ML20004A974

From kanterella
Jump to navigation Jump to search
Reactor Bldg Containment Integrated Leak Rate Test, Conducted 810214-15
ML20004A974
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 05/19/1981
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20004A972 List:
References
NUDOCS 8105270062
Download: ML20004A974 (81)


Text

<

r .. .

9

[' TENNESSEE VALLEY AUTHORITY DIVISION OF NUCLEAR POWER F

1 l

l '

I I

I REACTOR BUILDING CONTAINMENT INTEGRATED LEAK RATE TEST SEQUOYAH NUCLEAR PLANT UNIT 2 CONDUCTED FEBRUARY 14-15, 1981 DOCKET NUMBER 50-328 I

I I

I I

I Submitted to The Uniterf States Nuclear Regulatory Commission l

Pursuant to Facility Operating License 81osayoO @

I T&BLE OF' CONTENTS 1.0 Summary 2.0 Introduction 3.0 Test Purpose and Results 31 Test Purpose 32 Test Results 4.0 Conduct of Test 5.0 Measurements and Calculations 5.1 Test Equipment 5.2 Sensor Location 53 Computer-Based Acquisiticn and Data Reduction System 5.4 Reactor Building Containment Model

! 6.0 Analysis of Test Data 6.1 Instrument Check 6.2 Compartmental Analysis 6.2.1 12.0-Psig CILRT 6.3 Discussion of Agreement (Verification Test)

! 7.0 Conclusions Tables Figures Appendices:

I A.

B.

C.

Instrumentation Error Analysis Local Leak Rate Summary Special Test Instrumentation D. Calculations of Agreement R. References l

1 I

lI

\

. _ . . . _ - _ _ _ ._a

e I

l DEFINITION OF SYMBOLS AND ABBREVIATIONS I CILRT Containment ; integrated leak rate test E Repeatability error e Absolute error k Measurement system error uF Temperature, degrees Fahrenheit FOM Figure of merit LA Full-pressuro design basis leakage LAM Containment leak rate during full-pressure CILRT La Imposed leak rate for verification IRM Containment leak rate during verification LT Reduced-pressure maximum allowable leak rate LTM Containment leak rate during reduced-pressure CILRT

l
E LLRT Local leak rate test P Pressure Pa Design accident pressure PT Reduced test pressure PTA Corrected containment pressure during CILRT PTR Corrected containment pressure during verification psia Absolute pressure psig Gauge pressure OR Temperature, degrees Rankine

,I SIT Structural integrity test l

T Temperature T dp Dew point temperature t Time l UCL Upper confidence limit i V Containment volume, cubic feet I

i l )

J

[

t i 1.0

SUMMARY

I A reactor building containment integrated leak rate test (CILRT) was conducted on Sequoyah Nuclear Plant unit 2 February 14-15, 1981.

The measured leak rate for the CILRT was 0.14307 percentage of containment air mass per day, while the observed upper confidence 1 limit was 0.14442 percentage of containment air mass per day.

I These values are less than the allowable 0.1875 percentage of ecntainment air mass per day (0.75 LA )*

I E TVA has committed to conduct all CILRT's at Sequoyah Nuclear Plant g at full-pressure, 12.0 psig. Therefore, a reduced-pressure test was not conducted.

2.0 INTRODUCTION

As prescribed in Sequoyah Nuclear Plant unit 2 technical

.E specification 4.6.1.2, the leakage of air from the boundary forming 5 the reactor building primary containment is limited to 0.25 percent by weight of the containment air mass per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at a pressure of I P, 12.0 psig. In conformance with Title 10, Code of Federal I

a Regulations, Part 50, Appendix J, Sequoyah technical specifications require that reactor building integrated leak rate tests be performed as a part of the startup and the surveillance programs to ',

I demonstrate the continuing leak-tight integrity of the reactor building primary containment.

A preoperational reactor building CILRT was successfully completed I

on Sequoyah unit 2 by persor.nel of the Tennessee Valley Authority on February 14-15, 1981. This test was conducted in accordance '

with a plant-approved preoperational test instruction, TVA-2A, I which is on file at the plant site. This test instruction implements the requirements of Sequoyah unit 2 technical specifications and Appendix J to 10 CFR 50. The American National Standard for Containment Testing, ANSI N45.4-1972, and the proposed American Nuclear Society Standard for Contairment Testing, N-274, provided guidance for the procedure implemented by the preoperational test instruction.

Sequoyah unit 2 is a 3,411 MW, pressurized-water reactor employing an ice condenser suppression containment. The Final Safety Analysis Report defines the calculated peak accident pressure,

l Pa , to be 12.0 psig. The reactor building containment is divided
M into four major compartments--the lower ice condenser compartment which houses the energy-absorbing ice beds, the upper ice condenser I compartment which encloses the support equipment for the ice condenser system, the lower compartment which contains the reactor and the main pi. ping systems, and the upper compartment which provides for a large wek area within containment and also can I accominodate the displaced air mass from the other compartments in the unlikely event of a loss-of-coolant accident (LOCA). These four compartments are connected by means of blowout panels located I between the lower compartment and the lower ice condenser compartment and between the upper compartment and upper ice ,

I -

t

l l condenser compartment. In the event of a LOCA, steam flows from the lower compartment through the ice condenser compartments and I

l through to the upper compartnent. The upper compartment is sealed from the lower compartment to ensure that any steam released in an f

accident will be forced through the energy-absorbing ice beds. For I

l the performance of this CILRT, the lower and apper compartments were not sealed in order to allow the free flow of air in containment as would exist in a post-LOCA condi'. ion.

Thio report outlines the objectiver, principal events, special equipment used, and analysis of the test results for the CILRT completed on February 15, 1981, on Sequoyah unit 2.

3.0 TEST PURPOSE AND RESULTS 3.1 Test Purpose The objective of the preoperational CILRT performed on Sequoyah unit 2 was threefold. The principal objective was to I demonstrate the leak-tight integrity of the reactor building containment for power operation. For Sequoyah unit 2, the leak-tight integrity is defined by technical specification 4.6.1.2 to be that leakage of air from I containment not to exceed 0.0078 percentage per hour (0.1875 percentage per day) of containment air mass at a pressure of P a-A problem unique to preoperational CILRT's is that of possible incomplete construction. Therefore, the second objective was to verify that there were no unidentified openings in the I containment vessel.

The third objective of this CILRT was to further evaluate a l technique of modeling a multicompartment ice condenser r pressure suppression containment. This was accomplished by 1

using a computer-based data acquisition system that collected data from a number of sensors which sampled containment atmosphere in each of the four compartments.

3.2 Teat Results The leakage rate measured in the 24-houc CILRT was 0.00596 percentage of containment air mass per hour (0.14307 percentage per day) at a pressure of P a (12.0 psig). The observed 95-percent upper confidence limit (UCL) for this measured leak rate was 0.00602 percentage of containment air mass per hour (0.14442 percentage per day).

This measured leak rate is less than that allowed under technical specificatien 4.6.1.2. These values include the leakage measured from types B and C tests from testable lines that were in service during the CILRT. Table 1 lists the lines that were in service during the test.

Af ter the completion of the 24-hour CILRT, a supplemental forced leakage verification test was conducted to check the results of the CILRT. A forced leakage rate of

.___ - _ - )

0.0120 percentage of containment mass per hour (0.2834 percentage per day) was imposed on the containment.

I The leak rate measured for the 4.44-hour verification test was 0.0114 percentage of containment air mass per hour

)

(0.27395 percentage per day). Agreement as prescribed by Appendix J between the CILRT and the verification test was

-0.0997, which is wull within the 0.250 required by technical specifications.

No leakage paths other than those identified as pa: t of the l types B and C test program were found in the performance of the CILRT or the supplemental verification test.

The technique of using a multicompartment nodel for the ice condar. cr suppression accurately measured the leak rate. The cc,mputer-based instrumentation provided reliable and immediate calculations of test results.

4.0 CONDUCT OF TEST I Prior to the pressurization of the reactor building containment for the structural integrity test (SIT), local leak rate tests (LLRT's) were performed in accordance with section 6.2 of the Sequoyah I Nuclear Plant FSAR.

All tents were conducted using TVA-prepared and plant-approved I preoperational test procedures--TVA-2B for testable penetrations, TVA-2C for testable containment isolation valves, and TVA-3 for the containment personnel air locks.

Figure 2 depicts the sequence of events for the test program. The following is a detailed accounting of principal events.

02/02/81 Started valve lineups.

02/04/81 Began installation of CILRT instrumentation.

03/09/81 1800 Established administrative control of raactor building.

02/10/81 Discovered that a high percentage of valves 1 were misaligned.

2000 Placed administrative control on the pipe gallery, elevation 690'.

Operations a6 reed to recheck the entire valve lineup.

02/11/81 0730 All special test instrumentation installed, functionally checked, and calibrated in preparation for the CILRT.


J

0930 RTD temperature sensor 14 discovered to be I slightly damaged, replaced with RTD sensor 51.

1300 High priority placed on finishing all corrections to the valve lineups.

02/11/81 Containment pressurization source checked for cpcrahiitty.

02/12/81 Shift engineer ogreed to set defrost cyclea for air handler units on six ?.our cycles.

Finished CILRT valve lineups.

I Qlosed unit 2 containment in preparation for pressurization.

02/13/81 0555 Commenced pressurization of reactor building I containment to a pressure of at least 13.5 paig for SIT. Containment pressure raised in steps with interim rest periods in conformance with the ASMF, Boiler and Pressure I Vessel code requirements.

0940 containment pressurized to 6.186 psig, compressors shut down.

1050 Compressors restarted with pressurization in 1.2 psig intervals.

1554 SIT completed.

I 1620 Depressurization of reaator building containment started.

1935 Depressurization to 9.7893 psig completed.

Start 24-hour hold (" soak") period.

02/14/81 1030 Noticed abnormal leakage rate resulting from misaligned transmitter from vacuum breakers--condition corrected.

1200 Obtained permission from plant superintendent to enter reactor building containment to replace suspicious dewcell sensor 6.

2043 Hold period at 9.7893 psig complete.

I Start pressurization for CILRT.

l -

I i

I

2249 Completed pressurization ror CILRT.

Final containment presnure, 12.7231 psig.

I Containment pressurization source isolated and disconnected from reactor building containment.

02/15/81 0054 Began stabilizatoin for CILRT.

0458 Temperature stabilized according to ANS N274 I

criteria.

Started CILRT. l I

1 1230 Found Irak through vent valve 70-678A, no  ;

action taken. l 02/16/81 0655 Completed CILRT. l 0745 Teledyne Hastings mass flowmeter found to be inoperable, decision made to use rotamater method to iteasure imposed leak.

0854 Started verification test.

1301 Completed verification test.

Preliminary calculated agreement tell utthin allowed 0.25L A- )

1345 Began blowdown of reactor building l containment.

8 02/17/81 1500 Special test instrumentation functionally checked and removed from reactor building containment.

Reactor building inspection revealed no aip rent damage to containment.

Plant operations notified to begin return of containment to normal condition.

02/23/81 All TV4-2A post tests completed.

All acceptance criteria met.

04/11/81 Completed recalibration of all special test instrumentation.

I l

I

I

5.0 MEASUREMENTS AND CALCULATIONS 5.1 Test Equipfent An ice condenser reactor containment is unique in the fact I that containment design pressure is only 12 psig. This low pressure requires more accurate instrumentaticn to detect leakage to the same degree as for conventional containments with design pressures of 50 to 60 psig.

For the Sequoyah unit 2 CILRT, the instrumentation consisted of a large number of sensors used to measure containment I parameters that were used to calculate the final leakage rate.

Table 2 identifies the parameters measured and the sensor specification.

Pressurization for the Sequoyah unit 2 CILRT was accomplished by portable high-capacity air compressors. Rated at 3,500 SCFM of dry, oil-free air, these ccmpressors brought the containment to test pressure in less thn 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

Prior to the start of the CILRT, all special test equipment I was calibrated by the Tennessee Valley Authority Central Laboratories, traceable to the National Bursau of Standards.

Af ter the installation of special test sensors in the containment, each sensor was chacked for functional operation.

I Upon test completion and depressurization, each sensor was again checked to ensure adherence to the calibrat on.

5.2 Sensor Location For the CILRT performed on Sequoyah unit 2, the temperature and dewpoint sensor locations were seleted so as to equalize I the volume fraction of containment-free air represented by each measurement. No single sensor for temperature measurement represented more than 10 percent of the I containment-free air volume. Appendix C lists the volumetric weighting factor for the vapor pressure, pressure, and temperature sensors. Figures 3-8 1.tentify sensor locations.

53 C mputer-Based Acquisition and Data Reduction System Containment parameter measurements for the Sequnyah unit 2 I CILRT were made and collected by a microprocessor-based data acquisition system. This raw data was automatically presented to a portable minicomputer system for correction to calibration curves and reduction to containment leakage rate.

I Statistical confidence levels of the calculated results were reported automatically to the test director is the data was acquired. Figure 9 depicts the functional relationship of the I acquisition and data analysis system.

I I

All calculations performed by the minicomputer system were in I conformance with the procedures outlined in ANS N-274 (draft).

Source listings for all computer programs are on file with the Division of Nuclear Power, Controls and Test Branch, in Chattanooga, Tennessee. Table 3 identifies the principal furetion of each computer program.

5.4 Reactor Building Containment Model An ice condenser pressure suppression containment presents special problems not normally encountered in the leak testing of dry containment structures. The pressure suppression I design feature requires the reactor building containment ta be divided into distinct compartments, where vastly different temperatures and vapor pressures may exist. While each I compartment is vented to the containment atmosphere during the performance of the CILRT, the direct circulation of air is very limited.

I Since an ice condenser containnent typically exhibits a 40 F 0 temperature differential between compartments, it is necessary to compensate for compartmentalization so the leak rate is I accurately measured. For Segnoyah unit 2 CILRT, a 4-compartment containment model was used to measure the leak rate. The free air mass is calculated individually for each compartment, and containment leak rate is calculated from the I sum of the compartmental masses. Each compartment is volume weighted for the sensor within a calculation of compartment average temperature and vapor pressure.

I Figure 10 depicts the four compartments used in the Sequoyah unit 2 reactor building containment model.

6.0 ANALYSIS OF TEST DATA The previous sections of this report have identified the principal test objectiven and results, outlined significant events, and I described the special test instrumentation. In this section, problems that influenced these results are discussed.

6.1 Instrument Check Part III, Section 3 1, of the Sequoyah Nuclear Plant Operational Quality Assurance Maaual, requires that all I tests performed with an instrument be reviewed if that instrument is found out of calibration. After completion of the CILRT, all special test insrumentation was checked for adherence to the pretest calibration.

The post-test calibration revealed that three precision quartz manometers were out of tolerance. However, one of these I quartz manometers (PT-4) was within tolerance over the range of pressures measured during the CILRT, and therefore its data was included in the test results. The second quartz manometer (PT-5) was out of tolerance over the range of pressures I measured during the CILRT, but was registering higher than actual pressures. The actual test pressures were confirmed by

the other pressure gauges used during the test. The analysis I of the post-test calibration data showed that the small amount of error found in this gauge had no effect on the measured leakage rate of the CILRT. Therefore, the data collected from this gauge (PT-5) was included in the test report. The third I quartz manometer (PT-3) was inoperable for post-test calibration due to equipment malfunction resulting from a light source burning out. However, the pretest calibration

~g and the nature of the malfunction support the conclusion that B this gauge (PT-3) was within tolerance during the performance of the test, and therefore its data was also included in this test report.

6.2 Compartmental Analysis 6.2.1 12.0-Psig CILRT F1gure 11 is a graphical representttion of the calculated containment leak rate for the 12.0-psig I CILRT expressed as a percentage of containment mass.

Tabulated data is shown in Table 4.

I The graph axes are percentage of air mass leakage per hour versus time. The slope of the least squares fit line to these data is the measured containment leak rate.

Figure 12 is a graphical representation of the total mass loss from containment during the 12.0-psig CILRT.

I The graph axes are containment dry air mass versus time.

Figures 13 and 14 graphically depict two alternate I methods of determining containment leakage--the point-to-point and the total time methods.

I In reviewing the graphs for the CILRT, figares 15 through 18 show a ms.ss loss in all compartments. The lower compartment, figure 16, exhibited the most prominent mass loss. Most containment penetrations and I leakage paths are lceated in this lower compartment.

The phenomena of mass flow from the lower ice condenser compartment through the upper ice condenser and upper I compartments and finally to the lower compartment was not as evident for this test as in similar ice condenser containments due to the relatively small amount of ice loaded prior to the CILRT. Examination I of figures 15 through 18 also reveale a " spike" in the mass plots at approximately 14-1/2 hours into the CILRT. This variation was determined to be caused by a I defrost cycle of at least two air handling units in the upper ice condenser compartment being cycled at the same time.

I I

An inspection of the compartmental vapor pressure I plots, figures 19 through 22, reveals a relatively smooth decrease in the upper anu lower compartment vapor pressures. However, the graphs of the upper and lower ice condenser compartments show a more irregular I pattern, due to the air handling units located in the upper ice compartment being in operation during the test. These air handling units operated with 6-hour defrost cycles, with the corresponding peaks showing

' I throughout figures 21 and 22. As expected, the " spike" at approximately 14-1/2 hours into the CILRT is most prevalent in the vapor pressure plot of the upper ice I condenser, because of the air handling units cycling in that compartment.

Figures 23 through 26 represent the compartmental I tempers.ture plots, with smooth curves depicting the upper and lower compartment temperature changes and the more irregular plots representing the ice condenser I compartments. Again, the cycling of the air handling units can be attributed to the irregular temperature patterns exhibited by the uaper ice condenser I compartment, with a less p onounced effect on the lower ice condenser compartment These temperature peaks occurred as the result os the derrosting of the air handling units, with tne most prominent spike appesritig I at approximately 14-1/2 hours on both the upper and lower ice condenser plots, figures 25 and 26.

6.3 Discussion of Agreement (Verification Test)

Appendix J to 10 CFR '50 and ANSI N45.4 specify different techniques for the calculation of agreement between the CILRT I and its subsequent verification. Appendix J requires the absolute value of the difference between the measured containment leak rate with a superimposed leak and the sum of I the imposed leak and the measured containment leak rate be less than 0.25 L A or 0.25 LT , as applicable. ANSI 45.4 requires this difference be less than 0.25 of the measured containment leak rate with the idposed leak. Common test I practice is to set the impos.a leak at between 75 and 125 percentage of the maximum allowable leak rate.

Appendix D details the metheds of agreement calculations. By I the procedure recommended in Appendix J to 10 CFR 50, agreement between the CILRT and the subsequent verification test was well within the 0.25 LA allowable limit.

The imposed leak race was measured by the rotameter method, utilizing a Fischer Porter rotameter. This method required that the imposed leak rate be manually calculated and directly I read into the minicomputer, therc5y causing an interruption in the verification leak rate sampling at approximately .7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> into the verification test. This interruptivm can be seen graphically in figures 27 through 34.

Tabulated data for the verification test is shown in Taole 5.

4 7.0 conclusions The results of the full-pressure CILRT clearly demonstrate the i leak-tight integrity of Sequoyah unit 2. The total leak rate was

' less than the allowable leak rate under Sequoyah technical specifications.

The tachnique of modeling a multicompartment ice condenser pressure i

surpression containment using a computer-based data acquisition

I 1

system yielded immediate results that accurately 'neasured and displayed containment leak rate.

,I

!E

I

.I i

i

.I i

I iI I

I I

I I

1 '

1 i

I I l I

I  :

lI I

I TABLES I

I I

I I

I I

M M M M M M M M M M M M M M M M ZABLE 7 TESTABLE PENETP ATIONS REQUIRED TO BE I'! SE?VICE D'JRING TEST FERFORMANCE Penetration Valve Number (s) Description Justification X-27C 52-Inboard Integrated Leak Rate Isolation valves required to be 52-Outboard System Pressure open to conitor containment pressure.

X-68/69/74/75 67-580 A,B,C,D Essential raw cooling To correct inadvertent valve water system misalignment.

X-47A 61-191 Ice Condenser System Glycol cooling supply to air-61-192/533 handling units in ice condenser

, required to ensure ice condition is maintained.

X-47B 61-193 Ice Condenser System Same as X-47A.

61-194/680 X-54 No valves - Thimble Renewal Used as pressurization point for Type B test air compressors.

X-98 52-Inboard Integrated Leak Rate Same as X-27C.

52-Outboard System Pressure X-107 74-2 Residual Heat Removal Residual heat removal system System required inservice to remove decay heat from fuel.

X-114 61-110 Ice Condenser System Glycol return from air-handling 61-122/745 units required to ensure ice i condition is maintained.

X-115 61-96 Ice condenser System Same as X-114 61-97/692 X-118 Type B test Hatch Used a source for verification flow and post test depressurization.

g g g g W M M M E E E E E E E TABLE 2 CONTAIN5'ENT LEAKAGE MEASUREMENT 3Y3:E."

SPECIAL TEST EQUIPMENT Manufacturer and Number Instrument Measured Parameter Model Number Used Specification Containment Leeds and Northrup 49 Range: 0-250 0F Temperature Model No. 178055 Accuracy: 0.1 0 F Repeatability: 0.02 0F Containment Mensor Corporation Pressure 5 Range: 0-30 psia; 400,000 counts F.S.

Model No. 10100-001 Accuracy: 0.015% reading Repeatability: 0.0005% reading Containuent Foxboro Corporation Accuracy:

Dewpoint 13 10 F dewpoint Model No. 2701 RG Repeatability: 0.5 0F dewpoint Analog to Acurex Corporation Digital Converter 1 Accuracy: 0.0010F dewpoint Autodata Nine 0.0010F temperature 1 count pressure Atmospheric Mensor Corporation Pressure 1 Range: 0-30 psia; 400,000 counts F.S.

Model No. 10100-001 Accuracy: 0.015% reading Repeatability: 0.0005% reading Verification Fischer Porter 1 Accuracy: 1.0% F.S.

Flow Rotameter TVA Nos. 1032 & 1060

I

TABLE 3 l CONTAINMENT LEAKAGE MEASUREMENT A

MINICOMPUTER ROUTINE

SUMMARY

I Routine Name Function FORE a. Does all calculations for the test.

b. FORE controlled by the Autodata 9, FORE runs when the A-9 sends data.

BASE a. Redefines test start.

STARTN a. Used for reading in calibration curve I data for pressure gauges and other local inputs.

31 a.

I Creates all files.

b. Tells system how many RTD's and DPE's are being used.

TAI.LY a. Gives reportable test results.

TABLE a. Tabulate test resulta versus time.

AM a. Does calibrations.

CHECK a. Reads data from Autodata 9.

I b. Enables a single RTD to be checked after calibration.

CHECK 8 a. Reads raw data file.

I b. Looks at a particular RTD reading after calibration.

, VERIFY a. Tabulates verification results.

PLOT a. Performs all graphics.

I I

I I

I I

iI

p q _- M M M M M M M M TEWESSE VALLEY ' AUTHORITY-

---._ -- u .SEQUOYAH NUCLEAR PLANT UNIT-2 tDWTAINMENFCEAKAGC TIEASUREMENT- -- -- -- - - - - - - - - - - - -

TEST

SUMMARY

AEt- ~ COMP ARTMEM is - ----- - - - - - - - - - - --

12.0 PSIC CILRT HOURS . AV1' RAGE CORRECTED- T QT AL. M A SS E - I - P_ -._ TOTAL . TIME. MASS SAFPLE SINCE (EMPERATURE PRESSURE OF AIR LEAK RATE LEAK RATE LEAA RATE E74RT  ! CFG- -F,? 4 PSIA? 4& Sitt (?-PER. DAY' f % FFR DAYL (L P DAY'

__...._.._.. ... .................... ...___...... --.... ..... .......... .........__ ........... .__ _.. ....__ .....-_..ER 29 _ 0.000 50.579? ?7 4 7J9 30 0 167 183144.73 0.000000^ 0.0000000 0.0000000 -- _ -

50.5659 27.1759 183138.63 0.63/4090 31 0.333 30.N475 27.1755 0.6374090 0.4372145 32 18A143 50 -0.3834099 0 1271483 ,127143V 0.500 50.5380 27.1746 183140.33 0.2493185

- _ --- . 3 3 . 0.467 J50.534 8 27.1754 0.1678777 0.1120235 34 183146.67 0.4989196 _ - 0.0012295--- __ _-0.0132475 0.833 50 5005 27.1737 183140.64 0.4740655 35 1.000 30.517a 0.0958166 0.0210585

?7.1728 183136.20 0.3439974 0.1379999-_

36 f.167 50 5110 27.1719 _ 0.0684430-183132.17 37 8.333 50.4978 0.3168C05 0.1635577 0.1089033 37.1718 183136.33 -0.3268930- 0.1022714- _ -

38 1.500 50.4535 27.1719 0.(782767-

-- --- - 3 9 - 183147.23 -0.4645216 0.0393127 0.0629002 1 667 - 30.4758 27.1695 183128.70 40 1.0636026 0.141/672 -- --- --. 0 . 0 8 8 4 52 7 - ------

1.833 50.4623 27.1693 183132.31 -0.2838861

-41 -2 000 0 103083? 0.0886604 42 50.4578 27.1688 183131.12 0.0933466 2 167 50 4503 27.1681 0.1022714 --- - - . 0.0900734 --

43 183129 16 0.1548449 0 1063135 0.0922773

- 2 333 50 4453 27.1673 183125s06 Os3218057 44 2 500 50.4317 27.1665 183124.04 0.1217078 ---- - - - 0 0994043 45 --2 667 50.4188- 0.0172056 0.1147427 0.1023284 27.1650 - 183119.62 - 0.4102506- - 0 1332137 46 2 833 50.4104 27.1642

- 0.1104207 _-

47 183117.44 0.1720607 0.1354969 0 1173279

-3.000 50.4037- -- - - 27.3644 - 183121 53.- -0.3270032 -

48 3 167 50.3869 0.1100893 -

--0.1154540 27.1644 183127.48 -0.4679889 0.0796588 49 3 333 50.3945 27.1625 0.1057008 '

50 3 500 183111.92 1.2240366 0.1368571 0.1127304 50.3779 27.1612 183100 30 0.2819846 0.1439102 51 3.667 30.J623 27.1600 0.1204014 52 1031&o.77 0.1941948 - 0.1285475--. 0.1223662 - - ---

3 833 50.3590 27.1602 ~183107 23

- - 53 0.000 50.3522 0.2776161 0 1350282 0.1255261 27.1592 183102 88 04419157 0.1436049- -

54 1 167 50.3364 27.1586 0.1302750 - --

55 183103.78 -0 0712497 0.1350858 0 1322500 4:333 50:3292 27:1573 183097s73 56 4 500 5 r4756661 0 1481774 0 1362242 50.3276 27.1570 183097.44 0.0233539 0.1435552 57 t.667 50 4154 27.1556 0.1389159 58 183093 63 0 2997489 0 1491323 - - 0 14175564--- -

4 833 50.3055 27.1544 183089 06

--59 5.000 50.2944 c.3589205 0.1563610 0.1458788 27.t540 183090 05 0 0773977 60 5.167 50.2781 27.1535 0 1485676 0.1478003 - - -

i*

183092 94 -0 2274027 0.1364448 0.1473336

".333 50 rN97 27,1522 1810Her37 62 5.500 50.2761 Or1574962 0 1433514 0a1480504 27.1514 183081 06 0.5765017 0.1564683 43 5467  % 2572  ? r.1.521 0 1504964 44 183071 86 -0.8489549 0.1268974 0.1479979 5.833 50.2501 27.1515 183090.84 0.0798975 0.1255542 0.1457123 TABLE 4 Page 1

g g g g g E E E E E E E S

-- TENNESSE VALLET AUTHORITY

~ ~ ~ - - '- ~

SEQUOYAH NUCLEAR PLANT UNIT-2 M inntna ttanc.ut nt a suut NENT

  • TEST

SUMMARY

~~

~ ' - ~~~ 7 C T. LOMPARi ni rv i 3 - -

12.0 PSIG CILRT -

unnce AVERarir r0RRECIEn TaIO L.sARt P I-P T O T A1.__II M E__

SAMPLE SINCE TFMPERATURE PRESSURE __ MASS OF AIR LEAK RATE LEAK RATE LEAK FATE S ?W 'Dre e ' '*EIM '? 9e '! REe D^v' 't 'IR-SAY' ' dan _.

__.........__....._______...__.____..__.___.._______.....__..._______..___....____...__....___....__.___......__..__.IR_ ..__ ...

44 4.000 50.2411 ?2.5508 66 6,167 183080.83 %1785641 0.1244496 .0.1434039 30.2391 27.1496 183087.03 0 534413!.

i' i ??? 50 ,23O? 0.1374938 0 18:~942 234439 193034,49 0.91476?? 0,1552785 68 6.500 50 2157 27 1477 0 145 % 3---

19 183072.67 -0.0774051 0.1493114 0.1470992 4:667 - - 50:244o 27.1453 70 183045.9? N5310644 0.1588476 - --- -. - - 0.1495772 6 833 50.1980 77.1454 183067.41

?! '

^^0 50,4894 23,444?

-0 1167256 0.1521:55 0.1507619 183043,3? ^

.0013394 72 7 167 50.1854 0.1485337 0,1584534.-

7 . ',3 3 27 1446 183068.09 -0.0552906 0.1437927 0.1514626 73 "Av+73t 271+432 193063,00 74 0. 3 W0 71", 0 1482037 O r1517 7 7 7-7.500 50.1768 27 1421 183055.33 75  ?;647 50.1636 27,140' 1830s0,7^

0.6663240 0.1597000 0 1534942 76 0.2647134 - 0.1641403 -- -- - --0 1557921 -

7.833 50.1513 27.1405 183054.14

- --77  ?;000 50.145? -37.4402 183054,44

-0.2704829 0.1548983 0.1564757 78 0.167 50.1416 -^ 0233466 0.1511840 ---- - 4.1565407 -

'" 27.1396 183053.30 0.0897493 0.1499296

" 43? ".0 . ! 3 3 3 27,4390 0.1565747 80 !83025.it --0. 4 S t ' 1 i 2 0,1432446 N1560778-8.500 50.1237 27.1398 183054.44 81

  • 64' .W14 42 0.0946665 0.1422914 0 1553e03 2L1381 1830,13.9' O.0393206 82 8.033 50.0969 27 1374 0.1403102 - - - . 0.1542530 --

93  ?,000 193055.5'2 -0 1241741 0.1353223 0.1532014 50.0912_ 27 4 64 183032.46 0 ~t'05?

84 9.167 50.0920 0.1378449 0.1520741.-

27.1336 183045.55 0.5124077 0 1446522 0.1519379 SE 0.333 50.091^

86 O.!!55 iS&O45.?? -0.0&J3130 4.8417626 0.1515400 -

9.500 50.0703 27.1346 183047.00 a7 * ^^7 40.0621 -0.0970772 0 1375722 0.1506939 27.132n 183017.2' a 7290S91 .

06 9.833 0.1477414--_ - - _ 0.1503497---

49 50.0697 27.1323 183031.91 0.4583721 0.1530229 0 1515:39

--2 0. 0 0^ 50.0513- 2',1324 ISJOJ4 S3 90 -0:3910110 0.1439420 - --- - -0.15117 3 10.167 50.0430 27.1317 183038.14

?4  !^_222

-0 0995397 0.1399700 0.1505359 92 50.^ ti .  ??.4309 tS3040.75 0.584&782 2.-4 430M2 OA 503259 -

10.500 50.0316 27.1304 183033.80 -0 2397724 0.1409487 gi in_467 sg.03A1 0 15024'5 27 t?So tSJO.M.Ao rt.23rsto ?' ^.151165' 0.150612*. -

94 10.833 50.0Gil 95-27.1277 183024.72 -0.0811569 0.1475927 0.1503634 t1-00n MO 0091  ? Z t 7 0 t SJM7 S*

96 11.167 49.9954

-0.2420224 0.1416144- __ _ __ - 0.1503074.-.

27 1279 183030.80 -0 2311688 0.1360581 9'  !!.2?? 19,99#2 23,437^ 0.1495349

!??O25.22 0.4334??? --0,4404843 S1490S35-98 11.500 49.9841 27 1249 183013.73 eo g i g i, ao o7?1 0 9050143 0.1515531 0.1494924

$7_t747 133g1L t v .n_ tot?30m a.aA44495 n tao 717e ..

. 8 TABLE 4 ,

Page 2 -

g

M M M 'M M M - M M M M

-- TENNE 55E VALEET 7.UT113RITT~ ~"

SEQUOYAH NUCLEAR PLANT UNIT-2 i.unsaanntns ttanaut ntasumEMENT TEST

SUMMARY

12.0 PStG CILRT __ _ _ _ ,, , , _ _ _ , , _ _ _ , _

_ _- MUES- ._ AVERAGE-. C1'RRECIEh ____T OI AL M A S R P-T-P-___ . TOTAL TIME _ _ _ _ . NASS SAMPLE SINCE TEMFERATURE PRESSURE OF A!T: LEAK liATE LEAK RATE LEAK RATE ,

S TMT f 95 e F ' '*St^' '! P ' f1 pre poi r7 erg _ gay 3 n- sagan_

100 11.833 49.9749 27.1745 183013.53 '0.2079193 0.1475088 0.1498755

_- .-_161__- 12.0 00 - '9.S422 27.1MS _. -._ _ -_183013.17 - 0.02S2835- 0.1458530 -

0.1498543 102 12.167 49.9550 27 1225 183006.95 0.4091597 C.1505524 0.1502314 104- - +'4f32 ^?.?!?7 27v4254 1830W.-9 2 2.0/62452 0.-14 74 8 91 -- ----0 15031 : F-

  • 04 12 %00 49.9465 27 1213 183003.17 0.3736403 0.1505015 h.1506484 105- ;_-_447-_ _ 42.9M 4 27.3208 - . _ 183007.67 -0.3541J 8 7- 0.1,438663 -

0.1503111-106 12.833 49.9154 27.1194 183002.20 0.4301786 0.1475815 0.1503299

- _107 13.000 - '9+913t.  ??.1173 ?92991-.70 0.8264213 0.1562741 -- - --- -0.151123 3 108 13.167 49.9116 27.1178 18299?.41 -0.0553135 0 1535956 0.1515414 109 14.433 '9,4045 27.4876 1679 H r13 -0.1652845- 0 149Y869 -- - - -- 0.151 F 5 -

110 13.500 49.8925 27.1162 182990 52 0.2840989 0.1516392 0.1519745 111 --13.447- .49.8821 '7.1149 182918.39 - .- - -0.6195152 _ _ - - - 0.1422385 0.1516167 112 13.833 49.8751 27.1161 182996.17 0.1746343 0.1426270 0 1513093 113 14 000 49.3732 .27.1152 182990.70 - 0.4302054 0.1460474 0.1511000 114 14.167 49.8710 27.1945 182987.13 0.2816405 0.14'6391 0.1511786 115 14.333 49.0556 27.1138 182907.03 0.0073753 0.14!0073 0.1510459 116 14.500 49.8488 27.1131 182984.50 0.1992431 0.1466176 0.1511387

-- - --1 17 - --14. 667 - - - 4 9. 8 5 4 5 - 27.81 A - - 183013 45 -- -2.2777767 0.11"0823 - 0.1491852 118 14.833 49.8443 27.1207 183035.67 -1.7486590 0.09R1159 0.1460076

- -- 119 15 400 --49.8332 -27 1139 482990 72 - 3 5374694- - -0.1362978 - 0.1455141 120 15.167 49.8348 27.1141 182989.25 0.1155444 0.1360686 0.1450664 121 1" $33 09ve?13 27rl+10 1G?9#4t99 0 . ; ; 31-5!,0 0.M8315& G . He72e--

122 15.500 49.8083 27.1114 182977.55 0.5777403 0 14h0365 0.1447815

--- 123 -- - 45.447 'E.7998 - 37et099 182949.38 ^ . 4432680 --0.14 8350 5 - - - -- -- 0.1450643 -

124 15.833 49.7949 27.1096 182969.94 -0.0447562 0.1463229 0.1451051

- -- 12 5- . 14.000 49,8001- 274 093 - 183947.09 0.323864* 0.1471782 -- -- ---4.14 55 04 8---

126 14.167 49.7896 27.1095 182977.80 -0.*487143 0.1409b82 0.1453304

-127 !i.??? t9.7805 27elov5 !S3975.?? -E 2447d?? 0.13J0552 0.1448914 -

128 16.500 49.7794 27.1090 182977 80 0.2447641 0.13R1406 0.1445738

-- -129 ._.1A.467_ 8 9 74 4 9. -._ __ . - _ . . 22.La72_ _ - 1879A5.89 _ _A.543352A__. 0.1421888_ .__.-__-_ 0.144541B_

130 16.833 49.7600 27.1068 182943.03 0.2250969 0.1430073 0.1445999

- _131. . 17 000- - 49.7547- _2 7.1060 _-- --. - _tS2942. 53 0.0393402 0.14199C3 -_ .0.1444908 _

132 17.167 49.7418 27.1056 182965.13 -0 2041900 0.$386321 0.1442280 13? it??? t?.745? 2h4044 !S28 % 38 4 5378027 0.-8 42850;L- 2.1442932---

134 17.500- 49.7368 27.1036 182954.11 0.2890717 0.1442401 0.1443547

' TABLE 4 '

,.Page 3' _

e

/

f M M M M M M

~~" TENNES'!!E N ALI.EY AUTil0RITY SEQUOYAH NUCLEAR PLANT UNTT.2 EIM AKAUL T1L R 3 U M L E TEST

SUMMARY

- - - ~ _ . . . _ _

att con g m tni3

. 12.0 PSIG CILRT

'~

_ , . _ - unURS AVERAGr CDRRECTED.__ TQ.laL_ Matt P-T-P _ TOTAL _ TIME.. ._ __ PASS.. ____

SAMPLE SINCE TEMPERATURE PRESSURE OF AIR

  • LEAA RATE LEAK RATE LEAK RATE START t9F" F ' **S3^?  !! SC ( Y 5s r e pv i ,, er g_,34y y _ _ gg_EIR D4

'17.467 49.2359- 27.1027 __382919.11 _C.3934212 0.1465874 -

0.1445595 ,

LJS 27.1030 182953.16 .0.3186090 0.14?2443 0.1445357 136 17.833 49.7313

_-0 4747 7 7J 0.1434869 --0.1445909

- - 137 18.400 49.7241 - 2A102^ 182949.64- - -

27.1013 182949.16 0.0381136 0.1425196 0.14455:5 138 18.167 49.7146 - - - 0.1446546 --

14" !G,444 '9.-7447 -274 00' 192944,78 4 3444424 0.1443514-27.1001 182946.86 0.1635240 0.1415785 0.1445539 140 18.500 49.7005

^.025S335 -0 1405451 9 1443911- -

4 41 ' " 4 62 29.4985  ??:0938  !%2944.53-182941.50 0.3958966 0.1428017 0.1341539 142 18.833 49.69^5 27.0986 49.4 h ?2 09o? 'agg45,34 _n.31SS525 0.1387475 -_: - 0.1441942 -

- - _ 4 4 L-. 49.400

-0.0172130 0.1373910 0.1439049 144 19.167 49.6789 27.0984 182945 79 te2944 41 ^ ^4 1892 ^ .1356454 - - - - 4.144*S59 - -

145 19 432  % 474 " 27.^?92 0.1431766 182943 09 0.2767877 0.13e8491 146 19.500 49.6713 27.0976 n.91n72?? 0.3435703 .0.1432524

_ 147- '9-647 29.4204 97 n94n ens 231 22 . -

27.0955 182931 42 -0.0123027 0.14:2608 0.1432652 14G 19.833 49.6597

^.0442654. 0.1414435 - . _ - - - 0.1432173 -

. _ .149- Sn-000 8944522.- - _.22 0951 'S29J0.84 27.0948 182929.30 0.1230273 0.1412902 0.1 32o80 150 20.167 49.6497 0 1428606 - --- 0.143:578 151 2^_2?? '9.4420- 23.4949 !S49J5 0+ 0.4343238 27.0934 182972 31 0.2165350 0.1434573 0.1432978 152 20.500 49.6394

---__0.2901986 0.1446382 0.1433544

_ 353 90.642 49.4395 . 97.092? 'B2918.63 .

182919.05 -0.0332196 0.1432160 0.1433643 154 20.833 49.6271 27.09?0 n.J.02325a 0.1452680 _._ _._ 0.1434534.

155 ' t n 0 CL 49. A"1 92 0909 182913.94 0.1437022 49.6221 27.0900 182908.00 0.4672903 0.1477997 15& 21 167 ^-515??*o 9 142420? a .14 3422 4__--

15  ?! 3? _42.4!2' 27.490' en?944.=^

27.0889 182908.45 0.4992605 0.1452320 0.1437679 158 21.500 49.6019 no .gLo14tsto a d 433505 0.1.430045 _

mo 9e Ad7 49 5224 - . 97 ^""A 'aS9a 182907.00 0.140799? 0.1438868 0.1438296 160 21.833 49.5965 27.0881 _0.1403493-_ -__. - 0.1437666 ----

- 4 61-  ??-40^ 49.5875  ??:^a"? $_ S291141 -0:3??60't 182910.13 0.0774730 0.139875* 0.1436508 162 22.167 49.5952 27.0880 ^

.1410232 - 0 14350 0 -

22 433 '9.5761  ?? ^91" *"7444.3? ^ 494048?


1 6 3- 0.1418808 0.1434632 164 22.500 49.5647 27.0859 182903.13 0.2571615 ___ _ _ Q,{433741 .

,,,,,,22 132342.53_. A n413422 .Q,1413443 1AM ?S_Af7 gg Mn1 03$5 7 49.5598 182898.06 0.3568344 0.1427149 0.1434506 166 22.833 27,.0849 i n TS94.1.2 ^- pngegg g,g437575 ____ o g 43 47 g4_ _

367 at_gon ao ug t 7 nam; _

49.5468 27.0045 182900.91 -0.3728435 0.1390528 0.1432659 168 23.167 0.1415342 M432 8 24- --

Id" 22.??? ** .550' 2? _f ?21- '"2e?t.?? 5 'a?0^^t

. Y TABLE 4 e Page 4 e

W W W M M M M M M M 1

iLnNLMbL VALUT AUTilDRITY -

SEQUOYAH NUCLEAR PLANT UNIT-2

  • NTAIRMENT IInnaut atnauntntWT~ ~

TEST

SUMMARY

ALL L.untpuentnis - - - - - - - - - --

12.0 PSIG CILRT

_. _ ____ . _. _ _ _ _ __.m_. --

_ . . _ _ HOURS __.__ _AVERAGr 20RRECIEIL tt1.1 AL M AS9 __ ___ E - I -f_ TOTAL. TIME _..___. ___ NASS SAMPLE SINCE TEMPERATURE PRESSURE OF AIR LEAK RATE LEAK EAir LEAK RATE

??^o? SEO e ' 'es3^' '!PM? s Ee D^v' 'T *EE-DAY? '? rER_ Data _

- - - - -~

~

i ~ 170 23.500 "i9.53i8 27.0R11 1828 82.~f5 'O.9425756 0.1472048 0.1433710

-- 121_ _._ 23.447__._ _ 49.5212 _ _. . . _2 7. 0 809__ _ _ .-_ -_3 8 2 8 05. 4 4 . - - . .a0. 21154 4 4. --- ._- - .0.14 4 679 7 .__. _.-- 0.1434177 172 23.833 49.5237 27.0805 182e83.94 0 1191356 0.1444930 0.14354A6

- 173 24.000 49.5209 77.0801 1828st3.03 -0.0713743- -- - -0.1439846 .- - -0.3436275 174 24.167 49.5210 27.000? 182884.28 -0.0983935 0.1473135 0.1435488

-t ? ", 20rH3 09 r51-10  ??reeM "020Ser30 3r3 t99525 -

0.t391512 0 H 3 4 3 3 dr-176 24.500 49 5000 27.0799 182890.27 -0.1512757 0.1371764 0.1432282

-37J 2'_id7 49,5021= 27.0792 !82885.31 0.3874221 0.1385445-._ - -

- 0.1431020-

) 178 24.833 49.4982 27.0786 187883.17 0.1709566 0.1390783 C.1429964

__.4 7 ? 25_000 49.4940 --- - -- 27,4781 1828H2 1? ---0.0775274 - 0.1384673 . . .

- 0.1428051 180 25.167 49.4861 27.0777 182878.62 0.2804229 0.1396037 0.1426675 181 25.333 49.4851 27.0765 182874.97 0.2879662 0 1405768 0.14:5089 182 25.500 49.4710 27.0742 182878.20 -0 2547444 0.1379961 0.1424034

_._18 2 25.667 t9.4J42 27,475a !s2844.94 0.2570594 0 1487670 0.1422748 t

4 O

1 e 1

O e

TAELE 4 '

, /Page 5

M M -

M

~~ ~~ ~ ~

TENNESSE-VALLEY AU THO R I T Y.-- ---

SEQUOYAH NUCLEAR PLANT tlNIT-2 __ . .__ _ _ _ _ _ _ _ _ _ _ _

EONT AINMENT -LF Ah AGE ME Asilr.F ME N T TEST'

SUMMARY

-- - - ALL - COMPARTMENTS .

12.0 PSIG VERIFICAT!9tJ

_ HOURS AVERAGr IORRECIEn I(17 At_ M ASC P I-P IO T AL- TIME tt ASS .

SAMPLE SINCE TEMPERATURE PRESSURE OF AIR LEAK RATE LEAK RATE LEAK RATE STAU  ! M-G --F,4 (PSIA!  ! LSM1- -- P 5 R - D AV ! 4%-PER DAY 1 -4 % - PEF - D A Y 1 14 0.000 49.A302 27.0694- 182849.12 0.0000000 0.0000000-- -- 0.0000000 -

15 0.083 49.4289 27.0690 182847.e7 0.3618604 0.36186C4 0.3656420

!! Oc167 19.4306 27.0689 182846,44- 0 1944714 -0.2781648 0.7770018 17 0.250 49.4313 27.0686 182844.31 0.3724804 0.2929346 0.2836498

-_18 0.333 49.4237. 27.0676 1828.19.86 0.71J1124 0.3980601 --- 0.3721:57 --

09 0.417 49.4247 27.0667 182832.77 1.1250294 0.5434096 0.5045708 20- 0.500 - 49.4178 27.0663 -182832.19 0.01137035 --0.4668046 - - --- 0.5060743 ---

21 0.583 49.4200 27.0661 582829.86 0.3668193 0.4525181 0.4950500 22 4.855 49.4143 27.0654 -1828/8.72 0 0 % 102', 0 3262148 -0.3846044 23 0.938 49.4063 27.0641 182823.06 0.8912154 0.3763735 0.3771999

- - 1.022 49.4010 27.0634- -182820.23 0.4456216 0.3820134 ---- _ _ 0.3758360 - - -

25 1.105 49.3935 27.0627 182818.25 0.3126785 0.3767817 0.3735777

- - 1.188 49.3924 - 27.0626 182818.09 0.0245936 - - 0.3520631 -

- 0.3416215 - - -

27 1.272 49.3859 27.0624 102819.34 -0.1949651 0.3160959 0.3435298 28 1.355 49.3902 27.0627 182819.70 -0.0566271 0.2931791 0.3230551 29 1.438 49.3856 27.0625 182870.41 -0.1107919 0.2697802 0 3021841 30 1.522 49.3844- 27.0620 182818.02 0.3764910 - 0 2751306- - - 0 2879760 ----

31 1.605 49.3815 27.0613 182814.47 0.5582753 0.2903132 0.2815915

--- - 3 2 1.688 49.3758 27.0606 -182812 03 0.3840897 - - -0.2949370----- --0.2778373 ---

33 1.772 49.3793 27.0596 182804.17 1.2384595 0.3392950 0.2867019

,34 1,855 t9 3793 27.0596 182804 23 0,4090490 0.3236137- C . 28930 6 9-35 1.938 49.3739 , 27.0596 187805.30 -0.1795470 0.3019654 0.?876433 36 2.022 19.3705 27.0594 182805.34 0.0049245 - 0.2897242 -- 0.2835461- - - - - -

37 2.105 49.3700 27.0586 182800.19 0.8125380 0.31040E9 0.2841863 38- 2.188 19.3571 27.0587 182805.05 -0.7657771 0 2694441- 0. 2 7 7 4 218 ---- ---

39 2.272 49.3598 27.0585 182803.64 0.2216016 0.2676874 0.2710985 40 2 355 09 3600 27,057/ 182795.20 -1,3281603 0 3052330- 0 2731354 41 2.438 49.3617 27.05'/7 182799.25 0.1502047 0 2799344 0.2748503

- 42 ':52? 49.359' 2740548 182791.47 0.4383046 0.3045016 0.2762401 43 2.605 49.3452 27.0564 182793.9R -0.3964501 0.2820875 0.2741325 44 2,488 49.3404 27.0557 182790.27 0.5854053 0.2914922 - - - - 0.2741995 - --

45 2.772. 49 3407 27.0554 182788.72 0.2437815 0.2900557 0.2735192 46 2.855 49.Me 27.4550 192787,91 2r1280477 0e2853267- M.27250M 47 2.938 49.33'O 27.0542 192781.86 0.9579763 0.3042482 0.2744440

.48 LO2? 49433f 27.0534 1827JS.4? 0,5343738 4.3105879 - 0 2777623 -

49 3.105 49.3325 27.0539 182782.22 -0.5903747 0.2863931 0.2744855 TABLE 5 Page 1 -

M M M M M M M M m -

m m

- - TENslESSE- V ALL E Y AUTHORITY --

SEQUOYAH NUCLEAR PLANT llNIT-2 _ _ , _ _ _ _ . _ _ _

- -- --CONT AINMENT -tE A A AGE ME ASHRFME N Y

  • TEST
  • SUNNARY

.. - All- COMPA'tiMENTS - - -

12.0 PSIG '.'E R I F I C A T I O N . _ _ .

P-7-P IflTAL TItt8'  !!ASA umine __ AVER AG r encorerrn Yt1Y t f MASC OF AIR LEAK RATE LEAK RATE LEAK RATE SAMFLE SINCE TEMPERATURE PRE 3SURE

". 9 " ?  !! PER-BAY?  ! M ER-SAYS  !!* PEA-SAY4-STAA!  !?rn " ' ' PSM ?

27,4537 142746.f5 O_44&S443 0.2600029 - - - -0.2747467 - -

- 50 - 1 239 49.3344 0.2725324 51 3 272 49.3295 27.0535 1827A1.31 0.1009646 0.2754427 77 0520 192773 25 tv2706807 0 3001455 ---0 2746546 ---

52 3 355 09 3231 0.7767757 53 3.438 49.3200 27.0514 182769.64 0.5602520 0.3nA6432

-- - 5 4 -- 2 522 49 4129 27,05&2 192772 46 -4,3317281 - 4 29 034 2 4 - ---- - - 4. 2 76 R3? ? ---

49,3178 27.0504 182764.70 1.1599244 0.3nS4469 0.2797052 55 3.605 0.2603405 si 3.488 '9,4124 - 27,4503 192744,49 ^ 219187?

. 0.298485 %

57 3 772 49.3042 27 0495 182763.86 0.3521754 0.2996600 0.2813548 27.0492 1927'. M 5 0.1426050 0.2942702 O 28 217M 59 3.9&S ^94424 8.2821786 59 3.930 49.3044 27.0491 1827A?.03 0.1379172 0.2929190 16 2:0?? 494aSo " - 0 '88 4 82754.39 %58 L2253 a.2988350 0.3826S'3 -

61 4.105 49.2984 27 0487 182761.38 -0.5024253 0.2826277 0.2817368 4945t9 h  ? ? - c .e 5 18224& 35 4:03!' A3276851- -  % 2798342 4? A:18o 0.2786368 63 4.272 49 2978 27.0481 182758.23 0.4975657 0.2818714 2'_4445  !??762.49 --2.5^"?d62 0.2444*'3  % 3754645-----

d' ' 355

_ ^* ?"'d 0.2739536 65 4.438 49.2935 27.0476 182759.55 0.39R9767 0.2674077 en 9

TABLE 5 Page 2 -

e

lI 4

4 .

I

!I 1

1 iI i

l FIGURES I

I E

t l

1 I

e e e e sum uma e num m IME m M M IEE M M 4

SNP "2

! TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST METAL TEMPERATURE

.in

.384

.87.

.lM m

N m ... ,

a y ..

m

, 5 ..

r

_: g .in \

i s

v ... _ \,

.. A

,,,, \ -

^

N  % g "a s e e se is s.  :: e. er as se se TIMECHRS)

FIGURE 1

f f

S E 4 1

. . T Mt8 E

L e8 MS t

_ P Ge s

a OI o

C e

f OI T 0 S .

A 0 R Z

tt u

4M 2

uf 2

- si .

sS SS Et t

e f

%R 0M PQ I F R T

R L

- a C 4

. t

_. s I

3 1 P 8-

- G 2 01 0

II N

I 4R 2 M C0 0 L0 N UT 1 0

SC 0ti E' 2s 2e RP OS TII CI A

E I

I S

T

~

N E

V S S s. .

E ft o 48t 0 M l

f A

F 2 U

O_

E G

A T

S 4S G

e e

DN 5 LO .

C

_

  • 0HR 0

UIT SC 0 S.

2 N 0R E

t O

f A

N l

  1. _ 9 S 4 R 2H tC fP 0S T8t Se 8D .

E R

U Q. _

q 2 C8 G E _ u JL A

E I S

S R F

- S_ E R 2 4s sts 0y

- T P g E

R R l

i C f

- O 0 0

0SR

- N _

4 2 M 0i 0t 2e 1p

  • s 0 01 t i

4e d 2t TY n o ErOre TfT0 e

tE Oe 0 uT _

8 G s r AE .Dr$ou I

TL T TEOL p

sf7 A T I S sic4 A. 0 Z

tA CE . U =ET

,s m e af t S 1 A

S Ea E E

f PN ET 0- _

0 T vC S AC I 3s 3 YIT Ef f - 9ar M

E Ares 2 0w 3 0s sri aEu RU0 s

YA E

- 4e 2g t

sC e s 8t 0r sio a 0eB _

LAs s

s

- tl A

L s C A o l

f 4

$2s 9e 8p t

I F

R Z t 4

'st v 5t U -

  • i t

5 8e 0P E

R 4s t 6S 5t P Me 4e C\

O g

Ip 0l

. ?

l

il l

lI

.i

, '\

N .

in

/ i s -

' N

'E / L

\\

l l gh md hDPE-1 l

l l%

'- , \

i )

/ / i l.P l:- 10 l'Di:- ) i 1 lDPF-12 i '

bPE-13 I 7

!I 2

l, i

I I

/

I l

9 3 ,

if $ _ __.5 j l DPE-2

,  ! t l l

' l

! DPE-7 l U +4 DPE-8 h ~

< a,,

i s DP E.- 4 ,

gE .3_ ", " 'k . 2 I!

,PE.3 I j -.

~

! I I ,-,

f )

Rl

\ /

jl

}

nPr-n l'.

7- _

t .

y i

1 tg L. . __ . , ,L v ' ~"

_1g t= . <- - - -

~

i h5 'N I fM j

! w ^ c\ - e i

-J N

lI T,, -- i s l l'

l -

DPE LOCATi g l

y I =

FIGURE 3 I . _ _ _ _ _ - _ _ _ _ _ _ - _

1 1 i l

RED-1 i

3 wwW N 4

i

/ \ .

l / RTD-2 'y i

[

/RTD-H f

Rip.S RTD-6

'N -

/ O R >- 7 '

irI D- 15 /

i RTD-18 RTD .6 / RTD-4 i RTD-3 I \ RTD- 19 TD-17 \  ;

j RTD-20 E J EE! 1 n

E I

, I /' lgil-26 d FI, \

g I .

I g RTD-49 RTD-25 . RT D-4 8

'RTD-47 g l l ,

E 4

O I f

!E l d

RT;)-9 B

l ,j H RTn-in w I

I c--[

RTD- Il RTD

'l

! j H1b-22 l

i g qf j

+ ,q'f~

}I RTD-13 b (TD-Il WE 1TD-14 RT D- 21.

RTD-36

_ ,u "#' k  :

g- 1 .

j l 'i I RTD-27 RTD-10 E . -,.1 TD-E [ g ]

RTb-34 TD-35. ,

'd, i

_j RTD-11 b , w; 'ai ---

d l

!=

' ~~ .1

{ iJ V "l~ "

/ RTD-28

/ RTD-33 a a l

} <TD-19 l5 m _

gg - <T "- $2

{ ,g ,7 - __j l l

~

gjg_43

( y i

_m" RTD-39

_a RTD-40 L yty _44 I RTD-41

l
RTo_ s ..J RT D-u g .
g ,

3 RTD-46 ig --- -

RTD l.0(.'AT it)NS

!I FIGURE 4

) , '\ L- c.; ,,,-,

1 <

j l ,

y

\ "ISyf 4\

j- \,,> ) \

I p E ~% . -

)

[

  • s i

~-

' DPE "I , ,

l - \

g.

) ,fdk ~ ! (D: ~ .. / N f[

'l[rD- 14 D

% '\

~

'_ j ,/,'. .

{ '

j RTD-3 \

[ '/

! ' ,s i ,

l

'/ ,l#

l ' N N

s. .

s

\

)

7,~ .. s, .

t .: \

,/

'/ \ .

j RTD '[\x' \

j / N: \ ,'

(n (.'

// ,

i

, q'RTD-io i

! RTD-5 ' 1 .

)  !,,;

',/'

s s . i-f i

.q' . . . ~Ed(d. "T "~ '

E E RTD-2 ,. . . _ .

RTD-7 g.-'

N l { , RTD- 12' E 4' DPE- 1 RT D- 11 k, \

~

r  :- . r'.

  • ' ,r 1,, 5f '

f i\ l

\ ) l

{ jl '

!i j i

l ' ,l i 1 l

.t .

l ,

\ -s , ,e '

pi

,)

\1 s% '. ,,/ i

\'.s 4 'g'

/, '_ .

I

_ . , s ty \\ .- - x f ,

s

' RTD-4 Nx E i', ' - -

'<,e \

s s - / \g ,

NN s -

/

N' , Q.y DPE-2 Is '. /

NJs / / <

j

/ ,-- /  ! /

f N

N-

.: <W --,g '* 0 / l

\

. . . ,1 - , . . . - /

x -

V'

/ J' I

N f

' /

' . /'

RT D-8 .

5 #

/

~

.6..

I Pl.AN-UPPER COMPARTMENT SENSOR I.0 CATIONS FIGURE 5 I

I ~~ ~

.=-=- -=--h ===-~-- ' x, I g#,d; 'F . - l^l_ s\

l.I

. _ . _ 'IN s '

% x ' '

s.

f - - -- - . ,

gN N I \

/ wI -

RTD-42 S '.

/ ,' '

j'

\

/ RTD

[ l \ 'g

/ , . . . s , i I / '

% ,4 , (

', / \ . \

/

D-: 9 RTN47

(/

s \ '

R1

/j RTD-48 \

N \t /,- /

13 I l, <

'q'RTD-35 hf/_ _,,_ ,'

RTD-34

' s

/ .- - . . . . .

k \

t I DPE-5

+ I q qfRTDt46. t ,

o ,,

\ RTD-29 -' "^

N /, -

m f I E

k O M,3; '-,

I '.

PE-3[ \ ,

s0

's

\

( s *' i .,tRTD- 3 7 N.% f -s ,'

RTD-36 j

/ RTD-3 1

~

g

' Y x RTD-25 I\ \

\ x

\'RTD-4N , ,

Y 1.

y - \ RTD- 6 ,

k\ '), \

i .,

N'

\

\ 'RTD-45 .

RTD-38 ,,

' ' .,; -_ .. 5 N Y ' R -

's '- RTD-30 - - - -

g 33 -

' ,e. " .'

\, .

j RTD- '

\ s, I

t

' . ~#

l N

RTD-31 4

N 1 , _

l PLAN-LOWER COMPARTMENT SENSOR LOCATIONS FIGURE 6 i ._ . . _ . _ _ . . _ _ . . _ - - - . . _ _ _ _ . . _ . . _ . . _ _ .

I

!I f

l i  !

i.

l

.g . - . . ~ . . - i x

\

~

-' . N. .

/

3- ] I!'_. . /

/ - \ \

\l '

j', /

y ,C ' ~ '

f p'y

g-Aq

/

4, .. S g

\

( .-

[ Lt

-- - .f .

- - ~-

! , i m.. . g .

\

1 l , W j 4

~'s. I s ,

I <

\

N ,.

'r t \s c'c

+ Q [

\

\ \ '

\.. / by 'y / %

/

iI ;4fg iu f f rr y y . ,; /

WA1 'w-...

ACj s " ~

/

i I UPPER ICE COMPARTMENT l!I iI FIGURE 7 I

.a a.a u _ --. . - , , ---a - - . . - - - _ _

h..

I '

!.a.,

h i .) . 4 4,

.a j 'I iI l

lI I '

N.

~

,',hY,-

ll

/

/

s

-r, 3 4

..-~. r

.s 4((f

g. 77 '

\

. .\\ \_\

/

ig

/

. 1 ,

l  !

^ f E, lm

- . ---- ~

- - ~. _ ..$ _

--]  ;-

j g

- l

\\ '

C y ' N ,.

_/

\

(, W 'e,5 -

igl

\ , .- &', .

i

/, /

's\(Nw/ %p ,

- +

s . -

O s l

.' Gl

'. y 1, 02 ,

N 1g ,

y l

=

s y. . - /o x~ ~..Q _ _ y'

!I

g - 1ce ces, s,,,

i j

B FIGUREt8

l1

g g s W M M M M E E E E E E E E E w acsr == ; :s:s;

- E S S i ._ ET;_E*

3o:-

t I r----- 7 -

I p

  • i; I ser< ct COMPUTER .N, REyc~E CCMYANC (#

s

./

. , 70 ' . .

y

".c. c.a q

: "; ~ ,

g, f,.

gp E. h."

105C C IN TEPFACE  %?C 8 , p 7 u _ _ __ __ _J -i j .9 ,

N . , , ..U-lJ 1

4 c, . v. ,<

i

- i l l PREDATA  !

l PLOTTE4 l l THUMSWHEEL l

. _ ,o-AE3'Y ,

,8 -

c c

, o o  !

i u o r i

lENSOR hDSGi 4ENSOR MENSOR iAENSOR

~UTSCE CON TAltiMENT s

TV*^* J' B-

[ '

A UPPER LOWER CO4FA,RTMENT' ICE UPPER SENSING LINEW W lower C0ap%RTnENT [

r? 't? > / / / / / s s / /s s s s s / s Wd sisi s s is 7 / s s ss s is s s s ///

SEMSING LINE'2.#

//! /

INS;OE CON TAINMEN T TVA J 8. 8 N

onn-t 49 cncico 616 SCANNER

RTD S ViSIG II date 1 J B-10 TEN- 100 CHANNELS ec CHANNEL contmi I f y UNITS 6i6 SCANNER \

onolog dato /x A 13 J. B. P "" -

DEWCELLS

/

s f 2 'signo! ) soo channeis 2 '

O SYS TE M L AYOU T TVA IN TEGRATED LEAKAGE TEST SYSTEM DEWCELL pg, 9 POWER SUPP._:Es

[ ...

f lI

!l .

\

lCE CONDENSER g _ UPPER COMPARTMENT lt I .

3;

,OpLOWER CE CoucEusee

! , COMPARTMENT

{,

{ E.

G .j; 1

!Qb N'l

'{

t 8 yf f ,

I l l

E j

I -

l

'E h

(g 6

.i

e e e e e as '

W -

M M Ei2 M M 1

l TVA-9P "2 i

CILRT

,,,, NASS LEAK RATE PLOT I

l l

, L l E e.as -

l A

. K -

l R ,

i A I

T e.4e _

E i

! I i N i

i s.es _

! P i E - -

! R l

D A ,,,, _
Y l

i

' -e.se I I I I I
a. 5. 13. 15, 33, 25. 38.

TIME CHOURS) i-

. , . , FIGURE 11 ,

4 1

a - - _ e __

I .

I I

lI d I

I ~'

I

~

i y

I ~ a.

.s -

I g@d cm 5 $ ,/

' ' ~

I I

I I _

s I

I .

I I I l 4 g

! !_ l l l l l E 4: (/) (/) HZ J 00 I

e e e m e e e m e e e m M M M M M M M TVA-CP "2 i

C1 tT 4, POINT TO POINY LEAK RATE PLOT l s. _

E A

K

, 2. _

1 R A

.; T E ,, _

t

\

1 Y l E l R _,, i D

A Y

-2. _

I I I I I

e. s. is. is. an. as. se.

TIME CHOURS)

FIGURE 13

_. _. w, a .- mg-A_.,h h- m . _ m _.4._ .. .%

S.P "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST TOTAL TIME LEAK RATE

% PER DAY n

72 as '

88 I a;h ,

i e E

o E.

E E

x a ,, l 24

? - ~? _C- - 'Y-

^ '

4:An y

e

  • ^ ^

e s e e  :: is is  : 24 er se ss as TIMECHRS)

FIGURE 14 i

n..- _ _ - - . , , - , . . _ - ,.--a .s - u . % a i

i SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST MASS PLOT UPPER COMPARTMENT I

.s.7.

1 a .i - l-z gn .

d .3o4  % -

o ("T ]

M 4 .l.3. E 'f'

[%

E .i = Y- 'a _;

W

...  % ~7h E ., 4-b

, .. k q

.ns Ei 1

1

...,. '] -

~

! ~ ^

. . in is i.  :: e. er

  • s. se TIMECHRS)

FIGURE 15

M M M M M M M i

SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST NASS PLOT i  !.0WER COMPARTMENT i ss a

-  %,1 i

Q ggagg A 3 -

n- q ,

E m. L 4

E 4

m ,. \ .

I

e ==== k,.-

i 8 '

k.

I 5 4IE w s. -

l TIMECHRS)

FIGURE 16

m M M M M M M M M M M M M M M M M M M i

SNP "2 TENNESSEE VALLEY AUTHORITY i FULL PRESSURE TEST MASS PLOT UPPER ICE COMPARTMENT 1

l i s) 4 -

i A

7

- Ved,P -

g-- 1 y vy 7

%~ .n ly "\

EL ,,

%M a-Q.

v i

b N 9 ,

TIMECHRS)

FIGURE 17

m a m SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST I MASS PLOT LOWER ICE COMPARTMENT

==u can 28E12 i s O

.Y .2EE44 -

u .

~

E z

nm (i..

E']

E g um 'hhy

) 2$ 464 ---

' N I to a

4 x nm I 8 J 28444 D# -

nm . .m L_

17

      • ". . . .~ in is i.  :: a n 3. as s.

TIMECHRS)

FIGURE 18

m m m m m m m> m m m mm m aus m me e m SBP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST VAPOR PRESSURE PLOT UPPER COMPARTMENT se a

U g3. _

$ 'A y sus ,

e s- s#,,y .

$k sig j .

m _ k hM wh._

= g.,

r wp% .

{ Aj J V

@ m _

1 I !'

h.R m em y y

a

=>

.4 e s e e it is is at 24 27 se ss se TIMECHRS)

FIGURE 19

Sif "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST VAPOR PRESSURE PLOT LOWER COMPARTMENT sm -

l sie u u

?> m wh 11 M

1

a. g ==

x

' k. 'l-e 4 i

> = _ l

~

E!

w.- i h .,

I E .

n.

o .= k-i o

E 479 Q(

471 L a

9%

e s e e is is se si 34 er = = =

TIMECHRS)

FIGURE 20

l SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST VAPOR PRESSURE PLOT UPPER ICE COMPARTMENT 3 ___

4 ,84 y a b

La a 372 ia' ,,,

E gS= ,.

?

y9 E A *** . '

2 . i, L

h i n'd . 4 Y' 'l S. n a l M ] h"k [ l 'h.i dM A "i f 1 d l .,A D ,,

p .c y -

pn p3 .g p1 p 9,t ,,

y e

t Sit 27 38 SS M S 3 8 e it 15 18 El 24 TIMECHRS)

FIGURE 21 ms.a

SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST VAPOR PRESSURE PLOT LOWER ICE COMPARTMENT sse m

0 M M " ,,

a ' 4

', O 322 -

!' E 'l ', .

x Sm

k 3,, 'ln .

'I t

sie i

'O ie ,,.

U" M" ,1 T .

4.

P

? " ,,, <-

nl ~JW TA "

Y l{' I ,,

! - ~V F1 -

(1 n

..f ,.

e M

3 3 7 see 3.( '.

i g ..,

see ,

e 3 e e er is to at 24 rF se ss so TIMECHRS)

?IGURE 22 i

SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST TEMPERATURE PLOT UPPER COMPARTMENT -

! eise c a rs .

n Slet b ""

M R .

I a en ht 5

e 3 ae,ee 8044 i

EA m sese g 8824 8

= esir ___

E

~

, u e s e e is is is  : to n se ss se TIMECHRS)

FIGIRE 23 l

Sif *2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST TEMPERATURE PLOT LOWER COMPARTMENT 8276 0294 ; _

e N 3

[ 0218 g

55  %

p M4 \.

b

[ 6182 g ette etet O

g 6154 N d

e:44 (

etSt g

ette -

3 g a M N ,

gg 24 U "

TILE (. HRS)

FIGURE 24

SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST TEMPERATURE PLOT UPPER ICE COMPARTMENT 153 i

152 v 150 E

s - k, 5 i. O e

6 i4e wg g ,

I p- L d l .

! 9!g47 Pm A. M

i. ~ .. -

f f \n kR I

gg ' .N ,

e l '\ '1 % n n
,:s e ..

B i4. "

'- 1 N.

TIMECHRS)

FIGURE 25 1

M M M M M M M M M 1 F' t

SNP "2 TENNESSEE VALLEY AUTHORITY FULL PRESSURE TEST TEMPERATURE PLOT LOWER ICE COMPARTMENT ms im' l

c g

'- k,a .

s g%

a  :-

m - k i l ,iss E a ,,

X .

\

a. isss vt; \ -

!w ,,,,

V \A*

M = }#

$ 8- \ i S is,. l

'" a ' s e e se

~

is is ei e4

\ er se se so I

TIMEGRS)

FIGURE 26 i

i SAP "2 TENNESSEE VALLEY AUTHORITY VERIFICATION TEST METAL TEMPERATURE 88 7 i

.ii. (

t Sill

\\

esas e xk

! $ sier l N

=g .

]

Ee y

P-9006 N b

      • 8

, :i A g i

O z

\ -

6 7 \

ese4 s >

,, A m s ,

se7s . . . it i. = ,g = = = . . .

TIMECHRS)

FIGURE 27 l

l 3 _y ug *""

VERIFICATION TEST i

e.ee MASS LEAK RATE PLOT ..

i l

l

( L a.se _

1 E

! A l K I

) R e,4. _

i A

) T l E i

i T j Qe.se _

_~ ~

i X i

P E e.2e _

, R D

2 A

S.le _

i h e.ee I I 3 e, t. 2. 3. 4* 5.

TIME CHOURS)

FIGURE 28 l

4

TVA-StP "2 l

VERFICATION TEST is2 sea.

MASS PLOT 1

1 4

1

182840. _

l 4

i l

i 162820. _

M

! A S '

j S isesas. _

l 7 i N

! L B

! M 182788. _

I 182760. _

182743. , , , , l S. 1. 2. S. 4. 5.

i TIME CHOURS) -

FIGURE 29 I _ _ _ _ _ _ _ _ _

5

,4 T

O i L

_ P E ,3 T

A

)

\ S K R A U O 03 L H C ER U

E GI M F I

,2

. T O

T T

N I

. O P

,t S

3, e

e.

0 0

a

s. - .

, i 0 a -

LEAK RA E PER DA

l i

l l

l SAP "2

, TENNESSEE VALLEY AUTHORITY

! VERIFICATION TEST MASS PLOT UPPER COMPARTMENT

.is -

j .is44 3

s ..

g ..

N 0 M

.isz.

qs i

r V -

i s ..o4 -

W a

.. . U\./ T

  • i .ISte O

. .i2  %

i g

o els ---

Yu

.3544

.. h b

. . = = = = . . .

. in i.

4

, TIMECHRS)

FIGURE 31

T =

I LI .

~

I i

' < N

>- g=

h > .

ll s i-5 /

/ "

E 0 E,_

I zo$

e z

r zl E

[

v

" ' A $

=

ONSo

)

i a tw . -n m 0m 0 g g

I I w wg H<

kE m w

. b in w 2 < .

3 $m > S / .-

e

z .

i z  ? .

.i i ."

g .

s ,/ .

/

\ -

t 3

Iflilill!Illil (W97)SSYW 1N3W18VdWO3 83M01 lI

'I i -

3

l SNP "2 j TENNESSEE VALLEY AUTHORITY VERIFICATION TEST MASS PLOT i

UPPER ICE COMPARTMENT l

. sis

, -. /\

s g - f3 a I \

.s I \

\> rA l!,_f nl n ,

A/ h/\

~

E ", / \ /\

Al l l . l N

N T h /

e . . , .

e . . , ,

Y \ / \A-v y

./

85 4es s/

Uy i

! n. ... ... . ... ... .. .. . . .. ... ...

TIMECHRS)

FIGURE 33

m e e e m W W me em e m e m m m m l STP "2 l TENNESSEE VALLEY AUTHORITY VERIFICATION TEST MASS PLOT LOWER ICE COMPARTMENT ne.

2 set asee 3

$ " \

2 E

g 1

" \ A 1

Q f

5 v \

$ m e. - \

e l. \-

g 4. -

U l% >m

~

a i v g i s

~"

204,2 l

3

\n' --.. ,Tn i- L/

l TIMECHRS)

FIGURE 34 ,

L

lI i

l

> )

lI II

!I il I APPENDICES I

I I

I I

I I

I I

I

I APPENDIX A I ERROR ANALYSIS I Equations and derivations for these equations can be found in Appendix G of Proposed ANSI N-247/ANS-56.8, Draft 1, Revision 3, June 25, 1976.

Assumed conditions at the time of test:

P = 27 psia T = 5140R I Td

$==30F 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Using the Absolute Method:

i

1. Total absolute pressure:

I No. of sensors: 5 Range: 0-30 psia I Measurement system repeatability error (Ep ) = 1 0.0005% reading =

i 0.000135 pala (p=(1/400,000)x30 psia =0.000075 psia e p = t ((E p)2 ( p)2} 1/2/(No.ofsensorsf

, e p=1 0.0000691 psia

2. Water vapor pressure:

!l No. of sensors: 13

]ur Sensor repeatability error (E): i 0.5 F Measurement system error ((), excluding sensor: i 0.001 0F At a dewpoint temperature of 300F, the equivalent water vapor change (as determined by the ASME calculation for vapor pressure) is:

e py = i {(Epy)2 ( )2 1/2 / (No.ofsensoraf1/2 E py = i 0.50 F(0.00167 psia /0 F) = 0.000835 psia jpy = 0.0010F(0.00167 psia /0F) = 0.0000017 psia epy = t 0.000232 psia

!I lI lI I - - - -

i t

3 Temperature No. of sensors: 49

.3ensor repeatability error =t 0.02 0F

'I Heasurementsystemerror({),exludingsensor=i0.001F 0 eT

  • i (g) +

(k) / No. of sensors I eT = 0.002860R I 1

4.

I FOM l#

21e p 2fe p 2e\

FOM = -+

00 i

+  ! . l 1

t (p qp Tl _

2400 2 .0000691 . 0.00023? .

0.00286 FOM = i FOM =1 0.00149 %/ day or t 0.00006211 %/ hour

I lI 4

!I

!I

!I I

I APPENDIX B LOCAL LEAK RATE TEST

SUMMARY

A. Type B Tests Two iresthods were used to perform the type B tests - the 6bsolute method I (pres.,one decay) and the volumetrics maso flowmetor method. Both methods use aie or nitrogen as the test medium, with the testable volume pressurited to a designated test pressure. The absolute method determines the leakage rate by a measured pressure drop during a set time

,I specified in the applicable preoperational procedures, TVA-2B, Containment Vessel Pressure and Leak Test - Testable Penetrations, and

?VA-3, Containment vessel Preseure and Leak Test - Personnel Air Lock.

I The Volumetrics mass flowmeter makes a direct mass flow measurement with readings given in standard cubic centimeters per minute (SCCM).

All testable penetrations, with the exception of those listed in this appendix, were tested prior to the performance of the CILRT. These penetrations were tested following the ccmpletion of the CILRT, and the leakage rates were added to the total leak rate.

Any penetrations or hatch covers opened after the completion of the CTLRT will be tested prior to unit startup under the applicable plant-approvec surveillance instructionis.

A summary of all type B test data is included in this appendix.

B. Type C Tests Three methods were used to perform the type C tests--an airflow method, a water displacement method, and the volumetrics mass flowmeter method.

I The airflow method consists of a rotameter flow facility in line with the testable valve through a test connection. An air supply is connected to the rotameter facility, which measures the flow ot air necessary to I replace the air leakage past the valve being tested. From this, a leakage rate is determined.

The water displacement method consists of a calibrated water test tank I equipped with a sight glass. A timed water level drop is measured to calculate the leakage past the valve (s) being tested. A separate air source is used to maintain the water pressure at the prescribed test I pressure. A special " water inventory test" is conducted on containment spray, applicable only to valves FCV-72-2 and FCV-72-39.

The Volumetrics mass flowmoter is also used to conduct type C tests. The I re.alts of these tests are noted in the summary of type C data in this appendix.

I All testable containment isolation valves were tested prior to the performance of the CILRT.

I I

I

Any maintenance action or repairs on containment isolation valves subject to type C tests which would affect leakage from primary containment will I be retested under the applicable plant-approved surveillance instruction before unit startup.

A summary of the data for all type C tests is included in this appendix.

I Penetrations in water-sealed systems subject to inventory restrictions and penetrations whose leakage might bypass the shield building emergency gas treatment system are identified in Appendices B.2, B.3.1, and B.3.2.

I I

I I

I I

I I

I I

I I

I _ _. - . . _. . _ - . . .- -

APPENDIX B.1

SUMMARY

OF LOCAL L,EAKAGE RATES I Type B Leakage:

A. Bellows 0 3159 SCFH B. Electrical 0.1798 SCFH C. Resilient Seals 0.1631 SCFH D. Air Lock Doors 13.3584 SCFH Total Type B 14.0172 SCFH Type C Leakage: 1.5892 SCFH

Actual Maximum Allowable

= Total (Types B and C): 15.6064 SCFH 141.9 SCFH Pene?, rations defined as

! potential bypass leakage paths: 1.0401 SCFH 59.1250 SCFH

! Penetrations water sealed to at least 1.1 Pa subject to inventory lg restrict'ons:

'3 A. ERCW discharge 0.0040 SCFH 0.24 CFH
B. Containment spray 0.0000 SCFH 0.08 CFH
I 1

il

!I lI lI l

i I

II l

M M M M E W M E E E E M I

APPENDIX B.2 Sheet 1 cf 9 TYPE C TEST DATA Penetration System "lalve Test Individual Penetration Nu:nber Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

X-4 Ventilation 30-56/57 1-16-81 0.0000 0.0000 X-5 Ventilation 30-58/59 1-16-81 0.0000 0.0000 X-6 Ventilation 30-50/51 1-18-81 0.0000 0.0000 X-7 Ventilation 30-52/53 11-13-80 0.0000 0.0000 X-9A Ventilation 30-7/8 1-16-81 0.0000 0.0000 X-9B Ventilation 30-9/10 11-13-80 0.0300 0.0000 X-10A Ventilation 30-14/15 1-16-81 0.0000 0.0000 X-10B Ventilation 30-16/17 11-07-80 0.0000 0.0000 X-11 Ventilation 30-19/20 1-13-81 0.0000 0.0000 X-15(2) CVCS 62-72/73/74 12-29-80 0.0000 0.0000 62-77/662 12-29-80 0.0000 X-25A(2) Sampling 43-2 11-25-80 0.0000 0.0000 43-3 11-25-80 0.0000 X-25DI2) Sampling 43-11 11-25-80 0.0000 0.0000 43-12 11-25-80 0.0000 X-26B(2) Control Air 32-103/341 2-08-81 0.6811 0.6811 32-348 1-26-81 0.0000

M M M M M '

E E E E E E E E E Appendix B.2 Sheet 2 of 9 Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leak;qe (SCFH) Leakage (SCFH)

X-27C(2)(1) ILRT 52-Inboard 11-18-80 0.0000 0.0000 I

52-Outboard 2-18-81 0.0000 X-29(2)(1) Component 70-89/698 12-06-80 0.0000 0.0000 Cooling 70-92 8-16-80 0.0000 X-30(2) SIS 63-71 1-15-81 0.0000 0.0000 63-84/23 12-30-80 0.0000 X-34(2) Control Air 32-111/385 t-25-81 0.0000 0.0000 32-387 1-13-81 0.0000 X-35(2) Component 70-85/143/703 8-16-80 0.0999 0.0999 Cooling X-39A(2) SIS 63-64 12-16-80 0.0000 0.0000 77-868 11-13-80 0.0000 X-39B(2) Maio Coolant 68-305 11-21-80 0.0000 0.0000 77-849 11-06-80 0.0000 X-41(2) Waste Disposal 77-127 12-02-80 0.0000 0.0000 77-128 12-02-80 0.0000

m W W m W W W W Appendix B.2 Sheet 3 of 9 Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

X-42(2) Primary Water 81-12 8-12-80 0.0000 0.1141 81-502 11-21-80 0 . 1 1'11 X-44 CVCS 62-61/639 12-22-80 0.4307 0.4307 62-63 3-20-80 0.0000 X-45(2) Waste Disposal 77-18 11-05-80 0.0000 0.0000 77-19/20 11-05-80 0.0000 X-46(2) Waste Disposal 77-9 11-14-80 0.0000 0.0000 77-10/84-512 11-14-80 0.0000 X-47A(1)(2) Ice Condenser 61-191 12-12-80 0.0000 0.0000 61-192/533 12-12-80 0.0000 X-47B(l)(2) Ice Condenser 61-193 12-12-80 0.0000 0.0000 61-194/680 12-12-80 0.0000 X-50A(2) Component 70-87/60( 10-25-80 0.0000 0.0000 Cooling 70-90 11-26-80 0.0000 X-50B(2) Component 70-134 1-20-81 0.0868 0.0868 Cooling 70-679 1-14-81 0.0000

m M M M M M Eam M M M M j

Appendix B.2 Sheet 4 or 9 Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

X-51(2) Fire Protection 26-240 10-23-80 0.0000 0.0000 26-1260 11-06-80 0.0000 X-52 Component 70-140 12-03-80 0.0000 0.0000 Cooling 70-692 12-03-80 0.0000 X-56 ERCW 67-107 11-16-80 0.0000 0.0000

, 67-562D 12-20-80 0.0000 X-58 ERCW 67-83 11-16-80 0.0000 0.0000 l 67-562A 12-20-80 0.0000 X-60 ERCW 67-99 11-16-80 0.0000 0.0000 67-562B 12-20-80 0.0000 X-62 ERCW 67-91 11-16-80 0.0000 0.0000 67-562C 12-22-80 0.0000 X-64(2) Chilled Water 31C-222 1-07-81 0.0000 0.0000 31C-223/752 12-20-80 0.0000 X-65(2) Chilled Water 31C-224 11-16-80 0.0000 0.0000 31C-225/734 1-07-81 0.0000

M M M M M M -

M M Appendix B.2 Sheet 5 of 9 l

! Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

! X-66(2) Chilled Water 31C-229 11-16-80 0.0000 0.0000 31C-230/715 11-26-80 0.0000 X-67(2) Chilled Water 31C-231 11-16-80 0.0000 0.0000 31C-232/697 12-06-80 0.0000 X-68 ERCW 67-141 12-30-80 0.0000 0.1184 67-580D 1-12-81 0.1184 X-69 ERCW 67-130 12-30-80 0.0000 0.0000 67-580A 12-30-80 0.0000

X-74 ERCW 67-138 1-16-81 0.0000 0.0000 67-580B 1-13-81 0.0000 X-75 ERCW 67-133 12-30-80 0.0000 0.0000

, 67-580C 1-13-81 0.0000 X-76(2) Service Air 33-722 12-24-80 0.0000 0.0000 33-739 12-24-80 0.0000 X-77(2) Demineralized Water 59-522/529 10-31-80 0.0000 0.0000 59-633 10-21-80 0.0000 X-78(2) Fire Protection 26-243 1-31-81 0.0000 0.0000 26-1296 11-13-80 0.0000

M M M M M M M Appendix B.2 Sheet 6 of 9 Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

X-80 VentilaH ca 30-37/40 12-05-80 0.0000 0.0000 X-81(2) Waste Disposal 77-16 11-05-80 0.0000 0.0000 i 77-17 11-05-80 0.0000 i

X-82(2) Fuel Pool 78-560 12-18-80 0.0000 0.0582 Cooling 78-561 12-18-80 0.0582 X-83(2) Fuel Pool 78-557 12-18-80 0.0000 0.0000 Cooling 78-558 12-18-80 0.0000 X-84A(2) Main Coolant 68-307 11-21-80 0.0000 0.0000

!68-308 11-28-80 0.0000 X-85A(2) Sampling System 43-75 1-07-81 0.0000 0.0000 43-77 1-07-81 0.0000

. X-90(2) Control Air 32-358 1-30-81 0.0000 0.0000 32-81/353 1-27 81 0.0000 X-92A Sampling System 43-207 1-30-81 0.0000 0.0000 X-92B Sampling System 43-208 1-30-81 0.0000 0.0000 X-93(2) Sampling System 43-34 11-25-80 0.0000 0.0000 43-35 11-25-80 0.0000

M M M M M M M

~

M Appendix B.2 Sheet 7 of 9 Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

X-94 A/B/C(2) Radiation 90-113 1-15-81 0.0000 Monitoring 90-114 2-01-81 0.0000 90-115 1-15-81 0.0000 90-116 1-15-81 0.0000 0.0000 l

90-117 1-15-81 0.0000 i X-95 A/B/C(2) Radiation 90-107 1-15-81 0.0000 Monitoring 90-108 1-15-81 0.0000 90-109 1-18-81 0.0000 0.0000 I

90-110 1-15-81 0.0000 90-111 2-03-81 0.0000 X-96C(2) Sampling System 43-22 11-25-80 0.0000 0.0000 43-23 11-25-80 0.0000

X-97 Ventilation 30-134 1-20-81 0.0000 0.0000 30-135 1-30-81 0.0000 X-98(1)(2) ILRT 52-Inboard 11-18-80 0.0000 0.0000 52-Outboard 11-18-80 0.0000 X-99 Sampling System 43-202 1-30-81 0.0000 0.0000

_ _ _ _ _ _ _ _ --\

M M M M M M M Appendix B.2 Sheet 8 or 9

?eaetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SCFH)

X-100 Sampling System 43-201 1-30-81 0.0000 0.0000 X-107t2) RHR 74-2 1-27-81 0.0000 0.0000 X-110(2) Upper Head 87-7/8/9 12-16-80 0.0000 0.0000 Injection X-111 Ventilation 30-46/571 2-07-81 0.0000 0.0000 X-112 Ventilation 30-47/572 2-07-81 0.0000 0.0000 X-113 Ventilation 30-48/573 2-08-81 0.0000 X-114(1)(2) Ice Condenser 61-110 12-10-80 0.0000 0.0000 61-122/745 12-10-80 0.0000 X-115(1)(2) Ice Condenser 61-96 12-10-80 0.0000 0.0000 61-97/692 12-10-80 0.0000

  • Penetrations Subject to Inventory Requirements X-59 ERCW 67-87/575A 11-15-80 0.0006 0.0000 67-88 11-15-80 0.0000 X-63 ERCW 67-95/575C 11-15-80 0.0000 0.0000 67-96 11-15-80 0.0000 X-61 ERCW 67-103/575B 11-15-80 0.0004 0.0004 67-104 11-15-80 0.0000

m m m m m m m m m m m m m e m Appendix B.2 Sheet 9 of 9 Penetration System Valve Test Individual Penetration Number Name Number (s) Date Leakage (SCFH) Leakage (SJFH)

X-57 ERCW 67-111/575D 11-15-80 0.0000 0.0000 67-112 11-15-80 0.0000 X-73 ERCW 67-131 11-19-80 0.0000 0.0001 67-295/585A 11-19-80 0.0001 X-71 ERCW 67-134 11-19-80 0.0000 0.0009 67-296/585C 11-19-80 0.0009 X-70 ERCW 67-139 11-19-80 0.0000 0.0009 67-297/585B 1-30-81 0.0009 X-72 ERCW 67-142 11-19-80 0.0011 0.0011 67-298/585D 11-19-80 0.0000 X-48B Containment Spray 72-2 11-13-80 0.0000 0.0000 X-48A Containment Spray 72-39 7-23-80 0.0000 0.0000

' Leakage from these penetrations is not added to the total type C leakage.

Notes:

(1) Performed after CILRT and added to total leak rate.

(2) Isolation valves sabject to bypass leakage requirements.

APPENDIX B.3.1 I" AIR LOCK DOOR TESTS 1

i Leakage Path Leakage (SCFH) Date Tested X-2A Resilient Seal Inner Door 0.0169 2-13-81 i Outer Door 0.0275 1-26-81 l

X-2B Reslient Seal

Inner Door 0.5106 2-11-81 l Outer Door 0.0127 1-24-81 f 'X-2A Overall 2.5267 1-31-81 eX-2B Overall 10.8317 1-26-81
  • ?enetrations subject to bypass leakage requirements.

4 I

4 l

i l

1 i

1 I

l I

I I

-~

l I l l

APPENDIX B.3.2 TYPE B TEST

SUMMARY

i I Resilient Seals i

I I Leakage Path Leakage (SCFH)

As Left As Left Date X-1 0.0000 2-08-81

  • X-3 0.0000 1-30-81 X-54 0.0000 2-19-81 X-79A 0.0000 1-26-81 X-79B 0.0000 2-11-81 X-118 0.0000 2-11-81 X-111 0.0953 1-26-81 X-112 0.0551 '-31-81 X-113 0.0127 1-31-71

'X-40D 0.0000 1-26-81 Total 0.1651 l'

! ePenetratione subject to bypass leakage requirements.

!I i

i

'I

'g  ;

'I  :

I - _ _ - -

Sheet 1 of 2 I APPENDIX B.3 3 TYPE B TEST SUPHARY Electrical Leckage (SCFH) As Left Leakage Path As Left Date X-120E 0.0021 12-30-80 X-121E I X-122E X-123E 0.0275 0.0042 0.0042 1-03-81 12-29-80 12-29-80 X-124E 0.0297 1-02-81 I X-126E X-127E X-128E 0.0042 0.0381 0.0000 1-03-81 1-05-81 12-29-80 X-129E 0.0000 1-02-81 X-131E 0.0000 12-29-80 X-132E 0.0127 12-29-80 X-133E 0.0064 12-29-80 I X-134E X-135E X-136E 0.0000 0.0000 0.0000 12-29-80 12-29-80 12-29-80 l

i I X-137E X-138E X-139E X-140E 0.0063 0.0000 0.0106 12-29-80 12-29-80 1-03-81 0.0000 12-29-80 X-141E 0.0021 12-29-80 X-142E 0.0042 1-05-81 X-143E 0.0064 12-29-80 X-144E I X-145E X-146E 0.0000 0.0021 0.0000 12-29-80 12-29-80 12-29-80 X-147E 0.0000 1-03-81 l

t I X-148E X-149E X-150E 0.0000 0.0000 0.0000 1-03-81 1-03-81 1-03-81 l

X-151E 0.0000 1-03-81 l X-152E 0.0000 1-03-81 X-153E 0.0000 1-05-81 X-154E 0.0000 1-05-81 X-156E 0.0021 1-05-81 X-157E 0.0000 1-05-81 X-158E 0.0000 1-05-81 X-159E 0.0042 12-29-80 I

I

Appendix B.3 3 Sheet 2 of 2 Electrical (Continued)

Leakage (SCFH) As Left Leakage Path As Left Date I X-160E X-161E X-163E 0.0064 0.0000 0.0000 12-29-80 12-29-80 12-29-80

g X-164E 0.0000 12-29-80 4

g X-165E 0.0021 12-29-80

, X-166E 0.0042 1-05-81

X-167E 0.0000 1-02-81 X-168E 0.0000 1-02-81 llu X-169E 0.0000 1-02-81 i

X-170E 0.0000 1-02-81 j Total 0.1798

!I 4

1 i

I l

i i

!I i

I I

I APPENDIX B.3.4 TYPE B TEST

SUMMARY

Bellows Leakage (SCFH) As Left Leakage Path As Left Date X-12A Inboard 0.0085 1-02-81 Outboard 0.0000 t-02-81 X-12B Inboard 0.0000 12-16-80 Outboard 0.0000 12-16-80 X-12C Inboard 0.0000 12-17-80 I- Outboard 0.0000 12-17-80 X-12D Inboard 0.0000 1-02-81 I Outbosed X-13A Iaboard Outboard 0.0000 0.0233 0.0000 1-02-81 1-03-81 1-09-81 X-138 Inboard 0.0000 *2-17-80 I Outboard X-13c Inboard Outboard 0.0001 0.0021 0.0000 12-17-80 1-17-81 12-20-80 X-13D Inboard I X-14A Outboard 0.0212 0.0000 0.0042 1-03-31 1-09-81 1-02-81 X-14B 0.0000 1-02-81

, g X-14C 0.0000 1-02-81

E X-14D 0.0000 1-02-81 l

X-15 0.0000 12-30-80 g X-17 0.0000 12-30-80 g X-20A 0.0000 12-30-80 X-20B 0.0000 12-30-80 X-21 0.0000 12-30-80 X-22 0.0000 12-30-80 X-24 0.0170 12-31-80 X-30 0.0191 2-09-81 1 7-32 0.0000 12-31-80 l

X-33 0.0000 12-31-80 X-45 0.0042 12-31-80 X-46 0.0106 12-31-80 E x-47^ Indo ed o o318 1-03-81 3 Outboard 0.0254 1-03-81 X-47B Inboard 0.0275 1-03-81 Outboard I

0.0318 1-03-81 <

X-81 0.G318 12-31-80 X-107 0.0170 12-31-80 X-108 0.0170 1-03-81 X-109 0.0233 1-03-81 K-14 0.0000 12-24-80 K-15 0.0000 12-24-80 Total 0.3159 I

I

APPENDIX C SPECIAL TEST INSTRUMENTATION I. Pressure Measurement: (5 Total)

Two quartz manometers for ice lower compartment condenser pressure.

Three quartz manometers for upper and lower compartment pressure, and ice upper compartment condenser pressure.

II. Temperature Measurement: (49 Total)

Upper compartment (14 Total) V = 651,000 cubic feet RTD-1 RTD-8 RTD-2 RTD-9 I RTD-3 RTD-10 RTD-4 RTD-11 RTD-5 RTD-12.

RTD-6 RTD-13 RTD-7 RTD-14 Lower compartment (25 Total) V = 395,000 cubic reet RTD-25 RTD-38 RTD-26 RTD-39 RTD-27 RID-40 RTD-28 RTD-41 RTD-29 RTD-42 RTD-30 RTD-43 RTD-31 RTD-44 RTD-32 RTD-45 RTD-33 RTD-46 RTD-34 RTD-47 I RTD-35 RTD-36 RTD-37 RTD-48 RTD-49 Ice condenser (10 Total)

Upper Volume V = 47,000 cubic feet Lower Volume V=183,787 cubic feet RTD-15 RTD-21 RTD-16 RTD-22 RTD-17 RTD-23 I RTD-18 RTD-19 RTD-20 RTD-24 I

I I

III. Vapor Pressure Measurement (13 Total):

Upper Compartment (3 Total)

DPE-1 I DPE-2 DPE-3 Lower Compartment (3 Total)

DPE li DPE-5 l DPE-6 Ice Condenser (7 Total) t Upper Volume Lower Volume DPE-10 DPE-7 DPE-11 DPE-8 DPE-12 DPE-9 DPE-13 I IV. Test Station Environment i

Temperature: 1 RTD l

E V. Atmospheric Pressure Measurement (1 Total) i i

g Total pressure: 1 quartz manometer lg i

VI. Containment Vessel Metal Temperature Meacarements (3 Total) j Temperature: 3 RTD 4

I l

i l

lI I

l I l

I _ _ _ _ , _ . - - - - ,-- - _ - _ _ - _ _ , _ . _ _ _ _ _ _ _

EPENDIX D CALCULATION OF AGREEMENT Appendix J Method A. Full-Pressure Test:

Agreement = M- RbAM Where:

LRM =  !\ 100"M xyx[(28.316.85 1 TR I ,

0.

60 /x (14.696) x (1.276787 x 106 ) x 28.3 6.85 x 5 ,

126,479.9158 R( FH) 153.4251 LR= 60 x 28,316.85 = x 28,316.85 =

60 72,408.5938 x (V) x . .5 LAM : *

  • 1 96
0. m 9 28, 6.85 x (1.276787 x 106 ) x x

. 9 ,

65,624 3745 L g_ /11 x 0.25 ) x gy) x 28.316.85 t P TA (100, 24 / 60 s x [N 14.696 / =

  • x (1.276787 x 106 ) x 28.3 6.85 x 100 2 2.126l=115,862.2430 AF,reement = (126.479 9158) - (72.408.5938) - (65.624.3745) '

(115,862.2430)

-0.0997 which is less than the 0.25 allowable.

1

' Percent per hour of containment mass ANSI N45.4 1972 Method If LA is replaced with LRM I Agreement = (126.479 9158) - (72.408.5938) - (65,624.3745)

(126,479.9158)

-0.0913 which is less than the 0.25 allowable.

l l

l 1

I APPENDIX E

!I ig References i

!g 1. 10 CFR 50, Appendix J, " Reactor Containment Leakage Testing for i Water-Cooled Power Reactors" i5 2. ANSI N45.4-1972, American National Standard, " Leakage Rate Testing of j

Containment Structures of Nuclear Service" 3 ANS N274, American Nuclear Society, " Containment System Leakage Testing l Requireuents" 1

4. Sequoyah Nuclear Plant FSAR chapters 6.2 and 6.3 l 5. Sequoyah Huclear Plant technical specification 4.6.1.2.

1

I l

l l

..