ML20199F823

From kanterella
Jump to navigation Jump to search
Cycle 9 Restart Physics Test Summary, for 971011-971130
ML20199F823
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 11/30/1997
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20199F771 List:
References
NUDOCS 9802040128
Download: ML20199F823 (33)


Text

- _ -.._ ____ _ _ _ _ . .

ENCLOSURE i

SEQUOYAH

\lUCLEAR PLANT .

4

\

/

' \\ n TVA n

/ /

e lESTART 34YS CS TEST

SUMMARY

f Unit 2 Cyc e 9 E

eb E0*$0$$!$8$*ohe g

Sequoyah Nuclear-Plant.  !

Unit 2,-' Cycle 9 Restart Physics-Test Summary

)

Nuclear Fuel PWR Fuel Engineering

" January 1998

.I T

-. .-. - -. -- , ~. ~ . . . - _ -

r >

s ABSTRACT Thes sequ6yah Nuclear Plant Unit 2 Cycle 9 Restart Physics Test.

' Summary covers the perio6 from October 11, 1997, through November

30, 1997. The report presents restart physics test.results and operational data for the first 24 effective full-power days

~; (EFPD). The tests included are initial criticality, primary coolent critical boron concentration, reactivity control, isothermal .;mperature coefficient, and power distribution measurements.

4 I

d i

i C.. _ . _ , . _ _ . ._ , _

TABLE OF-CONTENTS e

Section Titio Page ABSTRACT. . . . . . . . . .. . . . . . . .- 1 LIST 0F '." ABLES. . . . . . . . . . . . . . . . iii LIST OF FIGURES . . . . . . . . . . . . . . . iv

1.0 INTRODUCTION

AND CYCLE DESCRIPTION. . . . . . 1 2.0 TEST PROGRAM

SUMMARY

. . . . . . . . . . . . . 7 3.0 CORE RELOAD

SUMMARY

. . .. . . . . . . . . . . 10 4.0 CORE PERFORMANCE. . . . . . . . . . . . . . . 13 4.1 INITIAL CRITICALITY . . . . . . . . . . . . . 13 4.2- REACTIVITY CONTROL. . . . . . . . . . . . . . 13 4.2.1 CONTROL ROD BANK WORTH MEASUREMENTS . 14 4.2.2 BORON WORTH AND ENDPOINT MEASUREMENTS 14 4.3 ISOTHERMAL TEMPERATURE' COEFFICIENT MEASUREhENTS 14 4.4 POWER DISTRIBUTION ME,7UREMENTS . . . . . . . 15 4.4.1 ASSEMBLY POWER DISTRIBUTIONS. . . . . 16 4.5 REACTOR COOLANT FLOW MEASUREMENT . . . . . . 17 11

LIST OF TABLES r 8-Table- Title Page 1.1 SEQUOYAH UNIT 2 CYCLE 9 CORE DESIGN PARAMETERS -3 1.2 SEQUOYAH UNIT 2 CYCLE 9 FUEL SPECIFICATIONS . . 4 2.1 SEQUOYAH UNIT 2 CYCLE 9 CHRONOLOGY OF STARTUP PHYSICS TESTS. . . . . . . . . . . . . . . . . 8 4.2.1 SEQUOYAH UNIT 2 CYCLE 9 ROD SWAP INTEGRAL BANK WORTHS . . . . . . . . . . . . . . . . . . . . . 20 4.4.1 SEQUOYAH UNIT 2 CYCLE 9 INCORE FLUX MAP

SUMMARY

23 l

=

.. I 4

LIST OF FIGURES e

Figure Title Page 1.1 SEQUOYAH UNIT 2 CYCLE 9 CORE COMPONENT CONFIGURATION . . . . . . . . . . . .. . . . . 6

. 2.1 REACTOR POWER . . . . . . . . . . . . . . . . . 9 3.1 SEQUOYAH UNIT 2 CYCLE 8 CORE CONFIGURATION . . 11 3.2 SEQUOYAH UNIT 2 CYCLE 9 CORE CONFIGURATION . . 12 4.1.1 ICRR DURING CONTROL BANK WITHDRAWAL FOR

CHANNEL N-31 . . . .. . . . . . . . . . . . . . 18 i 4.1.2 ICRR DURING CONTROL BANK WITHDRAWAL FOR CHANNEL N-32 . . . . . . . . . . . . . . . . . 19 4.2.1~ INTEGRAL BANK D WORTH . . . . . . . . . . . . . 21 4.2.2 DIFFERENTIAL BANK D WORTH . . . . . . . . . . . 22 4.4.1 SEQUOYAH UNIT 2 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F202A AT 28.4% POWER - BEFORE THE MISASSIGNED FUEL ASSEMBLY BATCHES WERE IDENTIFIED) . . . . . . . . . . . . . . . . . . 24 4.4.2 SEQUOYAH UNIT 2 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F202B AT 28.4% POWER - AFTER THE MISASSIGNED FUEL ASSEMBLY BATCHES WERE a IDENTIFIED) . . . . . . . . . . . . . . . . . 25 4.4.3 SEQUOYAH UNIT 2 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F203A AT 68.7% POWER) . . . . . . . . . 26

~

4.4.4 SEQUOYAH UNIT 2 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN9F204 AT 99.9% POWER). . . . . . . . . . 27 iv .

1.0 INTRODUCTION

AND CYCLE DESCRIPTION

\

The purpose of this report is to discuss the Cycle 9 startup I physics testing program. The startup tests are performed to verify that the core performs as designed. Tables 1.1 and 1.2 contain core design parameters and fuel specifications for Cycle 9.

Sequoyah Unit 2 was shut down on October 5, 1997, ending its eighth cycle of operation. During the 30-day outage, the unit was refueled by replacing 85 burned fuel assemblies with 05 fresh Framatome rogema Fuels (FCF) Mark-BW fuel assemblies, and shuffling the remaining burned fuel ansemblies. The characteristics of the 85 fresh fuel asuemblico are shown below:

Number of Ilost Number Ondolinia Carrier I Nominal llatch fuel 1:nrichment of0d Concentration 1:nrichment Loading Identl0 cation Assemblies w/o U235 l' ins w/o Gd,0, w/n U235 Kg U llA I 2.00 0 ... ... 458.60 llin 12 s.20 0 ... ... 456.57 11C 6 4.20 4 2.0 3.57 456.40 llD 4 4.20 12 2.0 3.57 436.08 Ii!! 8 4.20 16 00 2.94 454.64 111' 8 4.20 16 6.0 2.94' 454.64 110 20 4.20 20 6.0 2.94 454.16 II11 16 4.60 16 6.0 3 44 454.64 The' final core loading pattern is presented in Figure 3.2.

Cycle 9 is the first application of the Mark-BW fuel in Unit 2.

The remaining fuel le of the Westinghouse Vantage-5H design.

Selected fu rods in the Mark-BW fuel assemblies contain sintered uri t-gadolinia pellets, while the remainder of the rods contain aly uranium dioxide pellet.s. The urania-gadolinia bearing rods are a form of fuel integral burnable absorber and are utilized to control assembly power peaking and the moderator temperature coefficient (MTC). The fuel inserts (with the exception of fresh discrete burnable absorber inserts) to be loaded in Cycle 9 are of the same design as that loaded in Cycle 8. The fresh discrete burnable absorber inserts will consist of FCF burnable pc,ison rod absorber (DPRA) assemblies and are also used for power peakir.g and MTC control. All fresh Mark-BW fuel assemblies utilized f.or Cycle 9 contain axial blankets which consiot of Uo, fuel peilets enriched to 2.0 w/% U,,s in the top and bottom 6 inches of the active fuel column (9 inches in the gadolina fuel rods). The center assembly consista entirely of axial blanket pellets.

Cycle 9 utilizes 400 fresh burnable poison rods in BPRA patterns of 8,-20, and 24 rods per assembly. In addition, 1024 gadolina 1

. i e

a fuel rods were used in patterns of 4, 12, 16 (2 different l patterns used), and 20 rods per assembly. The secondary neutron sources,'whica each have 6 source rods, are located in 2 assemblies. Core locations for the burnable absorbers, neutron sources, and control rods are indicated in Figure 1.1.

Cycle 9 has a projected full power capability of approximately i 17,660 MWD /MTU (460 EPPDs) . The safety analysis for Cycle 9 is ,

valid up to a burnup of 19,657 MWD /MTU, which includes a power  !

coantdown.  :

c s

r P

4 1

1 1

a 2

v6 t

. t l

Table 1.1 ,

' SEQUOYAH UNIT 2 CYCLE 9 CORE DESIGN PARAMETERS Power Rating 3411 MWT f Coolant Temperatures  ;

i Hot Zero Power- 547.0 0F Design Inlet, Hoc Full Power 546.7 0F t Design Core Average, Hot Full Power 582.2 0F Vessel Average, Hot Full Power 578.2 0F System Pressure 2250 psia  ;

Hot channel Factors I Westinghouse Fuel Limiting Heat Flux, FQ 2.4n Nuclear Enthalpy Rise, FDHN 1.62 ,

FCF Fuel Limiting Heat Flux, FQ 2.50 Nuclear Enthalpy Rise, PDHN 1.70 e

9 3: -

. i Table 1.2  !

SEQUOYAH UNIT 2 CYCLE 9 FUEL SPECIFICATIONS l

Core Loading' Enrichment Nominal Number (weight Assembly of Batch percent Loading Assemblies f);235) (MTU) 9A f

'.80 0.46350 24 '

9B 4.20 0.46241 16 a 10A 3.60 0.46371 52 10B 4.20 0.46352 16 11A 2.00 0.45860 1 11B 4.20 0.45657 12 11C 4.20 0.45640 16 11D 4.20 0.45608 4 11E 4 'O 0.45464 8 i 11F 4.20 0.45464 8

^

11G 4.20 0.45416 20 1111 4.60 0.45464 16_.,

Total 88.75 193 I  :

i

+

i e

W t

d 4

w ,- r ,-- - -a- ,,- --,---4

, - -- 1 ,m n,m,,-s, ,s ,--m4,-__ -

n -

I Table 1.2 (Continued)

Active Fuel Height 144 inches Lattice Configuration 17 x 17  ;

Lattice Pitch- 0.496 inches  !

Assembly Pitch 8.466 inches No. of Fuel Rods Per Assembly 264 No. of Instrument Thimbles per Assembly 1 1 No. of RCC Guide Thimbles Per Assembly 24 No. of Grids Per Assembly 8 Fuel Rod Outside Diameter 0.374 inches clad Thickness (FCF Mark-BW) 0.024 inches clad Material Zircaloy-4

. Pellet Diameter (FCF Mark-BW) 0.3195 inches Burnable Absorber Rods 400 (A123 0 -B 4C) i Gado.).ina Fuel Rods 1,024 t

6 k

.)

p E

-S e v., <~r.n,,., ,,.,,,e ,_,.,..n.,.. , . - , ~ , , _ , , ,

i

. i f

l M P N M L M J H G F E D- C 5 A I I I I I I I  !

DCPD DCPD DCPD DCPD DCPD IEPD DCPD i I  !

?

DCPD RCCA DCPU RWA IKPD RCCA IKPD RCCA IWPD kCCA IEPD 3 4 16 12 16 4 2 20 6.0 20 6.0 20 DCPD IEPD IXJPD RCCA DCPD RCCA 6SSA RLTA DCPD RCCA DCPD DCPD DCPD 4 16 20 16 16 20 16 4 3 10 6.0 60 60 60 6.0 6.0 20 RCCA IEPD RCCA DCPD 813 0 DCPD RCCA DCPD 811 0 DCPD RCCA DCPD RCCA 16 16 20 16 16 4 6.0 6.0 6.0 6.0 6.0 DCPD DCPD RCCA trPD 20L2.0 IKPD 20L2.5 DCPU 20113 DCPD 20110 DCPD RCCA DCPD DCPD d

4 20 4 4 20 4 -$

20 60 2.0 2.0 6.0 20 IKPD RCCA lEPD 813 0 ICPI) RCCA DCPD RCCA DCPD RCCA IrPD B110 DCPD RCCA LEPD ,

16 16 20 20 23 16 16 -6 6.0 6,0 60 6.0 60 6.0 6.0 DCPU DCPD RCCA DCPD 20L2.$ DCPD 24L2.3 IEPD 24L2.5 DCPD 20L2.5 DCPD RCCA DCPD DCPD  !

16 16 -7 60 60 DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA DCPD 90* 12 20 20 20 20 12 -3 20 6.0 60 6.0 6.0 2.0 DCPD DCPD RCCA ICPD 2011$ DCPD 24115 DCPD 2411$ DCPD 20L2.5 DCPD RCCA DCPD DCPD 16 16 -9 60 60 DCPD RCCA I)CPD 8110 DCPD ROCA DCPD RCCA DCPD RCCA DCPD 8110 DCPD RCCA DCPD

' 16 16 20 20 20 16 16 - 10 60 6.0 60 60 60 6.0 6.0 IKTD I)CPD RCCA DCPD 20L20 DCPD 20L2.5 DCPD 20115 DCPD 20L2.0 IX'PD RCCA DCPD DCPD 1 4 20 4 4 20 4 - 11 -

20 60 2.0 2.0 6.0 20

' DCPD DCPD RCCA ROCA DCPD RCCA DCPD 813 0 DCPD RCCA DCPD 813 0 RCCA 16 16 20 16 16 12 6.0 60 60 6.0 6.0 DCPD DCPD DCPD RCCA DCPD RCCA 6SSA RCCA DCPD RCCA DCPD DCPD IX'PD 4 16 20 16 16 20 16 4  !)

20 60 6.0 60 60 60 6.0 20 DCPD RCCA DCPD RCCA DCPD RCCA DCPD RCCA IWPD RCCA DCPD 4 16 12 16 4 14

20 6.0 2.0 6.0 20 DCPD DCPD DCPD DCPD DCPD DCPD DCPD 15 O'

Key Tylw Congenent Type nn Nundwr of Fresh Oadolinia Rods xx Fresh Oadolinia Imadmg(w/o)

Connawnt Twas nntra . Numtwr of LampelIlumable Poison kods at s.: w!o ll.C in Al:03 RCCA . Control or Shutdown RCCA DCPD . Dually Compatible Plugging Device nSSA . Number of Rods in Semndar/ Sourse Assembly FlOURE 1.1 STQUOYAll UNIT 2 CYC119 CORE COMPONINT CONFIGURATION ,

6

2.O TEST PROGRAN'

SUMMARY

This report covers the period October 11, 1997, through November 30, 1997. Significant milestones for this-period are summarized as follows:

Start of Core Unload October 11, 1997 End of Core Reload October 22, 1997 Initial Criticality November 3, 1997 Completion of Zero Power Physics Testing November 4, 1997 Initial Power Generation November 4, 1997.

Power Escalation to 30% Power November 5, 1' "7 Power Escalation to 70% Power- November 8, 1997 Power Escalation to 100% Power November 10, 1997 Table 2.1 summarizes the startup physics tests that were performed during Cycle 6 startup. A reactor-power histogram for November 1997 is shown in Figure 2.1. -

4 1

7

I TABLE 2.1 .

SEQUOYAH UNIT 2 CYCLE 9 CHRONOLOGY OF STARTUP PHYSICS TESTS  :

1 TEST DATE Initial Criticality November- 3, 1997 Boron Endpoint - ARO November 3, 1997 Isothermal Temperature Coefficient - ARO November- 4,-1997 Bank D Worth - Dilution Method November 4, 1997 Rod Worth - Rod Swap Method November 4, 1997 Flux Map at 30%. Power November 6,'1997 Flux Map at 70% Power November 9, 1997 Flux Map at 100% Power November 11, 1997 8

r t

l 4

REACTOR POWER (%)

o 8 8 8 8 8 8 8 8 8 8 1

s. -

k3 e .

--gJ . , /w -

a 2<> e- - --- we e .~e 4 - - - 9". a- 6 -4 '!.s < -44 M.- 4 - - r.

$( J,.-*. w=*w di , .e. h 4,44 N,  : w.e e.. h r . .p &

' , 8 5

1j NM ,'

' '- ,. s c , I' , s

. s'e=MWEstaPe f.'. -4 P Nd 4.he.lpe. =.p Le,Q

- Odve m.'s eaD6mitkwwires s edmII. irk.espyeN. b).stWhies.pM .3nJ.9 4 4L *, - DIipttNL.%).4')pmhM.&P. t4L9WbdP d6'.MN$u n, Mr s4.r' ~ ,

F- h

,,d 1

>r \

t

)fk

+ s, ".J. : ,_

---46,- --aa- +24~.44 .4 a. - o

-5 +-- .

. i.<---, i .--

is

. .; s

.. . . < . g gag 3g g_g ggfdtpig,ggggggggh.

6 .ThMOW64 m$W,6$ gg64 d 4$pligggp 6

,-",3%$$$ W@

M4og gqpllpagggiggje @'.=qmg$(ggggggiggq;q

+ c 3

& I 4 N > s

_m s -_..a ._a ~ ._ . . , . _w_

, 3 ]j i

1 My>f' a sen

. t s e.++ wsp.. e 4 *r n4w

.sy $4+

g vn,.e b. 4 s. g t-4 5 seP- E y,,,,, ,4 , g,p ,._%,. _

._vge r t

  • 1 W ..

10 4- 4+ --.- - ~ - W~h ~.

~ 4>f h_ a- 4-~.-A~--+---

ee q , . .. .%.. . . .

7

, , . . . , ..t siv,a.th Wktingunga .[M,+w<s,

'n i n+= w .pr - ,,$4 Ai+=o' htt.aust ,* em i&Nai45$ 4t* , *sts'* >>eic%54*t'stik ,4seher 'rksp .Ntsplenv > wi,in '

w ,6.s -ise c.8'bo. mir yg+

=

)

Q,', g w' f (.,, _ , , _ ' ,-w.

,_a .-

12 ..2%.

_._%, , - ..%. .y%, >

N v I'..

]$ . ~4 -.m.m -.' . m s

c. a,
  • m,

-*j -

a j F- f t . .A

- */ ,' p s

M t - ,, s -

j4 ,

.4o N # . ..

. L., ,,..

V mn .(>

p - *r

{

L g .4 <yb 4 y

.-O - W h. f (4 4 f ue + 64 P d .. 4 e rk 4 (A- s A y6 s -9 . m c

  • M5.v()

i%,

r

'.l .

T If . . ... . . . , ,

(, ,' . g .

~ , .

regne.g.. - ,e'say. geyss . . . p. ar9 pagerp64=s- s r bgeopefu6teter*= lh ergeschetse*A*imeerehouse.te.e v 4st.de.eSe4444 Hy9tef$ntf4494PJakv5Nf $$sp.eae.

1 1 -

. "h*  ;.

  • 0 4
Wseemgegegaegsgest.e. ,stk.eg .4es.p,ge e6 4

.u.+ -.-.4et ,gsypsesh.44e59 61impust& sept 44ltt aste(b%gMbeen.eborge ,$4 a4 6449lf ,

g , i

, .;.. .- . .. > . . . . . . s ..

.su-4..

%s g. pea houd 's,ei, ' icep.se+gmq Jes ,ayia#.. s,'t ar = k 9 P.pde Mb.iEP . =96'

- **pe ser'a' am. andi v.w m pisie'es stegra. . ,4 pass.sytie dwhire r, f, ibense 94 eWef.edrw.

e l

20 -

- . - . - . - . . - re . . - . . - - -

- +. - - - - ---- ~. - - -

-..~.it>

r*

- i. <

.4.1 C

  • 4D -4 f I  ? W k e' h

]

1 3

N:

M

_h.'t

_ p g,4.egen geops+ 4,ewasseha neens, neee+. pen geser .> sem,e ,sb..,_ ,r e.e. nam-tga * *e weewaear -- -e.. Pome.wungamme.ee4 et.se.s bse,s ( )

. n

33. e

-  ?-

pay iss em.mde bd. sortie!%en # 4e nws 34 - .p'* ovew>a =sSo=*r e<vo e s'me. ssy e., ,rve *.an s.so .

mr.4, h m j) w  :

24 .: -

n,,-.+  %+er.~=m J- w.-~. 4.o ~._. - * , .

,%,, o m. u ()

i k f* J .

...r

,abispwWre.eWh49 p.er t. - - ed9 ')P'.h.*'ses.$ewa ys.#9ee6..Heestsagtv4 psp.i.+4.r ene6E h4hPust% 9+s49ge'k j l l

.is.>,.

'.'f.-

%  ; . ,, ', , s ,

a

' (>

a ..

y .

g-l .- }n 3 ,

7

,0!.. u,mu

.m..,..<>

27 -.m r.4. i

.g rp y .

c.a

+

q

.. L - ,!. 4  ; .p,e ~w;_ 4,.m y % , , e,,. . . ( >

26

,Eas,r **a +.w- ab .s em,Wu( >

% ,6ehe.a neehene.46,si meneews ,e e.g.ae+ ee -

i . ee.-wess . d atiHeano,.e,

> np. ,

T.

k i

1 r

4 f

a h

D l

., ~~ ,-. -- . .- - - - - - - - - - - - - - , . _ - . . - , - , - . . _ ~ - - - - - - .

i 3.0- CORE RELOAD

SUMMARY

The Cycle 9 core offload started on October 11, 1997. The core !

offload was completed on October 14, 1997. Figure 3.1 depicts j the Cycle B core configuration prior to the fuel shuffle. The core configuration for Cycle 9 is shown in Figure 3.2.

The neutron count rate was monitored throughout core load as  !

a precaution to ensure that core loading proceeded as planned. i This monitoring was accomplished by utilizing the permanent excore source range detectors. The neutron count rate was monitored at specific intervals for each detector. The invarse count rate ratio was calculated after each assembly was loaded to ensure an orderly and safe loading.

Upol completion of core reload, core verification was performed.

The fuel assemblies and inserts were verified to be in their correct location according to the Unit 2 Cycle 9 core loading pattern.

10

9 R P N M L M J H 0 P E D C S A 747 T67 U14 T64 Uit T72 T44 1A 78 8A 78 8A 78 7A 1 U23 V40 V30 WO4 W55 WOS W58 WOS V43 V24 U24 8A 9A 9A 10A 108 l0A 108 10A SA 9A 8A 2 7 30- WO4 W59 W23 v59 vu v76 v65 v53 W19 m4 W0i u37 8A 10A 108 10A 98 98 9A 98 98 10A 108 10A SA 3 V79 W67 V81 V17 W35 V03 W40 V08 W42 V09 V44 W54 V82 SA 108 SA 9A 10A SA 10A SA 10A SA SA 10B DA 4 T44 V34 W24 V69 Vit V20 W48 V49 W49 V15 V13 V11 W30 V47 T44 7A SA 10A 9A SA 9A 10A 9A 10A SA 9A SA 10A SA 7A 5 7 15 W14 V56 W34 V24 V45 V35 W31 V35 V84 Vit W52 V54 Wil T71 78 10A 98 10A DA SA 9A 10A SA SA 9A 10A 98 10A 78 8 U17 W68 V68 V01 W34 V41 W18 H26 W28 V33 W45 V07 V63 W54 U18 8A 10B 98 9A 10A SA 10A SSB " 10A SA 10A DA DB 108 SA 7 77 WO5 V75 W46 V32 W20 H21 H57 H25 W27 V7& W43 V74 Wit TL1 78 10A SA 10A SA 10A 88B " SSB

  • stb " 10A SA 10A SA 10A 7B 8 7 19 W63 V82 V06 W44 V52 W32 H24 W25 V51 W39 V05 V64 W64 U13 8A 108 98 SA 10A SA 10A SSB " 10A SA 10A SA 98 108 BA 9 T70 WO7 V55 W41 V71 V25 V83 W26 V28 V37 Vid W33 V60 W12 Tot 78 10A DB 10A SA SA SA 10A SA SA 9A 10A 98 10A 78 10 165 V46 W21 V70 V18 V12 W47 V77 W38 V21 V22 V23 W22 V42 T41 7A 9A 10A SA SA 9A 10A 9A 10A SA 9A SA 1JA 9A 7A 11 V27 W61 V80 V10 W37 V04 W51 V02 W50 V72 V50 W62 V48 9A 10B 9A 9A 10A 9A 10A DA 10A SA DA 10B SA 12 U35 WO2 W57 W17 V57 V41 V73 VS7 V58 W29 W60 WO3 U25 8A 10A 10B 10A 98 98 9A 9B DB 10A 108 10A SA 13 U39 V39 V29 W13 W53 W10 W65 W11 V36 V31 U38 8A 9A 9A 10A 108 10A 108 10A SA SA SA 14 T49 T68 U20 760 U15 T66 T50 ASSEMilLY ID 7A 78 SA 7B BA 7B 7A REGION 15 i

RE0lON 888 3.80 WM REGION BA.S.60 WM REGON 10A . 3.60 WN RECON 7A.3.80 W4 REGON 6A

  • 3.00 WM REOtON 108 4.20 WM REGON 78 4.20 WM RE00N DB .4.20 WM
  • from Sequoyah 1 Cycle 6
    • from 5equoyah 1 Cyc4 7 FIGURE 3.1 SEQUOYAH UNIT 2 CYCLE 8 CORE CONFIGURATION 11 l

N M L K J H 0 F E D C B A R P V54 V63 V34 W24 V47 V64 V57 98 98 9A 10A 9A 98 95 1 V71 W59 X14 XT1 W63 X32 W64 X74 X25 W62 V12 SA 10B 11C 11H 10B 11D 10B 11H 11C 108 SA 2 V37 X22 X40 X50 W33 X54 WO4 X54 W41 X44 X39 X:7 V20 SA 11C 11E 11 0 10A 11F 10A 11F 10A 11G 11E 11C SA 3 W64 X35 WO3 W13 X85 W44 X44 W39 X63 W11 WO2 X37 W54 10B 11E 10A 10A 11H 10A 11 0 10A 11H 10A 10A 11E 105 4 V60 X14 X42 W15 X28 V26 XO7 W24 X09 V40 X23 W14 X78 X21 V55 98 11C 110 10A 11C DA 118 10A 110 SA 11C 10A 110 11C 95 8 V61 D0 W50 X64 V27 X82 W23 X51 W24 X80 V44 X81 W37 X75 V47 98 11H 10A 11H DA 110 10A 11 0 10A 110 SA 11H 10A 11H DB 4 V30 W54 X58 W49 XD4 W17 X03 W40 X02 W30 X11 W44 X55 W55 V43 SA 10B 11F 10A 11B 10A 118 10A 118 10A 118 10A 11F 108 SA 7 WIS X31 W05 X84 W27 X52 W44 X86 W43 X47 W20 X79 W16 X30 W25 10A 110 10A 11 0 10A 11 0 10A 11A 10A 110 10A 11 0 10A 11D 10A 8 V29 W65 X57 W38 X06 W21 X04 Wii X01 Wit X10 W47 X60 W53 V36 9A 10B 11F 10A 118 10A 118 10A 11 8 10A 118 10A 11F 108 SA 9 V66 X73 W42 X62 V79 X83 W22 X46 W29 X41 V82 X68 W35 X72 V65 98 11H 10A 11H 9A 110 10A 110 10A 11G SA 11H 10A 11H 98 10 V54 X20 X81 W12 X18 V31 X05 W31 X12 V39 X19 WO7 X77 X13 VM SB 11C 110 10A 11C 9A 118 10A 118 SA 11C 10A 110 11C 98 11 W61 X34 WO1 WO6 X64 W34 X49 W45 X67 WO9 WO4 X34 W57 10B 11E 10A 10A 11H 10A 11 0 10A 11H 10A 10A 11E 108 12-V21 X16 X36 X45 W52 X63 W10 X56 W34 X43 X33 X15 V24 9A 11C 11E 110 10A 11F 10A 11F 10A 11G 11E 11C LA 13 V15 W67 X26 X76 W68 X29 W56 X69 X17 W60 Vit 9A 108 11C 11H 108 110 10B 11H 11C 108 DA 14 V53 V64 V46 W32 V42 V62 V59 ASSEMllLY 10 98 98 9A 10A SA 98 98 REGION il REOlON DA.3.80 Wra REGION 105 4.20 W/% REGON 110 4.20 W/% REGON 11F .4.20 WM REOlON 98 4.20 W/% REOlON 11A.I.00 W/% REGON 11D.4.20 W/% REGON 110 4.20 WN REOON 10A .3.60 W/% REGON 118 4.20 W4 REOlON 11E .4.20 W/% REOlON 11H .4.60 W/%

FIGUR. 3.2 SEQUOYAH UNIT 2 CYCLE 9 CORE CONFIGURATION 12

4.0 CORE PERFORMANCE The operational power capabilities of Sequoyah Nuclear Plant are governed by Jimits imposed by the safety analysis as presented in the Sequoyah Updated Final Safety Analysis Report (USFAR). Various core parameters were measured during the restart physics testing to validate the assumptions made in the safety analysis and to verify the core performed as designed.

The following sectione discussed the results of the core physics tests.

4.1 INITIAL CRITICALITY Initial criticality was achieved on November 3, 1997, at 1032 EST. The reactor coolant system temperature and pressure were about 547'F and 2219 psig, respectively. The soluble boron concentration was 1770 ppm, and all control banks were fully withdrawn with the exception of Control Bank D, which was at 194 steps.

The approach to criticality proceeded by guidelines set in the Restart Test Instructions. The RCS was diluted to about 1770 ppm, the shutdown banks were withdrawn, and then withdrawal of the control banks was started. During control bank withdrawal, inverse count rate ratio data was recorded and plotted for source range detectors N-31 and N-32 (Figures 4.1.1 and 4.1.2). As planned, the control banks were withdrawn until the reactor became critical.

After bringing the reactor critical, the neutron flux level at which nuclear heating first occurred was determined, thus establishing a range below nuclear heating at which all zero power physica measurements were performed. The calibration of the reactivity computer was verified by comparing its output to a reactor period.

4.2 REACTIVITY CONTROL Excess reactivity is controlled by neutron absorbing control rods, boric acid dissolved in the reactor coolant, discrete burnable absorber rods, and gadolinia fuel rods which contain 2 or 6 w/% Gd 203 . Both the control rod position and the boron concentration may be adjusted separately or in conjunction with one another to compensate for various reactivity changes and to maintain the required shutdown margin. Rod bank and boron reactivity worths are measured at hot zero power (HZP) for comparison with design predictions.

13 l

i 4.2.1 CONTROL ROD BANK WORTH MEASUREMENTS Control ' rod bank worth measurements for Cycle 9 were done by l using the boron dilution method for determining the integral and l differential worths of the reference bank, Control Bank D, and l then using the rod swap method to measure the worth of the other j rod banks. These other banks are called test banks. l The rod swap procedare starts with establishing an equilibrium l condition with the reference bank inserted. Each remaining rod  :

bank is then inserted and the reactivity change is compensated i by withdrawing the test bank that was previously inserted and/or the reference bank.

The measured integral worth of Control Bank D was 1,278 pcm, which met the acceptance criteria of 1,246 i 187.0 pcm.

Figures 4.2.1' and 4.2.2 provide plots of the integral and differential worth of Control Bank D. Table 4.2.1 shows a comparison of measured and predicted worths baued on the rod i swap.

4.2.2 BORON WORTH AND ENDPOINT MEASUREMENTS Reactor coolant system boron measurements were made during zero 4 power physics testing to determine differential boron worth and concentration endpoints for the ARO configuration. The differential boron worth measured over the rance of Control Bank D at HZP was -7.76 pcm/ ppm. The measured differential boron worth was within 15% of the predicted worth -7.02 pcm/ ppm. The boron endpoint was established for the ARO configuration. The boron endpoint value includes corrections to the measured data to account for differences between the critical configuration and the endpoint configuration. The measured ARO boron endpoint, corrected to all rods out and 547'F, was calculated to be 1,781 ppm, well within the review criteria of 1,782 1 50 ppm. ,

4.3 ISOTHERMAL TEMPERATURE COEFFICIENT MEASUREMENTS The isothermal temperature coefficient (ITC) was measured during zero power physics testing to verify a negative moderator temperature coefficient (MTC) as required by technical

-specifications. The ITC is defined as the change in core reactivity per unit change in moderator, clad, and fuel

' temperatures. From the measured ITC, a value for the MTC is obtained from the relationships MT" = ITC - Doppler Coefficient 14

. ~ . . _ . _ - . . _ _ ._ . _ _ _ _ _ . _ . . - -- .

- - - . -- - - - - ~ - - - - - - - . - -- ... - - - -

l 1

The predicted hot zero power beginning of cycle Doppler coefficient was -1.61 pcm/*F.

This measurement was performed by heating up and cooling down the '

primary system by regulating steam dump to the atmosphere or the condenser. The cooldown range was from 548.0 to 544.7'F and the heatup range was from 544.7 to 546.5'F. During the heatup and cooldown, an X-Y recorder was utilized to plot the change in reactivity with respect to the changes in the primary system temperature. The slope of this curve of T-average versus t

reactivity is the ITC.

l

' Measurements of the ITC were taken with-D bank at 202 steps. The 't ITCs measured during cooldown and heatup were -2 0 and -2.33 pcm/*F respectively, with an average of -2.57 pcm/*F at a T-average of 546.3*F. When corrected to a temperature of 547'F, ARO, and the predicted ARO critical boron concentration, the ITC was found to be -2.55 pcm/*F which is within the review criteria of -2.28 1 2 pcm/*F. The MTC was calculated to be -0.94 pcm/*F, which is within the acceptance criteria of < 0 pcm/*F.

4.4 POWER DISTRIBUTION MEASUREMENTS Analysis of core power distribution data during startup testing is necessary to verify proper core loading, design calculations, and compliance with technical specifications. Three-dimensional core power distributions are determined from moveable detector flux trace measurements using the INCORE computer code. The MONITOR computer code calculates the margins to the thermal limits using the INCORE output as input.  ;

Because of anomalous indications from the 30% power flux map, it was-discovered that 16 fuel assemblies (8 assemblies in batch 11E and 8 assemblies in batch 11F) were improperly specified in the core loading plan as provided by FCF. The reactor was operating at about 30% power at the time of this discovery. This flux map indicated that the batch 11F assemblies were operating at a higher power than expected:and the 11E assemblies were operating at e lower power than expected.

The 16 affected assemblies consist of 4.20 w/% U-235 assemblies with 16 gadolina burnable poison rods at an enrichment of 6.0 w/%

Gd. However,~the batch 11E assemblies utilize different

1ocations within the assemblies for the gadolina rods than do the _

-11F assemblies.

LWhen the loading pattern was_ developed, the correct gadolina patterns were' assumed for the batch 11E and 11F assemblies in the nuclear design'models. However, the assemblies that were

. manufactured to the 11E specifications were assigned to the 11F

. core: locations and the assemblies manufactured to the 11F

-specifications were assigned to the 11E core locations.

15--

= .-

i i

l The core was loaded to the FCF supplied load pattern which l contained a.misassigned batch. The as-loaded core only differed from the' planned core by the radial distribution of the gadolina-rods in the two groups of eight-fuel assemblies. Except for the radial distribution of the integral poison within the two groups of fuel assemblies, the fuel assemblies are identical. As a ,

result, the two groups of fuel assemblies are almost identical in I i

reactivity versus burnup. Therefore, the largest effect was on j local peaking. Predicted fuel' assembly power and axial power

, shape changed insignificantly. In addition, the predicted affected assembly power peaking increased less than 3%, which was i

accommodated within the available peaking margins. '

. FCF confirmed that the as-loaded core conformed with all '.he i existing safety analyses. FCF supplied a corrected INCORE input

! file and conservative penalties to be applied to the calculated

- MONITOR margins.- Then the 30% power INCORE and MONITOR runs were i repeated without anomalous indications. The 70% power flux map

. = was done_using the same corrected INCORE input file and '

l_ - conservative penalties were applied to the calculated MONITOR

)

margins. The 100% power flux map was done using both a corrected l INCORE input file and a corrected MONITOR input file, so no

. - penalties were applied to the calculated MONITOR margins.

) Table-4.4.1 summarizes representative INCORE flux maps for '

startup of Unit 2 Cycle 9. This table includes the core conditions at the time of the measurement, and INCORE results for the maximum heat flux hot channel factor (excluding

! uncertainties) FQN(z), the maximum nuclear enthalpy rise hot i channel factor FDHN, incore quadrant . power tilt ratio (QPTR) ,

i" and axial offsets. The margins to the thermal limits calculated by the MONITOR computer code are also_ included. Note that_the a i

maximun. peaking factors identified in Table 4.4.1 are useful from i

a core design standpoint, but are not necessarily the most limiting according to technical specifications since they do not include reduced margins associated with the fuel type and the

- axial location of the peaks.

4.4.1 ASSEMBLY POWER DISTRIBUTIONS Power distribution measurements were made during startup testing at 30% power, 70% power, and 100% power.. Re3ative assembly power is analyzed with respect to the difference between designed and

,t  ;

measured values. Figures.4.4.1 through 4.4.4 provide :a relative-power distribution for all assemblies for the flux maps described in' Table 4.4.1.- Also,_ included in these figures are comparisons- ,

4 between measured and designed assembly powers including the RMS

- difference.-

The 30%, 70%, and 100%. power flux maps met all technical

- specification requirements on thermal limits as shown in Table 4.4.1.- ,

~ ^

16

e. ,..w, y%,r ""'W" '" "-W --*T" N-* ""' - " *-P""**"

'-4' "'M"'h'4'

4.5 REACTOR CLOLANT FLOW MEASUREMENT A reacto'r coolant flow measurement was performed. The measured flow was 383,225 gpm, which met the requirement of 360,100 gpm for operation at 100% of rated thermal power.

17

t 6b [il,. I ,:[; , i l!: f:Lli; [

  • l'lik' 7g[il.,fhfi l';!hf, !t b; O

> o 5

3

. s u+

3.

w

~

E f

, .7 m

o o

_ s m, "

4 1 s " _

3 N -

L E

N N ~

0 A 5 4

u H ~

m C

R O )

2 F _.- S

_ :C C L s _

S f

L A

W -

B A L R .~ O D ^

o R H eTN 4

T I O C

W (

1, K ., N N  ; W A

0 A 1 -

R B . 3' _

W L

O m W

W t,

e R 0 0 S T _

1 3 PE N

t O T S

C L G - A T

N I

O T

R .

U A

D R -

0 R z 0 2

C I

1 .

1 ~ 2 4 5' E

R U

G I - .

F - .

0

- 0 1

~

l 4

o 1 9 8 7 6 5 4 3

  • 1 0 0 0 0 0 O 0 O o O GEN I

, 1i '

,  : , ;; :1 j< 1j ;l !ijk' .,II+ i

h 0

5 5

p u

h.

2 0

0 5

~

w 2

3 N _

L E E n N

4

~ N A 6 H

C -

R u O )

S F

L m f

A W B A L

~ R O D

H T

3

+

6TRN I { O C

W (

N K . U a

9 N W m

A U U

1 B ,.

y D H

L i T t

O  %

U V

R 0 0 S T 3 PE m

N .

T O 1 S C

L G , w A

, . T N

g O

I - T R . ~-

U D

R 0 R 0 2

C I

2 -

1 4

M.

E ,

R U -

G I

F .

0 0

1

(

l J

A 0

2 8 6 4 2 0 1 0 0 0 O t2 e

i

=

. 1 1

I

\

Table 4.2.1 Sequoyah Unit 2 Cycle u Rod Swap Integral Bank Worths i MEASURED PREDICTED DIFFERENCE- -

WORTH (pcm) PERCENT

  • i BANK WORTH (pcm) t D** 1,278.0 1,246 2.6 C 690.7 689 .2 B 609.6 572 6.6 A 342.9 336 2.1 SD' 432.7 405 6.8 SC 432.7 406 6.6 SB 851.1 805 5.7 SA 322.4 300 7.5
  • Calculated using ((Heasured - Predic. Mi / Predicted)
  • 100
    • Bank worth measured by dilution method 20 A

1

. 1

. l l

FIGURE 4.2.1 INTEGRAL BANK D WORTH BOL, HZP, No XE 1400

, s, I

k t ) ,

t a

n e- 4 f ( l

- , r , >

f ,

.y,- .* ,, 'f I

. r; _, _ . v.,.-

^ S' -

\

' j h. . (

< <  ;;ry

. i <f .,5 . j."

j% L',.u.+,,6,,&,,,.6., is t p,m= .e sen.,4,4

, # ,,47d,.py . .5 >< au--.,w y. <w .=h , ***' [<

  • wee

,g>..

N/n ,

i i '$[

p. -

.-h . :

'w 1f,,

w i_ g k

. ,. N 5 t .'.I;

} -

$ 800 - -- m - ~: a d & ~- ~ *1 - + -' r-?

f ' g[.

v -

g gQQ 4 ,%.., . .. ,.J.;, .#. .,+_.J '

.,,,,g.I' J.,

i s 4

.. :::m

' &,2 .i.e,+ s.; w.1,,

& <,+,a,ar->.a -a .n ~n mL p e._,

1 4 200 --++- a b-J.J +a d - --

-a .

E r

3

.i i 0:

0- E 2 R 8 % % M R D E 8 E E R 3 S

  • E R E ROD BANK POSITION (STEPS NTHDR# AN) 21 v,. -p -- - - - - - . . - , , , - - - _

, __. _.fg-,,y., ---

, , . . , , , , --y-- , , - - ., .m

1

+

FIGURE 4.2.2 DIFFERENTIAL BANK D WORTH BOL, HZP, NO XE 12 y s

?

e 10 J~~ L-- Am & L~~- -~.~J -~~~ ~ ~~- ~ * - - ~ ~ ~ ~ ~ ~ - . - -

. ~.., k..r m, r .+.o ,u. 34 .,,w.o ..,......m,9 8 ,v,4.-.-...

a e.

m' 6 ~ ~~~ r~ - ~6-~ -~~~~~u~~~"~a~~- ~ ~ ~ ~ ~ -  :~~~~ ~ ~ ~ ~ ~ ~

g 1 W

te.

t a . r-2 e 4-~,.l.,?.m.~.e..,-..~.-_.. .m,,,.J.m.....,..,,..lg~,m.o_m.._.,,,,,,,.o.mg,_,,,s o g_. . 9,.

s 0

$ G E S 5 % *g R

  • 2 U T E R R U 3 Q M M n -

ROD BANK POSITION (STEPS WITHDRAWN) d 22 i

Table 4.4.1 SEQUOYAH UNIT 2 CYCLE 9 INCORE FLUX MAP

SUMMARY

~

INCORE Run IN9F202A IN9F202B IN9F203A IN9F204 MONITOR Run MN9F202A MN9F202B MN9F203A MN9F204 Date 11-6-97 11-6-97 11-9-97 11-11-97 '

Power Level (%) 28.4 28.4 68.7 99.9 D Bank. steps 181 181 197 217 Burnup (MWD /MTU) 15.27 15.27 76.3 148.5 Maximum FQ(z) 2.406 2.392 2.225 2.1415 Radial Location B 11 ED B 11 XX B 11 XX B 11 XX Axial Point 31 31 32 36 Maximum FDH. 1.651 1.641 1.571 1.544 Radial Location B 11 B 11 B 11 B 11 _

OPTR-Quadrant 1* 1.0099 1.0039 1.0019 1.0014 QPTR-Quadrant 2* 0.9938 1.0078 1.0030 1.0022 QPTR-Quadrant 3* 0.9870 0.9864 0.9930 0.9939 QPTR-Qu'adrant 4* 1.0093 1.0019 1.0022 1.0025 locial Of f set 2.57 2.56 1.52 0.106 FQ Operational .5300 1.142 1.788 1.618 (LOCA) Malgin (%)**

FQ RPS (Centerline 20.51 21.01 21.79 20.68 Fuel Melt) Margin

(%)**

FDH (Initial 8.206 6.756 8.68 11.13 Condition DNB)

Margin (%) *

  • FDH (Steady State 8.816 7.063 8.74 9.774 DNB) Margin (%)**
  • Relative locations of the quadrants: OUADRANT 2 OUADRANT 3 QUADRANT 1 QUADRANT 4
    • The margins shown are the current margins at the limiting conditiens calculated by the MONITOR computer code.

Note: The first INCORE and MONITOR runs (IN9F202A and MN9F202A) at 30% power vere done before the taisassigned fuel assembly batches:were discovered. After the misassigned fuel assembly batches were= discovered, the-30% power INCORE and MONITOR runs were repeated using a corrected INCORE input file and conservative penalties were applied to the MONITOR margins. The 70% power INCORE and MONITOR runs also used a corrected INCORE

. input file and conservative penalties for the MONITOR margins.

The 100% power INCORE and. MONITOR runs used corrected INCORE and

_ MONITOR input files.

23

_ -- .- . . , . . . - - . - - - - ~ . . - ~ . . . _ - - - - - - - . - _ _ _ . _ -

y e l

i l

MEASURID AND PERCENT DIFFERENCE OF MEASURED AND PREDICTED POWER R . P W M L K J H 0 F E D C 8 A

. .300. .545. .337. 405. .331. .358. .286.

1 . .6. 2.2. 3.8. 5.8. 5.4. 4.1. 4.1. 1 J

. .317. .710. 1.205. 1.107. .940, 1.066. .936. 1.098. 1.121. .599. .296.

2 . 2.4. P.5. .8. 1.7. 3.5. 4.8. 3.8. *2.4 6.3. 14.1. 4.5.

i . .302. 1.071. 1.173. 1.300. 1.135. 1.262. 1.097. 1.256. 1.114. 1.195. 1.064. 1.050. .325.

3 . 2.4. *2.6. 5.1. 7. .6. 2.8. 4.2. 3.2. 1.2. 7.5. 14.1. 4.5. 5.1.

. .668. 1.171. 1.012. 1.051. 1.321. 1.106. 1.190. 1.111. 1.284. 1.131. 1.095. 1.202. .712.

4 . 4.3. 5.5. *13.2. 12.8. .8. 3.0. 3.0. 2.5. 2.0. 6.1. +6.1. 2.8. 2.8. .

i

.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... . .308. . -

. .3 D8. 1.196. 1.272. 1.159. 1.127 957. 1.266. 1.120. 1.264. .954. 1.253. 1.188. 1.313. 1.219.

5. 3.2. .1 1.5. 3.8. 12.5. 2.5. 2.5. 2.7. 2.4. 2.7. 2.7 1.3. 1.7. 1.9. 3.1.

.. ... ...-... ... ... ... ... ... ... ... ... ... ... ... .. I

. .565. 1.177. 1.187. 1.381. 1.023. 1.199. 1.111. 1.248. 1.107. 1.178. .971. 1.381. 1.209. 1.206. .564

6. 3.5. 4.6. -5.2. 5.4. 4.3. 4 1.2. *1.5. *1.5. 1.3. 1.2. 5.4 7.2. 7.1. 3.1.

. .362. 1. 017. 1.369. 1.195. 1.355. 1.154. 1. 227. 1. 088. 1. 201. 1.111. 1. 279. 1. 2D8. 1. 565. 1. 054. .351'.

7. 3.7. 4.5. 5.5. 4.9. 4.6. 2.7. .7. .3. 1.4. 1.1. 1.5. 6.0. 5.1. 6.1. 1.v.

.. ... ... ... ... ... ... ....943. ...1.064. ...1.244. ...1.127, ...1.267. ...1.196.

...1.191.

... 442. ..

.452. 1.181. 1.209, 1.254. 1.200. 1.305. 1.1D6.

8. 5.0. 5.4 5.6. 4.7. 4.3. 3.0. 2.0. .1. 1.9. *1.9. 2.1. 3.3. 4.5. 6.3. 2.8.

.. ... ... ... ... ... ... ... ... ... ... ... ... ... .999. ... .560. ..

. 368. 1. 026. 1. 375. 1.195. 1.357, 1.162. 1, *56. 1. D93. 1.185. 1. 091, 1. 265. 1.125. 1. 297.

9 5.1. 5.2. 5.9. 4.8. 4.6. 3.4. 3.1. .9. 2.8. 2.9 2.4. 1.3. .0. 2.6. 3.0.

. .376. 1.201. 1.197. 1.287. .962. 1.198. 1.137. 1.168. 1.107. 1.164. .958. 1.283. 1.110. 1.197 .374.

10. 6.6. 6.7. 6.0. 1.8. 2.0. .4. 1.2. ,0. *1.4 2.5. 2.3. 2.0. 1.5. 6.4. 6.2.

. .320. 1.281. 1.380. 1.179. 1.261. .972. 1.296. 1.157. 1.300. 970. 1.300. 1.216. 1.329. 1.291. .321.

11, 7.0, 7.1. 6.9. 2.1. 2.1. . 9. .1. .6. .2. 1.2. 9. .9. 2.9. 7.9. 7.6.

. .728. 1.279. 1.154. 1.172. 1.278. 1.114. 1.208. 1.125. 1.298. 1.230. 1.193. 1.326 .751.

12 . 5.1. 3.5. 1.0. 2.7. 2.4. 2.3. 1.5. 1.3. .9 2.2. 2.4 7.0. 7.6.

r .. ... ... ... ... ... ... ... ... ... ... ... ... ..

. . 318. 1.131. 1. 249. 1. 255. 1. 092. 1. 257. 1.114. 1. 264. 1.129. 1.340, 1. 3D$ . 1.161. .331.

13 . 2.8. 2.9 .8. *2.8. 3.1. 3.2. 2.6. 1.1. .0. 3.8 5.6. 5.6. 6.9.

. .318. .7D4. 1.160. 1.089. .925. 1.066. 937. 1.128. 1.223. .721. .322.

14 . 2.7. .8. 3.1. 3.2. 4.9. 4.9. 1.8. .2. 2.2. 4.0. 4.0.

.289 .540. .330. 405. .336. .353. .305. . MEAS .

15 . 3.3. 3.5. 5.6. +5.8. 4.0 .0. 2.0. . DIFF .

NOTE ** PREDICTED VALUES ARE CALCULATED FROM A SYNTHE$l$ '~ REDICTED AXI AL POWER SHARlWGS WITN PREDICTED REGIDNWISE RADI AL PEAKING FACTO. )

N01E ** VALUES DO NOT INCLUDE F DELTA N UNCERTAlWTY STAWDARD DEVIAilDN = 4.325 RDOT MEAN*SOUARE ERROR = 4.316 THE MAXIMUM PERCENT DIFFEEENCE IN MEASUREC vs. PREDICTED AS$[MSLY POWER 18 14.145 Ik LOCATION D 2 FIGURE 4.4.1 SEQUOYAN UNIT 2 CYCLE 9 RELAllVE ASSEMOLY POWERS (MAP IN9F202A AT 28.4% POWER BEFORE THE MISASS1GNED FUEL ASSEM8LY BATCHES WERE IDEWilFIED) 24

MEASURED AND PERCENT DifIERENCE OF MEASURED AND PREDICTED POWER R P N N L K J N G F E D C 8 A

. .299. .343 .335. 403. .3 29 .356. .284.

1 . .0. 2.8. 4.4. 6.4 5.9. 4.7. *4.7

. .315. .706.-1.197. 1.100. 935. 1.060. .931, 1.D91. 1.167. .668 .314 2 . 2.0. 2.0. .2. *2.3. 4.1. 5.4. 4.4. 3.0. *2.4. 1.3. 1.6.

. . 314. 1.116. 1. 235. 1. 292, 1.128. 1. 270. 1. D90. 1. 264. 1.107. 1. 2 T3. 1. 209. 1.118. .323.

3 . -1.5. 1.6. 1.2. .1. .0. 3.4. 4.7. 3.8. 1.8. 1.4 *1.2. 1.B. 4.6.

. .707. 1.240, 1.166. 1.207. 1.313. 1.100. 1.183. 1.105. 1.276. 1.177. 1.143, 1.234. .707.

4 . 1.4. 1.3. .0. .2. .2. *3.5. 3.6. 3.1. *2.6. 2.3. *2.0. 1.1. 2.3.

. .306. 1.229. 1.324. 1.233. 1.294 951. 1.258. 1.113. 1.256. 948. 1.246. 1.181. 1.305. 1.211. .306.

$. 2.7. 2.7. 2.5. 2.3. .5. 3.1. 3.0. 3.2. 3.0. 3.3. 3.3. *1.9. 1.1. 1.3. 2.5.

. .363. 1.170. 1.180. 1.373. 1.017, 1.192. 1.104. 1.241. 1.100. 1.171. .965. 1.304. 1.142. 1.144. .362.

6. 2.8. 4.0. 4.6. 4.8. 3.7. .2. *1.8. 2.1. 2.1. 1.9. *1.7 *.5. 1.2. 1.6. 2.5.

. .340. 1.012. 1.378. 1.188. 1.346. 1.147. 1.220. 1.081. 1.194. 1.105. 1.271. 1.139. 1.325. .989. .355.

7 3.1. L.9 4.9. 4.3. 3.9. 2.1. 1. . 3. 2.0. *1.7. d.0. . 1. .8. 1.5. 1.3.

. 449. 1.174. 1.202. 1.277. 1.193. 1.297. 1.099. .937. 1.058. 1.236. 1.120. 1.214. 1.145. 1.143. 440.

8 4.3. 4.7. 5.0. 4.0. 3.6. 2.4 1.4. . 5. 2.4. 2.5. *2.7. 1.1. .1. 2.0. 2.1.

. 366. 1. 020. 1. 364. 1.188. 1. 349. 1.155. 1. 249. 1. D87. 1.178. 1. 064. 1. 257. 1.118. 1. 305. .993. .358.

9. 4.4.- 4.6. 5.3. 4.2. 3.9. 2.8. 2.5. .3. 3.4. 3.5. *2.9. *1.8. a.6. 2.0. 2.3.

. .374, 1.194. 1.189. 1.2?9. .957. 1.191. 1.130. 1.260. 1.101. 1.157. .953. 1.276. 1.104. 1.190 .372.

10. 6.0. 6.1. 5.4. 2.4. *2.6. *.2. .$. *.6. *2.0. 3.0. *2.9. +2.6. 2.1. 5.8. 5.6.

. .318. 1.273. 1.372. 1.172. 1.254. .966. 1.289. 1.150. 1.293. .965. 1.292. 1.208. 1.320, 1.283 .319.

11. 6.4 6.5. 6.3. 2 7. 2.7. 1.5. ..$. .0. .4 1.8. .3. .3. 2.2. 7.3. 7.0.

. .723. 1.256. 1.147. 1.165. 1.271. 1.107. 1.202. 1.119. 1.291. 1.242, 1.186. 1.301 .746.

12 . 4.5. 2.9. *1.6. 3.3. 3.0. 2.9. *2.1. *1.9 *1.5. 1.5. 1.8. 4.3. 7.0.

. .316. 1.124. 1.227. 1.248. 1.086. 1.264. 1.108, 1.292. 1.122. 1.332. 1.281. 1.153. .329 13 . 2.3. 2.4 .2. 3.4. 3.7. 3.8. 3.2. 1.7. *.5. 3.2. 5.0. 5.0. 6.2.

. .316. .699. 1.152. 1.083. .920. 1.060. .932. 1.122. 1.216. .716. .320.

14 . 2.2. .2. 3.7. 3.8. +5.6. 5.5. 4.4. . 4. 1.7. 3.5. 3.5.

. .287. .338. .328. .403. .334. .351. .303. . MEAS .

15 . 3.9. 4.1. 6.2. 6.4 4.6. .6. 1.5. . OlFF .

N01E *= PREDICTED VALUES ARE CALCULATED FRDM A SYNTHEll$ OF PREDICTED AXI AL POWER SHARINGS WITH PREDICTED REGIDNWISE RADIAL PEAKING FACfDR$.

NOTE ** VALUES 00 ND1 INCLUDE F DELTA H UNCERTAINTY STANDARD DEVIATION e 3.274- R00T MEAN*$00ARE ERRDR a 3.268 THE MAXIMUM PERCENT DIFFERENCE IN MEASURED VS. PREDICIED ASSEMBLY POWER 18 7.263 IN LOCAil0N 811 FIGURE 4.4.2 $EQUDYAN UNIT 2 CYCLE 9 RELAtlVE A$$EMBLY POWER $ (MAP IN9F2028 Af 28.4% POWER

  • AFTER THE MISA$$1GNED FUEL ASSEMBLY BATCHES WERE IDENilflED) 25.

l

_ ___ _ _ _ __ _ _ __ ___ _ -_ i

-. . .~ _ . . - - - _ -.- .

e#

9

  • MEASURED AND PERCENT Dif fERENCE OF MEASURED AND PREDICTED POWER R P W -M L K J N G F E D C 8 A

. .299. .346. .345. 417. .341. .344. .290.

1 . .9 3.3. 4.4. 5.9 5.0. *3.9. 4.0.

. .321. .7D5. 1.158, 1.074. .93 7. 1. D69. . 942. 1. D84. 1.158. 704 .323.

2 . 2.3. 2.2. . 9. 2.9. 3.7. 4.5. 3.1. *2.0. a.9. 1.3. 2.8.

. .319. 1.100. 1. 221. 1. 253. 1.1 D6. 1. 259. 1.100. 1. 261. 1.113. 1. 273. 1. 220. 1.115. .328.

d 3 . 1.5.- 1.5. 1.5. .9 *1.1. 3.3. 4.2. 3.1. . 4. .5. 1.3. 2.8. 4.4.

. . 703, 1. 217. 1.193. 1. 212. 1. 285. 1.1 D8. 1. 213. 1.118. 1. 273. 1.191. 1.176. 1. 225. .7D6.

4 . 1.1. 1.0.- 4 .8. . 8. 3.4 *3.5. 2.4. *1.7. *1.0. *1.0. 1.9. 2.3.

. .310. 1.196. 1.288. 1.224. 1.266. .978, 1.266. 1.129. 1.259. 961. 1.242. 1.182. 1.243, 1.187. .311.

$. 2.8. 2.3. 1.8. 1.8. 1.0. 1.1. *2.5. 3.2. *2.8. *2.7. *3.0 +1.7. 1.4 1.6. 2.9.

. .372. 1.146. 1.151, 1.338. 998. 1.190. 1.123. 1.258. 1.125. 1.186. 978. 1.289. 1.131. 1.124. .369

6. 3.9. 3.6. 3.1. 3.3. 1.0. . 8. *1.4.- a1.7. 1.2. 1.2. *1.1. . 5. 1.2. 1.6. 2.9

. .369. 1.002. 1.348. 1.181. 1.318. 1.147. 1.239. 1.122. 1.225. 1.127. 1.280, 1.147. 1.312. .947.

7.- 2.7. 3.1. 3.7. 3.1. 1.7. .7. .2. *.3. 1.3. 1.0. 1.4. .0. .8. 1.4. .366 1.5.

i . .457. 1.161. 1.196. 1.292. 1.196. 1.300. 1.136, 1.020. 1.103. 1.258. 1.145. 1.247. 1.150. 1.134. 452.

8. 3.1. 3.8. 4.1. 2.8. 2. 6.- 1.6. 1.0. *.9. *1.9. *1.7. 1.8. a.8. 1. 1.8. 2.0.

. .372. 1.009. 1.364. 1.176. 1.325. 1.160. 1.266. 1.126. 1.203. 1.108. 1.270. 1.134. 1.297. .991. .367

9. 3.3. 3.7. 4.8. 2.6. 2.1. 1.9. 2.0. .i. 3.0. *2.7. 2.0. *1.1. . 3. 1.9. 2.2.

0 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..

. .374. 1.155. 1.174. 1.301. 992. 1.209. 1.143. 1.272. 1.120. 1.175. .970. 1.275. 1.101. 1.158. .3 75 .

10, 4.4 4.4. 5.0 .4. .3. .7. 4 . 6. *1.F. 2.1. 1.8. *1.6 1.4. 4.7. 4.6.

. .313. 1.2D8. 1.306. 1.202. 1.262. 977, 1.278. 1.166. 1.298. .978. 1.291. 1.211. 1.294. 1.233. .318.

, 11. 3.5. 3.4. 3.3. .0. 1.5. *1.1. 1.4. .0. .0. *1.1. .8. .7. 2.5. 5.5. 5.4. i

. . 707. 1. 224. ' 1.174. 1.164. 1. 255. 1.114. 1. 241. 1.13 7. 1. 284. 1. 225. 1. 2 D9. 1. 270. .729, 12 . 2.5. 1.8. *1.2. +3.3. *3.1. -2.8. *1.3. .9. .9. 1.9 1.8. 5.4. 4.9. F

. .320. 1.103. 1.2D8. 1.217. 1.073. 1.255. 1.126. 1.242. 1.101. 1.297. 1.263. 1.138. .329 13 . 1.0. 1.7. .2. 3.9 3.9 3.5. 2.0. *1.5. *1.5. 2.6. 5.0, 4.9. 4.6.

. .320. .6 '. 1.142. 1.0T7. .924. 1. D64. .927. 1.078. 1.177. .717. .328.

14 . 1.8. +. . 2.3. 2.6 +5.0. 4.9. 4.8. 2.6. .7. 3.9. 4.3.

i . .296. .348. .336. 413. .338. .349. .305. . MEAS .

15- . 2.1. *2.7. 6.5. 6.9. *6.3. 2.7. .7. . DifF .

NOTE

  • PREDICTED VALUES ARE CALCULATED FROM A SYNTHEll$ 0F PREDICTED Axl AL POWER SHARlWGS WITH PREDICTED REGl0NWISE RADIAL PEAKING FACf0RS.

NOTE ** VALUES DO NOT INCLUDE F DELTA H UNCERTAINif STANDARD DEVIAilDN e 2.738 ROOT MEAN SQUARE ERROR e 2.733 THE MAXIMUM PERCENT DIFFERENCE IN MEASURED VS. PREDICTED ASSEMBLY POWER ll 6.856 IN LOCAin0N N15 4

l FIGURE 4.4.3 SEQUOYAN UNil 2 CYCLE 9 RELATIVE ASSEMBLY POWERS (MAP IN98203A AT 68.7% POWER) 26

e MEASURfD AND PERCtNT Dif f tRENCE OF MEASURED AND PREDICTED POWER R P W M L E J H G F E D C B A j

.. ... ... ... ... ... ... .. l

. .302. .352. .352. 425. .350. .353. .297.

1 . . 8. 2.9. 4.1. 5.6. 4.3. 2.6. 2.6.

. .324. .701. 1.134. 1.061. .934. 1.062. .93V. 1. 073, 1.136. .699. .326.

2 . 1.9. 1.8. .6. 2.4 3.7. 4,5. 3.1. 1.2. .5. .8. 2.5.

.322. 1.085. 1.207. 1.239. 1.099. 1.245. 1.100. 1.246. 1,103. 1.253. 1.206. 1.099. .331.

3 . 1.1. 1.4. 1.3. .6. .9. 3.4. 4.6. 3.3. .4 .4 1.0. 2.7. 4.1.

. .699. 1.204. 1.217. 1.207. 1.279. 1.109. 1.247. 1.122. 1.265. 1.194. 1.208. 1.214 .704.

4 . .8. .9. .3. .3. . 6. 3.9. 3.3. 2.8. 1.6. . 9. .5. 1.9. 2.3.

I

. .310. 1.166. 1.270. 1.225, 1.267 .986. 1.266. 1.140. 1.258. .970. 1.247. 1.189. 1.267. 1.162. .313.

5. 1.9. 2.1. 1.8. 1.8. a.9. *1.2. 2.4 3.2. 2.9. 2.7. 2.4. 1.2. 1.6. 1.8. 2.6.

. .372. 1.122. 1.141. 1.327. 1.003. 1.200. 1.1.*8. 1.269. 1.135. 1.190. .989. 1.283. 1.122. 1.105. .372.

6. 2.6. 3.2. 3.0. 3.2. .6. .3. 1.0. 1.3. 1.3. 1.1. .9. .3. 1.2. 1.6. 2.6.

. .374 995. 1.333, 1.166. 1.315, 1.157, 1.256. 1.156. 1.244. 1.141. 1.283. 1.150. 1.298. .981. .372.

T. 2.1. 2.8. 3.4. 2.8. 1.5. .6. .0. .1. 1.0. .7. 1.2. .3. .T. 1.1. 1.4.

462. 1.148. 1.190. 1. 328. 1. 204, 1. 3 D6. 1.169. 1. 091. 1.141. 1. 70. 1.160. 1. 254. 1.151. 1.130. 459.

8. 2.6. 3.2. 3.3. 2.9. 2.2. 1.6. 1.0. .0. 1.4. 1.3. 1.6. . 5. .1. 1.6. 1.9.

. .377. .999. 1.339. 1.176. 1.315. 1.164. 1.277. 1.158. 1.227. 1.124. 1.274. 1.141. 1.285. . 9 64. .3 74

9. 2.7. 3.0. 3.8. 1.9. 1.4. 1.2. 1.7. .1. 2.3. 2.3. 1.7. *1.1. .3 1.6. 2.1.

. .377. 1.133. 1.149. 1.279. .990. 1.204. 1.153. .281. 1.132. 1.182. .980. 1.269. 1.097. 1.142. .380.

'4

10. 4.1. 4.2. 3.6. . 6. .8. .0. .3. .4. 1.5. 1.8. *1.6. 1.3. 1.0. 5.1. 4.9.

. .318. 1.194. 1.304. 1.192. 1.257. .984. 1.264. 1.177. 1.294. .984. 1. 281. 1. 2 D6. 1. 268. 1. 215. .323.

11. 4.5. 4.6. 4.5. .9. 1.6. *1.3. .9 .1. . 3. 1.4. .3. .1. 1.6. 6.5. 6.2.

. .708. 1.210. 1.202. 1.172. 1.253. 1.126. 1.277. 1.141. 1.272. 1.212. 1.226. 1.255. 736 12 . 2.9. 1.5. . 9. 2.7. 2.5. 2.4. 1.0. 1.2. 1.1. .7. 1.0. 5.1. 6.1.

. .323, 1.068. 1.199. 1.214. 1.072. 1.249. 1.127. 1.275. 1.099. 1.272. 1.233. 1.119. .338.

13 . 1.5. 1.7 4. 2.7. 3.3. 3.1. 2.2. 1.1. .9. 2.0. 3.5. 4.6. 6.0.

. .323. .692. 1.121. 1.061. .920. 1.058. .929. 1.077. 1.153. .7D8. .332.

14 . 1.5. .3. 1.7. 2.3. 5.0. 4.8. 4.2. .9. 1.1. 2.8. 4.4

. .298. .352. .343. 420. .347. .358. .307. . MEAS .

15 . 2.0. 2.8. 6.4. 6.7. 5.3. 1.2. .8. . Dlff .

NOTE PRIDICitD VALUES ARE CALCULA1(D FROM A SYNTHElls 0F PREDICTED AXl AL POWER SHARINGS Wl'd PREDICIED REGIONWi$1 RADIAL PEAKING FAC1DR$.

N0f t VALUll DO NOT INCLUDE F DELTA H UNCERTAINTY STANDARD DEVIAllDN e 2,568 R001.NEAN.$00ARE ERROR e 2.5 64 THE MAXIMUM PERCENT DIFFERENCE IN MEASURED VS. PREDICIED ASSEMBLY '0WER 15 6.662 IN LOCATION M15 flGURE 4.4.4 $EQUDYAN UNIT 2 CYCLE 9 RELAllVE ASSEMBLY POWERS (MAP IN9F204 Af 99.9% POWER) 27