOOCaO 4 %.s a OOOOOOOOOO3OOOOOOOOOO OmoOO4OO 4 W OOOOOCCCOOOOOOOOOOOOO OmoOOMOO 6 >MWM COOOOOOOOOOOOOOOOOCOO OOOOO@OO ed 4MN O. O. O. O. C. C. O. O. O. O. O. O. O. O. 0 0 0. O. C. O. O. O. M O. O. O. O. C. C. g W gy > A M U3 OOOOOCOOOOOCOOCOOOOOO COOCOOOO OOOOOOOOOOCCOOOOOOOOO OmOOO4OO C OOOOOOOOOOOOOOOOOOOOO 'O@OOOMOO O .d 4 WX OOOOOOOOOOOOOOOCOOOOO COOOO@00 r4 4 44h C. O. C. C. O. O. O. C. O. O. O. O. O. O. O. C. O. O. O. O. O. O. M. C. C. C. O. O. O. w p-g W gy M M % A M U3 OOOOCOOOCOOOOC 0000000 000COOOO l e-4 <3 .M

3 c

e4 4 2 M 8 U3 C e-o W D H N 9 OOOOOOOCCOOOOOOOOOOOO OmoOO4OO M e6 8 W ie W OOOOOOOOCOOOOCCOOOOOO OmoOOMoO A W Ot' 4; >MWX OOOOOOOOOOOOOOOOCCOOO OOOOO@OO C0 H M 4 ed 4MN O. O. O. O. O. O. O. O. C. O. C. C. O. O. C. O. O. O. O. O. C. O. M O. O. O. C. O. O. <l M g W gy 4 > A M U3 OOOOOOOOOOOOOOOOOOOOO COCOOOOO HU .W d W W U A U .c 4 4 C O M =re w m M W W 4 >.c N O ed ed 8 m O O 4 ::3 e s En > M O O M CO C9 I i a k N f u o o 4' M M M 4

  • c4 ord 4

e to r=4 re w

  • r4

,4 9 Q CO C C W W U3 W 00 e.d MM i 4 4 N b E l 1 M M 6

W 4 .CCOOOOOOOOOCCCOO*mMa*ManMmMMmma e WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW O NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN WONM4Wm4mmMmMONmNem@mW@NWNemNN@ 4 Nm**ComOOOM MNNNNomNNemMmmNONNNO NNNNNNNNNNNNNNNNNNN%%NNNNNNNNNN f. W OMNNMMM4mmmmmmmm@@@@NNWWWWmOOMN mMmNOOOOOOOOOOOOOOOOOOOOOOOmmmm COOmOOOOO4COOOOOONC 00000000000O COONCOOOQeOOOOOOO4OOOOOOOOOomOO AMUN .COOOOOOOONOCOOOOOWC 000000000MCC O. O. O. O. O.O. O. O. O.O. O. O. O. O. O.O. O. M O. O.O. O. O. O.O. O. O. O. M.O.O. 4 44W g gu b MM 000000000000000000000000000000C w b OOOmOOOOO4COOOOOONOOOCCOOOOOOOO 4 W COONOCOCOWOOOOOOC4OOOOOOCCvomOO

- M G M OCOOOOOOONOOOOOOOWOOCCCCOOOOMOO C. O. O. O.O. O. O.O. O. O. O. O.O. O.O.O. O. *.C.O.O.O. O. O.O.O.O.O. m O. O.

. 49% g asu >AMM C000000000000000000000000000000 l i COOmCOOOO4COOOOOONOOOOOOOOOOOOO l C COONOOOOOOOOOOOOO4COOOOOOOOOOOO O A M.G N COCOCOOOONCOOOOOOMC 000000000000 w M 4MW C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. C. m. O. 0 0. C. 0 0 0 0 0 0 0 0 0 k 9 emeu e M 4 bAMM 0000000000000000000000000000000 'i e4 'O I W 3 d a w 4 5 e M C 4 O W D H h M O C o m O O O O O 4 C' OOOOOONOOOOOOOOOOOOO M e t 'W W COONOOOOOOOOOOOOO4COOO CC000000 'A N W < >M GN OCOOOOOOONCOOOOOO@OOOO C0000000 3 .W H M 4 M 4MW C.C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0. C.m.O.0 0 0 00000000 4 M ny su HO W 4 >AMM C000000000000000000000000000000 M W G U A U Aa 4 C O m l' + k e [ aoo N .= >o O l MM e O 4 I m>2 O M M [ l I 2 M 4 3 M W O W W c M W 4A Ma e4 5 Gb l A A

e M M MMMNNNNNNNNNNNNNNNNNNNNNNNNNNN 4 00 00 00 00 00 00 co 00 00 00 00 00 cc c0 00 00 CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 C3 %%%NNNNNNNNNNNNNNNNNNNNNNNNNNNN m 00 e N N in m N e m in 00 4 co N cc M in N e e M e m O 4 in M M in O 4 OMNNOOQM MQOONOMMNNNOMNNetMOOMNNM e NNNNNNNNNNNNN%%%%%%%%%%NNNNNNNN W NNNNM M MM M NNNNMMMmMM 444444 an an an no aA en MMM M OOOOOOOOOOOOOOOOOOOOOOOOOOC O O O O O O O O O 00 C O O O O O O C C C O O O O O O O O O O O OOOCCCOOOinOOOOOCOOOCOOOCOOOCOOO aMG COOOOOOCO@OOOOOOCCCC 0000000CCOO O. O. O. O. O. C. C. C. O. 4. C. C. O. C. O. O. C. C. O. C. C. 0 0 0 0 0 0 0. C. C. O. 9 N9 g qg A N M t/J OOOCCOOOCCCCCCCOOOOCOOOOOOOOOOO M t>e a O O O O O O O O O CO C C O C C O O O O C C O O C O O O O O C C 4C OOOOOOOOOinOCCCCCOOOOOOOOOOOOCCO >M GN OOOOOOCCO@OOOOOOOOOOOOQCOOOCOOO c4 44h C. C. C. O. O. C. C. O. C. 4. O. O. O. C. C. C. C. C. O. O. C. C. O. O. C. C. O. O. O. O. O. g eeU > >3 M r/J CCOOOOOOOCCOCCCOOOOOOOOOCCOOOOO O O O O O C C C C 00 C C O O O O O O O O O O O O O O O O O O O C OOOOooOOOinCOOCCOOOOOOOOoOOOOOOC o .22 0% OOOOOOOOOWOOOOOcoOOOOOOOOOOOOOC r4 W 44W O O. O. O. O. O. O. O. C. 4. C. O. O. O. O. C. C. C. O. O. O. O. O. O. O. O. O. O. C. C. O. be M. g gU 4 M 4 A M f/J OCOOOOOCCCOCOOOOOOOOOCCCCCCOOOO I.u 2 C e-4 9 es .c M I t/J C 4 o W D H &av 9 o o o o O O O C O 00 O O O O O O O O O O 0 0 0 C O O O O O O O Bal to I W O O O C C C C O Oto O C C C O O O O O O O C O O O O C C C C O >J G 00 4 >MGN OOOOOOOOCDCOOOCOCOCOOOOOCOOOOOO i M H M

  • -4 NM>

O. O. O. O. O. O. O.O.C.4.O. O. O. O. O. O.O.C.O.O.O.O.O.O. O. O. O.O. O. O.O. 4 M sg qgU >U G N > M M t/3 COOCOCOOOOOCOOOOOOCC00OOCOCOOOO t .3 .A R Ua .h ae A d b .o i-e4 Le to aG G N 4 >.O O e 4 ed E in oeS S se > 2 0 >4 l M 4 8 4

  • e4 2

Me E M 4)

  • e4 M

a c v r4 + 0' 00 N.C i' M s.) 4 4 N O5 I 64 i >4l t n. g, .,.n.- -w--

1 W M NNNN mOOOOOOOOCOOOMMM M M M M M c=.M M M 4 00e00000 N 00 00 00 00 00 c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q NNNN NNNNNNN.NNNNNNNNNNNNNNNNNN m N N e0 c0c0 m m O M h e 00 O @ N m 4 c0 m 4

  • soc 9 m mit)N m

-M OMMN M M N *

  • C9 N N O N M N M MCCMOOOMMWNNN e

NNNN NNNNNNNNNNNNNNNNNNNNNNNNN W O 4 to @ $ m m O O M M N N C9 m M 4 in e it) at) its at) it) m H OOOO MCCCOOOM MMMMMOOOOOOOOOOOO OOOO O O O N O 4 O O O O O C 0 0 0 O O O O O C 00 O O O OCOO O O O O Oar 1C O O O O O O O O O O O O n O M O O O AM WN OOOO O O O O O N O C O C C O O O O O C O O st% O M O O O i 4 N9% O. O. O. O. O. O. O. N. O. O. O. O. C. O. O. O. O. C. O. C. O. O. O. O. O. M. O. C. O. g qgy b M Of. t/3 OOOO OOOOOOOOOOOOOOOOOOOOOOOOC 4 te.a e COOC COONO4OOOOOOOOOOCOOOO00 COO i. A W OOOO OOOOOst1COOOOOO OO GOO O(9Ot9OCO >M WC OCOO O O O O O N O O O O O O O C O O O O O at) O (9 O O O v=4 44b O. O. O. O. C. O. O. N. O. O. O. O. O. O. O. O. O. O. O. C. O. O. O. C. C. M C. O. O. g W gy > A M tJ3, OOOO O O O O O O O O O O O O O O O O O O O O O O O O C; a oOOC OOONO4COOOOOOCOOOCCCO000CC d COCO O.3 O O O in C C O O O O O O O O O O O C'1 O (9 C O O O AM W OOOO OOOOQNOCCOOOOOOOOOOthCC90OO ^>

  • 4 9 nM C. O. O. O.

O. O. O. N.O. O. O. O. C.O. O.O. O. O. O. O.C.O. O. O.O.M. C.O.O. w 4 g W g M e % A M tt) OCCO OOCOOCOOOCCOOCOOOOOOOOCOC .l r-4 'O e 4J 3 C i c4 4 5 M 8 tJ3 C 4 O W D b N 4 COOO COCNO4OOCOOOOOOOCOOOO00 COO W e i W to QCCC C O O O O af) O O C O O O O C C O O O O C') O (9 O O O e1 W 80 4 >M WM OOCO C O C C C N O O O O C C C C O O C O C no o c9 O O O M H M 4 e4 4MN O. O. O. O. O. O. C. N. O. O. O. O. C. C. C. O. C. C. O. C. O. C. C. O. O. M O. C. O. 4 x to W nu HU W 4 > A Of. t/3 CCOC OOOOCOOOOOOOOCOCOOOOCCCCC M W U M l U .c, + 4' C l .O M r4 k at)

  1. W W 00 1

4 >4 O N Nr4 3 to N O 4 3 e e 40 > 2 O O M c') C9 9 d d u .o .O 4 c4 e4 2 M M n n 4 3 4 e W c.,4 r.,4 4 4 M M C C W W 4 t/3 W c0 a.C i MM 4 R N N WA f f A X M ,w p 9 -er.~---., -w---, -m,-,--- -...--v--

04 eg e4 e* ee .-e e-e ed M M es ed e* ca e ca e* e* e4 ed e4 NNNNNNNNNNN e c00000e040e0c00000000000c000e000c0oc00coao0000c0000000CC000080 C NN%%N%NNNNNNNNNNNNNNNNNNNNNNNNN N O m @ m e0 @ f* 00 N M to ** N N @ m 00 @ m N to m N @ M aA 40 4 e0 40 M C em N N e* M ed e*P9 N O O N N N O O M N N O C O ** e4 C O O N O e+ l em NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN W @ @ @ @ f% N 00 00 00 40 m m C O e* N N N N N ** ** e4 e* ca N N N N M M b C O O O O O O O C O O O ** ** M ca ed e*c**OOOOOOOOOCC l CCOOOOOOOOCOOOOOOOOOOOOOOOOOOOO OOOOOCOOOOoOOOCCCOCOOCCCCOCOOOO AM&M COOOOOOCOOOCOOOOOOOOOOOOCCOOCCC M eUN - O O. O. O. C. O. O. O. O. O. O. C. O. O. C. O. C. C. O. O. O. C. C. C. C. O. O. O. O. O. O. g g gU k A M t/3 OCOOCOOOOOOOOCOOOOCOOOOOCOCCOOO M 4>e b e oOOO OOOOOOOOOOOOOOOOCCCOe6JOOCO 4 W QOOC CCCOCOOOCCCCCCOOOOCOOOOOCO >.ad WM OOOO OCCCOOCOOOOOOCOC00CQCCCCCO a e4 eMk O. O. C. O. O. C. O. C. O.C.C.O. O. O. O. C. O. O. O. O. O. O.O. O.O.O.O.C.C. O. g & 4y > A N t/3 OOOOOOOOCOOCCOOOOOOOOOCOOOCOOOO OOOCCCCCCOOCCOCOOOOOOCCCOOOOOOO C OOCCCOOOOOCOOOCCOOOOOOOCOCOCCCC 0 4 Jd WM COOOOOCCOOOCOOOOOOCCOOOOOOOOOOO C. C. O. C. O. O. C. O. O. C. O. C. O. O. C. C. O. O. C. O. C. C. C. O. C. O. O. O. O. O. O.

  • ee '

4 eU> w p g g gy a e* e % A N tt) CCOOOCOCCOOOOOCOCC00000O000OCCO .i r-e 'n 4 ll5 m re .ca ll1 e4 e t/3 C e O fal Q E-* A M CCCOOCCCOCCOOOOOOOOOOCOOCCOOCOC - lal e I W e CCCCOCOOOCCCOOCCCCOCOCCOCCCCCOO A 40 4 >.*d & M OCCCCCOOOOOOCCCCOOOOCCOOOOOOOOC CD H ed e ed e4% C C. C. O. O. C. C. O. C. O. O. O. C. C. C. C. C. C. C. O. C. O. C. C. C. C. C. O. O. O. O. 4 .ad nqeU .F* U W e > N M C/3 OOOOOCCCCCCCCCCOOOOCOCOOOOCOCCO Y ) E & e-Me A* C .o ee 64 M W W elC e >.O N e4 e e G tw O e3 e e>M C M c') 4 d 1 S O e are M Me -g e-4 w

  • .4 4

4 e C W t/3 j 0 00 l e.C .ad 4 ee m Wb I >4 M w --.--.--m. r ---.m-, 1.--e- .-c w---em i+w,r,-

4 3. O M mmmmmmmmmmmmmmmmNNNNNNNNNNNNNNN 4 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW A NNN NN NNNN N N N N N N NNNNNNN NNNNNNNNN - @mW@NNmcmNN@@@@eNm@N@ MAW 4WWmcN@ M NM mmMNOCNNNOOM NNOOOmmOOONomNNNO e NNNNNNNN NN N N N N N N NNNNNN N NNNNN N NN - @NN##WmmOOMNNNNNemmmmNNNNMMMMM4 H -OOOOOOOOmmmmmMM M OOOOOOOOOOOOOOO C000000C00000000000000000000000 0000000000000000000000C00000000 AMGN CC00000000000000000000000000000 g gu .C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. C. O. 0 0 0 0 0. C. 0 0 M MM% MM OOOOOOOOCCOOOOOOOCCCCOOOOOOOOOO w OOOOOC2cocooooooooooooooooooooo .= C00000 CC0000000000000000000000 4 W>MG C000000000000000000000000000000 C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M eu g eg >AMM C000C000000 CCOCCCCCOOOOOOOOCCCC C000000000000000000000000000000 d C000000000000000000000000000000 C00000000000000000000000000000O O AM GN C.C.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w M 4MW k M g gmy m N %AMm COCCCCCCCCCCCCCCOOOOOOOOCCOOOOO i .M W M 2 Q M M 2 M e m C 4 O M C H M C00000000C000000000000000000000 W 1 W = 0 000000000000000000000000C000000 A G W < >MGN C0C00CO00000000000000000000000C C. C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0.C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H M 4 M 4MW M eeau U G N >AMD CCCCCCCCCOOOOOOOOOOOOOOOOCCCCCO s M G G U A U A 1. Me 1 C l .O u M W W 00 m>M N Me g N 0 4 m I m>2 O M M c 8 0 e M 2 'Me g M w

  • el 9

M e c c m cW 4 m W% 8 A M

NNNNNNNNNNNNNN moOOOOOOOOMMMMM e 00 00 00 00 00 810 00 00 00 00 a0 00 00 00 N 00 00 00 00 00 00 00 00 00 cc 00 00 00 00 O NNNNNNNNNNNNNN NNNNNNNNNNNNNNN @ m @ m O 4 in m -in O e t-e0' c000 M M m m m c0 C m 4 m 4 4 m M mNNNMOOMNNmOmN MMNOMNONmMOmOOM e NNNNNNNNNNNNNN NNNNNNNNNNNNNNN H .4 4 4 4 4 an in in in an in @ @ @ O 4 in @ @ m O O m m M M 4 in in W OOOOOOOOOOOOOO' MOOCOOmiemmoooOO OOOOmomOOOOOOOO O O O @O O O O O O O O O O O OO@ONOMCOOOOOOO OOO OOOOOOOOOO AMGM COOOOCOCOCOOOO OOOOOOHCOOOOOOO M 4WN O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. m. O. O. O. 'N. O. O. O. O. O. O. C. O. s eegU % A M t/J OOOCOC00000OCO OOCOOCOOCOCOOOO 4 4 W 0 A se oOOOOOOOOO OOO OOOOMOmoOOOOOOO W. O OO OOOOOCO OOO OO@ONCmOOOOOOOO >MG OO OOOCOOO OCO OCOOOOMOOOOCOOO-M eM C. O. . O. O. O C O. C. O O C. O. O. O. O. M O.O. O. N.O. O. O. O. O.O O O 4 W et = * = *

  • l.

> A M t/3 OCOOOOOOCOOOOO OCOOOOCOOOOCOCO OOOOOOOOOOOOOO OOOOM CmOOOOOOOO t C OOOOOOOOOOOOOO OC4ONOmoOOOOOOO O AMGM CCOOOCOOOOOOOO OOCOCOMOCOCOOOO >4

  • c4 4 4MN O. O. O. O. O. O. O. O. C. O. O. O. O. O.

O. O. M C. C. O. N. O. O. O. O. O. O. O. O. wl M g ej g y e - e % A M tJ3 OOOOOOOOOOOCOO COOCCOOCOOOOOOO M' 'O 9 3 0 m ce 4

3 I

t/3 5 e o tal Q H N OOOOOOOOOOOOOO OOOOMOmoCOOOOCO 5 : & 4 *M. 88888888888888 888888 88 8.88888 M H M e M ed O. O. O. O. O. O.O.O.O.O.O. O.O. O. C. o. m. O. O. O. N. O. O. C. O. O. O. O. ( M gg gU HU U n > A M tt3 OOCOOOOOOOOOOO OOCOOOOCOCOOOOO e4 G G U .A Ch > > U 4 H 4e Co ,4 be O M W W C0 w 4 >4 N N e 4 ed E r% m o4 5 I e to > F. O O H M M d C E o o 4

  • e4 e4 F.

U U e m 4 8 M e-4

  • e4
  • c4 9

9 9 in C C G v C/3 v 40 44 l M4 4 C4 + re n e m % 0.0 9 e W M M -vm-e-e. -e-4. --e ,%+, ,.,--er-e e-

W 4 M M e-* v=e M MMM M MM M MNNNNNNNNNNNNNNNN 4 c0 00 c0 00 00 00 00 00 00 00 00 00 00 00 co co 00 00 00 00 c0 co 00 00 00 co co 00 00 NNNNNNNNN NNNNNNNNNNNNNNNNN Q N N N.:@ 00 N M N O N c0 @ m N m 00 M M M 4 m @ m W in m N @ N m in 4 NNNM MNNM NNNN NOOONMMM NNNMNNOOM e4 NNNNNNNNNNNNNNNNN m m @ 00 00 cc O M M MM N N M N m M M 4 4 4 4 an in 4 m @ @ @ H OOOOOOM MM MM M MCOOOOOOOOOOOOOOO OOO4OOOOOOOO OOCOOOOOCOOOOOOOO OOOMCOOOOOOO OOOOOOOOOOOOOOOOO AMU OOONOOOOOOOO OOOOOOOOOOOOOOOOO O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. C. O. O. O. O. O. O. O. O. O. 4 44 g g e % A Qfe tt3 OOOOOOOOOOOO OOOOOOOOOOOOOOOOO 9 ie4W en OOO4OOOOOOOO OOOOOOOOOOOOOOOOO 4" W OOOM CCOOOOOO OOOOOOOOOOOOOOOOO >M WW CCONOOOOOOOO OOOOOOOOOOOOOOOOO e4 4MN O. O. O. O. O. O. O. O. O. O. O. O. O. O. 0 0. C. O. O. O. O. O. O. O. O. O. O. O. O. g g gy > A DGt/3 OOOOOOOOOOOO OOOOOOOOOOOOOOOOO I CCC4OOOOOOOO OOOOOOOOOOOOOOOOO C CCOMOOOOOOOO OOOOOOOOOOOOOOOOO O AM UM COONOOOOOOOO OOOOOOOOOOOOOOOOO

  • 4 4 4&W O. O. O. O. O. O. O. O. O. O. O. O.

O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. w 4 g g gy M M k A M t/3 OOOOOOOOOCOO OOOOOOOOCOOOOOCOO e-e 'O 4 C C M 4 4 C I t/3 C 4 O W D b las e oOO4oOOOOOOO OOOOOOOOOOOOOOOOO W is 4 0 to 0 COOMCOOOOOOO OOOOOOOOOOOOOOOOO > M C *': OOONOCCOOOOO OOOOOOOOOOOOOOOOO d W 00 4. 00 H e* n MnMk O. O. O. O. O. O. C. O. O. O. O. O. O. O. O. O. O. O. O. C. 0 0. O. O. O. O. O. O. O. <l M se q e U OOOOOOOOOOOOOOOOO HU W e > M M t/3 OOOOOOOOOOOO M U G U d Aae b c O

  • e4 w

O O U U G M M N >4 eM M S m m O 4 5 s e l =>Z O O M m n f I ( C C i u o .O 4 =c4 e4 Z M M e m 8 M M e ,4 .,4 Q M C C -o t/3 l o ce 94 MM 123 to ee m o O4 I e M M i

r 4% W W mOOOOOOOOOOOOOOOOMMMmmmMMM MMMMM 9 NWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW NNNNNNNNNNNNNNNN%%%%%%NNNNNNNNN -Q W5M4CNmMMmmNWMNON4mmmmmMNMWWNmo M .mMNNMOONNNOWNMOMMOOMNCOMMNNNOOM NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN eW C4mm@NNmmmOOOOmmNMMM4mmmmmmW@@@ H NOCOOOOOOOM MMMMMMOOOOOOOOOOOOOO OCCCCCOOmCCOOCCCCCCCCC@NmCCCOOO OCOOOOOO@OOOOOOOOOOOCCMmWOOOOOO OOOOOOOOMOWCC 000000000@ NMOOOOOO AMW3 C. O. O. O.O.O.C.O.N. O. M. C. O. O. O.O. O.O.O. O.O.C.C.O. M.O. O. O. O. O. O. a M eMW g W gu %AMW C000000000000000000GC0000000000 9 'tA O O C'C O C O O m O C O C O C O O O O O O O @ N m C C C C C C W COOOOCCC@COCOCOOCCOOOCMmWCCOOCO 4 W >MWN 'OcoccoOCMCWCCCCCOOOOOO@NMOCOCOO C. 0 0 0 0 0 0 0.m.O. m. O. 0 0 0 0 0 0 0 0 0 0 0 0. M C.0 0 0 0 0 M edh g W gy >AMW C00000000000000000000000000C000 0000000000000000000000@ nmo 00000 C COCOCOCo@CCCCCCCOOCCOOMmMCCCCCC C AMWM OCOCOCCOMOMCCCOOOOCCCC@NMOOOOOO C.C. C. C.C.C.C.O.M O. M. O. O. O. O.O. O.C.C. O. O.O. O. O. M C.C.C.O.O. O. M M edh w a g g gu M N %AM@ OCO0000000000000000000000000000 I W T 4 5 C -MlW w A

1 e

C e o D H-A W '9 OOOOOOoonCCCOOOOOOOOOC@NmOOOOOO M e e W W W COCOCCOO@CCCOOCCOOOOOOMmWCCCCCC W W 00 < >M WM OCCCCCOOMOMCCCCCCCCOOOWNMOOOOOO C.0 0 0 0 0 0 0. m. O. m.O.O.0 0 0 0 0 0 0 0 0 0. C. M.C. 0 0 0 0 0 M H M e M edh M aygy H u 4 >MMW C00000000C000000000000000C00000 M .W W U A 'A > > U 4 H 9e b MO 4 w w m M W W N % >A 4 MM E M C 4 5 e m>2 O M M W C E O e w 2 Me Q M w W 9 9 W W W W WWNA 4 na O M 4 m Gb e A H

wwmemmeww-mememwwmewemwwwwwwNNN w 4 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW O %%%%%%%%%%%%%%%%%%%%%%%%%%%NNNN A@OmWWcomNn4mW@NWNmmNNNW@@@ONme M .NNmMNMNMCCOOOOMMMNONNwNNCOMNCOO e NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN W @@NNNNNNWWWWWWWWWeeOOMMMNNNNwMM-H COOOOOOOOOOOOOOOOOOMHMMMMMmMOOO C0 0000000000C C000000 000 000 0 0000-C00000 0 00000000000000 0C00000 AM GM 000000 O C0000000000000 0000000 0000000 a49% C. O. C. O. C. O. . O..C.0000000000000 g g gu %AMW C000000000000000000000000000000 4 ]. il f e C000000000000000000000000000000 4 W C000000000000000000000000000000 >M G COOOOOOOOOOOCCOOOOOOOOOOOOOOOOO C.00000.C.000000000000000000000000 m wed e e MW C0000000CO000000000000000000000 0000000000000000000000000000000 C CCC0000000000000000000000000000 O AM UM 0000000000000000000000000000000 C.0 000000000000000000000 0 00 0 000 0 W M 44W k 9 g ego %AMW C000000000000000000000000000000 i @M M. m 8 M A 8 t/2 d g -o W Q H N 9 C000000000000000000000000000000 OOOOOOOOOOOOOOogCCCOOCOCOgCOOOO a 8 W W g "

  • 21*E 8888888888888880888888888.O.88888 A

W 4 M nG nu HU C e >WMW C000000000000000000000000000000 M v W U M U M a 4A 5 -O m w k M M G W N 4 > 4 MM m 0 4 e m>R C H n 2 Me g M w

  • s4 4

M M W V. 1 W WA 4 M9 O 4 4 M 8 4 M

J b g M NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW Q %%%%NNNNNNNNNNNNNNNNNNNNNNNNNNN N@MW@WWMONMNMM4M@m4MNMONON@mNNM M MM OONOMNNNMOOMMNNNOMMNNNMOOOMMN m 'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN W MM NNNMMMMMM 4444444 mmmmmmmW@@@@@ b C000000000000000000000000000000 0000000000000000000000000000000 0000000000000000000000000000000 AMW C000000000000000000000000000000-C.000000000000000000000000000000 4 4M g qn 0000000000000000000000000000000 bMMM 1 - W ] e O C0000000 0000000000000000000 4 W O C0000000 0000000000000000000' >MW O COOOOOOO C000000000000000000 & nM O. . C. O. O. O.O.O. O.O.O.O. O.O. O. O. O. O. O. O.O. O. O.O.O. O. O.O. O. O.O. g qg >HMM C000000000000000000000000000000 0000000000000000000000000000000 d C000000000000000000000000000000 o AMWM C000000000000000000000000000000 0 0 0 0 0 0. C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. O. 0 0 0 0 0 0 0. C. w M WMW w 4 g W gy M N kAMM C0000000000000CC000000000000000 l M N 9 3 C M A 3 M I M c e o N Q H A . O.

b... o.

. O. . O. O. b... o. O. . O. O. k M g ggy Hu G e >AMM C000000000000000000000000000000 N b W R u e e M e O m w k M M W W N 4 > 4 MM M O N 8 m>2 O M M s 2 Me E N W + 4 4 M C W M k.o Mu o e4 M W& 4 A X

e t 222 90000000o000011111t111111 1 a sss 788ssssss8ssss8ssss8ssssss D /// ////////////////////////// 35s 5s349221398o249433346s1212 t 222 11 121 21 2202l101012021i2222 s /// ////////////////////////// e 666 04556679900123345566ssss01 T 000 1C000000011110000000Oooo11 000 001700200000000000000ooo00 000 00310020000000000000000000 hkeR 000 00500080000000000000000000 t atF 000 0020001 0000000000000000000 aeaC PLRS 000 0000000000000000000000o000 t fe L s 000 00170020000000000000000000 A e 000 00310020000000000000000000 vkeM 000 00500080000000000000000000 l atF 000 00200010000000000000000000 aeaC VLRS 000 00000000000000000000000000 000 0017002000000000000000o000 n 000 0031002000000000000000o000 o hkeM 000 0050008000000000000000o000 y i t atF 000 0 0 2 0 0 0 1 0 0 0 0.c.0 0 0 0 0 0 0 0 0 0. o.0 0 0 r t aeaC a 1 a PLRS 000 0000000000000000000000o000 n l d um t u n 1 u i b u S n a o E U T F t 000 001700200000o000000000c000 E s e s e 000 003100200000o0000000000000 L e s A vkeM 000 005000800000o0000000000000 B T 1 a l atF 000 002000100000.c.0000000000000 A k aeaC TC e a VLRS 000 00000000000000o00000000000 l e e c L p y y C h T ta P no 5 7 i r 1 1 t ee / / avb 4 6 ll s 1 1 s oau sVN 0 0 I 3 3 e n n m o o a i i N t t a a s l l ne i i t t t s n n y e e S V V esah A B kt 0 o aa 1 l eP L X X e l

.J 22:22:22:22: RSESS2333333SEEEE t

  • RCstRICRetttRI's.

22'2 22RA>

  1. 2ARg R AM2 A3R&M' AR-t RRRRRORRC8tt-C A

252938338833 28833282220:02999 Si35 234. o.oooooooooo oooo.....oooooooo -d 3 135 sade ...ooooooooo ooooooooooooooooo e$g gggggggo==.ggg8ggg $ o cooco g$o$o ggggg g.g go gge t gu.$ o ........o. = ... c o. t n. . o. ~t m3mm oooooooooooo oooooooooo oooooo T ml 7 ]o 1 - a 2 w e w 8888$8$8888888o8o888$o888. $888$8 E 8888 88$8888 y* 313g 8888$88.8888 d g A - Cham dddddddddddd ddddddddddddddddd wu e T, 3 i 6 a a M N h h 4*J k TOs 7 7 4** 8 8 y z 4 4 y 2 a E E E m b16 8

  • 2

? 7 3 u u

....N.N N N N N.N N N W g 'to8 W2W242222A2A2'8 2%2%222 2222 2'A 2 nno--n-~~nnnn nnneaoo-~ nun a '2A>>2 "8R.222.22Akkkn>AAM3222' E


aeoooooot toaoco8 88 co e

0135 eaa. aaaoaa coaaoooacecocooeooooaa o d 3 ao$ ooogo g goo oooo e oo o$ao 8 8*808 8' 8 8

  • 88 o**

'8 8' s u. u. -go8 8o8e o88 o eo8 ooo o8co o o -#3A. ddddddddddddiddiddddddddddddddd ~ 888 [88888888888888888888888g88.88888888888888888888888o8 = .3 5 1 3 i" 'e t e3a8 ddddddddddddddddddddddddddddddd I -..E a "B a o. fal Q H lae 8occooo8ocoooCCgoooooo o8 o a oo eogogo - g. oo "

  • 2135 88 88 888.8.88o888888 A

Ou 1 AJAM ddddddddddddddddddddddddddddddd O 3 h53 i e a i b N

a. >G G

0% ed O e se > 2 o H M i 8 a 'a. ?m a a se = W th W 5 t

I i t M NNNNNNNNNNNNNNN mom 0% O M CM se 00 00 00 00 e0 80 00 00 00 00 00 00 00 00 00 r* 00 00 rw e0 00 00 00 %NNNNNNNNNNNNN NNN-NNN NN $3 %9 M ao f% C N @ m N Fw m M M M 00 O@4 NOM @ r* 4 'MNNNMOOOMMMNNN f NNN NMN NN e NNNNNNNNNNNNNNN NNN %%N NN A 888883338833333 888 238 38 OOOCO OCC OO O COO OCM C ao OO OO OOO OO O OOC C C in NM A M G *% OO OO OOO OO O OCO O O rw NM M eWh C. O. . O. O. O. O. O. O. . O. O. . O. Q C. C. O. O. F% r%. @. g g eU %AMN OCOOOOOOOOOOOOO COO COO CO ie a b a OOOOO OOO OOOOO OOO OOM C 00 4 U COOOO COO OOOCO COO O O no N* >MW2 OOOOO OOO COOCO. CCO O C r* NM e4 4 4 Ime O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. rw r% @ nuou > e 3 M r4 OOOOOOOOOOOOOOO OOO OOO OO OOOOOOOOOOOOOOO OOO OOM C 00 C CCCCCCOOOCOCOOO COO O O no NM .o J2 M &2 OOOOOOOOOOOOOOO OCO O O r* NM e4 +J 4 W Ese O. O. O. O. O. O. O. O. O O. O. O. O. O. O. O. O. O. O. O. r% rw @ >w a eg gy M e b e.4 M r4 OOOOOOOCOOOOOOO OOO OOO OO I M T l 9 5 C w .O 2 M l tA C 4 O fa3 D H fas 888888888888838' 888 8 8 e9 8" G W < >MWM C000000000c0000 000 CON NM 80 b M 4 M e M fae

o. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

O. O. O. O. O. rw tw @ ( M e e as y HU W e > a-3 m r4 OOOOOOOOOOOOOOO OOO OOO OO M G G U M O .Ca 4% to C M M N .O O M r% rw ee &d N N e ad M G G N 4 l 85 > m M r%. M e4 M M 4 4 0 4 I I e e I m>M C C C O M M M M M ~1 g C C C C u o .o .o .O 4 .ce ce cs e4 M M 4 4 4 e n e. n 3 c-e e-o e-e M l e4

  • ee

.re .pe U M C C C C G G G G rA 00 88 4 M N MM M tw M M 88 et M m M M 8 0 I e M M M M L1._

W M O.O..- N.O.O.O.O O.O O.O C O O.C O.O.O.O.O.C.O.O.O.O.O a N. A %%%%%%%%%%%%NNNNNNNNNNNN 2*3NN D30%2M923"A8:ANM8238SMSO a 22222'3000000008'8 2222222 %%%%%222' 2 2 -22222 -O000 e C0000 8 gg89 8 888g888888gg8g8-S"g* ...egeggCOggeegeg go .se.. e.es. e.esgs.g a -n C uuGg b,pM. x m COOOO C0000400000000000000000C i w 3 O O m eo m OOOOONOOOOOOOOOOOOOOO OO O$ COOOOOOOOQOO COO $ COCO 80880888888888088 QC@-C 4 G 8 888 313E 08503 saaM ddddd dddddJdddddddddddddddddd M C O m oo m oO NOOOOOOOC4OOOOOOOOO OOOOOOOOOWOOOOOOOgO og@503 gg -O C 0888888889888888808 3 ISTSE 8O C000 g 23&M ddddd dddddJddddddddeddddddddd ..l } ,s .0 a O M tal D H $as OOOONOOOOOOOO4COOOgCOOO a Com.m .e8esseeeeeeedegg808g88 8*88888888*8 g8

  • AS

]8ees 5 : & 4 *u.5 ..e ee.s e -a s - - 2 >3a COOOO C0000400000000nO00000000 sa y U W 9 4a .a m N O -.O e4 he m 4 aGG i41 ? ?

>

a 8 t 0 C O O i ) 2 a a a e C C h '2B C .O 4 i

g W COOOOOOOOOOOOOOOOOOOCommmMMMMMM e memetemememememememe##eemmememe O NNNNNNNNNNNNNNNN%%%%%%%%%NNNNNN ON4emMmON4nMA@mM MmmN@NNmeN4WNmM M NNNNMCOMM MMNNNNCOOMMmNCOOmMM MNN W NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN t OOOOOMmmmmmMMmmNNNNNNNM MMM wMMM M N M mMmmmMMMMmmMMMMmmMMM MOOOOOOOOO ll 88O E COCOO@CMom@mmo O COON NM4m44O b MM G5 O COCO CommmM O CO & eMm C. O. . O. @. c...... C. O. . O. . C. O. C. O..C.0 0 0 0 0 0 g qgu %MMW C000000000000000000000000000000 aw G A a CO C000000 00000000000@ OMom@mmO < W CO C000000 000000000 ONONM4M44O >M WM CO C000000 000000000 COOOOMMM MO M edh .0 0 0000000 000000000 0000000000 g g gu >AMW OOOOOOOOROOOOOOOOOOOOOOOOOOOOOO COOOOOOO@OOOOOQQQOOOOComOMOm@mmo a a Si3E 888.$.88888.80888888888888888855558 COO C000 COOOOOOOOOOONON-4m440 6 9 g ggu m n %AMW C000000000000000000000000000000 i M e a 3 8 o. M m t e a O sal Q .H N M CO COOOOOOQQOOOOOOOOOOmOMom@mmo g u e W W W C$ OCOOOOOOO$gogCOOOOONONM4m440 2-A. i.

  • E
8..

8 8 8 8 8 8 8 8 8.. O. 8 0 8 8 8 8 8 8 8 8 8 8 5 5 5 5 8 3 A m .a H u G n >AMW C000000000000000000000000000000 t 3 R u e n ae b c O 4 M. k o 9 U Q > N MM M O N e

  1. >R O

M M g O M M Me a a C W W WW nM Me O 4 4 e

a eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee MRa88SCO208NMAR8888:22SNOAAMaa8 a L &&>>>>>>>-------- A>>>>>MAAAAAAAAAAAAA>> I ). e --oo f.f.$f.8f.$f.f.!]$$f.8!$$$f.!gh.8$f.8f.f.$$ au.5 ..e..e.e..e 22 2e222 2.... 29.e. 22 .3. - ggllg58188388.8.gg8gg8888888888 4 88*88g8g .zesg 8 8. 8888888888 o Cham dddddddddddddddddddd&didddddddi 1. r 8 8g 838. Hili 8g58El88g8E88888g888888.838888 8888 =a esse 8. 8 88.8 e 23a8 55555555d&dd555555555555ddd55d& ) l 9 g u . 2 2 $ I 53 HRH 999l.l.e9je3j8!e9999999999998j9e fi a*H 8*ifisi!!!filifi f!

r..e 3

s - - m $o 9. HU 4 W C000000000000000C0C0C00000C000C 3 L . o $5 3 e 8 o 0.t e . *3j R ,gs. 3 L ( l 8 L r E 0 1 E E M b 1 g E .s x

L-I MMMMM MMM MMM MMMMM MM'MMMMMMMMMMMMM [ 8 t *

  • t * * * * * *
  • t.* * * * * * * *
  • 2
  • t.*.* * * *
  • A I

%MAM8BSB220"29NAMM2583BS ANNANM a R R R s 2 2 2 2 2 2 2 '8 '8 o o o o & R 'S 'S S S S & & & o s 2 2222 i ooooooooooo oo -MM-M e l I lillillillistillillilillillill! essg 23ao dadd&&dadad&ddddddddddidadddd&5 l d i 3

  • 888 88g8gg:

88888888*8 888 8 4 $888$88.8coc$88888888!8$$888$8$ 3.<3e soaM ddadddddddda55555555&&5dadddddd illilliillisliiiiiiiiiiiillilii a m3,3e dddddddaddddddddddddddddddddddd e< e M pj r 8 e w e m gh !*se illilliliiisilitili!!!!!iiiili! sa M dddddddaddddddddddddddddddddddd eu D 3 hO e a C h be % s.E R %%8 ? 4** I l E E 5 t i. t/2 eeI$ 8 3' .k

l_. l s. A2OAAARRAA22OAMR22'nn~> COCO----nuA32OMAROR a 3A --~~~nn~CCCO-----u u. .sssssssssssssssssssssssssssssss A ~8888888833333333333333339933B99 b I 888g88088888g8$8 8 88888Cgg$$$8

  • 8 88 l

eu.5 8 e 2 e e e e.. e 2.2 8 22 229.2 2 e 2 2 22 2.2 2 e =3M. CC00000000000000000000000000000 r I -3 4 ggg888gg8888888888888888))8g888 .213E C008880088888888888888880080888 Cham sidddd55dddidddddadddddddddddd5 0000004000000000000000000000000 Q C000004000000000000000000000000 COOOOOOOOO OOOOOOOOO O ou. C O L' O O O g C O h ) N ev 4 4 MM CC00000000000000000000000000000 'l 4 a g Y M a O w O +. m oggCOO4COOOOOOOOOOOgCOOOOOOOOOO M 5 k 4 *u.g ggC88838g[888888888088g888g8888 Nu . e..... C, C, C, g o, C, g g o, C, C, O, , g o, O, , C, C, C, C, k > )" M M g 60 e C000000000000000000000000000000 . t 3 hO ~ a a .h. k. 4 a O C e5 m e>2 e H M I E e a a W C M k .O

L s t a

        • t**************************

l anR3338:02EaNNB88*0SORNaQM5388: o >>>AAAAAAAAAAW7777777'7.3'7722323 C ooooooooooooooooooooo3 oooooo .e [- p-llgolgogoi8oo8,oo8,oooogsos,8, af ofof stafsoffssff!!.8fssss esse ch&M did&ddddddddddidddddddddddddddd e g-3 esse !!ilillilillilliiiiiiiiiiiiilli ~ I- ,3au &&&dddddddddddddddddddd&&dddddd I esse tilli!!illi!!iliiiiiiiiiiiiiiii l e x3au ddadddddddddddddddddddddddddddd -l 1 2 i o I w => s w l-2 88g888888888g 88.888888888 fg8888888888888888 e < 3 se o8888888888888888 i saaM ddddddddddddddddddddddddddddddd tea l . 2 3. Pe e l: o But t [ ii1 ? 8 f ( a I N-( 1 Y a { .g s ( J' A (1

L r' 1 i .N N N.N N N N N.N.N N.N N.N N N.N N.N N.N.N N N.N.N.N N N.N N N N. N N N N N. N N N. N N N N N N N N. N N N N N N N N N N N N N f C m N4m@ Mm OM@mN4@ ONehmN4m@NmMN } M COMMMMMOOOmMmMNNNOMMMMMNNNNNNMO E >>>>>>>AAAAAAAAAAAAAAMMAMMAAMMA N 0000000000000000000000000000000 l { [8g888888888g8g888888888][8gg88 513g 0808888888880808888888880080088 53&= idididd&ddddddddddddddd55d5dddd ,w b e OOOOO CO C000000000000000000000 C00000000000000000 COO $888888888888888888 OO$CO 4 W 888 88 88 ASSE 33&M 55555555ddd5dddddddddd5&d55dd55 0 0 0 C C 0 0 0 0 0 0 0 0 0 0 0 0'0 C 0 0 0 0 0 0 0 0 0 0 0 0 C000000000000000000008000000000 C 0C0000000 C0000g000000000000000 a99a 9 o. o = ex.g o

  • 9o.. o. *o=o=o=9oo9==o t

t %:10 n %AM. COOOOOOOOOOOCCCCOOCCOCOOOOOOOOO i M 9 4 2 C w M b 8 h k 1 513E hh!!bkkh8kk!h8!hhhhhhhhhh!hh!!k le M sham dddddddddddddddddd55d&dddddddd5 w v 0 3 E& 4 5 e M. k. 8 a N 041 ? e>* O M M z E 5 a a C. = G=

b..

.O I L

Y l 3 nunnunnununnnnnnunununununnunnn [ .A

          • t***t******R****R*********

98:23MNAM89883220029an%88833382 I a 7322Ao o o o o >o >o >o >o >o >o >o >o >o >o >o o 3 ' '3 3'3 3o 3 ' 7. '3 >. >. 7 7 7 "3 o8 e .ao.a.9.8.o$$88$9=.o=o.a.$..$ 8$$$ 88 8 8* 88$8$*8e o8 oo o o ,maa$ eo nu. o '. taa

o.... a a o = = = o.

. o. o. m ooooooooooooooooooooooooooooooo l 3 888888888g888g888 [88 $$888888888.888.888]gg8gg8o 8o8$$o88 4. l .t t 3 g 43Am ddddddddddddddddddddddddddddddd i illilli!!!iiiiiiiiiiiiiiiii!!!! ein e E3AM ddddddddddddddddddddddddddddddd 1.l ~ i. 5 2 2 Bo 3.55 5 ooooooooooooooooooooooooooooooo 3 h: e, Cb u t*1 k; 2: 8 b .I E 2 E 0 i-o l E E M

  • ,H 8

[ 3* A F

TABLE E-1 Type C Test Suma m Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Left Valve Path Valve Path Isolation Leak Leak Leak Leak Leakage Val._ Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date X-80 Ventilation 30-37/40 0.0000 0.0000 0.0000 0.0000 06/14/82 0.0000 0.0000 0.0000 0.0000 06/17/82 0.0000 0.0000 0.0000 0.0000 06/19/82 0.0000 0.0000 0.0000 0.0000 06/21/82 O.0000 0.0000 0.0000 0.0000 06/23/82 l 0.0000 0.0000 0.0000 0.0000 06/25/82 0.0000 0.0000 0.0000 0.0000 06/28/82 i l

    • X-15 CVCS 62-72/73/74 101.5661 0.0000 09/20/81 62-77/662 0.8025 0.8025 0.8025 0.8025 AF/AL l

17.5694 17.5694 17.5694 17.5694 01/24/81 0.0723 0.0723 AF/AL l 0.6981 0.6981 0.6981 0.6981 06/24/81 l 0.0000 AF/AL 32.8840 0.0000 0.0000 09/21/82 0.9456 0.9456 0.0000 11/02/82 ^

    • X-25A Sampling 43-2 0.0000 0.0000 0.0000 12/28/81 43-3 0.0000 0.0000 0.0000 AF/AL 0.0000 0.0000 0.0000 09/28/82 AF 0.0000 0.0000

~0.0000 12/07/82 AL 0.0000 0.0000 0.0000 0.0000 06/24/81 0.0000 0 AF/AL

v- _m_ rw-- q TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 i Path Leakage Tabulation As Found As Left Valve Path Valve Path Isolation Leak Leak Leak Leak Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH .SCFH SCFH . Test Date -**X-25D Sampling 43-11' O.000 0.000 0.000 0.0000 01/23/82 43-12 0.0002 0.0002. 0.0002' 4F/AL 0.0000 0.0000 0.0000 09/28/82 AF 0.0000 0.0000 0.0000 12/07/82 AL .l

    • X-26 Control Air 32-102/295 0.0000 0.0000 0.0000 09/25/81-32-297 0.000 0.0000 0.0000 AF/AL 0.6204 0.0000 10/12/82 AF 0.4412 0.4412 0.0000 0.0000 12/07/82 AL
    • X-27C ILRT 52-IN 0.0000 0.0000 0.0000-06/23/81 52-0UT 0.0000 0.0000 0.0000 AF/AL l

0.0000 0.0000 0.0000 09/18/82 AF f l 0.0000 0.0000 0.0000 12/07/82 AL a i I I

    • X-29 Component 70-89/698 0.4053 0.4053 0.4053-09/17/81 i

Cooling 70-92 0.2145 0.2145 0.2145 AF/AL-0.1932 0.0000 09/18/82 AF l O.0000 0.0000 0.0000 0.0000 10/22/82 AL l

    • X-30 SIS 63-71 0.8336 0.0000 09/19/81 AF 63-84/23 0.5174 0.5174 0.0000 0.0000 09/24/81 AL j

l

I 44 44 44 -44 44 44 N N. NN M N NN N N N. N N N. .M W O NN ss. N sN ss ss s s ss 02 MS 04 SS na MS 84 04 "2 u. ss ss ss m ss ss ss ss ss A 22 Sc 8% 32 88 24 St SS { o O O O o. O an. O l 8 8 E 8 8 8 8 8 o u. s. g u e o e o O o o e o e3a. 5 5 5 5 5 5 5 5 5 f t l. 3 ee oo oo OC CO Co oo o an o 4 W oO OO OO OO oo OC o O Oo OO o M o RR

  • R
8. O9 R c.
c. c.

c. >uG OO OO OO ~~t@ c. m@ oO CO oO Co CO oO O o o C O o o o o an M C C O C o o C Q O sn o O O o o M 4 o u v 2, O W = 4 Ea O Q O o o O' oo g ady, eSeM d 5 5 5 5 5 l e 2 s 0 t/3 C 0 fal D H $as M oM in oO Oo oC CC C in M i . e oM <e oo oo oO co o e e "l =. o. < >u.= C in M in Co oo oO oo o m 4 J. 0

  1. b.

et 9* 9 o. 9.

  • ~

su o >am oo e4 oo ao ao ao e o C W h5 Mo Sk N M E 3. u. 9 R.- u s ~ or s I 0.1 N, N, M. u>2 MM MM NN o M e@ MM r-i l l l l 1 ".h W I. I u) w 4 4 ( 2 .0 C a M c R =ct O C C M k OM w = M C k M O 0 0 U3 U2 U3 O OU f-0 e M ,n x x x x 3 h h h h ( l

.m w TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Left Valve Path Valve Path j Isolation Leak Leak Leak Leak Valve Rate Rate Rate Rate Path System Name Numoer SCFH_ SCFH_ SCFH. SCFH Test Date Leakage

    • X-39A SIS 63-64 0.0000 0.0000 0.0000 09/24/81 AF 77-868 44.7737 0.0345 0.0345 09/26/81 AL j

f O.0000 0.0000 0.0000 09/20/82 AF i 0.0000 0.0000 0.0000 12/07/82 AL

    • X-39B Main Cooling 68-305 0.0000 0.0000 0.0000 09/22/81 AF 0.0000 0.0000 09/30/81 AL l

77-849 258.2790 0.0000 0.0000 09/20/82 AF j 0.0000 0.0000 0.0000 0.0000 12/07/82 AL

    • X-41 Waste Disposal 77-128 0.0000 0.0000 0.0000 09/20/81 77-127 0.6365 0.6365 0.6365 AF/AL 0.0000 0.0000 09/21/82 0.0000 0.0000 0.0000 0.0000 AF/AL
    • X-42 Primary Water 81-12 0.7731 0.7731 0.7732 09/20/81 81-502 0.3695 0.3695 0.3695 AF/AL 0.0000 0.0000 0.0000 0.0000 09/17/82 AF 10/01/82 AL 0.0000 1.2550 X-44 CVCS 62-61/639 0.2949 0.2949 0.2949 09/18/81 62-63 0.6365 0.6365 0.6365 AF/AL

g., P. [. 'N .,e'."..: M NN MM NN M M NN M NN NN 't.-* x., '. ' y 6 4 CO CO C0 00 CO CO CO CO co c0 c0 c0 c0 CO CO s- . ' %I C NN f l MM NM M f% N O M f% e ON O tw . W M NO NO MO N M NO M MO MO /) y a NN NN % a% NN NN NN G mo @C mN m m ON mO 0% O . :? H OM OM CM O O OM C <C OM CM 7,g,r

-i

? e J. O O O O O O O m O O O O O O O m

' 9 '-

C O o O O O O m ana Q O O O O O O O - 4 AMU $ + % A M t/3 O O O O O O O O .'), 4 W 4U .y 9 4, r .J w 0A m CC OO OC C O CO CO C0 mO <C U OO OO OO O O OO OO OO DO >MW CO OO OO O O OO OO OO mO ,p.,. M N 9 O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. 4 , " +. > A M u2 OO OO OO O O OO OO OO OO .. $;. r.. g g g t 'I. - M O O O O O O O ' ~ ' * ' C N O O O O O O O t' O AM W 2: N O O O O O O OO ,4 -4f, a M M e u Ga. O. O. O. O. O. O. l

?s O

N M N % > 3 % t/3 O O O O O O O O >T u 4 e aJ eU T. h '. *c-M T I 9.4 5 C a ,o d 0 0 M I t/3 Q 4 0 Q be 4 MN OO OO

s O OO OO C4 OO W

D H lae W to I O en c NM Ce OO ac so o OO OO Om oO >J G 00

  • C >M W f% m ON OO e-4 ra O OO OO Om OO

@ H M M M 4

  • J OM ON OO 3 0C OO OO OO OO Q k
  • HU 0

m > A M C/3 OO OO OO U 40 00 OO OO OO

  • =

4. M 4 0 4U M U U U A U .c 4 4 M C M cc d CP no O M C N

  • ,4 h

N MN M4 4 0 W N N mm 4 >.O MM CO m C m m.e M eM e-4 ,-4 E MM mM O 4 5 e I 4 8 8 8 4 I I I m>Z NN tw r* rw r% e-o e-* MM M f% f% N f% M c-4 k 4 4 k tA s2 O O G O O rn so E 4 A d c o as .ta T T n en e4 $r.

  • e4 C

O C C O O EO O U U U U t/3 9 9 EG U 44 EG W W M e u u t/3 0 3 3 M ee <C CQ OC in 4 rw t% NA 4 4 4 4 39 4 e e a e 4 9 4 M M M M k h h h h M

i ) r I Dd Dd Dd Dd DN O 4 NN NN N NN M NN NM '9 CO C0 co c0 00 co co c0 co CO C0 00 CO C0 D NN D NN N NN D NN NO ( v M M O N MO N MO e MC MN 'a NN NN NN NN NN O mN mN mN mN MN mN mN mN mm 6 O< OM C4 oe 04 C* O *C OM CC m O O 0% O O O O O ati O O N O O O O O .Q M 0 *C CO O O M O O O O O 4 44W M. C. O. O. O. O. O. O. O. g 0 gU % 4 % tt3 O O O O O O O O O 4 4.4 04 se mO OO O m O 3 OO OO OO

  • C 0

sti O OO O N O 3 OO OO OO >M0 (O O OO O m O a OO OO OO . O. O. O. O. O. Q O. O. O. O. O. O. O. c4 44 M g g M C/3 OO OO O O O O OO OO OO O O O m O O O O O d O O O N O O O O N O .Q M 0 ** O O O M O O O O O W e4 4 MM& O. O. O. O. O. O. O. O. N. w 4 g 0 gU fe M e % p.3 % Ct3 O O O O O O O O N e4

  • O 4

3 C M c4 .O 3 e t/3 c 4 O Es3 Q H N 4 ca o oo o m o o O4 OO OM M I W to O sti O OO O rw Q O OM CO N4 CO O OO O M O O OO OO Om > M 0 ** 0 W

  • C 44$

. O. O. O. O. O. O. O. O. CO. O. O. N. O. M CA H M M e4 eC M sg 0 gU HU 0 ec > 4 M t/3 OO OO O O O O O@ OO N to i m m rw 0 4 0 0 4 U .n3 b d, C N .] O CO O

  • c4 u

4m O@ 4 0 0 tg >.O f% O m M f% 4N e 4 e-4 C0 m M N Ne O m e e e i e a e e to > Z OO N N OO M rw 8% rw tw N r% NN 00 00 Q C ,4 d

  • e4 p.4 M

O O O e4 0 0 4 O O 4 4 U U P Q d W 4 0 0 4 4 Z Q d 0 0 0 u E C

  • c4
  • c4 C

0 O e> mb O ( k cE c0 k b I 0 0 % O L O ..n Et3 O U tt3 U tt) U N O 4 CQ 00 C O es.Q at)

  • C 43 O

10 M4 8 C0 00 I eg 80 X 4 4 N { i== w l TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 Path eakage Tabulation As Found As Left Valve Path Valve Path Isolation Leak Leak Leak Leak Leakage Valve Rate Rate Rate Rate Path System Name _N_ umber SCFH SCFH SCFH 3CFH Test Date 1

    • X-51 Fire Protectica 26-240

.0.0000 0.0000 0.0000 0.0000 09/27/82 AF 26-1260 145.2820 0.0000 12/07/82 AL l X-52 Component Coeling 70-140 0.1932 0.1932 0.1932 09/17/81 AF 70-692 389.1722 0.2949 0.2949 09/20/81 AL 1.0558 1.0558 0.0000 09/17/82 AF 18.5307 0.2506 0.2506 11/03/82 AL X-56 ERCW 67-107 0.0000 0.0000 0.0000 01/24/82 67-562D 2.1498 2.1498 2.1498 AF/AL 0.0000 0.0000 0.0000 0.0000 10/05/82 AF 1.0422 0.0000 11/01/82 AL X-57 ERCW 67-111/575D 0.0001 0.0001 0.0001 09/23/81 67-112 0.0008 0.0008 0.0008 AF/AL 0.0000 0.0000 0.0000 0.0000 11/05/82 AF 0.0000 0.0000 12/07/82 AL X-58 ERCW 6/-83 0.3875 0.3875 0.3875 10/16/81 67-562A 0.0994 0.0994 0.0994 AF/AL 0.3695 0.3695 0.3695 01/27/82 0.0994 0.0994 0.0994 AF/AL

-m _m_ f---- f I TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 Path Leakage Tabulation E As Found As Left Valve Path Valve Path Isolation Leak Leak Leak Leak E Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date m r X-58 ERCW 67-83 0.2754 0.0000 09/26/82 AF 67-562A 0.0000 0.0000 0.1216 0.1216 11/07/82 AL i X-59 ERCW 67-87/575A 0.0000 0.0000 0.0000 0.0000 09/18/01 67-88 0.0000 0.0000 AF/AL L 0.0013 0.0013 0.0013 09/26182 0.0000 0.0000 0.0000 AF/AL = m-X-60 ERCW 67-99 0.0000 0.0000 0.0000 01/24/82 AF 67-562B 25.5+ 0.3875 0.3875 01/24/82 AL 0.0000 0.0000 0.0000 0.0000 10/05/82 AF 0.7284 0.0000 11/01/82 AL r X-61 ERCW 67-103/575B 0.0064 0.0064 0.0064 09/23/81 67-104 0.0008 0.0008 0.0008 AF/AL } "~ 0.0000 0.0000 0.0000 10/05/82 AF 0.0000 0.0000 0.0000 12/07/82 AL X-62 ERCW 67-91 0.0000 0.0000 0.0000 01/27/82 AF E 67-562C 278.4+ 0.6520 0,6520 01/27/82 AL = 42.7910 42.7910 0.0000 09/27/82 AF 189.6522 0.0000 0.0000 09/29/82 AL

a TABLE E-1 Type C Test Sunnary Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Left Valve Path Valve Path Isolation Leak Leak Leck Leak Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date X-63 ERCW 67-95/575C 0.0000 0.0000 0.0000 0.0000 09/18/81 67-96 0.0000 0.0000 AF/AL 0.0012 0.0012 0.0012 09/27/82 AF 0.0009 0.0009 0.0009 12/07/82 AL

    • X-64 Chilled Water 31C-222 0 2145 0.2145 0.2145 01/25/82 31C-223/752 0.4574 0.4574 0.4574 AF/AL 0.7284 0.7284 0.0867 0.0867 09/16/82 AF 0.7878 0.0000 09/27/82 AL
    • X-65 Chilled Water 31C-224 0.6208 0.6208 0.6208 01/25/82 31C-225/734 0.3513 0.3513 0.3513 AF/AL 0.0000 0.0000 0.0000 0.0000 09/16/82 AF 0.1932 0.0000 09/27/82 AL
    • X-66 Chilled Water 31C-229 0.3139 0.3139 0.3139 01/25/82 31C-230/715 1.3061 1.3061 1,3061 f.F/AL 0.0000 0.0000 0.0000 0.0000 09/14/82 AF 0.0723 0.0000 10/01/82 AL
    • X-67 Chilled Water 31C-231 0.0000 0.0000 0.0000 01/25/82 31C-232/697 1.8304 1.8304 1.8304 AF/AL

r --- v TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Left Valve Path Valve Path Isolation Leak Leak Leak Leak Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date X-67 Chilled Water 31C-231 0.0000 0.0000 0.0000 09/14/82 AF 31C-232/697 0.1932 0.0000 0.0000 10/01/82 AL i X-68 ERCW 67-141 0.2949 0.2949 0.2949 09/22/81 67-580D 0.6365 0.6365 0.6365 AF/AL 0.0000 0.0000 0.0000 0.0000 09/22/81 AF 0.0000 0.0000 12/01/82 AL 1 l X-69 ERCW 67-130 0.2754 0.2754 0.2754 09/18/81 67-580A 0.8749 0.8749 0.8749 AF/AL 0.0000 0.0000 0.0000 0.0000 09/23/82 AF 0.0000 0.0000 11/22/82 AL l X-70 ERCW 67-139 0.0000 0.0000 0.0000 0.0000 09/22/81 67-297/585B 0.0000 0.0000 AF/AL 0.0000 0.0000 0.0000 11/22/82 AF 0.1140 0.0013 0.0013 12/07/82 AL X-71 ERCW 67-134 0.0009 0.0009 3.0009 0.0009 09/18/81 AF 67-296/585C 0.0482 0.0008 09/18/81 AL 0.0000 0.0000 0.0000 09/23/82 AF 0.0000 0.0032 0.0032 12/07/82 AL

~v s ~ TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Left Valve Path Valve Path l Isolation Leak Leak Leak Leak l Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date X-72 ERCW 67-142 0.0020 0.0020 0.0020 0.0020 09/22/81 AF 67-298/585D 0.0392 0.0005 09/22/81 AL 0.0005 0.0005 0.0005 09/22/82 AF 0.0002 0.0002 0.0002 12/07/82 AL X-73 ERCW 67-131 0.0008 0.0008 0.0008 09/18/81 67-295/585A 0.0008 0.0008 0.0008 AF/AL 0.0000 0.0000 0.0000 09/23/82 AF 0.0011 0.0011 .0.0011 12/07/82 AL X-74 ERCW 67-138 0.1245 0.1245 0.1245 09/22/81 67-580B 0.2145 0.2145 0.2145 AF/AL 0.0000 0.0000 0.0000 0.0000 09/22/82 AF 0.0000 0.0000 12/01/82 f:L X-75 ERCW 67-133 0.3875 0.3875 0.3875 09/18/81 AF 67-580C 39.2631 0.8461 0.8461 09/20/81 AL 4.8503 4.8503 0.0000 0.0000 09/23/82 AF 174.6068 0.0000 11/12/82 AL

    • X-76 Service Air 33-704 0.0004 0.0004 0.0004 01/28/82 33-740 0.1483 0.1483 0.1483 AF/AL m

w TABLE E-1 Type C Test Summary Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Left Valve Path Valve Path Isolation Leak Leak Leak Leak Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date

    • X-76 Service Air 33-704 0.0000 0.0000 0.0000 0.0000 12/06/82 AF 33-740 8.0100 0.0000 12/07/82 AL
    • X-77 Demin Water 59-522/529 0.1712 0.1712 0.1712 09/26/81 59-633 0.1245 0.1245 0.1245 AF/AL 0.0000 0.0000 0.0000 0.0000 11/02/82 AF 1.7952 0.0000 11/04/82 AL
    • X-78 Fire l'rotection 26-243 1.5048 1.5048 0.0000 09/14/81 AF 26-1296 1.6911 0.0000 0.0000 09/19/81 AL 0.0000 0.0000 0.0000 0.3047 09/19/82 0.3047 0.3047 AF/AL
    • X-81 Waste Disposal 77-16 0.0000 0.0000 0.0000 0.0000 09/27/81 77-17 0.0000 0.0000 AF/AL 0.0000 0.0000 0.0000 0.0000 09/13/82 AF 0.0000 0.0000 12/07/82 AL
    • X-82 Fuel Pool Cooling 78-560 0.6365 0.0000 09/24/81 AF 78-561 0.0000 0.0000 2.2497 2.2497 09/27/81 AL 0.4912 0.4912 0.0000 0.0000 09/13/82 AF 5.5342 0.0000 09/18/82 AL

we we we M M NN N NN N NN M NN N 9 40 CO co co ao co co co co co to co co Q %N N NN N NN N NN 4 5N mN M e.1 45 tr) ON M M N mN N hO N e4 NO N NQ N m NN NN NN NN NN NN NN NN W @N mm m ia4 mN mA mN mA ON mN P Q< OO O< Qm C4 Om O< mm O< O O cc O O O O O O O O M O O O O O O .C M U ** O O O O O O O O O 4 94$ G. Q O. O. O. O. O. O. O. g gy 4 MM C C C C C O O C O ted G W e CO CO de CO CO CO OO CO Co i W OO OO MM CC OO OO OO OO OO 'I >M W 3.' OO OO OO OO OO OO OO OO OO M NM> O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. g g gy > W Cf. t/3 CO OO CC OO CC OC CC CC OO O O 4 O O O O O O d O O M C O O O O O O .4 M C

  • ,t".

O O O O O O O O O M M N &W O O. O. O. O. O O O O. k '4 80 0 4U 4 m e A W Cf t/3 O O C Q C O O C O l M 'O 4 2 C m ce .o a I t/J C 4 0 ta3 D H N 4 OO OO 4 cc C.. oO OO C4 OC CC taJ m I C m 0 0C OO MM Oc oO OO OM oO OO eJ W 00

  • 4 >M 0%

OO OO OO OO OO OO O C0 OO OO CA H m to

    • 44W Q O.

O. O. O. O. O. O. O. O. O. O. O. M O. C. C. O. 4 M eonu HU W 4 > W Cf t/3 oC OO CC OC OO OC OM CC OO b U U R C .a H ae A C la O CO ,4 h N M W W N CO N cc %N e >.o in in OO no N O cc 4 to e s c4 8 en no MM NN C0 N MM O eM e a e I e e a e I I e>2 CO cc CO CC MM NN MM m r~ rs .o c 44 MM 44 c ,4 s 8 M o e O u u O 4 83 m W U C b h E e t/3 ,4 t/3 to M ee 4 2 O O 00 00 0 O C M Q G A U ce 0 ce c c4 h s- * .C 9 9 M c4 8 d G m 0 2 e6 4 O ed (/) N E t/3 U t/3 U 00 M 4 sn C M M. x x x x x a*

22 =< =<

== N NN M NN M NN M NN M r

== =

== =

== =

== = j Q N NN N NN N NN N NN N m 4N m mN m oN m mN m 4 N NO N M O N MC N M C M 9 e NN NN NN NN NN NN NN NN NN W MN mN @N mN @N mN @N mN m H O< CM C< OM C< OM C< QM O O O O O O O O O in O O O O O O O O 4 .C M GM O O O O O O O O M 4 m&W O. O. O. O. O. O. O. O. N. g g gy % A M t/3 O O O O O t3 O O O nw 0A to CO OO Oc cO O O O O in 4'. O OO OO OC CO O O O O 4 > M W lI: OO OO OO OO O O O O M M 44W O. O. O. O. O. O. O. O. O. O. O. O. N. g gU M t/3 OO OO OO OO O O O O O O O O O O O O O in C O O O O O O O O 4 o .C M UM O O O O O O O O M

  • rt 4 4&W O.

O. O. O. O. O. O. O. N. w p eoeU N M N % A M t/3 O O O O O O O O O M 'O M C C M .en .O 2 I t/3 C e o W D H 4 4 OO ON OO OO O O O O to M se l U en U OO ON OO OO O O O O 4 C I2 OO OM OO OO O O O O M W W 00 < >Me d ;W Q O. O. so. O. O. O. O. O. O. O. O. N. H M es M M g g gy >4MM CO OO OO CO O O O O O H0 0 g 0 0 4 S H 'O 'O k C k 4 ) o eo m

  • =4 k

OO N 9 G G ,Q 9 N M co 4 >.c NM C 3 O O N MM G NN MO N N N O 4 d e I a e e e a to *> Z MM NN M M N M 44 in in 4 4 co G S a o o o 9 9 9 En in in 0 >t b b [ E t/3 t/3 t/3 'O9 d 4Z 00 00 00 eo C % ce .C,4 C M M S M v M .-e H uu 9 C. H U G to S E A9 h 9 M 4 4 4C t/3 t/3 M t/3 t/3 QM 0 0 0 00 co 9.C m m O M MM I a m o e M 4 M M m M M U h k k k (

l %d %d %d %d %d %d %d W 4 NN M NN N NN MM NN NM NN eg CO C0 CO CO CO CO CC C0 CO CO CO M C0 to to co A NN N NN N NN NN NN NN NN 4N M >.1 af) N M to N M@ MN O@ mN M NO N asf. NO N NO NN OO NN NO m NN NN NN NN NN NN NN NN NN 0 mN mW mN mN mN mm ON mm mN l H OM C4 OM O <. OM OO MM CO OM C O O O O O O O O O O O O O O O O O .c M G O O O O O O O O O O. O. O. O. O. O. O. O. O. 4 se 4 q g g % A M U3 O O O O O O O O O M A*.4 m OO OO OO OO OO OO OO OO OO G OO OO OO OO OO OO OO OO OO >M GX OO OO OO OO OO OO OO OO OO e-o se # W QQ O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. eg g gy > A M U3 OO OO OO OO OO CO OO OO OC O O O O O N O O O d O O O O O m o O O O J1 M G % O O O O O N O O O

    • 4 4 e6 4 W Q

O. O. O. O. to. O. O. O. u a eg g gy e4 M so A e 3 % U3 O O O O O O O O O .-4 9 4 d d M

  • e4

.D d 8 V3 C fo O &a.1 Q H W 4 OO OO OO OO OO mN OO C4 OO Es e 1 0 m 0 OO OO OO OO OO to m OO O4 OO J O 00 4. > M O ja OO OO OO OO OO mN OO ON .3 O H M

  1. 9 e4 eg M W O. O.

O. O. O. O. O. O. O. O. N. to. O. O. O. m. O. O. M eg g gy H U G N > A Cf U3 OO CO CO CO OO 4C OO OM CO M U U U A U .c 4 e5 G4 in m d ee O aO M M re k N N 4 eo M4 @N N c0 OM e >.c 4 an MM M e* OO M M eg M E mm M M MM M e4 MM C 4 5 e a I 9 8 I I 8 8 8 us > M mm OO OO OO OO H 44 mm mm os m em Eo 4m O h 8 U3 00 00 00 00 m d d d d d d d d M 00 O e4 O e4 o e4 0 *** d

  • e4 h
  • e4 be
  • e4 h
  • e4 b4 G

e4 9 O 9 O M O 4 O O c4 eg 4 e6 4 44 e6 4 4

  • e4
  • ,4
e4 **4
  • e4 *e4 are ae4 m

B 'O O 'O d

  • O C

'O C 4 e0 O e4 0 4 o e4 o U3 U3 CQ cQ N N O U U 00 m 4 4 to in EU.d m m m m m MM e I I I I e6 4 M M M M M N h h h h h

c .s v v TABLE E-1 Type C Test Su m ry Cycle 1 - Unit 1 Path Leakage Tabulation As Found As Ieft Valve Path Valve Path Isolation Leak Leak Leak Leak Leakage Valve Rate Rate Rate Rate Path System Name Number SCFH SCFH SCFH SCFH Test Date l

    • X-110 Upper Head 87-7/8/9 0.6051 0.6051 0.0000 0.0000 09/19/82 AF j

10/19/82 AL l Injection

    • X-114 Ice Condenser 61-110 0.1245 0.1245 0.1245 09/15/81 AF l

61-122/745 0.0000 0.0000 0.0000 09/15/81 AL 0.0000 0.0000 0.0000 09/30/82 AF 0.0000 0.0000 0.0000 10/21/82 AL

    • X-115 Ice Condenser 61-96 0.0000 0.0000 0.0000 0.0000 09/15/81 61-97/692 0.0000 0.0000 09/15/81 0.0000 0.0000 0.0000 0.0000 09/30/82 AF 0.0000 0.0000 10/21/82 AL
    • Indicates isolation valves subject to bypass leakage requirements.

~'

m w r TABLE E-2 k Type B Test Summary Cycle 1 - Unit 1 ( I. Bellows Leakage Path X-12A . Leakage Path X-13A (' Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date { 0.0017 (INB) 9/15/81 0.0000 (INB) 9/15/81 0.0014 (0UTB) 9/15/81 0.0000 (0UTB) 9/15/81 0.0000 (INB) 9/26/82 0.0000 (INB) 9/26/82 O.0000 (OUTB) 9/26/82 0.0000 (0UTB) 9/26/82 Leakage Path X-12B Leakage Path X-13B Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date f 0.0000 (INB) 9/15/81 0.0008 (INB) 9/24/81 0.0027 (OUTB) 9/15/81 0.0000 (0UTB) 9/24/81 0.0000 (INB) 9/20/82 0.0000 (INB) 9/20/82 ( 0.0000 (OUTB) 9/20/82 0.0000 (0UTB) 9/20/82 Leakage Path X-12C Leakage Path X-13C Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0000 (INB) 9/24/81 0.0000 (INB) 9/24/81 0.0032 (OUTB) 9/24/81 0.0010 (0UTB) 9/24/81 0.0000 (INB) 9/20/82 0.0000 (INB) 9/20/82 0.0000-(OUTB)- 9/20/82 0.0000 (0UTB) 9/20/82 Leakage Path X-12D Leakage Path X-13D *niit I::: '*"*niit I::: 7 0.0036 (INB) 9/26/81 0.0000 (INB) 9/15/81 0.0013 (OUTB) 9/26/81 0.0000 (OUTB) 9/15/81 ( 0.0000 (INB) 9/20/82 0.0000 (INB) 9/26/82 0.0000 (0UTB) 9/20/82 0.0000 (0UTB) 9/26/82 ( (- {-

5 ? L F TABLE E-2 L Type B Test Sumasary Cycle 1 - Unit 1 f I. Bellows (continued) Leakage Path X-14A Leakage Path X-17 Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/Ai Date f' O.0002 9/15/81 0.0021 9/26/81 0.0000 9/26/82 0.0000 9/19/82 Leakate Path X-14B Leakage Path X-20A Leakage, SCFH Test Leakage, SCFH Test ( j AF/AL Date AF/AL Date g l 0.0004 9/15/81 0.0000 9/16/81 [ 0.0000 9/26/82 0.0000 9/19/82 \\ i: J 'eakane' Path X-14C Leakage Path X-20B f L j !. l[ Leakage, SCFH Test Leakage, SCFH Test l AF/AL Date AF/AL Date ( O.0004 9/15/81 0.0000 9/16/81 O.0000 9/26/82 0.0000 9/19/82 I ~ Leakage Path X-14D Leakage Path X-21 r-AL te A kL te 0.0000 9/15/81 0.0000 9/16/81 s (. i. 0.0000 9/20/82 0.0000 9/19/82 Leakage Path X-15 Leakage Path X-22 + Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date [ 0.0000 9/15/81 0.0000 9/15/81 0.0000 9/19/82 0.0000 9/18/82 k [ [

L r L- [ TABLE E-2 s-Type B Test Summary Cycle 1 - Unit 1 I. Bellows (contipeed) Leskage Path X-24 Leakage Path X-46 Leakage, SCFH Test . Leakage, SCFH Test AF/AL' Date AF/AL Date [. 0.0000 9/15/81 0.0000 9/26/81 0.0000 9/18/82 0.0000 9/19/89 'Le kage Path X-30 Leakage Path-X-47A Leakage, SCFH-Test Leakage, SCFH Test f. AF/AL Date AF/AL Date 0.0000 9/22/81 0.0000 (OUTB)' 9/14/81 0.0000 9/18/82 0.0010 (INB) 9/14/81 0.0000 (INB) 9/18/82 0.0000 (OUTB) 9/18/82 ( Leakage Path X-32 Leakage Path X-47B [ ~ Leakage, SCFH Test Leakage, SCFH Test i AF/AL Date AF/AL Date 0.0028 9/26/81 0.0011 (OUTB) 9/14/81 ( 0.0000 9/19/82 0.0025 (INB) 9/14/81 0.0000 (INB) 9/18/82 0.0000 (OUTB) 9/18/82 I Leakase Path X-33 Leakage Path X-81 h Leakage, SCFH-Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0000 9/26/81 0.0026 9/27/81 ( 0.0000 9/19/82 0.0000 9/19/82 { ~ Leakage Path X-45 Leakage Path X-107 "'*nk""" ""*na"" I::: g 0.0013 9/26/81 O.0006 ,9/26/81 0.0021-9/19/82 0.0000 9/19/82. [. [

s F-L [ TABLE E-2 L Type B Test Susumary Cycle 1 - Unit 1 I. Bellows (continued) Leakage Path X-108 Leakane Path K-14 .( Leakage, SCFH Test Leakage, SCFH Test AF/AL .Date AF/AL Date (- 0.0000 9/13/81-0.0000 9/28/81 0.0000 9/19/82 0.0000 9/21/82 Leakage Path X-109 Leakage Path K-15 ( ''3"h" I::: h"'" 0.0000 9/13/81' O.0000 9/28/81 O.0000 9/19/82 0.0016 9/28/82 l l l l-l- [ [ [ [

E,, ~ TABLE E-2 [L, Type B Test Susumary Cycle 1 - Unit 1-II~' Electrical Leakage Path X-120E Leakate Path X-124E (: ' Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date (: 0.0000 5/4/79 0.0318 5/7/79 0.0004 9/11/81 0.0000 9/13/81 0.0042' 9/18/82 0.0021 9/18/82 [ Leakane Path X-121E Leakage Path X-126E (' Leakage, SCFH Test Leakage, SCFH Test AF/AL Date-AF/AL Date.- p 0.0000 5/5/79 0.3667 5/3/79 L 0.0184 9/12/81 0.0047 9/13/81 -0.0720 '9/18/82 0.0049 9/13/81 0.0699 9/18/82 (J Leakage Path-X-122E Leakage Path X-127E f' Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date ~.0.0000 5/7/79 0.0021 5/2/79 (- 0.0000 9/13/81 0.0000 9/12/81 0.0911 9/17/82 0.0000 9/16/82 Leakane Path X-123E Leakage Path X-128E (- Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0000 5/1/79 0.0233 5/2/79 0.0025 9/13/81 0.0000 9/12/81 0.0297: 9/16/82

  • 3.4092 9/16/82'AF
  • 0.0000 11/27/82 AL
  • Denotes a-single condition either AF for "as found" or AL for the "as left" condition only. Otherwise, the leakages showu are both the AF and

(- the AL conditions. (- [ f.

s F L [ TABLE E-2 L Type B Test Susumary Cycle 1 - Unit 1 II. Electrical (continued). Leakage Path X-129E Leakage Path X-134E Leakage, SCFH Test Leakage,-SCFH Test AF/AL Date -AF/AL Date ( .0.0000 5/3/79 0.0000 5/4/79 0.0038 9/12/81 0.0000 9/13/81 0.0021 9/18/82 0.0000 9/18/82 (L Leakage Path X-131E Leakage Path X-135E ( Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date [ 4.2000 5/1/79 0.0000 9/13/81 L 0.0000 9/14/81-0.0021 9/18/82 0.0000 9/15/82 I Leakage Path X-132E Leakage Path X-136E Leakage, SCFH Test Leakage, SCFH Test (- AF/AL Date AF/AL Date 0.0000 5/1/79 0.0000 5/4/79 ( 0.0000 9/13/81 0.0021 9/13/81 0.0000 9/15/82 0.0000 9/17/82 Leakage Path X-133E Leakage Path X-137E [ I::: I::: 0.0254 5/1/79 0.0042 5/4/79 0.0008 9/13/81 0.0004 9/13/81 (: 0.0000 9/15/82 0.0000 9/17/82 ( ( [ [

w r TABLE E-2 L-Type B Test Susunary Cycle 1 - Unit 1 (' II. Electrical (continued) k,eakagePath' X-13SE Leakage Path X-143E ( -Leakage, SCFH Test-Leakage, SCFH Test AF/AL Date AF/AL Date (; 0.0000 5/4/79 0.0106 5/1/79 0.0013-9/13/81 0.0178 9/13/81 0.0000 9/18/82 0.0000 9/15/82 k Leakage Path X-139E Leakage Path X-144E ( Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Da,te O r 0.0000 5/3/79 0.0000 5/1/79 ( 0.0006 9/12/81 0.0000 9/13/81 0.0000 9/18/82 0.0466 9/16/82 { Leakage Path. X-140E Leakage Path X-145E Leakage, 9CFH Test Leakage, SCFH Test l-AF/AL Date AF/AL Date 0.0000 5/4/79 0.0000 5/1/79 ( 0.0000 9/13/81 0.0002 9/14/81 0.0000 9/17/82 0.0000 9/15/82 [ Leakage Path X-141E Leakage Path X-146E . Leak SCFH Tcst Leaka SCFH Ts 0.0000 5/1/79 0.0953 5/1/79 0.0015 9/13/81 0.1345 9/14/81 [ 0.0000 9/16/82 0.2712 9/15/82 { Leakage Path X-142E Leakage Path X-147E Nf1L D$te N) L D te O.0000 5/4/79 0.0127 5/3/79 0.0030 9/13/81 0.0074 9/12/81 {- 0.0000 9/18/82 0.0042-9/18/82 [ [

L I TABLE E-2 Type B Test Summary L Cycle 1 - Unit 1 ( II.' Electrical-(continued) Leakage Path X-148E-Leakage Path X-152E Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0000 5/3/79 0.0000 5/3/79 'O.0000 9/12/81 0.0004 9/12/81 0.0042 9/18/82 0.0000. 9/18/82 [. Leakane Path X-149E Leakage Path X-153E Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date O.0085 5/3/79 0.0000 5/2/79 [' 0.0011 9/12/81 0.0006 9/12/81 0.0000 9/18/82 0.0000 9/17/82 [ Leakane Path X-150E Leakage Path X-154E' [ Leakage, SCFH Test Leakage, SCFH Test L AF/AL Date AF/AL Date 0.0021 5/3/79 0.0000 5/2/79 ( 0.0000 9/12/81 0.0000 9/12/81 0.0000 9/18/82 0.0000 9/16/82 Leakage Path X-151E Leakage Path X-156E Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0000 5/3/79 0.0000 5/2/79 0.0000 9/12/81 0.0023 9/12/81 0.0021 9/18/82 0.0000 9/17/82 [c [- 1 m.-.

s F.. ' L. U TABLE E-2 L~ . Type B Test Susumary . Cycle 1 - Unit 1 II. Electrical (continued) Leakage Path X-157E Leakage Path.X-163E [' Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date .0.0042 5/2/79 0.0042 5/2/79 0.0000 9/12/81 0.0000 9/12/81 0.0000 '9/16/82 0.0360 9/16/82 Leakage Path X-158E Leakage Path X-164E Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0042 5/2/79 0.0021 5/2/79 [ 0.0034 9/12/81 0.0000 9/12/81 0.0000 9/16/82 0.0021 9/16/82 [ Leakage Path X-159E Leakage Path X-165E [-. Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0042 5/2/79 0.0042 5/2/79 p. L 0.0000 9/12/81 0.0004 9/12/81 0.0106 9/16/82 0.0000 9/16/82 Leakage Path X-160E Leakage Path X-166E [ '"*n;n" '"*3;n"'" I::: 0.0021 5/2/79 0.0064 5/2/79- .0.0000 9/12/81 0.0000 9/12/81 {' O.0064 9/16/82 0.0000 9/16/82 h Leakage Path X-161E Leakage Path X-167E Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date {. 0.0021 5/2/79 0.0127 5/3/79 0.0000 9/12/81 0.0021 9/12/81 h 0.0529 9/16/82 0.0000 9/18/82 [

6 ~ TABLE E-2 y. _ Type B Test Summary : Cycle 1 - Unit 1 II. Electrical (continued) Leakate Path X-169E Leakage Path X-170E ~ Leakage, SCFH Test Leakage, SCFH -Test AF/AL Date AF/AL Date ( 0.0021 5/3/79 0.0000 5/3/79 0.0013 9/12/81 0.0000 9/12/81 0.0000 9/18/82 0.0000 9/18/82 [ { { { { l l p. [:i [ [ [ [ l

s' / TABLE E-2 i L Type B Test Summary } Cycle 1 - Unit 1 y III.' Resilient Seals Leakage Path X-1 Leakage Path X-54 s Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date (. 0.0012 3/3/80 -0.0000 2/20/80 0.0003 4/23/80 0.0000 4/17/80 0.0003 4/27/80 0.0004 3/3/81 0.0006 5/23/80 0.0000 3/3/81 [ 0.0004 6/20/80 0.0030 9/14/81 0.0012 3/3/81 0.0013 9/26/81 0.0097 9/14/81 0.0000 10/15/81 (' O.0070 10/17/81 0.0805 9/11/82 0.0003 3/6/82 0.0000 9/11/82 0.0000 12/6/82 Leakage Path X-3 Leakage Path X-79A (. Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date b 0.0008 4/17/80 0.0000 2/20/80 0.0000 9/28/81 0.0000 4/17/80 0.0000 9/11/82 0.0002 3/3/81 (, 0.0000 11/30/82 0.0023 9/14/81 0.0000 10/15/81 0.0000 9/11/82 0.0000 12/2/82 Leakage Path X-40D Leakage Path X-79B Leatage, SCFH' Test Leakage, SCFH Te. AF/AL Date AF/AL Date 0.0000 2/20/80 0.0000 2/20/80 [- 0.0013 3/3/80 0.0000 4/17/80 0.0001 3/16/80 0.0004 3/3/81 0.0000 4/17/80 0.0091 9/14/81 (. ' O.0013 3/3/81 0.0000 10/15/81 0.0001 3/16/82 0.0000 9/11/82 0.0004 9/28/81 0.0000 12/3/82 0.0000 10/15/81 [. 0.0000 9/11/82 [ [ f

~ ) TABLE E-2 Type B Test Susanary Cycle 1 - Unit 1 III. Resilient Seals (continued) Leakane Path X-111-Leakane Path X-113 Leakage, SCFH Test. Leakage, SCFH Test-AF/AL' Date AF/AL Date 0.0004 9/27/81 0.0053 9/27/81 0.0001 10/15/81 0.0000 10/15/81 0.0000 9/12/82. 0.0000 9/12/82 Leakage Path X-112 Leakage Path X-118 ' Leakage,'SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 0.0000 2/20/80 ( Greater than 200 SCCM 9/27/81-0.0000 4/17/80 0.0038 9/28/81 0.0001 3/3/81 (- 0.0000 10/15/81 0.0000 9/24/81 L 0.0000 9/12/82 0.0000 10/5/81 0.0169 9/11/82 [. [ [ [. [ [ L

1 J TABLE E-2 L-Air Loch Door Tests Cycle 1 - Unit 1 IV. Air Lock Door Test Leakage Path -X-2A Leakane Path X-2B Leakage, SCFH Test Leakage, SCFH Test AF/AL Date AF/AL Date 10.3735 12/5/79 6.7781 12/3/79 4.1728 4/24/80 9.9044 4/30/80 9.2238 10/21/80 10.8805 10/21/80 [. .4.2203 3/5/81 3.3763 3/5/81 0.8707 8/25/81 1.6692 10/9/81 1.6818 10/14/81 5.724 3/26/82 8.3869

  • 43.0169.

3/25/82 11/25/82 AF

  • 1954.50 11/26/82 AF
  • 1.6850 12/5/82 AL
  • 4.2051 12/5/82 AL

{

  • Denotes a single condition: either AF for the "as found" or AL for the "as left" condition only. Otherwise, the leakages shown are both the AF and the AL conditions.

[ [ [- [L [ [ [

1 r-L I TABLE E-3 Type B and C Tests Cycle 1 - Unit 1 L Path Leakage Tabulation {. Susumary As Found As Left ' A. Type B Leakage I Bellows 0.0037 SCFH 0.0037 SCFH II Electrical 4.1187 SCFH 0.7095 SCFH III Resilient Seals 0.0974 SCFH 0.0974 SCFH IV Air Lock Doors 1997.5169 SCFH 5.8901 SCFH [.- B. Type C Leakage 57.5028 SCFH 0.8195 SCFH ( E g ( [ q iri

s APPENDIX F 1 References g 1. 10 CFR 50, Appendix J, " Reactor Containment Leakage Testing for Water-Cooled Power Reactors" 2. ANSI N45.4-1972, American National. Standard, " Leakage Rate Testing of Containment Structures of Nuclear Service" ( 3. ANS 56.8, American Nuclear Society, " Containment System Leakage Testing Requirements" 4. Sequoyah Nuclear Plant FSAR Chapters 6.2 and 6.3 5. Sequoyah Nuclear Plant Technical Specification 4.6.1.2 6. Bechtel Topical Report, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants" - BN-TOP-1 ( ( (- .W [ [ [ 9 _}}