ML20059H188

From kanterella
Jump to navigation Jump to search
Nonproprietary Sequoyah Nuclear Plant Unit 1,Cycle 5 Restart Physics Test Summary
ML20059H188
Person / Time
Site: Sequoyah Tennessee Valley Authority icon.png
Issue date: 08/31/1990
From: David Brown
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML19302E203 List:
References
PFE-F26NP, NUDOCS 9009170033
Download: ML20059H188 (62)


Text

_ . . _ . _. _

'to * '

s . {; ;

, l',

' \ _1 l . 'it' 1

,Q]t<; . s ,

  • !- , _ _ i ,

e ' p I' f Gi .

-= j)'p

& ;y'w;Y.

=

a -

L g,a..  :

s. .,

y .

L, 3 . i ,,.a .,* ,,

)

. j_ , g-f I

- - t * **

oy3 ;, y' p .

s

- 4

- s

[i q : ',2 *

  • n '. < ;g t w 4 ', r .i-t t g 4

1

. .e .

  1. . ;r s:f-l f,'

n <

'l q ~ .

L3o- -<

l ti > r

[. '4; 5

a, .: -

4 i T.1 -

s e a.

Oj .

-1

' r WL

. . t

'PFEkF26NPl

,3-:

N a

1 .

r,

,-,1

- y dj o",1 T, -

- sequoyah'_ Nuclear Plant- , _f 4

.,,.a-e, 4

Unit 1, Cycle 15

. , ;a . .

h'1-g .
Restart Physics Test Summary '

.f.

cv l:.

i

,- .. g '~

-i t

  • ' "rt:

, =)

e ,

+ *

.t i  ?

, i

(

t g 1

','*f,

, m;. s.

u ,

s e .

i .

. 1 i [

iw,

n. /(r?

7 s

} hf 3 -}3-

.^ t >

g , , 5,-

.\

. . v, _

/ k i d % .' ,k

% ?' '

Nuclear Fuell

' D' y i

R' ,

PWR' Fuel Engineeringe , lg t

.o

s. ,

{n}j .s '.' ~ C "- ' ' gy y

.I Wjd , , 1

, .43 8

.J. .

(.e.. . h .i :

y/ * ' ' 1 ,

August 1990 o

.o

. ra -t.

i .4

.y-- '- i 4 e

(' l n#+.1 , , ,

i L Leroparea by- O #A o.t. - s /m /po

<;o Approved by: w - 7 Data f'/d 98 w-- f '

j j' h, k

/

y .e E'I L 9009170033 900831 PDR ADOCK 05000327

' PDC K. ; \ ..p.,

't

~

a ? r i,s .

%n ;s:e ' '; . < , i

" @) ,  ; ,

ygn ,

-+

fN

  • d; ,4

[NS g

_. ;.3 l:,;y c} % - l 4-w '_

l)hl p '

l'I

0. ;!i '

ABETBACT The Sequoyah Nuclear Pla'nt Unit 1,. Cycle 5, Restart Physics' Test

l. Summary covers the' period.from March-30,J1990 through-a' x August.7,::1990._--The report presents: restart physics-testLresults.
  1. 'and operational data forithe first 60:' effective /fu11-power days .

T -

~ (EFPD)'. The; tests-included are initial criticality, primary

.e . coolant critical boron' concentration, reactivity control, WN -isothermal temperature coefficient,7and power distribution o '

measurements. ,

a;;

1

d A-s,,

,I To 7

The results-in this report have been verified in accordance with:

31. - Nuclear Fuel' Instruction 5.3.

r , ,

-g g;. "

< Z / pyL 2

?/ '> 2. I. Martin s

..'.?'

-)*,

3 i

4 3

4 si

\

,\f? ,

'! S i

?.,

,i' t

-hb ' )

4 p ;jz

4;  %

,(

j 't kk^ fi t

t 5'-

>.{ q

' ' t

i' ]

jjjr 1 -

f

  • y m, db
  • 5

.9 -y t

I

_.., j--

1 .

J .~

+

y i /

f 't y 6 J

..t 5 I ,

'l.- _p

. JUT 4 _ ,

' Li TAMLE OF; CONTENTS .;

$,9> ,* 3 .

,A j I! !

f Section' - Title Page- j

r

.' ABSTRACT. . .. .. . . . . . .. . . . .. -. . . . . :. i t,n '

< ., ,  ? '

. q.

LIST OF TABLES.'.-. . . . . . . . . . . . . .' -. ... i iii <

LIST.OF FIGURES... -. . .. .. . . .;. - . .. . . . . '. -

ivm -

d

d. - s

, ., c*

.. 0- . INTRODUCTION AND CYCLE DESCRIPTION. .. .. . . . <. '1; j t

M '

2 . 0.' TEST PROGRAM

SUMMARY

.-. . . . . . . . ~ . .  : . . . . .  : ' 21  ;;

? i

-CORE REIDAD

SUMMARY

f. . . . . . . . . ... . . .' .

'b

- 3. 0 .2" . -(

, ,  ?

t V* ,

,- 34 .'O CORE PERFORMANCE. . . . . ... . . - . . . . - . .. '. '2:.

4 -

4.11 INITIAL. CRITICALITY . . . . .. . . . . . . . . . -

3. 9 g* -nt ai 4 t l , 4.2 CORE DEPLETION; . . . . . . . . . . - . . . . < . . . . . . . .3'  ;

< . .m-x- ~ q REACTIVITY' CONTROL.

4.3 . . ... . . .. .. . . . . . . . - - 4. 4 413.1- CONTROL ROD BANK WORTH MEASURER,*ENT. . -. . - .

4- q

, , , q 4.3.2 BORON l WORTH AND ENDPOINT - MEASim .3EENTS -. . - :4- . ,

, I4.4 ISOTHERMAL TEMPERATURE COEFFICIENT.FE.ASUREMENTS . .4'

, -t 1

%.m ,

4.5 POWER DISTRIBUTION ~ MEASUREMENTS'. ..-, . . , . . .. . :5 Er 4 . 5.1 : ' ASSEMBLY POWER DISTRIBUTIONS. .-.' . .?-.: -

. 6,, '

4 '4.5.2 FQ(2) SURVEILLANCE. .: . < . .... . t'. '. . 6 4.5.3- 'FDHN SURVEILLANCE . .. . . . . . . . . . . '6 f

, 4.5.4 INCORE-EXCORE CALIBRATION . .. .. , . . .. . ' 7: l e

i # 3 3

% 'l 9

h.-

ff g lE '

-,l l44

,.l'

,in 11 t i

l }y -tf )' 4'* ,

- . .. . . . -- - . . _ . ~ .. . ~ ~ . -

, ,e-_

  • p\ a:; <
  • s

< J v

1.10 {

/s , i <

-1 1,v sr .< < ,

j h-4 g f -

2 i

+- .;

.1,

l

!y1 ,

I 1

. LIST ~OF TABLEg:

.., y ,

j r i I

Table: Title t.m p - 3 si

.1.1- .SEQUOYAH UNIT 1,: CYCLE 5 CORE DESIGN PARAMETERS .. 8-  ;

3' l- ,

. -1.2 -SEQUOYAH UNIT 1, CYCLE:5~ FUEL SPECIFICATIONS. . . . -

9 ,

j

. 2 .1 =- SEQUOYAH UNIl~1,. CYCLE.5 CHRONOIDGY OF-STARTUP

" 1 f, PHYSICS: TESTS.. .1 . . -; .' . . . . . .u. . . .c. . .. . 12 D

m .o. .

1

% i2.2 .-SEQUOYAH; UNIT 1, CYCLE-5 SIGNIFICANT EVENTS 1

s

.y

SUMMARY

...c.. . . . . . . '. .. . . . . . . . . 13. H it .

K

, 4.3.1 SEQUOYAH' UNIT-1,LCYCLE 5 ROD SWAP INTEGRAL BANK.

-WORTHS.! . - - . - .- . .... . . i. . . . . . . . .. . . . 26 .

.i

'd

, +

.4.5.1 SEQUOYAH UNIT:6 4, CYCLE SLINCORE; FLUX MAP

SUMMARY

. 29 l

i

\ {1$ f t;<  ;

. , ,"v:

it s  ;

i 1 l

, /J p

I

l. 1 i 4 a

3 I. ; _, y.

';k k F ii H

i a < 'I l

I' ..

I s I Jh; , _i'

' f.f', ', i

  • ia

~.

1).

>g- l

,.i

< l l 1 1

.1

' 4 s

. iii

'!- ..g l / '

,f i ~ i 1

!_i . l ' ___._______r_---__- - - -

. . .. -- - - --. ~

e.. - .; _ ~ . - -

ko r_ ,,<

7, -> u ,

L 1p ' '

^

M -

(

t

.l ;

LIST OF FIGURES a

! i g

R. { . Figure Title o

m.3 f n ,

~.1.1' - SEQUOYAH UNIT 1,-CYCLE 5 CORE COMPONENT i

'iW r

CONFIGURATION', .~ . . . . . . ' . , . . . . . . . . .. .. 11 '

2.1 SEQUOYAH UNIT l', CYCLE 5 MONTHLY REACTOR' POWER '

n

' HISTOGRAM FOR JUNE 1990 . . . . . . .. .. . - . . . - . . . . (15' d

2.2 SEQUOYF3 UNIT.1, CYCLE-5 MONTHLY REACTOR POWER '

, HISTOGRAM FOR JULY 1990c ' . . .. . . . . , . . . . - . - . . . . '16' t ci 3 .1 - SEQUOYAH UNIT 1, CYCLE 4 FINAL BURNUP DISTRIBUTION. 17 l, . .. .

SEQUOYAH UNIT 1,. CYCLE 5 INITIAL CORE IDADING 3.2 -!

[

PATTERN . . . . .. . .. . . . . .E. .. .. . .. . . . . 18

[

4.1.1 SEQUOYAH1 UNIT.1, CYCLE 5 INVERSE COUNT RATE RATIO [

DURING ROD WITHDRAWAL FOR N-31. . .- ... . . . . .. . . 19' q

V r 4.1,2 ~SEQUOYAH UNIT 1, CYCLE 5 INVERSE COUNT RATE RATIO' I

DURING ROD WITHDRAWAL.FOR N-32. . . .' . -. . - . - .'. . : 20, h* ' '4 .1. 3 SEQUOYAH UNIT-1, CYCLE 5 INVERSE COUNT = RATE RATIO I VERSUS < TIME - DURING: DILUTION N-31. . . . . . .

. . 21 s l: '4.1.4 '5EQUOYAH UNIT 1,' CYCLE ~5 INVERSE-COUNT-RATE RATIO VERSUS TIME DURING DILUTION N-32. . . . . . . . . .- 22 .

l 4.1.5 .SEQUOYAH UNIT 1,ECYCLE 5 INVERSE 1 COUNT RATE RATIO-  !

L VERSUS-GALLONS OF. DILUTION'N-311 ... .. . . . ..

23

, 4.1.6 SEQUOYAH UNIT 1,. CYCLE 5 INVERSE' COUNT RATE RATIO

- N VERSUS GALIDNS OF DILUTION N-32 =.

K t-

. . . . :. .. . .. . 24

'.4.2.1 SEQUOYAH UNIT 1, CYCLE 5 BORON LETDOWN CURVE. . . . t25-4.3.1 SEQUOYAH UNIT 1, CYCLE 5 INTEGRAL BANK D WORTH. .. 27 4 g .4.3.2 ' SEQUOYAH UNIT 1, CYCLE 5 DIFFERENTIAL BANK D WORTH. '28 5

.4.5.1 SEQUOYAH' UNIT 1, CYCLE 5 REIATIVE ASSEMBLY POWERS

+

INC-5-F1-90-1C. . . . . . . . . . . .- . .. . . . . . 30 u .4.5.2 SEQUOYAH UNIT 1, CYCLE 5 REIATIVE ASSEMBLY POWERS ,

l INC-5-F1-90-3D. . . . . . . . . . . . . . . . . . . 32 1 4.5.3- SEQUOYAH UNIT 1, CYCLE 5 REIATIVE ASSEMBLY POWERS  !

INC-5-F1-90-4B. . . . . . . . . . . . . . . . . . .. 34 s

iv 1: - \ "' ,

l , , e

-. ,e8 ,

, , . , _ ,._ _.- _ . . _ . _ _ - m._. _ _ . . _ .

i

'(-

v'.{

[

) t ('

1

  • s 4 .

l 9 4.,

}

lnjy , j;, > * ,

-l

  1. ec 1 q

]w ,

j J

  • :i LIST CF FIGURES ~(continued) 'l i

0[ '

4.5.4- lSEQUOYAH UNIT 1, CYCLE 5' RELATIVE-ASSEMBLY POWERS 'U <

.I g +

INC-5-F1-90-5A.~. . ... . . . ., . . . . . . ' . .. . .- .36'

.)

4.5.5 .SEQUOYAH UNIT l', CYCLE 5 RELATIVE ASSEMBLY POWERS H INC-5.F1-90-6A.~.n p . . ... . .- . . . . . - . . . . . . - . . . 38 . j t

a , 4.5.6.- SEQUOYAH UNIT 1; CYCLE 5 RELATIVE ASSEMBLY POWERS N

-- INC-5-F1-9 0-7 B . . . . . . . . . . .. . . . . . ... . .

40 , l

'1 .

4.5.7 SEQUOYAH UNIT 1,. CYCLE 5 NORMALIZED AVERAGE AXIAL POWER' DISTRIBUTION INC-5-F1-90-1C . . - . . . . . . . . ..42 q t

ll 4.5.8 SEQUOYAH:. UNIT 1,-CYCLE 5 NORMALIZED AVERAGE AXIAL-k ',

  • POWER' DISTRIBUTION INC-5-F1-90-3D .

y

,, . . . . .. . .. .: 43. J i

rI Li 4.5.9 SEQUOYAH UNIT 1, CYCLE 5 NORMALIZED AVERAGE ~ AXIAL. 1 POWER ~ DISTRIBUTION INC-5-F1-90-4B . . - . - . - . . . . . . - ' 44: )

q r; 4.5.10: 'SEQUOYAH UNIT 1,.. CYCLE 5 NORMALIZED AVERAGE AXIAL o f , POWER DISTRIBUTION INC-5-F1-90-5A .-. . . . . .: .. . . . L45 ,

,]

a3 ,

a

[4'.5.11 ;SEQUOYAH' UNIT'1, CYCLE 5 NORMALIZED AVERAGE AXIAL' POWER DISTRIBUTION INC-5-F1-90-6A .=. . . . . .. . . 46

~E a 4.5-12? .SEQUOYAH UNIT 1,-CYCLE:5 NORMALIZED AVERAGE: AXIAL l -POWER, DISTRIBUTION INC-5-F1-90-7B . . . . . . .s -.-. . 47: a.

1 L4 *" ,4.5J13 iSEQUOYAHLUNIT,1,-CYCLE 5 LIMITING FQ~AT EACH AXIAL 1

? POINT INC-5-F1-90-1C.s.,. . . . . ' . - . . . .

. . = . .; . 48 '

q o.. y y- 4.5.14: - SEQUOYAH UNIT' 1, CYCLE: 5; LIMITING , FQ AT EACH AXIAL '

2 POINT INC-5-F1-90-3D. .: . . ~ . . . .. . . .' b. . .- . 49 e

.: ,o

'" ;4.5.15 SEQUOYAH UNIT 1,' CYCLE 5 LIMITING FQ AT-EACH AXIAL'~

, . POINT ' INC-5-F1-90-4B. .~ . . . . -. . ... . - . .. . .- .- 50-9 4.5.16 SEQUOYAH UNIT.-1,. CYCLE 5~ LIMITING FQ AT EACH AXIAL L 7

POINT:INC-5-F1-90-5A. .

.- .. . . .. .. . . - . . . . .. . 51-4.5.17 SEQUOYAH UNIT 1,. CYCLE.5 LIMITING FQ AT EACH AXIAL ,u p ,

'POINTcINC-5-F1-90-6A. .. . . . . . . . . . . . . . 52

, 3..

1 .

~ '

.4.5.18 SEQUOYAH UNIT 1, CYCLE 5 LIMITING FQ AT EACH AXIAL y 1,- POINT'INC-5-F1-90-7B. . . . . . . . . . . . . . . . 53 g,

'4.5.19 SEQUOYAH UNIT 1, CYCLE 5 K(Z) -

NORMALIZED. FQ(Z) AS A FUNCTION OF CORE HEIGHT . . . . . . . . . . . . . 54-w

, 4.5.20 SEQUOYAH UNIT-1, CYCLE 5 AXIAL FLUX DIFFERENCE 'i LIMITS AS A FUNCTION OF RATED THERMAL POWER . . . . 55 V ,

1

.i a g)-

., . .. -. . , - - . - - - - . ..- _~ - - ._ -

mm 3 5

.5' 4 5 1

'g' 1

.& A-t > 1 r ,

o A -

l'. 0 -IntrodEction"and cvele- Descrintion 0 ,

1

  • ' ( sequoyah unit 1Lwas shut'down on March 17,:1990,'ending-its- .

-fourth cycle of operation. During the 75 = day- outage, 81 of the ,

193 fuel assemblies'were replaced:with fresh fuel.- only-68 fresh d

' assemblies were. originally scheduled'for loading.inLeycle 5, but  !

.the cycle 5 core loadingzplan was modified-when ultrasonic fuel

. j',

inspection = identified leaking fuel rods in 2 assemblies scheduled:

for reins.ortion,- assemblies E13 and F64. ' Assembly E13 and three- a

, symmetric counterparts'were discharced. Assembly F64'was. ~ '

4 '. replaced by'a 2.1 w/o U-235 RegioF 1 assembly:from Watts Bari anit 2.- In addition, twelve standard fueltassemblies'of 3.6 w/o f V' '

U-235 with axial blankets were>Juaded to1 increase the cycle- '

' length. -The origine2 68 fresh fuel assemblies consist of -'

, 36t 3.55 w/o U-235 asseamlies and 32 .3.90 w/o: U-235 assemblies 'of ,

g the Westinghouse: Vantage 5H type. The. final cora loading pattern n is presented in Figure 3.2. Sequoyah, unit 1 cycle 5 is the firsti p

application of the Vantage 5H fuel,oand contains the.following new features; Zircaloy g;l 2=, veconstitutablectop nozzles, integral fueliburnable absorbers (IFBA), extended burnup capability, and debris filter' bottom nozzles.

, l l? The purpose:of this. report is3to discuss the cycleJ5 startup- i

. physics testing, program., The startup. tests are performed to  !

f,; "  ; verify proper _ core loading and various calculated parameters.

L relating to safety,} performance'and Technical Specifications.

Comparisons ofJresults are made with the acceptance and-review 2 , criteria of the restart test program. Ittis noted that-the .t J' acceptance criteria must.be met prior to1 proceeding to the next.

Failure to.neet review criteria does not prevent l testing phase.  ;

tha' restart program'from proceeding.

[

7 L Tables - 1.1 and ~ 1.2. cor.cain appropriate - core design parameters and i

!fuelLapacifications 2or cycle 5 operation.n The various control" s

9 l rod banks and.theit locations are-pictured-in Figure 1.1.

Cycle-5 utilizes 368_ fresh burnable poison rods:of the wet

~

' annular' design in cluster patterns.of 4, 8, and 12 burnable -

poison rods. In addition, burnable poison in the form of 5824 I integral fuel burnable: absorbers were used in cluster patterns 3of ,

~64,L80, and 128 rods per assembly. The neutron sources are i JJ -located in 2 assemblies each containing:4 source rods. ' Core- 1 locations for both-the burnable poison and; neutron sources are :l yq  : indicated in Figure:1'.1.

s. ,

l f -Cycle-5 has a projected full power capability of approximately l SW '16,000 NWD/MTU (419 effective full power days, EFPD) . The safety I L o;; analysis for: cycle 5 is valid up to a burnup of 17,000 MWD /MTU l which' includes a power coastdown. Operation of cycle 5 will have

~'

i the' flexibility of being governed by relaxed axial offset control m ,

(RAOC).

Y l

D

.,y, l

'm

-, - p _. -. . _ - . .. . . . _

_ . . . , . ~ _ . . _ _ . . _ . - -

4 4' t , , . .! . *

, if . > _ .,c

.? ? A*:

' ,. [ 3 m

, y' ,

\ \

j <

m 3

  • ^!

,Qy j{-

,! , WV 2.02 Tgtst Procram Summary S* This report covers the period from March 30,!1990-through [

August 7,-1990. . Significant milestones for.this! period are j 1 summarized as follows:

\, . Start'of Core Unload March 30,~1990 '

Endtof Core Reload' April 20,;1990

', ' Initial criticality May 31,a1990 Ka Start of zero Power Physics Testing.. May 31,.-1990'

-+ completion ofiEero Power. Physics Testing < June 1,.1990 sh- ' Initial Power l Generation ' June 2,E1990:  ;

3- ~ Power Escalation to 30-percent _ Power. June = 6,-1990 Power Escalation to 70-percent. Power , June-

~

9, 1990-  ;

Power Escalation to 100-percent Power June 14, 1990 ,.

";

  • Achieved Core Burnup of 60 EFPD August 7, 1990' j d

>  : Tab 1'e'2.1 snamarizes the-startup physics, tests that were i 4

performed during cycle 5 startup. Reactor power /histogramsafor-June 1990 through July 1990 are shown in Figures:2.1 and.2.2', .

!respectively, with significant events summarized in-O ' ; Table 2.2. -

A i Core Reload Summary 4 3.0 u< After completion oftall prerequisites, the cycle 24 core offload' 3 commenced on March 30,.1990. Thaicore1 offload was' completed 1on-April-2, 1990. ; Figure 3.1' depicts the: cycle.4 core configuration iprior toithe fuel shuffle. The core configuration for cycle 5 is '

  • shown;in. Figure:3.2.

' u u

l The neutron-count rateiwas monitored throughout core load as a f< precaution.to ensure that core' loading prcceeded as planned. l W . -This monitoring was: accomplished by utilizing lthe permanent- ..

J H excore: source range detectors. Neutron count rate.was monitored' at specified intervals for each detector. Continuous plots.of.

t o,  ; inverse count rate ratio were. maintained to-ens'ure an orderly and. -

1 safe' core loading.

$ [Slightly bowed and twisted fuel assemblies presented set.down ,

h problems.when core. reload was begun. -When necessary,. fuel

%f assembly'.1cading' assist devices-(" shoehorns") were used to seat 'i J , !the1 assemblies.

  • 1 1 ..,

'Uponicompletion'of core reload, core verification was performed.

TheLfuel assemblies and inserts were independently verified'to be-in their correct location according to the unit 1, cycle 5 core ,

i Lloading pattern.

4.0 Core Ierformance .

The operational power capabilities of Sequoyah Nuclear Plant are governed by limits imposed by the. safety analysis, as presented t

l: ' - - . . . 2 . _ _ _

3

..--....y _. - -

g.p! e g iM. , -- [ .7 .

f

% # i il i 6

%- - r q,i 5' 3

Sf g +m .

M )inEthe Sequoyah Updated' Final Safety Analysis Report ((UFSAR) .-

c x 4"

~ Various core parameters were measured .during the startup programi to ens'ure the conservatism' of assumptions made in the' UFSAR and . "

l i o verityf the_ validity 'of the core design. .The foll'owing

. s t

n sections discuss the results of ,the core physics tests.

a j

4.1_ Initial Criticalitv_

r tl k '

Initial _ criticality:was achieved on Mayl 31, 1990 at 1033 EST. l

?

The~ reactor, coolant system temperature and pressure were about

-546 F and 2240 psig, respectively. The soluble boron- ,

i L

!' concentration was*15414 ppa,;and all. rod control banks were fully

withdrawn'with the exception.of control" bank D,1which was at- Ll 182.5 steps.L'The corrected critical. boron' concentration for<-
- controlLbank D at
200 steps was 1553 ppaL -The acceptance J criterion-for critical boron concentration with control bank D at 200 steps,wasi di 131 ppa, a ,c D; I The approach'to criticality proceeded.in a safe and judicious manner. Starting 1with the shutdown banks withdrawn and-1719 ppa' and the reactor-. coolant'at,about:547?F and--and 2235'psig, control rod withdrawal commenced. During rodiwithdrawal,: inverse rate ratio, data was recorded-and plotted for. source range. count H Metectors N-31 and'N-32 (Figures 4.1.1 through 4.1.2). When j control-banks A, 8,'and;c were fully withdrawn and control bank D ..

I wait positioned at!about-200 steps, boron-dilution was initiated. I

. Again inverse count. rate ' ratio' plots 1were recorded ' (Figures 4.1.3 J

through-4.1.6). . The reactor coolant-was diluted until criticality was achieved.

-In addition to bringing the reactor critical for the first time, the initial criticality procedure' accomplished several:other' j Lobjectives. .l The neutron flux ~ level at which nuclear heating _ ~!

first occurred was determined, thus establishing-'a range below- q nuclear heatingLat which all sero power physics' measurements.were 1

l, J

performed., The calibration of'the reactivity computer was:

verified by comparing its output to several positive and negative reactor periods. Finally, at least one full decade of overlap was observed between the; source and intermediate range nuclear

. instrumentation. -l

\

4. 2, Core Decletion i

The primary coolant critical boron. concentration is monitored for- o the purposes of'following core reactivity and identifying any anomalous reactivity behavior. The me& cured critical boron l Ll '3  !

L concentration is adjusted to nominal'100-percent operation P

' conditions _taking into consideration control rod position, xenon

and samarium concentrations, moderator temperature, and power  !

level. t Upon reaching 60 EFPD, normalization of the boron letdown curve was,not necessary. Figure 4.2.1 shows the critical boron l concentration versus cycle burnup to about 60 EFPD in cycle 5. '

. 1 3- J a'

_______._________ _ _ _L__ _ .__ _____ _ ____. _ __~_ _ _ _ _ _ _ _ <o,.4 .w

a. .

r- - - - -

-n --- -

m-

-- - - #q

.p , ' ' a[

Ji?N ' ,

f i

fji N$ ,

y G, , q

?

t , J I '

.e o . .w.. ,

g -n .4,

-! , y.

s

~

i4.3' manctivity ~contro11 cup ,

/ :Excessireactivity is controlled by neutron. absorbing control rods 7 and boric acid dissolved in the reactor coolant. Both the .

" E, control rod: position and the boron concentration may.be adjusted; y separately oz-in conjunction with one another to compensate.for 7 q b various reactivity changes and to maintain the-required shutdown.

margin.- Rod bank and-boron reactivity-worths are measured at hot (p %. N . sero power- (HZP) ;to validate the ' design of the core. ,

h ,' 4.3.1 ppptrol Rod Bank Worth Measurements , 1

.v2 W m' ]

control-rod: bank worth measurements.for-cycle 5'were determined, i

'using the Wes'.inghouse-rodLawap procedure.

~

e This replaces the

., standard boration/ dilution method for determining the integral .

{

E i and differential worths of' each controk rod bank.

"i j

The" rod' swap procedure starts with the inaasurement of the J . reference: bank;using the boron exchange' technique. 'After <

. establishing an' equilibrium condition with the reference' bank s '

inserted, each remaining rod bank.is-inserted and the reactivity-

~

L , change is compensated by withdrawing the reference bank. For the  !

cycle 5-loading-pattern, control bank D was:used as the reference ;t bank. The. measured integral worth of control' bank D was 886.4' u pcar which met the acceptance criteria 1of (' )i 143=pcm. . Figures a s c'- 1

.4.3.1EandL4.3.2 provide: plots of the integral and differential L

L 4 iworth of controlvbank D.,' Table 4.3.1.shows a comparison of L . measured-_and predicted rod worths based on the rod. swap.. -f H ...

$ 4.3.2 . Baron-Worth and Endnoint Measurements

.' -Reactor coolant: system boron measurements were made during' sero power physics-testing to' determine differential, boron. worth andL ,

-concentration endpoints for the ARO configuration. <

The difforential boron. worth measured over the rangeLof control I

bank D=at HZP'was -7.99 pcm/ ppa. The-measured difforential-boron. J Ss, worth was within' the review' criteria of [ ]i 1.14.pcm/ ppa. a,e l,

y 'The boron endpoint was established for the ARO configuration.

4 - The: boron endpoint value includes corrections to'the measured ,

f' '

' data:to account:for differences 1between the critical rod' l configuration:and the endpoint configuration. The ARO' boron L

endpoint was- measured to be 15761 ppa, well within the acceptance i

'a,c F criteria of( .) i'50 ppa.

l '

Kappthermal Tennerature Coefficient Measurements 4.4

? The~ isotherm *) temperature coefficient (ITC) was measured during zero power p:.ysics~ testing to verify a negative moderator temperature coefficient'(MTC) as required by Technical u

Specifications. The ITC is defined as the change in core '

1 m

E 5r - - s- ,---..--%=-e

..g _. __ , - __ . _ . - - - - _ . . .

, i

[' ,

c . +

i -- ',

s a . . >

qh N '

', a[ ,

~

1 v ', t .

C ST l reactivity per unit change irt moderator, clad,.and fuel- 1 temperatures. ..Fron'the measured ITC, a-value'for;theLMTC is -;

obtained from the. relationship: ,

[MTC = _ ITC - Doppler Coefficient i

.i

-The predicted hot zero. power beginning of cycle Doppler

- i EU ' coefficient..was !_ } pca/F.

^

=

a,e  ;

l .

This measurement was performed by heating up and cooling down the. h primary system uniformly via steam dump to the atmosphere or the-t condenser over the range of 541 to 547 F.- During the:heatup and J ho cooldown, an X-Y recorder was. utilized to plot the change in a H # . reactivity with' respect.to the changes in.the primary system- '

' temperature. The' slope of this curve of Tavg versus reactivit'j.. 3 is the?ITC.

  • d 1 -

. Measurements of the ITC' vere taken for D. bank at 213 steps. The:

J 'ITC-measursd during!heatup_and:cooldown were.-3.33 and -3'.37- j L , 1 pen /F respectively,. with an average of -3.35 pen /F at a Tavg of 1

' 54 5. 4 . F.^ When corrected to a temperature of 547 F and ARO, the ,

l "ITCtwas found to remain -3.35 pcm/F which is' within the- J acceptance criteria ~of.I: } i 2 pcm/F. When conservatively a.c -q

,  : correctedLto a 'Tavg of' 541 F,' the: corrected ITC. is -2.83 pcm/F. . <

i L ' The corresponding . conservative MTC was -1.03 upca/F which is 4 0 ;within the acceptance' criteria of-< 0 pen /F.-

4.5' Power Distribution Measurements 'Ia Analysis!of_ core power distribution data during startup testing: ,

.is necessary: toeverify proper core loading, -design: calculations,- 4 compliance with' Technical _ Specifications, and provides a H relationship 1betweenJincoreupower distributions:and excore' n

detectorsresponses.- Three-dimensional. core power' distributions

'are determined-from moveable detector flux trace measurements using the INCORE computer. code.

~ Table 4.5.1-summarises representative INCORE fluxLaaps for the 4 startup of; unit:1, cycle'5. This' table. includes the core 1

conditions at theitime of the measurement and'INCORE results for the maximum heat / flux > hot channel factor (excluding-

,_ uncertainties) . FQN(z),"the maximun nuclear enthalpy rise hot- )

? channel. factor;FDHN, incore quadrant. power-tilt ratios (QPTR),.  !

-and-axialDoffsets. , Note that the: maximum peaking. factors R

-identified in' Table 4.5.1' are useful' from a core design standpoint, but are:not necessarily the most limiting according to Technickl specifications since they do not indicate reduced' j

marginscassociated with the W(z) and K{z) functions or uncertainty tolerances.

1 H

.m

_ _ _ _ ~ _ _ - - -. - - ._ -._. - .-

7  ;;7 1

r s

0.'.l '

i 4.5.1 Assembly.PowerfDistributions- 1 Power distribution- measurements were made during: startup testing- l

'y at 30-percent power, 70-percent power,'and loo-percent power.

Relative assembly- power is analyzed: with respect to the - _1' difference:between designed and measured values. Figures 4.5.1

/ '

through 4.5.6. provide an assemblywise relative power distribution for all the flux maps described in Table 4 ~ . 5.1.

l R Also included in .

L these-figuras-are comparisons:between measured and designed '

assembly-powers including the RMS difference, the RMs~ percent '

difference,: the RMS difference' for assemblies above. l.0 relative l power, the out-in. power tilt (power in'the outer'two rings of  ;

assemblies vs. the power in the center), the incore quadrant '

, power tilt and the-maximum percent difference between symmetric assemblies.

When the'30-percent power flux map.was recorded and compared to predictions, allereview criteria were met.. Flux maps were also-recceded at-70-percent'and loo-percent power.

' Figures 4.5.7 through 4.5.12-111ustrate the normalized core '

average . axial . power distributions - for each ' flux map. '

4.'5.21 Fafz) Surveillance p - The-Technical Specification limit for Fq(t) at full power is 2 .~ 3 2 . . Fq(z)1 surveillance: involves the .use of ~ the, parameter K(z) .- H

!K(z) is Fq(z) normalized to the maximum value allowed. at any core- 1

< height. .The parameter.K(z) isigiven in Figure 4.5.19xfor unit 1, J l

cycle 5 operation.1 ' Operation oficycle 5 has had.the added .d

flexibility L of . Relaxed L Axial .Of fset ' Control (RAOC) .' Figure Hm H
4.5.20; represents the acceptable'RAOC delta-I; operation limits l used in cycle 5. The Technical specification surveillance  !

requirement on-Fq(s) includes potential changes in the- /

7 equilibrium power distribution by using a: transient function W(z)

'while operating under RAOC. W(s) accounts for the effects of normal 1 operational transients and is determined froa expected

-power' control maneuvers-over the full range-of burnup conditions in the core. Thus, the Fq(s) limit of 2.32 is multiplied by_

,' 'K(z)/W(z) : and then compared' against the: measured Fq(z) values.

Figures 4.5.13 = through 4.5.18 illustrate the Fq(z) limit and limiting value at each axial point for each flux map.

4.5.3 FDHN Surveillance

. FDHN surveillance is accomplished by. comparison of the measured FDHN to the'FDHN limit: defined by plant Technical Specifications.

The Technical specification limit for FDHN ' at' full power is 1.55. The measured-value of FDHN obtained in each flux map was verified to be within Technical Specification limits.

a.. .. -_ _ _ _ _ - _ _ - _ _ _ _ _ _ - - - _ _ _ _ _ _ - _ _ _ _ _ - _ _ - _ _ _ _ _ _ . _ _ _ _ _ __

.; w- y; - - - ---

-n -- -- -

=- -. .

g?

c * '- t ET 4 :s.ox ,

1

@S W . L*.  :

g 5;7p : C

'3d :n ,

44$ 7 1

'>The RCS flow was also neasurAd during startup~ testing. -The RCSf

' flow measurement test initiallyiindicated that RCS flow was less' 1

%s je Llv/ . than~ required. .However,.whent RCS elbow taps were reviewed, no: .

W* y  ? degradation of RCS flow was noted. The RCS flow was subsequ'ently, :i This h ' determined to be within'the Technical Specification limits.  ;

j,*'

anomaly was further describedtin a TVA submittal.to the NRC on' June 18, 1990 on unit l's docket.. j Y 4.5.'4 Incore-Eycore' calibration' jl L!h

- Calibration'of-the nuclearfinstrumentation system (NIS),

p Jcomprisodiof six moveable'incore detectors and eight stationary. d l

f ,

excore detectors, _ is required for each core reload. >Due to the'

. low-leakage loading pattern utilized in this cycle, two

~

~

' calibrations of~the:NIS.were performed: one prior to; initial =

istartup-and one at:30-percent power. :Recalibration at 70-percent

t.  ; power wasinot necessary. fThe data usedLto calibrate the:NIS: ,
prior ;to startup; is obtained- from the most recent incore-excorel ,

LFJ ' cross calibration, from the previous cycle design report, and'the; ,

f jg Jcurrent' cycle' design report.  ;

^

To obtain the datacroquired to calibrate the NIS excore power range detectors at: power,Lan axial yenon oscillation is induced l '

g " 91n the core by inserting control bat.4 D. Afterfabout'5, hours,~' '

fcontrol bank D is withdrawn to its starting position 1 and the' Exenon' oscillation"is allowed toiswing delta-I without any adjustments ~in bank D position. .

- Full-core; flux maps are:taken along with associated NIS-and .

1 ' calorimetric data, prior to the-oscillation and at the peak of the ,

delta-I' swing. From this data the. power range channels'N-41 j

i through N-44 were calibrated. i e- i i

9 l 't f

i~

II i

y

/ #

l' <

4 lN b '

j .'I - ,+

l-C- .

  • r 4 sm- _ _ _ . . _ . _ _ _ _

. .. ., ,- . - - . , . ~ ,- ~. .. -. - . .-

i I I 0 '

'; p;' '-.

$ t )

p 77- ,

.s., . ,

s.-

, 1

][ 3

'" yf, 4

A' ag -

e

'j -

,4, e

?

4 3

An.,.

,i !.! (i e -- ! i S

,.7., ,,

Is. '$' .. -

Table 11.1  %

e u.

, ,sequoyahiUnitl1,l cycle 5; Core-Design Parameters-e '

j 1

x;; .

. .  ?

m. - - Power! Rating- <

3411 MWT. >

r "v ' Heat Generated in Fuel 97.4 4-  :

<1

m. , -

' Coolant ~ Temperatures _ -

')

,' , ' Hot Zero Power 547.0 F. . . ,

I>{ .

! Design dnlet, Hot'FullLPower - 546.7 F >!- ,

, >q L1 , , '

p: q..

Design: Core Average,! Hot-' Full Power . 582.2'F- j

^(

.I' <.

2250 psia.

,i.

System. Pressure" l' .

A b.

+

' Average? Linear Power Den =4tv 5.43!kW/ft a p;

l Specific 9 Power) >

38.21 kW/KGUI 'l l,  ; 's

[?

~

Power Density- 103.79i kW/ lit'ar..' [r a

t?i m

Hot-Channel. Factor Is V i

( ..

-t

'" m. '

Limiting Heat Flux, FQ - 2.32: '

W

. Nuclear Enthalpy Rise, FDHN?. 1.55

.'l

i. ,

i '

?

k i L

)

k.

.' k f

i I

e i 5

h.

I , t, ! ' '

s fE E'n-1 - . .~

"^

] .,v.<~ ' " --' -- q

^ ^ '

u. ;-jg @ , J , q (
';; J n - l ~-

tn> -. m mo <

i .',{f..

qW ,'p:-

c ' -'

3; it- , , ,

,d ' i

'{

3 <  !

.)

  • 3, % t-r, .

. Table 1.2- ,

rr;

, n, ~ ,

g ,

. g' :Sequoyah Unit 11,. Cycle"5 Fuel Specifications- i A,

r; a

.. , _ ~

g .,, Number of FueliAssemblies~ ,

Region 5 41: i u , Region 6A 32 -!

f' Region'_6B ~ 39 -

E!

Region 7A-e 36 i 6 . ,

. Region-7B '32

- Region 7C . 12 4

Region Sub . J ';

Total 193

) ,
Region' Fuel. Loading-

< , o 7; fs, J'- Region 5 18.94 MTU 4 x J Region 6A 14.76'MTU- -

pO w Region 6B:: ^18.00-MTU  !

Region ~7A 16.72 MTU

,i ,

-a Region 7B" 14.86 MTU '

L^,' -Region.7C 5.54 MTU k,, ~

Region Sub. 0.'46 MTU-

  • E '

Total 89.28 MTU '

p n ' Enrichments (w/o U-235)

, . Region 5 3.75 w/-e ~l L Region 6A 3.50 w/o l i.

Region 6B- 3.80'w/o i j Region 7A 3.55:w/o.

i l_

Region 7B 3.90'w/o-s.g -

. Region'7C 3.60 w/o' '

Region Sub

^

?-

m 2.10 w/o  !

iActive'FueliHeight 144 inches- ,

~ ,

,'E 1

[- . , . Lattice-Configuration 17 x 17 ~!

i.,

O.496 inches ~-

~ Lattice Pitch' .{

l Assembly Pitch 8.466 inches ,

- No..of Fuel'RodsiPer Assembly 264 l o '

r No. of Instrument Thimbles per Assembly 1 No. of RCC' Guide Thimbles Per Assembly 24 No. of Gridt Per Assembly' 8 -

Fuel Rod outside Diameter 0.374 inches I

l. _9 e- mv i

I f b~,

'w~ } ,' %, mi x y M. +z i k) .

4 1 , ,

.n:t n/ - aswu r <;c t

s

'a i

, 2. y oth[%;.M.cv: v rc ,

}f ..;'p'ple))L' ',-l3,

  • L jf.,4 w

q-_ n r -

7 .

%v. , $w$,6 s .-;- i m.,

g- . ps i 5

sm w \ I b ,.I.

- 1

~j i

, s w'k ..'

-p .

} h

~ < > .

s:

s VMM("JT ,

, ,u 4

. - Table:1.2L(Continued)- 4 g '(([ ' O (. ,

s  ?. ,jo- 54 , *!

t' ' ' *  %

j -l.Y #

  • g@' + ; .f9_. ofCladIThickness , O.0225ninches- 7 k W- - ,.

MN, Clad [ Material .zirealoy-41 o

. . %+o , ,N11st' Diameter? 0.3225-inches 1 4  ;

o

Z!b" l Wet ~ Ani ular Burnable Absorbers _3681(Al23 O -BAC)!

~

(n, , s i A 'M,-;IntegraliFuel Burnable = Absorbers  ?

. 5824-(ZrB2 Leoating)I

~ . .

1 4

',y^- g 1 .-

__a_ .)t'

, p i 1. i ~ ~

s

' s

(

--,.n;

_ , . - .c" '.

1 . ,-  ;;a e

','k*.'i., t 4

  • ., if
>[;lf,,

^

t

  • s 't.

< g.

i ' , i:

0,t jg. ' O_  ; ) ;'

~

,'25- -

Jt t .

y

%15 t h a

, g . ',

p.>  ;

ce  :

Is' n ,h .) '

,1.j f ._.'s,

' 3M, 3 i

l';:) < .

/ .,b.h

.n-

'U{, S. t 3

- 3y .

,'a - s%

y -]

.1 ,;-. i

, .>' . g -i

.; e I, y } 6 3

{ .

7'- -jf i

,h. - -

.'s" # ..l.,,

t a .rs N l'  %

2 l ~I

> m.

' I ,.;

b{ f'N , i s 4 i s

..k

!I g sg o.

i r ,

[(

} 1 . >

c

.,J, ,.I h (.h

.i f..

,.'g 's

1 i

l,i N - i e

- -.- . . . . . . ~ ~ _ - . ~ . . _ ~ . - . . . . . . . -. .. .

r; ')

l i

f

)

i i

B P N M L K J M 4 f E D C 8 A  ;

4 1 I

$4 C8 CC

~~

C8 sA

'I

a W 4W W W i MI 808 MI M1 001 MI ,o l' 08 -88 SC  !

.3- W W W W W i

1881 001 1NI 801 1881

^

SA CD S T F b .' 8A 4 4W ' W W. 4W i Mt 1881 48 801 001 1881 MI _3

. . SC SD S 4W 1W W 1W 4W

'. 801 MI MI 801 001

~

C8 CC CA CC C8  !

! d W- 4W W W

$01 MS MI '01

i. St .

88 i 7 4W W 4W W 'W W 4W .

MI 801 MI MI MI 801 MI-CC . m CA e CA G CC  !

8 W W W W W W ,

1881 MI MI MI MI 1881 ,

( _. _

9 W W 4W W 4W W W

M, 801 MI MI M1 Sol MI 08 CC CA CC C8 10 W 4W W W

' 805 MI M1 801

~~

30 SC - ,

11 W 1N W 1W W '

801 001 Mt 801 801 i

~~

SA CD G CD BA 12 4W W W 4W MI 1881 001 001 48 1881 MI ,

SC T 88 T 13 W W W W 4W 1881 001 1881 001. 1881 SA . C8 CC CB ta 14 4W W 4W 4W MI 801 Mt MI 801 MI 15 ,

W. . . . a.C, CD, SA, SS , SC, SD . . . (RCCAs u8 ) . . . . . ., CS, C e ..................................

1....(lFSAs).................................. $824 4....(SECONDeaf ScuRCE 0lDLETS)............... 8 l'

I fl0URE 1.1 SEGUDYAN UNIT 1 CYCLE 5 CORE COMPONENT CONF 0URATION I

L-N ,

'l i

b

= l l

1

. Table 2.1 i

Lsequoyah Unit 1, cycle 5 chronology of startup Physics Tests  !

2a5.1 Data Initial criticality May 31, 1990 Boron Endpoint - ARO May 31, 1990 Isothermal Temperature' Coefficient - ARO May 31, 1990 Bank D Worth - Dilution Method May 31, 1990 .j Rod Swap June 1, 1990 .h Flux Map at 30% Power June 7, 1990: -

Incore-Excore Calibration at 30% Power June 7, 1990 Flux Map at 70% Power June 10, 1990 Flux Map:at 100% Power June 15, 1990 L

e L

. .(

t I

I ji' .}2

w =

. -=

7-=

e 1 ,,0 1 n

Table 2.2 6equoyah Unit 1, cycle 5 significant. Events summary (Iten numbers referenced on Figures 2.1 to 2.2)

1. Mode 2, approximately < percent power leve*..
2. HNode 1, approximately 10 percent powsr level.

3 At.approximately 22 percent power, turbine trip / reactor trip, entered Mode 3.

4. Mode 2, approximately 1 percent power level.
5. Approximately 23 percent power, online, coming offline for turbine overspeed test.
6. Valve 1-FCV-001-0065 blev packing during overspeed tast..

Reactor entered Mode 2.

7. Approxisttely 1 percent power level.
8. Entered Mode 1, approximately 5 percent power level.
9. Approximately 15 percent power level.
10. Turbine overspeed test. Unit offline at 0236 (EDT) and back e online at 0342 (EDT).
11. power increased to 30 percent.

12._ power holding at 30 percent for incere-excore celioration and boration of RCS.

13. power increased to 40 percent.
14. power- at approximately 44 percent.

~

15. Reactor power level increased to 75 parcent. Holding for calorimetric calculation.
16. Reactor power at 85. percent.
17. Reactor power at 8? percent.
18. Reactor p>wer at 90 percent. Holding for SI-78.
19. After SI-18 performance, adjusted to 88 percent power level.
20. Reactor. power at 90 percent.

rs l L' I )

.i-4 i

+

, . Table 2.2 (continued) 1 i i 21'. Reactor power at 96 percant. i 1

22. Reactor power adjusted to 94.5 percent after performance of -l SI-78.

jf 23. Reactor power at 9D percent.

i

24. Reactor power at 100. percent. .;

a

25. Reduced reactor power level to 98 percent for problem on No. )

. 3 HDT.

1

26. Unit recurned to 100 percent power level.
27. Again reduced power to 98 percent to reduce No. 3 HDT pump j L

flow.

,I

-l l

J

'j l'

1

)

j l

l' l

l lN l  ;

\

i l

l I

1 l

.s .

+s

~2 i$ /I]

y .- _ :ll .

^

G :q ,;

s- . .

UNIT 1 REACTOR HISTOGRAM: .._.

~110 24

'100 - -~ ~

2 18 20 90 - 37 16 19 ..

g v

80 -

-15

~

J l'8 70 - m g b

, a: 60 - 5

.- nas ~

Y% ~

~

g 50 -

E 14 40 - 13 d 11 12 E 30 -

3 9 .10 20 - l 9 10 - 2 I

1 8 '

4 g7 isyi g Q. g ,,gis.3: =g sii.=aii sstri==sssis:i i 1 2- 3.4 5' 6 78 910 ~ 111213 14 1516171819202!222324252627282950 JUNE 1990 -

g r;n N'" . ?

f

~

~

UKiT REACTOR HISTOGRAM

~

1 110

' 25 -

~

l 3g 26 - 17 h

l:

1 90 -

p v

80 -

70 - -

60 - ,

. . . E Ik2 N- b e -

O t- t O

b x 30 -

20 -  ;

10 -

1 0 . , . , , , i . i . i i . i.. i . , . i . , . i . i . i . , . .

. i . i . .. . . .

. i . i . ..i . i 1 2345 6 78 9 101112131415161718192021 22232425262728293031

. JULY:1990 4

i s- ,. . . . ~ - , + . .,v. .. n.,. .-w-n.~ + , ~ ~ . ..,w. - . . , e - ,,

3 't

~.'

,e. <

.i-..

FIGURE 3.1 I

1 '.

I \

. - soc c

l*

r s

I.

i I

e l '.

l I

A 'f e

p

't r

t l.

l' s t

.i 1

t 5

  • l s

.I

\'  :(

e

?

c -(

i f

s

,i f

perum .

?

l- >

! Flfast 3.1 SEQUDYAN UNIT 1 CYCLE 4 FIE6L SURNUP DiffeltuTION K <

6: .;

c. . . ..

_g.p 5 ' :-

T100RE 3.2 .

1t: -

i IMuuRESP-j' a,C e i

\.*

L k:

4

+

i /

l

.i i s

t  ;

i e

t<

l-I l -

i l.

1 t 1

l 'n t

i e,; '

flSet 3.2 NeupTAN Unli 1 CTCLE 5 lulflAL coat Lonclus PATTEau l

1

'. P  !

l=

l

_______.<_._____._____.______m'.-_:____________.____i__._..________ ,, .

(

,,3. > .  ?

I

. 1  ;

' . }

4: j

.; FIGURE 4.1.1  :!

e 4

ICRR During Rod Withdrawal For N-31 .

1 ,

,3-1 ,

P d

t t

i 0.8 - - - - - --- -----" - - - - - -- - - - - - --- --

1  ;

N I

a 4 5 h

um....o.......o . - . . e= _ . . . . .. .?

i. .

f I '

c  ;

R '

R O.4 - - - ------- - - - -------

0.2 - - - - - - - - -- -- - --

t 5

0 ,

0 10 0 200 300 400 500 600 -

Total Steps inserted  ;

. . _ = _ _ - _ _ _ . _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ - _

4 3 { h'

-..-..._._-1 '

,Af

}

. c ...

. .[

' i- #

j V.

J FIGURE 4.1.2 h

i lCRR During Rod Withdrawal For N-32 l

' 1r .

N ~I  !

I i

+ I e 4 g .: _.. ... - _ ,. . , . . .

i t

t L

0.8 -------- -- - --------

1 c-  :

R. .

, R-  !

e o,4 _ . _ _ . _ _._____ _ . _ _ . _ _ . _ _ _ _ . . _ . . . _ . . _ _ _ . _ . _ . . . _ . _ _ _ . _

s

.k q

0.2 --- - - - - - - - - - - - ---- -

T a

~

l 0

0 10 0 200 300 '400 500 600 .

I I.

Total Steps Inserted i

l i

t

( ,'

l e s

. 20-

. [

f' 7 Y

. 4 _ _ _ -.. _. , _ . - _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.k.

FIGUILE 4.1.3 o

m, -

ICRR Versus Time During Dilution N-31 7

~

1 o

tes se esseseeeeeeeeeseeeeeeeeeeeeee**ee n secometeces eteeeeeeeeeeeeeeeeeeesseeeeeeeeemesesteh eestseeneer 'eseeeeeeMeeeeeeeeeeeeeeeeeeeeeesi >eseeeeeeem*eceme***e**eesee I

-ee ~ ee e g _. eteee m.eee _ -- - e se e st-eeeeeeeeeee +++.e neeea-e ea et--- - -

i C

R R

0.4 ---------1 -- -- - -------------

innseemeneeeeesseoese sseeeemeteneseeeeeeeee -

eeeeeeeeeeeenspeceseeeeeeeesa ette ettetteWeessessenteeeeenteseemeneeeeeeeeeet eeeeeeeeeeeeee#meeM-" Wee *e*mMeeeeee.

o,4 _ _ _ _ _ _ _ , _ _ _ ____ ._____

7____ .

4 4

4 g

6

.\',

0.2 - - - - - - - -- - - - - - --- ----- - - - - - - - - +

l-

.1-e T 1 0 .

700 - 800 900 1000- '

1100 ,

Time in Hours .

i .

I.

l-6 I

3 h

n,.

sr-i:

.r a

FIGURE 4.1.5 lCRR Versus Gallons of Dilution N-31 4

'NI. .

'l 1

0.8 - - - - - - -- - - - - - -- - - - - - - - - - -- - - - ------------

0.s - - - - - - - - - - ---- -- -

r-- -- ---- ---

i

, c i R

g 0.4 ,

, 0.2 -- -- -- -- - - - - - - - - - - - - - - -

il

+

0 0- 500 '1000 1500 2000 l2500 3000 3500 Gallons of Dilution .

i

':!: , j i

+ . .

gt. , ' I ',

i

- ' t '..k4' I

FIGURE 4.1.6

.3 .' -

7 ICRR-Versus Gallons of Dilution N-32

,y?4 t

1

'1 i q-

, o- 1 0.8 -

=, ,

s J

1


} -

0.s - - - - - - - - -

.1 -

c

, R R;

o,4 _.

0.2

^ -- -- - -

Il 0

O 500 1000 1500 2000' 2500 3000 3500 Gallons of Dilution i

, : t. .. ;

-- m, -

1. r

,j. . t Q.

_) s.g q. .

. n.;. - > > i Uo l- . .

7;g- "-19-o' ' FIGURE 4.2.1 -

< *4, ..

I ;c . .' ' -

+

)

. -, t :2 i i

f .+

jg1 .

M

. h3 E

l e.

4 I

g E-b E

1 I .

4 i

x f

I i

.n

_ ;- . .,;;_; 7 i -

'k a> t i

I

.c .

.. .i

n.  :

'A> ~

Table 4.3.1 i e

sequoyah Unit 1, Cycle 5 Rod Swap Integral Bank Worth"

_ i Measured a.c l ggg worth (nen) l

, D* * - 886.4 .l C 823.4 l B 777.'4  ;

A' 238.1 g ,

, SD 425.6- ,

SC 423.,1 .l t

j. 7 SB 968.4  !

SA 311.5

  • Calculated using ((Measured - Predicted)/ Predicted)
  • 100
    • Bank worth measured by boron exchange method  :,

5 f

c

.f

't 2

I

,t:

d . . ' -, , -

w i. _ __ - ___ _ _ __.___ _ _ _ _ _ ___ _ _ _ _ _ . _ _ _ _ _ _ _

w., . '+

.. - - - - . _ . . . - . - - - ~ - - - - . - - .

ett '

1 FIGURE 4.3.1 -

\

SQN 1 Cycle 5 Integral Bank D Worth j BOL, HZP, NO XE  !

900, j i

i

-800 - - - - - ----- I* - - -- - --" --- ------ -------- ----

r l

a

. n t - i. -.- L -----

e 7oo 9 ,i r --- ---- - - -- --------- .

. . . - 800 >

l a

y R 500 ----- ------- - - - - -- -- - - -- >

l o a l n i= d. '

- -t ---

y 400 ---

o a L. '

r g-- -

t. 300 - - - -

t- -- -- ------

h .i.

h 200

, - O' .,.

m 100 --

s -- - --

l L

1 0  : .

0 25 .50 75 100 125 150 175 200 225 250 Rod Bank Position (Steps Withdrawn) i P

. g

4 t

i I

s i

. 'I

-a 5

,' h e FIGURE 4.3.2 i i

i SON 1 Cycle 5 Differential Bank D Worth j BOL, HZP, NO XE-  :

a h

7 ,

5 D l l

-f 6 ---- ---- ---------- - - - - - -~~----" - - - - ' - - - - - ------------

f  !

.e .

r 8

n g _--__7--_-.-_-_--

-.-.Q yq .- -_. --- __ .-- - ,

t.-  :

t I t

-a ,

g 4 _ . . . . .. - _.. _ _ .. . _ .. . . . _. .. _ . . . . .. . . .

R i -

o d .s - -- - - - - - - - - - --- - --- -- --

w f:

o-  :

r 2 --- - --- - - -- - - - - - - -- --

i

- -t

h ,

t

_ _t __ _. ._ _ . _ _ _ . _ ._

3-

- . C

+ -m 0  :

0 25 50 75' 100 125 150 ,176 200 225 250 .

.t Rod Bank Position (Steps Withdrawn)

P k

Y

! > '9 e a .- , - - - , . . , . -

7 J  ;

1

,s.

5 4

.. G .

I I si as e I i!!!!!!

t' I.: Ia i.: i i.: i yi .: . .

i I I. I . .

I. I i

1 iii!!!!

!e A li e i,,i I I i

il ,

.!'ll=====w i . 5 ,ssi,..i.a... a i

I I ,

1 1 1 1

I==aei l

~

gg E E eal I I I- ,i

, , ,,, 1 i i n e e o i n . . ...

3 i 6 6 6 iii

=

Ellill

.= = s===

i 5

9, , .,-

c . '.t; g<- -

ss I w1 -

. i~

,1 i

.3 , . >. .

.x ' '

'/ -' t. I t

' MM l ic - t 1 f

  • Sec  :

}

i

- ,l t

'6 a

[

t

.t L

I e

- 4 i

I i

1

,1 =t

-r i

i 9

s ,

'i I

i f

4/, ,

k' 4.

{; t 5

-f .

t s

?

- ,i lE ,r

,t 1Q:y '

Me a -

l 1

o

.i '

, s l

i FIEWEE 4.5.1 IEeWDVAll UNIT 1 CTCLE $ MLATIVE ABSDSLT POWes ',

1-lut*5 F1 90*1C

l.  !

l : l '<

n *%* 5

)

l+ l r

g s 1

lr .J (  ! ,

g .g 1, m ,,

t POWER DISTRIBUTION PARAMETERS INC-5-F1-90-1C o

2.4140 RMS DIFFr= 0.02215' .RMS % DIFF =

RMS DIFF FOR'ASSY >.1.0 RPD = 0.02285 POWER OUT.(EXPECTED) = 0.8320 POWER OUT. (MEASURED) = 0.8499 POWER IN (EXPECTED =~1.1295

. POWER IN (MEASUREU) = 1.1157 MEASURED QUADRANT POWER TItJS 0;9930 1.0012 1.0026 1.0032 EXPECTED QUADRANT POWER TILTS 1-0000

. 1.0000 1.0000, 1.0000 SYMMETRIC ASSENBLY % DIFFERENCES O.00 1.62 2.55 1.29 .1.24 2.00 2.94 3.09 1.62 1.90 1.23 1.14 0.03 0.84 1.94' -1.80 2.55 2.19 2.01 0.92 0.99 0.55 3.38 3.34 1.29 0.94 2.10 2.22 2.64 4.12 5.00 4.17 1.24 2.10 3.97 3.57 4.00 4.15 2.91 2.00 2.81 4.91 3.59 5.82 4.92' 4.74' 2.94 3.20 4.58 4.88 6.02 5.'87 ,

3.09 3.79 4.62- 4.89 2

FIGURE 4.5.1 (cont.)

+ .

t

wa. - ,s

. f,; -

1

't l

i 3d i 7 %.

z ., k ,1

\.,

r t

' i5' ' ,

ys s

S,C'  ?

i, L  !

+

t i

i t

i I

?

t

?

I r

i r

t 6

't i

s l' t ta i

i. .

l

?

1 1

r

. .1

$; I j' i )

J l'

i l

1 r

l 6

t

' naamse Flamt 6.5.1 Meovu WIT 1 CYCLE 5 atLATIvt assusLY Posas '

- lut*5 F1*M 30 -

i

.sa.

s

.. i

i POWER DISTRIBUTION PARAMETERS INC-5-F1-90-3D RMS DIFF = 0.01773 RMS % DIFF = '1.7986 RMS DIFF FOR ASSY > 1.0 RPD = 0.01861

/

POWER '0UT (EXPECTED) = 0.8262

, POWER OUT (MEASURED) = 0.8344 POWER IN (EXPECTED = 1.1339 POWER IN-- (MEASURED) = 1.1276 MEASURED QUADRANT POWER TILTS 0.9997 1.0028

. 1.0034 0.9940 EXPECTED QUADRANT POWER TILTS l 1.0000 1.0000 1.0000 1.0000 o SYMMETRIC ASSEMBLY % DIFFERENCES 0.00 7.04 5.46' 2.60- 1.38 2.57 2.50 2.45 7.04 5.05 5.11 2.13 1.59 1.35 1.93 2.12 5.46 4.12 3.97 1.42 1.80 '0.95 3.34 3.43 2.60 1.63' 3.30 2.79 2.09 3.62- 4.79 ~4.79 1.38 1.42 3.51 3.64 3.49 2.60 3.33 2.57 3.33 5.09 3.08 5.32 2.83 2.36 2.50- 2.82 4.12 2.96 5.31 3.98-2.45 2.91 4~.18 2.41 FIGURE 4.5.2 (cont.)

-c. -

4 i

l ',.(

i- , , .

tj '-

U

, Esc 3

I i

r 1

I l ir l ,

5 t

f i-

-i si

\'..

i-V 4

Muuseg flGURE 4.5.3 WauDTAN Unit 1 CTCLE 5 RELAflVE ASSEMBLY POWat  !

' INC 5 ft 90 44

[

j 1

' 34 i

l l

o  !! s y '

l# ' '

o '

I. l

,o j r

2- . .

1  !

r f POWER DISTRIBUTION PARAMETERS l q 'i

.INC-5-F1-90-49 I i

'e .  :

I RMS DIFF = 0.01907 RMS 4 DIFF =: 1.9515 ,,

', RMS DIFF FOR ASSY > 1.0 RPD = 0.02025- j

'f t .

POWER OUT (EXPECTED) = 0.8263 I

?

y ~~

POWER OUT (MEASURED) = 0.8353 POWER IN (EXPECTED = 1.1339  :

POWER IN (MEASURED) = 1.1270 i

' i h

MEASURED QUADRANT POWER TILTS  !

1.0001 1.0004 1.0054 0.9941 ,

E EXPECTED QUADRANT POWER TILTS 'l

[ '

1.0000 1.0000 i L 1.0000 1.0000 SYMMETRIC A.iSEMBLY % DIFFERENCES k U

l, ., 0.00 6.57 5.03 1.79 1.11 2.08 2.51 2.61  ;

6.57 4.40. 4.84 1.52 1.43 1.45 2.41 2.58  ;

4 5.03 3.43 3.79 1.42 1.48 ~1.12. 3.96 4.10 l L 1.79 1.52. 2.99 2.64 1.84 4.94 5.24 5.33 I'1 1.11 1.18 3.61, 3.75 3.71 3.70 3.31  !

2.08~'2.94- 5.13 6;37 5.02 1.98 2.33 2.51 2.99 5.92 7.06 5.67 3.67 2.61 3.22- 6.01 7.13  ;

n ...

L"u

[

o FIGURE 4.5.3 (cont.)- i l

l >

Y l

t li h o

7, 7 1

-J J

4 V,.

r. .

j 4

2 6

1 a,C i

i.

t

n. > .

r r

s b

t J r

,!. ^

(

  • i e

t f-L i..

[ .;

(

r f, 3 i

I, ,

/

i i

l- i t l

L i

-+

l.

m P

s I

l:

l- ,

I

- t f

_y i

h' FleuM 4.5.4 SteUDTAN UNIT 1 CTCLE 5 MLAflW ASSEISLT POWRS Int 5 F1 90 $A k

u ,

I

-I O u - --m _v- -- ._m._-mm.___ _ _.--.a_____ . _ - - - . - _ _ _ _ . . _ _ _ _ _ _----.__.___________.__--__=u=- -

. - - .. . ,. .. . . . . - - - - .. - . - . . . ~ . . . .

-i}; .1- l ! ,0 / ' j l' ' , <l i

i

'o it*

l 1

0 j

i 1

iF POWER DISTRIBUTION PARAMETERS s.

. INC-5-F1-90-5A ,

l I

RMS DIFF = 0.01784 RMS % DIFF = 1.9501 j RMS DIFF FOR ASSY > 1.0 RPD = 0.01816 .

i i

POWER . OUT - (EXPECTED) = 0. 8182 POWER OUT (MEASURED) = 0.8312 .

' POWER:IN (EXPECTED = 1.1401

' POWER IN (MEASURED) = 1.1301 ,

L MEASURED QUADRANT POWER TILTS 0.9969 1.0034 l 1.0015 0.9982 ,

j

. c. ,

EXPECTED QUADRANT' POWER TILTS i 1.0000 1.0000: q 1.0000 1.0000

, SYMMETRIC ASSEMBLY % DIFFERENCES l'

l 0.00 1.70 2.84 1.77 1.25 1.99 2.14 2.47

~1.70 2.10.-1.19 1.41 1.50 1.44 2.42 2.76' 2.84 1.87 1.79 0.42 1;.33 1.28 3.82 3.73' L 1.77 1.01 1.84. 1.28 2.37 4.25 5.31' 5.34-1.25 1.66 3.45 3.13 3.63 2.27 3.41" 1.99. 2.60 4.46 3.09 '5.77 2.78' 2.56 e , 2.14 2.68 3.88- 4.43. 5.82 2.60

-2;47: 3.10 3.91 4.45  ;

1

^V  ;

',~ FIGURE 4.5~4 (cont.) .

l I

l 1 )

-37

.~

g.

i .....__.._.2... . _ _ . . .

A  :)

i j

y 3

e*. a

}

P t

a,c  !

. t P

t P

f c :

i

~

I 1

I.

s .

I E

S P

1 l

I j i

?

, . t

-?

8 i

.e fjj i J

s Y

t

.h h

e

! 1 t.t. 1  %

4 D-f

. 'I t

1

-}

i

.5 E

5 t

t i 'i .

r r

s 1

- .I lm Fleust 4.5.5 SEGUOTAN UNIT 1 CYCLE $ RELATIVE ASSEMBLY POWEtt luc 5 Fl*90 6A V b

!f , 33

+i

'- ls 's b

f .

1 f

cn egw u .g - - l r-

~-

?

p.

z ..: -

y ,

4 , ,

f *AA , ,

s' s y :Q ** ' '

m' ' _ jl

~

Q44f~.'(C ,

fig 'J% *[

, ." [ r

, l m , q;

, 7

~s

^} ns d,

R .< '

. A

f_ , c; + <

l w . < A

,a . . ,

- i; s ,

y n,e,

,o- ', 4 I h. ,

f. h 1

% +.

POWER: DISTRIBUTION PARAMETERS.

x

! j '(2. - ' '

,INC-5-F1-90-6A -

H 1

l I> ,,

1 ,

W .

~

1;, .

1

,4 [ v RMS'DIFF = 0.01819- RMS % DIFF =" 1.9011' > m, ,

L p .', ,

m 1

j l RMS DIFF FOR ASSY-> 1.0.RPD = 0.01973' T H o

  • si

,. , y T

, . POWER OUT (EXMCTED) ' = 0. 8187 -'

- POWER' OUT' (MEASURED) 1 = 0,8309

~fli , POWER <IN' (EXPECTED =,1.1397 b '

POWER IN' (MEASURED) = "1.1303 n .

. .:p MEASURED: QUADRANT POWER-TILTS- 1

[7 i0.9959 1.0042 j:(<L 0;9969 l'.0030

k. ; . . .

1 EXPECTED. QUADRANT POWER: TILTS: , ql

,' 1L0000 '1.0000 LI 4: 1.0000 '1.0000' l SYMMETRIC ASSEMBLYi4LDIFFERENCES' l . . . . .

D '

0100- 2'.09' :3.04 :2.50- 1.75 2.77-:2.63 2.84 '

(

2 .~ 09 2 :.' 41 c l. 78 - 12 ~. 03 .2.10L~2.53' 3;21- 2;99 3.04 !2.36 2.29 0 . 4 3 -- 1186 2.21. 4~^' 4L66 Il M JE t 2'. 50 4 - 2 ; 22 : .'2.~ 22 J 1. 62 2'.15:. 4.89 5.m 98-2.65? 3.91 - 4 '.18 '

1.75 1 3.26 3.02 '2.67- 1 2.77' 3'.01 1 4;.71 3.06, 4.72 3.11 2.76 < 1 o }i ' _

2.63 '2.'59.04'.14 -4.679.2.74 3.05 at c2.84 2.86 4.05: 4.71 m.e.

y@ .,

h ,

9

$r. n:.. .c, FIGURE 4.5.5~(cont.) '

~

j. h I 1 ll'n. 1Q^'

(,Q

'n -if , i^- '

b 3 ,

+

y. i r Ylj. ;

. );N

, l &E.'

[ t

' g-i "

~

i

, ~39-  !

t i l ',:.\ f l' 3

. 'f - - ,

-m' w w, ,

p i 1,f',<..- a l'

'f

[ 9 t i l ,I .j;;h {c ' * ' .ll

,, ,I i.y 4 . . . . ,,

.a. , - , - - . ,. .

,W..?, .,..:E t cc' , 1:

.g

- 1 s .3. . , +

.-(-.i. :u:n. e .- 5

- - # g 3.,.

' " h 'f-' ' I f 9

4 5 5 6, f.

p.,.

, , ;p 2

a

;; s 7

. A.

.n+ ,, , , ,

i,

Y .;.h m.

.; :trs . .

r, "

.,2. - .ns ',3 p g .,

,u m.t' -- a,

. x <

n- ,..e ,a , , s i f ^ 't O. }.l

',- ',% q .

D  ; -

, Il <

{w: .,;' ' .d'; ; . ~

~

t ,

.}

f,f6 , , v s, ,

u.n .,. s.-,-d i c .'.

P V, %e, *

- a,c.b l

....< . ' :D L r

' Q '{. ,'

.lt c .

5

-w

.i.

le > -a'

- 4 l-r .' ' h l

I .t)

JI. S t }'

'w...'<  ;

2 fe ..f, f '. .

l-rs j,a . . >

t

,9% > , . <

p .i,'" ,

I!r .

\.

l l:

\ . gi 5-I. g.

I g' t c 'f s, 45 \

l r'Ji . , s b '; ?

1 l

t *-

l 9

i ;.g 4 :

. . ,f n .y '

s i-l s

, . o lh '

L( 1

'l ,

!Q,  ;  !. 3, s 4 x-

,..y'.

3 W><'

t

' 1, 1g>- 1.' 'h' 5 q; :  ; i

,;y p

,,t',. '

ti.

p g b M g

' , i i , ?. F. ,'

. ,- ,i,

.s

+. , m. .n,.

- w

. . . -;,i -

n ,

,l E

  • l j ) 1' $ ,

J4 If o.

i } j :a.

.. , . ,u' . 7ns

')i

,+-

u -

?_

t >

i,
j. ,
> s 9

, .t g.

3 i , -l '

l

t .~44. n.

g ,..

,p

'c y, ti. ..

a,

.. . f 'id

, , 4. ,

'9r ;r

'QM . s im

'y..i,..n -- , f' < , .

,M4f .. 1! '

~

t t i 8

, of , i ,t.

.tn, <r-

4e  !

00; . ;'d -. - . i .<

p.

n

.- , t.

, d. . .'T ',5 . ,~ s H i ,e, ls e, .

,. L.

r :--\ ] # i ev : ,

-.i*

kl' 1'. 6 if f_ '

  • o . , . ,

,O

+ o ,

. (ff .t c<;g4 9 2

t r

it - - ~ .

4,, ,e ', <g( f

c. <<

,2< P 3 [}' '. . -

[ (l p' .

I ig'} '. U-y_[f ~F'isuRE 4.5.6 SEGUOYAN UWii 1 CYCLE $ RELATIW ASSEWLY POWEks '

(G ,, Ec f, i o c.., e

--1

, INC 4 F1-90 75

. , . . , .. 2 t. >.

,f, {., 1

- b

.* 3 6

, ',i[! f i 61a - 9 r

L,U < ,; ' '

g ;y 3.y ,.

40-i., 'r av ,

n7 ..bN I f, .. (0, f i.

[( t s ;  ;) L<

r M . - / r.!') i ' l 't y; 'r , I .,.

5 8

,$u 4 ./,( fk-  %,.W;,7 L- -' 4 (' n

'(ke;< 't i [/ f '- ,'

'^?;l _ *i' ,

i mUp f, w i, "in tl t

  • * -.)' .

,4 - ,; j.1 ,

<t]

A. , , . ,

m . ,

';%Mtc '

ait k-m L

POWER DISTRIBUTION PARAMETERS

, INC-5-F?.-90-7 B RMS DIFF = 0.01667 RMS % DIFF = 2.7339 RMS DIFF FOR ASSY > 1.0 RPD = 0.01817 POWER OUT (EXPECTED) = 0.8225 POWER OUT (MEASURED) = 0.8323 POWER IN (EXPECTED = 1.1368 POWER IN (MEASURED) = 1.1292 MEASURED QUADRANT H)WER TILTS 0.9958 1.0043 0.9971 1.0028 EXPECTED QUADRANT POWER TILTS 1.0000 1.0000 1.0000 1.0000 SYMMETRIC ASSEMBLY % DIFFERENCES 0.00 2.07 3.35 2.30 1.67 2.73 2.83 2.70 2.07 2.72 1.85 1.63 2.32 1.62 3.28 2.71 3.35 2.43 2.78 0.87 1.96 2.49 4.38 4.26 2.30 2.03 2.77 1.88 2.45 4.84 6.03 6.01 1.67 2.84 't . 21 2 . 3 ;. 2.91 3.75 4 . ? '-

2.73 2.85 4.37 2.59 4.55 3.34 2.98 2.83 2.58 3.99 4.36 2.45 3.27 2.70 2.88 3.8' 4.34 FIGURE 4.5.6 ' coat.)

(;

+ - . A"

  • r 1 '

.- ,x ,

a a, + ,

~=

? M,- v 1. f. .

w, . ,p.

p.

o , ,

.- ,. .h. ' ,,

L 1"1 gfr . s qe '

t a

4 f  :. J i

' r

li'l \_8 t + -8 1  ? E I / e,i/ 'I,'

s 4fg o.

J.b M

2 -

a '

} k:

w y

$' IT*- t

- 4 a,c:

y4 '

s o .

1

. .n l4 f f.. a" ,

'T? s f.'t .

i i9 is :

1..

f f L

o .

a-

?

7

A.

i 1

!. ..".4 L y. }.

Jf 4

i +

$~ z 4 g ti {

< . m, .-

i s

'i}#

}

.~?!

,,_ r' _,

f.g ~ FIQURE 4.5.7.980MOYAN UNIT 1 CYCLE $ NORMALIIED AVERASE

' -ARIAL peter DISTRIOUTION G 'INC 5 F1 90 1C w-t' 4 I

h r-'. t

)/i k-3 g e I I. .

>4 4%};

'l  :

,h '

'1 ,.- .

. g$ ,

__ 4' g, . 1 v ; : . 13 s.42 f 1 34 .3

.fr < ' e

,t i : ,  !

_;; \ ; \, l. l q g

.~ .Ifa ,' y !

-4, '.{

.3: ty;-

g

. 3'r r\ ) -

(1 *t

..N- y

= - - - ..

e . + . . - - - - - - - - y +~.-

a, vj. aA c. ..m,

, ,. 4

.. i ,

4~,,=.,mo im r , .. *

, n .. .

_ m. s :..em. -g m p< ., y. , = ; <

1 x . i

. s, .

~

~

  • r s f,,.'^f.,i $1 { &,qj.- 0 ^t" >

g l \::

L

u,a t.

s ,7 jj,

(,,t. yt.

4

.,.o ,y i - 5 )_

u fu w, s ,

, t

~ o.. n.v .~- .

ea

m. , n s , a.

- s. '

t j } f. -

. n- - -

t en +zf- .ve , ,

t4 r

.F ' : - f f f . sN'i v

% E

  • 1-

- Ql ts..uo.. ..

t,,,

m-s

.n

.. 5<

.;3h.g's b

?,)!j l * ,- .

' J( . d, 5 , n, M_/ = .. s, p m:;

w g 4 , ,

- 4 K ^

j

, p i):

~.

< M. i , ,

-v yig. y[, ]l; x, 3

. ; k i. t a,c1 ,i..  :

t.

-kis ti

- , p

! 4

l ' t, '

.. y

+

5 T. A,

m. .,v . o .

~ ; .(~I f , ) . ,c

> . :.-- .! ,w. . .r, 4.n .k#J so ,

.s! ,<

t f- *i  %

- n,:I  !; f?w, 1 3

.*( -p ,

A+

L

,'5 8

= W, . , a m -

n.

- 4: J:

,J-),.po s . s i

4U,' ..

> p

m%(i r q )(;;s.: +  ? >

r 1 *a.S,o-ap:f (, m ,

c <

".y ( ,

-+,,  :

1 i

fj., I6 y;; ,

gs t e n

-Il ', f ',', i t , 1 b

.= bt

_:;s, k <. t --^ .1 w(* o q

I

?

_y.3...

o7. - s ,-

1 i

, s a~

.0? -

MQ-~,sgp -

c .

iy *- I, ,

, ! .Y

  1. '- , . g mj '

o ,g

\

._-p. m.- ,

e'> 4(-

a ~. '

& p:- ,

~ k. 4 y '.  !

2 MW: + ,n

-o,

-.o +

  • ',r

> .  ?

< -D f

-t..

M s :s.q.vJil 3

- i N

.m : ,o 4 +

- n@!1. , .

.PlWRE 4.S.8 SteupfM Unit 1 CTCLE 5 usanALIMD AvtRAGE-

- I'

,1-...

%p' ' . as' .'$~

AMIAL' POWER plSftlEUTidel'

%g," '

, luc 5 F1 90 30 +

01 ,

r<j .e.... ,

. e$

4 l3i:, f i f'T , ','4.I. a s

j!fE .

i

.f

[ - /

-?I f

'4' g

, 'AtV , .r N I '"[M. t, J$k p

'. ;y .5 5. ' ' I f -; II

-ane*

.1 *f. 3 o, t w.-

o < , '<

.3..

qt 4tsg 2.. t .

41, t j , '( ^ ' . *

< ' f I.I-r .'u f iI 1'f -h .p ' :)c ,

g i

n ni e

'+:I pfu# -}'  : .\. '; ,..fpd j4. > . -,

m if

~n.-.

- i .i ;; o' o s h.

I c

' g:

i i: <.,

/

N, ,. [ _ ,' - f ',

){..

l i f.

. .. . .+.. _

A '

Vi,Ry p ygaM.t- > ; ^

-~ ;- - - -

s . , .. s

.r> > , , a e -

' + a s

-:a e ,

' ,r3 g 4r ,

e 1 ,

g <j ,. e -

4 u.9 s

1 us A.

,s

. . .II '-I t

4. ' . , f : , . , ,c- -1 -

k' 4 -

s. --' l'.< AJi.my ';h~q' ,'h,'

t

. 9 a

N ' ,m' '

s.- s

>4. ; a r.  ;; y 4 g # t j

iw, .,

m r a.c

,e' 4 - l t<. Ai -o .,' .a f 4 : ;.

(-- , 3 e.

- >l i, p y el' 1

pg y e t.-

r m , ,

s 4

1 t

/ /) .

d j ; $ '.[ i. ,.,;t. ; ( g'-4h"

, ,_p I

s

) . t js[y'Q,p

  • 26

.,,.3 4 i

),3.-

1 s' , .3, ,E.

ci-y 1

a!a g

1,[ s ,

a .t.< ,I ,

gg' .

, 4 '. < , t l

[?;^y #> .ci;'

  • f l
i. .. , ,

l

-L'. i *g I

, . f #_ .

s uf$ '

m 3

, .g ,o

> -e. .\

q? ,- > . Sect

s. n h,til < ;

- 11 i ' .' :q ,7 3

i - _

., 5 1

g s s,
  • 4 i a pe , . ,

p; 9 .

4 1

I i

n at f .('.

3 J

~

s

.I^. . . i J

n a 1 ,

'. )p . ;

. I T' ' , >m - 5

( ) U g; .

py - , ,

{. '

i

+

, s e h ,-

z

\ '

5 4 I #

.1 #

t t .

g' .%*..,.- { '

,T: :ri,. :l. .k n

p. ,i. .o

.q g, ,s.1 o. i,..

1 a 3- -

8 .;

e e s

.i $

(

.4 . .

1 ,

.a ,

1, ,. ,

\

n, oc 3 o;. .

s

. .. a , Jl

  • lV n _t

, ,. i if ..j

'. s. '

I q

u  ?

M: c f _. '

t t

, e. ;. , ,.

r i-. 1 f- f ,. t

<3'.'., (

l;. .< ;};,

5

' 7;l j j'" m'> , , 9 9.'. ,-

,j  ;  ; c . m n

- n! W t FlestE 4'5.9 SteupfAm taltf 1 CTCLE 5 sonnALIIED AwaAst t' t b.gb -

1 ARIAL PelER DISTRIBUTION < j 4;- INC 5 F1 90 48 n- h; P. . .

.'f -

-)-

~, ..

N,,. .I f ,'-

J.$k 1) '-,3

g >1 ;1' , : \' ; , ,

L1U{*..

,.'. Q ,), t ,

01.( S fi . :,' 't F

' 3 .: %;') i'. ' t ,te^ F. I ! ):i b Jbt ' < 3 !.

c

, , a . v. >.n{ v ,.,.e-

'l >

s.,

w- i nu " ; >

iit .-'  ;

[:fi

[. I nny '

-<-  ! .l ? l"1 ' li .it n- * . g , i t.cm ,.

u p' . , -

.4

'l:

17. v h,.-

i9 e f f_{ J ~l ,

l? d*

Y! 'f

(! ,

yt ; 3: ,

.44 sp =--/-

hi t <

_ ^ ] !T ]kt f ' t ..\.

n

]:.hl)f A Ol::!"h, Y

.. z _ .-

f t_l'.

y

e . +

u- N g e

  • - 1,

~ - - c . , n . . . _ . . .

o r .

< me. ~es A 6.. ,.m,pp._,

. , ~ , ^

  • e f

4 -

' . . ,a,,5 8

/I '

-I.' 6 t t g > .yj

.' {1{ 4' 4 4 . f ', 4 5 ,

~

> + _ ,

r ,

9

' ' < A , t I a , ,1 I

r

?

jt 't

')...v,-

'.i ,-*

y, e J >

r.,n e

t s/

g" g

4 , i {; g i n ,

s

i{

.7 O , i :.' .

3

  • .t

) g', ,9

, -?

,t . 1: , .

b I

I i 1 .:';

c

'L-s

. i E ,

' 'a 4

,r.,sn-1 a'. C Lt / e,.

.jef i I'- r i^

'i &

n , .a 7.d in,p' : ,

,f..

( } J'.

w. v , e .;.

.'f t

4 y ,  : ->

--:. . 4 1

').5i.' ,

p h 1 77 . - . i n '

, , . n. i c. -. ,

. -0 .1. t ,

}

- S

. h*(

= i 1 v 3

- .c <

  • 4

(: >

a.

+

f , .)

P I

4 ,

, i i

r; , ,

l-L4J '>

l

+

o -

1 .

6 Ir +,

ll('  :?

p' *

1. .,

lac

,  ?

6 m

h , .-,,

t- t_ .

1,s.. , ,d, rr' e . .

p- ~

--j-p: <

  1. 4 ti

..o,,

L 3

li 1.'. 1

.}

d" . ", ' '

' FIGURE 4,5.10 SteMDTM Uulf 1 CTCLE 5 utinnAtl2ED AvtaAGE

i ARIAL POWR DISTRIOUTION. ,

R- luc 5 F1 90 5A P... '

I - . ~: . -xJ f.- ,4 t '(' "' t

.[

l ,

3 E

e

, .f h 5

< v'.

S

'.j-..

s .

o '

t 3-

  • 5 fy+ 4

; ,n '_. '

r .

[ f,'

j .i 5 (

,, , t C,. 4 ,'-

a 4

.t a

.;g- :; ,sg-,' 3n r <1 , y p .

z f

.. +

t

' b 8 M: .,-l j'.' i1

(.,.- - F

. jpg: s

, ..->. , r ' {;.-

r

,3.- g- .

eA.,,. c

, e- .

4,

-i 3' '

g )

m t

.s -. ,

s e r

. v.7: -

--. t

, S f

, j y; -

i i t. . > q , .g ,

- !; ,s ..

^>

.-I. ,. '

  • ,f-.

y( s -- e s

s.\ E

-f

' 1 t' Ih, , >l '

' emmeen -- .s j ,

1: .

,..11w 4.-

a , c;I i p & .k b

4

.l t

.I

. g' p

-. g- ,

. 5

- ( ;-

'2; yY  %

1:.

o( ,' t

  • ,s ty 't ;',

g

'f t

'h ,

1 8 J.

m.i s

k t

f t

i

\ -

J.

s ,,

L h

k t 3-.,

eg 2ay4 ., ,.

4 ^

,, , . , b _0

,w g

,-.4.,h N

'L I

i .

I -

i ')

>  ; ss t

,p . ,-; , .

2 s.

f,  ! t. ,! 3 v >  ;- '. t

, . j-"

F18URE 4.5.11 SP.QWDTAN UNIT 1 CTCLE 5 HolmALIIED AVERAGE 1 :h -

f!!D, uz.. [ ', .,a, , ' ,

- AMIAL'PtRER DISTRIBUTION:

AjP@

ib ., <

INC 5eF1 90 6A-

< : r .. i.

'I h,l l

, , . ; , g f. t' (-

4 'q ,' < t j .;

, t p

.;);.

'.[ $ I (
  • 71f

!g ? '  ;

4 ' : t,t y  !'

^g { I4

,, +

.y; .

s *

.4)

.3.,. i N h, 5 'i
  • ' 'm I

')'

,sayt.:syO.. ~ ,

  • L , .'y:.-s' ,

g ! ..J'a i

t, l .

y .

3 3

Y f.d :' r s ','jt b', n. ( 1;- .

s

- h!g 'A i j f. e} {=

I?

l:) ) ' * ' j' }'j s . ). effe

1. lt, .s ,o :f y ,x,I ,
  • \)[JV ~ i lh.. ; y h h '<

m.. , .

.f,,? : f - '

i 1I L{ ?f /

,~s V

__ . . i I i g 1 k

, {

'4 '

, ' .I '

s s t-

\ l c.

. t> ff3- t lue , ' , .

.c - . .,;
.

.,v p' .

, ,r p :;-

(- s f f t.

,c

% 1 ( o

.g- - .;L ,,

k

_ . ff ' .' {' f

,me-_

, < , k ;

3 i

r 5' pr-  %

f 1

.i~ a,c 09- ,

4 i

e t ,

3 aa',

6 1

m

,\ ~

e +

, g; t

,T p

,s.

.-s i

e t

i V i

r< 4 t1

'o

.!' bl b

w 1

? ?' r, '

s h' ..k s,'- ' .

8 4

ij xi 1

I ":I

> I .

) ! .

i;
FICultE 4.5.12 SEQUOYM Uulf 1 CTCLE 5 NONW,12ED AVERAGE

'Q - ARIAL PWER DISTRIBUTION:

luc 5 F1 90 78 o' -g .

i > .;

e t

k$ .

l 6 ,7 E

'> f 4

f -ii; .

4 :, O ' ,

~l f% n

," y '

l

'tA 4 4

47

/

/6 g t

. . u .q};

j

<  !,+. w

' , * - - rm t,--

  • 1 r

4, ,

, - . . ,-,4, s .

.x ,{ ' p,/

f +

'J' +

9 + t u l

s, F,,.. ..{ ,i s.- .y't'p f-t y ., 4>

i:i a';

e t

- g). y"* - of . -

i 4 ,

e / .,.1 - 4

('

( % I :Y.' y

..f ig. ' .','L . .I 4

,i 34 l ': , i 1 l; J -

s 1

, . ._ x- Qo ,,

,,b

1 i l '[;.fi

4. - .

1 I.

i o -. e _' .'t k k. , , .

e. . , 4 r. .,. 1,, .- . 3 , .

a

)

3 l

l ;. a ) i, '

t n

  • 1 l 1

.a! o l

li ,

i .- fd . , i a

,j

'4 v;: ,.q. . .

.rs- -1 l' - ;y:

3 t-

- ip j - .1

\ ;,. ,p.y l-7,w. ,

a,c~

' 1

.l

':i;.- A. c , i

, 5 h [d l

I

,? ) l 1' t t

,~

' , al l1; - , 1 a.

.., z, :.% -- <<

l, a s V, , ,

s <

. :s '

>, l; l.

1:

,,. b r

-l Qyt ^'  ;

4=

n, ,' \.' .L .,' 3 J i

< -,c - ,

1 I L, l

, ,f'. - 0  !

i f ' I

.>2,s. L .y y;

t*:'

? -d in , . . .': s - D<

'gr .. , , ~i T' L i

( ;,'., .5 ( ,

, ,v,e9-

-- .. l

' 1 71,-" ys ,> 1 i

(  ; o I

. 1 1 , , J r e . p, c

r; >

y )

....J" u +

f t gg. t

\ k r

t -i l 6 A

.' \ > . 'I g

bc ~l t l

.g p; g - .. -

p< i 4' j

'It-T 1 t .- ,;t v

,d .' 4

( i

's 3

71 J;lg- -

-s

. . s s .

.s ::wi

' <1 i i

13 4

tt s

c.. ,, l . t  :

' h. '

.9i \

.x

..' FIBRE 4.$.13 SEGUDVAN JNif 1 CT:LE 5 LintTING Fe .

M 4,jo,O j s' -

, AT EACM ARIAL PO!WT.

l}

U. p :3 INC 5 F1 90-1C ",,

i y;.'u,, M6. t , b) *

, I I,k , n. . . . )? - .

<f';-

g !. ,~(.c'

' { y 6

f.

__gs

,; ,. i .s ro '

l . j '[ 5 2'

,,i 't '

'4$ .' l'? ,

4 l(I

!i I

a t

i I,.'

s

  • M ' '

43 ll  ! j- @ ,

n: '
  • 4' l.:; i

,( v r_

k yf ~y t

= cn. . .~ ~ i', .i

a . , . ' , . ...., . . , ,. . . . .

w. - '. -pt . ..

v , -; ; ,-..

+

, , , ,, - . a

.c i ( ,.

, i =; 4 ' . ,3.

sy . s  ? 'z-e h' s

lg -,

,l_ : k 4 ;j e g h{  ;;  !' r s' '

,,- . c 4 '.4

. '.. . a.. s ,

.. ef,a

=g +

g

~;s e . -o ' s s ,.. .,

4 4 ,

L ~ W<-

.t;;. n r 'a -

s ,

z. ~i

. p. ? -- o .t , .p, 8 ,

3' 2-,,

.6 L , i r ,t s.

, _- .c.- , ~..

t , p .

qw: <. .1 m '

. m. r,

,; . . a... o, -

31 f i .I

m. > 5 , , . .t ik yllt8 i ;
  • g } * , 1  %. Ig 1'. ,} t, ' * , .

.  ; ~b ,

  1. f' F'u [ :.o ,' >

- } f_

if ^

,{t ,

, '( *?' q 5't s r ,t ,q. ..h

~ c' s- fj I f.ki* t.

f

,(

. .-;s C;< a

>, \. , ,

.g ' y t ' .1

>q?y,;Q; , .

- i r

' t n.

lJ.; ~ ll.' ,

' a s.

s i i . i,

, <i, v.

1

. s(. ,

e

. '*t c.

v 1 -

4 e s

, i .

. 4. .+ - r i, 3' ,

l i

'd[ , .[

s[f 3 _

4 t

j .

18 .:v. _

q l

'O

.a

41?
+

- 3,

!' c. . .

s i  ;<

j,3 ', <

1r r h

li-* ,

,.o i.q li! . .

e ,i , , .4 U. s e  !

i: t

e- as

. n. 3 .

~! f ,

i

,,j ")'.

s c il t 1

.) .

9

'f:

1 1

i;  :>

I

'.' ' (

n .,. ,

i m - , .. '

I. 'f(I et x

,,7 1

1

' \ '

'#s , > .

. <
:i " ,

,t

.. ,.,. 1 i., . , } t ,.,i' j : ,q4  !(

1 .

y' , ,

fl t ,' 4

',- r l

i s

.ct '

o 4 l:l; , K $ s

+

ln.. .. 1 y,li p. : >

! i -. .

ly.i,,1t'_

I ! .4 *-

'\.*

y 9

, a .

w 1

~. { . i 5 r

--. i 't .

+ +

[p.s , , s.m ' , ,

r J t!l

.~

. n

,.g,+.i, . .';e b aa OS!k"? ',T '. .:1,i 41 -Flaat 4.5.14 steupVAN UNIT 1 CYCLE 5 LIMITING Fe. #

1j l"P \ , 901 V 4

AT EACN AK14L POINT '  %

? ,1

,r . .!.I i IN.C 5 F0 90 30

!, ,,a.., c c ,- e

.g e , e. j

. q,

)3,g; o , ,p ac ,

=

[. ' e ft p-l ... s ..

. . - : f.

.-y,,.. aoi -

.i., , ,

t. ;. - .. .

_ ?,

%yf;,e%' :c,s ,!,

, , ,t

,0m

a. t

, , . _,7 ,E,,

y,-'

',. V y.,

4 k G.

k

'. - \ ; . ) . '

.-4.,!.',?u If.

f ,-

- i ,.,$,

z,  ;.; ,

v

>i y ,y r 'ar 4

, ~i l ' > ~ 3 7< 2 Y' ' < . ,':. ,t *

.-_f ; {i f -

,.y. ,

.s . , y l,.f-w n - r; c gp~u l -

~ s

.1,

~

r

1 {

[' ' y ; ( f a'?y.m ,

b. .^l({ -

6 Q_

a' j.

4

p , ,*'

lP):it i b .

--G,#

, , h 4 ., -. 9

.. % 5:

.i!_

1) "~f'1 r a , c .:- ,

.* +

, . ; *h 3 -

~ ' ' '

_ ' .9,3_.

.I' i,

, a- .

.,[.

s s s

b 4

h 3 4

) S I'.

I.' . e.i y.

4 i

i p

- f.

g) : 4. ,

6 y

\,'_,

t k r '/'

s

.m-?=

M

f-;

' lu . ,

1 I

.w

,}!I i o

i a

f- -t t

%:  :. v.

'[ r 3 t-

}#

+

y( .h 3-i t

. , ~, ;

.:,s- gt. L>

m t ,

W4 '

FIAURE 4.5.1$ BEEMDTAN lallT 1 CTCLE 5 LintfleG AT BACM ANIAL'Polui Fe -

if g!f,b.'

j IRC 5 71 90 4e-w.s ,

1:

p , - , ,

( m, w.,

k

~-p ,, ,.

9, ' *

? .-c;'-

t n , o. g .i s

.a.'.ih' ).,1'...  : . . . , , ..

% )

i f h'- , ' I '-

! 7,h, e' ..

p n'a_ -3..

-" ;d p )* * .,

'4, =;.

i g6p #

!;gl i u. . ' lj - - - -

,r y)'_"

p-

- + t _j '.'h,'

G '.h k .'

/ e p '

l 7.. 1 ' , i f..' - p n' 364r.s/

' '~ jj .l ;

4 .g. ,

I_

,1 g 4  ; ' ..L6i-

.5 Y

'; i ., s

.O 4[b

[gr';8{>.

.. L[: e.v,  ;:.p*g,

,x cop

/-1.7 ~ $- fj ! :[ ' > /.:

_g

- n w. , ,

., . m ~. ~-'_ ,.:. ... o,. ._

1

.c.

i a . j N k ,k' 4[

(; 'J- -' I*I 4,

,D4 j/ !

- 1 y >

p" a"l_ ,r p .

.,p., *

-1ii .';' .J f i 4

,s O., n', . '. t l. ' $ ;dz. . . .

/ I[, ' . . ,

s 2,+

i Jt. ,*,- t ' f , i <

.-1-7-y 2

,. 5. -

-4,j ,* -~r f

_ , j"l '

1, .'.  ;

y/ j = 4 t1.g l, (,

~

r 2[v.9;f ,

m. a+;.-s a; f,n .n v .
q. s ,

t (

M,7:a , ,, -Tw,. e,y N Ew,&y , i ,., -

3 v .' .

q YJ Ts ; t G.' l 'u i

...t.

n < c a, . C ,g_ . o.-

i;g$ , ..);, 9t y 5 r, I g

. : , ., + y. .'

I', s i, '

t;;[,

c s g] &

~

hm.7 r , m

> f ; -j. f:

1; a . .3 ..j -

+ 3 a,c

,.;w ,

r: m ;m u v gI E sk -

.L ,. ,

if

)

1 m

m , ,

at ?

w.u

.dq;H ,

, o.

c I k '-

y

, to, ;

r

\ 'y r

I 5

'v. a m.; e i ljl s g'

'; 6;i j;,,

, ,e e m, ' ai i y ..-:

p.,

I ); }

/ Y :;

4 b

f g i \ - h,,

4y' '

,I I.

i

.t Y - '

a. ;. a. ,

,.: s .'*,

C ['b f.

, . . , ~ .

, . o n'b ' ,

s'*n . . i F

{.3 .

<n-mg gE =

g, 5.< >

..o i

.Yh ik k t ' - I' n' ; r i ;'l i, .!

y ,

t , s r

\

,2yx

! l s c.p6i, i-o os .a ( g , i p,

. . . , ( -

)} .t i

A- ,, l'. - 'n\

., 4.!T-l 4 I g

8

.'s>. a

. n' ,-

) { k;/.

. , . a' s 2 . 4 s ,

&:.. ,.-: -o.  ;, ; ,i .b. ..

i.

, , 1.;.

,s.- . .uj.

!,'y$,gE- [ I [?. i , q _

y1 '.;", , , Ja . . .

v' g ml-

,o 1: 1 4 rigung f.5.% steutnau Uu!T 1 CTcLE 5 t,Isliffut F0 '

3

,gjd ^ n %,, $-t '/.i.C 5 At gAcu AxlAL potut. '

jp i - IgC 5 F1 90 5A Sn:ba! ?e4r . J ' '

,^ !l i ' ..h ::

<m. .w-

.ay+sQu. ,

< u.

3.,, . g,

  • i i+ 'i j ,- , >

't' r s,y .,r.

t :&

an..k

(.--

, -- - i, iI

t. ' .

h{fl . 4' / i q.Y. . M.,g .H $ -

r i s' h s I <'g.* i pj. , .<

r -

'it i r%<. ,

5

$. i-e 'y " ,1 1; : '

y-.i .'; 'lu,a g OG.]} e ,1l -l! {W, ';

. :lMi .

D. kq' J J L.

r j e '+e,g ?se

. 4 t

.eti.. .:o r

' - *

  • 1 s'e m 1hp a' pt4' c' $ .

,, i gjp

. s.n m,g. yc - 3, , r<,;xf-+-a .y<

' ' l-L b. 'e ,

t + ~ . - _ _ _ _ _ _ - _ - _ _ _ __

=

--[j . *!j., f ! i, f 5  !
  • 3 i .,

'i M cf^- ' 5

+: . a.<

3

- g. , ,

3 4 s

e. , w: . -

, - e A. - #

4 ., , 4 o' l-e 4 .^ '.i . ,

-,-}<>

vs i> r ,

s .%,

t 3 if, x r.?: 4 .: o

^ i,', 4 _b.

  • 5 x' h I ?-  %.

4 I s g

w s.e ..

A 9 4.

- ; g-D #

c- 1 --

s is ,.-t g

}{,; U.

,, -t - ,

i

.,,~

.*)i .

m .- -

'r a,c:

F. i '1

.. , 4

'{r s

4 <

t

, , .-t.,.

4f# )-

p .. 4  :

- g,

'+ ,

F $  %

).- -

. q , _t i ,

T' W. .

,. -a,;

!in.-! ,-

r,<

,e s t

1 t t I . ;;r .

}

,s s

5 1,

r > ,

1 i

4- $

1

,/k, .- - g ). -

s.-

e 't

- ';) +.,

u; c:

5' t .

, S-liCL'

/ ca s s 1.,-;

-q1 n,

. ,,J p, ;, , e.

= tr o e , --

7- - z, i ,

.,e <

'y',

t '.

%- .I r

m; - , -

.-_ny#o -1

< 1 ,, .-

s .1-

...m, m as  :.<r cp" # '

'n"! ' - Flostt 4.5.17 BEeuotAn Unli 1 CYCLE 5 LIMlfluG Fe ~

+

so <

AT BACM'AKIAL POINT'

@[*

~

INC 5 F1 90 6A u . 3. ,1.=. -,

-<t's . ;.'

sJ.,. I ,

k't e 4

4

,',- iw .J s! kT h I* _I)

.. f, i  ;.

. ci- i 4 I

J6 (v 9',..

l '

.-e .' } ;- ,

k b. r. _

f 'h h.I 4,.(l.'

f f ',

1 I

?. > >

',lt, -

g,, -

'.':ig ? s e t>*

_ , p $,

s- &a, ' ," .

e. go m ug ,

, 52= '

a i ;.

a t =q:{y. .

<  : tt > 1

)

j >

g

,,t. '

s s, 4 .6 1. -l +. ,',

cp i

. it ir=. 4 i

$ ,1 -- o!' * ' 'q 09,Q {. }% ' . . /;4 >

ia .

, j ii , - : t-,'4 i: n %,r- 6 0 -ig s.

, , 4

4 -- - *

,)L,~

i5 l' k *-

]. -

1 p'q:y

i

,-,.}M' ,s . . +- <

'?

t,.. ,

a 4 i -i 4' -

2?

34 p 5..

f,.y T.'

  • 1 ;I. ' '

. , . .r .'. %9 u . - _ g . .-

, s-g.

v

'g.y>

. . , . .n

.. :7

=.n.

41) ( 3 rib;3, ,

3- , i ll f y ,

h.,

l,

, y .

' .- 4 t:

1 i

is

' - : { ',  %

.! l

+ 1 .

. s -; s i -

.p(

,i}-,. o _

t

~

v'. .,

a,c ,

L, ji. .

'-j 4

, . .n it t

t.

u. c

\ i ' '., - y us . 4

,3.

i -M,y

> 3 9 w

4 1

1 i e,

e r

I 'l ',- g s s

?

h'y

  • .:..c. 1.,

i

.'(:'

1 . 1-m

,,3 . ; .

rlp . .

e w, t h

,g3> .-

.3 1

,u:

1 4 5 4.

a I. d. ,. 4  ! 1 !.

i

,w ?k '.,,  : . .s

~

y.,,, . . ,

,'^

\ J g ,

,; ki) 4 i

i

< , i i.s k '3 4

?%< - f' ' FIEURE 4.5.18 SEM10YAN UNIT 1 CYCLE $ 'LIPITING Fe -  ;

y$ '

AT EACM AXtAL. POINT- ' t s.

i luc 5 F1 90 78-1

)." .

i J-t 5 6

. , 1 i

,..x _}

) .

,) k ', ' 4 ,

'j -f; y  ;

l'%

6 J.. ./ ,4w';$a'4 -T .

' t  !. .

-'f ,! $

, 4 4 [-l T ,

  1. ns f-

,. , 7 -)- 4*

, +E M.. . - @(g . , - J t  ;!

.s, . 753. . ,

.I $ .$

. ) } 4 \:. ' ' -

q{ j. > ...) I';.

. ;q~. e

.t ij n ,

,e. ; )
  • i ; . , ' '
  • fti , a v,_ .j n .c . , i , ,.

'21.*h't. ~. , ->gi

-a ,

S ,

, .it

,s m

.,. e,. , ~ . - ..- -

J s

, '} $. 'y .. d :;

rq .< /!Q e

.i >

r.- '3..

', [ ,

+3.

T c(

,n .f i

,,,s .

a

..n , t r, s >

s 4 y

  1. r s ) 'p

.y -

,", m.  :

FIGURE 4.5.191 'i 3 -j.- h >

{'

,ji..

x ,

I J

f t. t

-.j g-s .

s o-

+,. n  :

f

, r -

. ,i

.fU '$ -

o.

ci. .

m., , .

4 ;;j 1 ., ' u.-

,g p

yi...,"L ia 4 7

.u: ,

L4 Y .t p _ o.c c o i g- . m: ,._-

s

o. -

t

-)..

, r.

'(

i b.[j : e g

w-w, _ ._C

1. -y .I.

V. C '; '. ;

e ,

p u ,

l i

e-

.t

_: e.

n g

La.

L, e _ -

s -

3. :.

g-s88S, o o.

x a a ci .. o -

~

o> : ci w

r>

.. y -.

~<

o u.

a l gw <: r O: -C

+ .F

.g

,o'

.~E. o  :::.

  1. g " p g g l?g ,e

. . .n. . . . o c .o si ..

w .-

.g o -

r .'o

1. -

, = ,

, , i. i

, .. : ~

' p n 'i t,: .

, w t,

. e. .u 4 i 1 i!

>t, d.. .?

!. m.'.: -

eu 1 It 1'[ny .O g: 4 e. <

r . .. . . . .. , ,

,d y -

gi -.'o .g .

g e

=

co-

+

o

=

e c

o e

e .e - e mw - .g 1

lp g v  ?. - e' . o. o ci o ci 6 ci e; e; .g_

m.  ; ,

rj ,I k; '

.J.

n' .

ymw.

n-s ,

, - W3 mod . O.-l 03ZnVWWON-  !

M,- ;os bi :! . ..  : , , ,. .

s

. g f,f 'i'-*4 "f-y 3 q}!. w .

-ss-T h 4. l h L i $

%hk _?l' l ' '$ l'

=;o.. ;

C ,

. . t y
r p .;+ .

..... , y , ;, < i n o, .,

y ') . 3 + .b. 4 ' ,' ffl ? g,, .3,, A lf ' ,L ? , ~k} 1 '

dibs i c N/. i .

,,g....,.

~ ., , ,. - -- _ _ . . . . . . - ._ _ _ _ , _ ,

_h,*~ *  ;~h [~

~'

_6' >

h,  ;[/~3 y 1 ,x. >

~ ' mi o ; Q. . , ,-

' .:!3. I- ,

, p'r. 3. ,

1

.I h ;

.,3'p \ / '

f.[. 'O , .,_ Ei W FIGURE 4.5.20 e t

2c r 4

i

. , t ,

t i

Y.

l f

s.

1_ L. 0

't

. y ,,

-55ii'.5.s.!:a-4;!.M LE.'..

e ' -.-  :* -

. i.h5is.HE= hie'.sr.i.*L@..... .. - -

~

g M. - ~~ - *

  • i

' == ~:_ . 7  :"".:r='M"Jr :: . . . . . .

  • t
  • r=".r~=P.. . . . .._r . :* r . : s t"
  • * "s"': F. -

+

&A , . . .

C* 4, g.*

g *

. . g p _

l; l.**3[ f*3 . ,,

n - _ _

p ;c I ." m_

+ +

==:-. V

_ _ -  : ~

[

y..

_ bt ,' .~*". w - - ,

w ==:  : 3: =s,e 200 m.

+ -- i n -

-- 15.100 ..

.. = , .,

'Y' -

~

_ goo .-

- .t

_ .e

  • ft ' *f't n . . . . . . . . . . . .

% ..... . - a====

.: ;UNACCEPTA8Lg r: - -:= ' UNACCEPTABLE Ul -

(

l-j - OPEMTION t .Fj ,

ammmmg .

CPERATION- - L, 7

s L

~

.80

_. .;:- i

) i

,E s = ,

D b -

ACCEPTA8LE t K <

~~  !

- ' OPDATION **

c 3, U. _

.t y

y 4 1

c e . -I .

V .... .:iid (.32,50), (20,50)-

t m I

.y

~

< 40 ^' -

p

\~< .

, j e;

I.

m

, i.  ;

._ i

~

0 * ~ ~

7 y 20 _

.p m  ::.u. . _.

_ -e

. v.

7

.:::m

= n= -= _.,

,9 w

b -- .:. . ... .. '

3 a- ,

,,...7=._.......... . .

= . _ ..,-. _

10- 20' 30 to 50- s  ;;

-10 1

0 O.;, y. ,. -

0'.50 .40 ~ .30 20 x

V,i - Flux of fference (4I)r "

,c j;yl[l h ~

v i i t ,j ,

k

, .- k, Al r e .f

?

\> g .

' . l1

!l i ,f h.' .h 1

I "W y Ax!AL n.vx otr7ttact LIMITS As A FUNCTION OF RATED THONAL POW.A 1 u

i F ti.. b I;  ; I

'_.' 4 ef ;a ( f 15 s i r s; s

_ a 55 p i,. -k n.
i 4 ' t f, g3i~. { .-

i <,-

r ,,..- l '

d; m

4

, j, , 1

., v ; . . . . ,

, < /c,

w. -

< a-

.. + i g' \ '\' ,

, .,'f,; i. .,\: s'.i z.

,o , , 1 2 -,.

, y,, . : _ .y ,

.,. .4

.Jiyh -

i 4

'.'.) q , '

s

,:.s .v: a ~ -.s y4 4a>, .. . 4'.- , u. .

m. -

,;-h+

, . " ' 9% y- _

T ENCLOSUREJ2 ,

I r: w.8

\'th .l~ )

a'..t ;;

  • i l 4? p; ,n, t . .. ' / 4 '-

,A

, SEQUOYAH NUCLEAR PLANT,(GQN),.

UNIT'1 CYCLE 5-RESTART ?HYSICS TEST

SUMMARY

, t

-(PFE-F26)

A, PROPRIETARY'-

It s' s

- . r i c.' t ..

. p ~t  ;

v sb

3. s ~
0. -! v s

I i  !

q . /$.

lt' r ,

,b '

'f . ;f j ,'

l.

T,'

P n-'

' !(,: , .-i<

y b

L ,

, .'f' '

, ,' ' .' I ,

t j p ..

g4 m

p. ,' i le', '

,a'.st 3.s

$ t 1' , /

f ,

f f

J

( ,

j I

$Js, ' .} g ) ,

~

4 g if\i h

4

\[ J4 j  % .: f

> 'I d t I

q 1, *I' l,

"1- ;

97

u

r

% *t et

. . ( ,

N' s 1 Ft, _'t ,

, } b ,

I f

..f. ,.s

, q'l T> l'~~'

,  ; ,_ ), -

i

~

v

1) i - fg -4 lj . > Y. [ .{ -

.b

-4 s :n 1

4 i

-g (; 4 -

il.. i

.j o, . ., , . vii t

-(..t

l .' 4 4 1' 3 ,

f.

\ , i li,' p l l . 'a'\ '

1 '

g7 4

i8

.i4

[ f *'

.p

14.  :;, f' ,

-t f .

1,\  %

.)h

.5 n . '

j 6;-" a,..(

h [ k '= , E1 A n' - (;

,: >~?. W >

(

f

,a  :)[ .i[ t I!.. g

(( - T ;* } t' i .g '

dq ;a? f :.' q , i ? -

+-

, f

,L t *# r a

.(A, p' n -

cw .,n$ s r,.

I

'fr k,$, l 7 -f . 'g >

l _ Q ',' - -

an ' .

> t h oli .)

_ a

-'t *> s ) / / i . . ' ! ) ,. 4

'g j -

k 3 1

\',

/. _ j 2.u  ;;/ ! 1< . ,> i f [; ,

-.t j

y ll $ yjG(1' j, t t . s+;

? .

!1 ,

?nt !,S i- ef 3 o f -...: x; ro r'y ,

4 i

) ,16. ' - . ,y' %, .

- . ,1 ir ;i4 <, -

,